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• Clarified use of FFA_MSG_POLL with RX full interrupt
• Clarified multi-endpoint memory management is an optional feature
• Clarified how a receiver should request retransmission of a fragmented memory

region description
• Clarified 64-bit registers can be used in direct messaging
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• Allowed discovery of minimum buffer size through FFA_FEATURES
• Changed FFA_VERSION for negotiation of version number between caller and

callee
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• Other errata fixes and language clarifications based on feedback from beta 1

2019/Dec/20 beta 1 • Added ability to pause and resume memory management transactions
• Restricted indirect messaging to Normal world
• Reworded guidance on Stream endpoint IDs (SEPIDs)
• Added ABI to resume Normal world execution after a Secure interrupt
• Reworded guidance on SPCI instances and Split SPM configuration
• Added clearer guidance on optional and mandatory interfaces
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• Non-confidential release of beta 0 spec
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2019/Apr/26 alpha 3
Draft 0

• Significant rewrite of section on message passing
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Preface

The guidance in this document constitutes the Base specification of the Firmware Framework. This document is
accompanied by the following supplement specification:

1. FF-A memory management protocol [1]

The topics covered by the supplement specification are an extension to the Base specification. It has been separated
from the Base specification for the sake of its brevity. The complete specification of the Firmware Framework is a
combination of the Base specification and the supplement specification. This change is applicable from v1.2 ALP1
of the Base specification.

The supplement specification is not versioned independently. Instead, when a supplement specification undergoes
a change, it adopts the latest version of the Base specification at the time of its release.

The guidance in this document can be at a different ALPHA quality level as compared to a supplement specification.
E.g. this document could be at ALP3 while a supplement specification is at ALP1. To achieve alignment with the
supplement specification, this document can be at the BETA quality level only if all supplement specifications
are also at the same quality level. This approach allows this document to evolve somewhat independently of a
supplement specification w.r.t quality levels, but also provides a point of alignment at the BETA quality level.

The reader is expected to use the guidance in this document in conjunction with the supplement specification.
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Chapter 1
Document organization

This document is organized as follows.

1. Chapter 2 Introduction provides an overview of the challenges being address by the Firmware Framework.

2. Chapter 3 Software architecture provides an overview of the Firmware Framework software architecture.

3. Chapter 4 Concepts describes some fundamental concepts that are used to define the Firmware Framework
software architecture.

4. Chapter 5 Setup specifies the information contained in a partition manifest and how it is used to initialize a
partition by a partition manager.

5. Chapter 6 Identification and Discovery describes how FF-A components are identified and can be discovered
by other components in the system.

6. Chapter 7 Message passing describes the mechanisms that partitions can use for message passing.

7. Chapter 8 Partition runtime models describes the state transitions partitions are permitted make in the
run-time models that their partition manager implements.

8. Chapter 9 Interrupt management specifies guidance on interrupt management in the Secure world.

9. Chapter 10 Notifications describes support for notifications. This is a mechanism that one partition can use
to ring a doorbell of another partition.

10. Chapter 11 Interface overview provides an overview of the ABIs defined by the Firmware Framework.

11. ABIs used in the Firmware Framework for status reporting, setup and discovery of partitions, scheduling,
messaging, notifications and interrupt management are specified in the following sections.

• Chapter 12 Status reporting interfaces.
• Chapter 13 Setup and discovery interfaces.
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Chapter 1. Document organization

• Chapter 14 CPU cycle management interfaces.
• Chapter 15 Messaging interfaces.
• Chapter 16 Notification interfaces.
• Chapter 17 Interrupt management interfaces.

12. Chapter 18 Appendix provides guidance on the following additional topics.

• 18.1 S-EL0 partitions.
• 18.2 Power Management.
• 18.3 VM availability signaling.
• 18.4 Legacy Indirect messaging usage.

13. The FF-A memory management protocol [1] describes the mechanisms and ABIs that partitions can use for
memory management.
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Chapter 2
Introduction

The Armv8.4 architecture introduces the Virtualization extension in the Secure state. The Arm® SMMU
v3.2 architecture [2] adds support for stage 2 translations for Secure streams to complement the Secure EL2
translation regime in an Armv8.4 PE. These architectural features enable isolation of mutually mistrusting software
components in the Secure state from each other. Isolation is a mechanism for implementing the principle of least
privilege:

A software component must be able to access only regions in the physical address space and system resources for
example, interrupts in the GIC that are necessary for its correct operation.

Virtualization in the Secure state enables application of this principle in the following ways:

1. Firmware in EL3 can be isolated from software in S-EL1 for example, a Trusted OS.
2. Firmware components in EL3 can be isolated from each other by migrating vendor-specific components to a

sandbox in S-EL1 or S-EL0.
3. Normal world software can be isolated from software in S-EL1 to mitigate against privilege escalation

attacks.

This specification describes a software architecture that achieves the following goals.

1. Uses the Virtualization extension to isolate software images provided by an ecosystem of vendors from each
other.

2. Describes interfaces that standardize communication between the various software images. This includes
communication between images in the Secure world and Normal world.

3. Generalizes interaction between a software image and privileged firmware in the Secure state.

This software architecture is the Firmware Framework1 for Arm® A-profile processors. The term Framework and
abbreviation FF-A are used interchangeably with Firmware Framework in this specification.

1This document was called the Secure Partition Client Interface (SPCI) specification until its v1.0 BETA1 release.
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Chapter 2. Introduction

This Framework also goes beyond the preceding goals to ensure that the guidance can be used,

1. In the absence of the Virtualization extension in the Secure state. This provides a migration path for existing
Secure world software images to a system that implements the Virtualization extension in the Secure state.

2. Between VMs managed by a Hypervisor in the Normal world. The Virtualization extension in the Secure
state mirrors its counterpart in the Non-secure state (see also [3]). Therefore, a Hypervisor could use the
Firmware Framework to enable communication and manage isolation between VMs it manages.

More rationale about the introduction of the Virtualization extension in Secure state and goals of the Firmware
Framework is provided in the white-paper titled Isolation using virtualization in the Secure world [4].

DEN0077A
1.2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

19



Chapter 3
Software architecture

Figure 3.1: FF-A software architecture

The Firmware Framework is made up of the following building blocks as illustrated in Figure 3.1.

1. Isolation boundaries.
2. Partition interfaces.
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Chapter 3. Software architecture

3. Partitions.
4. Partition manifest.
5. Partition manager.

The following sub-sections describe these building blocks in more detail.
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Chapter 3. Software architecture
3.1. Isolation boundaries

3.1 Isolation boundaries

The Framework defines two types of isolation boundaries.

1. A Logical isolation boundary that can be used to,

1. Isolate one software module e.g. a library or a device driver from another within a software image in an
exception level through an IMPLEMENTATION DEFINED mechanism. One or more services implemented
inside a module are accessed through a IMPLEMENTATION DEFINED application programming interface
(API).

2. Isolate one software image from another by,

1. Deploying them in separate exception levels.
2. Deploying them in the same exception level. The images are temporally isolated from each other on

a given PE.

One or more services implemented inside a software image are accessed through an application binary
interface (ABI).

2. A Physical isolation boundary that can be used to spatially isolate the physical address space of one software
image from another through the following mechanisms.

1. The Arm® TrustZone Security extension. It is used to protect the Secure physical address space ranges
assigned to software images in the Secure state from software images in the Non-secure state.

2. Virtual memory-based memory protection provided by the Arm A-profile VMSA. It is used to protect the
physical address space ranges assigned to a software image from other software images in the same
security state.

The Framework assumes that a physically isolated software image is logically isolated as well. For example,

• A Guest OS running inside a VM is both physically and logically isolated from a Guest OS in another VM.
• A Hypervisor running in EL2 is both physically and logically isolated from all VMs it manages.
• Firmware in EL3 is physically and logically isolated from any software image in the Normal world.

The Framework does not assume that a logically isolated software image is physically isolated as well. For
example, a Trusted OS in S-EL1 is logically but not physically isolated from firmware in EL3 when any of the
following scenarios apply.

1. S-EL2 is not present i.e. ID_AA64PFR0_EL1.SEL2=0.
2. S-EL2 is not enabled on the system by setting SCR_EL3.EEL2=1.
3. S-EL2 is present and enabled but Stage 2 address translation in the Secure EL1&0 translation regime is

disabled i.e. HCR_EL2.VM=0.

The two images are not physically isolated since software in S-EL1 can access the physical address space of
software in EL3.

The Framework defines ABIs that enable communication between software images across an exception level
boundary. The images are logically isolated and could be physically isolated as well.
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Chapter 3. Software architecture
3.2. Partitions

3.2 Partitions

A partition is defined as a software module or image that implements one or more services within an isolation
boundary such that a service is accessible across the boundary only via well defined interfaces. If the partition is
a software image, then the well defined interface is an FF-A ABI. If the partition is a software module, the well
defined interface is an IMPLEMENTATION DEFINED API.

The Framework defines ABIs that partitions can invoke at their exception level boundaries for the following
purposes.

1. Discover the presence of a partition, its properties and services it implements.
2. Synchronous and asynchronous message passing between partitions.
3. Memory management between partitions.

A partition that is logically isolated but not physically isolated is called a logical partition. A partition that is both
physically and logically isolated is called a physical partition. The term partition is used when it is not required
to distinguish between a logical and physical partition. The term endpoint is used interchangeably with the term
partition.

1. A VM (when the virtualization extension is enabled) or the OS kernel (when the virtualization extension is
disabled or unavailable) is a physical or logical endpoint that runs in EL1 in the Non-secure security state.
These endpoints are called NS-Endpoints in scenarios where it is not necessary to distinguish between them.

2. A partition in the Secure security state is called a Secure Partition (SP) and could be,

1. A logical partition that runs in EL3, S-EL2 or S-EL1. A logical partition in the Secure security state is
called a Logical Secure Partition (LSP).

2. A physical partition that runs in S-EL1 or S-EL0.

SPs are called S-Endpoints in scenarios where it is not necessary to distinguish between them on the basis of
the exception level they run in.

A partition manifest describes the physical address space ranges and system resources a partition needs, identity of
partition services to enable their discovery and other attributes of the partition that govern its run-time behavior
(also see Chapter 5 Setup).
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Chapter 3. Software architecture
3.3. Partition manager

3.3 Partition manager

A partition manager is responsible for creating and managing the physical isolation boundary of a partition. It
uses a partition manifest to assign physical address space ranges and system resources to a partition, initialize it as
per the specified attributes and enable discovery of its services. The partition manager also implements FF-A ABIs
to enable inter-partition communication for access to partition services.

1. In the Secure world, this component is called the Secure Partition Manager (SPM).
2. In the Normal world it is a Hypervisor1 (if the virtualization extension is enabled).

A partition manager is physically isolated from physical partitions and logically isolated from logical partitions it
manages. All partitions managed by a partition manager reside at the same or a numerically lower exception level
than the partition manager.

The term partition manager is used in the rest of this specification to collectively refer to the SPM and Hypervisor
in scenarios where they have the same responsibilities, and it is not necessary to distinguish between them.

The Hypervisor uses the virtualization extension in the Arm A-profile VMSA to create physical isolation boundaries
as follows.

• The EL1&0 stage 2 translation regime, when EL2 is enabled in a PE in the Non-secure state, is used to
restrict visibility of the Non-secure physical address space from a VM to only those regions that have been
assigned to the VM.

See 4.1 SPM architecture for a description of how the SPM creates and manages isolation boundaries for SPs.

See 4.2 DMA isolation for a description of how a partition manager creates and manages isolation boundaries for
DMA capable devices.

The following trust boundaries are defined by the Firmware Framework vis-a-vis the partition managers and
partitions.

• The SPM is a part of the TCB for a system resource or physical address space range assigned to the Secure
state.

• Both the Hypervisor and SPM are a part of the TCB for a system resource or physical address space range
assigned to the Non-secure state.

• A VM trusts the Hypervisor to protect its resources from other VMs by creating and maintaining the correct
physical isolation boundaries in the Non-secure physical address space.

• Every endpoint trusts the SPM to protect its resources from other endpoints by creating and maintaining the
correct physical isolation boundaries in both the Secure and Non-secure physical address spaces.

• An SP does not trust the state of any Non-secure resource it has access to. Therefore, it does not trust the
Hypervisor or a NS-Endpoint that could also access the same resource.

The term FF-A component is used to collectively refer to partitions and partition managers.

1A hypervisor implementation could span EL1 and EL2. In this specification, this term refers to the layer of software that runs in EL2 and is responsible for
providing isolation guarantees between VMs through use of the Arm® virtualization extension.
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3.4. Example configurations

3.4 Example configurations

The Non-secure and Secure security states in the Arm A-profile architecture typically adopt a client-server model
where a partition in the Non-secure state is a client of services implemented by a partition in the Secure state.

Partitions within a security state could adopt the client-server model as well. Furthermore, a partition can be both a
consumer of another partition’s services and provider of its own services.

The FF-A software architecture generalizes the programming model to access a partition’s services within and
between the Non-secure and Secure security states.

Some example deployment scenarios of the FF-A software architecture on various configurations of an Arm
A-profile system are listed in the following sub-sections.

3.4.1 FF-A deployment without S-EL2

Figure 3.2: Example FF-A deployment without S-EL2

In Figure 3.2, the virtualization extension is enabled in the Non-secure state. It is either unavailable or disabled in
the Secure state.

Both VM0 and VM1 implement an FF-A driver in EL1 to access services in S-Endpoints. They could use the
same driver to access each other’s services as well.

The Hypervisor facilitates access to services in S-Endpoints from VM0 and VM1 by implementing an FF-A driver
in EL2. It could use the same driver to enable them to access each other’s services.

The following software images are deployed in the Secure world.

1. A firmware image in EL3. It implements the SPM.
2. A firmware image in S-EL1 (SP1).
3. A Trusted OS image in S-EL1 (SP0).

SP0 and SP1 are temporally isolated logical partitions and could access each other’s services via the SPM. The
SPM is logically isolated from SP0 and SP1.
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3.4. Example configurations

3.4.2 FF-A deployment with S-EL2

Figure 3.3: Example FF-A deployment with S-EL2

In Figure 3.3, the virtualization extension is enabled in both security states. The Normal world software stack is
unchanged from Figure 3.2.

The following software images are deployed in the Secure world.

1. A firmware image in EL3.
2. An SPM image in S-EL2.
3. A firmware image in S-EL1 (SP1).
4. A Trusted OS image in S-EL1 (SP0).

SP0 and SP1 are physical partitions and could access each other’s services via the SPM. The SPM is physically
isolated from SP0 and SP1.
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3.4. Example configurations

3.4.3 FF-A deployment with S-EL2 and Armv8.1-VHE

Figure 3.4: Example FF-A deployment with S-EL2 and Armv8.1-VHE

In Figure 3.4, the virtualization extension is enabled in both security states. Additionally, Armv8.1 VHE is enabled
in the Secure world to manage S-EL0 SPs. The Normal world software stack is unchanged from Figure 3.2.

The following software images are deployed in the Secure world.

1. A firmware image in EL3.
2. An SPM image in S-EL2.
3. A firmware image in S-EL0 (SP1).
4. A firmware image in S-EL0 (SP0).

SP0 and SP1 are physical partitions that could access each other’s services. The SPM is physically isolated from
SP0 and SP1.
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Chapter 4
Concepts

4.1 SPM architecture

The responsibilities of the SPM are split between two components: the SPM Dispatcher (SPMD) and SPM
Core (SPMC). Both components have access to the entire physical address space and are a part of the Trusted
computing base. The term SPM is used when it is not necessary to distinguish between these two components.
The responsibilities of these components are listed below.

1. The SPMD resides in EL3 and runs in either the AArch64 or AArch32 execution state. It is responsible for:
• SPM Core initialization at boot time.
• Forwarding FF-A calls from Normal world to the SPM Core.
• Forwarding FF-A calls from the SPM Core to the Normal world.

2. The SPMC either co-resides with the SPMD in EL3 or in an adjacent exception level i.e. S-EL1 or S-EL2. It
is responsible for:

• SP initialization and isolation at boot time.
• Inter-partition isolation at run-time.
• Inter-partition communication at run-time between:

– S-Endpoints.
– S-Endpoints and NS-Endpoints.

The SPM initializes EL3 LSPs at boot time and facilitates communication between them and other endpoints
during runtime.

Table 4.1 lists the SPMC and SPMD configurations supported by the Framework vis-a-vis the exception levels
they can reside in and the execution states they can run in.
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Table 4.1: Valid SPM configurations in AArch64 and AArch32 Execution state

SPM
config
number SPMD EL and Execution state SPMC EL and Execution state Name of configuration

1.
EL3 (AArch64) EL3 (AArch64) EL3 SPMC

2.
EL3 (AArch32) EL3 (AArch32) EL3 SPMC

3.
EL3 (AArch64) S-EL1 (AArch64) S-EL1 SPMC

4.
EL3 (AArch64) S-EL1 (AArch32) S-EL1 SPMC

5.
EL3 (AArch64) S-EL2 (AArch64) S-EL2 SPMC

In SPM configurations where the SPMD and SPMC reside in adjacent exception levels,

• They implement and report a mutually compatible version of the Firmware Framework. See 13.2.3 SPM
usage for details.

• The mechanism used by the SPMD to initialize the SPMC is IMPLEMENTATION DEFINED. The guidance
provided in Chapter 5 Setup could be used by the implementation.

• They use the ABIs defined in this specification for communication.

A description of each SPM configuration is provided in the following sections.

• 4.1.1 Secure EL2 SPM core component.
• 4.1.3 EL3 SPM core component.
• 4.1.2 S-EL1 SPM core component.

The SPM configurations without S-EL2 are used in the following scenarios.

• Reduce the size of the TCB by migrating EL3 & S-EL1 firmware components, that should not be a part of
the TCB, to one or more physically isolated S-EL0 SPs.

• Make the TCB implementation more robust by migrating its components from EL3 & S-EL1 to one or more
physically isolated S-EL0 SPs.

• Adopt the generalized programming model specified by the Framework to ease the migration of the Secure
world software stack to an Arm A-profile system with S-EL2 enabled.

• Adopt the generalized programming model specified by the Framework for accessing services in S-Endpoints
from NS-Endpoints irrespective of whether S-EL2 is used in the Secure world.
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4.1.1 Secure EL2 SPM core component

Figure 4.1: Example S-EL2 SPM Core and SP configuration

The S-EL2 SPMC is fundamental to enforcing the principle of least privilege in the Secure state on Armv8.4 or
later systems as described in Chapter 2 Introduction. It supports one or more of the following SP configurations.

1. The SPMC uses Armv8.1 VHE to manage one or more physical SPs that run in S-EL0. Each SP runs in either
the AArch32 or AArch64 execution state.

The physical address space assigned to an SP is isolated from other FF-A components through the single
stage of address translation implemented by the Secure EL2&0 translation regime.

2. The SPMC manages one or more physical SPs that run in S-EL1. Each SP runs in either the AArch32 or
AArch64 execution state.

The physical address space assigned to an SP is isolated from other FF-A components by the Secure EL1&0
stage 2 translation regime, when EL2 is enabled.

An example of these configurations is illustrated in Figure 4.1. Additionally, in each of the above configurations,
the following LSP configurations can exist with the S-EL2 SPMC:

1. EL3 LSPs that are managed by the SPMD.
2. S-EL2 LSPs that are managed by the S-EL2 SPMC.
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4.1.2 S-EL1 SPM core component

Figure 4.2: Example S-EL1 SPM Core and SP configuration

A S-EL1 SPMC runs in either the AArch64 or AArch32 execution state. It supports one or more of the following
SP configurations.

1. The SPMC manages one or more physical SPs that run in S-EL0. Each SP runs in either the AArch32 or
AArch64 (only if S-EL1 SPMC runs in AArch64 too) execution state.

The physical address space assigned to an SP is isolated from other FF-A components through the single
stage of address translation implemented by the Secure EL1&0 translation regime in either execution state.

2. The SPMC manages a single LSP that also runs in S-EL1. The SPMC and LSP are packaged in the same
software image and logically isolated from each other.

In this configuration:

• The interface between the SPMC and the SP component is IMPLEMENTATION DEFINED for example, a
set of C programming language APIs.

• Any FF-A calls targeted to the SP from the Normal world must be received by the SPMC and forwarded
to the SP component through the IMPLEMENTATION DEFINED interface.

• The SPMC and SP are initialized through an IMPLEMENTATION DEFINED mechanism. See Chapter 5
Setup for more information.
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Figure 4.2 illustrates a combination of these configurations. Additionally, in each of the above configurations,
EL3 LSPs that are managed by the SPMD can exist with the S-EL1 SPMC.

4.1.3 EL3 SPM core component

The EL3 SPMC co-exists with the SPMD in either the AArch64 or AArch32 execution state. It supports one of the
following mutually exclusive SP configurations.

Figure 4.3: Example EL3 SPM Core and S-EL0 SP configuration

1. One or more physical SPs that run in S-EL0. Each SP runs in either the AArch32 or AArch64 (only if EL3
SPMC runs in AArch64 too) execution state.

The physical address space assigned to an SP is isolated from other FF-A components through the single
stage of address translation implemented by the Secure EL1&0 translation regime.

This configuration is illustrated in Figure 4.3.
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Figure 4.4: Example EL3 SPM Core and S-EL1 SP configuration

2. The SPMC and SPMD co-exist in EL3 in the AArch64 execution state. One or more logical SPs reside in
S-EL1. Each SP runs in either the AArch32 or AArch64 execution state. The SPs are temporally isolated
from each other by the SPMC.

This configuration is illustrated in Figure 4.4.

Additionally, in each of the above configurations, EL3 LSPs can exist that are managed by the SPM. The division
of responsibilities of the SPMD and EL3 SPMC in managing EL3 LSPs is IMPLEMENTATION DEFINED.
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4.2 DMA isolation

The Framework enables the partition manager to control the visibility of the physical address space from a DMA
capable device assigned to a partition. The Framework assumes that the system,

1. Implements an access control mechanism that can be programmed by a partition manager to limit accesses
from DMA capable devices to specific ranges in the physical address space.

2. Guarantees that an access from a DMA capable device is allowed to complete only if,

1. It is permitted by the access control mechanism.
2. The access control mechanism is disabled by the partition manager.

The DMA capable device is said to reside upstream of the access control mechanism. Examples of access control
mechanisms include an Arm® SMMU implementation or a vendor specific System MPU implementation.

If the system implements an Arm® SMMU, each access/transaction generated by a device is associated with a
Stream ID. This Stream ID could be one of many that the device is configured to use. A Stream ID is used to
determine the security state of the transaction and the stage 1 and/or stage 2 address translations that must be used
for the transaction. It is also possible that one or both stages of translation could be bypassed for a Stream ID in
the SMMU.

• The Hypervisor programs the SMMU to limit access to the Non-secure physical address space in response to
transactions generated by a DMA capable device using a Non-secure Stream ID.

• The SPMC programs the SMMU to limit access to the Non-secure and Secure physical address spaces in
response to transactions generated by a DMA capable device using a Secure Stream ID.

If enabled, the stage 2 translations corresponding to a Stream ID control access to the physical address space that
the device has. A set of stage 2 translation tables could map to one or more Stream IDs. The Framework manages
stage 2 translations in the SMMU as described in [1].

The Framework specifies the following programming models w.r.t DMA isolation.

1. Programming models that enable a partition to control the visibility that a DMA capable device, assigned to
the partition has of the partition’s physical memory regions. These models are described in 4.2.1 Static DMA
isolation and 4.2.2 Dynamic DMA isolation. A partition uses one or the other model but never both.

2. Programming models that allow,

1. A trusted DMA capable device to manage its access to the physical address space.

2. A trusted partition to act on behalf of a DMA capable device to manage its access to the physical address
space. The device is not assigned to the trusted partition.

These models are described in 4.2.3 Other DMA isolation models.

On a system that does not implement an Arm® SMMU, the Framework assumes that the guidance in this
specification can be applied to the IMPLEMENTATION DEFINED access control mechanism available on the system.

4.2.1 Static DMA isolation

In this model, a partition uses its manifest to specify the memory regions in its physical address space that must be
visible to each DMA capable device assigned to it along with memory attributes such as read, write and execute
permissions. A device cannot access the partition’s memory regions unless access is explicitly granted in the
partition manifest. The partition manager programs the access control mechanism to create the corresponding
memory mappings before initializing the partition. These mappings remains in place for the lifetime of the partition.
They cannot be changed during partition initialization and runtime through mechanisms defined by the Framework
e.g. management transactions described in [1].

The static DMA isolation model is used on a system with an Arm® SMMU as described below.
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1. The partition manager uses a single stage of address translation to enforce access control in the SMMU. This
could be either the stage 1 or the stage 2 translation regime in the SMMU.

2. An EL1 partition in either security state uses this model to enable a DMA capable device to use a memory
range in the partition’s IPA space to access a memory range in the partition’s PA space.

3. A S-EL0 partition uses this model to enable a DMA capable device to use a memory range in the partition’s
VA space to access a memory range in the partition’s PA space.

4. The following properties of the device are specified in the memory region description (see Table 5.2) in the
partition manifest (see 5.2.1 Partition manifest).

1. The identity of the stream ID generated by the device that must have access to the memory region.
2. The identity of the SMMU that the device is upstream of.
3. The instruction and data access permissions on the memory region that must be used by transactions

associated with the stream ID.

The Framework assumes that the following attributes of the memory region are same irrespective of whether
it is accessed by the partition or the device stream ID.

• Memory type
• Cacheability and shareability attributes.
• Security state.

5. The specified device stream ID accesses the physical memory region with either the same IPA range used
by an EL1 or S-EL1 partition or the same VA range used by a S-EL0 SP. The partition manager creates
mappings for the memory region in either the Stage 1 or Stage 2 translation regime of the SMMU.

4.2.2 Dynamic DMA isolation

In this model, a partition controls the visibility that DMA capable devices assigned to it have of the partition’s
physical memory regions, during partition initialization and runtime. The partition manager programs the access
control mechanism prior to partition initialization to ensure the devices cannot access the partition’s physical
address space. Memory mappings for the devices are created and destroyed by the partition manager on behalf of
the partition.

The dynamic DMA isolation model is used on a system with an Arm® SMMU as described below.

1. The partition manager enables a single or both stages of address translation to enforce access control in the
SMMU. This could be the stage 1, stage 2 or both translation regimes in the SMMU.

2. An EL1 partition in either security state uses this model to enable a DMA capable device to use a memory
range in the partition’s IPA or VA space to access a memory range in the partition’s PA space.

3. A S-EL0 partition uses this model to enable a DMA capable device to use a memory range in the partition’s
VA space to access a memory range in the partition’s PA space.

4. The partition uses an IMPLEMENTATION DEFINED mechanism during initialization and runtime to describe a
memory region to the partition manager that must be mapped or unmapped from a device assigned to it. For
example,

1. A partition implements an SMMU driver to program Stage 1 translations so that memory regions in its
VA space can be mapped or unmapped from a device.

The partition manager emulates the SMMU accesses from the partition and ensures accesses from the
device are restricted to the physical memory regions assigned to the partition.

2. The partition manager exports a para-virtualized interface to the partition to program the SMMU so that
memory regions in the partition’s VA space can be mapped or unmapped from a device. The partition is
able to specify the address, size and attributes of the memory region through the interface.
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5. The use of a single or both stages of translation in the SMMU by the partition manager is IMPLEMENTATION
DEFINED. The Framework specifies the following rule if the partition manager enables both stages of
translations in the SMMU.

Stage 2 translations for the partition are shared with the SMMU i.e. the Stream Table Entry (STE) in a Stream
table selected by the stream ID references the same stage 2 translation tables used by the partition. The
stream ID is generated by a device assigned to the partition. This also implies that any memory region,

1. Shared, lent or donated to the partition through memory management transactions described in [1] is
automatically mapped into the IPA space of a DMA capable devices assigned to the partition.

The partition uses an IMPLEMENTATION DEFINED mechanism after the memory region is mapped in the
stage 2 translation tables to program the Stage 1 translation tables in the SMMU to enable access to the
memory region from a device.

2. Relinquished by the partition is automatically unmapped from the IPA space of a DMA capable devices
assigned to the partition.

The partition uses an IMPLEMENTATION DEFINED mechanism before the memory region is unmapped
from the stage 2 translation tables to program the Stage 1 translations in the SMMU to disable access to
the memory region from a device.

4.2.3 Other DMA isolation models

The Arm® SMMU v3.2 architecture supports stage 1 and stage 2 translations in both security states. This enables
a programming model in which each stage of translation corresponding to a stream ID of a DMA capable device is
managed by a different FF-A component.

• The stage 1 translations are managed by the partition to which the device that generates the stream ID
is assigned. This is done through an IMPLEMENTATION DEFINED interface between the partition and its
partition manager.

• The stage 2 translations are managed by the device itself or another partition trusted by the device. In
the former case, this is done through an IMPLEMENTATION DEFINED interface between the device and its
partition manager. In the latter case, this is done through the mechanisms specified by the Framework.

This model enables separation of the partition that programs the device from the FF-A component that implements
the policy for controlling the device’s visibility of the physical address space. Physical memory regions are mapped
and unmapped from the stage 2 translation tables by the partition manager in response to memory management
transactions (see [1]) as per the DMA isolation policy for the device.

The Framework defines the following concepts to support management of stage 2 translations in this programming
model.

1. Stream endpoint. It is a set of SMMU stage 2 translations maintained by a partition manager on behalf of
a DMA capable device. There is a 1:N (N >= 1) mapping between a SEPID and Stream IDs assigned to
different devices that is, the stage 2 translations corresponding to the SEPID could be shared by one or more
Stream IDs.

• Stream endpoints associated with a Secure Stream ID are called Secure SEPIDs.

• Stream endpoints associated with a Non-secure Stream ID are called Non-secure SEPIDs.

In its simplest form, where a device generates a single stream ID and does not share access to the physical
address space with stream IDs of other devices, the SEPID effectively identifies the device.

SEPIDs are used in memory management transactions to (also see [1]):

• Grant and revoke access to a physical memory region to a device.
• Transfer ownership of a physical memory region from or to a device.

Each Stream endpoint is assigned a 16-bit ID called the Stream endpoint ID or SEPID.
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A Stream endpoint is a physical endpoint since its physical address space can be spatially isolated from other
FF-A components by its partition manager through stage 2 translations in the SMMU. Also see 3.1 Isolation
boundaries.

Endpoints that run on a PE are referred to as PE endpoints to differentiate them from Stream endpoints. The
term endpoint is used when it is not required to distinguish between these types of endpoints.

SEPID values must be distinct from those assigned to PE endpoints. A SEPID is discoverable via an FF-A
partition discovery mechanism. Also see Chapter 6 Identification and Discovery.

2. Independent peripheral device. It is a DMA capable device that can initiate and receive memory management
transactions. Each device specifies the following information in its partition manifest (see 5.2.3 Independent
peripheral device manifest).

• A SEPID assigned to the device at boot time.
• The SMMU ID that the device is upstream of.
• Each Stream ID the device can generate.
• Regions in the physical address space that must be mapped in the translation tables corresponding to the

SEPID at boot time.

This information enables the partition manager to create an association between a device and a SEPID at
boot time.

A partition manager and an independent peripheral device use an IMPLEMENTATION DEFINED mechanism to
notify each other about a memory management transaction targeted to a SEPID used by the device (see [1]).

3. Dependent peripheral device. It is a DMA capable device that cannot initiate and receive memory
management transactions. It relies on a trusted PE endpoint to initiate and receive memory management
transactions on its behalf. The PE endpoint is called a proxy endpoint.

A dependent device is assigned to a PE endpoint that is distinct from its proxy endpoint. This implies,

• Access to its MMIO regions is assigned to the endpoint during boot (see 4.8 System resource management
& Table 5.3).

• The endpoint manages the association between Stream IDs generated by the device and stage 1
translations in the SMMU that the device is upstream of (see Table 5.3).

The partition manifest of the proxy endpoint (see 5.2.1 Partition manifest) specifies the following information
to enable the partition manager to create an association between a device and a SEPID at boot time.

• The SMMU ID that the device is upstream of.
• Each Stream ID the device can generate.
• The SEPID corresponding to each Stream ID.

The partition ID of the proxy endpoint is distinct from the SEPID allocated to manage the preceding
association. The SEPID is specified in the partition manifest of the proxy endpoint (see Table 5.1).

The stage 2 translations corresponding to the SEPID are configured at boot time with no access to the physical
address space.

A memory management transaction targeted to the SEPID is allowed to complete only if it is either initiated
or authorized by the proxy endpoint for the device (see [1]).

The SEPIDs used by an independent device must be distinct from the SEPIDs used by a dependent device.
This constraint avoids the scenario where a memory management transaction is allowed to change the stage 2
translations before the proxy endpoint has authorized it.
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4.3 FF-A instances

An FF-A instance is a valid combination of two FF-A components at an Exception level boundary. These instances
are used to describe the interfaces specified by the Firmware Framework. An interface is accessed at an FF-A
instance through a conduit described in 4.4 Conduits. The responsibilities of the caller and callee in each interface
depend on the FF-A instance at which it is invoked.

• An instance is physical if:
– Each component can independently manage its translation regime.
– The translation regimes of each component map virtual addresses to physical addresses.

• An instance is virtual if it is not physical.
• The instance between the SPMC and SPMD is called the Secure physical FF-A instance.
• Partitions are physically isolated at a virtual FF-A instance.
• Partitions are logically isolated at a physical FF-A instance.
• The instance between the SPMC and a logical SP is a Secure physical FF-A instance.
• The instance between the SPMC and a physical SP is called the Secure virtual FF-A instance.
• In the Normal world, the instance between:

– The Hypervisor and a VM is called the Non-secure virtual FF-A instance.
– The Hypervisor and SPMD is called the Non-secure physical FF-A instance.
– The OS kernel and SPMD, in the absence of a Hypervisor is called the Non-secure physical FF-A

instance.

Table 4.2 lists the valid Secure FF-A instances. Table 4.3 lists the valid Non-secure FF-A instances.

• Entries in the first row represent the higher Exception level at an Exception level boundary.
• Entries in the first column represent the lower Exception level at an Exception level boundary.
• Combinations of Exception levels that are not architecturally feasible are listed as Not applicable (NA).

Table 4.2: Secure FF-A instances

EL
boundary EL3 (AArch64)

EL3
(AArch32) S-EL2

S-EL1
(AArch64) S-EL1 (AArch32)

S-EL2 Secure physical NA NA NA NA

S-EL1
(AArch64)

Secure physical NA Secure virtual NA NA

S-EL1
(AArch32)

Secure physical Secure
physical

Secure virtual NA NA

S-EL0
(AArch64)

Secure virtual NA Secure virtual Secure
virtual

NA

S-EL0
(AArch32)

Secure virtual Secure
virtual

Secure virtual Secure
virtual

Secure virtual

Table 4.3: Non-secure FF-A instances

EL boundary EL3 (AArch64) EL3 (AArch32) EL2 (AArch64) EL2 (AArch32)

EL2 (AArch64) Non-secure physical NA NA NA

EL2 (AArch32) Non-secure physical Non-secure physical NA NA

EL1 (AArch64) Non-secure physical NA Non-secure virtual Non-secure virtual

EL1 (AArch32) Non-secure physical Non-secure physical Non-secure virtual Non-secure virtual
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The definition of an FF-A instance when both FF-A components reside in the same Exception level is IMPLEMEN-
TATION DEFINED. This is applicable to the SPM configurations described in 4.1.3 EL3 SPM core component
and 4.1.2 S-EL1 SPM core component respectively. For example, the implementation could maintain a logical
separation between the two components through the use of an API that has the same semantics as the FF-A ABIs
at the same instance.
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4.4 Conduits

The Framework defines interfaces to enable communication between various FF-A components (see Chapter 11
Interface overview). Each interface is accessible through one or more conduits as follows.

The SMC conduit as described in [5] should be used to invoke an interface by an FF-A component executing in
EL1 or S-EL1. When an interface is invoked from EL1, the SMC execution must be trapped by the Hypervisor
at EL2. Similarly, when an interface is invoked at S-EL1 and the SPM resides in S-EL2, the SMC execution
must be trapped by the SPM. This implies that the SMC conduit provides the flexibility that is required to support
implementations with and without a hypervisor in EL2 or SPM in S-EL2.

If an endpoint executing in EL1 or S-EL1 cannot use the SMC conduit, it must use the HVC conduit instead.

A S-EL0 SP must use the SVC (Supervisor Call) instruction as a conduit to call into S-EL1. The SMC32 and
SMC64 calling conventions are mirrored as SVC32 and SVC64 calling conventions respectively.

The Firmware Framework enables message exchange between any two FF-A components that might be at the same
or a different Exception level relative to each other. A request, its results, or an error status could be sent from:

• A lower EL to a higher EL
• A higher EL to a lower EL.

To fulfill this requirement, this version of the Framework uses the ERET instruction as a conduit for transmitting
requests and responses from a higher EL to a lower EL.

The parameter register usage in an SMC, HVC, or SVC call is mirrored in an ERET call for example, w0 contains
a function identifier parameter in the ERET call. This ensures that messages can be passed at any FF-A instance
irrespective of their direction of travel. An invocation through the SMC, HVC, or SVC conduits is completed
through the ERET conduit. An invocation through the ERET conduit is completed through the SMC, HVC, or
SVC conduits.

This usage of the ERET instruction as a conduit along with the SMC, HVC, and SVC conduits enables half-duplex
communication between two FF-A components at an EL boundary at any FF-A instance.

The taxonomy of information transmitted through a conduit at an FF-A instance is as follows.

1. An interface invocation described in Chapter 11 Interface overview.
2. Results from the successful completion of the invoked interface.
3. Error code from an unsuccessful completion of the invoked interface.

Based on the preceding taxonomy, an interface invocation through one conduit at an FF-A instance can complete
through another conduit in one of the following ways.

• A error code. The FFA_ERROR function is used to return the error code (see 12.2 FFA_ERROR).
• Results of the request. The FFA_SUCCESS function is used to return the results (see 12.3 FFA_SUCCESS).
• An invocation of another interface described in Chapter 11 Interface overview.

An invocation of a non-FF-A interface from a lower Exception level to a higher Exception level for example,
through the SMC, HVC, or SVC conduits must not complete with an invocation of an FF-A function through the
ERET conduit unless, the caller implements support to distinguish between the FF-A and non-FF-A register usage
on completion. For example, w0 would contain a status code in the latter case while it will contain a function
identifier in the former case.
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4.5 Memory types

Each memory region is assigned to either the Secure or Non-secure physical address space at system reset or during
system boot. Normal world can only access memory regions in the Non-secure physical address space. Secure
world can access memory regions in both address spaces. The Non-secure (NS) attribute bit in the translation table
descriptor determines whether an access is to Secure or Non-secure memory. In this version of the Framework:

• Memory that is accessed with the NS bit set in the translation regime of any FF-A component is called
Normal memory.

• Memory that is accessed with the NS bit cleared in an FF-A component translation regime is called Secure
memory.

4.6 Memory granularity and alignment

The Firmware Framework specifies support to map a memory region in the translation regimes of the two FF-A
components at an FF-A instance (see 7.2.2.3 Buffer attributes & the FF-A memory management protocol [1]).
The translation regimes could use the same or a different translation granule size. To map the memory region
correctly in both translation regimes, the following constraints must be met:

• If X is the larger translation granule size used by the two translation regimes, then the size of the memory
region must be a multiple of X.

• The base address of the memory region must be aligned to X.

For example, at the Non-secure virtual FF-A instance, a VM and the Hypervisor could use translation granule
sizes of 4K and 64K respectively. The size of any memory region that must be mapped in both their translation
regimes must be a multiple of 64K and aligned to the 64K boundary.

An endpoint could specify its translation granule size in its partition manifest as described in 5.2.1 Partition
manifest. The Hypervisor and SPM could also use an IMPLEMENTATION DEFINED mechanism to determine the
translation granule size of an endpoint.

An endpoint must discover the minimum size and alignment boundary (that is, the minimum value of X) to share a
memory region with its partition manager through the FFA_FEATURES interface (see 13.3 FFA_FEATURES).
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4.7 Execution context

Each endpoint has one or more execution contexts depending on its implementation. An execution context
comprises general-purpose, system, and any memory mapped register state that must be maintained by a partition
manager.

A partition manager is responsible for allocating, initializing, and running the execution context of an endpoint on
a physical or virtual PE in the system. An execution context is identified by using a 16-bit ID. This ID is referred
to as the vCPU or execution context ID. Each execution context must be allocated an ID that is unique among all
execution contexts that belong to the endpoint.

An execution context of an endpoint represents a logical processor to the partition manager. The partition manager
delegates message processing to an execution context of an endpoint. It is independent of threads implemented
inside an endpoint to process the messages and logic to schedule these threads (see also 4.9 Primary scheduler).
Figure 4.5 illustrates this relationship.

Figure 4.5: Example endpoint with execution contexts and threads

An endpoint must be one of the following types:

• Implements a single execution context and is not capable of Symmetric multi-processing. It runs only on a
single PE in the system at any point of time. This type of endpoint is called a UP endpoint.

• Implements multiple execution contexts and is capable of Symmetric multi-processing. These contexts run
concurrently on separate PEs in the system. These endpoints are called MP endpoints.

An execution context of an endpoint could be capable of migrating. Migration capability means that the partition
manager could save the execution context of an endpoint on one PE. It could then restore the saved execution
context on another PE and resume endpoint execution. The endpoint must not make any assumptions about the PE
it runs on.

This version of the Framework requires the following:

• UP endpoints must be capable of migrating.
• Execution contexts of MP endpoints could be capable of migrating between PEs or could be fixed to a

particular PE. The latter are called pinned contexts.
• The migration capability must be specified in the endpoint manifest (see 5.2.1 Partition manifest).
• S-EL0 partitions must be UP.

The number of execution contexts an endpoint implements can differ from the number of PEs in the system. This
must be specified in the manifest of the endpoint (see 4.8 System resource management). For example, a VM in the
Normal world must use the manifest to inform the Hypervisor how many vCPUs it implements. The Hypervisor
must maintain an execution context for each vCPU.
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4.8 System resource management

Components in the Firmware Framework require access to the following system resources.

• Memory regions.
• Devices.
• CPU cycles.

The Framework associates the attributes of ownership and access with these resources. The Owner governs the
following capabilities of non-Owners for each resource.

• The level of access a non-Owner has for using the resource. This could be exclusive, shared or no-access.
• The ability to grant access to the resource to other non-Owners. This is called access forwarding.

Also, the Owner could relinquish ownership to another component.

The Framework also specifies the transitions that result in a change of ownership and access attributes associated
with a resource. A combination of these attributes and transitions determines how a resource is managed among
components.

Rules associated with ownership and access of memory regions are described in the FF-A memory management
protocol [1].

Rules associated with ownership and access of CPU cycles are described in 4.9 Primary scheduler.

For a device that is upstream of an SMMU, its access to the physical address space is managed using the rules
associated with management of memory regions (also see 4.2 DMA isolation).

For all devices, ownership and access attributes are associated with its MMIO region. A partition could request
access and/or ownership of a device through its manifest (see Table 5.3). This is done through one of the following
ways.

• A partition requests ownership and exclusive access to the MMIO region of a device during boot time (see
Chapter 5 Setup). The corresponding partition manager assigns the MMIO region with these attributes to the
partition.

• One or more partitions request access to the MMIO region of a device during boot time. The corresponding
partition manager is the Owner of the MMIO region and grants access to all the partitions.

This version of the Framework assumes that the following actions pertaining to the MMIO region of a device are
performed through an IMPLEMENTATION DEFINED mechanism:

• Transfer of ownership of a device MMIO region to another partition during run-time.
• Grant of access to a device MMIO region to another partition during run-time.
• Revocation of access to a device MMIO region from a partition during run-time.
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4.9 Primary scheduler

FF-A components require CPU cycles to do work. The Framework assumes a hierarchical model where a single
FF-A component in the Normal world is the owner of CPU cycles across all PEs in the system. This component
lends CPU cycles to other FF-A components.

This component is the Hypervisor if it is implemented in EL2. It could be one of the following.

1. The Host OS running in EL2 in the case of a Type 2 Hypervisor when the Virtualization host extension is
used.

2. The Type 1 Hypervisor running in EL2.

This component is called the primary endpoint if it is implemented in an NS-Endpoint. It could be one of the
following.

1. The OS kernel running in EL1 if the Virtualization extension is not used in the Normal world.
2. The Host OS running in EL1 in the case of a Type 2 Hypervisor when the Virtualization host extension is not

implemented or used (see [6]).
3. A separate VM running in EL1 that has been delegated the responsibility of scheduling by the Hypervisor.

The scheduler implemented in the Hypervisor or primary endpoint is called the primary scheduler. This term is
used in the context of CPU cycle allocation when it is not necessary to distinguish whether it is the Hypervisor or
the primary endpoint that is owner of CPU cycles in the system.

An endpoint that does not implement the primary scheduler is called a secondary endpoint. A secondary endpoint
could implement a secondary scheduler to manage allocated cycles among its threads. A secondary endpoint could
be allocated CPU cycles,

1. By the primary scheduler. For example,

• For every VM managed by a Hypervisor, it implements a thread for each vCPU of a VM. A vCPU
receives CPU cycles when its thread is scheduled by the primary scheduler.

• A Trusted OS has a counterpart driver in the primary endpoint. This driver is invoked by client
applications to request Trusted OS services. The driver forwards requests to an execution context of the
Trusted OS. It could do this as follows.

– Manage a set of threads to run an execution context of the Trusted OS.
– Run an execution context of the Trusted OS in the context of the client application thread that issued

the request.

In both examples, an execution context of a secondary endpoint is scheduled by the primary scheduler.

2. By another secondary endpoint. A variant of the above example could be where a Trusted OS has a counterpart
driver in the VM scheduled by the Hypervisor instead of the primary endpoint. This driver is invoked by
client applications installed in the VM to request Trusted OS services. The driver runs an execution context
of the Trusted OS to handle the request. The client applications are scheduled by a secondary scheduler
implemented in the VM.

In this example, the primary scheduler in the Hypervisor schedules a secondary endpoint (VM). The secondary
endpoint runs another secondary endpoint (Trusted OS SP).

The term scheduler is used in the context of CPU cycle allocation when it is not necessary to distinguish whether
cycles are allocated by the primary or secondary scheduler.

Figure 4.6 illustrates an example of a primary endpoint. The primary scheduler manages threads that run execution
contexts of VMs and SPs along with application threads. Application threads could in turn, run execution contexts
of VMs and SPs as well.
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Figure 4.6: Example primary endpoint configuration

Figure 4.7 illustrates this example of a secondary endpoint. The secondary scheduler manages application threads,
that could in turn, run execution contexts of SPs.

Figure 4.7: Example secondary endpoint configuration

Secondary endpoint services could be accessed during boot before the primary endpoint or Hypervisor is initialized.
For example, a boot loader in the Normal world could access services provides by a SP.

The Framework assumes that the software components that perform boot subsume the role of the primary scheduler
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before the Hypervisor or primary endpoint is initialized. Ownership of CPU cycles is relayed from one component
to the next across the boot stages. Each component lends cycles to an endpoint if it accesses the services of the
endpoint.

The Framework provides the following ABIs to endpoints to allocate CPU cycles to other endpoints. These are,

1. FFA_MSG_SEND_DIRECT_REQ. See 15.2 FFA_MSG_SEND_DIRECT_REQ.
2. FFA_MSG_SEND_DIRECT_REQ2. See 15.4 FFA_MSG_SEND_DIRECT_REQ2.
3. FFA_RUN. See 14.3 FFA_RUN.
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4.10 Run-time states

Run-time refers to the stage during system boot when all the endpoints are initialized and application threads in an
endpoint can access services implemented in other endpoints or partition managers through FF-A ABIs.

During run-time, the execution context of an endpoint can be in one of the following states from its perspective
and that of the primary endpoint, SPM, and Hypervisor.

• Waiting. The execution context is waiting to be allocated CPU cycles to do work.
• Running. The execution context has been allocated CPU cycles and is doing work for example, running an

application thread to process one or more messages.
• Preempted. The execution context was interrupted by an interrupt while doing work1.
• Blocked. The execution context is waiting for some work to complete on its behalf. It remains in this state

until control is transferred back to it.

Transitions between these states are constrained by the following rules.

• An execution context in the waiting state only transitions to the running state.

• An execution context in the running state can transition to any other state.

• An execution context in the blocked state can only transition to the running state.

• An execution context in the preempted state only transitions to the running state.

An FF-A component could maintain additional IMPLEMENTATION DEFINED states. These are beyond the scope of
this specification.

Guidance on transitions between these states is specified in 4.11 Run-time state transitions.

1A partition manager could either run another execution context in place of the interrupted execution context or resume the interrupted execution context. The
Framework treats the interrupted execution context as being in the preempted state irrespective of whether it is resumed immediately or subsequently by the
partition manager.
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4.11 Run-time state transitions

FF-A ABIs are invoked with one or both of the SMC (as well as HVC and SVC) and ERET conduits (see 4.4
Conduits). Use of a conduit with or without an invocation of these ABIs triggers a state transition.

• An endpoint execution context uses the SMC, HVC and SVC conduits to trigger a state transition.

• A partition manager uses the ERET conduit to trigger a state transition for an execution context of an endpoint
it manages.

• An interrupt that preempts an execution context in the running state also triggers a state transition.

State transitions based on states described in 4.10 Run-time states are of the following types.

1. Transitions that transfer control from one endpoint execution context to another and vice-versa. The interfaces
whose invocation results in these transitions are listed below.

1. FFA_MSG_SEND_DIRECT_REQ
2. FFA_MSG_SEND_DIRECT_REQ2
3. FFA_MSG_SEND_DIRECT_RESP
4. FFA_MSG_SEND_DIRECT_RESP2
5. FFA_RUN
6. FFA_MSG_WAIT
7. FFA_YIELD

Each interface invocation is associated with two transitions.

1. smc(Interface request)
2. eret(Interface response)

These transitions allow the endpoint execution to traverse between the waiting, blocked and running states.

2. Transitions that transfer control from an endpoint execution context to a Partition manager and back. The
interfaces whose invocation results in these transitions are called hypcalls. These interfaces are listed below.

• Partition setup and discovery interfaces in Chapter 13 Setup and discovery interfaces.

• FFA_SECONDARY_EP_REGISTER interface in 18.2.2 Secondary boot protocol.

• FFA_MSG_SEND2 messaging interface in Chapter 15 Messaging interfaces.

• Memory management interfaces in [1].

Each hypcall is associated with two transitions.

1. smc(Hypcall request)
2. eret(Hypcall response)

A hypcall request transitions an endpoint execution context from the running to the blocked state.

A hypcall response transitions an endpoint execution context from the blocked to the running state.

A hypcall runs to completion between its two transitions from the perspective of the calling execution context.

3. Transitions that transfer control to an endpoint execution context in response to events such as a Secure
interrupt or a power management message.

A Secure interrupt could preempt another endpoint execution context. The latter enters the preempted state.
Once the interrupt has been handled, the partition manager uses the eret() transition to put the endpoint
execution context in the running state. Also see Chapter 9 Interrupt management.

The Framework uses FFA_MSG_SEND_DIRECT_REQ and FFA_MSG_SEND_DIRECT_RESP interfaces
to transmit power management messages between the SPMC and a SP execution context. These are described
in 18.2.4 Power Management messages.

In both cases, the SP execution context enters the running state to handle the event.
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Further guidance on state machines and runtime models is specified in Chapter 8 Partition runtime models.
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Setup

5.1 Overview

The Firmware Framework is responsible for partition and partition manager setup during a cold and warm boot.
This chapter describes how the Framework initializes the execution context of these components on the primary PE
during a cold boot. See 18.2 Power Management for the role of the Framework in partition and partition manager
setup during a cold boot of a secondary PE or a warm boot of any PE.

• In the Secure world,

– The SPMD initializes the SPMC (also see 4.1 SPM architecture). If they reside in the same exception
level, initialization is done in an IMPLEMENTATION DEFINED manner.

If they reside in separate exception levels, initialization is done either in an IMPLEMENTATION DEFINED
manner or by using the following guidance.

* The SPMC manifest (see 5.2.2 SPMC manifest) to determine information such as the entry point
address, execution state and Framework version of the SPMC.

* Guidance on programming general-purpose and system registers prior to invoking the SPMC entry
point (see 5.3 Register state).

* Protocol for passing any boot information to the SPMC (see 5.4 Boot information protocol).

* Protocol for indicating completion of initialization (see 5.5 Protocol for completing execution
context initialization).

– The SPMC initializes each SP. If they reside in the same exception level (see 4.1.2 S-EL1 SPM
core component and 4.1.3 EL3 SPM core component), initialization is done in an IMPLEMENTATION
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DEFINED manner. For example, the information required to initialize the logical SP in the S-EL1 SPMC
configuration could be encoded in the SPMC manifest.

If they reside in separate exception levels, the SPMC uses the SP manifest (see 5.2.1 Partition manifest)
to initialize the SP as described below.

1. Validates the contents of the manifest.
2. Configures the partition as per the properties described in the manifest.
3. Assigns the requested physical address space ranges and system resources to the partition.
4. Isolates a physical SP as per the mechanism described for the SPMC configuration in 4.1 SPM

architecture).
5. Programs the general-purpose and system register prior to invoking the SP entry point as described

in 5.3 Register state.
6. Uses the protocol described in 5.4 Boot information protocol for passing any boot information to

the SP.
7. Uses the runtime model described in 8.5 Runtime model for SP initialization to initialize the SP

execution context.

• In the Normal world,

– The Hypervisor or the OS kernel is initialized through an IMPLEMENTATION DEFINED mechanism after
the Secure world hands control to the Normal world during cold boot.

– The Hypervisor initializes each VM through an IMPLEMENTATION DEFINED mechanism.
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5.2 Manifests

5.2.1 Partition manifest

The following information must be specified in the manifest of a partition.

• Partition properties as described in Table 5.1.
• Memory regions as described in Table 5.2 (for more information see also [1]).
• Devices as described in Table 5.3.
• Partition boot protocol as described in Table 5.10.

The following aspects of the partition manifest are IMPLEMENTATION DEFINED.

• Format of the manifest.
• Time of creation of manifest. This could be at:

– Build time.
– Boot time.
– Combination of both.

• Mechanism used by the Hypervisor and SPM to obtain the information in the manifest and interpret its
contents.

Table 5.1: Partition properties

Information
fields Mandatory Description

FF-A
version

Yes • Version of FF-A expected by the partition at the FF-A instance it will
execute.

UUIDs Yes • List of UUIDs associated with the partition. Also see 6.2.3 Partition UUID
usage.

Partition
ID

No • Pre-allocated partition ID.

Auxiliary
IDs

No • List of pre-allocated 16-bit IDs that could be used in memory management
transactions to allow a partition manager to handle the transaction in an
IMPLEMENTATION DEFINED manner.

Name No • Name of the partition for example, for debugging purposes.

Number of
execution
contexts

Yes • Number of vCPUs that a VM or SP wants to instantiate.
• In the absence of virtualization, this is the number of execution contexts that

a partition implements.
• If value of this field = 1 and number of PEs > 1 then the partition is treated

as UP & migrate capable.
• If the value of this field > 1 then the partition is treated as an MP capable

partition irrespective of the number of PEs.

Run-time
EL

Yes • EL1 or Secure EL1.
• Secure EL0.

Execution
state

Yes • AArch64.
• AArch32.
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Information
fields Mandatory Description

Load
address

No • Absence of this field indicates that the partition is position independent and
can be loaded at any address chosen at boot time.

Entry point
offset

No • Absence of this field indicates that the entry point is at offset 0x0 from the
base of the partition binary image.

• If present, this field specifies the offset of the entry point from the base of
the partition binary image.

Translation
Granule

No • 4KB (default value if not specified).
• 16KB.
• 64KB.

Boot order No • A unique number among all partitions that specifies if this partition must be
booted before others.

• For example, a partition could provide a service that other partitions need to
initialize themselves. The manifest of this partition can use this field to
ensure it is booted before others.

RX/TX
information

No • Reference to memory region entries in this manifest that describes the
RX/TX buffers expected by the partition.

• The memory region entries must specify the base addresses of both buffers.
• The size and attributes fields must fulfill the requirements specified in

7.2.2.3 Buffer attributes.

Messaging
method

Yes • This field specifies which messaging methods are supported by the partition
corresponding to each UUID exported by it. This could be one or both of
Direct and Indirect messaging. These methods are described in Chapter 7
Message passing. The following information must be provided in the
manifest:

• Indirect messaging is supported. This always includes support for both
sending and receiving Indirect messages.

• Direct messaging is supported. 7.4.1 Discovery and setup specifies the
information that must be provided.

Notification
support

No • This field specifies if the partition supports receipt of notifications as
described in Chapter 10 Notifications.

• Absence of this field indicates that the partition cannot receive notifications.

Primary
Scheduler
implemented

No • Presence of this field indicates that the partition implements the primary
scheduler.

• Run-time EL must be EL1 if this field is specified.
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Information
fields Mandatory Description

Run-time
model

No • If the run-time EL is S-EL0 then this field specifies the run-time model that
the SPM must enforce for this SP.

– Run to completion. SP execution must not be preempted. An
execution context of this SP must only transition between the waiting
and running states described in 4.10 Run-time states.

– Preemptible. SP execution can be preempted. An execution context of
this SP can transition between all states described in 4.10 Run-time
states. This is the default run-time model for a S-EL0 SP if this field is
not specified in the partition manifest.

• This field is deprecated in v1.1 of the Framework. Please see 9.4 Support
for legacy run-time models for more details.

Action in
response to
Non-secure
interrupts

Yes • This field specifies the action that the SPMC must take in response to a
Non-secure physical interrupt as described in 9.3.1 Actions for a
Non-secure interrupt.

• This field supersedes the Managed exit supported field in the FF-A v1.0
specification.

Tuples of
(Name,
SEPID ,
SMMU ID,
Stream
IDs)

No • If present, then each tuple specifies the association between its members
that the partition manager must create. The members are as follows.

– Stream endpoint ID that this endpoint is a proxy for. The dependent
device must not be assigned to this endpoint (see 4.2.3 Other DMA
isolation models).

– SMMU ID identifies the SMMU instance on a system with multiple
SMMUs.

– One or more Stream IDs associate the device that generates them with
the SEPID in the SMMU identified by SMMU ID.

– An optional Name for the SEPID for debugging purposes.

VM
availability
messages

No • This field specifies the VM availability messages the SP is interested in
receiving. See 18.3 VM availability signaling.

Power
management
messages

No • This field specifies the power management messages the SP is interested in
receiving. See 18.2.4 Power Management messages.

Cold boot
reason
register

No • Presence of this field indicates that the partition expects that the entry point
offset field must be reused for a secondary cold boot (see 18.2 Power
Management and 18.2.2 Secondary boot protocol).

• The reset reason is encoded in a general-purpose register as follows.
– Value of 0 in the register indicates a primary cold boot.
– Value of 1 in the register indicates a secondary cold boot.

• The register is specified in this field. Register must be between w0/x0-w7/x7.
The width of the register is derived from its Execution state specified in the
partition manifest.

• The specified register must be distinct from the register used to carry the
address of the boot information blob specified in Table 5.10. The partition
is not initialized if there is a clash.
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Table 5.2: Memory regions

Information
fields Mandatory Description

Base
address or
Load
address
relative
offset

No • Absence of this field indicates that a memory region of specified size and
attributes must be mapped into the partition translation regime. The PM
must describe the memory region to the partition through an
IMPLEMENTATION DEFINED mechanism.

• If present, this field could specify a PA, VA (for S-EL0 partitions), IPA (for
S-EL1 and EL1 partitions) or a positive offset (for S-EL0 partitions) relative
to the Load address of the partition image. This information must be
specified using an IMPLEMENTATION DEFINED mechanism.

– If a PA is specified, then the memory region must be identity mapped
with the same IPA or VA as the PA.

– If a VA or IPA is specified, then the memory could be identity or
non-identity mapped.

– If an offset is specified, this must be indicated in the manifest through
an IMPLEMENTATION DEFINED mechanism.

• If present, the address or offset must be aligned to the Translation granule
size.

Page count Yes • Size of memory region expressed as a count of 4K pages.
• For example, if the memory region size is 16K, value of this field is 4.

Attributes Yes • Memory access permissions.
– Instruction access permission.
– Data access permission.

• Memory region attributes.
– Memory type.
– Shareability attributes.
– Cacheability attributes.

• Memory Security state.
– Non-secure for a NS-Endpoint.
– Non-secure or Secure for an S-Endpoint.

Name No • Name of the memory region for example, for debugging purposes.

Stream &
SMMU
IDs

No • Identity of the SMMU and stream IDs of a device upstream of the SMMU
that can access this memory region with the access permissions specified in
the stream ID access permissions field.

Stream ID
access
permissions

No • Device access permissions for each Stream ID if the Stream and SMMU IDs
field is present.

– Instruction access permission.
– Data access permission.
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Table 5.3: Device regions

Information
fields Mandatory Description

Physical
base
address

Yes • PA of base of a device MMIO region.
• If the MMIO region is not physically contiguous, then an entry for each

physically contiguous constituent region must be specified.
• Each entry must specify the PA and size of the constituent region. The size

must be expressed as a count of 4K pages.

Page count Yes • Total size of MMIO region expressed as a count of 4K pages.
• For example, if the MMIO region size is 16K, value of this field is 4.

Attributes Yes • Memory attributes must be Device-nGnRnE.
• Instruction access permission must be not executable.
• Data access permissions must be one of the following:

– Read/write.
– Read-only.

• Security attributes must be:
– Non-secure for a NS-Endpoint.
– Non-secure or Secure for an S-Endpoint.

Interrupts No • List of physical interrupt IDs.
• Attributes of each interrupt ID.

– Interrupt type.
* SPI.
* PPI.
* SGI.

– Interrupt configuration.
* Edge triggered.
* Level triggered.

– Interrupt Security state.
* Secure.
* Non-secure.

– Interrupt priority value.
* This is a virtual priority value for a S-EL1 SP that runs under the

S-EL2 SPMC.
– Target execution context/vCPU for each SPI.

* This field is optional even if other interrupt properties are
specified since interrupt affinity could be managed through an
IMPLEMENTATION DEFINED interface between the endpoint and
its partition manager.

SMMU ID No • If present, then on a system with multiple SMMUs, this field must help the
partition manager determine which SMMU instance is this device upstream
of.

• Absence of this field implies that the device is not upstream of an SMMU.

Stream IDs No • List of Stream IDs assigned to this device.
• Absence of Stream ID list indicates that the device is not upstream of an

SMMU.
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Information
fields Mandatory Description

Exclusive
access and
ownership

No • If present, this field implies that this endpoint must be granted exclusive
access and ownership of the MMIO region of the device.

• Absence of this field implies that access to the MMIO region of the device
could be shared among multiple endpoints.

Name No • Name of the device region for example, for debugging purposes.

5.2.2 SPMC manifest

The following aspects of the SPMC manifest are IMPLEMENTATION DEFINED.

• Format of the manifest.
• Time of creation of the manifest. This could be at:

– Build time.
– Boot time.
– Combination of both.

• Mechanism used by the SPMD to obtain information in the manifest and interpret its contents.

Table 5.4: SPMC properties

Information
fields Mandatory Description

FF-A
version

Yes • Version of Firmware Framework implemented by the SPMC component.
See 13.2 FFA_VERSION for more information about the usage of this field.

SPMC ID No • Pre-allocated ID for the SPMC.

Execution
state

Yes • AArch64.
• AArch32.

Load
address

No • Absence of this field indicates that the SPMC image is position independent
and can be loaded at any address chosen at boot time.

Entry point
offset

No • Absence of this field indicates that the entry point is at offset 0x0 from the
base of the SPMC binary image.

• If present, this field specifies the offset of the entrypoint from the base of the
SPMC binary image.

FF-A boot
protocol
usage

No • See Table 5.10.
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Information
fields Mandatory Description

Cold boot
reason
register

No • Presence of this field indicates that the SPMC expects that the entry point
offset field must be reused for a secondary cold boot (see 18.2 Power
Management and 18.2.2 Secondary boot protocol).

• The reset reason is encoded in a general-purpose register as follows.
– Value of 0 in the register indicates a primary cold boot.
– Value of 1 in the register indicates a secondary cold boot.

• The register is specified in this field. Register must be between w0/x0-w7/x7.
The width of the register is derived from its Execution state specified in the
SPMC manifest.

5.2.3 Independent peripheral device manifest

This manifest must be used by independent peripheral devices to describe their properties to a partition manager.
See 4.2.3 Other DMA isolation models for more details.

Table 5.5: Device properties

Information
fields Mandatory Description

FF-A
version

Yes • Version of the Firmware Framework expected by the device.

Name No • Name of the partition for example, for debugging purposes.

Translation
Granule

Yes • 4KB.
• 16KB.
• 64KB.

SEPID Yes • Pre-allocated Stream endpoint ID.

Table 5.6: Memory regions accessible by the device

Information
fields Mandatory Description

Base
address

Yes • This field could specify a PA or IPA. This distinction must be specified
using an IMPLEMENTATION DEFINED mechanism.

– If a PA is specified, then the memory region must be identity mapped
with the same IPA as the PA.

– If an IPA is specified, then the memory could be identity or
non-identity mapped.

• The address must be aligned to the Translation granule size.

Page count Yes • Size of memory region expressed as a count of 4K pages.
• For example, if the memory region size is 16K, value of this field is 4.
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Information
fields Mandatory Description

Properties Yes • Memory region properties (see [1]).
• Security attributes.

– Non-secure for a Non-secure device.
– Non-secure or Secure for a Secure device.

Name No • Name of the memory region for example, for debugging purposes.

Table 5.7: Device regions

Information
fields Mandatory Description

Physical
base
address

Yes • PA of base of a device MMIO region.
• If the MMIO region is not physically contiguous, then an entry for each

physically contiguous constituent region must be specified.
• Each entry must specify the PA and size of the constituent region. The size

must be expressed as a count of 4K pages.

Properties Yes • Memory type must be Device-nGnRnE.
• Instruction access permission must be not executable.
• Data access permissions must be one of the following:

– Read/write.
– Read-only.

• Security attributes must be:
– Non-secure for a Non-secure device.
– Non-secure or Secure for a Secure device.

Page count Yes • Total size of MMIO region expressed as a count of 4K pages.
• For example, if the MMIO region size is 16K, value of this field is 4.

SMMU ID Yes • On a system with multiple SMMUs, this field must help a partition manager
determine which SMMU instance is this device upstream of.

Stream IDs Yes • List of Stream IDs assigned to this device.

Name No • Name of the device region for example, for debugging purposes.
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5.3 Register state

The partition manager must program system and general-purpose registers that influence partition execution as
follows.

• The MMU must be disabled for a partition that does not run in S-EL0 in either Execution state. The MMU
must be enabled for S-EL0 partition that runs in either Execution state.

• The partition manager must ensure that all memory regions allocated to a partition are clean to the Point of
Coherency. Also, there must be no stale cached copies of executable memory held in any instruction caches
visible to a PE on which the execution contexts of the partition may execute.

This could be achieved by executing cache maintenance instructions, after initializing the memory regions
for a partition.

• The state of other System registers is IMPLEMENTATION DEFINED. If the partition manager must program a
System register to fulfill a specific partition requirement then this must be encoded in its manifest through an
IMPLEMENTATION DEFINED mechanism.

– For example, an S-EL0 partition could want the instruction alignment check to be disabled by setting
SCTLR_EL1.A, bit[1] = b’0.

• The state of general-purpose registers is IMPLEMENTATION DEFINED. Also see Table 5.10.

DEN0077A
1.2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60



Chapter 5. Setup
5.4. Boot information protocol

5.4 Boot information protocol

An SP or SPMC could rely on boot information for their initialization e.g. a flattened device tree with nodes to
describe the devices and memory regions assigned to the SP or SPMC. The Framework specifies a protocol that can
be used by a producer to pass boot information to a consumer at a Secure FF-A instance. The Framework assumes
that the boot information protocol is used by a producer and consumer pair that reside at adjacent exception levels
as listed below.

1. SPMD (producer) and an SPMC (consumer) in either S-EL1 or S-EL2.
2. An SPMC (producer) and SP (consumer) pair listed below.

1. EL3 SPMC and a Logical S-EL1 SP.
2. S-EL2 SPMC and Physical S-EL1 SP.
3. EL3 SPMC and a S-EL0 SP.
4. S-EL2 SPMC and a S-EL0 SP.
5. S-EL1 SPMC and a S-EL0 SP.

The boot information protocol used by a producer and consumer pair that reside at the same exception level is
IMPLEMENTATION DEFINED.

The Framework also makes the following assumptions about the usage of the boot information protocol between a
producer and consumer pair.

1. Boot information is passed only to the consumer execution context that is initialized on the primary PE by
the producer.

2. Boot information is passed when the consumer execution context on the primary PE is first entered through
an exception return from the producer.

3. Boot information is encoded in a format chosen by the consumer and the producer through an IMPLEMENTA-
TION DEFINED mechanism e.g. a flattened device tree, a handover block list (HOB list) etc.

4. One or more distinct instances of boot information could be passed from the producer to the consumer.

A producer maintains backwards compatibility while using the boot information protocol described in this or an
earlier version of the Framework. A consumer requests usage of the boot information protocol by specifying the
corresponding field in their manifest (see Table 5.10). A consumer also specifies the version of the Framework it
implements in its manifest. A producer parses the manifest of the consumer for this information and ensures it
uses the boot information protocol specified in the version of the Framework specified in the manifest.

5.4.1 Boot information descriptor

The Framework defines a descriptor (see Table 5.8) to describe an distinct instance of boot information.

Table 5.8: Boot information descriptor

Field Byte length Byte offset Description

Name 16 0 • Name of boot information passed to the consumer.
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Field Byte length Byte offset Description

Type 1 16 • Type of boot information passed to the consumer.
– Bit[7]: Boot information type.

* b’0: Standard boot information.
* b’1: IMPLEMENTATION DEFINED boot

information.
– Bit[6:0]: Boot information identifier.

* Standard boot information (bit[7] =
b’0).

· 0: Flattened device tree (FDT).
· 1: Hand-Off Block (HOB) List.
· All other identifiers are reserved.

* IMPLEMENTATION DEFINED identifiers
(bit[7] = b’ 1).

· Identifier is defined by the
implementation.

Reserved 1 17 • Reserved (MBZ).

Flags 2 18 • Flags to describe properties of boot information
associated with this descriptor.

– Bits[15:4]: Reserved (MBZ).
– Bits[3:2]: Format of Contents field.

* b’0: Address of boot information
identified by the Name and Type fields.

* b’1: Value of boot information
identified by the Name and Type fields.

* All other bit encodings are reserved for
future use.

– Bits[1:0]: Format of Name field.
* b’0: Null terminated string.
* b’1: UUID encoded in little-endian byte

order.
* All other bit encodings are reserved for

future use.

Size 4 20 • Size (in bytes) of boot information identified by
the Name and Type fields.
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Field Byte length Byte offset Description

Contents 8 24 • Value or address (see Flags field) of boot
information identified by the Name and Type
fields.

– If in the Flags field, bit[3:2] = b’0,
* The address has the same attributes as

the boot information blob address
described in 5.4.3 Boot information
address.

* Size field contains the length (in bytes)
of boot information at the specified
address.

– If in the Flags field, bit[3:2] = b’1,
* Size field contains the exact size of the

value specified in this field.
* Size is >= 1 bytes and <= 8 bytes.

The fields of the descriptor are described below.

1. The Name and Type fields uniquely identify the boot information. The Type field is the primary identification
mechanism. The Name field can be used as a secondary identification mechanism. This is described in the
following usage models.

1. The Type field identifies the format in which boot information is encoded and the Name field identifies
the contents of the boot information. For example,

1. An SP could consume two distinct FDTs during initialization. The Type field would be used to
identify that boot information is encoded in the device tree format. The Name field could be a NULL
terminated 15-byte string or a 16-byte UUID to identify what information is specified in an FDT.

2. The Type field identifies both the format and the contents of the boot information. For example, an SP
could consume a HOB list during initialization.

The Type field uniquely identifies the format and contents of the boot information in both examples. The
Name field could be unused or a NULL terminated string for debugging purposes.

The Flags field is used to specify whether the Name field encodes a NULL terminated string or a UUID.

2. The Contents and Size fields allow boot information to be,

1. Either referenced from the descriptor by populating the address of the boot information in the Contents
field.

2. Or encoded in the descriptor in the Contents field. This is subject to the width of the Contents field.

The Flags field is used to specify whether the Contents field encodes the boot information or a reference to it.

5.4.2 Boot information header

The producer passes one or more instances of boot information to a consumer as an array of boot information
descriptors (see Table 5.8). The array is preceded by a boot information header defined in Table 5.9.

The combination of boot information referenced from the boot information descriptor array, the array itself and the
boot information header is called the Boot information blob.
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Table 5.9: Boot information header

Field Byte length Byte offset Description

Signature 4 0 • Hexadecimal value 0x0FFA to identify the header.

Version 4 4 • Version of the boot information blob encoded as
per the Input version number field in Table 13.4.

Size of boot
information blob

4 8 • Size of boot information blob spanning
contiguous memory.

Boot information
descriptor size

4 12 • Size of each boot information descriptor in the
array (see Table 5.8).

Boot information
descriptor count

4 16 • Count of boot information descriptors in the array.

Boot information
descriptor array offset

4 20 • Offset to array of boot information descriptors.

Reserved 8 24 • Reserved (MBZ).

Optional padding – 32 • This field is not a part of the boot information
header. It has been included only for
informational purposes.

Boot information
descriptor array

– – • Array of boot information descriptors.

The fields of the boot information header are described below.

1. The Signature field is a magic number to let a consumer ensure that an FF-A boot information blob has been
passed by the partition manager.

2. The Version field identifies the version of the boot information blob. This includes the boot information
header and descriptor. This version is equal to the version of the Framework (see 13.2.2 Usage).

The producer determines the version of the Framework implemented by a consumer through its manifest (see
Table 5.1) or an IMPLEMENTATION DEFINED mechanism.

The producer ensures that the version of the boot information blob passed to a consumer is the same as the
version of the Framework implemented by the consumer.

3. The Size of boot information blob field specifies the size of the blob that spans one or more contiguous 4K
pages used by the producer to populate it. It is calculated by adding the following values.

1. Boot information descriptor array offset.

2. Product of Boot information descriptor count and Boot information descriptor size.

3. Total size of all boot information referenced by boot information descriptors.

This is determined by adding the values in the Size field of each boot information descriptor whose
Contents field contains an address.

4. Any padding between,
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1. The boot information descriptor array and the boot information referenced from it.
2. Distinct instances of boot information referenced from the boot information descriptor array.

This field enables a consumer to map all of the boot information blob in its translation regime (not managed
by the producer) or copy it to another memory location without parsing each element in the boot information
descriptor array.

4. The Boot information descriptor size field contains the size of the descriptor. This enables a consumer to
parse the array without relying on a static association between the Framework version it implements and the
size of the boot information descriptor in that version of the Framework.

5. The Boot information descriptor count field contains the number of descriptors in the boot information
descriptor array.

6. The Boot information descriptor array offset field is the offset from the base address of the Boot information
header to the first element in the Boot information descriptor array. The offset must be aligned to the 8-byte
boundary.

Figure 5.1 illustrates an example boot information array that includes,

1. A reference to a FDT whose name is identified by a UUID. The FDT blob is populated at the next available
address after the boot information array.

2. IMPLEMENTATION DEFINED boot information encoded as a value in the boot information descriptor.

The boot information array and FDT blob fit in a single 4K page.
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Figure 5.1: Example boot information array
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5.4.3 Boot information address

The producer passes the address of the boot information blob to a consumer in a general purpose register specified
in the consumer manifest (see Table 5.10). The presence of this field in the consumer manifest enables the
producer to discover that the consumer expects the boot information blob to be passed through the FF-A boot
information protocol. The boot information blob address is,

1. A VA for a S-EL0 SP at the Secure virtual FF-A instance.
2. An IPA for a Physical S-EL1 SP at the Secure virtual FF-A instance.
3. A PA for a Logical S-EL1 SP, S-EL2 SPMC and S-EL1 SPMC at the Secure physical FF-A instance.

Table 5.10: Boot protocol information

Information
fields Mandatory Description

FF-A boot
protocol
usage

No • The register in which the address of the boot information blob must be
passed by the producer. Register must be between w0/x0-w3/x3. The width
of the register is derived from its Execution state specified in the partition
manifest.

5.4.4 Boot information memory requirements

The producer populates the boot information blob in a memory region that fulfill the following requirements.

1. Size of memory region is a multiple of the translation granule size used by the consumer.

2. Address of memory region is aligned to the translation granule size used by the consumer.

3. The memory region is mapped in the translation regime of the consumer that is managed by the producer (see
[1]). The producer does not map the memory region in the translation regime of a consumer at the Secure
physical FF-A instance.

4. The memory region is mapped in the producer and consumer’s translation regimes with the same memory
attributes as the RX/TX buffers as described in 7.2.2.3 Buffer attributes.

5. The memory region comprises of translation granule sized contiguous pages.

1. The pages are physically contiguous at the Secure physical FF-A instance.
2. The pages are virtually contiguous at the Secure virtual FF-A instance.

The boot information blob is populated at offset 0 in the memory region. The Framework uses the little-endian
byte order to encode the boot information blob.

The memory region used to populate the boot information blob could be owned by the producer or consumer
during the latter’s initialization.

• In the latter case, the consumer specifies a memory region in its manifest or through an IMPLEMENTATION
DEFINED mechanism. The producer uses this memory region for populating the boot information blob. The
producer maps the memory region in its translation regime to access it. It unmaps the memory region from
its translation regime and maps it in the translation regime of the consumer (if applicable) prior to handing
control to the consumer for initialization. The consumer is the owner of the memory region from this stage
onwards.

• In the former case, the memory region is owned by the producer and shared with a consumer for the duration
of its initialization. The consumer should not assume access to the memory region post-initialization (see
5.5 Protocol for completing execution context initialization).

– At the Secure virtual FF-A instance, the producer unmaps the memory region from the translation regime
of the consumer that it manages ([1]).
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– The Framework strongly recommends that the consumer at the Secure physical FF-A instance does not
access the memory region post-initialization.

The producer could reuse the same memory region to pass boot information to multiple consumers. In this
case, it ensures that boot information passed to one consumer is cleared in the memory region before boot
information for another consumer is populated in the same memory region. The producer performs cache
maintenance such that the memory region contents after clearing are coherent between any PE caches, system
caches and system memory.
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5.5 Protocol for completing execution context initialization

A partition must use the FFA_MSG_WAIT (also see 14.1 FFA_MSG_WAIT) interface or an IMPLEMENTATION
DEFINED mechanism to indicate completion of initialization of its execution context to the partition manager.

A partition must use the FFA_ERROR (also see 12.2 FFA_ERROR) interface or an IMPLEMENTATION DEFINED
mechanism to report an error during initialization of its execution context to the partition manager.

The runtime model that the SPMC uses for initializing an execution context of a SP is described in 8.5 Runtime
model for SP initialization.
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6.1 Partition identification

Partitions are identified in the Framework by a globally unique 16-bit ID. This implies that no two partitions in the
Framework can be assigned the same ID. This ID is used in FF-A ABIs to identify the partition e.g. the sender or
receiver of a message, lender or borrower of shared memory.

An ID is assigned to the partition by its partition manager before the partition is initialized. A partition uses the
FFA_ID_GET interface (also see 13.10 FFA_ID_GET) to discover its ID. The ID can be,

1. Specified in the manifest of the partition, validated and assigned by the partition manager. The partition
manager does not boot a partition if the ID specified in the manifest cannot be assigned to the partition.

2. Allocated and assigned by the partition manager through an IMPLEMENTATION DEFINED mechanism.

The Hypervisor and SPM are collectively responsible for ensuring that an ID allocated to a partition is globally
unique. This is done as described below.

1. Each partition manager ensures that it allocates unique IDs to the partitions it manages i.e. the Hypervisor
allocates unique IDs to VMs and SPM does the same for SPs.

2. Both partition managers ensure that IDs are allocated without the risk of the same ID being allocated by both.
This is done either through an IMPLEMENTATION DEFINED mechanism or one of the following mechanisms
specified by the Framework.

1. The 16-bit partition ID namespace is split into two parts for use by the Hypervisor and SPM as described
below.

• Bit[15]: Partition type identifier.

– b’0: Bits[14:0] are reserved for use by the Hypervisor to identify a VM.
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– b’1: Bits[14:0] are reserved for use by the SPM to identify an SP.

• Bit[14:0]: IMPLEMENTATION DEFINED value chosen by,

– The Hypervisor if Bit[15] = b’0.
– The SPM if Bit[15] = b’1.

2. The Framework assumes that the SPM always initializes SPs before the Hypervisor initializes VMs.
Hence, the SPM allocates IDs for SPs before the Hypervisor allocates IDs for VMs.

In this mechanism, the Hypervisor discovers the IDs assigned to SPs by invoking the
FFA_PARTITION_INFO_GET or FFA_PARTITION_INFO_GET_REGS ABI at the Non-secure physical
FF-A instance with the Nil UUID as the input. It assigns IDs to VMs that are not already used by the
SPM for SPs.

The Framework assumes that the system integrator ensures that both the Hypervisor and SPM use the same
mechanism.

In a configuration with the S-EL2 or S-EL1 SPMC, the Framework assumes that any EL3 LSPs have been
initialized before the SPMC initializes its SPs. The SPMC must use one of the following mechanisms to ensure
that IDs it allocates are unique.

• An IMPLEMENTATION DEFINED mechanism.

• The FFA_PARTITION_INFO_REGS interface is used with the Nil UUID to discover the IDs of EL3 LSPs.
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6.2 Partition discovery

The identity and other properties of a partition are discovered by an FF-A component as described below.

1. Each partition is associated with one or more UUIDs (Unique Universal Identifier) (see [7]) that are specified
in its manifest. Also see, Table 5.1 in 5.2.1 Partition manifest.

2. An FF-A component discovers the identity and properties of a partition by specifying a UUID exported
by the partition as an input to the FFA_PARTITION_INFO_GET or FFA_PARTITION_INFO_GET_REGS
interfaces (see 13.8 FFA_PARTITION_INFO_GET and 13.9 FFA_PARTITION_INFO_GET_REGS). The
Nil UUID is used to discover all available partitions and their UUIDs at the FF-A instance where the ABI is
invoked.

6.2.1 Partition information descriptor

The format of the partition information descriptor changed between Framework versions 1.0 and 1.1. The
changes to the FF-A v1.0 descriptor (see Table 18.22) and implementation responsibilities to maintain backward
compatibility are specified in 18.5 Changes to FF-A v1.0 data structures for forward compatibility.

Table 6.1: Partition information descriptor

Field Byte length Byte offset Description

Partition
ID

2 0 • 16-bit ID of the partition, stream or auxiliary endpoint.

Execution
context
count or
Proxy
partition
ID

2 2 • Number of execution contexts implemented by this partition
(also see 4.7 Execution context) if Bit[5:4] = b’00 in the
Partition properties field.

• ID of the proxy endpoint for a dependent peripheral device
(see 4.2.3 Other DMA isolation models if Bit[5:4] = b’10 in
the Partition properties field.

• Reserved (MBZ) for all other encodings of the Partition
properties field.

Partition
properties

4 4 • Flags to determine partition properties encoded as shown in
Table 6.2).

Partition
UUID

16 8 • UUID of the partition, stream or auxiliary endpoint if the Nil
UUID was specified as an input parameter.

• This field is Reserved (MBZ) if a non-Nil UUID was.
specified as an input parameter.

The properties of a partition returned via the discovery ABIs are encoded as shown in Table 6.2.
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Table 6.2: Partition properties descriptor

Field Description

Bits[3:0] • Has the following encoding if Bits[5:4] = b’00. It is Reserved (MBZ) otherwise.
– Bit[0] has the following encoding:

* b’0: Cannot receive Direct requests via the FFA_MSG_SEND_DIRECT_REQ ABI.
* b’1: Can receive Direct requests via the FFA_MSG_SEND_DIRECT_REQ ABI.

– Bit[1] has the following encoding:
* b’0: Cannot send Direct requests via the FFA_MSG_SEND_DIRECT_REQ ABI.
* b’1: Can send Direct requests via the FFA_MSG_SEND_DIRECT_REQ ABI.

– Bit[2] has the following encoding:
* b’0: Cannot send and receive Indirect messages.
* b’1: Can send and receive Indirect messages.

– Bit[3] has the following encoding:
* b’0: Does not support receipt of notifications.
* b’1: Supports receipt of notifications.

Bits[5:4] • b’00: Partition ID is a PE endpoint ID.
• b’01: Partition ID is a SEPID for an independent peripheral device.
• b’10: Partition ID is a SEPID for an dependent peripheral device.
• b’11: Partition ID is an auxiliary ID 5.2.1 Partition manifest.

Bit[6] • b’0: Partition must not be informed about each VM that is created by the Hypervisor.
• b’1: Partition must be informed about each VM that is created by the Hypervisor.
• bit[6] is used only if the following conditions are true. It is Reserved (MBZ) in all other scenarios.

– This ABI is invoked at the Non-secure physical FF-A instance.
– The partition is an SP that supports receipt of Direct requests i.e. Bit[0] = b’1.

• Also see 18.3 VM availability signaling.

Bit[7] • b’0: Partition must not be informed about each VM that is destroyed by the Hypervisor.
• b’1: Partition must be informed about each VM that is destroyed by the Hypervisor.
• bit[7] is used only if the following conditions are true. It is Reserved (MBZ) in all other scenarios.

– This ABI is invoked at the Non-secure physical FF-A instance.
– The partition is an SP that supports receipt of Direct requests i.e. Bit[0] = b’1.

• Also see 18.3 VM availability signaling.

Bit[8] • b’0: Partition runs in the AArch32 execution state.
• b’1: Partition runs in the AArch64 execution state.

Bits[10:9] • Has the following encoding if Bits[5:4] = b’00. It is Reserved (MBZ) otherwise.
– Bit[9] has the following encoding:

* b’0: Cannot receive Direct requests via the FFA_MSG_SEND_DIRECT_REQ2 ABI.
* b’1: Can receive Direct requests via the FFA_MSG_SEND_DIRECT_REQ2 ABI.

– Bit[10] has the following encoding:
* b’0: Cannot send Direct requests via the FFA_MSG_SEND_DIRECT_REQ2 ABI.
* b’1: Can send Direct requests via the FFA_MSG_SEND_DIRECT_REQ2 ABI.

Bit[31:11] Reserved (MBZ).
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6.2.2 Partition discovery ABI usage

The type of partitions (see 3.2 Partitions) that can be discovered via the discovery ABIs depend upon the caller
and callee in an ABI invocation. This is listed in Table 6.3.

The term SPM LSP is used when it is not necessary to distinguish between the SPM component the LSP is
co-resident with.

Table 6.3: Table of discoverable partitions between two FF-A components

Caller Callee Available Partitions for Discovery

VM Hypervisor • VMs
• SPs
• SPM LSPs

OS Kernel / Hypervisor SPM • SPs
• SPM LSPs

SP SPMC • SPs
• SPM LSPs

SPMC SPMD • EL3 LSPs

SPMD SPMC • SPs
• SPMC LSPs

SPM Hypervisor/ OS Kernel • N/A

The discovery ABIs can return the properties or count of discoverable partitions. This is governed by the input
parameters specified by the caller (e.g. type of UUID and flags) in an ABI invocation and described below.

• If the FFA_PARTITION_INFO_GET ABI is invoked with the Return information type flag in Flags input
parameter = b’0 or the FFA_PARTITION_INFO_GET_REGS ABI is invoked and,

– If the Nil UUID is specified, information for partitions (including the caller) as detailed in Table 6.3 is
returned.

– If a non-Nil UUID is specified, information for all partitions as detailed in Table 6.3 corresponding to
the UUID, is returned.

If the Nil UUID is specified at a valid FF-A instance and a partition exports multiple UUIDs in its manifest,
then properties corresponding to each UUID are returned in a distinct partition information descriptor. The
descriptors corresponding to this partition have the same value in their Partition ID field.

• If the FFA_PARTITION_INFO_GET ABI is invoked with the Return information type flag in Flags input
parameter = b’1 and,

– If the Nil UUID is specified, count for partitions (including the caller) as detailed in Table 6.3 is returned.

– If a non-Nil UUID is specified, count for all partitions as detailed in Table 6.3 corresponding to the
UUID, is returned.

If the Nil UUID is specified at a valid FF-A instance and one or more partitions export multiple UUIDs
in their manifests, then the returned count corresponds to the product of the number of partitions and the
number of UUIDs exported by each partition.
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A callee is allowed to provide a subset of partition information in an invocation of the discovery ABIs.

6.2.3 Partition UUID usage

A partition implements one or more services. Each service is accessed by a communication protocol built on top
of FF-A messaging mechanisms. A UUID exported by the partition identifies an implemented communication
protocol. There is a one-to-many relationship between a communication protocol and UUIDs. Some example
usage models are described below:

1. A partition implements N services. Each service is accessed via a unique communication protocol. It
associates a UUID with each service and exports N UUIDs in its manifest. The communication protocol used
to access each service is implicitly identified by its UUID. There is a 1:1 mapping between communication
protocols and the UUIDs.

2. A partition implements N services. Each service is accessed via a common communication protocol. It
associates a UUID with each service and exports N UUIDs in its manifest. The communication protocol used
to access each service is implicitly identified by its UUID. There is a 1:N mapping between the common
communication protocol and the UUIDs.

3. A partition implements N services. Each service is accessed via a common communication protocol. It
associates a UUID with the communication protocol and exports a single UUID in its manifest. The
communication protocol provides an IMPLEMENTATION DEFINED mechanism to discover and access the N
services. There is a 1:1 mapping between the common communication protocol and the UUID.

To support the scenarios where a partition exports multiple UUIDs, an entry corresponding to each UUID is
encoded in the returned partition information. E.g. SP0 exports UUID_0 and UUID_1. The returned partition
information for SP0 has two entries as follows,

• SP0 ID, properties, UUID_0.
• SP0 ID, properties, UUID_1.

If the Nil UUID is specified in an invocation of an FF-A discovery ABI and one or more partitions export multiple
UUIDs in their manifests, then the returned count corresponds to the sum of the products of the number of partitions
and the number of UUIDs exported by each partition.

If the Nil UUID is specified in an invocation of the FFA_MSG_SEND_DIRECT_REQ2 or in a partition message
header (see Table 7.2) for indirect messages using the FFA_MSG_SEND2 ABI then the communication protocol
or service is determined by the callee through an IMPLEMENTATION DEFINED mechanism.
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6.3 Partition manager identification

Partition managers are identified in the Framework as described below.

1. A partition manager is identified by a globally unique 16-bit ID. This ID is not assigned to any another FF-A
component in the system.

2. The ID value 0 is reserved for the Hypervisor as described in [5].

3. The ID values assigned to the SPMC and SPMD components are IMPLEMENTATION DEFINED. From v1.1 of
the Framework, the IDs assigned to the SPMC and SPMD can be discovered through the FFA_SPM_ID_GET
interface (see 13.11 FFA_SPM_ID_GET).

The Framework can be deployed on an Arm A-profile system that does not implement EL2. The ID value 0 is
reserved for the OS kernel in this configuration.
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7.1 Overview

The Firmware Framework defines a set of ABIs that enable synchronous and asynchronous message passing
between FF-A components. A message exchange comprises the following phases.

1. Transmission of the message payload from the Sender to the Receiver. The mechanisms used by the
Framework to transmit messages are described in 7.2 Message transmission.

2. Allocation of CPU cycles to the Receiver to process the message on a PE in the system. The type of message
passing (synchronous or asynchronous) is governed by when the Receiver is allocated CPU cycles.

1. Synchronous message passing is described in 7.1.2 Direct messaging.

2. Asynchronous message passing is described in 7.1.1 Indirect messaging.

3. Message processing by the Receiver using the allocated cycles. The role of the Framework during message
processing is described in the following sections.

1. Chapter 8 Partition runtime models.
2. Chapter 9 Interrupt management.

In any message exchange between two FF-A components, one or both partition managers validate and forward the
message from the sender to the receiver. A partition manager is called the Relayer when it performs this role. In
the absence of a Hypervisor, the SPMC and SPMD are the only Relayers in the Framework. FF-A components in
the Secure world participate in message passing as described below.

1. The SPMD forwards a message from an NS-Endpoint to the SPMC and vice-versa.
2. The SPMC forwards a message from the SPMD to its target S-Endpoint and vice-versa.
3. The SPMC forwards a message between any two S-Endpoints.
4. FF-A ABIs are used between the SPMC and a SP for sending and receiving messages when the SP resides in

a separate exception level from the SPMC.
5. An IMPLEMENTATION DEFINED mechanism is used between the SPMC and a SP for sending and receiving

messages when the SP resides in the same exception level as the SPMC.

7.1.1 Indirect messaging

The asynchronous message passing method specified by the Framework is called Indirect messaging. In this
method, the Sender does not relinquish control to the Receiver at the time of message transmission. Instead, the
Relayer ensures that CPU cycles are subsequently allocated to the Receiver for message processing. Effectively,
the Sender Indirectly schedules the Receiver on the same or a different PE via the Relayer. CPU cycle allocation
is decoupled from message transmission. The Relayer requests the primary or secondary scheduler in a VM or
Hypervisor to allocate CPU cycles to the Receiver for message processing on behalf of the Sender. The Sender
could make progress concurrently with the Receiver if the latter is scheduled on a different PE. The Sender either
polls for a response or is notified when a response from the Receiver is available.

In this version of the Framework, Indirect messaging is used only for message exchanges between endpoints. 7.3
Indirect messaging usage describes this method in detail. Figure 7.1 illustrates an example Indirect message
exchange.
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Sender

Sender

Relayer

Relayer

Scheduler

Scheduler

Receiver

Receiver

Do some work

1 Send Indirect message to Receiver

Transmit message to Receiver

2
Request Receiver to be scheduled
since it has a pending message

Make note that Receiver has pending work and
must be scheduled as per the scheduling policy

3

4
Message transmitted successfully and
Receiver arranged to be scheduled

Continue work

5 Scheduling decision on same PE as the Sender or another PE

6
Run an execution context to
process pending message

Process message

Figure 7.1: Example Indirect messaging flow

7.1.2 Direct messaging

The synchronous message passing method specified by the Framework is called Direct messaging. In this method,
the Sender relinquishes control to the Receiver at the time of message transmission and blocks until its receives
a response from the Receiver. Effectively, the Sender directly schedules the Receiver on the same PE where the
message is transmitted by the Relayer. CPU cycle allocation is tightly coupled with message transmission.

This method is used for message exchanges between the following FF-A components.

1. An endpoint and a partition manager. These message exchanges are called hypcalls (also see 4.11 Run-time
state transitions).

2. Between endpoints in the following non-exhaustive list of scenarios.

1. The scheduler is not available. For example,
• The system is booting and the primary scheduler has not been initialized yet.
• It is not possible to communicate with the scheduler. For example, from EFI runtime services that

run as a peer of the OS scheduler.
2. The Receiver must be run on the same PE as the Sender.

7.4 Direct messaging usage describes this method in detail. Figure 7.2 illustrates this method.
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1 Send Direct message to Receiver
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3 Return response to Sender

4 Return response to Sender

Continue work

Figure 7.2: Example Direct messaging flow
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7.2 Message transmission

7.2.1 Overview

Message payloads are exchanged between two FF-A components through general purpose registers and/or a single
pair of shared memory regions to transmit and receive messages called RX/TX buffers (see also 7.2.2 RX/TX
buffers).

• Direct messaging can use both these mechanisms along with the ABIs described in 7.1.2 Direct messaging.

• Indirect messaging must use only the RX/TX message buffers along with the ABIs described in 7.1.1 Indirect
messaging.

The Framework defines a message as all information encoded in,

1. The input parameter registers (w0-w7 or x0-x17) as per the applicable SMC calling convention in an FF-A
ABI definition.

2. The RX/TX buffers if they are used in an FF-A ABI definition.

Each message has a header and a payload. The header describes properties of a message such as,

• Type of message.
– E.g., the function ID parameter in w0/x0.

• Source and target of the message.
– E.g., the source and target endpoint parameters in w1 in FFA_MSG_SEND_DIRECT_REQ.

• Size of the message.
– E.g., the total length parameter in w1 in FFA_MEM_SHARE.

The version of the message header and payloads is the same as the version of the Firmware Framework as returned
by FFA_VERSION (see 13.2 FFA_VERSION).

The header is encoded in the parameter registers, RX/TX buffers or both. This depends upon the ABI definition.
The Framework uses the message header to decide how it must handle the message. For example, in response to an
FF-A ABI invocation, a partition manager decides if it must interpret the message payload.

There are two types of messages.

1. Messages with payloads that are defined by the Framework for example, memory management messages.
They have the same definition in any implementation of a particular version of the Firmware Framework.
Messages with these payloads are called Framework messages.

Framework message payloads can be interpreted by the Relayer, Sender and Receiver. They are used when:

• Relayer participation is required to validate or modify message contents before delivery to the Receiver.

• The Hypervisor or SPM is the destination of the message payload. It processes the message and provides
a response.

In this version of the Firmware Framework, Framework messages are exchanged only in the following
scenarios.

• Between an endpoint and Hypervisor or SPM.
• Between the Hypervisor or SPM and an endpoint.
• Between the Hypervisor and SPM.
• Between the SPM and Hypervisor.

2. Messages with payloads that are defined by the services implemented inside a partition. The format of these
messages is specific to the service or partition implementation. Messages with these payloads are called
Partition messages.

Partition message payloads are only interpreted by the Sender and Receiver endpoints. A Relayer validates
the header information and uses it to route them correctly. Hence, by definition these messages are only
exchanged between endpoints.
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The relationship between message types (Framework and Partition), messaging method (Direct and Indirect) and
message payload location (registers and RX/TX buffers) is summarized below and described in Table 7.1.

• Direct messaging is used to transmit both Framework and partition messages.
– Framework messages can be transmitted in both RX/TX buffers and registers.
– Partition messages can only be transmitted in registers.

• Indirect messaging is used to only transmit Partition messages in the RX/TX buffers.

Table 7.1: Combinations of messaging and message transmission mechanisms

Messaging
method

Message
type

Message payload
location FF-A ABI

Direct Partition Register • FFA_MSG_SEND_DIRECT_REQ.
• FFA_MSG_SEND_DIRECT_REQ2.
• FFA_MSG_SEND_DIRECT_RESP.
• FFA_MSG_SEND_DIRECT_RESP2.

Direct Partition RX/TX • Invalid usage.

Direct Framework Register • Hypcalls.

Direct Framework RX/TX • Hypcalls.

Indirect Partition Register • Invalid usage.

Indirect Partition RX/TX • FFA_MSG_SEND2.

Indirect Framework Register • Invalid usage.

Indirect Framework RX/TX • Invalid usage.

7.2.2 RX/TX buffers

The guidance on this topic applies to physical partitions and logical partitions that reside in a different exception
level from their partition manager. The use of RX/TX buffers between a logical partition that co-resides with its
partition manager is IMPLEMENTATION DEFINED.

A RX/TX buffer pair is shared between two FF-A components at an FF-A instance.

• The FF-A component at the lower EL is the Consumer of the RX buffer and Producer of the TX buffer.
• The FF-A component at the higher EL is the Producer of the RX buffer and the Consumer of the TX buffer.

The endianness of all message payloads populated in the RX/TX buffers is little-endian.

In the Normal world,

• Each VM has a Non-secure buffer pair. It is shared with the Hypervisor and SPMC.
• The OS kernel has a Non-secure buffer pair. It is shared with the SPMC.
• The Hypervisor has a Non-secure buffer pair. It is shared with the SPMC.

In the Secure world,

• Each SP has a Secure buffer pair. It is shared with the SPMC.
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• The SPM is split into the SPMD and SPMC components as described in 4.1 SPM architecture. In
configurations where the SPMC resides in a separate Exception level from the SPMD (see Table 4.1),
it is IMPLEMENTATION DEFINED whether the two SPM components share an RX/TX buffer pair.

These message buffer configurations are illustrated in Figure 7.3.

Figure 7.3: Configurations of RX/TX buffer pair between FF-A components

Mechanisms for message transmission through RX/TX buffers are described in 7.2.2.1 Buffer-based message
transmission.

Mechanisms for discovery and setup of a RX/TX buffer pair are described in 7.2.2.2 Buffer setup.

Requirements for correctly mapping a RX/TX buffer pair in the translation regimes of both FF-A components at
any FF-A instance are described in 7.2.2.3 Buffer attributes.

7.2.2.1 Buffer-based message transmission

7.2.2.1.1 Transmission of partition messages

The following common rules govern transmission of partition messages.

1. Partition messages are populated at the base of a TX or RX buffer as per the encoding described in Table 7.2.

2. The FFA_MSG_SEND2 ABI is used to transmit a partition message from the TX buffer of the Sender
endpoint to the RX buffer of the Receiver endpoint.

3. A message is transmitted between VMs by copying it from the TX buffer of the Sender VM to the RX buffer
of the Receiver VM. The message copy is done by the Hypervisor which must first acquire the RX buffer of
the receiving VM from the SPMC (See 7.2.2.4.3 Management of buffer ownership between Hypervisor and
SPMC).
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4. A message is transmitted between SPs by copying it from the TX buffer of the Sender SP to the RX buffer of
the Receiver SP. The message copy is done by the SPMC.

5. A message is transmitted from a VM to a SP by copying it from the TX buffer of the Sender VM to the
RX buffer of the Receiver SP. The invocation of FFA_MSG_SEND2 is forwarded by the Hypervisor to the
SPMC. The message copy is done by the SPMC.

6. A message is transmitted from a SP to a VM by copying it from the TX buffer of the Sender SP to the RX
buffer of the Receiver VM. The message copy is done by the SPMC.

In a configuration without the Hypervisor, ID 0 is assigned to the OS Kernel. It is used by a SP to send a
partition message to the OS Kernel. The SPMC does not have a mechanism to detect the presence or absence
of a Hypervisor. It is possible for an SP to use ID 0 to send a partition message to the Hypervisor. The SPMC
copies the message from the TX buffer of the SP to the RX buffer shared between the Hypervisor and SPMC.
The Hypervisor should cater for this scenario through an IMPLEMENTATION DEFINED mechanism.

Table 7.2: Encoding of a partition message header

Field Byte length Byte offset Description

Flags 4 – • Bits[31:0]: Reserved (SBZ).

Reserved 4 4 • Reserved (SBZ).

Message payload
offset

4 8 • Offset from the beginning of the buffer to the start
of message payload.

Sender/Receiver IDs 4 12 • Sender and Receiver endpoint IDs.
– Bits[31:16]: Sender endpoint ID.
– Bits[15:0]: Receiver endpoint ID.

Message payload size 4 16 • Length of message payload in bytes in the RX
buffer.

Reserved 4 20 • Reserved (SBZ).

UUID 16 24 • Bytes[0..15] of UUID (see 6.2.3 Partition UUID
usage).

7.2.2.1.2 Transmission of framework messages

The following common rules govern transmission of framework messages.

1. A message is transmitted from a VM to the Hypervisor in the TX buffer of the Sender VM.

2. A message is transmitted from the Hypervisor to a VM in the RX buffer of the Receiver VM.

3. A message is transmitted from a VM to the SPMC in two steps.

1. It is transmitted from the VM to the Hypervisor in the TX buffer of the Sender VM.

2. It is transmitted from the Hypervisor to the SPMC in the TX buffer of the Hypervisor. The Hypervisor
copies it from the Sender VM’s TX buffer to its TX buffer.

4. A message is transmitted from the SPMC to a VM in two steps.
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1. It is transmitted from the SPMC to the Hypervisor in the RX buffer of the Hypervisor.

2. It is transmitted from the Hypervisor to the VM in the RX buffer of the Receiver VM. The Hypervisor
copies it from its RX buffer to the Receiver VM’s RX buffer.

5. A message is transmitted from a SP to the SPMC in the TX buffer of the Sender SP.

6. A message is transmitted from the SPMC to a SP in the RX buffer of the Receiver SP.

7. A message is transmitted from the Hypervisor to the SPMC in the TX buffer of the Hypervisor.

8. A message is transmitted from the SPMC to the Hypervisor in the RX buffer of the Hypervisor.

9. Transmission of framework messages from a SP to the Hypervisor or a NS-endpoint is not supported in this
version of the Framework.

10. The producer of framework messages in the RX buffer of a consumer is responsible for preventing information
from a higher Exception level leaking to a lower Exception level. The producer must ensure it treats all
unused fields as Reserved (MBZ).

Framework messages are transmitted as described above in invocations of the following ABIs.

1. FFA_MEM_DONATE
2. FFA_MEM_LEND
3. FFA_MEM_SHARE
4. FFA_MEM_RETRIEVE_REQ
5. FFA_MEM_RETRIEVE_RESP
6. FFA_MEM_RELINQUISH
7. FFA_RXTX_MAP
8. FFA_PARTITION_INFO_GET

7.2.2.2 Buffer setup
This version of the Framework enables setup of RX/TX buffer pairs between FF-A components as per the following
rules.

1. Allocation of a buffer pair for an endpoint can be done by the endpoint or its partition manager.

In the former case, the endpoint allocates the buffer pair and uses FFA_RXTX_MAP ABI (see 13.6
FFA_RXTX_MAP) to map it in the partition manager’s translation regime. In an invocation of this ABI via
the AArch32 calling convention (See [5]), the buffers allocated in the address space of the endpoint must
have a 32-bit address. This is because the address of the buffer is encoded in a 32-bit register when this
convention is used.

In the latter case,

1. The partition manager manages a stage of address translation in the translation regime of the endpoint as
described in 4.1 SPM architecture.

2. The endpoint requests buffer allocation in its manifest by specifying their base addresses (as IPAs or
VAs) and size as described in 5.2.1 Partition manifest.

3. The partition manager maps the buffer pair in the stage of translation regime it manages on behalf of the
endpoint and its own translation regime.

If the endpoint is a VM, in both cases, the Hypervisor uses the FFA_RXTX_MAP ABI to map the buffer pair
in the SPMC’s translation regime as well.

2. The Hypervisor allocates the buffer pair it shares with the SPM. It uses the FFA_RXTX_MAP ABI to map
this buffer pair in the SPMC’s translation regime.

3. Buffer pairs shared between the SPMC and a SP are not visible to an FF-A component in the Normal world.

4. An endpoint uses the FFA_RXTX_UNMAP ABI (see 13.7 FFA_RXTX_UNMAP) to unmap the buffer pair
from the partition manager’s translation regime.
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If the endpoint is a VM, the Hypervisor uses the FFA_RXTX_UNMAP ABI to unmap the buffer pair from
the SPMC’s translation regime as well.

5. The Hypervisor uses the FFA_RXTX_UNMAP ABI to unmap the buffer pair it shares with the SPMC from
the SPMC’s translation regime.

Figure 7.4 illustrates an example RX/TX buffer setup where the:

• SPM allocates the buffer pair on behalf of the SP.
• Hypervisor registers its buffer pair with the SPM.
• VM allocates and registers its buffer pair with the Hypervisor and SPM.
• VM unregisters its buffer pair with the Hypervisor and SPM.
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Figure 7.4: RX/TX Buffer setup
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7.2.2.3 Buffer attributes
Endpoints and partition managers must ensure that buffer pairs are setup with attributes that follow the rules listed
below.

1. The size of the RX and TX buffers in a pair are the same and a multiple of the larger translation granule size
used by the FF-A components at an FF-A instance.

2. The alignment of the RX and TX buffers in a pair is equal to the larger translation granule size used by the
FF-A components at an FF-A instance (see also 4.6 Memory granularity and alignment).

3. An endpoint discovers the minimum size, maximum size and alignment boundary for the RX/TX buffers by
passing the function ID of the FFA_RXTX_MAP ABI as input in the FFA_FEATURES interface (see 13.3
FFA_FEATURES). The maximum size is an optional field and a value of 0 means that the partition manager
does not enforce a maximum size.

4. All buffer pairs are mapped with the following memory region attributes in all stages of a translation regime
in the system.

• Normal memory.
• Write-Back Cacheable.
• Non-transient Read-Allocate.
• Non-transient Write-Allocate.
• Inner Shareable.
• Memory used for buffer pairs shared between an SP and SPMC must be mapped as Secure memory.
• Memory used for buffer pairs shared between a Normal world FF-A component and the SPMC must be

mapped as Non-secure memory.
• Table 7.3 describes the minimum permission requirements of RX/TX buffer.

Table 7.3: RX/TX buffer minimum permission requirements

Buffer Type Producer Consumer Description

RX RW, XN RO, XN • Producer must have write
access to populate message
payload.

• Consumer must have at
least read access to read
message payload.

TX RW, XN RO, XN • Producer must have
Write-access to populate
message payload.

• Consumer must have at
least read access to copy the
message payload to the
target RX buffer.

• Consumer must also have
Write- access to modify
message payload if
required.

7.2.2.3.1 Coherency requirements

A buffer pair could be accessed with different memory region attributes from the translation regime of the Producer
and Consumer, if address translation is disabled in one of them.
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To avoid memory coherency issues in this scenario, the FF-A component that has address translation disabled must
perform cache maintenance on the buffer in scenarios listed in Table 7.4. The cache maintenance must ensure
that the buffer contents at any intermediate cache levels are not out of sync with the buffer contents at the Point of
coherence (see [6]).

• As a Producer, this must be done before the Consumer reads the buffer (see 7.2.2.4 Buffer synchronization).

• As a Consumer, this must be done before reading the buffer populated by the Producer.

Table 7.4: RX/TX buffer cache maintenance requirements

Config No.
Address translation in
Producer

Address translation in
Consumer Cache maintenance required

1.
Disabled Disabled No

2.
Disabled Enabled Yes

3.
Enabled Disabled Yes

4.
Enabled Enabled No

7.2.2.3.2 Data privacy requirements

The producer of a buffer must ensure that there is no leakage of private information by clearing the unpopulated
contents of the buffer. Within the data structures that populate the buffer, the following must be done:

• The producer at the lower EL must treat all unused fields in the data structure as Reserved (SBZ).

• The producer at the higher EL must treat all unused fields in the structure as Reserved (MBZ).

The rules differ based upon the Exception level of the producer because of the following reasons:

• The consumer at the higher EL does not flag an error if the unused fields are not set to zero. Hence, it is
strongly recommended but not mandatory for the producer to zero the unused fields.

• The consumer at the lower EL is not trusted and the producer must set the unused fields to zero.

7.2.2.4 Buffer synchronization
The RX and TX buffers are written to by a Producer and read by a Consumer as described in Table 7.5. Concurrent
accesses to these buffers from both entities on either side of an FF-A instance must be synchronized to preserve
the integrity of their contents.

Table 7.5: Producers and Consumers of RX/TX buffers

Buffer Type Producers Consumers

VM RX Hypervisor, SPMC VM

VM TX VM Hypervisor, SPMC

OS Kernel RX SPMC OS Kernel

OS Kernel TX OS Kernel SPMC
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Buffer Type Producers Consumers

SP RX SPMC SP

SP TX SP SPMC

Hypervisor RX SPMC Hypervisor

Hypervisor TX Hypervisor SPMC

7.2.2.4.1 Buffer states and ownership

The Framework defines buffer states and ownership rules that must be followed by the Producer and Consumer of
each buffer.

• Each buffer is either in empty or full (has a message in it) states at any given time. This state must be tracked
internally by the Producer and Consumer using an IMPLEMENTATION DEFINED mechanism.

• A buffer is in the empty state immediately after being mapped in both the Producer and Consumer’s translation
regimes.

• The Producer of a buffer owns it when it is empty.

• The Consumer of a buffer owns it when it is full.

• The Producer writes to the buffer when it is empty.

• The Consumer reads from the buffer when it is full.

7.2.2.4.2 Transfer of buffer ownership

After a Producer has written to a buffer, it must transfer its ownership to the Consumer for reading the message.
Equally, the Consumer must transfer ownership back to the Producer after it has read the message. This is done as
per the rules stated below.

1. Ownership transfer for the TX buffer takes place as follows.

1. For a partition message,

1. An invocation of the FFA_MSG_SEND2 ABI transfers the ownership from the Producer to the
Consumer.

2. Completion of an FFA_MSG_SEND2 ABI invocation transfers the ownership from the Consumer
to the Producer.

2. For a framework message,

1. An invocation of an FF-A ABI that uses the TX buffer of the caller transfers the ownership from the
Producer to the Consumer. In this version of the Framework, the following memory management
ABIs use the TX buffer.

• FFA_MEM_DONATE.
• FFA_MEM_LEND.
• FFA_MEM_SHARE.
• FFA_MEM_RETRIEVE_REQ.
• FFA_MEM_RELINQUISH.
• FFA_MEM_FRAG_TX.

2. Completion of an FF-A ABI that uses the TX buffer of the caller transfers the ownership from the
Consumer to the Producer.

2. Ownership transfer for the RX buffer takes place as follows.

1. For a partition message,
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1. Completion of an FFA_NOTIFICATION_GET ABI invocation by the Consumer, that signals the
RX buffer full notification, transfers the ownership from the Producer to the Consumer. Also see
10.8.1 RX buffer full notification.

2. For a framework message,

1. Completion of the FFA_PARTITION_INFO_GET ABI transfers the ownership of the caller’s RX
buffer from the Producer to the Consumer.

2. An invocation of the FFA_MEM_RETRIEVE_RESP ABI uses the RX buffer of the callee and
transfers the ownership from the Producer to the Consumer.

3. For both types of messages, an invocation of the following FF-A ABIs transfers the ownership from the
Consumer to the Producer.

1. FFA_MSG_WAIT.
2. FFA_RX_RELEASE.

7.2.2.4.3 Management of buffer ownership between Hypervisor and SPMC

Both the Hypervisor and SPMC are producers of a VM’s RX buffer. They could both contend for the buffer in
certain scenarios. For example, the Hypervisor transmits a message from VM0 to VM1 and the SPMC transmits a
message from SP0 to VM1 simultaneously.

The Framework defines the FFA_RX_ACQUIRE ABI to solve this contention as described below. Also see 13.4
FFA_RX_ACQUIRE.

1. A VM’s RX buffer is owned by the SPMC after it is mapped into its translation regime (see 7.2.2.2 Buffer
setup).

2. The Hypervisor uses FFA_RX_ACQUIRE ABI to acquire ownership of a VM’s RX buffer from the SPMC,
prior to writing to the buffer.

3. The VM transfers ownership of its RX buffer to the Hypervisor as described in 7.2.2.4.2 Transfer of buffer
ownership.

4. The Hypervisor uses FFA_RX_RELEASE ABI to relinquish ownership of the VM’s RX buffer to the SPMC.

The Hypervisor does not need to acquire and release ownership of a VM’s RX buffer if the SPMC does not
implement the FFA_RX_ACQUIRE ABI. For example, in a scenario where no SP supports Indirect messaging.

Implementation Note

A buffer could be shared among multiple Producers, Consumers, and multiple instances of the same Producer and
Consumer (also see Table 7.5). Both the Producers and the Consumers must use an IMPLEMENTATION DEFINED
synchronization mechanism to protect the buffer from concurrent accesses that are internal to them. A Producer or
Consumer could implement additional states internally to prevent concurrent accesses. Such states are outside the
scope of this version of the Firmware Framework.

For example, multiple instances of the SPM will run concurrently on different PEs. As the Producer for an RX
buffer or as a Consumer for a TX buffer, the SPM could use a spinlock to protect each buffer from accesses made
concurrently by its own instances.
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7.3 Indirect messaging usage

7.3.1 Discovery and setup

An endpoint that can receive partition messages through Indirect messaging must specify this property in its
manifest (see 5.2.1 Partition manifest). The scheduler that runs this endpoint can discover its presence and the
number of execution contexts it implements through the following mechanisms.

1. Via an FF-A partition discovery mechanism. See 6.2 Partition discovery.
2. An IMPLEMENTATION DEFINED mechanism for example, Device tree.

Any endpoint can send a Indirect partition message to another endpoint by using the FFA_MSG_SEND2 ABI. In
version 1.0 of the Framework, only VMs are allowed to send and receive messages through Indirect messaging.
Also see 18.4 Legacy Indirect messaging usage.

7.3.2 Message delivery

The Framework defines the FFA_MSG_SEND2 interface to transmit a partition message from the TX buffer
of a Sender to the RX buffer of a Receiver and inform the scheduler that the Receiver must be run. 15.1
FFA_MSG_SEND2 describes the FFA_MSG_SEND2 ABI. 7.2.2.1.1 Transmission of partition messages describes
how an Indirect message is transmitted from the Sender to the Receiver through this interface.

18.6.2 Example indirect messaging flows illustrates example end to end flows of sending an indirect message
between different combinations of endpoints.

7.3.3 Scheduling the Receiver

The Relayer informs the primary scheduler that the Receiver has a message in its RX buffer and must be scheduled.
The primary scheduler either runs the Receiver itself or informs the secondary scheduler responsible for running
the Receiver.

In this version of the Framework, the Relayer and schedulers use a Framework notification for performing these
actions. See Chapter 10 Notifications & 10.8.1 RX buffer full notification for details.

Once the Receiver starts processing the message after a scheduling decision, the runtime model presented to it by
its partition manager is described in Chapter 8 Partition runtime models.
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7.4 Direct messaging usage

A Sender uses Direct messaging as an equivalent of invoking a procedure or function in the Receiver. The Receiver
executes the function and returns the results through another Direct message.

• For Framework messages, execution of the function in the Hypervisor or SPM runs to completion from the
perspective of the Sender.

• For Partition messages, execution of the function in an endpoint could run to completion or be preempted by
interrupts and subsequently resumed one or more times. In the latter case, the Framework is responsible for
resuming function execution.

The following ABIs are used to implement Direct messaging between a Sender and Receiver endpoint. Also see
8.3 Runtime model for Direct request ABIs.

• FFA_MSG_SEND_DIRECT_REQ & FFA_MSG_SEND_DIRECT_REQ2. These interfaces are used by a
Sender to send a request message payload to a Receiver, allocate CPU cycles to the Receiver and wait for a
response to arrive. Collectively, they are referred to as Direct request ABIs. Also see:

– 15.2 FFA_MSG_SEND_DIRECT_REQ.
– 15.4 FFA_MSG_SEND_DIRECT_REQ2.

• FFA_MSG_SEND_DIRECT_RESP & FFA_MSG_SEND_DIRECT_RESP2. These interfaces are used by a
Receiver to send a response message payload to a Sender, return CPU cycles to the Sender and wait for a new
message to arrive. Collectively, they are referred to as Direct response ABIs. Also see:

– 15.3 FFA_MSG_SEND_DIRECT_RESP.
– 15.5 FFA_MSG_SEND_DIRECT_RESP2.

• FFA_INTERRUPT. This interface is used by the Relayer to inform the Sender that Direct message processing
in the Receiver was preempted (also see 9.3 Physical interrupt actions).

• FFA_RUN. This interface is used by the Sender to resume a preempted Receiver.

7.4.1 Discovery and setup

An endpoint could be capable of sending and/or receiving Direct messages. A Sender of Direct requests must be
able to receive Direct responses. A Receiver of Direct requests must be able to send Direct responses.

The ability to send or receive Direct messages must be specified,

• In the manifest of a physical endpoint or a logical endpoint that is not co-resident with its partition manager
in the same exception level (see Table 5.1 in 5.2.1 Partition manifest).

• In an IMPLEMENTATION DEFINED manner for a logical endpoint that is co-resident with its partition manager
in the same exception level.

If an endpoint is able to send Direct requests, presence of support for each Direct request ABI must be specified in
the manifest so that properties of this partition w.r.t Direct messaging can be populated as specified in Table 6.1 in
an invocation of an FF-A discovery ABI.

In a Direct message exchange, an execution context of the Receiver must be available on the same PE as the Sender
to receive and process the message. To fulfill this requirement, the Receiver must make one of the following
implementation choices.

• The Receiver is implemented as a UP endpoint. This enables the SPMC or Hypervisor to migrate the endpoint
execution context to the PE on which a Direct messaging request is made.

• The Receiver is implemented as a MP endpoint. In this case, the number of execution contexts that the
endpoint implements must be equal to the number of PEs in the system. Each execution context must be
pinned to a PE at system boot. This enables the SPMC or Hypervisor to guarantee availability of an endpoint
execution context for Direct messages on the same PE as the Sender.
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This implementation choice is applicable to,

• A physical endpoint.
• A logical endpoint that is not co-resident with its partition manager in the same exception level.

It must be specified in the manifest of the endpoint (see Table 5.1 in 5.2.1 Partition manifest).

A partition manager or a logical endpoint that is co-resident with its partition manager in the same exception
level can be recipients of Direct messages as well. The Framework assumes that they are implemented as per the
constraints applicable to an MP endpoint i.e.

• It must have as many execution contexts as PEs in the system.
• Each execution context runs only on the PE where it was initialized during boot. Hence, it can be considered

to be pinned to that PE.

A partition manager can discover the properties of an endpoint it manages through the endpoint manifest. It can
discover the properties of endpoints it does not manage via an FF-A discovery mechanism (see 6.2 Partition
discovery). An endpoint could use the same mechanism to determine properties of other endpoints as well.

7.4.2 Message delivery and Receiver execution

The Framework uses the Direct messaging ABIs to transmit,

1. Direct partition messages between a pair of Sender and Receiver endpoints.

2. Direct framework messages between,

1. The SPMD and SPMC.
2. The SPMC and an SP
3. The Hypervisor and an SP

See the following sections for more details.

• 18.2.4 Power Management messages.
• 18.3 VM availability signaling.
• 13.2.3.2 Version discovery between Normal world and SPMC.

The Relayers are responsible for ensuring that,

1. A request or response message has a valid message header.

2. A request or response message is sent only by an endpoint that is allowed to send that messages type.

3. An NS-Endpoint cannot send a response message to an S-Endpoint.

4. An S-Endpoint cannot send a request message to an NS-Endpoint

A request message is delivered by a Direct messaging ABI as follows.

1. The partition manager of the Receiver endpoint delivers the message to an execution context of the Receiver
endpoint if,

1. It supports receipt of Direct request messages.
2. The execution context is in a waiting state.
3. The execution context can be run on the physical PE where the request message was received by the

partition manager.

The message is delivered by the partition manager as described below.

1. A Hypervisor delivers the message to the Receiver VM by invoking the ABI with the ERET conduit at
the Non-secure virtual FF-A instance.

2. An SPMC delivers the message to the Receiver SP as follows,

1. An EL3 SPMC delivers the message by invoking the ABI with the ERET conduit at the,
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1. Secure physical FF-A instance for a logical Receiver SP in S-EL1.
2. Secure virtual FF-A instance for a physical Receiver SP in S-EL0.

2. A S-EL2 or S-EL1 SPMC delivers the message by invoking the ABI with the ERET conduit at the
Secure virtual FF-A instance for a physical Receiver SP in S-EL0 or S-EL1.

3. An SPMC delivers the message to a co-resident logical SP through an IMPLEMENTATION DEFINED
mechanism.

4. The SPMD (in a configuration without the EL3 SPMC) delivers the message to a co-resident EL3
LSP through an IMPLEMENTATION DEFINED mechanism.

2. If the partition managers for the Sender and Receiver endpoints are different, the message is forwarded by
the former to the latter as described below:

1. If the Sender of the message is a VM and the Receiver is an S-Endpoint, the message is forwarded to the
SPMD by invoking the ABI at the Non-secure physical FF-A instance with the SMC conduit.

2. The SPMD forwards a message to the S-EL2 or S-EL1 SPMC if it is targeted to a S-Endpoint managed
by them. This is done by invoking the ABI at the Secure physical FF-A instance with the ERET conduit.

3. The SPMD forwards a message targeted to a S-Endpoint managed by the EL3 SPMC through an
IMPLEMENTATION DEFINED mechanism.

4. If the Sender of the message is an S-Endpoint managed by the S-EL2 or S-EL1 SPMC and the receiver is
an EL3 LSP, the SPMC forwards the message to the SPMD by invoking the ABI at the Secure physical
FF-A instance with the SMC conduit.

The Receiver of the original request message is the Sender of the response message. The Sender of the original
request message is the Receiver of the response message. The response message is delivered via a direct messaging
ABI as follows.

1. The partition manager of the Receiver endpoint delivers the message to an execution context of the Receiver
endpoint if,

1. The execution context is the one that sent the request message.
2. The execution context is in a blocked state.
3. The execution context can be run on the physical PE where the response message was received by the

partition manager.

The responsibilities of each partition manager are listed below:

1. A Hypervisor delivers the message to the Receiver VM by invoking the ABI with the ERET conduit at
the Non-secure virtual FF-A instance.

2. The SPM delivers the message to the Receiver SP as follows,

1. An EL3 SPMC delivers the message by invoking the ABI with the ERET conduit at the,

1. Secure physical FF-A instance for a logical Receiver SP in S-EL1.
2. Secure virtual FF-A instance for a physical Receiver SP in S-EL0.

2. A S-EL2 or S-EL1 SPMC delivers the message by invoking the ABI with the ERET conduit at the
Secure virtual FF-A instance for a physical Receiver SP.

3. The SPMC delivers the message to a co-resident LSP through an IMPLEMENTATION DEFINED
mechanism.

4. The SPMD (in a configuration without the EL3 SPMC) delivers the message to a co-resident EL3
LSP through an IMPLEMENTATION DEFINED mechanism.

2. If the partition managers for the Sender and Receiver endpoints are different, the message is forwarded by
the former to the latter as described below:
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1. If the Sender of the message is an S-Endpoint managed by the S-EL2 or S-EL1 SPMC and the Receiver
is an NS-Endpoint or an EL3 LSP, the SPMC forwards the message to the SPMD by invoking the ABI
at the Secure physical FF-A instance with the SMC conduit.

2. If the Sender of the message is an S-Endpoint managed by the EL3 SPMC and the Receiver is
an NS-Endpoint, the message is forwarded to the SPMD through an IMPLEMENTATION DEFINED
mechanism.

3. The SPMD forwards a message to an NS-Endpoint by invoking the ABI at the Secure physical FF-A
instance with the ERET conduit.

Figure 7.5 illustrates an example flow in which a VM sends a Direct message to an SP through the
FFA_MSG_SEND_DIRECT_REQ interface. The SP processes the messages and returns the results using the
FFA_MSG_SEND_DIRECT_RESP interface.

Hypcalls are used to exchange Direct framework messages between an endpoint and a partition manager.

Figure 7.5: Example Direct message exchange between a VM and SP

Figure 7.6 illustrates an example flow in which an EL3 LSP sends a Direct request message to an SP managed
by the S-EL2 or S-EL1 SPMC through the FFA_MSG_SEND_DIRECT_REQ interface. The SP processes the
messages and returns the results using the FFA_MSG_SEND_DIRECT_RESP interface.
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EL3 LSP

EL3 LSP

SPMD

SPMD

SPMC

SPMC

SP

SP

1 SMC from NS-Endpoint or G0 interrupt

2 ffa_send_receive(src: EL3 LSP ID, dst: SP ID, Message)

3 Validate message header e.g. check src & dst IDs

4 ERET(FFA_MSG_SEND_DIRECT_REQ, LSP ID, SP ID, Message)

Incoming message from EL3 LSP

Enter SPMC Scheduled Mode

5 ERET(FFA_MSG_SEND_DIRECT_REQ, LSP ID, SP ID, Message)

Process message

6 SMC(FFA_MSG_SEND_DIRECT_RESP, SP ID, LSP ID, Message)

Exit SPMC Scheduled Mode

7 SMC(FFA_MSG_SEND_DIRECT_RESP, SP ID, LSP ID, Message)

8 ret(src: SP ID, dst: EL3 LSP ID, Message)

9

Figure 7.6: Example EL3 LSP Messaging Sequence
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7.5 Compliance requirements

This section describes the compliance requirements that must be met by an FF-A message passing implementation.
These requirements specify ABIs and conduits that must be implemented at a relevant FF-A instance to correctly
support a message passing mechanism.

7.5.1 Compliance requirements for Direct messaging

Compliance requirements for Direct messaging depend upon the location of the message Sender and Receiver
relative to each other. These are described below.

1. Sender and Receiver are at adjacent exception levels.

1. Sender is at the higher exception level.

1. Sender implements the FFA_MSG_SEND_DIRECT_REQ and/or FFA_MSG_SEND_DIRECT_REQ2
ABI with the ERET conduit to send a request message to the Receiver.

2. Receiver implements the FFA_MSG_SEND_DIRECT_RESP and/or FFA_MSG_SEND_DIRECT_RESP2
ABI with the SMC, HVC or SVC conduit to send a response message to the Sender. The choice of
conduit depends upon the FF-A instance where the message exchange takes place. Also see 4.4
Conduits.

2. Sender is at the lower exception level.

1. Sender implements the FFA_MSG_SEND_DIRECT_REQ and/or FFA_MSG_SEND_DIRECT_REQ2
ABI with the SMC, HVC or SVC conduit to send a request message to the Receiver. The choice of
conduit depends upon the FF-A instance where the message exchange takes place. Also see 4.4
Conduits.

2. Receiver implements the FFA_MSG_SEND_DIRECT_RESP and/or FFA_MSG_SEND_DIRECT_RESP2
ABI with the ERET conduit to send a response message to the Sender.

2. Sender and Receiver are not at adjacent exception levels.

1. Sender implements the FFA_MSG_SEND_DIRECT_REQ and/or FFA_MSG_SEND_DIRECT_REQ2
ABI with the SMC, HVC or SVC conduit to send a request message to the Receiver. The choice
of conduit depends upon the FF-A instance where the message exchange takes place. Also see 4.4
Conduits.

2. Sender implements the FFA_MSG_SEND_DIRECT_RESP and/or FFA_MSG_SEND_DIRECT_RESP2
ABI with the ERET conduit to receive a response message from the Receiver.

3. Receiver implements the FFA_MSG_SEND_DIRECT_REQ and/or FFA_MSG_SEND_DIRECT_REQ2
ABI with the ERET conduit to receive a request message from the Sender.

4. Receiver implements the FFA_MSG_SEND_DIRECT_RESP and/or FFA_MSG_SEND_DIRECT_RESP2
ABI with the SMC, HVC, or SVC conduit to send a response message to the Sender. The choice
of conduit depends upon the FF-A instance where the message exchange takes place. Also see 4.4
Conduits.

5. Relayer (Hypervisor) at the Non-secure physical instance implements the FFA_MSG_SEND_DIRECT_REQ
and/or FFA_MSG_SEND_DIRECT_REQ2 ABI with the SMC conduit to forward a request message
from a VM to an SP.

6. Relayer (Hypervisor) at the Non-secure physical instance implements the FFA_MSG_SEND_DIRECT_RESP
and/or FFA_MSG_SEND_DIRECT_RESP2 ABI with the ERET conduit to forward a response message
from an SP to a VM.

7. Relayer (S-EL2 or S-EL1 SPMC) at the Secure physical instance implements the
FFA_MSG_SEND_DIRECT_REQ and/or FFA_MSG_SEND_DIRECT_REQ2 ABI with the ERET
conduit to forward a request message from a VM to an SP.
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8. Relayer (S-EL2 or S-EL1 SPMC) at the Secure physical instance implements the
FFA_MSG_SEND_DIRECT_RESP and/or FFA_MSG_SEND_DIRECT_RESP2 ABI with the SMC
conduit to forward a response message from an SP to a VM.

7.5.2 Compliance requirements for Indirect messaging

Compliance requirements for Indirect messaging depend upon the role of a participating FF-A component in
message transmission. These are described below.

1. Sender endpoint implements the FFA_MSG_SEND2 ABI with the SMC, HVC or SVC conduit to send a
message populated in its TX buffer to the Receiver. The choice of conduit depends upon the FF-A instance
where the ABI is invoked. Also see 4.4 Conduits.

2. The Scheduler implements the following FF-A ABIs and features to schedule a Receiver endpoint to process
a message in its RX buffer.

1. Support for the Schedule receiver interrupt (see 10.5 Notification signaling) and the
FFA_NOTIFICATION_INFO_GET ABI with the SMC conduit at the Non-secure physical FF-A instance
and the SMC or HVC conduits at the Non-secure virtual FF-A instance. Also see 10.7 Compliance
requirements.

2. If the Receiver endpoint is scheduled with the partition runtime model for FFA_MSG_SEND_DIRECT_REQ,
support for Direct messaging is implemented as a Sender when the Receiver is not at the adjacent
exception level as specified in 7.5.1 Compliance requirements for Direct messaging.

3. If the Receiver endpoint is scheduled with the partition runtime model for FFA_RUN, support for this
runtime model is implemented as specified below,

1. FFA_RUN ABI with the SMC conduit at the Non-secure physical or the SMC or HVC conduit at
Non-secure virtual FF-A instance.

2. FFA_MSG_WAIT ABI with the ERET conduit at the Non-secure physical or virtual FF-A instance.

3. FFA_MSG_YIELD ABI with the ERET conduit at the Non-secure physical or virtual FF-A instance.

3. Receiver endpoint implements support for,

1. The RX buffer full notification (see 10.8.1 RX buffer full notification). Also see 10.7 Compliance
requirements.

2. The FFA_MSG_WAIT ABI with the SMC, HVC or SVC conduit, if it is scheduled with the partition
runtime model for FFA_RUN (see 8.2 Runtime model for FFA_RUN). The choice of conduit depends
upon the FF-A instance where the ABI is invoked. Also see 4.4 Conduits.

3. Direct messaging as a Receiver when the Sender is not at the adjacent exception level as specified in
7.5.1 Compliance requirements for Direct messaging. This is applicable if it is scheduled with the
partition runtime model for FFA_MSG_SEND_DIRECT_REQ (see 8.3 Runtime model for Direct
request ABIs).

4. Relayers implement support for the FFA_RX_ACQUIRE ABI (see 13.4 FFA_RX_ACQUIRE) if both a VM
and an SP send Indirect messages to another VM. This is described below.

1. The Hypervisor implements this ABI with the SMC conduit at the Non-secure physical instance.

2. A S-EL2 or S-EL1 SPMC implements this ABI with the ERET conduit at the Secure physical instance.
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8.1 Overview

The runtime model of an endpoint describes the transitions its execution contexts are permitted to make between
states post CPU cycle allocation.

• The states are described in 4.10 Run-time states.
• The state transitions are described in 4.11 Run-time state transitions.

The Framework specifies the following mechanisms to allocate CPU cycles to an endpoint execution context.

1. The FFA_RUN interface is used to allocate CPU cycles to an execution context of an endpoint for message
processing. The runtime model for this execution context is described in 8.2 Runtime model for FFA_RUN.

2. The Direct request interfaces are used to allocate CPU cycles to an execution context of an endpoint for
message processing. The runtime model for this execution context is described in 8.3 Runtime model for
Direct request ABIs.

3. A Secure interrupt targeted to a SP preempts the Normal world. The SPMC runs an SP execution context in
the waiting state for handling the Secure interrupt. The runtime model for this execution context is described
in 8.4 Runtime model for Secure interrupt handling. Also see 9.2.1 Secure interrupt signaling mechanisms.

4. The SPMC runs an SP execution context to initialize the SP during boot. The runtime model for this execution
context is described in 8.5 Runtime model for SP initialization.

The following common rules and guidelines govern the use of runtime models in the Framework.

1. An endpoint execution context in the running state could use Direct request ABIs to call into another endpoint
execution context. This sequence could be repeated for any number of times. All endpoint execution contexts
in the sequence become a part of a call chain. Also see 9.2.3 CPU cycle allocation modes.
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The Framework specifies rules in the applicable runtime models to prevent loops forming in a call chain
i.e. an endpoint execution context allocates cycles to another endpoint execution context which is already a
part of the call chain.

2. The partition manager of an endpoint applies a runtime model,

1. From when the endpoint execution context transitions from the waiting to the running state.
2. To when the endpoint execution context next transitions from the running to the waiting state.

The endpoint execution context could enter the blocked and preempted states multiple times before entering
the waiting state to return control back to its partition manager.

3. An endpoint execution context can invoke hypcalls in all runtime models.

4. The partition manager returns DENIED as the error code, if an invalid transition is attempted by an endpoint
execution context.

5. The partition manager returns DENIED as the error code, if a valid transition is attempted by an endpoint
execution context that will result in a loop in the call chain.
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8.2 Runtime model for FFA_RUN

Figure 8.1 illustrates the state machine specified by the runtime model presented to an endpoint execution context
that is allocated CPU cycles through the FFA_RUN interface. Rules that govern this runtime model are listed
below.

1. It can use the Direct request ABIs to send a message and allocate CPU cycles to any endpoint execution
context apart from those in a call chain that leads to the currently running endpoint execution context. The
execution context enters the blocked state.

2. It can use the smc(FFA_RUN) transition to allocate CPU cycles to an endpoint execution context that is not
in a call chain that leads to the currently running endpoint execution context. The execution context enters
the blocked state. Also see 9.2.3 CPU cycle allocation modes.

3. It cannot use the Direct response ABIs to send a message, relinquish control back to any endpoint and enter
the waiting state.

4. It uses the smc(FFA_MSG_WAIT) transition to relinquish control back to the endpoint execution context
that allocated CPU cycles to it and enter the waiting state. For example, to signal completion of message
processing.

5. It uses the smc(FFA_YIELD) transition to relinquish control back to the endpoint execution context that
allocated CPU cycles to it and enter the blocked state. For example, to wait until an internal lock is available.

Blocked

Running

eret(Direct Response ABI)
eret(FFA_RUN)

eret(FFA_INTERRUPT)

eret(FFA_MSG_WAIT)
eret(FFA_YIELD) eret(Hypcall response)

Waiting

eret(FFA_RUN)

smc(Direct request ABI)
smc(FFA_RUN)

smc(FFA_YIELD)
smc(Hypcall request)

smc(FFA_MSG_WAIT)

Preempted

Interrupt eret()

Figure 8.1: State machine for runtime model with FFA_RUN
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8.3 Runtime model for Direct request ABIs

Figure 8.2 illustrates the state machine specified by the runtime model presented to an endpoint execution context
that is allocated CPU cycles through the Direct request interfaces. Rules that govern this runtime model are listed
below.1

1. It can use the Direct request interfaces to send a message and allocate CPU cycles to any endpoint execution
context apart from those in a call chain that leads to the currently running endpoint execution context. The
execution context enters the blocked state.

2. It can use the smc(FFA_RUN) transition to allocate CPU cycles to an endpoint execution context that is not
in a call chain that leads to the currently running endpoint execution context. The execution context enters
the blocked state. Also see 9.2.3 CPU cycle allocation modes.

3. It can use the smc(FFA_YIELD) transition to relinquish control back to the component that allocated CPU
cycles to it and enter the blocked state. For example, to wait until an internal lock is available.

4. It uses the Direct response interfaces to return a response and relinquish control to the component that
allocated CPU cycles to it and enter the waiting state. For example, to signal completion of message
processing.

It cannot use the Direct response interfaces transition to relinquish control back to any other component apart
from the one that allocated CPU cycles to it and enter the waiting state.

5. It cannot use the smc(FFA_MSG_WAIT) transition to relinquish control back to any component and enter
the waiting state.

Blocked

Running

eret(Direct response ABI)
eret(FFA_INTERRUPT)

eret(FFA_RUN)
eret(FFA_SUCCESS)

eret(FFA_MSG_WAIT)
eret(FFA_YIELD) eret(Hypcall response)

Waiting

eret(Direct request ABI)

smc(Direct request ABI)
smc(FFA_RUN)

smc(FFA_YIELD)
smc(Hypcall request)

smc(Direct response ABI)

Preempted

Interrupt eret()

Figure 8.2: State machine for runtime model with Direct request ABIs

1Additional restrictions apply for power management framework messages. For more information see 18.2.4 Power Management messages.
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8.4 Runtime model for Secure interrupt handling

Figure 8.3 illustrates the state machine specified by the runtime model presented to an endpoint execution context
that is allocated CPU cycles by its partition manager to handle a Secure interrupt. Rules that govern this runtime
model are listed below.

1. This runtime model is only applicable to interrupts that are signaled to an SP execution in the waiting state.
This is described in 9.2.1 Secure interrupt signaling mechanisms.

2. It uses the smc(FFA_MSG_WAIT) transition to relinquish control back to its partition manager and enter the
waiting state after handling the interrupt.

3. It can use the smc(FFA_YIELD) transition to relinquish control back to its partition manager and enter the
blocked state.

4. It can use the Direct request ABIs to send a message and allocate CPU cycles to any SP. The execution
context enters the blocked state.

5. It cannot use the Direct response ABIs to send a message, relinquish control to any endpoint and enter the
waiting state as it was scheduled by its partition manager.

6. It can use the smc(FFA_RUN) transition to resume a request that was made earlier through a Direct request
ABI. The target of the smc(FFA_RUN) transition is in a preempted state. The calling execution context enters
the blocked state.

If a Secure interrupt is handled by an SP execution context in the running, blocked or preempted states, the existing
runtime model of the execution context is preserved. For example,

• The SPMC could signal a Secure interrupt to a S-EL1 SP in the running state under the runtime model for
Direct request ABIs. The runtime model of the SP does not change during interrupt handling.

• The SPMC could signal a Secure interrupt to a S-EL1 SP in the running state under the runtime model for
Secure interrupt handling. This implies that another Secure interrupt is signaled to the SP while it is already
handling another Secure interrupts. The runtime model of the SP does not change during interrupt handling.

Also see Chapter 9 Interrupt management.

Blocked

Running

eret(Direct response ABI)
eret(FFA_INTERRUPT)

eret(FFA_RUN)
eret(Hypcall response)

Waiting

eret(FFA_INTERRUPT)

smc(Direct request ABI)
smc(FFA_RUN)

smc(FFA_YIELD)
smc(Hypcall request)

smc(FFA_MSG_WAIT)

Preempted

Interrupt eret()

Figure 8.3: State machine for runtime model with Secure interrupt handling
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8.5 Runtime model for SP initialization

Figure 8.4 illustrates the state machine specified by the runtime model presented to a SP execution context that is
allocated CPU cycles by the SPMC to initialize its state. Rules that govern this runtime model are listed below.

1. It can use the Direct request ABIs to send a message and allocate CPU cycles to any SP execution context
that has already been initialized. The execution context enters the blocked state.

2. It uses the smc(FFA_MSG_WAIT) transition to signal successful initialization to the SPMC and enter the
waiting state.

3. It uses the smc(FFA_ERROR) transition to signal failed initialization to the SPMC and enter the waiting
state.

4. It cannot use the smc(FFA_YIELD) transition to relinquish control back to any endpoint and enter the blocked
state as it was scheduled by the SPMC.

5. It cannot use the Direct response ABIs to send a message, relinquish control to any endpoint and enter the
waiting state as it was scheduled by the SPMC.

6. It cannot use the smc(FFA_RUN) transition to allocate CPU cycles to an execution context of another
endpoint and enter the blocked state.

Blocked

Running

eret(Direct response ABI)
eret(FFA_INTERRUPT) eret(Hypcall response)

Waiting

eret()

smc(Direct request ABI) smc(Hypcall request)

smc(FFA_MSG_WAIT)smc(FFA_ERROR)

Preempted

Interrupt eret()

Figure 8.4: State machine for runtime model for initializing an SP execution context
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Chapter 9
Interrupt management

9.1 Overview

A physical interrupt can trigger on a PE where an endpoint execution context is in the running state. It could be
targeted to this execution context or another FF-A component in the system. Alternatively, a physical interrupt
targeted to an endpoint execution context could trigger when the context is in the waiting, blocked or preempted
states.

The scope of the guidance provided in this chapter applies to management of physical interrupts in relation to FF-A
components in the Secure world as described below.

• Management of a Non-secure physical interrupt that triggers in the Secure world by the SPMC.
• Management of a Secure physical interrupt that triggers in the Normal world by the SPMC.
• Management of a Secure physical interrupt that triggers in the Secure world by the SPMC.
• Management of a Secure virtual interrupt targeted to a physical SP in the Secure world by the SPMC.
• Management of CPU cycles allocated by an NS-Endpoint or the SPMC.

Management of interrupts in the Normal world is IMPLEMENTATION DEFINED. The guidance in this chapter
makes the following assumptions about the system configuration.

1. The SPMC has exclusive access to the physical GIC. This guidance could be extended to a configuration
where the SPMC shares access to the physical GIC with a trusted S-EL1 SP in an IMPLEMENTATION
DEFINED manner. This is beyond the scope of this specification.

2. A S-EL1 SP only has access to the virtual GIC. The SPMC signals interrupts through the virtual IRQ and FIQ
lines and the ERET conduit. The model of the GIC presented by the SPMC to the SP is IMPLEMENTATION
DEFINED. For example, it could export a para-virtualized or emulated GIC to an SP.

3. The SPMC signals virtual interrupts to a S-EL0 SP through the ERET conduit. This is because the Arm
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A-profile architecture does not support signaling of interrupts to the S-EL0 exception level through the virtual
IRQ and FIQ lines.

4. The GIC implements support for Secure EL2 introduced in version 3.1 of the Arm GIC architecture. This
assumption is applicable to S-EL1 SPs managed by the SPMC in S-EL2.

5. The GIC implements version 2.0 or later of the Arm GIC architecture. This assumption is applicable to
S-EL0 SPs managed by a SPMC in EL3 or S-EL1.

6. Secure interrupts are configured as G1S or G0 interrupts if the GIC architecture version is 3.0 or later.

7. Non-secure interrupts are configured as G1NS interrupts if the GIC architecture version is 3.0 or later.

8. Secure interrupts are configured as G0 interrupts if the GIC architecture version is 2.0.

9. Non-secure interrupts are configured as G1 interrupts if the GIC architecture version is 2.0

10. SCTLR_EL1.UMA=0 during execution in a S-EL0 SP. It is not allowed to mask physical or virtual FIQs in
the PSTATE register.

11. Secure interrupts are routed to EL3 when execution is in the Non-secure state by programming
SCR_EL3.FIQ=1.

12. All interrupts are routed to the SPMC when execution is in the Secure state. For example, with a S-EL2
SPMC, this is done by programming,

• SCR_EL3.FIQ=0 and SCR_EL3.IRQ=0.
• HCR_EL2.IMO=1 and HCR_EL2.FMO=1.

On some implementations it is possible that some G0 interrupts must be handled by EL3 firmware even though
they are routed to the SPMC. The Framework defines the FFA_EL3_INTR_HANDLE ABI to enable the
SPMC to delegate handling of such an interrupt to EL3 firmware. Also see 17.1 FFA_EL3_INTR_HANDLE.

The guidance in this chapter based upon the above assumptions is aimed at fulfilling the following (non-exhaustive)
list of requirements w.r.t interrupt management in the Secure world.

1. In the absence of GIC virtualization in the Secure world, Secure physical interrupts are delivered directly to a
logical S-EL1 SP. In the absence of physical address space isolation, the physical GIC is accessible from the
S-EL1 exception level. It can be configured by the logical S-EL1 SP. The SP relies on EL3 firmware to ensure
that physical interrupt routing controls are programmed as described above. Together, these mechanisms
guarantee that Secure physical interrupts are delivered to the SP.

The SP does not depend on a primary or secondary scheduler in the Normal world to receive its interrupts
and perform top-half interrupt handling. This is guaranteed by a combination of hardware and software
configuration. The SP could still depend upon a primary or secondary scheduler in the Normal world for
CPU cycles to perform bottom-half interrupt handling. This is an IMPLEMENTATION DEFINED aspect of the
SP.

In the presence of GIC virtualization in the Secure world, the physical GIC is shared among multiple physical
S-EL1 SPs. Each S-EL1 SP sees a virtual GIC and handles virtual interrupts. As mentioned above, how
the SPMC exposes a virtual GIC to each SP is IMPLEMENTATION DEFINED and beyond the scope of this
specification. The guidance in this chapter enables the SPMC to preserve the interrupt delivery guarantee to
S-EL1 SPs as described above.

As per the interrupt routing controls described above, a Secure physical interrupt is delivered to the SPMC in
S-EL2. The SPMC is responsible for signaling the corresponding Secure virtual interrupt to the target SP
execution context. The SPMC ensures that this is done without a dependence on the primary or secondary
scheduler in the Normal world for CPU cycles unless this is explicitly requested by the SP. This is discussed
in 9.3.2 Actions for a Secure interrupt.

2. In the absence of GIC virtualization in the Secure world, Non-secure physical interrupts that trigger in the
Secure world result in a world-switch to the Normal world. This enables a co-operative scheduling model
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between the two worlds where the Secure world software strives to minimize delivery latency of Non-secure
physical interrupts while maintaining its security and availability guarantees.

A commonly deployed mechanism to enable this model is where Non-secure physical interrupts are delivered
directly to a logical S-EL1 SP. The SP manages its internal state and requests EL3 firmware to perform the
world switch. The SP does not alter the state of the Non-secure interrupt in the GIC so that it can be handled
as usual in the Normal world.

A less commonly deployed mechanism is to configure interrupt routing controls in the Secure world such that
Non-secure physical interrupts are routed to EL3. A logical S-EL1 SP is interrupted when such an interrupt
triggers. EL3 firmware arranges the world-switch after saving the SP’s state. The SP is resumed when the
Normal world runs it subsequently.

In the presence of GIC virtualization in the Secure world, a Non-secure physical interrupt is delivered to the
SPMC in S-EL2. This is closer to the less commonly deployed mechanism described above. There is no
equivalent for the more commonly deployed mechanism. The guidance in this chapter enables the SPMC to
provide the equivalent of both mechanisms. This is discussed in 9.3.1 Actions for a Non-secure interrupt.

3. S-EL0 SPs are assigned devices which is akin to user space drivers in an OS. The device interrupts are
handled by the driver in the S-EL0 SPs. The interrupts are configured as Secure physical interrupts in the
physical GIC. The IRQ and FIQ lines cannot be used to signal interrupts to the S-EL0 exception level. The
guidance in this chapter enables the SPMC to manage interrupts targeted to a S-EL0 SP.

9.2 Concepts

9.2.1 Secure interrupt signaling mechanisms

A virtual interrupt is signaled to a target SP execution context by the SPMC. Signaling means that the SPMC,

1. Uses a mechanism to indicate to the SP execution context that it has a pending virtual interrupt.

2. Runs the SP execution context so that it can handle the virtual interrupt.

The mechanism used by the SPMC to signal a virtual interrupt to the target execution context depends upon
the type of SP and the run-time state from which the execution context will transition to the running state. The
mechanisms used by the SPMC to signal an interrupt are,

1. The FFA_INTERRUPT interface with the ERET conduit. This mechanism is used for signaling to both
S-EL1 and S-EL0 SPs.

2. The vIRQ signal. This mechanism is only used for signaling to S-EL1 SPs.

The SPMC queues the interrupt if it cannot be signaled. Queuing is an IMPLEMENTATION DEFINED mechanism
used by the SPMC to maintain internal state that indicates that a virtual interrupt must be signaled to the target SP
execution context subsequently.

For each runtime state that the target execution context of a S-EL0 or S-EL1 SP can be in, Table 9.1 and Table 9.2
respectively describe whether the SPMC can signal or must queue the Secure virtual interrupt. If it is possible
to signal the interrupt, it describes the mechanism used by the SPMC to do so. If it is not possible to signal the
interrupt, it describes the next runtime state when the interrupt can be signaled to the target execution context.

It is possible that a Secure virtual interrupt is queued even if the target execution context of an SP is in a runtime
state where an interrupt can be signaled to it. The decision to signal or queue the interrupt is taken by the SPMC.
This scenario is described in the following sections.

• 9.3.2.2 Secure interrupt triggers in Secure state.
• 9.3.2.2.1 Signaling an Other S-Int in blocked state.

When execution in Normal world is preempted by a Secure physical interrupt, the SPMD uses the
FFA_INTERRUPT ABI with the ERET conduit to signal the interrupt to the SPMC in S-EL2 or S-EL1.
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Table 9.1: Secure interrupt signaling and queuing for a S-EL0 SP

No. SP state Conduit
Interface and
parameters Description

1.
Waiting ERET FFA_INTERRUPT,

Interrupt ID
• The SPMC can signal an interrupt to

the target execution context.
• SPMC resumes execution of the SP

through the ERET instruction.

2.
Blocked NA NA • The SPMC cannot signal an interrupt

to the target execution context.
• The SPMC queues the interrupt and

signals it when the SP execution
context next enters the waiting state.

3.
Preempted NA NA • The SPMC cannot signal an interrupt

to the target execution context.
• The SPMC queues the interrupt and

signals it when the SP execution
context next enters the waiting state.

4.
Running NA NA • The SPMC cannot signal an interrupt

to the target execution context.
• The SPMC queues the interrupt and

signals it when the SP execution
context next enters the waiting state.

Table 9.2: Secure interrupt signaling and queuing for a S-EL1 SP

No. SP state Conduit
Interface and
parameters Description

1.
Waiting ERET,

vIRQ
FFA_INTERRUPT,
Interrupt ID

• The SPMC can signal an interrupt to
the target execution context.

• SPMC also pends the vIRQ signal to
allow the S-EL1 SP to handle the
interrupt in a separate handler
context.

• SPMC resumes execution of the SP
through the ERET instruction.
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No. SP state Conduit
Interface and
parameters Description

2.
Blocked ERET,

vIRQ
FFA_INTERRUPT • The SPMC can signal an interrupt to

the target execution context. The ID
of the interrupt is not specified.

• SPMC also pends the vIRQ signal to
allow the S-EL1 SP to handle the
interrupt in a separate handler
context.

• SPMC resumes execution of the SP
through the ERET instruction.

3.
Preempted vIRQ NA • The SPMC can signal an interrupt to

the target execution context. The ID
of the interrupt is not specified. The
FFA_INTERRUPT interface is not
used.

• SPMC pends the vIRQ signal to
allow the S-EL1 SP to handle the
interrupt in a separate handler
context.

• SPMC resumes execution of the SP
through the ERET instruction.

4.
Running ERET,

vIRQ
NA • The SPMC cannot signal an interrupt

to the target execution context.
• The SPMC queues the interrupt and

signals it when the SP execution
context next enters the waiting,
preempted or blocked states as
described above.

9.2.2 Physical interrupt types

From the perspective of an SP execution context, a physical interrupt is of one of the types listed in Table 9.3.

Table 9.3: Physical interrupt types

Acronym Interrupt description

NS-Int • A Non-secure physical interrupt. It requires a switch to the Normal world to be
handled.
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Acronym Interrupt description

Other S-Int • A Secure physical interrupt targeted to,
– An execution context of another SP on the PE where the Secure physical

interrupt is taken.
– An execution context of the same SP that is different from the execution

context currently running on the PE where the Secure physical interrupt
is taken.

* For example, the physical interrupt and the corresponding virtual
interrupt are SPIs. The virtual SPI is targeted to a different
execution context of the same SP.

Self S-Int • A Secure physical interrupt targeted to the SP execution context that is
currently running.

9.2.3 CPU cycle allocation modes

CPU cycles are allocated to an SP execution context on a PE by either the Normal world or the SPMC so that it
enters the running state.

1. An SP execution context runs in the SPMC scheduled mode if cycles are allocated by the SPMC.

2. An SP execution context runs in the Normal world scheduled mode if cycles are allocated by the Normal
world.

3. An SP execution context in the waiting state enters the running state in the SPMC scheduled mode if any one
of the following conditions is true:

1. The SPMC signals a virtual Secure interrupt to it. The SP execution context enters the runtime model
for Secure interrupt handling. Also see 9.2.1 Secure interrupt signaling mechanisms.

2. Another SP execution context in the SPMC scheduled mode allocates cycles to it through an invocation
of a Direct request ABI. The SP execution context enters the runtime model for this ABI (see 8.3
Runtime model for Direct request ABIs).

3. The SP execution context belongs to an EL3 LSP.

4. An SP execution context enters the Normal world scheduled mode when it is in the waiting state and it enters
the running state when any one of the following conditions is true:

1. A direct request ABI is used by any one of the following FF-A components to allocate CPU cycles:

1. An NS-Endpoint execution context.
2. An SP execution context that is in the Normal world scheduled mode.

2. The FFA_RUN ABI is used by an NS-Endpoint to allocate CPU cycles.

The SP execution context enters the runtime model corresponding to these ABIs. Also see:

• 8.3 Runtime model for Direct request ABIs.
• 8.2 Runtime model for FFA_RUN.

The SPMC must return the DENIED error code in the case of an invalid state transition of an SP.

5. An SP execution context exits its CPU cycle allocation mode when it next enters the waiting state as described
below.

1. It was running in the runtime model for Direct request ABIs and invokes a Direct Response ABI.

2. It was running in the runtime model for FFA_RUN and invokes the FFA_MSG_WAIT ABI.
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3. It was running in the runtime model for Secure interrupt handling and invokes the FFA_MSG_WAIT
ABI.

9.2.4 SP call chains

An SP execution context in the running state in either CPU cycle allocation mode could run another SP execution
context by invoking a Direct request ABI. This process could repeat any number of times. All SPs in this sequence
of invocations are a part of a call chain (also see Chapter 8 Partition runtime models). The Framework defines
two types of call chains.

1. Call chains in which all SP execution contexts run in the SPMC scheduled mode.

2. Call chains in which all SP execution contexts run in the Normal world scheduled mode.

Figure 9.1 illustrates an example of the two call chain types.

1. An NS-Endpoint issues a Direct request to SP0 to start the Normal world scheduled call chain in the Secure
state. The NS-Endpoint enters the blocked state. SP0 enters the running state.

2. SP0 extends the call chain by issuing a Direct request to SP1. SP0 enters the blocked state. SP1 enters the
running state.

3. SP1 gets preempted by a Secure physical interrupt. SP1 enters the preempted state.

4. The SPMC signals the corresponding Secure virtual interrupt to the target execution context of SP2. This
starts the first call chain that runs in the SPMC scheduled mode. SP2 enters the running state.

5. SP2 extends the call chain by issuing a Direct request to SP3. SP2 enters the blocked state. SP3 enters the
running state.

6. SP3 gets preempted by a Secure physical interrupt. SP3 enters the preempted state.

7. The SPMC signals the corresponding Secure virtual interrupt to the target execution context of SP4. This
starts the second call chain that runs in the SPMC scheduled mode. SP4 enters the running state.

8. SP4 extends the call chain by issuing a Direct request to SP5. SP4 enters the blocked state. SP5 enters the
running state.
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Non-secure state

Secure state

SPMC scheduled call chain 2

SPMC scheduled call chain 1

Normal world scheduled call chain

NS Endpoint

Blocked

SP5

Running

SP4

Blocked

SP3

Preempted

SP2

Blocked

SP0

Blocked

SP1

Preempted

SMC(FFA_MSG_SEND_DIRECT_REQ) SMC(FFA_MSG_SEND_DIRECT_REQ)

Secure physical interrupt

SMC(FFA_MSG_SEND_DIRECT_REQ)

Secure physical interrupt

SMC(FFA_MSG_SEND_DIRECT_REQ)

Figure 9.1: Example call chains

The following rules and guidelines govern the behavior of call chains on any PE in the Secure state.

1. A call chain cannot span PEs i.e. it can exist only on a single PE.

2. A call chain starts winding when the first SP execution context enters the corresponding CPU cycle allocation
mode on a given PE.

3. A call chain that runs in the SPMC scheduled mode cannot be preempted by an NS-Int. This implies that an
NS-Int is always queued when a SP runs in this mode (also see 9.3.1 Actions for a Non-secure interrupt).

4. A call chain in either mode starts unwinding on a given PE when the last SP execution context in the call
chain relinquishes control to its caller by invoking a Direct response ABI.

Additionally, a call chain in the Normal world scheduled mode starts unwinding on a given PE when the
SPMC prepares to relinquish control to the Normal world in response to an NS-Int. Each SP execution
context in the call chain either enters the waiting or preempted state depending upon the action that was
specified in response to an NS-Int in the SP manifest. Also see 9.3.1 Actions for a Non-secure interrupt.

5. A call chain in the SPMC scheduled mode is unwound when each SP execution context in it enters the waiting
state. It also exits its CPU cycle allocation mode and runtime model when it enters the waiting state.

6. A call chain in the Normal world scheduled mode is unwound when each SP execution context in it,

1. Either enters the waiting state. In this case, it also exits its CPU cycle allocation mode and runtime
model.

2. Or enters the preempted state. In this case, it continues to remain in its CPU cycle allocation mode and
runtime model. This implies that this SP execution context enters the running state subsequently when it
is resumed by an NS-Endpoint or a call chain that runs in the same mode.

7. A call chain is unwound in an order that is reverse of how it was wound or created.

8. On a given PE, any call chain that is created after entry into the Secure state must be unwound prior to the
next exit from the Secure state.
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9. When execution on a PE is in the Secure state, only a single call chain that runs in the Normal world scheduled
mode can exist.

10. When execution on a PE is in the Secure state, any number of call chains that run in the SPMC scheduled
mode can exist.

11. SP execution contexts in different CPU cycle allocation modes cannot be a part of the same call chain.

12. Presence of more than one call chain on a PE implies that each call chain apart from the currently active call
chain was preempted by a Secure physical interrupt.

13. A call chain that runs in the SPMC scheduled mode cannot be preempted by the call chain that runs in the
Normal world scheduled mode (if this call chain already exists on the same PE).

This means that the call chain in the SPMC scheduled mode could be interrupted by a Secure physical
interrupt. The corresponding Secure virtual interrupt could target an SP execution context in the call chain
that runs in the Normal world scheduled mode. The SPMC queues this interrupt instead of signaling it. The
interrupt is signaled after all call chains in the SPMC scheduled mode are unwound and the target execution
context is subsequently resumed on this PE.

This rule also implies that a call chain cannot run in the Normal world scheduled mode on a PE when there
are unwound call chains present that run in the SPMC scheduled mode on the same PE. This scenario is
possible only if one of the SPMC scheduled call chains was preempted by the Normal world scheduled call
chain which is not possible as per the constraint described above.

Figure 9.2 illustrates this constraint. SP3 is running in a call chain in the SPMC scheduled mode. This call
chain was started the call chain comprising of SP0 and SP1 and running in the Normal world scheduled mode
was preempted by Secure physical interrupt 0. Secure physical interrupt 1 targeted to SP0 could pend while
SP3 is running. The SPMC ensures that it remains pending until the call chain in the SPMC scheduled mode
unwinds.

Non-secure state

Secure state

SPMC scheduled call chain 1

Normal world scheduled call chain

NS Endpoint

Blocked

SP3

Preempted

SP2

Blocked

SP0

Blocked

SP1

Preempted

SMC(FFA_MSG_SEND_DIRECT_REQ) SMC(FFA_MSG_SEND_DIRECT_REQ)

Secure physical interrupt 0

SMC(FFA_MSG_SEND_DIRECT_REQ)

Secure physical interrupt 1

Figure 9.2: Example of queuing Other S-Ints in SPMC scheduled mode

The concept of a call chain is central to how the SPMC manages physical interrupts in the Secure world. The
constraints around unwinding call chains prior to exit from the Secure state, preventing them from crossing PEs and
tracking who allocated CPU cycles to them, enables requests that were posted on a given PE to be completed on
the same PE. This prevents the SPMC from implementing complex scheduling policies to ensure that SP execution
contexts in various runtime states with pending work are able to make progress across PEs upon being interrupted
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by Secure and Non-secure physical interrupts.

9.3 Physical interrupt actions

The Framework defines the actions that can be specified in response to each type of physical interrupt. An action is
taken by the SPMC and depends upon the following factors,

1. The type of physical interrupt (see 9.2.2 Physical interrupt types).
2. The type of SP which is the target of the interrupt.
3. The runtime state of the target SP execution context.
4. IMPLEMENTATION DEFINED policy in the SPMC.

The actions are described as follows.

1. 9.3.1 Actions for a Non-secure interrupt describes actions in response to an NS-Int.
2. 9.3.2 Actions for a Secure interrupt describes actions in response to an Self S-Int or an Other S-Int.

9.3.1 Actions for a Non-secure interrupt

An SP specifies one of the following actions in its partition manifest (see 5.2.1 Partition manifest) in response to
an NS-Int that triggers on a PE where an execution context of the SP was running.

9.3.1.1 Non-secure interrupt is signaled
The SPMC hands control to the Normal world on the PE where the interrupt triggers. The interrupt is handled in
the Normal world through an IMPLEMENTATION DEFINED mechanism.

This action can be specified by both S-EL1 and S-EL0 SPs. This action is only applicable to SP execution contexts
in a call chain in the Normal world scheduled mode. The interrupt is queued in the SPMC scheduled mode (see
9.3.1.3 Non-secure interrupt is queued).

Each applicable SP execution context in the call chain that runs in the Normal world scheduled mode (see 9.2.4
SP call chains) on that PE undergoes the following steps.

1. Enters the preempted state.

2. The state of the execution context is saved by the SPMC.

3. The SPMC informs the execution context that ran the preempted SP execution context that it was preempted.
The FFA_INTERRUPT interface (also see 12.4 FFA_INTERRUPT) is used by the SPMC.

This execution context subsequently uses the FFA_RUN interface to resume the preempted SP execution
context.

Figure 9.3 illustrates an example flow where a Client in an NS-Endpoint sends a Direct message to the single
execution context EC0 on CPU0 of an UP-Migrate capable SP. Message processing in SP EC0 is preempted by a
Non-secure interrupt. It is later resumed on CPU1 by the NS-Endpoint.
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NS-Endpoint

NS-Endpoint

SPMD

SPMD

SPMC

SPMC

SP EC0

SP EC0

Client sends message to SP on CPU0

1 SMC(FFA_MSG_SEND_DIRECT_REQ, message)

2 ERET(FFA_MSG_SEND_DIRECT_REQ, message)

3 ERET(FFA_MSG_SEND_DIRECT_REQ, message)

Assign message processing to Thread0

4 Physical Non-secure interrupt

Save state of SP EC0

5 SMC(FFA_INTERRUPT, SP ID, EC0)

6 ERET(FFA_INTERRUPT, SP ID, EC0)

7 Physical Non-secure interrupt

8 Handle interrupt

Client migrates to CPU1

9 Execution on CPU1

Client resumes SP EC0

10 SMC(FFA_RUN, SP ID, EC0)

11 ERET(FFA_RUN, SP ID, EC0)

Migrate state of SP EC0 from CPU0

Restore state of SP EC0

12 ERET()

Complete message processing on Thread0

13 SMC(FFA_MSG_SEND_DIRECT_RESP, message)

14 SMC(FFA_MSG_SEND_DIRECT_RESP, message)

15 ERET(FFA_MSG_SEND_DIRECT_RESP, message)

Return response to Client

Figure 9.3: Example SP preemption flow

9.3.1.2 Non-secure interrupt is signaled after a managed exit (ME)
The SPMC hands control to the Normal world on the PE where the interrupt triggers. The interrupt is handled in
the Normal world through an IMPLEMENTATION DEFINED mechanism.

This action can be specified only by S-EL1 SPs. This action is only applicable to SP execution contexts in a call
chain in the Normal world scheduled mode. The interrupt is queued in the SPMC scheduled mode (see 9.3.1.3
Non-secure interrupt is queued).

Each applicable SP execution context on that PE enters the waiting state as described in 9.3.1.2.1 Managed exit
prior to exit to the Non-secure state.

9.3.1.2.1 Managed exit

Overview

A managed exit is a mechanism in which a running SP execution context is notified about a pending physical
Non-secure interrupt. This allows the SP to manage its internal state before relinquishing control to the Normal
world where the interrupt is handled.

A managed exit stands in contrast to preemption of an SP execution context in the running state. In this case, the
SP does not get an opportunity to manage its internal state before control is handed to the Normal world.

A managed exit could be used for the following reasons.

1. Within an SP execution context, the managed exit mechanism may place the running application thread in
a preempted state. The execution context is able to enter the waiting runtime state upon completing the
managed exit. This enables it to accept subsequent requests for work. Hence, other application threads
running in the SP execution context are able to do work while one or more application threads have been
preempted.
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It is also possible that the preempted application thread is migrated to another SP execution context that runs
on a different physical PE. This enables the thread to make progress. This is in contrast to the scenario where
in the absence of a managed exit, the SP execution context gets preempted. In this case, the application thread
gets preempted too and is unable to make progress until the SP execution context is resumed subsequently.

2. It ensures that the CPU cycles allocated to an SP execution context are used to process the request that the
scheduler has issued instead of a request from another endpoint.

3. It ensures that critical events can be conveyed to the endpoint in time.

For example, the OS could issue a power state transition event through a PSCI function on a PE. The SPMC
needs to inform SP execution contexts pinned to that PE about this event. This cannot be done if a SP
execution context is in a preempted state. Also see 18.2.4 Power Management messages.

Figure 9.4 illustrates a managed exit flow using this reason as an example where a Client in a NS-Endpoint sends
a Direct message to MP capable SP. The SP has access to the virtual GIC and two execution contexts EC0 and EC1
which are pinned to CPU0 and CPU1 respectively. SP EC0 stops message processing and performs a managed exit
in response to a Non-secure physical interrupt. Message processing is later resumed on CPU1 by the NS-Endpoint.

NS-Endpoint

NS-Endpoint

SPMD

SPMD

SPMC

SPMC

SP EC0

SP EC0

SP EC1

SP EC1

1 Execution on CPU0

Client sends message to SP on CPU0

2 SMC(FFA_MSG_SEND_DIRECT_REQ, message)

3 ERET(FFA_MSG_SEND_DIRECT_REQ, message)

Run SP EC0 pinned to CPU0

4 ERET(FFA_MSG_SEND_DIRECT_REQ, message)

Assign message processing to Thread0

5 Physical Non-secure interrupt

Save state of SP EC0

Mask Non-secure interrupt

Pend virtual interrupt to trigger managed exit

Resume SP EC0

6 ERET()

Start virtual interrupt handling

Save state of Thread0

Inform Client about managed exit in response message

7 SMC(FFA_MSG_SEND_DIRECT_RESP, message)

Unmask Non-secure interrupt

8 SMC(FFA_MSG_SEND_DIRECT_RESP, message)

9 ERET(FFA_MSG_SEND_DIRECT_RESP, message)

Handle interrupt

Deliver response message to Client

Client migrates to CPU1

10 Execution on CPU1

Client requests SP EC1 to resume Thread0

11 SMC(FFA_MSG_SEND_DIRECT_REQ, message)

12 ERET(FFA_MSG_SEND_DIRECT_REQ, message)

Run SP EC1 pinned to CPU1

13 ERET(FFA_MSG_SEND_DIRECT_REQ, message)

Migrate state of Thread0 to CPU1

Complete message processing on Thread0

14 SMC(FFA_MSG_SEND_DIRECT_RESP, message)

15 SMC(FFA_MSG_SEND_DIRECT_RESP, message)

16 ERET(FFA_MSG_SEND_DIRECT_RESP, message)

Return response to Client

Figure 9.4: Example managed exit flow
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Rules and guidelines

Use of a managed exit by the SPMC and a SP is subject to the following rules and guidelines.

1. A SP requests a managed exit in its partition manifest (see Table 5.1 in 5.2.1 Partition manifest) if it runs in
S-EL1 in either execution state.

2. The SPMC ensures that the state of the Non-secure interrupt that triggers a managed exit does not change in
the GIC through any software action until the managed exit has completed.

3. The SPMC ensures that a managed exit is performed for all SPs that have,

1. Requested this mechanism through their partition manifests and
2. Entered the preempted or blocked states after the most recent switch of execution from the Normal world

to the Secure world on the current PE.

4. The SPMC can impose an IMPLEMENTATION DEFINED timeout within which a SP must complete the
managed exit.

The SPMC takes an IMPLEMENTATION DEFINED action if the timeout expires before the managed exit is
completed.

5. The SPMC masks Non-secure interrupts while a managed exit is in progress.

6. The SPMC can signal a Secure interrupt to a SP that is performing a managed exit. The SP handles these
scenarios through an IMPLEMENTATION DEFINED mechanism.

7. An SP execution context uses a Direct response ABI to complete a managed exit if it was allocated cycles
through a Direct request ABI (see 8.3 Runtime model for Direct request ABIs).

8. An SP execution context uses the FFA_MSG_WAIT interface to complete a managed exit if it was allocated
cycles through the FFA_RUN interface (see 8.2 Runtime model for FFA_RUN).

9. A SP that has been asked to perform a managed exit could relinquish control and enter the waiting state
without acknowledging the managed exit signal. The SPMC treats this as a valid response to the managed
exit request and destroys any internal state to track the progress of the managed exit.

Signaling mechanism

A managed exit is signaled by the SPMC to a SP execution context as described below.

1. A S-EL2 SPMC uses the vFIQ or vIRQ signals to signal a managed exit to a SP. The vFIQ signal is used if
the SP does not explicitly indicate in its partition manifest that the vIRQ signal must be used. An example
flow using this signaling mechanism is illustrated in Figure 9.5.

The mechanism used by a non-S-EL2 SPMC and a SP for signaling a managed exit is IMPLEMENTATION
DEFINED.

2. If the vIRQ signal is used by a SP, the SPMC reserves an interrupt ID to allow the SP to distinguish between
a managed exit request and other interrupts.

This ID can be discovered through the FFA_FEATURES interface (see 13.3 FFA_FEATURES) and Table
13.13.

The managed exit interrupt is signaled as a G1S interrupt to the SP. The interrupt is an SGI or a PPI.

An example flow using this signaling mechanism is illustrated in Figure 9.6.
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SPMC

SPMC

SP0

SP0

1 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP0, parameters)

Do some work

2 Non-secure Interrupt

Pend vFIQ for SP0
(HCR_EL2.VF)

Set internal flag to indicate managed
exit pending for SP0

Mask Non-secure Interrupts

3 ERET()

alt [FIQ unmasked]

4 vFIQ

Trigger Generic FIQ Handler

Perform managed exit

[FIQ Masked]

Complete critical section and perform
managed exit when FIQs are unmasked

5 SMC(FFA_SEND_DIRECT_RESP, to normal world, parameters)

Clear internal managed exit pending flag

Clear pending vFIQ interrupt for SP0

6 SMC(FFA_SEND_DIRECT_RESP, from SP0, parameters)

Figure 9.5: Managed exit signaling through a vFIQ
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SPMC

SPMC

SP0

SP0

SP0 manifest states managed exit must be signaled through a vIRQ

1 ERET(Initialize SP0)

Discover ID of managed exit vIRQ

2 SMC(FFA_FEATURES, 0x3)

3 ERET(FFA_SUCCESS, Interrupt ID)

Register handler for managed exit interrupt ID

Signal completion of initialization

4 SMC(FFA_MSG_WAIT)

5 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP0, parameters)

Do some work

6 Non-secure Interrupt

Pend vIRQ corresponding to managed exit Interrupt ID
for SP0 by programming HCR_EL2.VI

Set internal flag to indicate managed
exit pending for SP0

Mask Non-secure Interrupts

7 ERET()

alt [IRQ unmasked]

8 vIRQ

Trigger registered IRQ Handler
Acknowledge interrupt

Perform managed exit

[IRQ Masked]

Complete critical section and perform
managed exit when IRQs are unmasked

9 SMC(FFA_SEND_DIRECT_RESP, to normal world, parameters)

Clear internal managed exit pending flag

Clear pending vIRQ interrupt if not handled by SP0

10 SMC(FFA_SEND_DIRECT_RESP, from SP0, parameters)

Figure 9.6: Managed exit signaling through a vIRQ

Example flows

Multiple SPs could be in a call chain where each SP is blocked on the next SP. Between any two adjacent SPs in
the chain, a managed exit could be requested by one of them, none of them or both of them.

Figure 9.7, Figure 9.8, Figure 9.9 and Figure 9.10 illustrate how the SPMC returns control to the Normal world
in response to a Non-secure interrupt in each of these scenarios. The first two SPs in the call chain are considered.
The same sequence would apply to any other pair of adjacent SPs in a call chain with more than two SPs. The
Normal world would be replaced by the SP preceding the pair.
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Normal world

Normal world

SP0

SP0

SPMC

SPMC

SP1

SP1

1 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP0, parameters)

2 ERET(FFA_MSG_SEND_DIRECT_REQ, from Normal world, parameters)

Do some work

3 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP1, parameters)

4 ERET(FFA_MSG_SEND_DIRECT_REQ, from SP0, parameters)

Do some work

5 Non-secure interrupt

Pend managed exit signal for SP1

Mask Non-secure interrupt

6 ERET()

Perform bookkeeping

7 SMC(FFA_MSG_SEND_DIRECT_RESP, to SP0, parameters)

Pend managed exit signal for SP0

8 ERET(FFA_MSG_SEND_DIRECT_RESP, from SP1, parameters)

Perform bookkeeping

9 SMC(FFA_MSG_SEND_DIRECT_RESP, to Normal world, parameters)

Unmask Non-secure interrupt

10 ERET(FFA_MSG_SEND_DIRECT_RESP, from SP0, parameters)

Figure 9.7: Managed exit is supported by SP0 and SP1

Normal world

Normal world

SP0

SP0

SPMC

SPMC

SP1

SP1

1 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP0, parameters)

2 ERET(FFA_MSG_SEND_DIRECT_REQ, from Normal world, parameters)

Do some work

3 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP1, parameters)

4 ERET(FFA_MSG_SEND_DIRECT_REQ, from SP0, parameters)

Do some work

5 Non-secure interrupt

Pend managed exit signal for SP0

Mask Non-secure interrupt

6 ERET(FFA_INTERRUPT))

Perform bookkeeping

7 SMC(FFA_MSG_SEND_DIRECT_RESP, to Normal world, parameters)

Unmask Non-secure interrupt

8 ERET(FFA_MSG_SEND_DIRECT_RESP, from SP0, parameters)

Figure 9.8: Managed exit is supported by SP0 but not by SP1
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Normal world

Normal world

SP0

SP0

SPMC

SPMC

SP1

SP1

1 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP0, parameters)

2 ERET(FFA_MSG_SEND_DIRECT_REQ, from Normal world, parameters)

Do some work

3 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP1, parameters)

4 ERET(FFA_MSG_SEND_DIRECT_REQ, from SP0, parameters)

Do some work

5 Non-secure interrupt

Pend managed exit signal for SP1

Mask Non-secure interrupt

6 ERET()

Perform bookkeeping

7 SMC(FFA_MSG_SEND_DIRECT_RESP, to SP0, parameters)

Unmask Non-secure interrupt

8 ERET(FFA_MSG_SEND_DIRECT_RESP, from SP1, parameters)

9 Non-secure interrupt

10 ERET(FFA_INTERRUPT, from SP0)

Figure 9.9: Managed exit is supported by SP1 but not SP0

Normal world

Normal world

SP0

SP0

SPMC

SPMC

SP1

SP1

1 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP0, parameters)

2 ERET(FFA_MSG_SEND_DIRECT_REQ, from Normal world, parameters)

Do some work

3 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP1, parameters)

4 ERET(FFA_MSG_SEND_DIRECT_REQ, from SP0, parameters)

Do some work

5 Non-secure interrupt

Signal to SP0 its request was interrupted

6 ERET(FFA_INTERRUPT)

7 Non-secure interrupt

8 ERET(FFA_INTERRUPT, from SP0)

Figure 9.10: Managed exit is not supported by SP1 and SP0

9.3.1.3 Non-secure interrupt is queued
The SPMC uses an IMPLEMENTATION DEFINED mechanism to queue the interrupt such that it is never signaled to
any execution context of this SP that is in the running state. For e.g. the SPMC could mask Non-secure interrupts
in the GIC. This action can be specified by both S-EL1 and S-EL0 SPs.

Figure 9.11 illustrates an example flow where two SPs (SP0 and SP1) specify the action to queue NS-Ints. Normal
world requests SP0 to do some work on its behalf. SP0 requests SP1 to do some work on its behalf. The SPMC
ensures that NS-Ints are masked for the duration execution is in either SP0 or SP1. A pending NS-Int is handled
when execution returns to the Normal world.
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Normal world

Normal world

SPMC

SPMC

SP0

SP0

SP1

SP1

1 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP0, parameters)

Mask Non-secure interrupts

2 ERET(FFA_MSG_SEND_DIRECT_REQ, from Normal world, parameters)

Do some work

3 Non-secure interrupt

4 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP1, parameters)

Keep Non-secure interrupts masked

5 ERET(FFA_MSG_SEND_DIRECT_REQ, from SP0, parameters)

Do some work

6 Non-secure interrupt (remains pending)

Send response to SP0

7 SMC(FFA_MSG_SEND_DIRECT_RESP, to SP0, parameters)

Keep Non-secure interrupts masked

8 ERET(FFA_MSG_SEND_DIRECT_RESP, from SP1, parameters)

9 Non-secure interrupt (remains pending)

Send response to Normal world

10 SMC(FFA_MSG_SEND_DIRECT_RESP, to Normal world, parameters)

Unmask Non-secure interrupts

11 ERET(FFA_MSG_SEND_DIRECT_RESP, from SP0, parameters)

12 Non-secure interrupt (if unmasked in Normal world)

Figure 9.11: Non-secure interrupt is queued by SP0 and SP1

9.3.1.4 Precedence rules for NS-Int actions
The actions in response to an NS-Int are governed by the following precedence rules. < should be read as is less
permissive than.

• NS-Int is queued < NS-Int is signaled after a ME < NS-Int is signaled.

An SP execution context in a call chain (see 9.2.4 SP call chains) could specify a less permissive action than
subsequent SP execution contexts in the same call chain. The less permissive action takes precedence over the
more permissive actions specified by the subsequent execution contexts. This is applicable to a call chain in either
CPU cycle allocation mode.

The rationale behind this constraint is that a less permissive action effectively decreases the priority of an NS-Int.
Taking a more permissive action when there are SP execution contexts in a call chain that rely on a less permissive
action violates their priority model w.r.t NS-Ints. This constraint enables the next SP execution context to effectively
inherit the priority of NS-Ints w.r.t the previous SP execution context in a call chain.

Figure 9.12 illustrates an example of this constraint as described below.

1. SP0 specifies the NS-Int is queued action for while running.
2. SP1 specifies the NS-Int is signaled action while running1.
3. SP0 runs SP1 by invoking FFA_MSG_SEND_DIRECT_REQ.
4. The SPMC ensures that the action specified by SP0 takes precedence over the action specified by SP1.
5. An NS-Int that triggers while SP1 is running remains pending.
6. The NS-Int is handled when SPMC forwards the response from SP0 to the Normal world.

A variant of the above example is where SP0 is preempted by a Secure interrupt targeted to an SP1 execution
context (Other S-Int). The new call chain in the SPMC scheduled mode is started on the same PE if the SP1
execution context is run to handle the corresponding Secure virtual interrupt. The SPMC applies the same
mitigation described above to avoid violating the action specified by SP0 and leaving the SP0 call chain unwound
prior to exit to the Non-secure state.

1SP1 could specify the NS-Int is signaled after a managed exit action. The action specified by SP0 would still take precedence.
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Normal world

Normal world

SPMC

SPMC

SP0

SP0

SP1

SP1

1 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP0, parameters)

Mask Non-secure interrupts

2 ERET(FFA_MSG_SEND_DIRECT_REQ, from Normal world, parameters)

Do some work

3 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP1, parameters)

Keep Non-secure interrupts masked
even though SP1 specified the NS-Int
is signaled action

4 ERET(FFA_MSG_SEND_DIRECT_REQ, from SP0, parameters)

Do some work

5 Non-secure interrupt

Send response to SP0

6 SMC(FFA_MSG_SEND_DIRECT_RESP, to SP0, parameters)

Keep Non-secure interrupts masked

7 ERET(FFA_MSG_SEND_DIRECT_RESP, from SP1, parameters)

8 Non-secure interrupt (remains pending)

Send response to Normal world

9 SMC(FFA_MSG_SEND_DIRECT_RESP, to Normal world, parameters)

Unmask Non-secure interrupts

10 ERET(FFA_MSG_SEND_DIRECT_RESP, from SP0, parameters)

11 Non-secure interrupt (if unmasked in Normal world)

Figure 9.12: SP0’s action takes precedence over SP1’s action

9.3.2 Actions for a Secure interrupt

A Secure physical interrupt could trigger in the Normal world or the Secure world. The SPMC ensures that the
corresponding Secure virtual interrupt is signaled to the target SP execution context without a dependence on the
primary or secondary scheduler in the Normal world for CPU cycles.

9.3.2.1 Secure interrupt triggers in Non-secure state
A Secure physical interrupt preempts the Normal world if it triggers when execution is in the Non-secure state. The
action taken by the SPMC in response to this interrupt depends upon the runtime state of the target SP execution
context as listed below.

1. The execution context is in the waiting state. The SPMC signals the corresponding Secure virtual interrupt to
the execution context as described in Table 9.1 and Table 9.2. This starts a new call chain that runs in the
SPMC scheduled mode.

2. The execution context is in the running state on a different PE. The SPMC queues the corresponding Secure
virtual interrupt and signals it to the target execution context as described in Table 9.1 and Table 9.2.

3. The execution context is in the preempted state on the same or a different PE. The SPMC queues the
corresponding Secure virtual interrupt.

In case of an S-EL1 SP, the interrupt is signaled when the execution context next enters the running state as
described below.

1. The execution context was preempted by an NS-Int in the Normal world scheduled mode. In this case,
the queued Secure virtual interrupt is signaled when the Normal world resumes the call chain that the
execution context is a part of subsequently.

2. The execution context was preempted by an Other S-Int in either CPU cycle allocation mode on a PE
different from where the Secure physical interrupt triggered. In this case, the queued Secure virtual
interrupt is signaled when the SPMC resumes the execution context subsequently. This happens when
the call chain that the SP execution context is a part of is resumed by the SPMC. This scenario is
applicable to an un-pinned SP execution context.

The execution context could not have been preempted by an Other S-Int on the PE where the Secure
physical interrupt triggered. This is because the SPMC must unwind all call chains prior to exit to the
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Non-secure state on a given PE. During unwinding, an SP execution context can enter the preempted
state only in response to an NS-Int. This would happen if it does not request a managed exit instead.
This scenario is applicable to a pinned SP execution context.

In case of an S-EL0 SP, the interrupt can be signaled only when the target SP execution context enters the
waiting state (also see Table 9.1). Prior to entering this state, it enters the running state as described above.
The interrupt is signaled only after it subsequently enters the waiting state.

4. The execution context is in the blocked state. This implies that the execution context is a part of a call chain
on a different PE. This is because the SPMC must unwind all call chains prior to exit to the Non-secure state
on a given PE. Hence, after unwinding, no execution context can be in the blocked state on the PE where the
Secure physical interrupt has triggered. In this scenario, the Secure virtual interrupt is queued by the SPMC.

As mentioned in Table 9.1, the interrupt cannot be signaled to a target S-EL0 SP execution context. It is
signaled when the execution context next enters the waiting state via the running state.

If the target execution context is of a S-EL1 SP, it is signaled when the execution context next enters the
running state on the same PE where is entered the blocked state.

These transitions happen when the call chain that the blocked SP execution context is a part of is unwound.

The SPMC in S-EL2 or S-EL1 uses the FFA_NORMAL_WORLD_RESUME ABI to indicate completion of
Secure interrupt handling to the SPMD. Also see 14.4 FFA_NORMAL_WORLD_RESUME.

9.3.2.2 Secure interrupt triggers in Secure state
A Secure physical interrupt preempts the running SP execution context if it triggers when execution is in the Secure
state. The interrupted execution context enters the preempted state. The action chosen by the SPMC in response to
this interrupt depends upon its type as described below (see 9.2.2 Physical interrupt types).

1. The interrupt is a Self S-Int and the target execution context belongs to a S-EL0 SP. The virtual interrupt is
queued as it can be signaled only when the execution context enters the waiting state (also see Table 9.1).

2. The interrupt is a Self S-Int and the target execution context belongs to a S-EL1 SP. The virtual interrupt is
signaled as specified in Table 9.2. The target execution context re-enters the running state.

3. The interrupt is an Other S-Int. The action taken by the SPMC depends upon its IMPLEMENTATION DEFINED
policy. The SPMC could either signal or queue the corresponding Secure virtual interrupt. This decision
depends upon the runtime state of the target SP execution context as listed below.

1. The execution context is in the waiting state. The SPMC can signal the corresponding Secure virtual
interrupt to the execution context as described in Table 9.1 and Table 9.2. This starts a new call chain
that runs in the SPMC scheduled mode.

The SPMC uses an IMPLEMENTATION DEFINED policy to decide whether the interrupt is signaled or
not. The SPMC ensures that the virtual interrupt is signaled to the target SP execution context before the
next exit to the Non-secure state on this PE.

2. The execution context is in the running state on a different PE. The SPMC queues the corresponding
Secure virtual interrupt and signals it to the target execution context as described in Table 9.1 and Table
9.2. The SPMC ensures that the virtual interrupt is signaled to the target SP execution context before the
next exit to the Non-secure state on this PE.

3. The execution context is in the blocked state. If the target execution context belongs to a S-EL0 SP,
the interrupt is queued as it can be signaled only when the execution context enters the waiting state
(also see Table 9.1). This happens when the corresponding call chain is unwound prior to exit from the
Secure state.

The action taken by the SPMC in case of a S-EL1 SP is described in 9.3.2.2.1 Signaling an Other S-Int
in blocked state.

4. The execution context is in the preempted state. In this case, the SPMC queues the Secure virtual
interrupt. It is signaled when the execution context next enters the running state as described below.
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1. The execution context was preempted by an NS-Int in the Normal world scheduled mode. In this
case, the queued Secure virtual interrupt is signaled when the Normal world resumes the call chain
that the SP execution context is a part of subsequently.

2. The execution context was preempted by an Other S-Int in either CPU cycle allocation mode. In
this case, the queued Secure virtual interrupt is signaled when the SPMC subsequently resumes the
call chain that the SP execution context is a part of.

9.3.2.2.1 Signaling an Other S-Int in blocked state

The action taken by the SPMC when an Other S-Int can be signaled to a target S-EL1 SP execution context in the
blocked state depends upon the following factors.

1. The interrupted SP execution context (presently in preempted state) is a part of a call chain that was running
in the SPMC scheduled mode or the Normal world scheduled mode.

2. The target SP execution context (presently in blocked state) is a part of a call chain that was running in the
SPMC scheduled mode or the Normal world scheduled mode.

3. The interrupted and target execution contexts are a part of the same or different call chains. In the latter case,
the call chains could reside on different PEs.

The scenarios that arise due to a combination of these factors are described in Table 9.4.

Table 9.4: Scenarios for signaling an Other S-Int in blocked state

No.
CPU cycle allocation mode of
preempted execution context

CPU cycle allocation mode of
target execution context

Part of the
same call
chain

Valid
configuration

1 Normal world Normal world Yes Yes

2 Normal world Normal world No Yes

3 Normal world SPMC Yes No2

4 Normal world SPMC No Yes

5 SPMC Normal world Yes No3

6 SPMC Normal world No Yes

7 SPMC SPMC Yes Yes

8 SPMC SPMC No Yes

Each valid scenario in Table 9.4 is described below.

1. Scenario 1.

1. The virtual interrupt is targeted to an SP execution context that ran earlier in the same call chain before
entering the blocked state.

An example of the scenario is illustrated in Figure 9.13. In an SP call chain comprising of SP0, SP1
and SP2, a Other S-Int targeted to SP0 occurs as step 3 when SP2 is running after step 2. SP0 is in the
blocked state as it ran earlier in the same call chain.

2SP execution contexts in different CPU cycle allocation modes cannot be a part of the same call chain. Also see 9.2.4 SP call chains.
3SP execution contexts in different CPU cycle allocation modes cannot be a part of the same call chain. Also see 9.2.4 SP call chains.
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Figure 9.13: Example of scenario 1

1. The SPMC can signal the virtual interrupt to the target SP execution context as described in Table
9.2. This rewinds the call chain.

There could be intermediate SP execution contexts in the blocked state in the call chain between the
preempted and the target execution context. For example, in Figure 9.13, SP1 is an intermediate
execution context.

1. The SPMC could leave all intermediate execution contexts in the blocked state and resume the
target execution context for handling the interrupt. This is illustrated in Figure 9.14.

Figure 9.14: Intermediate execution context is left in blocked state in scenario 1

1. The SPMC could place all intermediate execution contexts in the preempted state and resume the
target execution context for handling the interrupt. This is illustrated in Figure 9.15.

Figure 9.15: Intermediate execution context is left in preempted state in scenario 1

The choice of mechanism used by the SPMC is IMPLEMENTATION DEFINED.

2. After the target SP execution context has handled the interrupt, it uses the FFA_RUN ABI to resume
the request due to which it had entered the blocked state earlier.

1. If the SPMC left all intermediate execution contexts in the blocked state as illustrated in Figure
9.14, then it bypasses these execution contexts and resumes the SP execution context that was
originally preempted.

2. If the SPMC left all intermediate execution contexts in the preempted state as illustrated in Figure
9.15, then it places these execution contexts in the blocked state and resumes the SP execution
context that was originally preempted. Effectively, the call chain is recreated.
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2. The virtual interrupt is targeted to an intermediate SP execution context in the blocked state as illustrated
in Figure 9.16 i.e. an interrupt targeted to SP1 occurs while SP0 is handling the earlier interrupt.

In this case, the SPMC queues the interrupt for the target execution context. It is signaled after the
preempted execution context finishes interrupt handling. In the example illustrated in Figure 9.16, SP0
is resumed so that it can finish handling the original interrupt. SP1 is resumed subsequently.

Figure 9.16: Interrupt is targeted to an intermediate execution context in scenario 1

2. Scenario 2.

1. The virtual interrupt is targeted to an SP execution context that ran earlier in a different call chain. Since
that call chain is running in the Normal world scheduled mode, it is active on a different PE.

2. The SPMC queues the virtual interrupt and signals it to the target execution context when it next enters
the running state on that PE. This happens when the call chain is unwound on that PE.

3. Scenario 4.

1. The virtual interrupt is targeted to an SP execution context that ran earlier in a call chain on a different
PE. This is because a call chain cannot run in the Normal world scheduled mode when there are unwound
call chains that run in the SPMC scheduled mode on the same PE (also see 9.2.4 SP call chains).

2. The SPMC queues the virtual interrupt and signals it to the target execution context when it next enters
the running state on that PE. This happens when the call chain is unwound on that PE.

4. Scenario 6.

1. The virtual interrupt is targeted to an SP execution context that ran earlier in a call chain on a different
PE. This is because a call chain that runs in the SPMC scheduled mode cannot be preempted by a call
chain that runs in the Normal world scheduled mode on the same PE (also see 9.2.4 SP call chains).

2. The SPMC queues the virtual interrupt and signals it to the target execution context when it next enters
the running state on that PE. This happens when the call chain is unwound on that PE.

5. Scenario 7.

1. This scenario is the same as Scenario 1 apart from the difference that the call chain runs in the SPMC
scheduled mode.

2. This scenario is handled in the same way as Scenario 1.

6. Scenario 8.

1. The virtual interrupt is targeted to an SP execution context that ran earlier in a different call chain. Since
that call chain is running in the SPMC scheduled mode, it could be active on the same or a different PE.

2. The SPMC queues the virtual interrupt and signals it to the target execution context when it next enters
the running state on that PE. This happens when the call chain is unwound on that PE.
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9.3.2.3 Exiting a CPU cycle allocation mode with pending virtual interrupts
An execution context of an S-EL1 SP running under the S-EL2 SPMC could exit its CPU cycle allocation mode
with pending virtual interrupts.

To enable the SP execution context to handle the pending interrupts, one approach could be to request additional
CPU cycles from the SP’s scheduler. The mechanism used to inform the scheduler is IMPLEMENTATION DEFINED.
An example mechanism is where the SP uses an FF-A notification before exiting its CPU cycle allocation mode to
inform its scheduler (see 10.5 Notification signaling).

An alternative approach is where the SPMC arranges re-entry into the SP execution context so that it can handle its
pending virtual interrupts. In this mechanism, after detecting that the SP execution context has pending virtual
interrupts, the SPMC uses the FFA_INTERRUPT ABI with the ERET conduit to enter the SP execution context in
the SPMC scheduled mode. The number of times the SPMC repeats this action is IMPLEMENTATION DEFINED.
Figure 9.17 illustrates this mechanism.
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SPMC

SPMC

SP0

SP0

1 ERET(FFA_DIRECT_REQ, to SP0, parameters)

SP Enters CPU cycle allocation mode

2 ERET(FFA_DIRECT_REQ, parameters)

Interrupts are Masked

3 Handle request

4 Self S-Int Fires

5 Inject Interrupt (remains pending)

6 SMC(FFA_DIRECT_RESP, parameters)

SP0 Exits CPU cycle allocation mode

7 Check if interrupts are pending for SP0

8 Save SP0 Direct Response register contents

SP0 Enters SPMC Scheduled Mode

9 ERET(FFA_INTERRUPT, Interrupt ID)

alt [Interrupts remain masked]

10 Process FFA_INTERRUPT

11 Handle interrupt

[Interrupts unmasked]

Unmask Interrupts

12 Virtual interrupt triggers

13 Handle interrupt

Mask Interrupts

14 SMC(FFA_MSG_WAIT)

SP0 Exits SPMC Scheduled Mode

15 Check if new interrupts are pending for SP0

16 Restore Direct Response Register contents

17 SMC(FFA_DIRECT_RESP, parameters)

Figure 9.17: Example Self S-Int delivery for SEL1 SP with interrupts masked
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9.4 Support for legacy run-time models

Version 1.0 of the Framework allows a S-EL0 SP to specify its run-time model in its partition manifest. It can
specify the Run to completion or the Preemptible models. These models are deprecated in the current version of the
Framework. To maintain backwards compatibility, the SPMC must convert these run-time models to scheduling
actions as described below.

• The Run to completion model is recommended for S-EL0 SPs that only handle Secure interrupts. Hence,
these SPs never run in the Normal world scheduled mode. The SP specifies the queued action for NS-Ints. Self
S-Ints are always queued in the running state. The SP relies on an IMPLEMENTATION DEFINED mechanism
provided by the SPMC to specify which Other S-Ints can preempt its execution e.g. through an interrupt
priority scheme.

• The Preemptible model is recommended for S-EL0 SPs that only process messages. Hence, these SPs never
run in the SPMC scheduled mode. The SP specifies the signaled action for NS-Ints. Self S-Ints are not used.
The SP relies on an IMPLEMENTATION DEFINED mechanism provided by the SPMC to specify that Other
S-Ints are signalable.
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10.1 Overview

The notification mechanism enables a requester endpoint (henceforth called the Sender) to notify a service provider
endpoint (henceforth called the Receiver) about an event with non-blocking semantics.

A notification is akin to the doorbell between two endpoints in a communication protocol that is based upon the
doorbell/mailbox mechanism. The term doorbell is used in lieu of notification in contexts where it makes it easier
to understand a concept under discussion.

The Framework is responsible for the delivery of the notification from the Sender to the Receiver without blocking
the Sender.

The Receiver endpoint relies on another software component for allocation of CPU cycles to handle a notification.
This component is the primary or a secondary scheduler (see 4.9 Primary scheduler). It is called the Receiver’s
scheduler in the context of notifications in the rest of this specification.

The Framework is responsible for informing the Receiver’s scheduler that the Receiver must be run since it has a
pending notification.

Figure 10.1 illustrates the notification mechanism and its participants.
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Sender

Sender

Framework

Framework

Receiver scheduler

Receiver scheduler

Receiver

Receiver

Do some work

1 Send notification to Receiver

Pend notification for Receiver

2
Inform driver
that Receiver has a pending notification

3 Success

Continue work

Runs asynchronously w.r.t Sender

4 Run an execution context to handle notification

5 Obtain identity of pending notification and Sender

6 Notification and Sender ID

Handle notification

Figure 10.1: Example notification flow

Support for notifications in the Framework for a configuration that includes both the Hypervisor and SPM is
governed by the following common rules. Rules specific to a particular aspect of notification support are specified
the following sub-sections.

1. Each endpoint is provided with 64 notifications that can be signaled to it by only SPs in the system. These
are called SP notifications.

2. Each endpoint is provided with 64 notifications that can be signaled to it by only VMs in the system. These
are called VM notifications.

3. The partition manager of each endpoint provides it with 64 notifications that can be signaled by the partition
managers in the system.

1. 32 notifications are reserved for signaling by the SPMC
2. 32 notifications are reserved for signaling by the Hypervisor

These notifications are called Framework Notifications. See 10.8 Framework Notifications.

4. The identity of a notification is its bit position in a bitmap managed by the partition manager on behalf of a
Receiver.

5. In the framework notifications bitmap, the lower 32 bits are reserved for signaling by the SPMC.

6. In the framework notifications bitmap, the top 32 bits are reserved for signaling by the Hypervisor.

7. The Partition manager reserves memory for each notification bitmap at the time of endpoint creation. Also
see 10.3 Notification bitmap setup.

8. The Framework provides an interface to the Sender to specify the notification to signal to the Receiver. Also
see 16.5 FFA_NOTIFICATION_SET.

A Sender signals a notification by requesting its Partition manager to set the corresponding bit in the
notifications bitmap of the Receiver.

1. If the Sender is a VM, the bit is set in the VM notifications bitmap of the Receiver.

2. If the Sender is a SP, the bit is set in the SP notifications bitmap of the Receiver.

9. The VM notifications and Hypervisor framework notifications bitmaps for a VM are written to by the
Hypervisor.

10. The VM notifications and Hypervisor framework notifications bitmap for a SP are written to by the SPMC.
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11. The SP notifications and SPMC framework notification bitmaps for both VMs and SPs are written to by the
SPMC.

12. The Framework provides an interface to the Receiver to specify which endpoint can signal a particular
notification. The Receiver notification is bound to the Sender endpoint. Also see 10.4.2 Notification binding.

13. The Framework provides an interface to the Receiver to determine the identity of the notification. Also see
16.6 FFA_NOTIFICATION_GET.

14. The Framework provides no guarantees when a notification will be handled by the Receiver.

15. The Framework does not provide a mechanism for a Sender to determine if the Receiver has handled the
notification. If required, the Sender and Receiver must enable this through an IMPLEMENTATION DEFINED
mechanism.

Guidance on discovering support for notifications is provided in 10.7 Compliance requirements.

Guidance on support for notifications in a Framework configuration without the Hypervisor is specified in 10.9
Notification support without a Hypervisor.

10.1.1 Use cases

The Framework provides guidance for support of notifications to address the requirements of the following types
of use cases.

1. The blocking semantics associated with message exchange using Direct messaging (see 7.1.2 Direct
messaging) are not desirable in a scenario where the Sender endpoint must make progress in tandem with the
Receiver endpoint processing its request. For example,

• A secondary endpoint is scheduled by the primary scheduler and requests services implemented in a
Trusted OS SP. It is not desirable to allocate cycles to the SP from the quota allocated to the secondary
endpoint by the primary scheduler.

• The Trusted OS could request a service provided by another SP. It might too not want to allocate cycles
to the SP from the quota allocated to it by its scheduler.

2. An asynchronous signaling mechanism is required by the Secure world to notify the Normal world. For
example,

1. A Secure interrupt preempts the Normal world
2. The Secure interrupt is handled in a SP
3. The SP needs to signal the Normal world about an event signaled by the Secure interrupt e.g., completion

of an operation previously requested by the Normal world.

The SP cannot send a Direct message to the Normal world and block until the response is received. This is
because the Normal world is in a preempted state. Hence, a non-blocking mechanism is required that enables
the SP to notify the Normal world.

In the same example above, it is possible that the SP only performs top-half interrupt handling and requires
CPU cycles to perform bottom-half interrupt handling. These cycles are allocated by the SP’s scheduler
in the Normal world. The SP cannot send a Direct message. It needs another mechanism to signal to its
Scheduler that it must be run.
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10.2 Notification bitmap permissions

The following rules govern the permissions an FF-A component has on a notification bitmap of an endpoint.

1. Each endpoint has read-write permissions on each of its bitmaps.

2. Permissions of the Hypervisor1 and SPMC on the notification bitmap of each type of endpoint are described
in Table 10.1.

3. Permissions of VMs and SPs on the notification bitmap of each type of endpoint are described in Table 10.2.

Table 10.1: Hypervisor and SPMC permissions on an endpoint notification bitmap

Endpoint type Notifications bitmap SPMC Hypervisor

SP SP RW NA

SP VM RW (Directed by Hypervisor) RW

SP SPMC framework RW NA

SP HYP framework RW (Directed by Hypervisor) RW

VM SP RW RO

VM VM NA RW

VM SPMC framework RW RO

VM HYP framework NA RW

Table 10.2: VM and SP permissions on an endpoint notification bitmap

Endpoint
type Notifications bitmap

Implemented
in Other SP permissions

Other VM
permissions

SP SP SPMC Write-only NA

SP VM SPMC NA Write-only

SP SPMC framework SPMC NA NA

SP HYP framework SPMC NA NA

VM SP SPMC Write-only NA

VM VM Hypervisor NA Write-only

VM SPMC framework SPMC NA NA

VM HYP framework Hypervisor NA NA

1RW permissions for the Hypervisor does not imply that it can access the memory allocated by the SPMC for the VM or HYP framework notifications bitmap.
This implies that the Hypervisor can use the FFA_NOTIFICATION_SET ABI to Direct the SPMC to pend notifications in these bitmaps.
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10.3 Notification bitmap setup

An endpoint’s notification bitmaps are setup before it configures its notifications and before other endpoints and
partition managers can start signaling these notifications. Also see 10.4 Notification configuration and 10.5
Notification signaling.

The following rules govern the setup of a notification bitmap of an endpoint.

1. For a VM, the Hypervisor reserves memory for its VM and Hypervisor framework notification bitmaps
before initializing it.

2. For a VM, the SPMC reserves memory for its SP and SPMC framework notification bitmaps before the
Hypervisor initializes it.

3. The Hypervisor uses the FFA_NOTIFICATION_BITMAP_CREATE interface to request the SPMC to
allocate the SP and SPMC framework notification bitmaps for the VM prior to its initialization (see 16.1
FFA_NOTIFICATION_BITMAP_CREATE).

4. The Hypervisor does not initialize a VM if memory cannot be reserved for all its notification bitmaps.

5. For a SP, the SPMC reserves memory for its VM, SP and framework notification bitmaps before initializing
it.

6. The SPMC does not initialize a SP if memory cannot be reserved for its notification bitmaps.

7. The Hypervisor uses the FFA_NOTIFICATION_BITMAP_DESTROY interface to inform the SPMC when
it destroys a VM (see 16.2 FFA_NOTIFICATION_BITMAP_DESTROY). The SPMC frees memory for the
VM’s SP and SPMC framework notification bitmaps.

Within an endpoint, there could be one or more consumers of its VM and SP notifications. The mechanism used by
the endpoint to manage access to its notifications amongst their consumers is IMPLEMENTATION DEFINED.

Figure 10.2 illustrates how the Hypervisor and SPMC create notification bitmaps on behalf of a VM and SP
respectively.
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Normal world Secure world

VM

VM

Hypervisor

Hypervisor

SPMC

SPMC

SP

SP

Allocate 64-bit bitmap
for SP's SP notifications

Allocate 64-bit bitmap
for SP's VM notifications

Allocate 64-bit bitmap
for SP's Framework notifications

1 Start initialization

Do initialization

2 Finish initialization

3 Boot Hypervisor

Allocate 64-bit bitmap
for VM's VM notifications

Allocate 32-bit bitmap
for VM's Hypervisor Framework notifications

Request SPMC to allocate
VM's SP and SPMC Framework notifications bitmaps

4 SMC(FFA_NOTIFICATION_BITMAP_CREATE, VM)

Allocate 64-bit bitmap
for VM's SP notifications

Allocate 32-bit bitmap
for VM's SPMC Framework notifications

5 ERET(FFA_SUCCESS)

6 Start initialization

Do initialization

Figure 10.2: Notification bitmap creation for a VM and SP
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10.4 Notification configuration

A Receiver and its scheduler configure a notification as described below, before it can be signaled by other
endpoints and partition managers. Also see 10.5 Notification signaling.

1. The Receiver and its scheduler configure support for handling interrupts used by the Framework for
notification signaling. See 10.4.1 Notification interrupt setup.

2. The Receiver binds a non-framework notification to an endpoint that is allowed to signal it. See 10.4.2
Notification binding.

10.4.1 Notification interrupt setup

The following rules govern the configuration of interrupts used by the Framework for signaling notifications.

1. The Framework uses the Schedule Receiver interrupt to inform the Receiver’s scheduler that the Receiver
must be run to handle a pending notification.

2. The Framework uses the Notification pending interrupt to inform the Receiver that it has a pending notification.
This is a virtual interrupt and is used by the following type of Receivers.

1. A VM running under a Hypervisor.
2. An S-EL1 SP running under a S-EL2 SPMC.

3. A Receiver’s scheduler obtains the description of the Schedule Receiver interrupt by invoking the
FFA_FEATURES interface (see 13.3 FFA_FEATURES).

Feature ID 0x2 is allocated to obtain a description of the Schedule Receiver interrupt.

The description of the Schedule Receiver interrupt is encoded as specified in Table 13.13.

4. A Receiver obtains the description of the Notification pending interrupt by invoking the FFA_FEATURES
interface (see 13.3 FFA_FEATURES).

Feature ID 0x1 is allocated to obtain a description of the Notification pending interrupt.

The description of the Notification pending interrupt is encoded as specified in Table 13.13.

Figure 10.3 illustrates an example setup of the Schedule Receiver interrupt in the primary endpoint for a Receiver
endpoint.

• The Receiver endpoint has a counterpart driver in the primary endpoint. The primary endpoint implements an
FF-A driver that allows access to Framework functionality to other drivers including the Receiver endpoint
driver. The Receiver endpoint driver runs an execution context of the Trusted OS in response to requests
from a client application or a pending notification.

From the Framework’s perspective, the primary scheduler is the Receiver’s scheduler in this example. Within
the primary endpoint, the Receiver endpoint driver is the Receiver’s scheduler.

• The FF-A driver discovers the Schedule Receiver interrupt.

• The Receiver endpoint driver registers a callback function with the FF-A driver.

• The FF-A driver calls this function if there is a pending notification for the Receiver endpoint and it must be
scheduled by its driver.
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Primary endpoint EL2 Secure world

Receiver endpoint driver

Receiver endpoint driver

FF-A Driver

FF-A Driver

Hypervisor

Hypervisor

SPM

SPM

Discover Schedule receiver interrupt

1 SMC(FFA_FEATURES, Feature ID = 0x2)

2 SMC(FFA_FEATURES, Feature ID = 0x2)

3 ERET(FFA_SUCCESS, Interrupt ID)

4 ERET(FFA_SUCCESS, Interrupt ID)

Register handler for Schedule receiver interrupt

5 Initialize other drivers in endpoint

Register a call back for running Receiver
endpoint to receive a pending notification

6 C_API(callback_fn(), Receiver endpoint ID)

Make a note to invoke callback_fn() if a
notification is sent to Receiver endpoint

7

Figure 10.3: Schedule receiver interrupt setup in primary endpoint

Figure 10.4 illustrates an example setup of the notification pending interrupt in a Receiver endpoint.

• The Receiver endpoint implements a service driver that can receive notifications. It also implements an FF-A
driver that allows access to Framework function to the service driver.

• The FF-A driver discovers the notification pending interrupt.

• The Receiver service driver requests the FF-A driver to allocate a set of notification IDs. The notifications
are used by clients to access this service.

• The Receiver service driver registers a callback function with the FF-A driver.

• The FF-A driver calls this function if there is a pending notification allocated to the Receiver service driver.
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Endpoint

Receiver service driver

Receiver service driver

FF-A Driver

FF-A Driver

Partition manager

Partition manager

Discover notification pending interrupt

1 SMC(FFA_FEATURES, Feature ID = 0x1)

2 ERET(FFA_SUCCESS, Interrupt ID)

Register handler for notification pending interrupt

3 Initialize other drivers in primary OS

4 Request notification IDs

Allocate notifications

5 Notification ID list

Register a call back to handle pending notifications

6 C_API(callback_fn(), Notification ID)

Make a note to invoke callback_fn() if a
notification is sent to Receiver service driver

7

Configure notification signaling with clients of service

Figure 10.4: Notification pending interrupt setup in a Receiver endpoint

Receipt of the Schedule Receiver Interrupt and/or Notification Pending Interrupt by an FF-A component depends
upon the following conditions:

1. Endpoint is a recipient of one or more notifications.
2. Endpoint is responsible for scheduling another endpoint that is a recipient of notifications.

Table 10.3 describes which notification interrupts an FF-A component may receive.

Table 10.3: Valid Notification Interrupt configurations

Receiver
Component

Sender
Component

Responsible for
scheduling another
recipient of
notifications

Recipient of
Notifications

Receives Schedule
Receiver interrupt

Receives
Notification
Pending interrupt

VM Hypervisor Yes Yes Yes Yes

VM Hypervisor No Yes No Yes

VM Hypervisor Yes No Yes No

VM Hypervisor No No No No

Physical SP
(S-EL1)

SPMC (S-EL2) No Yes No Yes
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Receiver
Component

Sender
Component

Responsible for
scheduling another
recipient of
notifications

Recipient of
Notifications

Receives Schedule
Receiver interrupt

Receives
Notification
Pending interrupt

Physical SP
(S-EL1)

SPMC (S-EL2) No No No No

Hypervisor or OS
Kernel

SPMC (S-EL1,
S-EL2, EL3)

Yes Yes Yes No

10.4.1.1 Interrupt properties
The following rules govern the properties of the Schedule Receiver interrupt.

1. The type of interrupt should be inferred from the interrupt ID specified in Table 13.13. For example, in the
Arm GIC architecture, the interrupt ID indicates whether it is a PPI, SGI or SPI.

1. If the interrupt is a PPI, the same interrupt ID is used for this interrupt on all PEs in the system.

2. If the interrupt is an SGI, it is not signaled such that multiple PEs receive the interrupt independently
and concurrently. The interrupt is signaled so that only a single PE receives it.

The Arm GIC architecture allows signaling of an SGI through the targeted list model. In this model,
upon a write to the ICC_SGIxR_EL1 or ICC_ASGI1R_EL1 register, multiple PEs could receive the
interrupt independently. The above rule disallows this signaling model. Instead, an SGI can be signaled
only to the current PE like a PPI.

2. The interrupt is edge-triggered.

3. The Security state of the interrupt is Non-secure.

The delivery of the physical Schedule Receiver interrupt from the Secure state to the Non-secure state
depends upon the state of the interrupt controller as configured by the Hypervisor. This is beyond the control
of the Secure world. It is possible that the interrupt gets lost.

• For example, the Schedule Receiver interrupt could be a PPI and signaled on a PE when the Hypervisor
is about to turn the PE off through a PSCI CPU_OFF call. The interrupt would not be handled by the
Hypervisor in this scenario.

The Framework makes the following recommendation w.r.t use of an SGI as the Schedule Receiver interrupt.

• The Arm GIC specification defines 16 SGIs. It recommends that they are equally divided between the
Non-secure and Secure states. General-purpose operating systems in the Non-secure state typically do not
have SGIs to spare. The usage of SGIs in the Secure state is limited. It is more likely that software in the
Secure world does not use all the SGIs allocated to it. Arm recommends that the Secure world software
donates an unused SGI to the Normal world for use as the Schedule Receiver interrupt. This implies that
Secure world software must configure the SGI in the GIC as a Non-secure interrupt before presenting it to
the Normal world through the FFA_FEATURES ABI as described in 10.4.1 Notification interrupt setup.

The rules that govern the properties of the Notification pending interrupt are the same as the rules for the Schedule
Receiver interrupt except for the following.

1. The type of the Notification pending interrupt is either a PPI or SGI.

2. The Security state of the Notification pending interrupt is the same as the Security state of the endpoint it is
targeted to.
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10.4.2 Notification binding

A Receiver must bind a non-framework notification to a Sender before the latter can signal the notification to the
former. Effectively, the Receiver assigns one or more doorbells to a specific Sender. Only the Sender can ring
these doorbells.

The following rules govern the binding of notifications.

1. A Receiver uses the FFA_NOTIFICATION_BIND interface to bind one or more notifications to the Sender.
(see 16.3 FFA_NOTIFICATION_BIND).

2. A notification is not bound to any Sender endpoint at the time of the Receiver initialization.

3. A notification is signaled and pended only if it is bound to a Sender endpoint.

4. The notification bitmap in which a notification is bound to a Sender endpoint is determined by the security
state of the Sender endpoint.

1. If the Sender is a VM, the VM notifications bitmap is used.

2. If the Sender is a SP, the SP notifications bitmap is used.

5. A Receiver endpoint un-binds a notification from a Sender endpoint to stop the notification
from being signaled. It uses the FFA_NOTIFICATION_UNBIND interface to do this (see 16.4
FFA_NOTIFICATION_UNBIND).

6. A notification is unbound only if it is not in a pending state.

7. A notification is one of the following types.

• It is signaled to and handled by a specific execution context or vCPU of the Receiver endpoint. These
notifications are called Per-vCPU notifications. The vCPU is specified by the Sender.

• It is signaled to the Receiver endpoint and is handled by an execution context or vCPU that is chosen
by the Receiver’s scheduler or partition manager through an IMPLEMENTATION DEFINED mechanism.
These notifications are called Global notifications.

A Receiver can have one or more per-vCPU and global notifications pending at any point of time. Additionally,
the same per-vCPU notification could pend for multiple vCPUs of the same Receiver at the same time. Also
see 10.5 Notification signaling.

8. The type of notification is specified by the Receiver endpoint when the notification is bound to the Sender
endpoint.

9. An unbound notification is neither global nor per-vCPU i.e., it does not have a type associated with it.

Figure 10.5 illustrates an example flow of how a VM can bind a global notification to a SP
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Normal world Secure world

VM

VM

Hypervisor

Hypervisor

SPMC

SPMC

SP

SP

Do initialization

Bind Notification 20 to SP

1 SMC(FFA_NOTIFICATION_BIND, 0x00100000, VM, SP)

2 SMC(FFA_NOTIFICATION_BIND, 0x00100000, VM, SP)

Update internal state to allow only SP to
signal notification 20 to VM

3 ERET(FFA_SUCCESS)

4 ERET(FFA_SUCCESS)

Use IMPLEMENTATION DEFINED mechanism
to inform SP that notification
20 has been allocated to it

5 Finish initialization

Figure 10.5: Binding a global notification from VM to SP

An IMPLEMENTATION DEFINED mechanism is used by a Receiver and a Sender to negotiate the notification ID
that the Sender will use to signal to the Receiver. Figure 10.6 illustrates an example flow of how,

• A SP binds a global notification to a VM.
• The VM discovers the identity of the notification.

Normal world Secure world

VM

VM

Hypervisor

Hypervisor

SPMC

SPMC

SP

SP

Do initialization

Determine if SP supports
receipt of notifications

1 SMC(FFA_PARTITION_INFO_GET, UUID)

2 SMC(FFA_PARTITION_INFO_GET, UUID)

3 ERET(FFA_SUCCESS, Partition properties)

4 ERET(FFA_SUCCESS, Partition properties)

Request access to SP's services

5 SMC(FFA_MSG_SEND_DIRECT_REQ, Request message e.g., service ID etc, VM ID)

6 SMC(FFA_MSG_SEND_DIRECT_REQ, Request message, VM ID)

7 ERET(FFA_MSG_SEND_DIRECT_REQ, Request message, VM ID)

Allocate notification for VM to request service

Bind Notification 20 to VM

8 SMC(FFA_NOTIFICATION_BIND, 0x00100000, SP, VM)

Update internal state to allow only VM to
signal notification 20 to SP

9 ERET(FFA_SUCCESS)

Send response message to VM with notification ID 20

10 SMC(FFA_MSG_SEND_DIRECT_RESP, Response message e.g., notification id etc, VM ID)

11 ERET(FFA_MSG_SEND_DIRECT_RESP, Response message, VM ID)

12 ERET(FFA_MSG_SEND_DIRECT_RESP, Response message, VM ID)

Use notification ID 20 for accessing SP's services

13 Finish initialization

Figure 10.6: Notification binding between a VM and SP
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10.5 Notification signaling

Notification signaling is performed in the three phases.

1. The Sender requests the Receiver’s partition manager to ring a doorbell that was bound to the Sender by the
Receiver.

2. The Sender’s partition manager informs the Receiver’s scheduler that one of the Receiver’s doorbells has
been rung.

3. The Receiver obtains CPU cycles e.g. it is run by its scheduler. It obtains the identity of the doorbell that was
rung from its partition manager.

The following rules govern the signaling of notifications.

1. A Sender uses the FFA_NOTIFICATION_SET interface to signal a notification to the Receiver (see 16.5
FFA_NOTIFICATION_SET).

2. The notification bitmap in which a notification is signaled to the Receiver is determined by the security state
of the Sender endpoint.

1. If the Sender is a VM, the VM notifications bitmap is used.

2. If the Sender is a SP, the SP notifications bitmap is used.

3. For a global notification pended by a Sender, subsequent invocations of the FFA_NOTIFICATION_SET
interface by the same Sender for the same notification have no effect until the notification is cleared.

4. For a per-vCPU notification pended by a Sender, subsequent invocations of the FFA_NOTIFICATION_SET
interface by the same Sender for the same notification and Receiver vCPU have no effect until the notification
is cleared for that Receiver vCPU.

5. A Receiver determines that it has a pending notification through one or more of the following mechanisms.

1. The partition manager signals the virtual Notification pending interrupt to the Receiver.

The interrupt is signaled when the target execution context of the Receiver next enters the running state.

1. For a per-vCPU notification, the target execution context is specified by the Sender in the invocation
of the FFA_NOTIFICATION_SET interface.

2. For a global notification, the target execution context is determined by the partition manager of the
Receiver through an IMPLEMENTATION DEFINED mechanism.

This mechanism is applicable to only partitions that run in EL1 or S-EL1.

2. The Receiver’s scheduler uses a Direct request interface to run and inform the Receiver through a
partition message that it has a pending notification.

3. The Receiver uses the FFA_NOTIFICATION_GET interface to poll if it has pending notifications.

6. A Receiver endpoint uses the FFA_NOTIFICATION_GET interface to retrieve its pending notifications (see
16.6 FFA_NOTIFICATION_GET).

For example, a S-EL1 SP could invoke this interface while handling the Notification pending interrupt.

7. A pending notification is cleared by a partition manager when it is retrieved by the Receiver endpoint as
described below.

1. The Hypervisor clears a pending notification in the VM and Hypervisor notifications bitmap of a VM.

2. The SPMC clears a pending notification in the SP and SPMC notifications bitmap of a VM.

3. The SPMC clears a pending notification in all notifications bitmap of a SP.
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8. The Schedule Receiver interrupt (see 10.4.1 Notification interrupt setup) is used by the Partition manager
to inform the Receiver’s scheduler that the Receiver has one or more pending notifications. Assertion of
this interrupt to signal a pending notification is the responsibility of the partition manager that writes to the
notifications bitmap of the Receiver.

The partition manager uses an IMPLEMENTATION DEFINED policy to determine when the Schedule Receiver
interrupt must be asserted in response an invocation of the FFA_NOTIFICATION_SET interface. The
interrupt could be asserted before or after an invocation of this interface completes.

This interrupt is used only if the Partition manager and the Receiver’s scheduler reside in separate exception
levels.

9. The Receiver’s scheduler uses the FFA_NOTIFICATION_INFO_GET interface to retrieve the list of
endpoints that have pending notifications and must be run (see 16.7 FFA_NOTIFICATION_INFO_GET).

10. A notification could be signaled by a Sender in the Secure world to a VM. The Hypervisor needs to determine
which VM and vCPU (in case a per-vCPU notification is signaled) has a pending notification in this scenario.
It obtains this information through an invocation of the FFA_NOTIFICATION_INFO_GET ABI at the
Non-secure physical FF-A instance.

10.5.1 Example signaling flows

This section describes some example notification signaling flows between the Normal and Secure worlds. The
following scenarios are considered.

1. SP0 sends a notification to SP1.
2. SP0 sends a notification to VM0.
3. SP0 sends a notification to its scheduler.

For the sake of simplicity, the following assumptions have been made.

1. Schedulers of all Receivers are implemented in the primary endpoint.

2. The primary endpoint is responsible for handling physical G1NS interrupts. The Hypervisor does not signal
the virtual Notification pending interrupt to the primary endpoint.

3. There could be multiple PEs in the system. However, the scenarios encountered in notification signaling due
to the presence of multi-processing are ignored.

4. SP0 is an MP-capable partition. Each execution context of SP0 is pinned to a physical PE on the system.
Also see 7.4.1 Discovery and setup.

5. The endpoints bind the following notifications as described in 10.4.2 Notification binding.

1. SP1 binds global notification 5 to SP0.
2. VM0 binds global notification 0 to SP0.
3. SP0’s scheduler in the primary endpoint binds per-vCPU notification 1 to SP0.

6. Each endpoint uses an IMPLEMENTATION DEFINED mechanism to inform another endpoint about a
notification it can signal.

For example, a SP’s scheduler could inform the SP about a notification that it can signal by sending it a Direct
message through the FFA_MSG_SEND_DIRECT_REQ ABI.

7. The Schedule Receiver interrupt is a physical PPI or a SGI that is signaled on the same PE on which the
notification is signaled.

8. The discovery and setup associated with the Schedule Receiver interrupt and Notification pending interrupt
is performed by the endpoints and their schedulers as described in 10.4.1 Notification interrupt setup.

18.6.1 Example notification flows illustrates some additional example end to end flows of signalling a notification
between different combinations of endpoints and system configurations.
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10.5.1.1 SP0 signals a notification to SP1, VM0 and its scheduler
Figure 10.7 illustrates an example flow where SP0 sends notifications to SP1, VM0 and its scheduler in the primary
endpoint while handling a Secure interrupt that preempted the Normal world. It is assumed that the execution
context of SP0 and VM0 on the PE where the interrupt triggers is in a waiting state.

S-EL2 S-EL1

SPMC

SPMC

SP0

SP0

1 Physical IRQ

Delegate handling of Secure virtual interrupt to SP0

Pend Secure virtual interrupt for SP0

2 ERET(FFA_INTERRUPT, Interrupt ID)

Send Notification 5 to SP1

3 SMC(FFA_NOTIFICATION_SET, 0x00000020, SP1, Delay Schedule Receiver interrupt)

Set bit 5 in Secure notification bitmap for SP1

Make note that SP1 has a pending notification

4 ERET(FFA_SUCCESS)

Send Notification 0 to VM0

5 SMC(FFA_NOTIFICATION_SET, 0x00000001, VM0, Delay Schedule Receiver interrupt)

Set bit 0 in Secure notification bitmap for VM0

Make note that VM0 has a pending notification

6 ERET(FFA_SUCCESS)

Send per-vCPU notification 1 to scheduler in primary endpoint

7 SMC(FFA_NOTIFICATION_SET, 0x00000002, Primary endpoint, vCPU ID, Delay Schedule Receiver interrupt)

Set bit 1 in Secure notification bitmap for primary endpoint

Make note that primary endpoint has a pending notification

8 ERET(FFA_SUCCESS)

Finish interrupt handling

9 SMC(FFA_MSG_WAIT)

Pend Schedule Receiver interrupt
for FF-A driver in Primary endpoint

10 ERET

Figure 10.7: Signaling from SP0 to SP1, VM0 and its scheduler

10.5.1.2 Primary endpoint handles Schedule Receiver interrupt
Figure 10.8 illustrates an example flow where the FF-A driver in the primary endpoint handles the Schedule

Receiver interrupt.

1. The Primary endpoint receives the Schedule Receiver interrupt.
2. The endpoint calls the FFA_NOTIFICATION_INFO_GET ABI to retrieve a list of endpoints that have

pending notifications.
3. The endpoint prepares to iterate over each of the returned Endpoint IDs to invoke the corresponding schedule

receiver callback.

Figure 10.9 illustrates an example flow where the SP1 driver in the primary endpoint schedules an SP1 execution
context in response to the Schedule Receiver interrupt.
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1. The Schedule Receiver callback that was previously registered for SP1 is invoked.
2. The SP1 Receiver Endpoint Driver allocates CPU cycles to SP1.
3. SP1 transitions to the Running state and receives the Notification Pending Interrupt.
4. SP1 invokes the FFA_NOTIFICATION_GET ABI to retrieve its notification bitmaps.
5. SP1 Handles its pending notifications.

Figure 10.10 illustrates an example flow where the VM0 driver in the primary endpoint schedules a VM0 execution
context in response to the Schedule Receiver interrupt.

1. The Schedule Receiver callback that was previously registered for VM0 is invoked.
2. The VM0 Receiver Endpoint Driver allocates CPU cycles to VM0.
3. VM0 transitions to the Running state and receives the Notification Pending Interrupt.
4. VM0 invokes the FFA_NOTIFICATION_GET ABI to retrieve its notification bitmaps.
5. VM0 Handles its pending notifications.

Figure 10.11 illustrates an example flow where the SP0 driver in the primary endpoint handles the notification
pended by SP0.

1. The primary endpoint Scheduler Receiver interrupt handler sees a pending notification for itself.
2. The endpoint invoked the FFA_NOTIFICATION_GET ABI to retrieve its notification bitmaps.
3. The endpoint iterates over each of its pending notifications to invoke the corresponding notification pending

callback.
4. The Receiver Service Driver handles the signalled notification from SP0.

Primary endpoint EL2 S-EL2

Schedule Receiver interrupt handler

Schedule Receiver interrupt handler

Hypervisor

Hypervisor

SPMC

SPMC

1 Schedule Receiver interrupt

Get list of target endpoints

2 SMC(FFA_NOTIFICATION_INFO_GET)

3 SMC(FFA_NOTIFICATION_INFO_GET)

Retrieve list of SPs and VMs with pending notifications

4 ERET(FFA_SUCCESS, List count = 3, SP1/VM0/Primary endpoint ID, Call again = 0)

Parse response to record which VMs have a notification pended by an SP

5 ERET(FFA_SUCCESS, List count = 3, SP1/VM0/Primary endpoint ID, Call again = 0)

Prepare to invoke registered callbacks

Figure 10.8: Schedule Receiver interrupt handling in primary endpoint

Primary endpoint S-EL2 S-EL1

SP1 Receiver endpoint Driver

SP1 Receiver endpoint Driver

SP1 execution
context thread

SP1 execution
context thread

Schedule Receiver
interrupt handler

Schedule Receiver
interrupt handler

FF-A Driver

FF-A Driver

SPMC

SPMC

SP1

SP1

Invoke notification callback for SP1

1 schedule_receiver_callback(SP1 ID)

Schedule an SP1 execution
context thread

2 ret()

3 Scheduling decision

Send a message to and run SP1 execution context

4 C_API(ffa_msg_send_direct(message in regs))

5 SMC(FFA_MSG_SEND_DIRECT_REQ, Message in regs)

Inject virtual notification pending interrupt

6 ERET(FFA_MSG_SEND_DIRECT_REQ, Message in regs)

7 Notification Pending Interrupt

Handle pending notification interrupt

8 SMC(FFA_NOTIFICATION_GET, SP1, Flags[3:0] = b'1111)

Retrieve bitmaps of notifications for SP1

9 ERET(FFA_SUCCESS, 0x00000020)

Handle notification 5

Figure 10.9: SP1 Receiver Endpoint driver in primary endpoint schedules SP1
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Primary endpoint EL1 EL2 S-EL2

VM0 Receiver Endpoint Driver

VM0 Receiver Endpoint Driver

VM0 execution
context thread

VM0 execution
context thread

Schedule Receiver
interrupt handler

Schedule Receiver
interrupt handler

FF-A Driver

FF-A Driver

VM0

VM0

Hypervisor

Hypervisor

SPMC

SPMC

Invoke notification callback for VM0

1 schedule_receiver_callback(VM0 ID)

Schedule an VM0 execution
context thread

2 ret()

3 Scheduling decision

Send a message to and run VM0 execution context

4 C_API(ffa_msg_send_direct(message in regs))

5 SMC(FFA_MSG_SEND_DIRECT_REQ, Message in regs)

Inject virtual notification pending interrupt

6 ERET(FFA_MSG_SEND_DIRECT_REQ, Message in regs)

7 Notification Pending Interrupt

Handle pending notification interrupt

8 SMC(FFA_NOTIFICATION_GET, VM0, Flags[3:0] = b'1111)

Retrieve bitmap of notifications owned by SPMC

9 SMC(FFA_NOTIFICATION_GET, VM0, Flags[3:0] = b'1010)

Retrieve bitmaps of notifications for VM0

10 ERET(FFA_SUCCESS, 0x00000001)

Retrieve bitmap of notifications owned by Hypervisor

11 ERET(FFA_SUCCESS, 0x00000001)

Handle notification 0

Figure 10.10: VM0 Receiver Endpoint driver in primary endpoint schedules VM0

Primary endpoint EL2 S-EL2

SP0 Receiver Service Driver

SP0 Receiver Service Driver

Schedule Receiver
interrupt handler

Schedule Receiver
interrupt handler

Hypervisor

Hypervisor

SPMC

SPMC

There is a pending per-vCPU
notification for primary endpoint

1 SMC(FFA_NOTIFICATION_GET, Primary endpoint, Flags[3:0] = b'1111)

Retrieve bitmap of notifications owned by SPMC

2 SMC(FFA_NOTIFICATION_GET, Primary endpoint, Flags[3:0] = b'1010)

Retrieve bitmaps of notifications for Primary endpoint

3 ERET(FFA_SUCCESS, 0x00000002, vCPU ID)

Retrieve bitmap of notifications owned by Hypervisor

4 ERET(FFA_SUCCESS, 0x00000002, vCPU ID)

Delegate notification 0 to SP0 Receiver Service driver

5 notification_pending_callback(Notification ID 0, vCPU ID)

Handle notification 0 on vCPU ID

6 ret()

Figure 10.11: SP0 Receiver Service driver in primary endpoint receives a notification

10.5.1.3 Endpoint handles Notification Pending interrupt
Figure 10.12 illustrates an example flow where an Endpoint handles its pending notifications in response to the

Notification Pending interrupt.

1. The endpoint Receives the Notification Pending interrupt.
2. The endpoint invokes the FFA_NOTIFICATION_GET ABI to retrieve its notification bitmaps.
3. The endpoint iterates over each of its pending notifications to invoke the corresponding notification pending

callback.
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Endpoint

Receiver Service Driver 1

Receiver Service Driver 1

Receiver Service Driver 2

Receiver Service Driver 2

Notification Pending
interrupt handler

Notification Pending
interrupt handler

Partition manager

Partition manager

1 SMC(FFA_NOTIFICATION_GET, Endpoint, Flags[3:0]=b'1111)

Retrieve bitmaps of pending notifications for Endpoint

2 ERET(FFA_SUCCESS, 0x00000002)

Delegate notification 0 to Service Driver 1

3 notification_pending_callback(Notification ID 0)

Handle notification 0

4 ret()

Delegate notification 1 to Service Driver 2

5 notification_pending_callback(Notification ID 1)

Handle notification 1

6 ret()

Figure 10.12: Endpoint receives Notification Pending interrupt
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10.6 Notification state machine

I Figure 10.13 describes the state diagram of a notification.

Masked

Notification cannot be signaled
Notification is not bound to any endpoint

Unmasked

Notification is not pending and can be signaled
Notification is bound to an endpoint

Pending

Notification has been signaled

FFA_NOTIFICATION_BIND FFA_NOTIFICATION_UNBIND

FFA_NOTIFICATION_SET FFA_NOTIFICATION_GET

Figure 10.13: Notification state transition diagram
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10.7 Compliance requirements

The following rules govern discovery of support for notifications.

1. Support for receipt of notifications is optional. If an endpoint implements this support, it specifies this in its
manifest (see Chapter 5 Setup).

2. A partition manager can choose to not implement support for notifications. It does not initialize an endpoint
if this support is requested through the endpoint manifest.

It is possible that the Hypervisor does not implement support for notifications while the SPMC and one
or more SPs do. Notifications will not be delivered in this configuration since there is no recipient of the
Schedule Receiver interrupt in the Normal world. The system integrator must ensure that notifications are
supported by the Hypervisor before enabling use of this feature by the SPMC or SPs.

3. An FF-A component in the Normal world uses an FF-A discovery interface to determine if another endpoint
supports receipt of notifications (see 6.2 Partition discovery).

4. An invocation of the FFA_FEATURES interface with Feature IDs 0x1 and 0x2 or any notification ABI,
completes with an invocation of the FFA_ERROR interface with the NOT_SUPPORTED error code, if the
callee does not support notifications.

5. An invocation of the FFA_FEATURES interface by an endpoint, with Feature ID 0x1 or any Notification
ABI, apart from FFA_NOTIFICATION_INFO_GET and FFA_NOTIFICATION_SET, completes with an
invocation of the FFA_ERROR interface with the NOT_SUPPORTED error code, if the endpoint does not
support receipt of notifications.

6. An invocation of any notification ABI by an endpoint that does not support receipt of notifications completes
with an invocation of the FFA_ERROR interface with the NOT_SUPPORTED error code.

The compliance requirements for an implementation of FF-A notifications at an FF-A instance are expressed as the
set of ABIs and features that must be implemented at that instance. These requirements are listed in Table 10.4.

Table 10.4: Compliance requirements for FF-A notifications

Caller role Instance Mandatory Interface Conduit

Sender • Secure or NS
virtual

• NS physical2

• Secure physical3

• FFA_NOTIFICATION_SET SMC,
HVC, SVC

Scheduler • NS virtual
• NS physical

• FFA_NOTIFICATION_INFO_GET SMC,
HVC

• Handler for Schedule receiver interrupt. Physical
IRQ

Receiver • Secure or NS
virtual

• Secure physical
• Non-secure

physical

• FFA_NOTIFICATION_BIND
• FFA_NOTIFICATION_UNBIND
• FFA_NOTIFICATION_GET

SMC,
HVC, SVC

• Handler for Notification pending interrupt. Virtual
IRQ

2Interfaces are mandatory at this instance in the absence of an Hypervisor.
3Interfaces are mandatory at this instance between the SPMC and a logical S-EL1 SP.
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Caller role Instance Mandatory Interface Conduit

Hypervisor
or OS
kernel4

• NS physical • FFA_NOTIFICATION_BITMAP_CREATE
• FFA_NOTIFICATION_BITMAP_DESTROY
• FFA_NOTIFICATION_BIND
• FFA_NOTIFICATION_UNBIND
• FFA_NOTIFICATION_SET
• FFA_NOTIFICATION_GET
• FFA_NOTIFICATION_INFO_GET

SMC

S-EL2 or
S-EL1
SPMC5

• Secure physical • FFA_NOTIFICATION_BITMAP_CREATE
• FFA_NOTIFICATION_BITMAP_DESTROY
• FFA_NOTIFICATION_BIND
• FFA_NOTIFICATION_UNBIND
• FFA_NOTIFICATION_SET
• FFA_NOTIFICATION_GET
• FFA_NOTIFICATION_INFO_GET

ERET

4See 10.9 Notification support without a Hypervisor.
5Interface invocations from the Hypervisor are forwarded by the SPMD through the ERET conduit to the SPMC in S-EL2 or S-EL1.
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10.8 Framework Notifications

Framework notifications are doorbells that are rung by the partition managers to signal common events to an
endpoint. These doorbells cannot be rung by an endpoint directly. A partition manager can signal a Framework
notification in response to an FF-A ABI invocation by an endpoint.

In this version of the Framework, the following doorbells are supported.

1. RX buffer full notification. See 10.8.1 RX buffer full notification.

10.8.1 RX buffer full notification

This notification is signaled by a partition manager during transmission of a partition message through Indirect
messaging to,

1. Inform the message Receiver’s scheduler that the Receiver must be run.

2. Inform an endpoint that it has a pending message in its RX buffer.

Also see 7.3 Indirect messaging usage.

The following rules govern usage of this notification.

1. This notification is signaled by setting Bit[0] in the framework notifications bitmap of an endpoint.

1. This notification is reserved in both the SPMC and Hypervisor framework notifications bitmaps of every
endpoint.

2. This notification is signaled to only those endpoints that can receive messages through Indirect
messaging.

2. In response to an FFA_MSG_SEND2 invocation by a Sender endpoint, the Framework performs the following
actions after the message is copied from the TX buffer of the Sender to the RX buffer of the Receiver.

1. The notification is pended in the framework notification bitmap of the Receiver.

1. If the Sender is a SP, the notification is pended in the SPMC framework notifications bitmap of the
Receiver.

2. If the Sender is a VM, the notification is pended in the Hypervisor framework notifications bitmap
of the Receiver.

3. If the Receiver is a SP, the notification is pended by the SPMC irrespective of whether the Sender is
a VM or a SP.

4. If the Receiver is a VM, the notification is pended by the SPMC if the Sender is a SP. It is pended
by the Hypervisor if the Sender is a VM.

2. The partition manager of the endpoint that contains Receiver’s scheduler pends the Schedule Receiver
interrupt for this endpoint.

The Receiver receives the notification as described in 10.5 Notification signaling and copies out the
message from its RX buffer.
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10.9 Notification support without a Hypervisor

Support for notifications on an Arm A-profile system without a Hypervisor is described below,

1. Only SP notifications and Framework notifications from the SPMC can be signaled to the OS Kernel. The
SPMC has read-write and an SP has write-only permission on the notification bitmaps of the OS Kernel.

2. Both SP and VM notifications and Framework notifications from the SPMC and Hypervisor can be signaled
to an SP from the OS Kernel.

This is because it is not possible for the Secure world to reliably determine the presence or absence of the
Hypervisor in the Normal world.

3. The OS Kernel has the same permissions on the VM and Hypervisor’s framework notification bitmaps of an
SP as the Hypervisor.

4. The bits corresponding to VM notifications in the notifications bitmap of the OS kernel are read-as-zero and
write-ignore.

5. The bits corresponding to notifications from the Hypervisor in the framework notifications bitmap of the OS
kernel are read-as-zero and write-ignore.

6. The SPMC acts as the partition manager of the OS Kernel for the purposes of,

1. Signaling a notification to a SP.
2. Retrieving pending notifications for the OS Kernel.

7. The OS Kernel uses ID 0 (see Chapter 6 Identification and Discovery) as its endpoint ID as applicable in the
notification ABIs listed in Chapter 16 Notification interfaces.

8. The OS Kernel uses the FFA_NOTIFICATION_BITMAP_CREATE interface to request the SPMC
to allocate the SP and SPMC framework notification bitmaps during its initialization (see 16.1
FFA_NOTIFICATION_BITMAP_CREATE).

Figure 10.14 illustrates notification bitmap creation for the OS Kernel.

9. The OS Kernel uses the FFA_NOTIFICATION_BITMAP_DESTROY interface to inform the SPMC prior to
reset or shutdown (see 16.2 FFA_NOTIFICATION_BITMAP_DESTROY). The SPMC frees memory for the
OS Kernel’s SP and SPMC framework notification bitmaps.

10. The OS Kernel determines the absence of a Hypervisor through the following mechanisms.

1. It invokes the FFA_FEATURES ABI with the function ID of the FFA_NOTIFICATION_BITMAP_CREATE
interface.

2. It invokes the FFA_NOTIFICATION_BITMAP_CREATE interface directly and it does not complete
with the NOT_SUPPORTED error code of the FFA_ERROR interface.

11. Discovery and setup of the Schedule Receiver interrupt is done by the OS Kernel as the primary endpoint.

12. The Notification pending interrupt is a virtual interrupt and not used for signaling to the OS Kernel that it has
a pending notification.

13. The OS Kernel is the Receiver endpoint for the purposes of binding and unbinding notifications.

14. The OS Kernel uses the FFA_NOTIFICATION_SET interface to signal a notification to a SP. The notification
is signaled through the VM notifications bitmap of the SP.

The SPMC pends the Schedule Receiver interrupt to inform the OS Kernel that one or more SPs have pending
notifications and must be run.

15. An SP uses the FFA_NOTIFICATION_SET interface to signal a notification to the OS Kernel. The
notification is signaled through the SP notifications bitmap of the OS Kernel.
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The SPMC pends the Schedule Receiver interrupt to inform the OS Kernel that it has pending notifications
that must be handled when it is run next.

16. The OS Kernel uses the FFA_NOTIFICATION_INFO_GET interface to,

1. Retrieve the list of SPs that have pending notifications and must be run.
2. Determine if it has pending notifications.

17. The SP’s scheduler in the OS Kernel uses a Direct request interface to run and inform the SP through a
partition message that it has a pending notification.

18. The OS Kernel uses the FFA_NOTIFICATION_GET interface to retrieve its pending notifications and handle
them.

Normal world Secure world

OS Kernel

OS Kernel

SPMC

SPMC

SP

SP

Allocate 64-bit bitmap
for SP's SP notifications

Allocate 64-bit bitmap
for SP's VM notifications

Allocate 64-bit bitmap
for SP's Framework notifications

1 Start initialization

Do initialization

2 Finish initialization

3 Boot OS Kernel

Request SPMC to allocate OS Kernel's
SP and SPMC Framework notifications bitmaps

4 SMC(FFA_NOTIFICATION_BITMAP_CREATE, VM=0)

Allocate 64-bit bitmap
for OS Kernel's SP notifications

Allocate 32- bitmap for OS Kernel's
SPMC Framework notifications

5 ERET(FFA_SUCCESS)

Do remaining initialization

Figure 10.14: Notification bitmap creation for an OS Kernel and SP
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10.10 Notification support for a Hypervisor

The guidance in this chapter assumes that endpoints are Senders and Receivers of notifications. It is also possible
for the SPMC to signal Framework notifications to a Hypervisor. This mechanism is enabled by the fact that the
endpoint ID 0 is assigned to the Hypervisor (see 6.3 Partition manager identification).

The Hypervisor can invoke the FFA_NOTIFICATION_BITMAP_CREATE interface with a VM ID of 0 to request
the SPMC to allocate the SP and SPMC framework notification bitmaps. A Framework notification pended by the
SPMC in the corresponding bitmap for VM ID 0 will be received by the Hypervisor.

It is IMPLEMENTATION DEFINED whether the Hypervisor allows an SP or VM to pend notifications via the
endpoint notification bitmaps. For example, the Host operating system at EL1 in a Type-2 Hypervisor implements
a subset of the Hypervisor functionality and fulfils the role of an endpoint. It can use the endpoint notification
bitmaps to receive IMPLEMENTATION DEFINED notifications from any SP or VM just like any other endpoint.
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The interfaces used by FF-A components for communication at an FF-A instance are described in the following
sections.

• Interfaces for reporting status of execution of other interfaces are described in Chapter 12 Status reporting
interfaces.

• Interfaces for partition setup and discovery using Framework messages are described in Chapter 13 Setup
and discovery interfaces.

• Interfaces to manage CPU cycles allocated to an endpoint are described in Chapter 14 CPU cycle management
interfaces.

• Interfaces to implement exchange of Direct and Indirect Partition messages between endpoints are described
in Chapter 15 Messaging interfaces.

• Additional interfaces for interfaces pertaining to power management are described in Chapter 18 Appendix.

The following common rules govern the definition and behavior of FF-A ABIs.

1. Each interface is invoked using one more conduits described in 4.4 Conduits.

2. Each interface relies on the SMC calling convention v1.2 described in [5]. The divergences from the calling
convention are described in 11.1 Divergence from SMC calling convention.

3. Usage of only those architectural registers that are relevant to an interface is specified. The values of all other
architectural registers must be ignored.

4. The following standard Secure service call identifier ranges have been reserved for FF-A interfaces in the
SMCCC [5].

1. 0x84000060-0x840000FF: FF-A 32-bit calls.
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• A caller in the AArch32 Execution state, uses the function identifiers for 32-bit calls.

2. 0xC4000060-0xC40000FF: FF-A 64-bit calls.

• A caller in the AArch64 Execution state, can use the function identifiers for 32-bit or 64-bit calls.

5. An FF-A ABI could support both the SMC32 and SMC64 conventions e.g. FFA_RXTX_MAP,
FFA_NOTIFICATION_INFO_GET. A callee that runs in the AArch64 execution state and implements such
an ABI must implement both SMC32 and SMC64 conventions of the ABI.

6. An invocation of any interface is completed by invoking the FFA_ERROR interface with the
NOT_SUPPORTED error code in the following scenarios.

• The interface was invoked at an FF-A instance where it cannot be invoked through any conduit.

• The interface was invoked through an invalid conduit at an FF-A instance where it can be invoked.

An FF-A component at the lower EL at an FF-A instance uses the FFA_FEATURES interface (see 13.3
FFA_FEATURES) to discover if an FF-A ABI is implemented by the FF-A component at the higher EL.
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11.1 Divergence from SMC calling convention

The SMC calling convention describes the concept of fast and yielding SMC calls. The type of call is specified in
bit[31] of the Function ID parameter of an SMC. The function ID range for yielding calls is reserved for legacy
SMC interfaces.

FF-A interfaces fall in both categories. Furthermore, the yielding nature of some FF-A ABIs depends entirely upon
the protocol between a service and its clients.

For example, a Receiver endpoint that is allocated CPU cycles through the FFA_MSG_SEND_DIRECT_REQ
ABI could be preempted by a Non-secure interrupt or perform a managed exit. In the latter case, the endpoint
could complete the requested operation before relinquishing control to the Normal world.

From the scheduler’s perspective, the invocation of FFA_MSG_SEND_DIRECT_REQ completes with
FFA_INTERRUPT in the former case and FFA_MSG_SEND_DIRECT_RESP in the latter case. In the latter case,
whether the requested operation is preempted or completed depends upon the service level protocol between the
Receiver and Scheduler endpoints. This is not visible to the Framework. The call runs to completion from the
Framework’s perspective.

On the other hand, hypcall interfaces are not preempted by Non-secure interrupts and run to completion from the
caller’s perspective.

It is not possible to consistently categorize FF-A ABIs as fast or yielding. Furthermore, function IDs for yielding
calls cannot be allocated for FF-A ABIs as they lie in the reserved range. Hence, function IDs for FF-A ABIs are
allocated from the fast call range. The interpretation of bit[31] of the Function ID parameter by the Framework
depends upon the FF-A ABI. For example, hypcalls generally behave as fast calls. FF-A ABIs that allocate CPU
cycles to a partition generally behave as yielding calls.
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11.2 Reserved parameter convention

The SMCCC refers to the documentation of each SMC or HVC call to determine if parameter registers in that call
are used or preserved. Unused parameter registers in FF-A ABIs are reserved for future use by the Framework.

In an invocation of an ABI via the SMC, HVC or SVC conduit, the callee treats the unused parameter registers as
Reserved (SBZ). The caller is expected to write zeroes to these registers. The callee ignores the values in these
registers.

The ERET conduit is used in the following scenarios:

• To complete the invocation of a hypcall. The parameter registers contain return results. E.g. FFA_ID_GET is
invoked via the SMC conduit at the Non-secure physical FF-A instance. The invocation completes via the
ERET conduit.

• To invoke a new ABI that is independent of the ABI that was previously invoked via the SMC, HVC or
SVC conduits. The parameter registers contain input arguments of the new ABI. E.g. An SP invokes
FFA_MSG_WAIT to enter the waiting state. The SPMC invokes FFA_MSG_SEND_DIRECT_REQ with the
ERET conduit to transition the SP to the running state.

In both scenarios, the caller of the ERET instruction treats all unused parameter registers as Reserved (MBZ). This
has the following implications:

• Information from a higher Exception level never leaks to a lower Exception level in ABI invocations.

• Values specified by a lower Exception level in the last invocation of the SMC, HVC or SVC conduits are not
preserved.
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12.1 Overview

Interfaces described in this section are used to report the status of a previous FF-A ABI invocation. The status
indicates successful or unsuccessful completion or preemption of the ABI invocation. This ABI must be one that is
listed in the following sections.

• Interfaces for partition setup and discovery1 in Chapter 13 Setup and discovery interfaces.

• Interfaces to implement memory management transactions in the FF-A memory management protocol [1].

• Interfaces to manage CPU cycles in Chapter 14 CPU cycle management interfaces.

• Interfaces to implement messaging between endpoints in Chapter 15 Messaging interfaces.

1The FFA_VERSION interface (see 13.2 FFA_VERSION) is used for discovering the presence of a Framework implementation. It does not use the status
reporting interfaces.
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12.2 FFA_ERROR

Description

• Returns error code in response to a previous invocation of an FF-A function.
• Table 12.2 defines the values for status codes used with FF-A functions. All values are considered to be

32-bit signed integers.
• Valid FF-A instances and conduits are listed in Table 12.3.
• Syntax of this function is described in Table 12.4.
• Figure 12.1 illustrates example usage of this function with the following assumptions.

– Component A makes an invalid request to Component B through an FF-A function described in this
specification.

– Component B uses the FFA_ERROR function to return the error code to Component A.
– The FF-A function used by component A can be invoked through the SMC and ERET conduits.
– Both components could be interacting at any FF-A instance support by the FF-A function. The two

possible scenarios have been considered.
* Component A is at a lower EL than component B at the FF-A instance.
* Component A is at a higher EL than component B at the FF-A instance.

Figure 12.1: Example usage of FFA_ERROR

Table 12.2: Error status codes

Status code Description

-1 NOT_SUPPORTED

-2 INVALID_PARAMETERS

-3 NO_MEMORY

-4 BUSY

-5 INTERRUPTED

-6 DENIED

-7 RETRY
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Status code Description

-8 ABORTED

-9 NO_DATA

-10 NOT_READY

Table 12.3: FFA_ERROR instances and conduits

Config No. FF-A instance Valid conduits

1 Secure and Non-secure physical SMC, ERET

2 Non-secure virtual SMC, HVC, ERET

3 Secure virtual SMC, ERET

Table 12.4: FFA_ERROR function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000060.

uint32 Target information w1 • Information to identify target SP/VM.
– Valid only when SMC conduit is used at the

Non-secure virtual FF-A instance. MBZ
otherwise.

– Bits[31:16]: ID of SP/VM.
– Bits[15:0]: ID of vCPU of SP/VM to deliver

error to.

int32 Error code w2 • FF-A function specific error code. See function
definition for applicable error codes .

Other Parameter registers w3-w7
x3-x17

• Reserved (SBZ).
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12.3 FFA_SUCCESS

Description

• Returns results on successful completion of a previous invocation of an FF-A function.
• Valid FF-A instances and conduits are listed in Table 12.6.
• Syntax of this function is described in Table 12.7.
• Figure 12.2 illustrates example usage of this function with the following assumptions.

– Component A makes an valid request to Component B through an FF-A function described in this
specification.

– Component B uses the FFA_SUCCESS function to return the results to Component A.
– The FF-A function used by component A can be invoked through the SMC and ERET conduits.
– Both components could be interacting at any FF-A instance support by the FF-A function. The two

possible scenarios have been considered.
* Component A is at a lower EL than component B at the FF-A instance.
* Component A is at a higher EL than component B at the FF-A instance.

Figure 12.2: Example usage of FFA_SUCCESS

Table 12.6: FFA_SUCCESS instances and conduits

Config No. FF-A instance Valid conduits

1 Secure and Non-secure physical SMC, ERET

2 Non-secure virtual FF-A SMC, HVC, ERET

3 Secure virtual FF-A SMC, ERET
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Table 12.7: FFA_SUCCESS function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000061.
• 0xC4000061.

– This function ID, also denoted as
FFA_SUCCESS64, is used only if any result
register encodes a 64-bit parameter.

uint32 Target information w1 • Information to identify target SP/VM.
– Valid only when SMC conduit is used at the

Non-secure virtual FF-A instance. MBZ
otherwise.

– Bits[31:16]: ID of SP/VM.
– Bits[15:0]: ID of vCPU of SP/VM to deliver

results to.

uint32/uint64 Result registers w2-w7
x2-x17

• FF-A function specific return results. See function
definition for result encoding. Reserved (SBZ) if not
explicitly specified.
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12.4 FFA_INTERRUPT

Description

• Returns control from the caller to the callee in response to an interrupt. See 12.4.1 Usage for details.
• Valid FF-A instances and conduits are listed in Table 12.9.
• Syntax of this function is described in Table 12.10.

Table 12.9: FFA_INTERRUPT instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical ERET

2 Secure and Non-secure virtual ERET

3 Secure physical SMC, ERET

Table 12.10: FFA_INTERRUPT function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000062.

uint32 Endpoint/vCPU IDs w1 • Endpoint and vCPU IDs of the caller in a valid usage
scenario described in 12.4.1 Usage. MBZ otherwise.

– Bits[31:16]: Endpoint ID.
– Bits[15:0]: vCPU ID.

uint32 Interrupt ID w2 • Interrupt ID in a valid usage scenario described in
12.4.1 Usage. MBZ otherwise.

Other Parameter registers w3-w7
x3-x17

• Reserved (SBZ).

12.4.1 Usage

1. FFA_INTERRUPT is used with the SMC conduit at the Secure physical FF-A instance only by the S-EL1 or
S-EL2 SPMC to inform the SPMD that a Non-secure interrupt has preempted execution of an SP and the
NS-Endpoint on this physical PE must be resumed so that the interrupt can be handled.

1. The SPMC returns the ID of the SP and its execution context that was doing work on behalf of the
NS-Endpoint. The NS-Endpoint is expected to resume execution of the SP execution context once the
interrupt is handled.

2. The interrupt ID field is invalid and MBZ. It must be ignored by the SPMD.

3. An example of this usage is illustrated in Figure 9.3.
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2. FFA_INTERRUPT is used with the ERET conduit by the Hypervisor, SPMC or the SPMD to inform a callee
in the blocked runtime state that its request was preempted by an interrupt.

1. The callee had entered the blocked runtime state after requesting a partition to do work on its behalf e.g
through an invocation of a Direct request interface.

2. The partition manager returns the ID of the partition and its vCPU or execution context that was doing
work on behalf of the callee. The callee is expected to resume execution of the partition vCPU or
execution context once the interrupt is handled. This is applicable only if the callee runs in a privileged
exception level i.e. not in S-EL0. Also see 9.2.1 Secure interrupt signaling mechanisms.

3. The interrupt ID field is invalid and MBZ. It must be ignored by the callee.

4. Valid caller and callee combinations at specific FF-A instances are listed below.

1. SPMD and an NS-Endpoint at the Non-secure physical FF-A instance.
2. Hypervisor and a VM at the Non-secure virtual FF-A instance.
3. SPMC and an SP at the Secure virtual FF-A instance.

5. An example of this usage is illustrated in Figure 9.3.

3. FFA_INTERRUPT is used with the ERET conduit by the Hypervisor, SPMC or the SPMD to delegate
interrupt handling to a callee in the waiting runtime state.

1. The callee had entered the waiting runtime state after finishing work requested by another partition e.g
through an invocation of FFA_MSG_SEND_DIRECT_RESP.

2. The partition manager returns the ID of the pending interrupt to the callee. This is applicable only if the
callee is a partition that runs in a privileged exception level i.e. not in S-EL0. It is also not applicable
if the callee is an SPMC and the caller is the SPMD. This is because the SPMD is not expected to
determine the identity of the pending interrupt by querying the GIC. Also see 9.2.1 Secure interrupt
signaling mechanisms.

3. The endpoint and vCPU ID fields are invalid and MBZ. They must be ignored by the callee.

4. Valid caller and callee combinations at specific FF-A instances are listed below.

1. SPMD and the S-EL1 or S-EL2 SPMC at the Secure physical FF-A instance.
2. EL3 SPMC and a logical S-EL1 SP at the Secure physical FF-A instance.
3. Hypervisor and a VM at the Non-secure virtual FF-A instance.
4. SPMC and an SP at the Secure virtual FF-A instance.
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13.1 Compliance requirements

Table 13.1 lists the discovery and setup interfaces that must be implemented at a given FF-A instance with a
specific conduit.

1. Combinations of interface and conduit that are not listed in the table but listed in the corresponding interface
description are optional.

2. Combinations of interface and conduit that are neither listed in Table 13.1 nor in the corresponding interface
description are not supported.

Table 13.1: Mandatory discovery and setup interfaces

Interface Conduit
Mandatory FF-A
Instance Notes

FFA_VERSION SMC,
HVC,
SVC

• All

FFA_FEATURES SMC,
HVC,
SVC

• All

FFA_FEATURES ERET • Secure physical
instance

• Mandatory at this instance
between the SPMD and a
S-EL2 or S-EL1 SPMC.

FFA_RX_RELEASE SMC,
HVC,
SVC

• All

FFA_RX_RELEASE ERET • Secure physical
instance

• Mandatory at this instance
between the SPMD and a
S-EL2 or S-EL1 SPMC.

FFA_RXTX_MAP SMC,
HVC,
SVC

• All except
Secure physical
instance

• Optional at this instance
between the SPMD and a
S-EL2 or S-EL1 SPMC.

FFA_RXTX_MAP ERET • Secure physical
instance

• Mandatory at this instance
between the SPMD and a
S-EL2 or S-EL1 SPMC.

FFA_RXTX_UNMAP SMC,
HVC,
SVC

• All except
Secure physical
instance

• Optional at this instance
between the SPMD and a
S-EL2 or S-EL1 SPMC.

FFA_PARTITION_INFO_GET SMC,
HVC,
SVC

• All except
Secure physical
instance

• Optional at this instance
between the SPMD and a
S-EL2 or S-EL1 SPMC.
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Interface Conduit
Mandatory FF-A
Instance Notes

FFA_PARTITION_INFO_GET ERET • Secure physical
instance

• Mandatory at this instance
between the SPMD and a
S-EL2 or S-EL1 SPMC.

FFA_PARTITION_INFO_GET_REGS SMC • Secure physical
instance

• Mandatory at this instance
between the SPMD and a
S-EL2 or S-EL1 SPMC
only if EL3 LSPs are
implemented and not using
an IMPLEMENTATION
DEFINED discovery
mechanism.

FFA_PARTITION_INFO_GET_REGS ERET • Secure physical
instance

• Mandatory at this instance
between the SPMD and a
S-EL2 or S-EL1 SPMC
only if EL3 LSPs are
implemented and not using
an IMPLEMENTATION
DEFINED discovery
mechanism.

FFA_ID_GET SMC,
HVC,
SVC

• All

FFA_SPM_ID_GET SMC,
HVC,
SVC

• All
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13.2 FFA_VERSION

Description

• Returns version of the Firmware Framework implementation at an FF-A instance as described in 13.2.1
Overview.

• Valid FF-A instances and conduits are listed in Table 13.3.
• Syntax of this function is described in Table 13.4.
• Encoding of a version number in return parameters is described in Table 13.5.
• Encoding of error codes in return parameters is described in Table 13.6.

Table 13.3: FFA_VERSION instances and conduits

Config No. FF-A instance Valid conduits

1 Secure and Non-secure physical SMC

2 Secure and Non-secure virtual SMC, HVC, SVC

Table 13.4: FFA_VERSION function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000063.

uint32 Input version number w1 • Version number specified by the caller as follows.
– Bit[31]: Must be 0.
– Bit[30:16] Major Version number.
– Bit[15:0] Minor Version number.

Other Parameter registers w2-w7
x2-x17

• Reserved (SBZ).

Table 13.5: Encoding of a version number

Parameter Register Value

int32 Output version number w0 • On a successful return, the format of the value is as
follows.

– Bit[31]: Must be 0.
– Bits[30:16]: Major Version: Must be 1 for this

revision of FF-A.
– Bits[15:0]: Minor Version: Must be 2 for this

revision of FF-A.
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Parameter Register Value

Other Result registers w1-w7
x1-x17

• Reserved (MBZ).

Table 13.6: Encoding of error codes

Parameter Register Value

int32 Error code w0 • NOT_SUPPORTED: A Firmware Framework
implementation of the requested version does not
exist at this FF-A instance.

13.2.1 Overview

The version number of a Firmware Framework implementation is a 31-bit unsigned integer, with the upper 15 bits
denoting the major revision, and the lower 16 bits denoting the minor revision.

If this function returns a valid version number:

• All the functions that are described in this specification must be implemented, unless it is explicitly stated
that a function is optional.

• A partition manager could implement an optional interface and make it available to a subset of endpoints it
manages.

The following rules apply to the version numbering.

• Different major revision values indicate possibly incompatible functions.
• For two revisions, A and B, for which the major revision values are identical, if the minor revision value of

revision B is greater than the minor revision value of revision A, then every function in revision A must work
in a compatible way with revision B. However, it is possible for revision B to have a higher function count
than revision A.

In an invocation of this function, the compatibility of the version number (x.y) of the caller with the version number
(a.b) of the callee can also be as follows.

1. If x != a, then the versions are incompatible.
• The caller cannot inter-operate with the callee.

2. If x == a and y > b, then the versions are incompatible.
• The caller can inter-operate with the callee only if it downgrades its minor revision such that y <= b.

3. If x == a and y <= b, then the versions are compatible.

A version number (x.y) is less than a version number (a.b) if one of the following conditions is true.

• x < a.
• y < b if x == a.

13.2.2 Usage

This function enables the caller to determine if the callee implements the Firmware Framework and the version
number of the implementation. Conversely, it enables the callee to determine the version number of the Framework
that the caller implements. This negotiation of version numbers enables both the caller and callee at an FF-A
instance to determine if they are compatible. If they are compatible, it enables them to determine which Framework
functionalities can be used. Hence, negotiation of the version must happen before an invocation of any other FF-A
ABI. The responsibilities of the caller and callee in an invocation of this ABI are listed below:
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• The caller must specify a version number in the Input version number parameter.

• The callee must take one of the following actions.

– If it supports a Firmware Framework implementation that is compatible with the version number specified
by the caller, it must return the version number of the implementation.

– If it only supports a Firmware Framework implementation that is incompatible with and at a
greater version number than specified by the caller, it must either return the version number of this
implementation or the NOT_SUPPORTED error code.

It is strongly recommended that the callee returns the version number instead of the NOT_SUPPORTED
error code. Also see,

* 18.5 Changes to FF-A v1.0 data structures for forward compatibility.
* 18.5.3 Compatibility requirements for FF-A v1.0 data structures.

– If it supports a Firmware Framework implementation that is incompatible with and at a lesser version
number than specified by the caller, it must return the highest version number of this implementation.

– If it does not support any version of the Firmware Framework, it must return the NOT_SUPPORTED
error code.

• The caller must use the preceding compatibility rules to determine if it can inter-operate with the version
number returned by the callee.

Each FF-A instance must support this call and return its version number. For this revision of FF-A, the major
version is 1 and the minor version is 2.

This interface returns a version number of the Framework at the FF-A instance where it is invoked. It is possible
that version numbers of the Framework at different FF-A instances differ. These versions must be supported in
accordance with the preceding major and minor version number compatibility rules.

Once the caller invokes any FF-A ABI other than FFA_VERSION, the version negotiation phase is complete.

Once an FF-A version has been negotiated between a caller and a callee, the version may not be changed for the
lifetime of the calling component. The callee must treat the negotiated version as the only supported version for
any subsequent interactions with the caller.

13.2.3 SPM usage

13.2.3.1 Version discovery between SPMD and SPMC
In SPM configurations where the SPMD and SPMC reside in separate Exception levels (see Table 4.1), the
versions of these two components could differ. The following constraints must be met to avoid a version mismatch.

• The SPMC must specify the version that it implements to the SPMD through an IMPLEMENTATION DEFINED
mechanism e.g. through the SPMC manifest (see 5.2.2 SPMC manifest).

• The SPMD must compare the version specified by the SPMC with the version it implements.

– If the versions are not compatible as per the preceding compatibility rules, the SPMD must not initialize
the SPMC.

– If the versions are compatible, the SPMD must report the version that fulfills the below requirements in
response to an invocation of FFA_VERSION function at the Secure physical FF-A instance.

* The highest major version supported by both the SPMC and SPMD.

* The highest minor version for this major version supported by both the SPMC and SPMD.
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13.2.3.2 Version discovery between Normal world and SPMC
The Hypervisor or OS Kernel invoke the FFA_VERSION function at the Non-secure physical FF-A instance to
specify the version of the Framework to the SPMD. In this case,

1. If the highest version of the Framework implemented by the SPMC is major version 1 and minor version 0,
the SPMD must return this version to the Normal world.

2. If the SPMC implements this version of the Framework, the SPMD must forward the FFA_VERSION
function invocation to the SPMC through,

1. The message described in Table 13.7 if the SPMC is implemented in S-EL2 or S-EL1.
2. An IMPLEMENTATION DEFINED mechanism if the SPMC is implemented in EL3.

It is possible that the SPMC implements multiple versions of the Framework such that each version is less
than the common version negotiated between the SPMC and the SPMD. The SPMC needs to know the
version presented by the Hypervisor or OS Kernel to determine which version it should use to maintain
compatibility.

The forwarded message from the SPMD enables the SPMC to make this choice and either return a compatible
version or return the NOT_SUPPORTED error code to the Normal world as per the callee specific guidelines
described in 13.2.2 Usage. The SPMC must return the response to the forwarded message through,

1. The message described in Table 13.8 if the SPMC is implemented in S-EL2 or S-EL1.
2. An IMPLEMENTATION DEFINED mechanism if the SPMC is implemented in EL3.

The SPMD must forward the return value in w0 in the response message to the Hypervisor or OS as the
return value of the original FFA_VERSION call. Figure 13.1 illustrates how the SPMD forwards,

1. An FFA_VERSION call from the Normal world to an SPMC in S-EL2 or EL3.
2. The response from the SPMC back to the Normal world.

Normal world EL3 Secure world

Hypervisor or OS Kernel

Hypervisor or OS Kernel

SPMD

SPMD

SPMC

SPMC

1 SMC(FFA_VERSION, version)

Encode Normal world FF-A version message to SPMC

2
ERET(FFA_MSG_SEND_DIRECT_REQ, SPMD ID/SPMC ID,
FF-A version Framework message, version)

Encode version to be presented to Normal
world in FF-A version response message

3
SMC(FFA_MSG_SEND_DIRECT_RESP, SPMC ID/SPMD ID,
FF-A version response Framework message, chosen_version)

4 ERET(chosen_version)

Figure 13.1: Forwarding of FFA_VERSION call from SPMD to SPMC at lower EL

Table 13.7: Normal world FF-A version message

Register Parameter

w0 0x8400006F: FFA_MSG_SEND_DIRECT_REQ Function ID
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Register Parameter

w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]:

* SPMD ID.
– Bit[15:0]:

* SPMC ID.

w2 • Message flags.
– Bit[31] = b’1: Framework message.
– Bit[30:8]: Reserved (SBZ).
– Bit[7:0] = b’00001000: Message for forwarding FFA_VERSION call

from Normal world to the SPMC.

w3 • FFA version from Normal world.

w4-w7 Reserved (SBZ).

Table 13.8: Response to Normal world FF-A version message

Register Parameter

w0 0x84000070: FFA_MSG_SEND_DIRECT_RESP Function ID

w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]:

* SPMC ID.
– Bit[15:0]:

* SPMD ID.

w2 • Message flags.
– Bit[31] = b’1: Framework message.
– Bit[30:8]: Reserved (SBZ).
– Bit[7:0] = b’00001001: Response message to forwarded FFA_VERSION call from

the Normal world.

w3 • Encoding of w0 in Table 13.5 if a version is returned by the SPMC.
• NOT_SUPPORTED if a version is not returned by the SPMC.

w4-w7 Reserved (SBZ).
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13.3 FFA_FEATURES

Description

• This interface is used by an FF-A component at the lower EL at an FF-A instance to query:
– The presence, properties and implementation of optional features of an FF-A interface.
– The presence and properties of a feature supported by the Framework and not specific to an FF-A

interface.
• This interface can be invoked at the FF-A instances through the conduits listed in Table 13.10.
• Syntax of this function is described in Table 13.11.
• If the FF-A interface or feature that was queried is implemented, the callee completes this call with an

invocation of the FFA_SUCCESS interface as described in Table 13.12.
• If the FF-A interface or feature that was queried is not implemented or invalid, the callee completes this

call with an invocation of the FFA_ERROR interface with the NOT_SUPPORTED error code.

Table 13.10: FFA_FEATURES instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical SMC

2 Secure physical ERET, SMC

3 Secure and Non-secure virtual SMC, HVC, SVC

Table 13.11: FFA_FEATURES function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000064.
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Parameter Register Value

uint32 FF-A function ID or
Feature ID

w1 • Bit[31]: w1 contains an FF-A Function ID or Feature
ID.

– b’1: w1 must be interpreted as the Function ID
of the FF-A interface whose implementation is
being queried. Effectively, bit[31] of the
SMCCC Function ID i.e. the Fastcall bit is
used to distinguish between an FF-A feature
and function ID.

* If an interface defines both SMC32 and
SMC64 FIDs, then either FID could be
used. (Also see common rules that govern
definition and behavior of FF-A ABIs in
Chapter 11 Interface overview).

– b’0: w1 must be interpreted as the ID of a
feature supported by the Framework at this
FF-A instance. IDs of supported features are
listed in Table 13.13.

* Bit[30:8]: Reserved (MBZ).
* Bit[7:0]: Feature ID.

uint32 Input properties w2 • A list of properties expected by the caller
corresponding to the Function ID specified in w1.

• This parameter is Reserved (MBZ) if a Feature ID is
specified in w1.

Other Parameter registers w3-w7
x3-x17

• Reserved (SBZ).

Table 13.12: FFA_SUCCESS encoding

Parameter Register Value

uint32 Interface properties w2-w3 • Used to encode any optional features implemented
or any properties exported by the queried interface or
feature.

– FF-A interfaces that use these parameters and
the encodings of their properties are listed in
Table 13.14.

– Feature IDs and encodings of their properties
are listed in Table 13.13.

• MBZ if no optional features are implemented or no
implementation details are exported by the queried
interface.

Other Result registers w4-w7
x4-x17

• Reserved (MBZ).
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Table 13.13: Feature IDs and properties table

FF-A Feature Name FF-A Feature ID Encoding of feature in return parameters

Notification pending interrupt 0x1 • w2 : Interrupt ID.

Schedule Receiver interrupt 0x2 • w2 : Interrupt ID.

Managed exit interrupt 0x3 • w2 : Interrupt ID.

Table 13.14: Encoding of interface properties parameters

FF-A Function ID (w1) Input properties (w2) Return parameters (w2-w3)

FFA_RXTX_MAP Reserved (SBZ). • w2: Buffer sizes.
– Bit[1:0]: Minimum buffer size and

alignment boundary (see 7.2.2.3
Buffer attributes).

* b’00: 4K.
* b’01: 64K.
* b’10: 16K.
* b’11: Reserved.

– Bit[15:2]: Reserved (MBZ).
– Bit[31:16]: Maximum buffer size

in number of pages (see 7.2.2.3
Buffer attributes).

* MBZ if there is no size limit.
• w3/x3 : Reserved (MBZ).
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13.4 FFA_RX_ACQUIRE

Description

• Acquire ownership of a RX buffer before writing a message to it (see 7.2.2.4.3 Management of buffer
ownership between Hypervisor and SPMC).

• Valid FF-A instances and conduits are listed in Table 13.16.
• Syntax of this function is described in Table 13.17.
• Returns FFA_SUCCESS without any further parameters on successful completion.
• Encoding of error code in the FFA_ERROR function is described in Table 13.18.

Table 13.16: FFA_RX_ACQUIRE instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure Physical SMC

2 Secure Physical ERET

Table 13.17: FFA_RX_ACQUIRE function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000084.

uint32 VM ID w1 • ID of VM ownership of whose RX buffer should be
acquired.

– Bit[31:16]: Reserved (SBZ).
– Bit[15:0]: VM ID.

Other Parameter registers w2-w7
x2-x17

• Reserved (SBZ).

Table 13.18: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • DENIED: Callee cannot relinquish ownership of the
RX buffer.

• INVALID_PARAMETERS: There is no buffer pair
registered on behalf of the VM.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.
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13.5 FFA_RX_RELEASE

Description

• Relinquish ownership of a RX buffer after reading a message from it (see 7.2.2.4 Buffer synchronization).
• Valid FF-A instances and conduits are listed in Table 13.20.
• Syntax of this function is described in Table 13.21.
• Returns FFA_SUCCESS without any further parameters on successful completion.
• Encoding of error code in the FFA_ERROR function is described in Table 13.22.

Table 13.20: FFA_RX_RELEASE instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure Physical SMC

2 Secure Physical ERET

3 Secure virtual SMC, HVC, SVC

4 Non-secure virtual SMC, HVC, SVC, ERET

Table 13.21: FFA_RX_RELEASE function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000065.

uint32 VM ID w1 • ID of VM ownership of whose RX buffer should be
released. Only valid at the Non-secure physical
FF-A instance. MBZ otherwise.

– Bit[31:16]: Reserved (SBZ).
– Bit[15:0]: VM ID.

Other Parameter registers w2-w7
x2-x17

• Reserved (SBZ).
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Table 13.22: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • DENIED: Caller did not have ownership of the RX
buffer.

• INVALID_PARAMETERS: There is no buffer pair
registered by the Hypervisor on behalf of the VM.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.
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13.6 FFA_RXTX_MAP

Description

• Maps the RX/TX buffer pair in the translation regime of the callee on behalf of an endpoint or Hypervisor.
– A SP describes the VA or IPA contiguous pages allocated for each buffer in the pair to the SPM.
– A VM describes the VA or IPA contiguous pages allocated for each buffer in the pair to the

Hypervisor.
– Hypervisor or OS Kernel describe the physically contiguous pages allocated for each buffer in the

pair to the SPM.
– Hypervisor forwards the description of pages allocated for each buffer in the pair by a VM to the

SPM.
* Description of buffer pair is populated in the TX buffer of the Hypervisor as described in Table

13.27.
– Both Hypervisor and SPM must ensure the caller has exclusive access and ownership of the RX/TX

buffer memory regions.
• Valid FF-A instances and conduits are listed in Table 13.24.
• Syntax of this function is described in Table 13.25.
• Returns FFA_SUCCESS without any further parameters on successful completion.
• Encoding of error code in the FFA_ERROR function is described in Table 13.26.

Table 13.24: FFA_RXTX_MAP instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical SMC

2 Secure physical ERET

3 Virtual SMC, HVC, SVC

Table 13.25: FFA_RXTX_MAP function syntax

Parameter Register Value

uint32 Function ID w0/x0 • 0x84000066.
• 0xC4000066.

uint32/uint64 TX address w1/x1 • Base address of the TX buffer if invoked by an
endpoint or Hypervisor to register its buffer pair.

– Address is a IPA or VA at the virtual FF-A
instance.

– Address is a PA at the physical FF-A instance.
• MBZ if Hypervisor is forwarding this call on behalf

of an endpoint.
– Description of RX/TX buffer and identity of

endpoint is specified in the TX buffer of the
Hypervisor.
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Parameter Register Value

uint32/uint64 RX address w2/x2 • Base address of the RX buffer.
– Address is a IPA or VA at the virtual FF-A

instance.
– Address is a PA at the physical FF-A instance.

• MBZ if Hypervisor is forwarding this call on behalf
of an endpoint.

– Description of RX/TX buffer and identity of
endpoint is specified in the TX buffer of the
Hypervisor.

uint32 RX/TX page count w3/x3 • Bit[31:6]: Reserved (SBZ).
• Bit[5:0]: Number of contiguous 4K pages allocated

for each buffer.
– MBZ if Hypervisor is forwarding this call on

behalf of an endpoint.
* Description of RX/TX buffer and identity

of endpoint is specified in the TX buffer of
the Hypervisor.

Other Parameter registers w4-w7
x4-x17

• Reserved (SBZ).

Table 13.26: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS:
– One or more fields in input parameters is

incorrectly encoded.
– Invalid number of pages specified (see 13.3

FFA_FEATURES).
• NO_MEMORY:

– Not enough memory to map the buffers in the
translation regime of the callee.

– Not enough memory in TX buffer of
Hypervisor to describe caller buffer pair to
SPM.

• DENIED:
– Buffer pair already registered for the FF-A

component with specified ID.
– A VM’s buffer pair cannot be registered by the

SPMC since no SP sends or receives Indirect
messages.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.
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Table 13.27: Endpoint RX/TX descriptor1

Field Byte length Byte offset Description

Endpoint ID 2 0 • ID of endpoint that allocated the
RX/TX buffer.

Reserved 2 2 • Reserved (SBZ).

RX buffer memory region
description offset

4 4 • 8-byte aligned offset from the base
address of this descriptor to the
Composite memory region descriptor
that describes the RX buffer memory
region. (See [1] for more information).

TX buffer memory region
description offset

4 8 • 8-byte aligned offset from the base
address of this descriptor to the
Composite memory region descriptor
that describes the TX buffer memory
region. (See [1] for more information).

1Also see 18.5 Changes to FF-A v1.0 data structures for forward compatibility.
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13.7 FFA_RXTX_UNMAP

Description

• Unmaps the RX/TX buffer pair of an endpoint or Hypervisor from the translation regime of the callee.
– A SP invokes this interface to unmap its buffer pair from the translation regime of the SPM.
– A VM invokes this interface to unmap its buffer pair from the translation regime of the Hypervisor.
– Hypervisor or OS Kernel invoke this interface to unmap their buffer pair from the translation regime

of the SPM.
– Hypervisor forwards an invocation of this interface by a VM to the SPM.

* Identity of VM is specified in w1.
• Valid FF-A instances and conduits are listed in Table 13.29.
• Syntax of this function is described in Table 13.30.
• Returns FFA_SUCCESS without any further parameters on successful completion.
• Encoding of error code in the FFA_ERROR function is described in Table 13.31.

Table 13.29: FFA_RXTX_UNMAP instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical SMC

2 Secure physical ERET

3 Virtual SMC, HVC, SVC

Table 13.30: FFA_RXTX_UNMAP function syntax

Parameter Register Value

uint32 Function ID w0/x0 • 0x84000067.

uint32 ID w1 • ID of VM that allocated the RX/TX buffer. Only
valid at the Non-secure physical FF-A instance.
MBZ otherwise.

– Bit[31:16]: ID.
– Bit[15:0]: Reserved (SBZ).

Other Parameter registers w2-w7
x2-x17

• Reserved (SBZ).
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Table 13.31: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: There is no buffer pair
registered on behalf of the caller.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.
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13.8 FFA_PARTITION_INFO_GET

Description

• Returns information about FF-A components implemented in the system as described in 13.8.1 Overview.
• Valid FF-A instances and conduits are listed in Table 13.33.
• Syntax of this function is described in Table 13.34.
• Encoding of result parameters in the FFA_SUCCESS function is described in Table 13.35.
• Encoding of error code in the FFA_ERROR function is described in Table 13.36.

Table 13.33: FFA_PARTITION_INFO_GET instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical SMC

2 Secure physical SMC, ERET

3 Non-secure virtual SMC, HVC

4 Secure virtual SMC, HVC, SVC

Table 13.34: FFA_PARTITION_INFO_GET function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000068.

uint128 UUID w1-w4 • Specified as described in Section 5.3 of [5].

uint32 Flags w5 • Bit[0]: Return information type flag.
– b’1: Return the count of partitions deployed in

the system corresponding to the specified
UUID in w2 as specified in Table 13.35.

– b’0: Return partition information descriptors
corresponding to the specified UUID in the RX
buffer of the caller (see Table 6.1).

• Bit[31:1]: Reserved (SBZ).

Other Parameter registers w6-w7
x6-x17

• Reserved (SBZ).
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Table 13.35: FFA_SUCCESS encoding

Parameter Register Value

uint32 Count w2 • If Bit[0] = b’0 in the Flags input parameter, this
field contains the count of partition information
descriptors corresponding to the specified UUID in
w1-w4. The descriptors are populated in the RX
buffer of the caller.

• If Bit[0] = b’1 in the Flags input parameter, this
field contains the count of partitions deployed in the
system corresponding to the specified UUID in
w1-w4.

uint32 Size w3 • If Bit[0] = b’0 in the Flags input parameter, this
field contains the size of each partition information
descriptor populated in the RX buffer of the caller.

• If Bit[0] = b’1 in the Flags input parameter, this
field MBZ.

Other Result registers w4-w7
x4-x17

• Reserved (SBZ).

Table 13.36: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • BUSY: RX buffer of the caller is required to return
partition information but is either not free or not
mapped.

• INVALID_PARAMETERS: Unrecognized UUID.
• NO_MEMORY: Results cannot fit in RX buffer of

the caller.
• DENIED: Callee is not in a state to handle this

request.
• NOT_SUPPORTED: This function is not

implemented at this FF-A instance.
• NOT_READY: Callee is not ready to handle this

request.

13.8.1 Overview

FFA_PARTITION_INFO_GET is used by FF-A components for the following purposes.

• To discover the ID (see Chapter 6 Identification and Discovery) and other properties of partitions. This
information is,

– Requested by specifying a UUID as an input parameter as described in Table 13.34.

* The Return information type flag is set to b’0 to indicate that partition properties are being requested.

– Encoded in a partition information descriptor as described in Table 6.1.
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– Returned in the RX buffer of the caller as an array of one or more partition information descriptors. The
count of descriptors is returned in w2 (see Table 13.35).

• To discover the count of partitions of a particular type. This information is,

– Requested by specifying a UUID as an input parameter as described in Table 13.34.

* The Return information type flag is set to b’1 to indicate that a partition count is being requested.

– Returned in w2 (see Table 13.35).

13.8.2 Usage

The result of an invocation of this ABI depends upon the version of the Framework, specified UUID, Flags
parameter and the FF-A instance where the ABI is invoked. This is described in 6.2.2 Partition discovery ABI
usage.

The caller transfers ownership of the RX buffer back to the producer through a mechanism described in 7.2.2.4.2
Transfer of buffer ownership.
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13.9 FFA_PARTITION_INFO_GET_REGS

Description

• Returns information about FF-A components implemented in the system as described in 13.9.1 Overview.
• Valid FF-A instances and conduits are listed in Table 13.38.
• Syntax of this function is described in Table 13.39.
• Encoding of result parameters in the FFA_SUCCESS function is described in Table 13.40.
• Encoding of error code in the FFA_ERROR function is described in Table 13.41.

Table 13.38: FFA_PARTITION_INFO_GET_REGS instances and conduits

Config FF-A Instance Valid Conduits

1 Non-secure Physical SMC

2 Secure physical SMC, ERET

3 Non-secure virtual SMC, HVC

4 Secure virtual SMC, HVC, SVC

Table 13.39: FFA_PARTITION_INFO_GET_REGS function syntax

Parameter Register Value

uint32 Function ID w0 0xC400008B

uint64 UUID_Lo x1 Bytes[7:0] of the UUID with byte 0 in the low-order bits.

uint64 UUID_Hi x2 Bytes[15:8] of the UUID with byte 8 in the low-order bits.

uint32 Start index and tag x3 • Bits[15:0]: Start index.
– Index into an array of partition information

maintained by the callee from where
information must be returned.

* E.g. if there are 10 partitions
corresponding to a UUID, this value could
be any number in the range (0-9).

• Bits[31:16]: Information tag for the queried UUID.
– MBZ if Start Index = 0.
– Information tag known to the caller if Start

Index > 0.
• Bits[63:32]: Reserved (SBZ).

Other Parameter registers x4-x17 • Reserved (SBZ).
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Table 13.40: FFA_SUCCESS encoding

Parameter Register Value

uint32 Function ID w0 FFA_SUCCESS64

uint64 Information metadata x2 • Bits[15:0]: Last index
– Maximum index of array of partition

information maintained by the callee relative to
the Start index specified by the caller.

* E.g. if there are 10 partitions
corresponding to a UUID, this value will
be 9.

– Total number of entries = Last index + 1
• Bits[31:16]: Current Index.

– Maximum index of array of partition
information returned by the callee relative to
the Start index specified by the caller.

* E.g. If there are 10 partitions
corresponding to a UUID, each invocation
of this ABI returns 5 array entries and the
caller specifies 0 as the start index, this
value would be 4.

– Number of entries returned by the callee in this
ABI invocation = (Current index - Start index)
+ 1

• Bits[47:32]:
– Information tag for the queried UUID known

to the callee.
• Bits[63:48]:

– Size in bytes of each partition information
entry descriptor.
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Parameter Register Value

uint64 Partition information x3-x17 • Partition information descriptor.
– Size of each descriptor is 24 bytes as per the

FF-A v1.1 spec.
– Each descriptor is encoded in 3 registers in

little endian format as described below.
• Registers N=3,6,9,12,15

– xN
* Bits[15:0]: 16-bit ID of the partition,

stream or auxiliary endpoint.
* Bits[31:16]: Number of execution

contexts implemented by this partition
(also see 4.7 Execution context).

* Bits[64:32]: Partition properties as
encoded in Table 6.2

– xN + 1
* MBZ if a non-Nil UUID is specified as

input.
* If the Nil UUID is specified as input.

· Bytes[0. . . 7] of the UUID with byte 0
in the low-order bits.

– xN + 2
* MBZ if a non-Nil UUID is specified as

input.
* If the Nil UUID is specified as input.

· Bytes[8. . . 15] of the UUID with byte
0 in the low-order bits.

Table 13.41: Encoding of return codes

Parameter Register Value

uint32 Function ID w0 FFA_ERROR

int32 Error code w2 • INVALID_PARAMETERS: Unrecognized UUID or
start index.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

• DENIED: Callee is not in a state to handle this
request.

• RETRY: The provided tag is not valid.
• NOT_READY: Callee is not ready to handle this

request.

13.9.1 Overview

FFA_PARTITION_INFO_GET_REGS can be used by FF-A components for the following purposes.

• To discover the ID (see Chapter 6 Identification and Discovery) and other properties of partitions. This
information is,
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– Requested by specifying a UUID as an input parameter as described in Table 13.39.

– Returned in registers as encoded in a partition information descriptor as described in Table 13.40.

13.9.2 Usage

The result of an invocation of this ABI depends upon the version of the Framework, specified UUID, and the FF-A
instance where the ABI is invoked. This is described in 6.2.2 Partition discovery ABI usage.

To cater for the scenario where the full list of descriptors does not fit in a single invocation, the callee exports an
abstraction to the caller in which the partition information corresponding to the queried UUID is organized in an
array. If the array cannot be returned in a single response to the caller, the callee must encode an IMPLEMENTATION
DEFINED tag as part of the response that is used to identify the version of the information being provided as part of
the call. The mechanism is described as follows,

1. The caller starts retrieval of partition information by specifying the start index 0 of the array.

2. The callee returns the last index of the array to inform the caller about the number of entries in the array.
Total number of entries = last index + 1.

3. The callee also returns the current index which identifies the last array entry that could fit in the returned
partition information.

4. The number of entries returned in a single invocation = (current index - start index) + 1.

5. If all the partition information cannot fit into the available register space, current index < last index. The
caller invokes the ABI again with start index = current index + 1.

6. All partition information entries in the array have been returned when last index == current index.

• last index >= start index.
• current index >= start index.

7. The ABI needs to be invoked only once if start_index == 0 && last_index == current_index.

8. The callee returns the tag of the partition information in response to an invocation of this ABI with start_index
= 0.

9. The caller encodes this tag in every invocation of this ABI with start_index > 0.

10. The callee must return the RETRY error if tag(callee) != tag(caller).

Figure 13.2 illustrates an example where an SP uses the above mechanism to discover the presence of 10 SPs by
using the Nil UUID.
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SPMC

SPMC

SP

SP

SP requests information via the Nil UUID

1 SMC(FFA_PARTITION_INFO_GET_REGS, Nil UUID, Start Index=0, Tag=0)

Return partition information for all 10 SPs in the system

SPMC returns descriptors for SP0-3

2 ERET(FFA_SUCCESS64, Last index=9, Current index=3, Tag=X, Descriptor Size=24, Descriptor entries 0-3)

SP requests the next descriptors from index 4

3 SMC(FFA_PARTITION_INFO_GET_REGS, Nil UUID, Start index=4, Tag=X

SPMC Returns descriptors for SP4-7

4 ERET(FFA_SUCCESS64, Last index=9, Current index=7, Tag=X, Descriptor Size=24, Descriptor entries 4-7)

SP requests the next descriptors from index 8

5 SMC(FFA_PARTITION_INFO_GET_REGS, Nil UUID, Start index = 8, Tag=X

SPMC Returns the last descriptors for SP8-9

6 ERET(FFA_SUCCESS64, Last index=9, Current index=9, Tag=X, Descriptor Size=24, Descriptor entries 8-9)

Figure 13.2: Example usage of FFA_PARTITION_INFO_GET_REGS by an SP.
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13.10 FFA_ID_GET

Description

• Returns 16-bit ID of calling FF-A component.
– ID value 0 must be returned at the Non-secure physical FF-A instance (see Chapter 6 Identification

and Discovery).
• Valid FF-A instances and conduits are listed in Table 13.43.
• Syntax of this function is described in Table 13.44.
• Encoding of result parameters in the FFA_SUCCESS function is described in Table 13.45.
• Encoding of error code in the FFA_ERROR function is described in Table 13.46.

Table 13.43: FFA_ID_GET instances and conduits

Config No. FF-A instance Valid conduits

1 Physical FF-A instance SMC

2 Virtual FF-A instance SMC, HVC, SVC

Table 13.44: FFA_ID_GET function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000069.

Other Parameter registers w1-w7
x1-x17

• Reserved (SBZ).

Table 13.45: FFA_SUCCESS encoding

Parameter Register Value

uint32 ID w2 • ID of the caller.
– Bit[31:16]: Reserved (MBZ).
– Bit[15:0]: ID.

Other Result registers w3-w7
x3-x17

• Reserved (MBZ).
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Table 13.46: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • NOT_SUPPORTED: This function is not
implemented at this FF-A instance.
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13.11 FFA_SPM_ID_GET

Description

• Returns the 16-bit ID of the SPMC or SPMD depending upon the FF-A instance where this function is
invoked. See 13.11.1 Overview for details.

• Valid FF-A instances and conduits are listed in Table 13.48.
• Syntax of this function is described in Table 13.49.
• Encoding of result parameters in the FFA_SUCCESS function is described in Table 13.50.
• Encoding of error code in the FFA_ERROR function is described in Table 13.51.

Table 13.48: FFA_SPM_ID_GET instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical SMC

2 Secure physical SMC, ERET

3 Non-secure virtual SMC, HVC

4 Secure virtual SMC, HVC, SVC

Table 13.49: FFA_SPM_ID_GET function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000085.

Other Parameter registers w1-w7
x1-x17

• Reserved (SBZ).

Table 13.50: FFA_SUCCESS encoding

Parameter Register Value

uint32 ID w2 • ID of the SPMD or SPMC as described in 13.11.2
Usage.

– Bit[31:16]: Reserved (MBZ).
– Bit[15:0]: ID.

Other Result registers w3-w7
x3-x17

• Reserved (MBZ).
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Table 13.51: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

13.11.1 Overview

v1.1 of the Framework mandates that the SPMC and SPMD components must be assigned unique IMPLEMENTA-
TION DEFINED 16-bit IDs (see Chapter 6 Identification and Discovery).

The FFA_SPM_ID_GET ABI enables,

• Endpoints and the Hypervisor to discover the ID of the SPMC.
• The SPMC to discover the ID of the SPMD.

The ID returned depends upon the FF-A instance where the ABI is invoked. This is described in 13.11.2 Usage.

The Framework assumes that no FF-A component apart from the SPMC needs to discover and use the SPMD ID.

13.11.2 Usage

• An invocation of this ABI at a Non-secure virtual or physical FF-A instance returns the ID of the SPMC.

– If the SPMC and SPMD are implemented at different exception levels (see 4.1 SPM architecture), the
SPMD could either return the SPMC ID or forward the ABI invocation to the SPMC through the ERET
conduit at the Secure physical FF-A instance. This is an IMPLEMENTATION DEFINED choice.

• An invocation of this ABI at a Secure virtual FF-A instance returns the ID of the SPMC. This is irrespective
of whether the SPMC and SPMD are implemented in the same or separate exception levels.

• An invocation of this ABI at the Secure physical FF-A instance returns the ID of the SPMD if the SPMC is
implemented at S-EL1 or S-EL2.

• An invocation of this ABI at the Secure physical FF-A instance returns the ID of the SPMC if the SPMC is
implemented at EL3.
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13.12 FFA_CONSOLE_LOG

Description

• Allow an entity to provide debug logging to the console.
• Valid FF-A instances and conduits are listed in Table 13.53.
• Syntax of this function is described in Table 13.54.
• Returns FFA_SUCCESS without any further parameters on successful completion.

– In this case, the characters are logged to the console in finite time.
• Encoding of error codes in the FFA_ERROR function is described in Table 13.55.

Table 13.53: FFA_CONSOLE_LOG instances and conduits

Config No. FF-A instance Valid conduits

1 Secure physical SMC

2 Secure virtual SMC, HVC, SVC

Table 13.54: FFA_CONSOLE_LOG function syntax

Parameter Register Value

uint32 Function ID w0/x0 • 0x8400008A.
• 0xC400008A.

uint32 Character Count w1/x1 • Count of characters i provided in w2/x2-w7/x7
– Bit[31:8]: Reserved (SBZ).
– Bit[7:0]: Count of characters.

* 1 <= i <= 24 if the SMC32 convention is
used.

* 1 <= i <= 128 if the SMC64 convention
is used.

uint32/uint64 Character lists w2-w7
x2-x17

• Tightly packed list of characters
– Character i = Bits[M:N]
– M = ((8 x i) - 1)
– N = (8 x (i - 1))
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Table 13.55: Encoding of return codes

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: Parameters are not
correctly encoded.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

• RETRY: Some or all characters could not be logged.

uint32 Character Count w3 • Number of characters that were successfully logged.
Count starts from the first character.

– Valid only with RETRY error code. MBZ
otherwise.
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14.1 FFA_MSG_WAIT

Description

• An invocation of this ABI at a virtual FF-A instance with the SMC, HVC or SVC conduits transitions the
state of the calling execution context from running to waiting in the following runtime models.

– 8.5 Runtime model for SP initialization.
– 8.4 Runtime model for Secure interrupt handling.
– 8.2 Runtime model for FFA_RUN.

• An invocation of this ABI at a physical FF-A instance with a valid conduit is used to inform the scheduler
of the calling execution context about this state transition.

• An invocation of this ABI at the Non-secure virtual FF-A instance with the ERET conduit is used by the
Hypervisor to inform the primary or a secondary scheduler about this state transition.

– An optional 64-bit timeout could be specified by the Hypervisor if the calling execution context is a
VM vCPU.

– The scheduler runs the VM vCPU after the timeout expires.
– Syntax of this function in this scenario is described in Table 14.5.

• An invocation of this ABI at a virtual FF-A instance with the SMC, HVC or SVC conduits completes
when the calling execution context is allocated CPU cycles as described in Chapter 8 Partition runtime
models.

• An invocation of this ABI at the Secure physical FF-A instance completes with an invocation of any FF-A
ABI.

• Valid FF-A instances and conduits are listed in Table 14.2.
• Syntax of this function is described in Table 14.3.
• Encoding of error codes in the FFA_ERROR function is described in Table 14.4.

Table 14.2: FFA_MSG_WAIT instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical ERET

2 Secure physical SMC

3 Non-secure virtual SMC, HVC, ERET

4 Secure virtual SMC, HVC, SVC

Table 14.3: FFA_MSG_WAIT function syntax

Parameter Register Value

uint32 Function ID w0 • 0x8400006B.

Other Parameter registers w1-w7
x1-x17

• Reserved (SBZ).
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Table 14.4: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: Unrecognized endpoint
or vCPU ID specified at Non-secure physical or
virtual FF-A instance.

• DENIED: Callee is not in a state to handle this
request.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

Table 14.5: FFA_MSG_WAIT function syntax with the ERET conduit at NS virtual FF-A instance

Parameter Register Value

uint32 Function ID w0 • 0x8400006B.

uint32 Endpoint/vCPU IDs w1 • Endpoint and vCPU IDs of the caller.
– Bit[31:16]: Endpoint ID.
– Bit[15:0]: vCPU ID.

uint32 TimeoutLo w2 • Bits[31:0] of an interval measured in nanoseconds
after which vCPU of the endpoint specified in w1
must be run.

• This parameter MBZ if the caller does not specify a
timeout.

uint32 TimeoutHi w3 • Bits[63:32] of an interval measured in nanoseconds
after which vCPU of the endpoint specified in w1
must be run.

• This parameter MBZ if the caller does not specify a
timeout.

Other Parameter registers w4-w7
x4-x17

• Reserved (MBZ).
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14.2 FFA_YIELD

Description

• This ABI is invoked by an endpoint execution context to yield execution back to the FF-A component that
scheduled it. E.g. SP0 yields execution back to VM0 instead of busy waiting for an IO operation to
complete as illustrated in Figure 14.1.

– The endpoint execution context transitions from the running to the blocked state.
– The endpoint execution context invokes this ABI in the following runtime models,

* 8.2 Runtime model for FFA_RUN.
* 8.3 Runtime model for Direct request ABIs.
* 8.4 Runtime model for Secure interrupt handling.

– The endpoint execution context invokes this ABI with the combinations of FF-A instances and
conduits listed in Table 14.7.

– An invocation of this ABI by an endpoint execution context is completed through the following
transitions. The endpoint execution context transitions from the blocked to the running state.

* eret(FFA_RUN). This transition is applicable to all endpoints listed in Table 14.7.
* eret(FFA_INTERRUPT). This transition is not applicable to S-EL0 endpoints (see Table 9.1).

– The endpoint execution context is scheduled by FF-A components as described below,
* An SP or VM is scheduled by an S-Endpoint, NS-Endpoint or Hypervisor via the FFA_RUN or

Direct request ABIs.
* An SP is scheduled by the SPMC in response to a Secure interrupt via the FFA_INTERRUPT

ABI.
• This ABI is invoked by an SPMC in response to a corresponding invocation by an S-Endpoint execution

context. This is done to yield execution back to the S-Endpoint (via the ERET conduit), Hypervisor or
NS-Endpoint execution context (via the SMC conduit) that originally scheduled the calling S-Endpoint.
The valid combinations of SPMCs, FF-A instances and conduits are listed in Table 14.8.

• This ABI is invoked by the SPMD in response to a corresponding invocation by an SPMC on behalf of an
S-Endpoint execution context. This is done to yield execution back to the Hypervisor or NS-Endpoint
execution context (via the ERET conduit) that originally scheduled the calling S-Endpoint. The valid
combinations of FF-A instances and conduits are listed in Table 14.8.

• This ABI is invoked by a Hypervisor in response to a corresponding invocation by a VM execution
context or the SPMD on behalf of an S-Endpoint execution context. This is done to yield execution back
to the VM (via the ERET conduit) that originally scheduled the calling endpoint. The valid combinations
of FF-A instances and conduits are listed in Table 14.8.

– An optional 64-bit timeout could be specified by the Hypervisor if the calling execution context is a
VM vCPU.

– The scheduler runs the VM vCPU after the timeout expires.
• Syntax of this function is described in Table 14.9.
• Encoding of error codes in the FFA_ERROR function is described in Table 14.10.

Table 14.7: Valid combinations of endpoints, instances and conduits for invoking FFA_YIELD

Instance/Conduit SMC HVC SVC

Secure virtual S-EL1 SP S-EL1 SP S-EL0 SP

Secure physical S-EL1 SP NA NA

Non-secure virtual EL1 SP EL1 SP NA

DEN0077A
1.2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

205



Chapter 14. CPU cycle management interfaces
14.2. FFA_YIELD

Table 14.8: Valid combinations of partition managers, instances and conduits for invoking
FFA_YIELD

Instance/Conduit SMC ERET

Secure virtual NA Any SPMC

Secure physical S-EL1 SPMC, S-EL2 SPMC NA

Non-secure virtual NA Hypervisor

Non-secure physical NA SPMD

Table 14.9: FFA_YIELD function syntax

Parameter Register Value

uint32 Function ID w0 • 0x8400006C.

uint32 Endpoint/vCPU IDs w1 • Endpoint and vCPU IDs of the caller endpoint.
– Bit[31:16]: Endpoint ID.
– Bit[15:0]: vCPU ID.

• This parameter is used by the Hypervisor, SPMC
and SPMD at the following combinations of FF-A
instances and conduits. It is Reserved (MBZ) in all
other scenarios.

– By an SPMC at the,
* Secure physical FF-A instance with the

SMC conduit.
* Secure virtual FF-A instance with the

ERET conduit.
– By an SPMC at the Secure physical FF-A

instance with the SMC conduit.
– By the SPMD at the Non-secure physical FF-A

instance with the ERET conduit.
– By the Hypervisor at the Non-secure virtual

FF-A instance with the ERET conduit.

uint32 TimeoutLo w2 • Bits[31:0] of an interval measured in nanoseconds
after which vCPU of the endpoint specified in w1
must be run.

• This parameter MBZ if the caller does not specify a
timeout.

• This parameter is used by the Hypervisor at the
following combinations of FF-A instances and
conduits. It is Reserved (MBZ) at in all other
scenarios.

– Non-secure virtual FF-A instance with the
ERET conduit.
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Parameter Register Value

uint32 TimeoutHi w3 • Bits[63:32] of an interval measured in nanoseconds
after which vCPU of the endpoint specified in w1
must be run.

• This parameter MBZ if the caller does not specify a
timeout.

• This parameter is used by the Hypervisor at the
following combinations of FF-A instances and
conduits. It is Reserved (MBZ) at in all other
scenarios.

– Non-secure virtual FF-A instance with the
ERET conduit.

Other Parameter registers w4-w7
x4-x17

• Reserved (SBZ).

Table 14.10: FFA_ERROR encoding

Parameter Register Value

int32 Status w2 • INVALID_PARAMETERS: Unrecognized endpoint
or vCPU ID. Only valid with the ERET conduit.

• DENIED: Callee is not in a state to handle this
request.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.
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VM0

VM0

Hypervisor

Hypervisor

SPMD

SPMD

SPMC

SPMC

SP0

SP0

1 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP0)

2 SMC(FFA_MSG_SEND_DIRECT_REQ, to SP0)

3 ERET(FFA_MSG_SEND_DIRECT_REQ, to SP0)

4 ERET(FFA_MSG_SEND_DIRECT_REQ, from VM0)

Start some work

Yield control until work is expected to finish

5 SMC(FFA_YIELD)

6 SMC(FFA_YIELD, SP0)

7 ERET(FFA_YIELD, SP0)

8 SMC(FFA_YIELD, SP0)

Schedule SP0 after IMPDEF period

9 SMC(FFA_RUN, SP0)

10 SMC(FFA_RUN, SP0)

11 ERET(FFA_RUN, SP0)

12 ERET(FFA_RUN)

Check if work is finished

Return result of finished work

13 SMC(FFA_MSG_SEND_DIRECT_RESP, to VM0)

14 SMC(FFA_MSG_SEND_DIRECT_RESP, to VM0)

15 ERET(FFA_MSG_SEND_DIRECT_RESP, to VM0)

16 SMC(FFA_MSG_SEND_DIRECT_RESP, to VM0)

Work done

Figure 14.1: SP0 yields execution back to VM0
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14.3 FFA_RUN

Description

• This ABI is used by a scheduler (see 4.9 Primary scheduler) to allocate CPU cycles to a target endpoint
execution context specified in the Target information parameter.

• An invocation of this ABI at a virtual FF-A instance with the SMC, HVC or SVC conduits transitions the
state of the calling execution context from running to blocked in the following runtime models.

– 8.2 Runtime model for FFA_RUN.
– 8.3 Runtime model for Direct request ABIs.

• An invocation of this ABI at a virtual FF-A instance with the ERET conduit results in a state transition of
the target endpoint execution context as described below.

– If the endpoint execution context is in the waiting state, it transitions to the running state with the
following runtime model.

* 8.2 Runtime model for FFA_RUN.
– If the endpoint execution context is in the blocked state, it transitions to the running state in the

following runtime models.
* 8.2 Runtime model for FFA_RUN.
* 8.3 Runtime model for Direct request ABIs.

• If the target endpoint execution context is in the preempted state, it transitions to running state in response
to an invocation of this ABI. The partition manager of the execution context changes the state through the
eret() transition. This transition is applicable if the execution context is using the following runtime
models.

– 8.2 Runtime model for FFA_RUN.
– 8.3 Runtime model for Direct request ABIs.

• An invocation of this ABI at a physical FF-A instance with a valid conduit, is used to request the partition
manager of the target execution context, to perform the applicable state transition listed above.

• An invocation of this ABI at a virtual FF-A instance with the SMC, HVC and SVC conduits and, at the
Non-secure physical FF-A instance with the SMC conduit, completes and transitions the state of calling
execution context from blocked to running through the following transitions.

– eret(FFA_INTERRUPT).
– eret(FFA_MSG_WAIT).
– eret(FFA_YIELD).
– eret(FFA_MSG_SEND_DIRECT_RESP).

• An invocation of this ABI at the Secure physical FF-A instance with the ERET conduit completes with
invocations of the following ABIs.

– smc(FFA_INTERRUPT).
– smc(FFA_MSG_WAIT).
– smc(FFA_YIELD).
– smc(FFA_MSG_SEND_DIRECT_RESP).

• Valid FF-A instances and conduits are listed in Table 14.12.
• Syntax of this function is described in Table 14.13.
• Encoding of error code in the FFA_ERROR function is described in Table 14.14.

Table 14.12: FFA_RUN instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical SMC

2 Secure physical ERET
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Config No. FF-A instance Valid conduits

3 Non-secure virtual SMC, HVC, ERET

4 Secure virtual SMC, HVC, SVC, ERET

Table 14.13: FFA_RUN function syntax

Parameter Register Value

uint32 Function ID w0 • 0x8400006D.

uint32 Target information w1 • Information to identify target SP/VM.
– Bits[31:16]: ID of SP/VM.
– Bits[15:0]: ID of vCPU of SP/VM to run.

Other Parameter registers w2-w7
x2-x17

• Reserved (SBZ).

Table 14.14: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: Unrecognized endpoint
or vCPU ID.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

• DENIED:
– Callee is not in a state to handle this request.
– Caller is not allowed to invoke this ABI (see

9.2.3 CPU cycle allocation modes).
• BUSY: vCPU is busy and caller must retry later.
• ABORTED: vCPU or VM ran into an unexpected

error and has aborted.
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14.4 FFA_NORMAL_WORLD_RESUME

Description

• Request SPMD to resume execution of Normal world on current PE after the exception that originally
preempted the Normal world has been handled. See 14.4.1 Overview for details.

• Valid FF-A instances and conduits are listed in Table 14.16.
• Syntax of this function is described in Table 14.17.
• Successful completion of this function is indicated through the invocation of any FF-A function.
• Encoding of error code in the FFA_ERROR function is described in Table 14.18.

Table 14.16: FFA_NORMAL_WORLD_RESUME instances and conduits

Config No. FF-A instance Valid conduits

1 Secure physical SMC

Table 14.17: FFA_NORMAL_WORLD_RESUME function syntax

Parameter Register Value

uint32 Function ID w0 • 0x8400007C.

Other Parameter registers w1-w7
x1-x17

• Reserved (SBZ).

Table 14.18: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • DENIED: Callee is not in a state to handle this
request.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

14.4.1 Overview

Execution in Normal world could be preempted in response to an exception for example, a Secure physical
interrupt. As per the Arm A-profile architecture, the exception will be delivered to EL3 in the AArch64 Execution
state or Monitor mode in the AArch32 Execution state. The exception could be handled in the Secure state at a
lower Exception level than EL3 or Monitor mode.

This function must be used by the SPMC in S-EL2 (see 4.1.1 Secure EL2 SPM core component) and S-EL1 (see
4.1.2 S-EL1 SPM core component) to request the SPMD to resume Normal world execution once the exception has
been handled.
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The SPMD must ensure that the Normal world execution is resumed with exactly the same PE state that was saved
when it was preempted.

The SPMD must return DENIED if this function is invoked at the Secure physical FF-A instance and the Normal
world execution was not preempted.

The partition manager must return NOT_SUPPORTED if this function is invoked at any other FF-A instance.

An invocation of this function at the Secure physical FF-A instance could be completed through a valid invocation
of any FF-A function through the ERET conduit.
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15.1 FFA_MSG_SEND2

Overview

• This ABI is invoked at a virtual FF-A instance with the SMC, HVC or SVC conduits to,
– Transmit a partition message from the TX buffer of the caller endpoint to the RX buffer of the

Receiver endpoint as described in 7.2.2.1.1 Transmission of partition messages.
– Notify the Receiver’s scheduler that the Receiver endpoint must be run to process the partition

message as described in 10.8.1 RX buffer full notification.
• An invocation of this ABI at a physical FF-A instance with a valid conduit is used to request the SPMC to

transmit the message to a SP.
• A partition message is encoded as described in Table 7.2.
• Valid FF-A instances and conduits are listed in Table 15.2.
• Syntax of this function is described in Table 15.3.
• Returns FFA_SUCCESS without any further parameters on successful completion.
• Encoding of error code in the FFA_ERROR function is described in Table 15.4.

Table 15.2: FFA_MSG_SEND2 instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical SMC

2 Secure physical ERET

3 Non-secure virtual SMC, HVC

4 Secure virtual SMC, HVC, SVC

Table 15.3: FFA_MSG_SEND2 function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000086.

uint32 Sender VM ID w1 • Sender VM ID from whose TX buffer the message
must be copied into the RX buffer of the target SP.

– Bit[31:16]: Sender VM ID at the Non-secure
physical instance. MBZ otherwise.

– Bit[15:0]: Reserved (SBZ).
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Parameter Register Value

uint32 Flags w2 • Message flags.
– Must be ignored by callee when SVC conduit

is used.
– Bit[0]: Reserved (SBZ).
– Bit[1]: Delay Schedule Receiver interrupt flag.

Guidance in. 16.5.1 Delay Schedule Receiver
interrupt flag applies to the
FFA_MSG_SEND2 ABI.

– Bit[31:2]: Reserved (SBZ).

Other Parameter registers w3-w7
x3-x17

• Reserved (SBZ).

Table 15.4: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: A field in input
parameters is incorrectly encoded.

• BUSY: Receiver RX buffer is not free.
• DENIED:

– Callee is not in a state to handle this request.
– Caller is not allowed to invoke this ABI.
– Receiver endpoint does not support receipt of

partition messages through Indirect messaging.
• NO_MEMORY: Insufficient memory to handle this

request.
• NOT_SUPPORTED: This function is not

implemented at this FF-A instance.
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15.2 FFA_MSG_SEND_DIRECT_REQ

Description

• Send a Partition or Framework message in parameter registers as a request to a Receiver endpoint, run the
endpoint and block until a response is available. Also see 7.4 Direct messaging usage.

• Valid FF-A instances and conduits are listed in Table 15.6.
• Syntax of this function is described in Table 15.7.
• Successful completion of this function is indicated through an invocation of the following interfaces by

the callee:
– FFA_MSG_SEND_DIRECT_RESP to provide a response to the Direct request.
– FFA_INTERRUPT to indicate that the Direct request was interrupted and must be resumed through

the FFA_RUN interface.
– FFA_YIELD to indicate that the Receiver endpoint has transitioned to the blocked runtime state and

must be resumed through the FFA_RUN interface.
– FFA_SUCCESS to indicate completion of the Direct request without a corresponding Direct

response. All other parameter registers MBZ.
• Encoding of error code in the FFA_ERROR function is described in Table 15.8.

Table 15.6: FFA_MSG_SEND_DIRECT_REQ instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical SMC

2 Secure physical SMC, ERET

3 Non-secure virtual SMC, HVC, ERET

4 Secure virtual SMC, HVC, SVC, ERET

Table 15.7: FFA_MSG_SEND_DIRECT_REQ function syntax

Parameter Register Value

uint32 Function ID w0 • 0x8400006F.
• 0xC400006F.

uint32 Sender/Receiver IDs w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]: Sender endpoint ID.
– Bit[15:0]: Receiver endpoint ID.
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Parameter Register Value

uint32 Flags w2 • Message flags.
– Bit[31]: Message type.

* b’0: Message encoded in parameter
registers is a partition message.

* b’1: Message encoded in parameter
registers is a framework message.

– Bit[30:8]: Reserved (SBZ).
– Bit[7:0]:

* Reserved (MBZ) if bit[31] = b’0.
* Framework message type if bit[31] = b’1.

· See Table 18.6 & Table 18.7 in
18.2.4 Power Management messages.

IMPLEMENTATION DEFINED
values

w3-w7
x3-x7

• IMPLEMENTATION DEFINED values.

Other Parameter registers when
using the SMC64, HVC64 or
SVC64 convention.

x8-x17 • Reserved (SBZ).

Table 15.8: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: Invalid endpoint ID or
message flags.

• DENIED:
– Callee is not in a state to handle this request.
– Receiver endpoint does not support receipt of

Direct request messages.
• NOT_SUPPORTED: This function is not

implemented at this FF-A instance.
• BUSY: Receiver endpoint is in a running, blocked or

preempted state.
• ABORTED: Receiver endpoint ran into an

unexpected error and has aborted.
• NOT_READY: Receiver endpoint is not ready to

handle this request.
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15.3 FFA_MSG_SEND_DIRECT_RESP

Description

• Send a Partition or Framework message in parameter registers as a response to a target endpoint, run the
endpoint and wait until a new message is available. Also see 7.4 Direct messaging usage.

• Valid FF-A instances and conduits are listed in Table 15.10.
• Syntax of this function is described in Table 15.11.
• Successful completion of this function is indicated in the same manner as that of the FFA_MSG_WAIT

function (also see 14.1 FFA_MSG_WAIT).
• Encoding of error code in the FFA_ERROR function is described in Table 15.12.

Table 15.10: FFA_MSG_SEND_DIRECT_RESP instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical ERET

2 Secure physical SMC, ERET

3 Non-secure virtual SMC, HVC, ERET

4 Secure virtual SMC, HVC, SVC, ERET

Table 15.11: FFA_MSG_SEND_DIRECT_RESP function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000070.
• 0xC4000070.

uint32 Source/Destination IDs w1 • Source and destination endpoint IDs.
– Bit[31:16]: Source endpoint ID.
– Bit[15:0]: Destination endpoint ID.

uint32 Flags w2 • Message flags.
– Bit[31]: Message type.

* b’0: Message encoded in parameter
registers is a partition message.

* b’1: Message encoded in parameter
registers is a framework message.

– Bit[30:8]: Reserved (SBZ).
– Bit[7:0]:

* Reserved (MBZ) if Bit[31] = b’0.
* Framework message type if bit[31] = b’1.

· See Table 18.8 in 18.2.4 Power
Management messages.
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Parameter Register Value

IMPLEMENTATION DEFINED
values

w3-w7
x3-x7

• IMPLEMENTATION DEFINED values.

Other Parameter registers when
using the SMC64, HVC64 or
SVC64 convention.

x8-x17 • Reserved (SBZ).

Table 15.12: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: Invalid endpoint ID or
message flags.

• DENIED:
– Callee is not in a state to handle this request.
– Caller is not allowed to invoke this ABI.
– Receiver endpoint does not support receipt of

Direct response messages.
• NOT_SUPPORTED: This function is not

implemented at this FF-A instance.
• ABORTED: Receiver endpoint ran into an

unexpected error and has aborted.
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15.4 FFA_MSG_SEND_DIRECT_REQ2

Description

• Send a Partition message in parameter registers as a request to a Receiver endpoint, run the endpoint and
block until a response is available. The UUID parameter is used as described in 6.2.3 Partition UUID
usage.

• Valid FF-A instances and conduits are listed in Table 15.14.
• Syntax of this function is described in Table 15.15.
• Successful completion of this function is indicated through an invocation of the following interfaces by

the callee:
– FFA_MSG_SEND_DIRECT_RESP2 to provide a response to the Direct request.
– FFA_INTERRUPT to indicate that the Direct request was interrupted and must be resumed through

the FFA_RUN interface.
– FFA_YIELD to indicate that the Receiver endpoint has transitioned to the blocked runtime state and

must be resumed through the FFA_RUN interface.
– FFA_SUCCESS to indicate completion of the Direct request without a corresponding Direct

response. All other parameter registers MBZ.
• Encoding of error code in the FFA_ERROR function is described in Table 15.16.

Table 15.14: FFA_MSG_SEND_DIRECT_REQ2 instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical SMC

2 Secure physical SMC, ERET

3 Non-secure virtual SMC, HVC, ERET

4 Secure virtual SMC, HVC, SVC, ERET

Table 15.15: FFA_MSG_SEND_DIRECT_REQ2 function syntax

Parameter Register Value

uint32 Function ID w0 • 0xC400008D.

uint32 Sender/Receiver IDs w1 • Sender and Receiver endpoint IDs.
– Bits[31:16]: Sender endpoint ID.
– Bits[15:0]: Receiver endpoint ID.

uint64 UUID Lo x2 • Bytes[0. . . 7] of UUID with byte 0 in the low-order
bits.

uint64 UUID Hi x3 • Bytes[8. . . 15] of UUID with byte 8 in the low-order
bits.
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Parameter Register Value

Other Parameter registers x4-x17 • IMPLEMENTATION DEFINED values.

Table 15.16: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS:
– Invalid endpoint ID or message flags.
– Unrecognized UUID.

• DENIED:
– Callee is not in a state to handle this request.
– Caller is not allowed to invoke this ABI.
– Receiver endpoint does not support receipt of

Direct request messages.
• NOT_SUPPORTED: This function is not

implemented at this FF-A instance.
• BUSY: Receiver endpoint is in a running, blocked or

preempted state.
• ABORTED: Receiver endpoint ran into an

unexpected error and has aborted.
• NOT_READY: Receiver endpoint is not ready to

handle this request.
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15.5 FFA_MSG_SEND_DIRECT_RESP2

Description

• Send a Partition message in parameter registers as a response to a target endpoint, run the endpoint and
wait until a new message is available. Also see 7.4 Direct messaging usage.

• Valid FF-A instances and conduits are listed in Table 15.18.
• Syntax of this function is described in Table 15.19.
• Successful completion of this function is indicated in the same manner as that of the FFA_MSG_WAIT

function (also see 14.1 FFA_MSG_WAIT).
• Encoding of error code in the FFA_ERROR function is described in Table 15.20.

Table 15.18: FFA_MSG_SEND_DIRECT_RESP2 instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical ERET

2 Secure physical SMC, ERET

3 Non-secure virtual SMC, HVC, ERET

4 Secure virtual SMC, HVC, SVC, ERET

Table 15.19: FFA_MSG_SEND_DIRECT_RESP2 function syntax

Parameter Register Value

uint32 Function ID w0 • 0xC400008E.

uint32 Source/Destination IDs w1 • Source and destination endpoint IDs.
– Bit[31:16]: Source endpoint ID.
– Bit[15:0]: Destination endpoint ID.

uint64 Reserved w2 • Reserved (SBZ).

uint64 Reserved w3 • Reserved (SBZ).

Other Parameter registers x4-x17 • IMPLEMENTATION DEFINED values.
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Table 15.20: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: Invalid endpoint ID or
message flags.

• DENIED:
– Callee is not in a state to handle this request.
– Caller does not support sending of Direct

response messages.
– Receiver endpoint does not support receipt of

Direct response messages.
• NOT_SUPPORTED: This function is not

implemented at this FF-A instance.
• ABORTED: Receiver endpoint ran into an

unexpected error and has aborted.
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16.1 FFA_NOTIFICATION_BITMAP_CREATE

Description

• This ABI is invoked by the Hypervisor at the Non-secure physical FF-A instance with the SMC conduit to
request the SPMC to create the SP and SPM framework notifications bitmap for the VM specified in the
VM ID input parameter. Also see 10.3 Notification bitmap setup.

• Valid FF-A instances and conduits are listed in Table 16.2.
• Syntax of this function is described in Table 16.3.
• Returns FFA_SUCCESS without any further parameters on successful completion.
• Encoding of error codes in the FFA_ERROR function is described in Table 16.4.

Table 16.2: FFA_NOTIFICATION_BITMAP_CREATE instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical SMC

2 Secure physical ERET

Table 16.3: FFA_NOTIFICATION_BITMAP_CREATE function syntax

Parameter Register Value

uint32 Function ID w0 • 0x8400007D.

uint32 VM ID w1 • ID of VM for which a bitmap must be created in the
Secure world to enable SPs to send notifications to
this VM.

– Bit[31:16]: Reserved (MBZ).
– Bit[15:0]: VM ID.

uint32 vCPU count w2 • Number of vCPUs implemented by the VM.

Other Parameter registers w3-w7
x3-x17

• Reserved (SBZ).
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Table 16.4: Encoding of return codes

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: Unrecognized VM ID.
• NOT_SUPPORTED: This function is not

implemented at this FF-A instance.
• DENIED: Notification bitmap is already created.
• NO_MEMORY: There is not enough memory to

allocate notification bitmap.
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16.2 FFA_NOTIFICATION_BITMAP_DESTROY

Description

• This ABI is invoked by the Hypervisor at the Non-secure physical FF-A instance with the SMC conduit to
request the SPMC to destroy the SP and SPM framework notifications bitmap for the VM specified in the
VM ID input parameter. Also see 10.3 Notification bitmap setup.

• Valid FF-A instances and conduits are listed in Table 16.6.
• Syntax of this function is described in Table 16.7.
• Returns FFA_SUCCESS without any further parameters on successful completion.
• Encoding of error codes in the FFA_ERROR function is described in Table 16.8.

Table 16.6: FFA_NOTIFICATION_BITMAP_DESTROY instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical SMC

2 Secure physical ERET

Table 16.7: FFA_NOTIFICATION_BITMAP_DESTROY function syntax

Parameter Register Value

uint32 Function ID w0 • 0x8400007E.

uint32 VM ID w1 • ID of VM whose notification bitmap in the Secure
world must be destroyed to prevent SPs to send
notifications to this VM.

– Bit[31:16]: Reserved (SBZ).
– Bit[15:0]: VM ID.

Other Parameter registers w2-w7
x2-x17

• Reserved (SBZ).

Table 16.8: Encoding of return codes

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: Unrecognized partition
ID.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

• DENIED: Notification bitmap is not registered or is
registered but not in a masked and non-pending state.
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16.3 FFA_NOTIFICATION_BIND

Description

• This ABI is invoked by an endpoint at a virtual FF-A instance with the SMC, HVC or SVC conduits to
request the partition manager to bind notifications specified in the Notification bitmap parameter to the
Sender endpoint. Also see 10.4.2 Notification binding.

• This ABI is invoked by the Hypervisor at the Non-secure physical FF-A instance with the SMC conduit to
request the SPMC to bind SP notifications specified in the Notification bitmap parameter to the SP
specified in the Sender endpoint ID parameter.

• Valid FF-A instances and conduits are listed in Table 16.10.
• Syntax of this function is described in Table 16.11.
• Returns FFA_SUCCESS without any further parameters on successful completion.
• Encoding of error codes in the FFA_ERROR function is described in Table 16.12.

Table 16.10: FFA_NOTIFICATION_BIND instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure virtual SMC, HVC

2 Secure virtual SMC, HVC, SVC

3 Non-secure physical SMC

4 Secure physical ERET

Table 16.11: FFA_NOTIFICATION_BIND function syntax

Parameter Register Value

uint32 Function ID w0 • 0x8400007F.

uint32 Sender/Receiver IDs w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]: Sender endpoint ID.
– Bit[15:0]: Receiver endpoint ID.

uint32 Flags w2 • Notification flags.
– Bit[0]: Per-vCPU notification flag (see 10.4.2

Notification binding).
* b’1: All notifications in the bitmap are

per-vCPU notifications
* b’0: All notifications in the bitmap are

global notifications
– Bit[31:1]: Reserved (SBZ).
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Parameter Register Value

uint32 Notification bitmap Lo w3 • Bits[31:0] of a bitmap with one or more set bits to
identify the notifications which the Sender endpoint
is allowed to signal.

• For each bit in the bitmap, if the value is:
– b’1: The Sender endpoint can signal this

notification.
– b’0: Has no effect.

uint32 Notification bitmap Hi w4 • Bits[63:32] of a bitmap with one or more set bits to
identify the notifications which the Sender endpoint
is allowed to signal.

• For each bit in the bitmap, if the value is:
– b’1: The Sender endpoint can signal this

notification.
– b’0: Has no effect.

Other Parameter registers w5-w7
x5-x17

• Reserved (SBZ).

Table 16.12: Encoding of return codes

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: Unrecognized partition
ID or invalid bitmap.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

• DENIED:
– At least one notification is bound to another

Sender or is currently pending.
– Caller is not allowed to invoke this ABI.

• ABORTED: Sender partition ran into an unexpected
error and has aborted.

DEN0077A
1.2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

229



Chapter 16. Notification interfaces
16.4. FFA_NOTIFICATION_UNBIND

16.4 FFA_NOTIFICATION_UNBIND

Description

• This ABI is invoked by an endpoint at a virtual FF-A instance with the SMC, HVC or SVC conduits to
request the partition manager to unbind notifications specified in the Notification bitmap parameter to the
Sender endpoint. Also see 10.4.2 Notification binding.

• This ABI is invoked by the Hypervisor at the Non-secure physical FF-A instance with the SMC conduit to
request the SPMC to unbind SP notifications specified in the Notification bitmap parameter to the SP
specified in the Sender endpoint ID parameter.

• Valid FF-A instances and conduits are listed in Table 16.14.
• Syntax of this function is described in Table 16.15.
• Returns FFA_SUCCESS without any further parameters on successful completion.
• Encoding of error codes in the FFA_ERROR function is described in Table 16.16.

Table 16.14: FFA_NOTIFICATION_UNBIND instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure virtual SMC, HVC

2 Secure virtual SMC, HVC, SVC

3 Non-secure physical SMC

4 Secure physical ERET

Table 16.15: FFA_NOTIFICATION_UNBIND function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000080.

uint32 Sender/Receiver IDs w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]: Sender endpoint ID.
– Bit[15:0]: Receiver endpoint ID.

uint32/uint64 Reserved w2/x2 • Reserved (SBZ).

uint32 Notification bitmap Lo w3 • Bits[31:0] of a bitmap with one or more set bits to
identify the notifications which the Sender endpoint
is not allowed to signal.

• For each bit in the bitmap, if the value is:
– b’1: The Sender endpoint cannot signal this

notification.
– b’0: Has no effect.
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Parameter Register Value

uint32 Notification bitmap Hi w4 • Bits[63:32] of a bitmap with one or more set bits to
identify the notifications which the Sender endpoint
is not allowed to signal.

• For each bit in the bitmap, if the value is:
– b’1: The Sender endpoint cannot signal this

notification.
– b’0: Has no effect.

Other Parameter registers w5-w7
x5-x17

• Reserved (SBZ).

Table 16.16: Encoding of return codes

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: Unrecognized partition
ID or invalid bitmap.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

• DENIED:
– At least one notification is bound to another

Sender or is currently pending.
– Caller is not allowed to invoke this ABI.

• ABORTED: Sender partition ran into an unexpected
error and has aborted.
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16.5 FFA_NOTIFICATION_SET

Description

• This ABI is invoked by an endpoint at a virtual FF-A instance with the SMC, HVC or SVC conduits to
request the partition manager to signal notifications specified in the Notification bitmap parameter to the
Receiver endpoint. Also see 10.5 Notification signaling.

• This ABI is invoked by the Hypervisor at the Non-secure physical FF-A instance with the SMC conduit to
request the SPMC to signal VM notifications specified in the Notification bitmap parameter to the SP
specified in the Receiver endpoint ID parameter on behalf of the VM specified in the Sender endpoint ID
parameter.

• Valid FF-A instances and conduits are listed in Table 16.18.
• Syntax of this function is described in Table 16.19.
• Returns FFA_SUCCESS without any further parameters on successful completion.
• Encoding of error codes in the FFA_ERROR function is described in Table 16.20.

Table 16.18: FFA_NOTIFICATION_SET instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure virtual SMC, HVC

2 Secure virtual SMC, HVC, SVC

3 Non-secure physical SMC

4 Secure physical ERET

Table 16.19: FFA_NOTIFICATION_SET function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000081.

uint32 Sender/Receiver IDs w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]: Sender endpoint ID.
– Bit[15:0]: Receiver endpoint ID.
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Parameter Register Value

uint32 Flags w2 • Flags.
– Bit[0]: Per-vCPU notification flag (see 10.4.2

Notification binding).
* b’1: All notifications in the bitmap are

per-vCPU notifications.
· Each notification must be signaled to

the vCPU specified in the Receiver
vCPU ID field.

* b’0: All notifications in the bitmap are
global notifications

· The Receiver vCPU ID field MBZ.
– Bit[1]: Delay Schedule Receiver interrupt flag.

See 16.5.1 Delay Schedule Receiver interrupt
flag.

– Bit[15:2]: Reserved (MBZ).
– Bit[31:16]: Receiver vCPU ID.

uint32 Notification bitmap Lo w3 • Bits[31:0] of a bitmap with one or more set bits to
identify the notifications which must be signaled to
the Receiver endpoint.

• For each bit in the bitmap, if the value is:
– b’1: The notification corresponding to this bit

position must be signaled to the Receiver.
– b’0: The notification corresponding to this bit

position must not be signaled to the Receiver.

uint32 Notification bitmap Hi w4 • Bits[63:32] of a bitmap with one or more set bits to
identify the notifications which must be signaled to
the Receiver endpoint.

• For each bit in the bitmap, if the value is:
– b’1: The notification corresponding to this bit

position must be signaled to the Receiver.
– b’0: The notification corresponding to this bit

position must not be signaled to the Receiver.

Other Parameter registers w5-w7
x5-x17

• Reserved (SBZ).
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Table 16.20: Encoding of return codes

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS:
– Unrecognized partition ID or invalid flags.
– Per-vCPU notification flag = b’0 and Receiver

vCPU ID != 0.
– Per-vCPU notification flag = b’0 and a

per-vCPU notification is specified in the
Notification bitmap.

– Per-vCPU notification flag = b’1 and a global
notification is specified in the Notification
bitmap.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

• DENIED:
– Sender is not permitted to signal at least one

notification to the Receiver.
– Receiver does not support receipt of

notifications.
• ABORTED: Receiver partition ran into an

unexpected error and has aborted.

16.5.1 Delay Schedule Receiver interrupt flag

The partition manager uses an IMPLEMENTATION DEFINED policy to determine when the Schedule Receiver
interrupt must be asserted in response an invocation of the FFA_NOTIFICATION_SET interface. The interrupt
could be asserted before or after an invocation of this interface completes.

The SPMC could choose to assert this interrupt before completion of an FFA_NOTIFICATION_SET interface
invocation by an SP. The interrupt would either preempt or trigger a managed exit of the caller SP execution
context immediately upon the completion of the interface invocation. This might be undesirable for the SP in some
scenarios. The non-secure Schedule Receiver interrupt could trigger a switch to the Normal world when the SP is
about to request the same switch itself. For example, an SP sends notifications while handling a Direct request
from the Normal world. It could switch back to the Normal world through a Direct response immediately after
sending the notifications thereby avoiding the need to pend the Schedule Receiver interrupt until switch takes place.

The Delay Schedule Receiver interrupt flag is a hint from the SP execution context to the SPMC it does not have to
assert this interrupt upon completion of the FFA_NOTIFICATION_SET interface invocation. The use of this flag
by the SP could help the SPMC optimize the policy it uses for asserting this interrupt. This flag is only used at the
Secure virtual FF-A instance. It MBZ at all other FF-A instances.

The above guidance for this flag applies to the FFA_MSG_SEND2 ABI described in 15.1 FFA_MSG_SEND2 as
well.
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16.6 FFA_NOTIFICATION_GET

Description

• This ABI is invoked by an endpoint at a virtual FF-A instance with the SMC, HVC or SVC conduits to
request the partition manager to retrieve notifications pending in notification bitmaps specified in the
Flags parameter. Also see 10.5 Notification signaling.

• This ABI is invoked by the Hypervisor at the Non-secure physical FF-A instance with the SMC conduit to
request the SPMC to return pending SP or SPM Framework notifications as specified in the Flags
parameter for the VM specified in the Receiver endpoint ID parameter. The Receiver vCPU ID parameter
is used to return any pending per-vCPU notifications.

• Valid FF-A instances and conduits are listed in Table 16.22.
• Syntax of this function is described in Table 16.23.
• Encoding of result parameters in the FFA_SUCCESS function is described in Table 16.24.
• Returns FFA_SUCCESS without any further parameters on successful completion.
• Encoding of error codes in the FFA_ERROR function is described in Table 16.25.

Table 16.22: FFA_NOTIFICATION_GET instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure virtual SMC, HVC

2 Secure virtual SMC, HVC, SVC

3 Non-secure physical SMC

4 Secure physical ERET

Table 16.23: FFA_NOTIFICATION_GET function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000082.

uint32 Receiver ID w1 • Receiver endpoint and vCPU ID.
– Bit[31:16]: Receiver vCPU ID.
– Bit[15:0]: Receiver endpoint ID.
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Parameter Register Value

uint32 Flags w2 • Bit[0]: Receiver’s SP notifications bitmap identifier.
– b’1: Return bitmap for notifications pended by

SPs.
– b’0: Do not return bitmap for notifications

pended by SPs.
• Bit[1]: Receiver’s VM notifications bitmap identifier.

This bit SBZ at the Non-secure physical FF-A
instance.

– b’1: Return bitmap for notifications pended by
VMs.

– b’0: Do not return bitmap for notifications
pended by VMs.

• Bit[2]: Receiver’s SPM Framework notification
bitmap identifier.

– b’1: Return bitmap for notifications pended by
the SPM.

– b’0: Do not return bitmap for notifications
pended by the SPM.

• Bit[3]: Receiver’s Hypervisor Framework
notifications bitmap identifier. This bit SBZ at the
Non-secure physical FF-A instance.

– b’1: Return bitmap for notifications pended by
the Hypervisor.

– b’0: Do not return bitmap for notifications
pended by the Hypervisor.

• Bit[31:4]: Reserved (SBZ).

Other Parameter registers w3-w7
x3-x17

• Reserved (SBZ).

Table 16.24: FFA_SUCCESS encoding

Parameter Register Value

uint32 SP Notifications bitmap Lo w2 • Bits[31:0] of the SP notifications bitmap with one or
more set bits to identify the notifications which are
pending for the Receiver endpoint.

• For each bit in the bitmap, if the value is:
– b’1: The notification corresponding to this bit

position is pending for the Receiver
– b’0: The notification corresponding to this bit

position is not pending for the Receiver.
• Caller must ignore this field if Bit[0] in the Flags

field was not set.
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Parameter Register Value

uint32 SP Notifications bitmap Hi w3 • Bits[63:32] of the SP notifications bitmap with one
or more set bits to identify the notifications which
are pending for the Receiver endpoint.

• For each bit in the bitmap, if the value is:
– b’1: The notification corresponding to this bit

position is pending for the Receiver
– b’0: The notification corresponding to this bit

position is not pending for the Receiver.
• Caller must ignore this field if Bit[0] in the Flags

field was not set.

uint32 VM Notifications bitmap
Lo

w4 • Bits[31:0] of the VM notifications bitmap with one
or more set bits to identify the notifications which
are pending for the Receiver endpoint.

• For each bit in the bitmap, if the value is:
– b’1: The notification corresponding to this bit

position is pending for the Receiver
– b’0: The notification corresponding to this bit

position is not pending for the Receiver.
• Caller must ignore this field if Bit[1] in the Flags

field was not set.

uint32 VM Notifications bitmap
Hi

w5 • Bits[63:32] of the VM notifications bitmap with one
or more set bits to identify the notifications which
are pending for the Receiver endpoint.

• For each bit in the bitmap, if the value is:
– b’1: The notification corresponding to this bit

position is pending for the Receiver
– b’0: The notification corresponding to this bit

position is not pending for the Receiver.
• Caller must ignore this field if Bit[1] in the Flags

field was not set.

uint32 Framework Notifications
bitmap Lo

w6 • Bits[31:0] of the Framework notifications bitmap
with one or more set bits to identify the notifications
which are pending for the Receiver endpoint as sent
by the SPM.

• These 32 bits will be set by the SPM and reflect
notifications regarding events in the secure world.

• Caller must ignore this field if Bit[2] in the Flags
field was not set.
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Parameter Register Value

uint32 Framework Notifications
bitmap Hi

w7 • Bits[63:32] of the Framework notifications bitmap
with one or more set bits to identify the notifications
which are pending for the Receiver endpoint as sent
by the Hypervisor.

• These 32 bits will be set by the Hypervisor and
reflect notifications regarding events in the normal
world.

• Caller must ignore this field if Bit[3] in the Flags
field was not set.

Table 16.25: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: Unrecognized partition
ID or incorrectly encoded Flags parameter.

• DENIED: Caller is not allowed to invoke this ABI.
• NOT_SUPPORTED: This function is not

implemented at this FF-A instance.
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16.7 FFA_NOTIFICATION_INFO_GET

Description

• This ABI returns lists of endpoints that have pending notifications and must be run to handle their
notifications. This is described in 16.7.1 Usage.

• Valid FF-A instances and conduits are listed in Table 16.27.
• Syntax of this function is described in Table 16.28.
• Encoding of result parameters in the FFA_SUCCESS function is described in Table 16.29.
• Encoding of error codes in the FFA_ERROR function is described in Table 16.30.

Table 16.27: FFA_NOTIFICATION_INFO_GET instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure physical SMC

2 Secure physical ERET

3 Non-secure virtual SMC, HVC

Table 16.28: FFA_NOTIFICATION_INFO_GET function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000083.
• 0xC4000083.

Other Parameter registers w1-w7
x1-x17

• Reserved (SBZ).

Table 16.29: FFA_SUCCESS encoding

Parameter Register Value

uint32/uint64 Pending notification
flags

w2/x2 • See 16.7.1 Usage.

uint32/uint64 ID lists w3-w7
x3-x17

• See 16.7.1 Usage.
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Table 16.30: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • NO_DATA: There is no pending notification
information available.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

16.7.1 Usage

This ABI is used by an NS-Endpoint or the Hypervisor to retrieve a list of endpoints that have pending notifications
as described below. Also see 10.5 Notification signaling.

• This ABI is invoked by a VM at the Non-secure virtual FF-A instance with the SMC or HVC conduits to
request the Hypervisor to return the list of SPs and VMs that have pending notifications. The Hypervisor
returns the list of those endpoints whose schedulers are implemented in the calling VM.

• This ABI is invoked by the Hypervisor or the OS Kernel at a Non-secure physical FF-A instance with the
SMC conduit to request the SPMC to return the list of SPs and VMs that have pending notifications. The
ABI invocation is forwarded by the SPMD to the SPMC as described below,

– Through the ERET conduit if they do not reside in the same exception level. Also see 4.1.1 Secure EL2
SPM core component and 4.1.2 S-EL1 SPM core component.

– Through an IMPLEMENTATION DEFINED mechanism if they reside in the same exception level. Also see
4.1.3 EL3 SPM core component.

The Hypervisor is responsible for signaling the Notification pending interrupt to any VM that has a pending
notification. It uses the list of VMs returned by the SPMC to discover the VMs that have pending notifications
signaled by SPs.

The lists of endpoints with pending notifications is returned in w2/x2-w7/x7 registers as described below.

1. One or more lists of 16-bit IDs are returned in the ID lists registers w3/x3-w7/x7. This is subject to the
following rules.

1. An ID is of one of the following types.

1. An endpoint ID.
2. A vCPU ID.

2. If an endpoint has only one or more pending global notifications, its ID is returned in a list of size 1.

3. If an endpoint has one or more pending per-vCPU notifications, its ID is the first element in the list
followed by the IDs of vCPUs that have pending notifications. The size of the list is > 1 in this case.

4. Each list has a minimum size of 1 and a maximum size of 4. If an endpoint has pending per-vCPU
notifications for more than 3 vCPUs, it creates more than 1 list to encode all the vCPU IDs.

5. The ID lists are tightly packed in the registers as follows.

1. The first ID of the first list is encoded as follows,

1. In Bit[15:0] in w3 if the SMC32 convention is used.
2. In Bit[15:0] in x3 if the SMC64 convention is used.

2. The bit position of the first ID of the next list is calculated by using the number of IDs in the previous
list. Subsequent lists follow in the same or a higher numbered register.

6. With the SMC32 calling convention, the ID lists registers can accommodate 10 IDs.
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7. With the SMC64 calling convention, the ID lists registers can accommodate 20 IDs.

2. The number of lists and the number of IDs (endpoint and vCPU) in each list is specified in the Pending
notification flags parameter in w2/x2 as described in Table 16.31.

3. All information about endpoints with pending notifications may not fit in one invocation of this ABI. The
partition manager sets the More pending notifications flag in w2/x2 in this case. This ABI is invoked until the
flag is unset by the partition manager to retrieve all the information.

Information about pending notifications is returned by the partition manager only once i.e. an ID list retrieved
in one invocation of this interface cannot be retrieved again in a subsequent invocation.

4. 16.7.1.1 Example usage describes an example encoding of pending notification information as described
above.

Table 16.31: Pending notifications flags encoding

Field Description

Bit[0] • More pending notifications flag.
– b’0: Caller has retrieved all ID lists of Receiver endpoints with pending notifications.
– b’1: Caller has not retrieved all ID lists of Receiver endpoints with pending

notifications. It must invoke this interface again to retrieve the remaining lists.

Bit[6:1] • Reserved (MBZ).

Bit[11:7] • Count of lists returned in ID lists registers.
– Bit[11] Reserved (MBZ) if the SMC32 convention is used.

Bit[M:N] • Count of IDs in list i where,
– Count = Bit[M:N] + 1.
– M = ((2 x i) - 1) + off.
– N = (2 x (i - 1)) + off.
– off is the starting bit offset = 12.
– 1 <= i <= 10 if the SMC32 convention is used.
– 1 <= i <= 20 if the SMC64 convention is used.

• Value of Bit[M:N] in unused lists is ignored.

Bit[63:52] • Reserved (MBZ) if the SMC64 convention is used.

16.7.1.1 Example usage
Table 16.32 considers an example scenario where partitions listed in the first column have pending notifications of
the type specified in the second column. If a per-vCPU notification is pending, the IDs of the vCPUs are listed in
the third column.

Table 16.32: Example encoding of notification information

Partition ID Notification type vCPU IDs

0 • Per vCPU 0, 2, 3, 4, 6
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Partition ID Notification type vCPU IDs

2 • Global Notification NA

3 • Per vCPU 1

This information is encoded by the partition manager of the partition that invokes the SMC32 variant of the
FFA_NOTIFICATION_INFO_GET ABI as illustrated in Figure 16.1. The encoding in response to an invocation
of the SMC64 variant of the FFA_NOTIFICATION_INFO_GET ABI is illustrated in Figure 16.2.
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Key

W2

More Pending
Notifications

Count of ListsCount of IDs

W3

W4

W5

W6

W7

vCPU IDPartition ID

Bit[0]

0

Bits[11:7]

4

Bits[13:12]

3

Bits[15:14]

2

Bits[17:16]

0

Bits[19:18]

1

Bits[31:20]

MBZ

Bits[15:0]

0

Bits[31:16]

0

Bits[15:0]

2

Bits[31:16]

3

Bits[15:0]

0

Bits[31:16]

4

Bits[15:0]

6

Bits[31:16]

2

Bits[15:0]

3

Bits[31:16]

1

Figure 16.1: Encoding of NOTIFICATION_INFO_GET using 32bit ABI
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Key

X2

More Pending
Notifications

Count of ListsCount of IDs

X3

X4

X5

X6

X7

vCPU IDPartition ID

Bit[0]

0

Bits[11:7]

4

Bits[13:12]

3

Bits[15:14]

2

Bits[17:16]

0

Bits[19:18]

1

Bits[63:20]

MBZ

Bits[15:0]

0

Bits[31:16]

0

Bits[47:32]

2

Bits[63:48]

3

Bits[15:0]

0

Bits[31:16]

4

Bits[47:32]

6

Bits[63:48]

2

Bits[15:0]

3

Bits[31:16]

1

Bits[47:32]

MBZ

Bits[63:48]

MBZ

Bits[15:0]

MBZ

Bits[31:16]

MBZ

Bits[47:32]

MBZ

Bits[63:48]

MBZ

Bits[15:0]

MBZ

Bits[31:16]

MBZ

Bits[47:32]

MBZ

Bits[63:48]

MBZ

Figure 16.2: Encoding of NOTIFICATION_INFO_GET using 64bit ABI
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17.1 FFA_EL3_INTR_HANDLE

Description

• Request EL3 firmware to handle a pending interrupt.
• Valid FF-A instances and conduits are listed in Table 17.2.
• Syntax of this function is described in Table 17.3.
• Returns FFA_SUCCESS without any further parameters on successful completion.
• Encoding of error code in the FFA_ERROR function is described in Table 17.4.

Table 17.2: FFA_EL3_INTR_HANDLE instances and conduits

Config No. FF-A instance Valid conduits

1 Secure physical FF-A SMC

Table 17.3: FFA_EL3_INTR_HANDLE function syntax

Parameter Register Value

uint32 Function ID w0 • 0x8400008C.

Other Parameter registers w1-w7
x1-x17

• Reserved (SBZ).

Table 17.4: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

17.1.1 Overview

This ABI is used by a S-EL2 or S-EL1 SPMC to delegate handling of an EL3 interrupt to EL3 firmware. On a
GICv3 system, when SCR_EL3.FIQ=0, the SPMC at S-EL2 or S-EL1 uses this ABI to request EL3 firmware to
handle a pending Group 0 interrupt that cannot be handled at the same or lower Exception level than the SPMC.

The following rules govern the behaviour of this ABI.

• An invocation of this ABI returns the NOT_SUPPORTED error code in the following scenarios:

– The ABI is invoked at an unsupported FF-A instance.
– The ABI is invoked at S-EL1 or S-EL2 and SCR_EL3.FIQ=1.

• EL3 firmware does not perform a switch to another security state as a part of handling an invocation of this
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ABI.

This rule ensures that an invocation of this ABI is handled entirely in EL3 firmware before returning to the
calling Exception level in the Secure state. This helps preserve the FF-A programming model where an exit
to another Security state is always explicitly requested by software in the Secure state in S-EL1 or S-EL2.

Figure 17.1 illustrates how a Group 0 interrupt can be handled by TF-A at EL3 in coordination with an SPMC at
S-EL1 or S-EL2 via the use of this ABI when SCR_EL3.FIQ=0 in the Secure state.

S-EL1 or S-EL2 EL3 firmware

SPMC

SPMC

SPMD

SPMD

Interrupt handling module

Interrupt handling module

1 FIQ(Group 0 interrupt)

INTID = Read(ICC_HPPIR0_EL1)

Check if INTID corresponds to a Group 0 interrupt

2 SMC(FFA_EL3_INTR_HANDLE)

Call into Interrupt handling module to handle Group 0 interrupt

3 el3_interrupt_handler()

INTID = Read(ICC_IAR0_EL1)

Handle INTID

4 ret(0)

5 ERET(FFA_SUCCESS)

Figure 17.1: Example usage of FFA_EL3_INTR_HANDLE
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18.1 S-EL0 partitions

S-EL0 partitions in either execution state are used to achieve isolation among Secure services on Arm A-profile
systems where it is either not possible or not desirable to deploy a S-EL1 physical partition. They could host one
or more device drivers to control hardware or security services that are accessed by the Normal world through the
message passing interfaces described in this specification. An example use case of S-EL0 partitions is described in
18.1.1 UEFI PI Standalone Management Mode partitions.

18.1.1 UEFI PI Standalone Management Mode partitions

Standalone management mode (STMM) is described in [8] as a processor architecture agnostic, sandboxed secure
execution environment. It is meant to be used for device drivers that cannot be implemented in the OS kernel but
are required during run-time.

On Arm A-profile systems, STMM is implemented in a S-EL0 partition to constraint its visibility of the system
address map and physical interrupts. This isolation enables a more robust Secure firmware implementation. This
design is better from a security perspective than a design where STMM drivers are implemented in EL3.

Furthermore, execution in EL3 always runs to completion. Isolation of STMM drivers in an SP enables Secure
firmware to transparently preempt them in response to OS Kernel interrupts and resume them once the interrupt
has been handled. For some use cases, this prevents an adverse impact on OS responsiveness that could happen
with a run to completion model.

18.1.1.1 FF-A usage to access STMM services
This section provides guidance around how services that would be typically implemented in EL3, can be
implemented in multiple STMM S-EL0 partitions and accessed through FF-A interfaces. This guidance is
based on certain assumptions about the Standalone management mode as follows.

• A STMM driver is neither re-entrant nor thread safe but its single execution context can run on any PE in the
system. Hence, a STMM S-EL0 partition is considered to be a UP migrate capable partition.

• STMM services are accessed from the UEFI runtime environment in the Normal world through Direct
Partition messages (see 7.4 Direct messaging usage). A component called the MM communication driver is
used for this purpose.

• STMM services can be accessed in response to an interrupt targeted to EL3 apart from the UEFI runtime
environment.

• There are no dependencies between STMM partitions. One partition does not access services of another
partition.

• A STMM partition processes one request at a time and is incapable of having multiple outstanding requests
at any point of time.

The MM interface specification [9] specifies the MM_COMMUNICATE interface that enables the Normal world
to access driver services implemented in a single STMM S-EL0 partition.

The Framework enables deployment of multiple STMM S-EL0 SPs through the use of,

1. An appropriate run-time model and CPU cycle allocation mode are described in Chapter 8 Partition runtime
models and 9.4 Support for legacy run-time models respectively.

2. Interfaces to manage the instruction and data access permissions of memory regions accessible by a
STMM S-EL0 SP. This management is typically required during partition initialization (also see [10]).
The FFA_MEM_PERM_GET and FFA_MEM_PERM_SET interfaces are described in the FF-A memory
management protocol [1].

3. A canonical UUID to discover the presence of STMM SPs.

STMM SP UUID: 378daedc-f06b-4446-8314-40ab933c87a3
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Some example flows to illustrate common aspects of interaction with a STMM SP based on the preceding concepts
are as follows.

• Figure 18.1 describes how the MM communication driver can discover the presence of STMM SPs and their
properties. It is assumed that:

– All STMM SPs share a MM service UUID. The Framework allows a 1:N mapping between the UUID
and partitions (also see 6.2.3 Partition UUID usage). Each STMM SP specifies this UUID, its run-time
model, memory regions, devices etc. in its partition manifest.

– The MM service UUID is used by MM communication driver to discover the partition IDs and properties
of all the STMM SPs through a FF-A partition discovery mechanism.

– The MM communication buffer for each STMM SP is allocated by the EFI MM communication driver.

• Figure 18.2 describes how the MM communication driver and a STMM SP can communicate using Direct
Partition messages and the communication buffer shared between them.

• Figure 18.3 describes how the STMM SP can be invoked in response to an interrupt.

Figure 18.1: MM communication driver initialization
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Figure 18.2: Message exchange between a STMM SP and MM communication driver
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Figure 18.3: Invocation of a STMM SP in response to an interrupt
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18.2 Power Management

18.2.1 Overview

A PE could be released from reset from different low power or power down states. The states range from the
system being fully switched off to only the PE being power-gated. Entry into and exit from these states is governed
by OSPM policy implemented in NS-Endpoints and the Hypervisor. The policy is exercised through OSPM
operations such as,

• Core idle management.
• Dynamic addition and removal of cores, and secondary core boot.
• System shutdown and reset.

The PSCI specification [11] describes these states and OSPM operations. It also defines a standard interface that
these FF-A components can use to initiate OSPM operations at the Non-secure physical and virtual FF-A instances.

The impact of OSPM operations on the Secure world are twofold.

1. When a PE is released from reset, execution contexts of the SPMC and SPs are initialized on the PE. The
protocol to do this depends upon whether the PE is responsible for,

1. Initializing the system (see Section 4.4 in [11]) after a system reset/shutdown through PSCI
SYSTEM_OFF, SYSTEM_RESET, SYSTEM_RESET2 functions or a hardware power-cycle sequence.
The PE is called the primary PE and performs a cold boot (see [11]). The protocol for initializing an
execution context of both UP and MP SPs, and the SPMC during a cold boot on the primary PE is
described in Chapter 5 Setup.

2. Initializing the PE after exiting a power down state in response to an invocation of the PSCI CPU_ON
function. The PE is called the secondary PE and performs a cold boot. The protocol for initializing an
execution context of an MP SP and the SPMC during a cold boot on a secondary PE is described in
18.2.2 Secondary boot protocol.

3. Restoring the system state after exiting the Suspend to RAM state in response to a wakeup event. The
PE entered this state through an invocation of the PSCI SYSTEM_SUSPEND function.

Restoring the PE state after exiting another low power state in response to a wakeup event. The PE
entered this state through an invocation of the PSCI CPU_SUSPEND function.

The PE performs a warm boot. The protocol for restoring an execution context of any SP and the SPMC
and informing them about an exit from a low power state during a warm boot, is described in 18.2.3
Warm boot protocol.

2. FF-A components in the Secure world do not perform power management independently from the Normal
world. Instead, the SPMD, SPMC and SPs are informed about OSPM operations initiated by the Normal
world through PSCI functions. This allows them to take some action in response to a PSCI function
invocation at EL3. For example, if CPU0 is being dynamically removed, the SPMC would re-target any
physical interrupts targeted to CPU0 to another CPU.

The Framework describes a mechanism to inform FF-A components in the Secure world about OSPM
operations in 18.2.4 Power Management messages.

18.2.2 Secondary boot protocol

In order to initialize an execution context of a MP SP or SPMC during a cold boot on a secondary PE, the SPMD
and SPMC must know the entry point address of the execution context. The Framework describes two mechanisms
to determine the entry point.

1. The entry point specified in the manifest and used for initializing the execution context during a primary cold
boot is reused (see Chapter 5 Setup). The distinction between a primary and secondary cold boot is made by
encoding a value in a general-purpose register when the entry point is invoked in each boot phase. Also see,
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• Table 5.1.
• Table 5.4.

2. The FFA_SECONDARY_EP_REGISTER function (see 18.2.2.1 FFA_SECONDARY_EP_REGISTER)
enables a SP or SPMC to register this entry point with the SPMC and the SPMD respectively.

If both mechanisms are implemented and FFA_SECONDARY_EP_REGISTER is used by the SP or SPMC, then
the registered entry point takes precedence over the one specified in the manifest.

The SPMC must use the runtime model described in 8.5 Runtime model for SP initialization to initialize the SP
execution context.

18.2.2.1 FFA_SECONDARY_EP_REGISTER

Description

• Enables an MP SP or SPMC to register the entry point of their execution contexts for initialization during
a secondary cold boot. Also see 18.2.2.1.1 Usage.

• Valid FF-A instances and conduits are listed in Table 18.3.
• Syntax of this function is described in Table 18.4.
• Returns FFA_SUCCESS without any further parameters on successful completion.
• Encoding of error code in the FFA_ERROR function is described in Table 18.5.

Table 18.3: FFA_SECONDARY_EP_REGISTER instances and conduits

Config No. FF-A instance Valid conduits

1 Secure physical SMC

2 Secure virtual SMC, HVC

Table 18.4: FFA_SECONDARY_EP_REGISTER function syntax

Parameter Register Value

uint32 Function ID w0 • 0x84000087.
• 0xC4000087.

uint32/uint64 Entry point address w1/x1 • Entry point address of a secondary execution
context.

– Address is a IPA at the Secure virtual FF-A
instance with a S-EL2 SPMC.

– Address is a PA at the Secure physical FF-A
instance with a EL3 SPMC and a S-EL1 SP.

– Address is a PA at the Secure physical FF-A
instance with a EL3 SPMD and S-EL1 SPMC.

– Address is a PA at the Secure physical FF-A
instance with a EL3 SPMD and S-EL2 SPMC.

Other Parameter registers w2-w7
x2-x17

• Reserved (SBZ).
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Table 18.5: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

• INVALID_PARAMETERS: An invalid entry point
address was specified by the caller.

• DENIED:
– This function was invoked by a S-EL0 SP

which only has a single execution context.
– This function was invoked when the caller is

not in the runtime model for SP initialization.

18.2.2.1.1 Usage

This function is invoked by a SP or the SPMC during the initialization of their execution context during a primary
cold boot (see 18.2 Power Management). The callee returns DENIED if this function is invoked post-initialization
on the primary PE or at any time on a secondary PE.

The callee must return NOT_SUPPORTED if this function is invoked by a caller that implements version v1.0 of
the Framework.

The entry point address must be in secure memory and accessible from the caller. The callee must return
INVALID_PARAMETERS otherwise.

If this function is invoked multiple times, then the entry point address specified in the last valid invocation must be
used by the callee.

The Framework does not provide an interface to unregister the entry point address. Once registered, the entry point
is used by,

• The SPMD until the system is reset or shutdown
• The SPMC until,

– The system is reset or shutdown or
– The execution of the SP is terminated e.g., due to a fatal error.

For each SP and the SPMC, the Framework assumes that the same entry point address is used for initializing any
execution context during a secondary cold boot.

At the time of invoking the entry point address, the general-purpose and system registers should be programmed as
specified in 5.3 Register state.

18.2.3 Warm boot protocol

The key difference between a warm and cold boot is that in the former case, main memory contents are preserved.
Hence, it is possible to resume software from the state it was in, prior to entry into the low power state. In the
Secure world, this is contingent upon the following, before the PE enters, and after it exits the low power state.

• The SPMD saves and restores the execution context of the SPMC.
• The SPMC saves and restores the execution context of each SP.

The Framework assumes that both the SPMD and SPMC fulfill these responsibilities. Additionally, the Framework
defines a power management message that can be used by,

• The SPMD to inform the SPMC about the warm boot.
• The SPMC to inform an SP about the warm boot.

The message is described in 18.2.4 Power Management messages.
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18.2.4 Power Management messages

The Framework defines a set of framework messages that describe power management operations invoked at EL3.
Two types of operations are considered in this specification.

1. Operations that result in a PE entering a low power or a power down state. These operations are requested
through an invocation of the following PSCI functions.

• CPU_OFF.
• CPU_SUSPEND.
• SYSTEM_OFF.
• SYSTEM_RESET.
• SYSTEM_RESET2.
• SYSTEM_SUSPEND.

2. Warm boot of any PE as described in 18.2 Power Management and 18.2.3 Warm boot protocol.

These messages are used in the Secure world as follows.

• If the SPMD and SPMC are implemented in separate exception levels, the SPMD at EL3 uses these messages
at the Secure physical FF-A instance, to inform the SPMC at S-EL1 or S-EL2 about the power management
operation that was invoked.

• The SPMC at EL3 uses these messages at the Secure virtual FF-A instance, to inform one or more physical
SPs at S-EL0 about the power management operation that was invoked.

• The SPMC at EL3 uses these messages at the Secure physical FF-A instance, to inform one or more logical
SPs at S-EL1 about the power management operation that was invoked.

• The SPMC at S-EL2 uses these messages at the Secure virtual FF-A instance, to inform one or more SPs at
S-EL1 or S-EL0 about the power management operation that was invoked.

• The SPMC at S-EL1 uses these messages at the Secure virtual FF-A instance, to inform one or more SPs at
S-EL0 about the power management operation that was invoked.

The Framework mandates that the SPMD must inform the SPMC about the invocation of every operation listed
above.

The Framework enables an SP to specify to the SPMC, the power management operations it must be informed
about. This interest is registered through the SP manifest. See Table 5.1 and Table 5.4.

• Operations that are requested by a PSCI function invocation are specified through their PSCI function IDs.

• The warm boot operation is specified in an IMPLEMENTATION DEFINED manner.

An SP could choose to not register for a message in response to a power management operation that powers down
the PE it is invoked on. It is possible that an execution context of this SP is running on a PE on which the operation
is invoked. Since the SPMC cannot notify the SP’s execution context about the operation, this scenario must be
handled in one of the following ways.

• If the execution context is not pinned to the PE, the SPMC must migrate it to another PE.

• It is possible that the execution context is pinned to the PE or the PE is the last one in the system to be
powered off. In this case, the SP must be robust enough to cope with the power down of the PE.

Direct messaging is used to exchange these framework messages as described below (also see 7.4 Direct messaging
usage).

• The Sender uses the FFA_MSG_SEND_DIRECT_REQ interface to send a request message to the Receiver.

• The Receiver uses the FFA_MSG_SEND_DIRECT_RESP interface to send the response message to the
Sender.

The IDs of the SPMC and SPMD are used in the Sender and Receiver fields of these ABIs (also see 13.11
FFA_SPM_ID_GET).
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Messages sent by the SPMD to the SPMC and the SPMC to an SP through the FFA_MSG_SEND_DIRECT_REQ
interface are encoded as described in Table 18.6 and Table 18.7.

Table 18.6: Power management request message encoding for PSCI functions

Register Parameter

w0 FFA_MSG_SEND_DIRECT_REQ Function ID (0x8400006F or 0xC400006F ).

w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]:

* SPMD ID in a message to the SPMC.
* SPMC ID in a message to a SP.

– Bit[15:0]:
* SPMC ID in a message from the SPMD.
* SP ID in a message from the SPMC.

w2 • Message flags.
– Bit[31] = b’1: Framework message.
– Bit[30:8] = 0: Reserved (SBZ).
– Bit[7:0] = b’00000000: Message for a power management operation

initiated by a PSCI function.

w3 PSCI Function ID

w4/x4 Input parameter in w1/x1 in PSCI function invocation at EL3.

w5/x5 Input parameter in w2/x2 in PSCI function invocation at EL3.

w6/x6 Input parameter in w3/x3 in PSCI function invocation at EL3.

w7/x7 Reserved (SBZ).

Table 18.7: Power management request message encoding for a warm boot

Register Parameter

w0 0x8400006F: FFA_MSG_SEND_DIRECT_REQ Function ID

w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]:

* SPMD ID in a message to the SPMC.
* SPMC ID in a message to a SP.

– Bit[15:0]:
* SPMC ID in a message from the SPMD.
* SP ID in a message from the SPMC.

w2 • Message flags.
– Bit[31] = b’1: Framework message.
– Bit[30:8] = 0: Reserved (SBZ).
– Bit[7:0] = b’00000001: Message for a warm boot.
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Register Parameter

w3 • Bit[30:1]: Reserved (MBZ).
• Bit[0]: Warm boot type.

– b’0: Exit from a suspend to RAM state.
– b’1: Exit from a low power state shallower than the suspend to RAM state.

w4-w7
x4-x17

Reserved (SBZ).

Messages sent by the SPMC to the SPMD and an SP to the SPMC through the FFA_MSG_SEND_DIRECT_RESP
interface are encoded in w3-w7 registers as described in Table 18.8.

Table 18.8: Power management response message encoding

Register Parameter

w0 0x84000070: FFA_MSG_SEND_DIRECT_RESP Function ID

w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]:

* SPMC ID in a message to the SPMD.
* SP ID in a message to the SPMC.

– Bit[15:0]:
* SPMD ID in a message from the SPMC.
* SPMC ID in a message from a SP.

w2 • Message flags.
– Bit[31] = b’1: Framework message.
– Bit[30:8] = 0: Reserved (SBZ).
– Bit[7:0] = b’00000010: Response message to indicate return status of the last power

management request message.

w3 Return error code SUCCESS or DENIED as defined in [11].

w4-w7 Reserved (SBZ).

An SP or the SPMC must use the SUCCESS return error code to indicate successful processing of the request
message.

An SP or the SPMC must use the DENIED return error code to indicate unsuccessful processing of the request
message.

The SPMC must return DENIED to the SPMD even if a single SP returns this error code to the SPMC.

If the SPMC returns SUCCESS, the SPMD must facilitate completion of the power management operation.

If the SPMC returns DENIED, the action taken by the SPMD is IMPLEMENTATION DEFINED.

A power management message must be delivered to an SP or the SPMC execution context only if the message
target is in the waiting state.

The following requirements must be fulfilled while processing a power management message.

• It must be processed on the same PE where it is delivered.
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• The SPMC denies a request from an SP to switch to the Normal world during message processing.

• An SP is run in the SPMC scheduled mode during message processing (see 9.2.3 CPU cycle allocation
modes).

• The runtime model for direct messaging is used during message processing (see 8.3 Runtime model for
Direct request ABIs) with the following additional restrictions. The SPMC denies any such request.

– An SP does not use the smc(FFA_RUN) transition to allocate CPU cycles to any other component.

– An SP does not use the smc(FFA_YIELD) transition to relinquish control back to the SPMC.

– An SP does not use the Direct request interfaces to send a message and allocate CPU cycles to any other
component.

• The SPMD denies a request from the SPMC to switch to the Normal world during message processing.

Figure 18.4 illustrates an example power management message exchange between the SPMD in EL3, SPMC in
S-EL2 and a single SP in S-EL1, in response to a PSCI function invocation at EL3.

EL3 S-EL2 S-EL1

EL3 firmware

EL3 firmware

SPMD

SPMD

SPMC

SPMC

SP

SP

1 SMC(PSCI FID, params)

2 BL(PSCI FID, params)

Encode power management request message to SPMC

3 ERET(FFA_MSG_SEND_DIRECT_REQ, SPMD ID/SPMC ID, Framework message, PSCI FID, params)

Process power management request message

Encode power management request message to SP

4 ERET(FFA_MSG_SEND_DIRECT_REQ, SPMC ID/SP ID, Framework message, PSCI FID, params)

Process power management request message

Encode power management response message to SPMC

5 SMC(FFA_MSG_SEND_DIRECT_RESP, SP ID/SPMC ID, Framework message, SUCCESS)

Encode power management response message to SPMD

6 SMC(FFA_MSG_SEND_DIRECT_RESP, SPMC ID/SPMD ID, Framework message, SUCCESS)

7 RET(SUCCESS)

Complete power management operation

Figure 18.4: Example power management message usage
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18.3 VM availability signaling

18.3.1 Overview

An SP could provide services to VMs in the Normal world. A VM could be created by the Hypervisor at runtime,
access an SP’s services and be destroyed by the Hypervisor when its work is complete. Alternatively, a VM could
crash and its resources reclaimed by the Hypervisor. An SP could allocate resources when a VM is created and
de-allocate them when the VM is destroyed. Alternatively, it could perform some IMPLEMENTATION DEFINED
actions in response to one or both events. In either case, the SP needs to know when a VM is created or destroyed.
To cater for this use case, the Framework specifies a mechanism that enables the Hypervisor to inform an SP when
it creates or destroys a VM. This mechanism consists of,

1. Framework messages to signal and acknowledge VM creation and destruction. These messages are defined
in 18.3.2 VM availability messages.

2. A discovery mechanism that enables an SP to subscribe to receipt of VM creation and destruction messages.
This mechanism is described in 18.3.3 Discovery and setup

18.3.2 VM availability messages

The Framework defines the following messages to enable the Hypervisor inform an SP about VM availability.

1. A pair of Framework messages to signal and acknowledge VM creation. These messages are defined in
18.3.2.4 VM creation message.

2. A pair of Framework messages to signal and acknowledge VM destruction. These messages are defined in
18.3.2.5 VM destruction message.

18.3.2.1 SPMC responsibilities
The SPMC is responsible for ensuring that these messages are,

1. Validated as per the responsibilities associated with all Direct messages listed in 7.4 Direct messaging usage.

2. Exchanged only between valid senders and recipients i.e. these messages are not exchanged,

1. Between SPs.
2. Between an SP and a VM.
3. Between the Hypervisor and SPMC.
4. Between the Hypervisor and an SP if the SP has not subscribed for receipt of VM creation and destruction

messages (also see 18.3.3 Discovery and setup).

The SPMC returns INVALID_PARAMETERS if an invalid message exchange is attempted.

18.3.2.2 Hypervisor responsibilities
The Hypervisor is responsible for ensuring that these messages are,

1. Sent to each SP that has subscribed to them.

2. Validated as per the responsibilities associated with all Direct messages listed in 7.4 Direct messaging usage.

3. Exchanged only between valid senders and recipients i.e. these messages are not exchanged,

1. Between VMs.
2. Between a VM and an SP.

The Hypervisor returns INVALID_PARAMETERS if an invalid message exchange is attempted.

18.3.2.3 VM availability state machine
An SP maintains a state machine to track availability of each VM. State transitions are effected through the receipt
of VM creation and destruction messages. The states are described below. The state machine is described in Table
18.9.

DEN0077A
1.2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

260



Chapter 18. Appendix
18.3. VM availability signaling

1. VM available.
1. The SP is aware of the presence of the VM and ready to communicate with it. The SP has discarded any

state associated with a previous instance of this VM.
2. VM unavailable.

1. The SP is aware that the VM has been either destroyed or has not yet been created. In the former case, it
might not have freed all resources associated with the VM.

3. Error.
1. The Hypervisor has requested an invalid state transition or sent an invalid message to the SP. The SP has

returned an error response to the Hypervisor.

Table 18.9: VM availability state transition diagram

State/Transition VM creation message VM destruction message

VM available Error VM unavailable

VM unavailable VM available Error

Error Error Error

18.3.2.4 VM creation message

Table 18.10: Message to signal VM creation

Register Parameter

w0 0x8400006F: FFA_MSG_SEND_DIRECT_REQ Function ID

w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]:

* Hypervisor ID.
– Bit[15:0]:

* SP ID.

w2 • Message flags.
– Bit[31] = b’1: Framework message.
– Bit[30:8] = 0: Reserved (SBZ).
– Bit[7:0] = b’00000100: Message to signal creation of a VM .

w3/w4 • Globally unique Handle to identify a memory region that contains
IMPLEMENTATION DEFINED information associated with the created VM.

• The invalid memory region handle must be specified by the Hypervisor if this
field is not used.

w5 • Bit[31:16]: Reserved (SBZ).
• Bit[15:0]: ID of VM that has been created.

w6 • Reserved (SBZ).

w7 • Reserved (SBZ).
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Table 18.11: Message to acknowledge VM creation

Register Parameter

w0 0x84000070: FFA_MSG_SEND_DIRECT_RESP Function ID

w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]:

* SP ID.
– Bit[15:0]:

* Hypervisor ID.

w2 • Message flags.
– Bit[31] = b’1: Framework message.
– Bit[30:8] = 0: Reserved (SBZ).
– Bit[7:0] = b’00000101: Message to acknowledge creation of a VM.

w3 • SP return status code.
– 0: SUCCESS.

* The SP acknowledges successful receipt of VM creation message by
transitioning to the VM available state.

– -2: INVALID_PARAMETERS.
* One or more parameters were incorrectly encoded.
* One or more parameters contain invalid values.
* The SP transitions to the Error state.

– -5: INTERRUPTED.
* The SP was interrupted by a Non-secure interrupt. It performed a

managed exit before handling the message. The Hypervisor should
resend the message to resume SP execution. This enables the SP to
finish handling the VM creation message.

* The SP remains in the VM unavailable state.
– -6: DENIED.

* The SP cannot acknowledge successful receipt of VM creation
message due to an IMPLEMENTATION DEFINED reason.

* The SP remains in its current state.
– -7: RETRY.

* The SP is in an IMPLEMENTATION DEFINED state that prevents it
from acknowledging the VM creation message. The Hypervisor
should resend the VM creation message.

* The SP remains in the VM unavailable state.

w4 • Reserved (SBZ).

w5 • Reserved (SBZ).

w6 • Reserved (SBZ).

w7 • Reserved (SBZ).

18.3.2.5 VM destruction message
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Table 18.12: Message to signal VM destruction

Register Parameter

w0 0x8400006F: FFA_MSG_SEND_DIRECT_REQ Function ID

w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]:

* Hypervisor ID.
– Bit[15:0]:

* SP ID.

w2 • Message flags.
– Bit[31] = b’1: Framework message.
– Bit[30:8] = 0: Reserved (SBZ).
– Bit[7:0] = b’00000110: Message to signal destruction of a VM.

w3/w4 • Globally unique Handle to identify a memory region that contains
IMPLEMENTATION DEFINED information associated with the destroyed VM.

• The invalid memory region handle must be specified by the Hypervisor if this
field is not used.

w5 • Bit[31:16]: Reserved (SBZ).
• Bit[15:0]: ID of VM that has been destroyed.

w6 • Reserved (SBZ).

w7 • Reserved (SBZ).

Table 18.13: Message to acknowledge VM destruction

Register Parameter

w0 0x84000070: FFA_MSG_SEND_DIRECT_RESP Function ID

w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]:

* SP ID.
– Bit[15:0]:

* Hypervisor ID.

w2 • Message flags.
– Bit[31] = b’1: Framework message.
– Bit[30:8] = 0: Reserved (SBZ).
– Bit[7:0] = b’00000111: Message to acknowledge destruction of a VM.
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Register Parameter

w3 • SP return status code.
– 0: SUCCESS.

* The SP acknowledges successful receipt of VM destruction message
by transitioning to the “VM unavailable” state.

– -2: INVALID_PARAMETERS.
* One or more parameters were incorrectly encoded.
* One or more parameters contain invalid values.
* The SP transitions to the Error state.

– -5: INTERRUPTED.
* The SP was interrupted by a Non-secure interrupt. It performed a

managed exit before handling the message. The Hypervisor should
resend the message to resume SP execution. This enables the SP to
finish handling the VM destruction message.

* The SP remains in the VM available state.
– -6: DENIED.

* The SP cannot acknowledge successful receipt of VM destruction
message due to an IMPLEMENTATION DEFINED reason.

* The SP remains in its current state.
– -7: RETRY.

* The SP is in an IMPLEMENTATION DEFINED state that prevents it
from acknowledging the VM destruction message. The Hypervisor
should resend the VM destruction message.

* The SP remains in the VM available state.

w4 • Reserved (SBZ).

w5 • Reserved (SBZ).

w6 • Reserved (SBZ).

w7 • Reserved (SBZ).

18.3.3 Discovery and setup

An SP informs the SPMC that it wants to receive VM creation and/or destruction messages through its manifest
(see Table 5.1).

The Hypervisor discovers that an SP wants to receive VM creation and/or destruction messages by retrieving the
SP properties through the FFA_PARTITION_INFO_GET ABI (see Table 6.1).
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18.4 Legacy Indirect messaging usage

In version 1.0 of the Framework, guidance on Indirect messaging differs from the guidance in the current version
of the Framework in the following ways.

1. Only VMs can exchange partition messages using Indirect messaging. It is now possible to exchange partition
messages between any pair of endpoints.

2. The identities of the Sender and Receiver endpoints and the length of a partition message are encoded in
input parameter registers in an FFA_MSG_SEND ABI invocation. As a result, the Receiver endpoint could
have to invoke the FFA_MSG_POLL ABI to determine this information. It is now available in the RX buffer.

In this version of the framework, this information is encoded along with the partition message payload in the
RX and TX buffers as described in Table 7.2. As a result, there is no need for the Receiver endpoint to call
FFA_MSG_POLL.

3. Only the primary scheduler runs the Receiver VM. In this version of the framework, a Receiver endpoint
can be run by a primary or a secondary scheduler. Also, the notification mechanism is used to inform the
scheduler.

The guidance on Indirect messaging in v1.0 of the Framework is deprecated. The FFA_MSG_SEND and
FFA_MSG_POLL interfaces are described to maintain compatibility between v1.0 and the current version of the
Framework. These interfaces could be removed in a future version of the framework.
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18.4.1 FFA_MSG_SEND

Overview

• Send a Partition message to a VM through the RX/TX buffers by using Indirect messaging.
– Message is copied by Hypervisor from the TX buffer of Sender NS-Endpoint to the RX buffer of

Receiver NS-endpoint.
– The scheduler is informed about the pending message in the RX buffer of the Receiver.
– Message will be read when the Receiver endpoint is scheduled to run.
– See 18.4.1.2 Component responsibilities for FFA_MSG_SEND for caller and callee roles and

responsibilities.
– Must not be invoked when the caller is processing a Direct request.

• Valid FF-A instances and conduits are listed in Table 18.15.
– Is used with the ERET conduit in the following scenarios.

* Inform an endpoint that a message is available in its RX buffer.
* Inform the primary scheduler that the Receiver has a pending message in its RX buffer.

• Syntax of this function is described in Table 18.16.
• Successful completion of this function call is indicated as follows.

– w0 contains FFA_SUCCESS function ID.
– w1/x1-w7/x7 are Reserved (MBZ).
– Successful completion of this function does not imply that the message has been read by the

Receiver endpoint.
• Encoding of error code in the FFA_ERROR function is described in Table 18.17.

– See 18.4.1.1 Target availability notification for behavior when BUSY is returned and caller must be
notified about availability of TX buffer.

Table 18.15: FFA_MSG_SEND instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure virtual SMC, HVC, ERET

Table 18.16: FFA_MSG_SEND function syntax

Parameter Register Value

uint32 Function ID w0 • 0x8400006E.

uint32 Sender/Receiver IDs w1 • Sender and Receiver endpoint IDs.
– Bit[31:16]: Sender endpoint ID.
– Bit[15:0]: Receiver endpoint ID.

uint32/uint64 Reserved w2/x2 • Reserved for future use (MBZ).
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Parameter Register Value

uint32 Message size w3 • Length of message payload in the RX buffer.
• This is an optional field when used with the ERET

conduit at the Non-secure virtual FF-A instance and
the callee is not the Receiver of the message. It MBZ
in this case.

uint32 Flags w4 • Message flags.
– Must be ignored by callee when SVC conduit

is used.
– Bit[0]: Blocking behavior.

* b’0: Return BUSY if message cannot be
delivered to Receiver.

* b’1: Return BUSY if message cannot be
delivered to Receiver and notify when
delivery is possible.

– Bit[31:1]: Reserved (MBZ).

uint32 Sender vCPU ID w5 • Information to identify execution context or vCPU
of Sender endpoint.

– Only valid when ERET conduit is used. MBZ
and ignored by callee otherwise.

– Bits[31:16]: Reserved (MBZ).
– Bits[15:0]: vCPU ID of Sender endpoint.

Other Parameter registers w6-w7
x6-x7

• Reserved (MBZ).

Table 18.17: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • INVALID_PARAMETERS: A field in input
parameters is incorrectly encoded.

• BUSY: Receiver RX buffer is not free.
• DENIED: Callee is not in a state to handle this

request.
• NO_MEMORY: Insufficient memory to handle this

request.
• NOT_SUPPORTED: This function is not

implemented at this FF-A instance.

18.4.1.1 Target availability notification
When this interface is invoked, it is possible that the callee determines that the RX buffer of the Receiver VM
cannot be written to. This can happen if either another instance of a Producer is writing to the RX buffer or the
Receiver VM is reading from it as a Consumer (see 7.2.2.4 Buffer synchronization). The callee must complete the
interface invocation with a BUSY error code in this case.

DEN0077A
1.2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

267



Chapter 18. Appendix
18.4. Legacy Indirect messaging usage

A VM running in EL1 can request to be notified when the RX buffer becomes available again by setting bit[0] = 1
in the Flags parameter. In this case, the Hypervisor must:

1. Determine when the RX buffer is available as per the ownership rules described in 7.2.2.4 Buffer
synchronization.

2. Notify each caller about the RX buffer availability.

The Hypervisor must describe the interrupt to indicate availability of the Receiver VM RX buffer to each VM
respectively through an IMPLEMENTATION DEFINED mechanism. This could be done through a platform discovery
mechanism like ACPI or Device tree.

A Consumer that is, OS kernel or VM must indicate the availability of its RX buffer by using a mechanism listed
in 7.2.2.4 Buffer synchronization for example, through the FFA_RX_RELEASE interface.

18.4.1.2 Component responsibilities for FFA_MSG_SEND
This section describes the common responsibilities that the participating FF-A components must fulfill during
transmission of Partition messages between VMs through the FFA_MSG_SEND interface. This interface is used in
the scenarios listed in 7.1.1 Indirect messaging.

18.4.1.2.1 Sender VM responsibilities

1. Must acquire ownership of empty TX buffer (see 7.2.2.4 Buffer synchronization).
2. Must write Partition message payload to TX buffer.
3. Must specify length of Partition message payload.
4. Must specify blocking behavior in Flags parameter.
5. Must specify Sender and Receiver VM IDs.
6. Must implement support for handling all error status codes that can be returned on completion of these

interfaces.
7. See 18.4.1.2.2 Hypervisor responsibilities for Hypervisor responsibilities in this message transmission.

18.4.1.2.2 Hypervisor responsibilities

1. Must validate Sender and Receiver VM IDs and return INVALID PARAMETER if either is invalid.
2. Must check that reserved bits are 0 in Flags parameter. Return INVALID PARAMETER if this check fails.
3. Must check that reserved and unused parameter registers are 0. Return INVALID PARAMETER if this check

fails.
4. Must check that the size of the Receiver RX buffer is large enough to accommodate the message. Must return

NO_MEMORY if this is not true.
5. Must lock TX buffer of Sender from concurrent accesses before copying the message.
6. Must determine availability of RX buffer of Receiver.

1. Return BUSY if RX buffer is not available.
1. Save Sender ID if it wants the target availability interrupt when the RX buffer becomes free.
2. Arrange for target availability interrupt to be delivered to Sender.

2. Mark RX buffer as unavailable if it is available.
7. Must protect RX buffer of Receiver from concurrent accesses.
8. Must copy message from Sender TX buffer to Receiver RX buffer.
9. Must unlock TX buffer of Sender after copying the message.

10. Must unlock RX buffer of Receiver after copying the message.
11. Must inform primary scheduler that Receiver has a pending message as described in 18.4.1.3 Legacy

mechanism for scheduler notification.
12. Must return SUCCESS to Sender if message is successfully transmitted.
13. Must mark the RX buffer as available when the Receiver releases it.

18.4.1.2.3 Receiver VM responsibilities

1. Copy message from RX buffer.
2. Transfer ownership of the RX buffer by invoking the FFA_RX_RELEASE interface.

DEN0077A
1.2

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

268



Chapter 18. Appendix
18.4. Legacy Indirect messaging usage

18.4.1.3 Legacy mechanism for scheduler notification
This section describes how the primary scheduler must be notified depending on its location relative to the message
Sender.

1. A VM is the Sender. The primary scheduler and Hypervisor are co-resident. The Hypervisor must use an
IMPLEMENTATION DEFINED mechanism to notify the primary scheduler in response to the FFA_MSG_SEND
call.

2. A VM is the Sender.

1. The primary scheduler is resident in another VM.

1. The Hypervisor must forward the FFA_MSG_SEND call to the primary scheduler using the ERET
conduit on the PE where the call is made.

2. Primary scheduler must respond to the forwarded FFA_MSG_SEND call with either a
FFA_SUCCESS or FFA_ERROR invocation through the SMC conduit.

3. The primary scheduler and Sender VM are co-resident. The Sender VM must use an IMPLEMENTATION
DEFINED mechanism to notify the scheduler.
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18.4.2 FFA_MSG_POLL

Description

• Poll if a message is available in the RX buffer of the caller. Execution is returned to the caller if no
message is available.

– Must not be invoked when the caller is processing a Direct request.
• Valid FF-A instances and conduits are listed in Table 18.19.
• Syntax of this function is described in Table 18.20.
• Successful completion of this function is indicated through the invocation of the FFA_MSG_SEND

interface (see 18.4.1 FFA_MSG_SEND).
• Encoding of error code in the FFA_ERROR function is described in Table 18.21.

Table 18.19: FFA_MSG_POLL instances and conduits

Config No. FF-A instance Valid conduits

1 Non-secure virtual SMC, HVC

Table 18.20: FFA_MSG_POLL function syntax

Parameter Register Value

uint32 Function ID w0 • 0x8400006A.

Other Parameter registers w1-w7
x1-x7

• Reserved (MBZ).

Table 18.21: FFA_ERROR encoding

Parameter Register Value

int32 Error code w2 • RETRY: Message is not available in the caller’s RX
buffer.

• DENIED: Callee is not in a state to handle this
request.

• NOT_SUPPORTED: This function is not
implemented at this FF-A instance.

18.5 Changes to FF-A v1.0 data structures for forward compatibility

Version 1.1 of the Framework specifies changes to make the following data structures defined in version 1.0 of the
Framework forwards compatible.

1. Memory transaction descriptor (see [1] for more information).
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2. Endpoint memory access descriptor (see [1] for more information).
3. Endpoint RX/TX descriptor in Table 13.27.
4. Partition information descriptor in Table 6.1.

These changes enable forward compatibility as described below.

1. A new field is always added at the end these data structures.
2. A producer of this data structure specifies its size corresponding to the FF-A version it implements to a

consumer.
3. A consumer of this data structure uses this size to correctly read the version of the data structure implemented

by the producer.
4. A consumer of this data structure uses the size corresponding to the Framework version it implements to

consume only fields defined in its version. Additional fields in the producer’s version of this data structure
are safely ignored enabling forward compatibility.

18.5.1 Changes to Partition information descriptor

The Partition information descriptor (see Table 6.1) has undergone the following changes based upon partner
feedback.

1. The Partition UUID field has been added at the 8-byte offset. This enables the caller of FFA_PARTITION_INFO_GET
with the Nil UUID to determine the UUIDs of all the endpoints deployed in the system.

2. New flags corresponding to properties of a partition have been added in Bits[8:4] of the Partition properties
field of the FF-A v1.0 descriptor (see Table 18.22).

To ensure that changes to this data structure in future versions of the Framework can be introduced in a forward
compatible manner, the Size parameter has been added to the return parameters of FFA_PARTITION_INFO_GET
as described in Table 13.35. This enables a consumer of Table 6.1 to determine the size of the version of this data
structure used by the producer as described above.

Table 18.22: FF-A v1.0 Partition information descriptor

Field Byte length Byte offset Description

Partition
ID

2 0 • 16-bit ID of the partition.

Execution
context
count

2 2 • Number of execution contexts implemented by this partition
(also see 4.7 Execution context).

Partition
properties

4 4 • Flags to determine partition properties.
– Bit[0] has the following encoding:

* b’0: Does not support receipt of Direct requests
* b’1: Supports receipt of Direct requests. Count of

execution contexts must be either 1 or equal to the
number of PEs in the system (also see 7.4 Direct
messaging usage).

– bit[1] has the following encoding:
* b’0: Cannot send Direct requests.
* b’1: Can send Direct requests.

– bit[2] has the following encoding:
* b’0: Cannot send and receive Indirect messages.

MBZ for an SP.
* b’1: Can send and receive Indirect messages.

– bit[31:3]: Reserved (MBZ).
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18.5.2 Changes to Endpoint RX/TX descriptor

The changes for the Endpoint RX/TX descriptor (see Table 13.27) are listed below.

1. All fields in FF-A v1.0 descriptor (see Table 18.23) except for the Endpoint ID field at the 0-byte offset and
the Reserved field at the 2-byte offset have been replaced by the following fields.

1. RX buffer memory region description offset at the 4-byte offset.
2. TX buffer memory region description offset at the 8-byte offset.

These changes enable new fields to be added to this data structure in future in a forward compatible manner.
They also enable reuse of the composite memory region descriptor (see [1] instead of duplicating the same
functionality.

Table 18.23: FF-A v1.0 Endpoint RX/TX descriptor

Field Byte length Byte offset Description

Endpoint ID 2 0 • ID of endpoint that allocated the RX/TX buffer.

Reserved 2 2 • MBZ.

RX address range
count

4 4 • Count of address ranges specified using
constituent memory descriptors for the RX buffer.

TX address range
count

4 8 • Count of address ranges specified using
constituent memory descriptors for the TX buffer.

RX address range
array

– 12 • Array of address ranges allocated for the RX
buffer that the callee must map in its translation
regime. See the constituent memory region
descriptor in [1] for how the address ranges are
encoded.

TX address range array – – • Array of address ranges allocated for the TX
buffer that the callee must map in its translation
regime. See the constituent memory region
descriptor in [1] for how the address ranges are
encoded.

18.5.3 Compatibility requirements for FF-A v1.0 data structures

A partition manager that implements major version 1 and a higher minor version (>= 1) of the Framework
implements the v1.0 version of the data structures described in 18.5 Changes to FF-A v1.0 data structures
for forward compatibility to maintain backward compatibility with a client that implements version 1.0 of the
Framework. Each client specifies its version of the Framework in an invocation of FFA_VERSION (see 13.2
FFA_VERSION). For each client, the partition manager ensures it only uses that version of the data structure that is
implemented by the client.

A partition manager that implements major version 1 and a higher minor version (>=1) of the Framework and cannot
maintain backwards compatibility returns the NOT_SUPPORTED error code in response to an FFA_VERSION
invocation with v1.0 as the input version. Such a partition manager implementation is not compliant with the
specification as it violates the requirement to maintain backward compatibility with a client that implements the
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same major version.
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18.6 Example notification and in-direct messaging flows

Provisional

The flows described in this section are to facilitate the understanding of the notification and indirect messaging
mechanisms. The format of these diagrams are not yet finalized and will be updated in a subsequent revision
of the specification.

18.6.1 Example notification flows

These flow diagrams illustrate how a notification is signalled between the following combinations of endpoints
with the Hypervisor acting as the primary scheduler.

• A VM sets up and sends a notification to another VM (see 18.6.1.1 VM to VM notification).

• An SP sets up and sends a notification to a VM (see 18.6.1.2 SP to VM notification).

• A VM sets up and sends a notification to an SP (see 18.6.1.3 VM to SP notification).

The bind procedure is not represented in the flows but the FFA_NOTIFICATION_BIND ABI must be called by
the receiver of a notification to allow the sender to raise it (see 16.3 FFA_NOTIFICATION_BIND and 10.4.2
Notification binding.

The sequences are simplified and the details in each flow are provided earlier (see 10.5 Notification signaling).

18.6.1.1 VM to VM notification
Figure 18.5 illustrates an example sequence where VM1 sends a notification to VM0.

1. VM1 uses the FFA_NOTIFICATION_SET interface to send notification 10 to VM0.
2. Hypervisor injects the virtual notification pending interrupt into VM0.
3. VM0 handles the notification pending interrupt and uses the FFA_NOTIFICATION_GET interface to retrieve

its pending notifications including notification 10.

Normal world

VM0

VM0

VM1

VM1

Hypervisor

Hypervisor

1 SMC(FFA_NOTIFICATION_SET, VM0, 10)

2 ERET(FFA_SUCCESS)

3 Scheduling decision

4 Inject notification pending interrupt

5 SMC(FFA_NOTIFICATION_GET)

6 ERET(Notification 10 pending)

Figure 18.5: VM to VM notification flow
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18.6.1.2 SP to VM notification
Figure 18.6 illustrates an example sequence where SP0 sends a notification to VM0 as follows.

1. SP0 uses the FFA_NOTIFICATION_SET interface to send notification 5 to VM0.
2. SPMC pends the schedule receiver interrupt for the Hypervisor.
3. Hypervisor uses the FFA_NOTIFICATION_INFO_GET to retrieve the list of endpoints with currently

pending notifications.
4. Hypervisor injects the virtual notification pending interrupt into VM0.
5. VM0 handles the notification pending interrupt and uses the FFA_NOTIFICATION_GET interface to retrieve

its pending notifications including notification 5.

Normal world Secure world

VM0

VM0

Hypervisor

Hypervisor

SPMC

SPMC

SP0

SP0

1 SMC(FFA_NOTIFICATION_SET,VM0,5)

2 ERET(FFA_SUCCESS)

3 Pend physical schedule receiver interrupt

4 SMC(NOTIFICATION_INFO_GET)

5 ERET(Pending VM0)

6 Inject notification pending interrupt

7 SMC(FFA_NOTIFICATION_GET)

8 SMC(FFA_NOTIFICATION_GET,VM0)

9 ERET(Notification 5 Pending)

10 ERET(Notification 5 Pending)

Figure 18.6: SP to VM notification flow

18.6.1.3 VM to SP notification
Figure 18.7 illustrates an example sequence where VM0 sends a notification to SP0 in S-EL1 where VM1 is

responsible for scheduling SP0 i.e. it implements SP0’s secondary scheduler.

1. VM0 uses the FFA_NOTIFICATION_SET interface to send notification 8 to SP0.
2. SPMC pends the physical schedule receiver interrupt for the Hypervisor to inform it of pending notifications.
3. Hypervisor uses the FFA_NOTIFICATION_INFO_GET interface to retrieve the list of endpoints with

pending notifications from the SPMC including SP0.
4. Hypervisor injects the virtual schedule receiver interrupt into VM1.
5. VM1 uses the FFA_NOTIFICATION_INFO_GET interface to retrieve the list of endpoints with pending

notifications including SP0.
6. VM1 uses the FFA_MSG_SEND_DIRECT_REQ interface with an IMPLEMENTATION DEFINED message to

SP0 to provide it CPU cycles and inform it that it has a notification to handle.
7. SP0 receives the direct message and uses the FFA_NOTIFICATION_GET interface to retrieve the bitmap of

pending VM notifications including notification 8.
8. SP0 does the IMPLEMENTATION DEFINED work related to notification 8 and uses the

FFA_MSG_SEND_DIRECT_RESP interface with an IMPLEMENTATION DEFINED content to inform VM1
that it has handled its notifications.
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Normal world Secure world

VM0

VM0

VM1

VM1

Hypervisor

Hypervisor

SPMC

SPMC

SP0

SP0

1 SMC(FFA_NOTIFICATION_SET,SP0,8)

2 SMC(FFA_NOTIFICATION_SET,VM0/SP0,8)

3 ERET(FFA_SUCCESS)

4 ERET(FFA_SUCCESS)

5 Pend physical schedule receiver interrupt

6 SMC(FFA_NOTIFICATION_INFO_GET)

7 ERET(Pending SP0)

8 Inject virtual schedule receiver interrupt

9 SMC(NOTIFICATION_INFO_GET)

10 ERET(Pending SP0)

11 SMC(FFA_MSG_SEND_DIRECT_REQ, SP0, handle_notif)

12 SMC(FFA_MSG_SEND_DIRECT_REQ, SP0, handle_notif)

13 ERET(FFA_MSG_SEND_DIRECT_REQ, SP0, handle_notif)

14 Inject notification pending interrupt

15 SMC(FFA_NOTIFICATION_GET)

16 ERET(Notification 8 Pending)

17 SMC(FFA_MSG_SEND_DIRECT_RESP)

18 ERET(FFA_MSG_SEND_DIRECT_RESP)

19 ERET(FFA_MSG_SEND_DIRECT_RESP)

Figure 18.7: VM to SP notification flow

18.6.2 Example indirect messaging flows

These flow diagrams illustrate how an indirect message is transmitted between the following combinations of
endpoints with the Hypervisor acting as the primary scheduler.

• A VM sending an indirect message to another VM (see 18.6.2.1 VM to VM indirect message flow).
• A VM sending an indirect message to an SP (see 18.6.2.2 VM to SP indirect message flow).
• An SP sending an indirect message to a VM (see 18.6.2.3 SP to VM indirect message flow).

The sequences are simplified and the details in each flow are provided in earlier sections (see 7.3 Indirect messaging
usage).

18.6.2.1 VM to VM indirect message flow
Figure 18.8 illustrates an example sequence VM1 sends an indirect message to VM0 as follows.

1. VM1 populates a message in its TX buffer and uses the FFA_MSG_SEND2 interface to send an indirect
message to VM0.

2. If a system supports sending indirect messages from an SP to a VM the Hypervisor uses the
FFA_RX_ACQUIRE interface to obtain the ownership of the RX buffer of VM0 from the SPMC
(see 7.2.2.4.3 Management of buffer ownership between Hypervisor and SPMC).

3. Hypervisor copies the message from the TX buffer of VM1 to the RX buffer of VM0.
4. Hypervisor injects a notification pending interrupt in VM0.
5. VM0 handles the notification pending interrupt and uses the FFA_NOTIFICATION_GET interface to retrieve

its pending notifications.
6. Hypervisor returns the bitmap of notifications that are pending for VM0 including the RX buffer full

notification.
7. VM0 copies the data from its RX buffer and releases ownership to the Hypervisor (see 7.2.2.4.2 Transfer of

buffer ownership).
8. If the Hypervisor obtained ownership of the RX buffer of VM, it uses the FFA_RX_RELEASE interface to

release ownership back to the SPMC.
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Normal world Secure world

VM0

VM0

VM1

VM1

Hypervisor

Hypervisor

SPMC

SPMC

Write message in the TX buffer

1 SMC(FFA_MSG_SEND2,VM0)

alt [Hypervisor obtains ownership of the RX buffer from the SPMC]

2 SMC(FFA_RX_ACQUIRE,VM0)

3 ERET(FFA_SUCCESS)

Copy from VM1 TX to VM0 RX

4 ERET(FFA_SUCCESS)

5 Inject notification pending interrupt

6 SMC(FFA_NOTIFICATION_GET)

7 ERET(Framework RX buffer full pending)

Retrieve data from RX buffer

8 SMC(FFA_RX_RELEASE)

alt [Hypervisor releases ownership of the RX buffer to the SPMC]

9 SMC(FFA_RX_RELEASE,VM0)

10 ERET(FFA_SUCCESS)

11 ERET(FFA_SUCCESS)

Process message

Figure 18.8: VM to VM indirect message flow

18.6.2.2 VM to SP indirect message flow
Figure 18.9 illustrates an example sequence where VM0 sends an indirect message to SP0 in S-EL1 where VM1
is responsible for scheduling SP0 i.e. it implements SP0’s secondary scheduler.

1. VM0 writes a message in its TX buffer and uses the FFA_MSG_SEND2 interface to send an indirect message
to SP0.

2. SPMC copies the message from the TX buffer of VM0 to the RX buffer of SP0 and returns success to the
Hypervisor

3. SPMC pends the physical schedule receiver interrupt for the Hypervisor to inform it of pending notifications.
4. Hypervisor handles the schedule receiver interrupt and uses the FFA_NOTIFICATION_INFO_GET interface

to retrieve the list of endpoints with pending notifications from the SPMC including SP0.
5. Hypervisor injects the virtual schedule receiver interrupt into VM1.
6. VM1 handles the scheduler receiver interrupt and uses the FFA_NOTIFICATION_INFO_GET interface to

retrieve the list of endpoints with pending notifications including SP0.
7. VM1 uses the FFA_MSG_SEND_DIRECT_REQ interface with an IMPLEMENTATION DEFINED content to

provide CPU cycles to SP0 and inform it that is has notifications to handle.
8. SP0 use the FFA_NOTIFICATION_GET interface to retrieve the list of pending notifications including the

RX buffer full notification.
9. SP0 processes the data from its RX buffer and uses the FFA_RX_RELEASE interface to return ownership of

its RX buffer to the SPMC.
10. SP0 uses the FFA_MSG_SEND_DIRECT_RESP interface to inform VM1 it has finished processing its

notifications.
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Normal world Secure world

VM0

VM0

VM1

VM1

Hypervisor

Hypervisor

SPMC

SPMC

SP0

SP0

Write message in TX buffer

1 SMC(FFA_MSG_SEND2)

2 SMC(FFA_MSG_SEND2,VM0)

Copy from VM0 TX to SP0 RX

3 ERET(FFA_SUCCESS)

4 ERET(FFA_SUCCESS)

5 Pends physical schedule receiver interrupt

6 SMC(FFA_NOTIFICATION_INFO_GET)

7 ERET(Pending SP0)

8 Injects virtual schedule receiver interrupt

9 SMC(FFA_NOTIFICATION_INFO_GET)

10 ERET(Pending SP0)

11 SMC(FFA_MSG_SEND_DIRECT_REQ,SP0,handle_notif)

12 SMC(FFA_MSG_SEND_DIRECT_REQ,SP0,handle_notif)

13 ERET(FFA_MSG_SEND_DIRECT_REQ,SP0,handle_notif)

14 Inject notification pending interrupt

15 SMC(FFA_NOTIFICATION_GET)

16 ERET(Framework RX buffer full Pending)

Copy data from RX buffer

17 SMC(FFA_RX_RELEASE)

18 ERET(FFA_SUCCESS)

Process message

19 SMC(FFA_MSG_SEND_DIRECT_RESP)

20 ERET(FFA_MSG_SEND_DIRECT_RESP)

21 ERET(FFA_MSG_SEND_DIRECT_RESP)

Figure 18.9: VM to SP indirect message flow

18.6.2.3 SP to VM indirect message flow
Figure 18.10 illustrates an example sequence where SP0 sends an indirect message to a VM0 as follows.

1. SP0 writes a message in its TX buffer and uses the FFA_MSG_SEND2 interface to send an indirect message
to VM0.

2. SPMC copies the message from the RX buffer of SP0 to the TX buffer of VM0.
3. SPMC pends the physical schedule receiver interrupt for the Hypervisor.
4. Hypervisor handles the schedule receiver interrupt and uses the FFA_NOTIFICATION_INFO_GET interface

to retrieve the list of endpoints with pending notifications from the SPMC including VM0.
5. Hypervisor injects the notification pending interrupt in VM0.
6. VM0 uses the FFA_NOTIFICATION_GET interface to retrieve the list of pending notifications.
7. Hypervisor uses the FFA_NOTIFICATION_GET interface to retrieve the list of pending notifications for

VM0 from the SPMC including the RX buffer full notification.
8. Hypervisor returns the bitmaps of notifications that are pending for VM0 including the RX buffer full

notification.
9. VM0 copies the data from its RX buffer and releases ownership to the Hypervisor (see 7.2.2.4.2 Transfer of

buffer ownership).
10. Hypervisor uses the FFA_RX_RELEASE interface to return the ownership of the RX buffer of VM0 to the

SPMC.
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Normal world Secure world

VM0

VM0

Hypervisor

Hypervisor

SPMC

SPMC

SP0

SP0

Write message in TX buffer

1 SMC(FFA_MSG_SEND2)

Copy from SP0 TX to VM0 RX

2 ERET(SUCCESS)

3 Pends the physical schedule receiver interrupt

4 SMC(FFA_NOTIFICATION_INFO_GET)

5 ERET(Pending VM0)

6 Injects notification pending interrupt

7 SMC(FFA_NOTIFICATION_GET)

8 SMC(FFA_NOTIFICATION_GET)

9 ERET(Framework RX buffer full Pending)

10 ERET(Framework RX buffer full Pending)

Retrieve data from RX buffer

11 SMC(FFA_RX_RELEASE)

12 SMC(FFA_RX_RELEASE,VM0)

13 ERET(FFA_SUCCESS)

14 ERET(FFA_SUCCESS)

Process message

Figure 18.10: SP to VM indirect message flow
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ABI

Application Binary Interface

DMA

Direct Memory Access

DSP

Digital Signal Processor

FF-A

Firmware Framework for A-profile

GIC

Generic Interrupt Controller

HVC

Hypervisor Call

MBP

Must be preserved

MBZ

Must be zero

ME

Managed exit

MM

Management Mode

MMIO

Memory Mapped Input Output

MP

Multi-processing

OS

Operating System

OSPM

Operating System Power Management

PE

Processing Element

PPI

Private Peripheral Interrupt

PSA
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Platform Security Architecture

SBZ

Should be zero

SGI

Software Generated Interrupt

SMC

Secure Monitor Call

SMCCC

SMC Calling Convention

SMMU

System Memory Management Unit

SP

Secure Partition

SPCI

Secure Partition Client Interface

SPI

Shared Peripheral Interrupt

SPM

Secure Partition Manager

SPRT

Secure Partition Run Time

STMM

Standalone Management Mode

SVC

Supervisor Call

TCB

Trusted Computing Base

TEE

Trusted Execution Environment

UUID

Unique Universal Identifier

VCPU

Virtual CPU

VHE

Virtualization Host Extensions

VM

Virtual Machine
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VMSA

Virtual Memory System Architecture
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