
Arm® Generic Interrupt
Controller Architecture

Specification
GIC architecture version 5

Document number ARM-AES-0070

Document quality BET

Document version 00bet0

Document confidentiality Non-confidential

Document build information 0b7a9f48 doctool 0.55.1

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.

Arm® Generic Interrupt Controller Architecture Specification, GIC architecture
version 5

Release information

Date Version Changes

2025/Mar/28 00bet0 • First BET release.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ii

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the use or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm Limited (“Arm”). No license, express
or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically
stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others
to use the information for the purposes of determining whether the subject matter of this document infringes any third party
patents.

The content of this document is informational only. Any solutions presented herein are subject to changing conditions, information,
scope, and data. This document was produced using reasonable efforts based on information available as of the date of issue
of this document. The scope of information in this document may exceed that which Arm is required to provide, and such
additional information is merely intended to further assist the recipient and does not represent Arm’s view of the scope of its
obligations. You acknowledge and agree that you possess the necessary expertise in system security and functional safety and
that you shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning
your products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are responsible
for any applications which are used in conjunction with any Arm technology described in this document, and to minimize risks,
adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS PROVIDED “AS IS”. ARM
PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY,
NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the
avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the
scope and content of, any patents, copyrights, trade secrets, trademarks, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express or implied approval or
endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that any permitted use, duplication, or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference
to Arm’s customers is not intended to create or refer to any partnership relationship with any other company. Arm may make
changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of this document shall prevail.

The validity, construction and performance of this notice shall be governed by English Law.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates) in
the US and/or elsewhere. Please follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.
All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners.

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-20349

8 March 2024

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

https://www.arm.com/company/policies/trademarks

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is at Beta quality. Beta quality means that all major features of the specification are described,
but some details might be missing.

Web Address

https://www.arm.com

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

https://www.arm.com

Contents

Arm® Generic Interrupt Controller Architecture Specification,
GIC architecture version 5

Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 5 ii
Release information . ii
Non-Confidential Proprietary Notice . iii

Preface
Conventions . xvi

Typographical conventions . xvi
Numbers . xvi
Pseudocode descriptions . xvi
Assembler syntax descriptions . xvi

Rules-based writing . xvii
Content item identifiers . xvii
Content item rendering . xvii
Content item classes . xvii

Additional reading . xviii
Feedback . xx

Feedback on this book . xx
Inclusive terminology commitment . xx

Chapter 1 Introduction

Chapter 2 PE architecture
2.1 Architecture features and extensions . 23
2.2 The GICv5 CPU interface . 25
2.3 Interrupt Domains . 27
2.4 Interrupt types and identifiers . 29

2.4.1 PE-Private Peripheral Interrupts (PPIs) 30
2.4.2 Logical Peripheral Interrupts (LPIs) . 31
2.4.3 Shared Peripheral Interrupts (SPIs) . 31

2.5 Inter-Processor Interrupts . 33
2.6 GIC System instructions . 35

2.6.1 LPI and SPI configuration . 37
2.7 Interrupt Prioritization . 40
2.8 Interrupt handling . 42

2.8.1 Interrupt life cycle . 43
2.9 The physical CPU interface . 46

2.9.1 Physical PPIs . 46
2.9.2 Physical priority masking . 48
2.9.3 Preemptive interrupts . 49
2.9.4 Physical interrupt signaling . 50
2.9.5 Physical non-maskable interrupts . 52
2.9.6 Doorbell PPIs . 53

2.10 The virtual CPU interface . 56
2.10.1 Virtual PPIs . 56
2.10.2 Virtual priority masking . 59
2.10.3 Virtual interrupt signaling . 60
2.10.4 Virtual non-maskable interrupts . 62

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

Contents

2.10.5 Selecting the resident VPE . 62
2.10.6 Requesting VPE doorbells . 64
2.10.7 Legacy virtual CPU interface . 64

2.11 GIC synchronous exception priorities . 67
2.12 Interrupt ordering model and synchronization requirements 68

2.12.1 GIC and GICR ordering semantics . 69
2.12.2 GSB instruction semantics . 71
2.12.3 GIC Ordering Model . 71

2.13 Effects on the Transactional Memory Extension 76

Chapter 3 GICv5 system architecture
3.1 Interrupt Domains . 81
3.2 Communication between GIC system components 83
3.3 Coherency considerations for GIC data structures 84

Chapter 4 Interrupt routing service (IRS)
4.1 Communication between the IRS and the CPU interface 87
4.2 Signaling interrupts . 88
4.3 IRS Domains . 90
4.4 IRS Configuration . 92

4.4.1 Enabling and disabling the IRS . 94
4.5 IRS synchronization requests . 95
4.6 Interrupt configuration and state . 97
4.7 The interrupt state table (IST) . 99

4.7.1 Level 2 IST management . 101
4.7.2 Initialization of level 2 IST entries . 103
4.7.3 INTID state and configuration . 103
4.7.4 IST metadata . 104
4.7.5 Example IST structures . 105

4.8 Physical interrupts . 107
4.8.1 Physical LPIs . 107
4.8.2 Physical SPIs . 108
4.8.3 Physical interrupt routing . 112
4.8.4 Physical interrupt signaling . 114

4.9 Virtualization data structures . 116
4.9.1 The VM table . 117
4.9.2 The VPE table . 122

4.10 Virtual interrupts . 126
4.10.1 Virtual LPIs . 126
4.10.2 Virtual SPIs . 129
4.10.3 Virtual interrupt routing . 132
4.10.4 Virtual interrupt signaling . 133
4.10.5 VPE selection and configuration . 135
4.10.6 VPE residency . 136
4.10.7 VPE doorbells . 136
4.10.8 1ofN doorbells . 138
4.10.9 Save and restore of virtual interrupts 138

4.11 IRS power management . 141
4.12 IRS memory access rules . 143
4.13 IRS support for MPAM . 146
4.14 IRS support for Memory Encryption Contexts 148
4.15 IRS support for software error reporting . 149

Chapter 5 Interrupt translation service (ITS)
5.1 ITS Domains . 155

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Contents

5.1.1 Supporting Realm interrupts from Non-secure writes 156
5.2 Operation . 158

5.2.1 Enabling and disabling the ITS . 158
5.2.2 Interrupt event types . 159
5.2.3 Software generated ITS events . 159
5.2.4 ITS synchronization requests . 160

5.3 Translation structures . 161
5.3.1 The Device Table (DT) . 162
5.3.2 The Interrupt Translation Table (ITT) . 164

5.4 ITS cache management . 167
5.4.1 ITS cache management for EventIDs 168
5.4.2 ITS cache management for DeviceIDs 169

5.5 ITS memory access rules . 171
5.6 ITS support for MPAM . 172
5.7 ITS support for Memory Encryption Contexts 173
5.8 ITS support for software error reporting . 174

Chapter 6 Interrupt Wire Bridge (IWB)
6.1 IWB wire control registers . 180
6.2 IWB support for multiple Interrupt Domains . 183

Chapter 7 GIC Performance Monitoring Unit (PMU)
7.1 CoreSight PMU extensions . 187
7.2 GIC PMU Overflow interrupt . 189
7.3 GIC PMU event types . 190
7.4 Event filtering . 191
7.5 IRS PMU events . 192

7.5.1 IRS PMU events filtering . 194
7.6 ITS PMU events . 196

7.6.1 ITS PMU events filtering . 196

Chapter 8 System instructions
8.1 System instructions for the Current Interrupt Domain 199

8.1.1 GIC CDAFF, Interrupt Set Target in the Current Interrupt Domain 200
8.1.2 GIC CDDI, Interrupt Deactivate in the Current Interrupt Domain 202
8.1.3 GIC CDDIS, Interrupt Disable in the Current Interrupt Domain 204
8.1.4 GIC CDEN, Interrupt Enable in the Current Interrupt Domain 206
8.1.5 GIC CDEOI, Priority Drop in the Current Interrupt Domain 208
8.1.6 GIC CDHM, Interrupt Handling mode state in the Current Interrupt Domain210
8.1.7 GIC CDPEND, Interrupt Set/Clear Pending state in the Current Interrupt

Domain . 212
8.1.8 GIC CDPRI, Interrupt Set priority in the Current Interrupt Domain 214
8.1.9 GIC CDRCFG, Request Interrupt Configuration in the Current Interrupt

Domain . 216
8.1.10 GICR CDIA, Interrupt Acknowledge in the Current Interrupt Domain . . 218
8.1.11 GICR CDNMIA, Non-maskable Interrupt Acknowledge in the Current

Interrupt Domain . 220
8.2 System instructions for the Virtual Interrupt Domain 222

8.2.1 GIC VDAFF, Interrupt Set Target in the Virtual Interrupt Domain 223
8.2.2 GIC VDDI, Interrupt Deactivate in the Virtual Interrupt Domain 225
8.2.3 GIC VDDIS, Interrupt Disable in the Virtual Interrupt Domain 227
8.2.4 GIC VDEN, Interrupt Enable in the Virtual Interrupt Domain 229
8.2.5 GIC VDHM, Interrupt Handling mode in the Virtual Interrupt Domain . . 231
8.2.6 GIC VDPEND, Interrupt Set/Clear Pending state in the Virtual Interrupt

Domain . 233

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii

Contents

8.2.7 GIC VDPRI, Interrupt Set priority in the Virtual Interrupt Domain 235
8.2.8 GIC VDRCFG, Request Interrupt Configuration in the Virtual Interrupt

Domain . 237
8.3 System instructions for the Logical Interrupt Domain 239

8.3.1 GIC LDAFF, Interrupt Set Target in the Logical Interrupt Domain 240
8.3.2 GIC LDDI, Interrupt Deactivate in the Logical Interrupt Domain 242
8.3.3 GIC LDDIS, Interrupt Disable in the Logical Interrupt Domain 244
8.3.4 GIC LDEN, Interrupt Enable in the Logical Interrupt Domain 246
8.3.5 GIC LDHM, Interrupt Handling mode in the Logical Interrupt Domain . . 248
8.3.6 GIC LDPEND, Interrupt Set/Clear Pending state in the Logical Interrupt

Domain . 250
8.3.7 GIC LDPRI, Interrupt Set priority in the Logical Interrupt Domain 252
8.3.8 GIC LDRCFG, Request Interrupt Configuration in the Logical Interrupt

Domain . 254
8.4 GIC synchronization barrier instructions . 256

8.4.1 GSB SYS, GIC Synchronization Barrier System 257
8.4.2 GSB ACK, GIC Synchronization Barrier Interrupt Acknowledge 258

Chapter 9 System registers
9.1 Synchronization requirements for GICv5 System registers 260
9.2 CPU interface registers . 261

9.2.1 ICC_APR_EL1, Interrupt Controller Physical Active Priorities Register . 262
9.2.2 ICC_APR_EL3, Interrupt Controller Physical Active Priorities Register

for EL3 . 265
9.2.3 ICC_CR0_EL1, Interrupt Controller EL1 Physical Control Register . . . 267
9.2.4 ICC_CR0_EL3, Interrupt Controller EL3 Physical Control Register . . . 271
9.2.5 ICC_DOMHPPIR_EL3, Interrupt Controller Domain Highest Priority

Pending Interrupt Register . 273
9.2.6 ICC_HAPR_EL1, Interrupt Controller Physical Highest Active Priority

Register . 275
9.2.7 ICC_HPPIR_EL1, Interrupt Controller Physical Highest Priority Pending

Interrupt Register . 277
9.2.8 ICC_HPPIR_EL3, Interrupt Controller Physical Highest Priority Pending

Interrupt Register . 279
9.2.9 ICC_IAFFIDR_EL1, Interrupt Controller PE Interrupt Affinity ID Register 281
9.2.10 ICC_ICSR_EL1, Interrupt Controller Interrupt Configuration and State

Register . 282
9.2.11 ICC_IDR0_EL1, Interrupt Controller ID Register 0 286
9.2.12 ICC_PCR_EL1, Interrupt Controller Physical Interrupt Priority Control

Register . 288
9.2.13 ICC_PCR_EL3, Interrupt Controller Interrupt Priority Control Register

for EL3 . 291
9.2.14 ID_AA64PFR2_EL1, AArch64 Processor Feature Register 2 293

9.3 Virtual CPU interface registers . 295
9.3.1 ICV_APR_EL1, Interrupt Controller Virtual Active Priorities Register . . 296
9.3.2 ICV_CR0_EL1, Interrupt Controller EL1 Virtual Control Register 299
9.3.3 ICV_HAPR_EL1, Interrupt Controller Virtual Highest Active Priority Reg-

ister . 302
9.3.4 ICV_HPPIR_EL1, Interrupt Controller Virtual Highest Priority Pending

Interrupt Register . 304
9.3.5 ICV_PCR_EL1, Interrupt Controller Virtual Interrupt Priority Control

Register . 306
9.4 PPI registers . 309

9.4.1 ICC_PPI_CACTIVER<n>_EL1, Interrupt Controller Physical PPI Clear
Active Registers, n = 0 - 1 . 310

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

Contents

9.4.2 ICC_PPI_CPENDR<n>_EL1, Interrupt Controller Physical PPI Clear
Pending State Registers, n = 0 - 1 . 313

9.4.3 ICC_PPI_DOMAINR<n>_EL3, Interrupt Controller PPI Domain Regis-
ters, n = 0 - 3 . 316

9.4.4 ICC_PPI_ENABLER<n>_EL1, Interrupt Controller Physical PPI Enable
Registers, n = 0 - 1 . 318

9.4.5 ICC_PPI_HMR<n>_EL1, Interrupt Controller Physical PPI Handling
mode Registers, n = 0 - 1 . 321

9.4.6 ICC_PPI_PRIORITYR<n>_EL1, Interrupt Controller Physical PPI Priority
Registers, n = 0 - 15 . 323

9.4.7 ICC_PPI_SACTIVER<n>_EL1, Interrupt Controller Physical PPI Set
Active Registers, n = 0 - 1 . 325

9.4.8 ICC_PPI_SPENDR<n>_EL1, Interrupt Controller Physical PPI Set Pend-
ing State Registers, n = 0 - 1 . 328

9.5 Virtual PPI registers . 331
9.5.1 ICV_PPI_CACTIVER<n>_EL1, Interrupt Controller Virtual PPI Clear

Active Registers, n = 0 - 1 . 332
9.5.2 ICV_PPI_CPENDR<n>_EL1, Interrupt Controller Virtual PPI Clear Pend-

ing State Registers, n = 0 - 1 . 335
9.5.3 ICV_PPI_ENABLER<n>_EL1, Interrupt Controller Virtual PPI Clear En-

able Registers, n = 0 - 1 . 338
9.5.4 ICV_PPI_HMR<n>_EL1, Interrupt Controller Virtual PPI Handling mode

Registers, n = 0 - 1 . 341
9.5.5 ICV_PPI_PRIORITYR<n>_EL1, Interrupt Controller Virtual PPI Priority

Registers, n = 0 - 15 . 343
9.5.6 ICV_PPI_SACTIVER<n>_EL1, Interrupt Controller Virtual PPI Set Active

Registers, n = 0 - 1 . 345
9.5.7 ICV_PPI_SPENDR<n>_EL1, Interrupt Controller Virtual PPI Set Pend-

ing State Registers, n = 0 - 1 . 348
9.6 Hypervisor control registers . 351

9.6.1 ICH_APR_EL2, Interrupt Controller Active Virtual Priorities Register . . 352
9.6.2 ICH_CONTEXTR_EL2, Interrupt Controller Virtual Context Register . . 354
9.6.3 ICH_HFGITR_EL2, Hypervisor GIC Fine-Grained Instruction Trap Register358
9.6.4 ICH_HFGRTR_EL2, Hypervisor GIC Fine-Grained Read Trap Register 363
9.6.5 ICH_HFGWTR_EL2, Hypervisor GIC Fine-Grained Write Trap Register 369
9.6.6 ICH_HPPIR_EL2, Interrupt Controller Hypervisor Highest Priority Pend-

ing Interrupt Register . 374
9.6.7 ICH_PPI_ACTIVER<n>_EL2, Interrupt Controller Virtual Interrupt Active

Registers, n = 0 - 1 . 376
9.6.8 ICH_PPI_DVIR<n>_EL2, Interrupt Controller PPI Direct-inject Virtual

Interrupt Registers, n = 0 - 1 . 379
9.6.9 ICH_PPI_ENABLER<n>_EL2, Interrupt Controller Virtual Interrupt En-

able Registers, n = 0 - 1 . 382
9.6.10 ICH_PPI_PENDR<n>_EL2, Interrupt Controller Virtual Interrupt Pending

State Registers, n = 0 - 1 . 384
9.6.11 ICH_PPI_PRIORITYR<n>_EL2, Interrupt Controller Virtual Interrupt

Priority Registers, n = 0 - 15 . 386
9.6.12 ICH_VCTLR_EL2, Interrupt Controller Virtual CPU interface Control

Register . 388
9.6.13 ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register 391
9.6.14 Nested virtualization . 393

9.7 Legacy hypervisor control registers . 395
9.7.1 ICH_AP0R<n>_EL2, Interrupt Controller Active Virtual Priorities Regis-

ters 0, n = 0 - 3 . 396

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ix

Contents

9.7.2 ICH_AP1R<n>_EL2, Interrupt Controller Active Virtual Priorities Regis-
ters 1, n = 0 - 3 . 398

9.7.3 ICH_EISR_EL2, Interrupt Controller End of Interrupt Status Register . . 401
9.7.4 ICH_ELRSR_EL2, Interrupt Controller Empty List Register Status Register403
9.7.5 ICH_HCR_EL2, Interrupt Controller Hyp Control Register 405
9.7.6 ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15 409
9.7.7 ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register412
9.7.8 ICH_VTR_EL2, Interrupt Controller VGIC Type Register 415
9.7.9 Nested virtualization . 417

9.8 Legacy virtual CPU interface registers . 418
9.8.1 AArch64 Legacy virtual CPU interface registers 418

Chapter 10 Registers and memory maps
10.1 Memory-mapped programmer’s model . 421
10.2 IRS register frames . 424

10.2.1 IRS_CONFIG_FRAME, IRS configuration register frame 425
10.2.2 IRS_SETLPI_FRAME, IRS SETLPI register frame 521

10.3 ITS register frames . 523
10.3.1 ITS_CONFIG_FRAME, ITS configuration register frame 524
10.3.2 ITS_TRANSLATE_FRAME, ITS translate register frame 575

10.4 IWB register frames . 578
10.4.1 IWB_CONFIG_FRAME, IWB configuration registers frame 579

10.5 GIC PMU register frame . 595
10.5.1 GIC_PMU_FRAME, GIC PMU register frame 596

10.6 Identification registers . 614

Chapter 11 Data structures
11.1 ITS Data Structures . 617

11.1.1 L1_DTE, Level 1 device table entry . 618
11.1.2 L2_DTE, Level 2 device table entry . 619
11.1.3 L1_ITTE, Level 1 interrupt translation table entry 622
11.1.4 L2_ITTE, Level 2 interrupt translation table entry 623

11.2 IRS Data Structures . 625
11.2.1 L1_VMTE, Level 1 VM table entry . 626
11.2.2 L2_VMTE, Level 2 VM table entry . 627
11.2.3 L1_ISTE, Level 1 interrupt state table entry 633
11.2.4 L2_ISTE, Level 2 interrupt state table entry 634
11.2.5 VPETE, VPE table entry . 636
11.2.6 VM_DESC, VM descriptor . 637
11.2.7 VPE_DESC, VPE descriptor . 638

Part A GICv5 Stream Protocol interface

Chapter A1 GICv5 Stream Protocol overview

Chapter A2 AMBA AXI5-Stream Transport Layer
A2.1 Signals . 644
A2.2 Channel identification . 646
A2.3 Link status . 648

Chapter A3 Common behaviors

Chapter A4 Interrupt Handling channel
A4.1 Command summary . 651
A4.2 Outstanding commands . 653

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

x

Contents

A4.3 Connection management . 655
A4.4 Managing the resident VPE . 657

A4.4.1 Interrupt Handling Channel behaviors when there is a resident VPE . . 657
A4.4.2 Interrupt Handling Channel behaviors when there is no resident VPE . 658

A4.5 Forwarding, recalling, and releasing interrupts 659
A4.6 INTID configuration . 661
A4.7 IRS and CPU interface capabilities . 662

Chapter A5 Interrupt Signaling channel
A5.1 Command summary . 664
A5.2 Outstanding commands . 665
A5.3 Signaling interrupts to the IRS . 666
A5.4 Connection management . 667

Chapter A6 Alphabetical list of commands
A6.1 Interrupt Handling channel . 669

A6.1.1 Activate, Activate command (CPUIF -> IRS) 670
A6.1.2 ActivateAck, Activate Acknowledge command (IRS -> CPUIF) 671
A6.1.3 Deactivate, Deactivate interrupt command (CPUIF -> IRS) 672
A6.1.4 DeactivateAck, Deactivate interrupt Acknowledge command (IRS ->

CPUIF) . 674
A6.1.5 DownstreamControl, Downstream Control (IRS -> CPUIF) 675
A6.1.6 DownstreamControlAck, Downstream Control Acknowledge command

(CPUIF -> IRS) . 676
A6.1.7 Forward, Forward command (IRS -> CPUIF) 677
A6.1.8 Recall, Recall command (IRS -> CPUIF) 679
A6.1.9 Release, Release command (CPUIF -> IRS) 680
A6.1.10 RequestConfig, Request Interrupt Configuration command (CPUIF -> IRS)682
A6.1.11 RequestConfigAck, Request Interrupt Configuration Acknowledge com-

mand (IRS -> CPUIF) . 684
A6.1.12 SetAck, Set interrupt configuration acknowledge command (IRS -> CPUIF)686
A6.1.13 SetEnabled, Set interrupt Enabled command (CPUIF -> IRS) 687
A6.1.14 SetHandling, Set Interrupt Handling Mode command (CPUIF -> IRS) . 689
A6.1.15 SetPending, Set interrupt Pending command (CPUIF -> IRS) 691
A6.1.16 SetPriority, Set Interrupt Priority command (CPUIF -> IRS) 693
A6.1.17 SetResident, Set Resident command (CPUIF -> IRS) 695
A6.1.18 SetResidentAck, Set Resident acknowledge command (IRS -> CPUIF) 697
A6.1.19 SetTarget, Set Interrupt Target command (CPUIF -> IRS) 698
A6.1.20 Sync, synchronizes previously sent configuration changes (CPUIF -> IRS)700
A6.1.21 SyncAck, synchronizes previously sent configuration changes (IRS ->

CPUIF) . 701
A6.1.22 UpstreamControl, Upstream Control (CPUIF -> IRS) 702
A6.1.23 UpstreamControlAck, Upstream Control Acknowledge command (IRS ->

CPUIF) . 703
A6.1.24 WakeRequest, Wake request (IRS -> CPUIF) 704

A6.2 Interrupt Signaling channel . 705
A6.2.1 INT, Interrupt command (Interrupt Source -> IRS) 706
A6.2.2 Flush, Flush command (IRS -> Interrupt Source) 707
A6.2.3 FlushAck, Flush acknowledge command (Interrupt Source -> IRS) . . . 708
A6.2.4 Quiesce, Quiesce command (Interrupt Source -> IRS) 709
A6.2.5 QuiesceAck, Quiesce acknowledge command (IRS -> Interrupt Source) 710
A6.2.6 Resample, Resample request command (IRS -> Interrupt Source) . . . 711
A6.2.7 ResampleAck, Resample request acknowledge command (Interrupt

Source -> IRS) . 712
A6.2.8 Reset, Reset command (Interrupt Source -> IRS) 713

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xi

Contents

A6.2.9 ResetAck, Reset acknowledge command (IRS -> Interrupt Source) . . . 714

Chapter A7 Example sequences
A7.1 Bringing the Interrupt Handling channel online and taking it offline 716
A7.2 Simple interrupt life-cycle . 721
A7.3 Replacing the candidate HPPI for an Interrupt Domain, or resident VPE 722
A7.4 Making a VPE resident . 725
A7.5 Interrupt configuration . 728
A7.6 Sending IPIs . 729
A7.7 1 of N interrupts . 730

Part B Litmus tests

Chapter B1 Interrupt ordering litmus tests
B1.1 Interrupt litmus test assumptions . 733
B1.2 Atomicity of interrupt updates by GIC system instructions 734

B1.2.1 Notes . 734
B1.2.2 Litmus test . 734

B1.3 Multiple updates of the same Interrupt Location 735
B1.3.1 Notes . 735
B1.3.2 Litmus test with two configuration updates 735
B1.3.3 Litmus test with an interrupt disable and an interrupt deactivate 735
B1.3.4 Litmus test with an interrupt deactivate and an interrupt disable 736

B1.4 Reading back interrupt writes on a single PE 737
B1.4.1 Notes . 737
B1.4.2 Litmus test with a configuration update 737
B1.4.3 Litmus test with deactivate . 737
B1.4.4 Litmus test with acknowledgement . 738
B1.4.5 Litmus test with two configuration updates 738

B1.5 Reading interrupt configurations and subsequent updates 740
B1.5.1 Notes . 740
B1.5.2 Litmus test with update to priority . 740
B1.5.3 Litmus test with deactivate . 740
B1.5.4 Litmus test with acknowledge . 741

B1.6 Configuration and acknowledgement . 742
B1.6.1 Notes . 742
B1.6.2 Litmus test using disable without explicit synchronization 742
B1.6.3 Litmus test using disable with explicit synchronization 742
B1.6.4 Litmus test with deactivate . 743
B1.6.5 Litmus test using priority without explicit synchronization 743
B1.6.6 Litmus test using priority with explicit synchronization. 744

B1.7 Acknowledge followed by interrupt changes 745
B1.7.1 Notes . 745
B1.7.2 Litmus test with deactivate . 745
B1.7.3 Litmus test with make pending . 745

B1.8 Multiple updates with interleaved read . 747
B1.8.1 Notes . 747
B1.8.2 Litmus test . 747

B1.9 Configuration write and IRQ unmask in PSTATE 748
B1.9.1 Notes . 748
B1.9.2 Litmus test . 748
B1.9.3 Litmus test with initially masked IRQs 748
B1.9.4 Litmus test with disable of a PPI . 749

B1.10 Configuration write and exception status on a single PE 750

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xii

Contents

B1.10.1 Notes . 750
B1.10.2 Litmus test without wait for IRQ exception to be signaled 750
B1.10.3 Litmus test with wait for IRQ exception to be signaled 750

B1.11 IPI and acknowledgement . 752
B1.11.1 Notes . 752
B1.11.2 Litmus test without explicit synchronization 752
B1.11.3 Litmus test with explicit synchronization 752

B1.12 Observing multiple writes on a different PE . 754
B1.12.1 Notes . 754
B1.12.2 Litmus test . 754

B1.13 Read of the configuration of an interrupt . 755
B1.13.1 Notes . 755
B1.13.2 Litmus test without ISB . 755
B1.13.3 Litmus test with ISB . 755

B1.14 Multiple reads of the same config . 757
B1.14.1 Notes . 757
B1.14.2 Litmus test with ISBs . 757

B1.15 GIC coherence order . 758
B1.15.1 Notes . 758
B1.15.2 Litmus test . 758

B1.16 Independent reads of independent writes . 760
B1.16.1 Notes . 760
B1.16.2 Litmus test . 760

B1.17 Message passing via flag in memory . 761
B1.17.1 Notes . 761
B1.17.2 Litmus test . 761

B1.18 Message passing via interrupt priority configuration 762
B1.18.1 Notes . 762
B1.18.2 Litmus test . 762

B1.19 Message passing with an LPI and a device read 763
B1.19.1 Notes . 763
B1.19.2 Litmus test . 763
B1.19.3 Litmus test with address dependency 763

B1.20 Message passing with an LPI and a GSB . 765
B1.20.1 Notes . 765
B1.20.2 Litmus test . 765

B1.21 Message passing with an IPI and a GSB . 767
B1.21.1 Notes . 767
B1.21.2 Litmus test . 767

B1.22 Message passing using deactivate . 768
B1.22.1 Notes . 768
B1.22.2 Litmus test with explicit synchronization 768
B1.22.3 Litmus test with address dependency 769
B1.22.4 Litmus test with control dependency . 769
B1.22.5 Litmus test without explicit synchronization 770
B1.22.6 Litmus test with a DSB but without a GSB 771
B1.22.7 Litmus test without a DSB but with a GSB 772

B1.23 IPI edge merging and message passing . 773
B1.23.1 Notes . 773
B1.23.2 Litmus test . 773

B1.24 Device edge merging with GSB ACK . 775
B1.24.1 Notes . 775
B1.24.2 Litmus test . 775

B1.25 Configuration read and interrupt acknowledge 777
B1.25.1 Notes . 777

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiii

Contents

B1.25.2 Single-threaded litmus test . 777
B1.25.3 Multi-threaded litmus test . 777

B1.26 Atomicity of interrupt acknowledge . 779
B1.26.1 Notes . 779
B1.26.2 Litmus test . 779

B1.27 Atomicity of interrupt disable and acknowledge 780
B1.27.1 Notes . 780
B1.27.2 Litmus test . 780

B1.28 Interrupt handler completion . 781
B1.28.1 Notes . 781
B1.28.2 Litmus test . 781

B1.29 Configuration update while disabled . 782
B1.29.1 Notes . 782
B1.29.2 Litmus test . 782

B1.30 Atomicity of interrupt acknowledge and retarget 784
B1.30.1 Notes . 784
B1.30.2 Litmus test . 784

B1.31 1ofN interrupt acknowledge . 785
B1.31.1 Notes . 785
B1.31.2 Litmus test . 785

B1.32 Retargeting interrupts without synchronization 786
B1.32.1 Notes . 786
B1.32.2 Litmus test . 786

B1.33 Reading interrupt configuration and exception status 787
B1.33.1 Notes . 787
B1.33.2 Litmus test with ISB before reading IRQ pending status 787
B1.33.3 Litmus test with ISB after reading IRQ pending status 787

B1.34 Reading interrupt configuration and IRQ unmask in PSTATE 789
B1.34.1 Notes . 789
B1.34.2 Explanation . 789
B1.34.3 Litmus test with ISB before unmasking IRQ in PSTATE 789
B1.34.4 Litmus test with ISB after unmasking IRQ in PSTATE 789

B1.35 PPI activate and system register read . 790
B1.35.1 Notes . 790
B1.35.2 Litmus test without ISB . 790
B1.35.3 Litmus test with GSB . 790
B1.35.4 Litmus test with ISB . 791

B1.36 PPI disable and acknowledge . 792
B1.36.1 Notes . 792
B1.36.2 Litmus test with ISB . 792

B1.37 PPI acknowledgement . 793
B1.37.1 Notes . 793
B1.37.2 Litmus test . 793
B1.37.3 Litmus test . 793

B1.38 Write after changing resident VM . 795
B1.38.1 Notes . 795
B1.38.2 Litmus test . 795

B1.39 Write before changing resident VM . 796
B1.39.1 Notes . 796
B1.39.2 Litmus test . 796

B1.40 Completion of GIC and GICR instructions in finite time 797
B1.40.1 Notes . 797
B1.40.2 Litmus test with a priority update observed by a configuration read . . . 797
B1.40.3 Litmus test with an interrupt acknowledge observed by a configuration read797
B1.40.4 Litmus test with an interrupt becoming pending and then acknowledged 798

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiv

Contents
Contents

Chapter B2 Effects of disabling a PPI source on the PPI Pending state
B2.0.1 Notes . 799
B2.0.2 Litmus test with disable of the timer state 799

Part C Model

Chapter C1 Operational model

Glossary

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xv

Preface

Preface

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Red text

Indicates an open issue.

Blue text

Indicates a link. This can be

• A cross-reference to another location within the document
• A URL, for example http://developer.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for
example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xvi

http://developer.arm.com

Preface
Rules-based writing

Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the following:

• Declaration
• Rule
• Goal
• Information
• Rationale
• Implementation note
• Software usage

Declarations and Rules are normative statements. An implementation that is compliant with this specification must
conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are generally grouped into sections and subsections that provide context. Where appropriate,
these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent versions
of the specification.

Content item rendering

In this document, a content item is rendered with a token of the following format in the left margin: Liiiii

• L is a label that indicates the content class of the content item.
• iiiii is the identifier of the content item.

Content item classes

Declaration
A Declaration is a statement that does one or more of the following:

• Introduces a concept
• Introduces a term
• Describes the structure of data
• Describes the encoding of data

A Declaration does not describe behavior.

A Declaration is rendered with the label D.

Rule
A Rule is a statement that describes the behavior of a compliant implementation.

A Rule explains what happens in a particular situation.

A Rule does not define concepts or terminology.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xvii

Preface
Additional reading

A Rule is rendered with the label R.

Goal
A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.

A Goal is comparable to a “business requirement” or an “emergent property.”

A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information
An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label I.

Rationale
A Rationale statement explains why the specification was specified in the way it was.

A Rationale statement is rendered with the label X.

Implementation note
An Implementation note provides guidance on implementation of the specification.

An Implementation note is rendered with the label U.

Software usage
A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is rendered with the label S.

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.
[1] Arm® Architecture Reference Manual, for A-profile architecture. (ARM DDI 0487) Arm Ltd.

[2] Arm® Base System Architecture 1.0C. (ARM DEN 0094C) Arm Ltd.

[3] Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4.
(ARM IHI 0069) Arm Ltd.

[4] Arm® Architecture Reference Manual Supplement, Transactional Memory Extension (TME), for A-profile
architecture. (ARM DDI 0617) Arm Ltd.

[5] Arm® System Memory Management Unit Architecture Specification, SMMU architecture version 3. (ARM
IHI 0070) Arm Ltd.

[6] Arm® Realm Management Extension (RME) System Architecture. (ARM DEN 0029) Arm Ltd.

[7] AMBA® AXI Protocol Specification. (ARM IHI 0022) Arm Ltd.

[8] Arm® Power State Coordination Interface. (ARM DEN 0022) Arm Ltd.

[9] PCI Express® Base Specification Revision 6.0. PCI-SIG.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xviii

Preface
Additional reading

[10] VIRTIO (Virtual I/O) Specification. See https://github.com/oasis-tcs/virtio-spec

[11] Arm® CoreSight™ Architecture Performance Monitoring Unit Architecture. (ARM IHI 0091) Arm Ltd.

[12] Arm® CoreSight™ Architecture Specification. (ARM IHI 0029) Arm Ltd.

[13] AMBA® AXI-Stream Protocol Specification. (ARM IHI 0051) Arm Ltd.

[14] Arm® Specification Language Reference Manual. (ARM DDI 0612) Arm Ltd.

[15] Arm® Reliability, Availability, and Serviceability (RAS) System Architecture for A-profile architecture.
(ARM IHI 0100) Arm Ltd.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xix

https://github.com/oasis-tcs/virtio-spec

Preface
Feedback

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have any comments or suggestions for additions and improvements create a ticket at https://support.develo
per.arm.com. As part of the ticket include:

• The title (Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 5).
• The number (ARM-AES-0070 00bet0).
• The page numbers to which your comments apply.
• The rule identifiers to which your comments apply, if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

Inclusive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

Previous issues of this document included language that can be offensive. We have replaced this language. To
report offensive language in this document, email terms@arm.com.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xx

https://support.developer.arm.com
https://support.developer.arm.com

Chapter 1
Introduction

ISBNXT The Generic Interrupt Controller version 5 (GICv5) architecture defines requirements for interrupt sources and a
common programming interface for translating, configuring, and handling interrupts.

IJCSXY Sources of interrupts can be peripherals (including PE functions, system components, and the GIC itself), and
software running on PEs.

IJCVZT The GICv5 CPU interface provides a common programming interface to manage and handle physical and virtual
interrupts.

Virtual interrupts are handled using the same programming interface as physical interrupts, providing binary
compatible virtualization support.

The GICv5 CPU interface also supports backwards compatibility for GICv3 virtual machines by providing
EL2 controls as well as the GICv3 virtual CPU interface and GICv3 hypervisor control interface. Backward
compatibility support in the GICv5 CPU interface is an optional feature.

INHXNK To support virtualization, the GICv5 architecture provides mechanisms for managing interrupts for Virtual
Machines (VMs) and virtual PEs (VPEs). The architecture supports multiple VMs, and each VM can contain one
or more VPEs.

Software can configure when a VPE becomes resident on a PE through a system register interface. It can also
request doorbell notification interrupts when making a VPE non-resident at a later time.

The GIC architecture does not define or mandate how a VM boundary is managed by software.

The following are examples of VMs that the GICv5 architecture supports:

• A VM running in Non-secure state at EL1 and EL0, managed by a hypervisor running in Non-secure state at
EL2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

21

Chapter 1. Introduction

• A Realm running in Realm state at EL1 and EL0, and is managed by the Realm Management Monitor (RMM)
running in Realm state at EL2.

• A Secure partition running in Secure state at EL1 and EL0, and is managed by the Secure Partition Manager
(SPM) running in Secure state at EL2.

A VPE represents an execution context within a VM.

DQJTJG A VM is identified by a VM ID.

A VPE is identified by a VPE ID in the context of a VM.

INBJJF VMs are currently specified using a 16-bit identifier. The architecture reserves space to expand to additional bits of
VM ID across all registers and data structures in a future version of the architecture. Due to the need to support a
VPE doorbell in the LPI INTID space for each VPE in each VM, expanding the number of VMs beyond 24 bits
may also require expanding the number of INTID.IDs supported.

DBJBPZ A GICv5 CPU interface is connected to the Interrupt Routing Infrastructure (IRI).

The IRI uses either the GICv5 system architecture as described in Chapter 3 GICv5 system architecture, or is
IMPLEMENTATION DEFINED.

If the IRI is IMPLEMENTATION DEFINED, it must meet the requirements for SPIs and LPIs specified in Chapter
2 PE architecture, including the requirements specified in 2.12 Interrupt ordering model and synchronization
requirements.

DGMPXJ In the context of this specification, a GICv5 system comprises one or more PEs with support for the GICv5
architecture, each connected to the IRI.

This specification expects that the same OS or hypervisor manages all the PEs in a GICv5 system.

The word system can be used in different contexts to describe a different set of components, for example to include
PEs that do not implement support for the GICv5 architecture.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

22

Chapter 2
PE architecture

2.1 Architecture features and extensions

RPNBFY GICv5 defines a new Armv9-A architecture feature, GICv5 CPU interface Extension, represented by FEAT_GCIE.

This feature is supported in AArch64 only.

IGPWSJ Support for FEAT_GCIE is reported in ID_AA64PFR2_EL1.GCIE.

RJMHXV FEAT_GCIE is optional from Armv9.3-A[1].

ISHDMS FEAT_NMI is mandatory from Armv8.8-A and Armv9.3-A. This means that when a PE implements FEAT_GCIE,
it also implements FEAT_NMI.

RKTBJL A PE that implements FEAT_GCIE does not implement FEAT_GICv3.

RBQYTD GICv5 defines an optional Armv9-A architecture feature, GICv5 legacy VPE support, represented by
FEAT_GCIE_LEGACY.

IBKBQV FEAT_GCIE_LEGACY is implemented by a PE if ICC_IDR0_EL1.GCIE_LEGACY is >= 1. Otherwise,
FEAT_GCIE_LEGACY is not implemented.

ICXTVF FEAT_GCIE_LEGACY provides a virtual CPU interface compatible with GICv3.3, including:

• GICv3.3 ICV registers.
• GICv3.3 ICH registers, with some GICv5 updates.
• GICv3.3 support for virtual Non-maskable interrupts.
• GICv3.1 extended INTID range.
• GICv3 maintenance interrupt.
• GICv3 support for separate trapping of ICV_DIR_EL1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

23

Chapter 2. PE architecture
2.1. Architecture features and extensions

See 2.10.7 Legacy virtual CPU interface for more information.

RQCWBY A PE that implements FEAT_GCIE_LEGACY also implements FEAT_GCIE and EL2.

RVVMRJ When a PE implements FEAT_GCIE, SCR_EL3.IRQ is RES0.

RJMXDP When FEAT_GCIE and FEAT_EL3 are implemented on a PE, SCR_EL3.FIQ is RES1.

See also:

• 2.7 Interrupt Prioritization
• 2.9 The physical CPU interface
• 2.9.3 Preemptive interrupts
• 3.1 Interrupt Domains

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

24

Chapter 2. PE architecture
2.2. The GICv5 CPU interface

2.2 The GICv5 CPU interface

IGNFVQ When FEAT_GCIE is implemented, the PE implements the GICv5 CPU interface. The GICv5 CPU interface is
responsible for:

• Managing configuration and state of Private Peripheral Interrupts (PPIs).
• Masking and signaling of interrupts.
• Providing an interface for software to handle interrupts.
• Providing an interface for software to configure Shared Peripheral Interrupts (SPIs) and Logical Peripheral

Interrupts (LPIs).
• If EL2 is implemented, the CPU interface supports both virtual interrupt and physical interrupts.

A PE with an integrated GICv5 CPU interface is illustrated in Figure 2.1.

GICv5 CPU interface

IRI

Virtual CPU interface

Physical CPU interface

PPI configuration and
state

PE core functionality
MSR/MRS

vFIQ

vIRQ

MSR/MRS

FIQ

IRQ

MSR/MRS

Legacy Virtual CPU
interface

Figure 2.1: PE with an integrated GICv5 CPU interface.

Note

vFIQ is only signaled by the Legacy virtual CPU interface.

ICMPTD The GICv5 CPU interface defines when an interrupt is signaled to the PE.

The PE architecture supports the IRQ, FIQ, vIRQ, and vFIQ interrupt signals. These interrupts signals can have
Superpriority as an additional attribute.

The PE architecture defines additional rules detailing whether an interrupt signal results in an exception being
taken. See Arm® Architecture Reference Manual, for A-profile architecture[1] for more information.

IPYKTM The physical CPU interface is always active and determines whether the IRQ and FIQ interrupts are signaled. See
2.9 The physical CPU interface for more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

Chapter 2. PE architecture
2.2. The GICv5 CPU interface

When executing at Exception levels below EL2, HCR_EL2.IMO is 1, and Legacy operation is not enabled, the
virtual CPU interface determines whether the vIRQ interrupt is signaled. See 2.10 The virtual CPU interface for
more information.

When executing at Exception levels below EL2, HCR_EL2.IMO is 1, and Legacy operation is enabled, the Legacy
virtual CPU interface determines whether the vIRQ and vFIQ interrupts are signaled. See 2.10.7 Legacy virtual
CPU interface for more information.

The GICv5 CPU interface never signals the vIRQ or vFIQ interrupts when executing at EL2 or EL3.

DMJHKK The GICv5 CPU interface connects to the IRI that manages SPIs and LPIs. The IRI presents a candidate HPPI for
each Interrupt Domain to the CPU interface and the CPU interface determines if the candidate HPPI is the HPPI.

RMCVBY The mechanism used by the IRI to present a candidate HPPI is IMPLEMENTATION DEFINED.

IBTNJQ Arm recommends that an implementation uses the GICv5 system architecture. See Chapter 3 GICv5 system
architecture for more information.

Arm recommends that an implementation uses the GICv5 Stream Protocol for communication between PEs and
the IRI. See Chapter A1 GICv5 Stream Protocol overview for more information.

RWKGBT Every PE is assigned a unique PE interrupt Affinity ID in the system.

IXDCZN The interrupt Affinity ID value for each PE is reported in ICC_IAFFIDR_EL1.IAFFID.

RGXVVJ The PE interrupt Affinity ID is the same across all Physical Interrupt Domains.

RPXKWK Support for bypassing the GICv5 CPU interface to signal interrupts to the PE is IMPLEMENTATION DEFINED. The
behavior of System instruction and System registers, if the GICv5 CPU interface is bypassed, is IMPLEMENTATION
DEFINED.

RTYFBF All GIC System instructions and GIC System registers defined in this specification are available in Debug state.

See also:

• 2.8 Interrupt handling

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

Chapter 2. PE architecture
2.3. Interrupt Domains

2.3 Interrupt Domains

DHJYDR An Interrupt Domain provides isolation of interrupt configuration and handling by its association to a Security
state.

DXQLTP The architecture defines the following Physical Interrupt Domains, each corresponding to an implemented Security
state and Exception level:

• The Non-secure Interrupt Domain
• The Realm Interrupt Domain
• The Secure Interrupt Domain
• The EL3 Interrupt Domain

DTTZCX When an interrupt belonging to a Physical Interrupt Domain is signaled, it is signaled as a physical interrupt.

See 2.9 The physical CPU interface and ‘Asynchronous exception types’ in [1] for more information.

DHXMSH The architecture defines the term Non-EL3 Interrupt Domain as any Physical Interrupt Domain apart from the EL3
Interrupt Domain.

INHCWZ The Non-secure, Secure, and Realm Interrupt Domains are Non-EL3 Interrupt Domains.

IWBZXZ Physical PPIs have a per-PE namespace that is shared across the Physical Interrupt Domains.

IVWGBP Physical SPIs have a single shared namespace across PEs and the Physical Interrupt Domains.

INFQYW Physical LPIs have a separate namespace for each Physical Interrupt Domain that is shared across PEs.

RZMRKX The implemented Physical Interrupt Domains depend on the implemented Security states as follows:

Implemented Security states Implemented Physical Interrupt Domains

Non-secure Non-secure

Secure Secure

Non-secure, Secure Non-secure, Secure, EL3

Non-secure, Realm, Root Non-secure, Realm, EL3

Non-secure, Realm, Secure, Root Non-secure, Realm, Secure, EL3

RZFCXM The Physical Interrupt Domain associated with a Security state and Exception level is as follows:

Exception level Security state Physical Interrupt Domain

EL3 Secure or Roota EL3

EL2/1/0 Secure Secure

EL2/1/0 Non-secure Non-secure

EL2/1/0 Realm Realm

a. The Security state of EL3 depends on whether FEAT_RME is implemented. However, EL3 always uses the
EL3 Interrupt Domain.

DXKSVB The architecture defines the Current Physical Interrupt Domain of a PE as the Physical Interrupt Domain
corresponding to the current Exception level and Security state of that PE.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

Chapter 2. PE architecture
2.3. Interrupt Domains

IFDPCN For example, if a PE is running in EL3 on a system with the Secure and Non-secure Security states, the Current
Physical Interrupt Domain is the EL3 Interrupt Domain.

DQWVZJ When EL2 is implemented, the Virtual Interrupt Domain defines the namespace for the virtual interrupts on a PE.

When EL2 is not implemented, there is no Virtual Interrupt Domain.

DQHMVR The interrupts managed by the IRI for the Virtual Interrupt Domain are selected based on the resident VPE.

The VM that the VPE belongs to is referred to as the resident VM.

IVHGTD The resident VPE and resident VM are programmed using ICH_CONTEXTR_EL2.

See 2.10.5 Selecting the resident VPE for more information.

DZWDFY When an interrupt belonging to the Virtual Interrupt Domain is signaled, it is signaled as a virtual interrupt.

See 2.10 The virtual CPU interface and ‘Asynchronous exception types’ in [1] for more information.

DNSTKG The Current Interrupt Domain is one of the following:

• The Virtual Interrupt Domain, when all of the following are true:
– The current Exception level is EL1.
– HCR_EL2.IMO is 1.
– ICH_VCTLR_EL2.V3 is 0.

• Otherwise, the Current Physical Interrupt Domain.

See 2.6 GIC System instructions for more information about the use of the Current Interrupt Domain for GIC
System instructions.

Note

The Current Interrupt Domain is not defined when ICH_VCTLR_EL2.V3 is 1 and executing at Exception levels
below EL2. See 2.10.7 Legacy virtual CPU interface for more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28

Chapter 2. PE architecture
2.4. Interrupt types and identifiers

2.4 Interrupt types and identifiers

DSHNLW FEAT_GCIE supports the following types of interrupts:

• Private Peripheral Interrupts (PPIs).
• Logical Peripheral Interrupts (LPIs).
• Shared Peripheral Interrupts (SPIs).

DQDWHN An interrupt is identified by an INTID which comprises the following:

• INTID.TYPE The type of an interrupt is PPI, LPI, or SPIs.

• INTID.ID The numeric ID of an interrupt.

Each interrupt comprises the following states:

• Pending An interrupt is either Pending or Idle. An interrupt is only signaled and acknowledged when it is
Pending.

• Active An interrupt is either Active or Inactive. An interrupt is only signaled and acknowledged when it is
Inactive.

Each interrupt comprises the following configuration values:

• Enabled An interrupt is either Enabled or Disabled. An interrupt is only signaled and acknowledged when it
is Enabled.

• Priority The priority value of an interrupt. The priority values determine the order in which interrupts are
acknowledged and allow masking interrupts of lower priority.

• Handling mode The Handling mode of an interrupt is either Edge or Level. When the Handling mode is
Edge, the Pending state becomes Idle when an interrupt is acknowledged. When the Handling mode is Level,
the Pending state is unchanged when an interrupt is acknowledged.

• Routing mode Targeted or 1ofN.

• Affinity Specifies the destination of an interrupt.

DLDFPT Each interrupt type has a separate INTID.ID namespace.

IGTDKF For example, PPI 15 is a separate interrupt from LPI 15.

RPSTJC The architecture supports up to 24 bits of INTID.ID namespace for each interrupt type.

IPBBTX An implementation may support fewer than 24 bits of INTID.ID namespace.

ICTQKK The implemented INTID.ID namespace width may vary across interrupt types.

RGYVWB Where relevant, the interrupt type is encoded using a 3-bit field as follows:

• 0b001: Private Peripheral Interrupts (PPIs)
• 0b010: Logical Peripheral Interrupts (LPIs)
• 0b011: Shared Peripheral Interrupts (SPIs)

All other values are reserved.

RTJPHS The INTID is a numerical value constructed from both the interrupt ID and the type as follows:

• Bits[31:29]: Interrupt type
• Bits[28:24]: RES0
• Bits[23:0]: Interrupt ID

IVCLSH For example, an LPI with interrupt ID 1024 can be identified using INTID 0x40000400.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

Chapter 2. PE architecture
2.4. Interrupt types and identifiers

IDLGBQ The Handling mode of an interrupt specifies whether the Pending state becomes Idle when that interrupt is
acknowledged.

When using the GICv5 system architecture, the IRS specifies a separate Trigger mode for SPIs and the IWB
specifies a Trigger mode for input wires, and interrupt events generated by an IWB or an IRS may update the
Handling mode of the corresponding interrupt to match the Trigger mode.

See Chapter 4 Interrupt routing service (IRS) and Chapter 6 Interrupt Wire Bridge (IWB) for more information.

DCHFFT LPIs and SPIs are routed to appropriate PEs based on the Routing mode and Affinity. PPIs are private to a PE and
therefore always signaled locally on a PE.

IZPQDY The Routing mode of each LPI and SPI is either Targeted or 1ofN.

ILLQVD Support for 1ofN is optional for the IRI. When the GICv5 system architecture is used, the IRS reports whether
1ofN is supported in IRS_IDR0.ONE_N.

DQHNYP When the Routing mode of an interrupt is 1ofN, the IRI dynamically selects a PE to present the interrupt to, based
on information available to the IRI at any point in time.

When the Routing mode of an interrupt is Targeted, the IRI is only permitted to present the interrupt to the PE
corresponding to the interrupt Affinity.

See 2.6.1 LPI and SPI configuration for more information about configuring the routing of LPIs and SPIs.

2.4.1 PE-Private Peripheral Interrupts (PPIs)

GBGLBP GICv5 enables PE local events to be signaled as interrupts without recourse to the IRI.

DPDXVM The GIC CPU Interface Extension defines PPI IDs 0 through 127.

IQTYLP PPIs are generated by the CPU interface, typically by a function within the PE.

IYXRMV For example, the Arm Generic Timers generate a PPI when a timer condition is met.

RLWYBR The mechanism by which PPI sources signal the CPU interface is IMPLEMENTATION DEFINED.

Updates to the PPI Pending state from a PPI source are autonomous asynchronous events that complete in finite
time. See Arm® Architecture Reference Manual, for A-profile architecture[1] for more information.

IDQVMP When a PPI source is programmed using System register writes, even if a direct System register write causes
a PPI signal to become asserted or de-asserted, this does not cause an indirect System register write to the
ICC_PPI_xPENDR registers. Also in this case, the update from the PPI source to the PPI Pending state is an
autonomous asynchronous event that completes in finite time.

DHQXDV Each PPI is private to the PE.

DBWMGN Each PE has a private namespace for physical PPIs. The namespace is common across all Physical Interrupt
Domains on the PE.

IKPGFB Because each PPI is private to the PE, and each PE has a private namespace for PPIs, when separate PEs use the
same PPI INTID, they specify separate interrupts.

For example, physical PPI 15 on PE 0 is a separate interrupt from physical PPI 15 on PE 1.

DLHMTH If EL2 is implemented, the CPU interface supports virtual PPIs.

DRGQHS Each PE has a separate namespace for virtual PPIs.

IZTTQT Each virtual PPI is a separate interrupt from the physical PPI with the same INTID on the same PE.

For example, physical PPI 15 on PE 0 is a separate interrupt from virtual PPI 15 on PE 0.

However, a physical PPI can be assigned to the virtual PPI with the same INTID.

See 2.10.1 Virtual PPIs for more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

Chapter 2. PE architecture
2.4. Interrupt types and identifiers

IZVRNF The Handling mode of a PPI is not software programmable but is discoverable through a read-only system register.

IWQBLP In GICv5 the configuration and state of PPIs is held in the CPU Interface. This is different to earlier versions of
the GIC architecture, where the GIC IRI is responsible for PPI state and configuration.

See also:

• 2.9.1 Physical PPIs
• 2.10.1 Virtual PPIs

2.4.2 Logical Peripheral Interrupts (LPIs)

GPTPSK LPIs are expected to be provisioned by Hypervisor and OS software according to the needs of the software agent.

Therefore, LPIs have a private namespace for each Interrupt Domain and typically require memory to be allocated
for storing their configuration and state in the IRI.

IZBQLG LPIs are so called because of the similarity between how LPIs in GICv3 and LPIs in GICv5 are translated by an
ITS and often used for interrupt sources that signal their interrupts as MSIs.

The word logical is chosen to reflect the INTID private namespace for each Interrupt Domain.

GICv3 used the words locality-specific for historical reasons.

DBBVWN Each Physical Interrupt Domain has a private namespace for physical LPIs.

The namespace is common across all PEs for the same Physical Interrupt Domain.

IPPFTN For example, LPI 15 as seen by PE 0 is the same interrupt as LPI 15 seen by PE 1, in the same Physical Interrupt
Domain.

DBSNNZ The Virtual Interrupt Domain has a separate namespace for virtual LPIs.

The namespace for virtual LPIs is determined by the resident VPE and resident VM.

Each VM has a separate namespace for virtual LPIs. The virtual LPI namespace for a VM is common for all VPEs
in a VM.

Note

This means that when separate VPEs for the same VM are resident across multiple PEs, the Virtual Interrupt
Domains across those PEs share the same virtual LPI namespace.

See 2.10.5 Selecting the resident VPE for more information.

IFSXHB For example, LPI 15 as seen by VPE 0 is the same interrupt as LPI 15 seen by VPE 1, in the same VM.

2.4.3 Shared Peripheral Interrupts (SPIs)

GKCZPX SPIs are designed to function without being provisioned by software and without requiring memory to be allocated
for storing their configuration and state in the IRI.

SPIs are expected to be configured and provisioned when the system is designed and therefore have a common
namespace across the Physical Interrupt Domains which allows firmware to configure the Interrupt Domain that
each SPI is assigned to.

SPIs are expected to be used in the following scenarios:

• During early-boot where memory is not available to store interrupt state and configuration.
• When supporting RAS or other error handling interrupts which must work correctly even in the presence of

memory system failures.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

Chapter 2. PE architecture
2.4. Interrupt types and identifiers

• In real-time sensitive systems, where the worst-case latency of interrupt delivery and handling must meet
pre-determined timing requirements.

DNNDZX The Physical Interrupt Domains have a common namespace for physical SPIs. The namespace is common across
all PEs for all Physical Interrupt Domains.

This means that there is a single common namespace for physical SPIs in the system.

DVZHQW The Virtual Interrupt Domain has a separate namespace for virtual SPIs.

The namespace for virtual SPIs is determined by the resident VPE and resident VM.

Each VM has a separate namespace for virtual SPIs. The virtual SPI namespace for a VM is common for all VPEs
in a VM.

Note

This means that when separate VPEs for the same VM are resident across multiple PEs, the Virtual Interrupt
Domains across those PEs share the same virtual SPI namespace.

See 2.10.5 Selecting the resident VPE for more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

Chapter 2. PE architecture
2.5. Inter-Processor Interrupts

2.5 Inter-Processor Interrupts

DXHRZC The architecture supports inter-processor communications by using inter-processor interrupts (IPIs).

IPIs are either SPIs or LPIs configured as Targeted with the Affinity specifying the destination of the IPI.

Arm recommends that interrupts used for IPIs are not signaled by other interrupt sources.

SBDGNX In a Physical Interrupt Domain, an IPI is configured and sent from a source PE to a destination PE as follows:

1. A physical interrupt is selected and configured to target the destination PE.
2. The interrupt Handling mode is configured to Edge.
3. Software running on the source PE issues a GIC CDPEND instruction specifying the INTID of the interrupt.

For virtual machines, an IPI is configured and sent from a source VPE to a destination VPE as follows:

1. A virtual interrupt is selected and configured to target the destination VPE.
2. The interrupt Handling mode is configured to Edge.
3. Software running on the source VPE issues a GIC CDPEND instruction specifying the INTID of the interrupt.

ISZFVG The effect of making an interrupt Pending completes in finite time.

This means that when an IPI is made pending, if the interrupt meets the conditions to be signaled by the IRI, it is
signaled to the target PE or VPE in finite time.

Note

When an IPI is signaled to its destination, there is no guarantee that it will generate an interrupt exception and
be handled by the destination (V)PE. For example, the destination PE could be masking interrupt exceptions or
continuously be handling higher priority interrupts.

IBXHQK Arm strongly recommends that the IRI implements a sufficient number of interrupts that are not signaled by other
interrupt sources, to send IPIs for each Interrupt Domain.

The GICv5 system architecture allows software in each Interrupt Domain to allocate a sufficient number of LPIs
and allows implementations to provide a sufficient number of SPIs for IPIs when appropriate.

IWHWNY Arm expects software to use LPIs allocated by system software to send IPIs.

The architecture also allows the use of SPIs to send IPIs if a sufficient number of SPIs that are not connected to
any interrupt sources are available.

SPJWMR Software may allocate the number of required LPIs for each PE and establish a mapping from an LPI INTID.ID to
a PE and IPI number.

If software requires n IPIs for each PE, and the system supports a maximum of m PEs, software would allocate m *
n LPIs for IPIs.

The LPI IDs used for IPIs is managed by software.

However, if software requires a fixed arithmetic mapping for the IPI number on a given PE to an LPI ID, then
software can allocate the LPIs 0 through (m * n) - 1 for IPIs at system boot, and IPI number x on PE y is then given
by (y * n) + x.

If SPIs are used to send IPIs, whether it is possible to create a fixed arithmetic mapping depends on the INTIDs for
implemented SPIs that can be used for this purpose.

SFYVVP Software can send IPIs by using the GIC <domain>AFF, <Xt>, GIC <domain>HM, <Xt> and GIC <domain

↪→>PEND, <Xt> instructions to configure interrupts and to make them Pending.

Software can configure interrupts for each potential destination PE during boot as follows:

• The interrupt Handling mode is configured to be Edge using the GIC <domain>HM, <Xt> instruction.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

Chapter 2. PE architecture
2.5. Inter-Processor Interrupts

• The interrupt Routing mode is configured to be Targeted and the Affinity can be programmed to the destination
PE using the GIC <domain>AFF, <Xt> instruction.

At runtime, software can send an IPI to a target PE by issuing the GIC <domain>PEND, <Xt> instruction for
one of the interrupts targeted to the PE and allocated for IPIs.

See 2.6 GIC System instructions for more information about the GIC System instructions.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

Chapter 2. PE architecture
2.6. GIC System instructions

2.6 GIC System instructions

IRSVHM FEAT_GCIE defines the GIC System instructions for the following purposes:

• Configure LPIs and SPIs managed by the IRI.
• Handle pending interrupts in the CPU interface.

IFVJSG The A64 assembly language syntax for GIC System instructions is one of the following:

• GIC <operation>, <Xt>.
• GICR <Xt>, <operation>.

The GIC variant is used when the instruction has the semantics of a write and is an alias of the SYS instruction.

The GICR variant is used when the instruction has the semantics of a read and is an alias of the SYSL instruction.

IZCVGT The <operation> in GIC <operation>, <Xt> and GICR <Xt>, <operation> has the structure of
<domain><command>.

Each instruction operates in the Interrupt Domain identified by the domain parameter as described below:

Domain parameter Interrupt Domain

CD Current Interrupt Domain

LD Logical Interrupt Domain

VD Virtual Interrupt Domain

Each instruction executes a command specified by a command parameter listed below in the identified Interrupt
Domain.

Variant Command Name

GIC AFF Interrupt set Affinity

GIC RCFG Request interrupt configuration

GIC DI Deactivate interrupt

GIC DIS Interrupt clear Enable

GIC EN Interrupt set Enable

GIC EOI Interrupt Priority drop

GIC PEND Interrupt set/clear Pending state

GIC PRI Interrupt set Priority

GICR IA Interrupt acknowledge

GICR NMIA NMI acknowledge

• The commands for interrupt configuration are described in 2.6.1 LPI and SPI configuration.
• The commands for interrupt handling are described in 2.8 Interrupt handling.

<Xt> encodes additional parameters specific to the requested operation.

RXCLJC The effects of a GIC System instruction complete in finite time.

IBMZKC GIC System instructions and GSB instructions complete in finite time.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35

Chapter 2. PE architecture
2.6. GIC System instructions

IMFDQT When the GIC System instructions are executed with the <domain> parameter as CD, the operation applies to the
Current Interrupt Domain.

The GIC System instructions are not available when ICH_VCTLR_EL2.V3 is 1 and executing at Exception levels
below EL2.

IVNKRX When the GIC System instructions are executed with the <domain> parameter as LD, the operation applies to the
Physical Interrupt Domain selected by the current value of the SCR_EL3.{NSE,NS} fields.

The LD parameter is only available at EL3.

DGBYBF An interrupt specified by an INTID is either reachable or unreachable.

RPCDRJ GIC System instructions are only permitted to access the configuration and state of reachable interrupts.

When a GIC System instruction specifies an unreachable interrupt, it is treated as a NOP.

RJRDTL A physical PPI is reachable when all of the following are true:

• The PPI is implemented.
• The PPI is assigned to the Physical Interrupt Domain that the instruction operates in.

A virtual PPI is reachable when the PPI is implemented.

Otherwise, the PPI is unreachable.

RGRSYS A physical SPI is reachable when all of the following are true:

• The SPI is implemented by the IRI.
• The SPI is assigned to the Physical Interrupt Domain that the instruction operates in.

A virtual SPI for a VM is reachable when the SPI for the resident VM is reachable by the IRI. See 4.10.2 Virtual
SPIs for more information.

Otherwise, the SPI is unreachable.

RTTJYH A physical LPI is reachable when all of the following are true:

• The LPI is within the configured range for the corresponding Physical Interrupt Domain in the IRI. See 4.8.1
Physical LPIs for more information.

A virtual LPI for a VM is reachable when the LPI for the resident VM is reachable by the IRI. See 4.10.1 Virtual
LPIs for more information.

Otherwise, the LPI is unreachable.

IHDTHV When a GIC System instruction specifies a virtual SPI or LPI, the VM used to define the namespace for the INTID
is determined in one of the following ways:

• If the instruction operation is VDPEND, the VM is specified by the register argument passed to the instruction.
• If the instruction domain parameter specifies the Current Interrupt Domain or the Virtual Interrupt Domain,

the VM is the resident VM.

When a GIC System instruction operates in the Virtual Interrupt Domain and there is no resident VPE, all virtual
LPIs and SPIs are unreachable.

See 2.10.5 Selecting the resident VPE for more information about managing the resident VPE.

IHZLFG The following GIC System instructions are related to interrupt handling and access PPI, LPI, or SPI configuration
and state:

• GICR CDIA.
• GICR CDNMIA.
• GIC <domain>DI.

The GIC <domain>DI is treated as a NOP if it specifies an unreachable INTID.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

Chapter 2. PE architecture
2.6. GIC System instructions

RWSSNV When a GICR CDIA or GICR CDNMIA instruction is executed, its architectural side effects are synchronized by
the execution of a GSB ACK instruction.

The side effects of this synchronization include updates to the pending state of the IRQ, FIQ, vIRQ, and vFIQ
asynchronous exceptions. An instruction executed after the GSB ACK is guaranteed to observe the updated
pending status of these exceptions.

Note

The architectural side effects of a GICR CDIA or GICR CDNMIA instruction are synchronized by the execution
of a GSB ACK instruction, regardless of whether a PPI, LPI, or SPI is acknowledged.

IJNRPR If HCR_EL2.NV is 1, execution at EL1 of a GIC System instruction that specifies VD as the <domain> parameter
is trapped to EL2 with ESR_EL2.EC reporting 0x18.

IZFDJZ A GIC System instruction never successfully executes at EL1 if it specifies the VD as the <domain> parameter.
The instruction is either UNDEFINED or trapped to EL2 depending on the value of HCR_EL2.NV.

IGMHGR The architecture supports two barrier instructions used to define ordering between effects of GIC System instructions
and other effects in the system:

• GSB ACK: Provides ordering between the effects of a GICR CDIA instruction in program order before the
GSB ACK and other effects.

• GSB SYS: Provides ordering between the effects of any GIC System instruction in program order before the
GSB SYS and other effects.

See 2.12.2 GSB instruction semantics for more information.

See also:

• 2.12 Interrupt ordering model and synchronization requirements

2.6.1 LPI and SPI configuration

IBFFCW Configuration and state for LPIs and SPIs are managed by the IRI. GIC System instructions are used to update the
configuration of an LPIs and SPIs.

IMBNRN When an INTID whose Type is LPI or SPI specifies an ID which is beyond the range reported in
ICC_IDR0_EL1.ID_BITS, the unimplemented upper identifier bits are RES0.

IKFJNB The GIC System instruction commands that are used to update the configuration and state of interrupts managed
by the IRI are listed in the following table:

Command Name Description

AFF Interrupt set Affinity Set the Affinity for the INTID.

DI Interrupt clear Active Clear Active for the INTID.

DIS Interrupt clear Enable Clear Enable for the INTID.

EN Interrupt set Enable Set Enable for the INTID.

PEND Interrupt set/clear Pending state Generate SET or CLEAR events for the INTID.

PRI Interrupt set Priority Set the Priority for the INTID.

HM Interrupt set Handling mode Set the Handling mode for the INTID.

The resulting GIC System instructions are:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter 2. PE architecture
2.6. GIC System instructions

• GIC <domain>AFF, <Xt>.
• GIC <domain>EN, <Xt>.
• GIC <domain>DI, <Xt>.
• GIC <domain>DIS, <Xt>.
• GIC <domain>PEND, <Xt>.
• GIC <domain>PRI, <Xt>.
• GIC <domain>HM, <Xt>.

If <Xt> specifies an unreachable LPI or SPI INTID, the instruction is treated as a NOP.

IWNZLQ An INTID might be within the implemented INTID width but be unreachable. For example, the system might
support 16 bits of INTID but software might have configured a smaller LPI space in the IRI. This is different to
specifying an INTID beyond the implemented range, as unimplemented bits of INTID are treated as RES0.

IJGZYC The Affinity of an interrupt is configured by issuing the GIC <domain>AFF, <Xt> instruction.

The IRM field in <Xt> controls the interrupt routing mode. The interrupt routing mode is either Targeted or 1ofN.

When the interrupt is Targeted, the target PE is specified in the IAFFID field in <Xt>.

If the IRI supports fewer than 16 bits of IAFFID for the PE, unimplemented upper bits are RES0.

RJKYGN When the Affinity of an interrupt is configured by the GIC <domain>AFF, <Xt> instruction and the IRM field
configures the interrupt to be Targeted, all of the following are true:

• For a Physical Interrupt Domain, the IAFFID field specifies the PE with the corresponding interrupt Affinity
ID.

• For the Virtual Interrupt Domain, the IAFFID field specifies the VPE in the VM using the corresponding
VPE ID.

SWVYLC Arm expects that Hypervisor software emulates a virtual GICv5 implementation where the emulated
ICC_IAFFIDR_EL1.IAFFID value is the VPE ID of the corresponding VPE. This means that to software running
in a VM, configuring the Affinity of a virtual interrupt using the virtualized ICC_IAFFIDR_EL1.IAFFID value
will have the desired effect.

IWLBBY The GIC <domain>PEND, <Xt> instruction has the following effects on the interrupt state:

• If the Pending field is cleared to 0, the IRI is requested to clear the Pending state of the interrupt to 0.
• If the Pending field is set to 1, the IRI is requested to set the Pending state of the interrupt to 1.

IPKRLN The Handling mode of an interrupt can be configured by issuing the GIC <domain>HM, <Xt> instruction.

RYCDBY It is IMPLEMENTATION DEFINED whether the Handling mode of an SPI is RO.

If the Handling mode of an SPI is RO, all of the following are true:

• GIC <domain>HM, <Xt> instructions targeting the SPI have no effect.
• The corresponding Trigger mode in the IRI is RO.
• The Handling mode corresponds to the Trigger mode.

See 4.8.2 Physical SPIs for more information.

ITNGVR Interrupt configuration managed by an IRI is queried using the System instruction GIC <domain>RCFG and read
from the system register ICC_ICSR_EL1.

RNPDVH On executing a GIC <domain>RCFG System instruction, the PE requests the configuration and state of the
specified INTID from the IRI for the Interrupt Domain identified by the <domain> parameter.

If the INTID is reachable, ICC_ICSR_EL1.F is set to 0 and the other fields are populated with the configuration
and state of the INTID.

If the INTID is unreachable, ICC_ICSR_EL1.F is set to 1 and the other fields become UNKNOWN.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter 2. PE architecture
2.6. GIC System instructions

IGBYBZ Where an instruction results in an update to a System register, as is the case with the GIC <domain>RCFG System
instruction, explicit synchronization must be performed before the result is guaranteed to be visible. This means
that the result of a GIC <domain>RCFG System instruction is not guaranteed to be visible in ICC_ICSR_EL1
until after an ISB or other context synchronization event.

See also:

• 2.12 Interrupt ordering model and synchronization requirements
• 4.6 Interrupt configuration and state

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

Chapter 2. PE architecture
2.7. Interrupt Prioritization

2.7 Interrupt Prioritization

IDQGTJ The priority of an interrupt is an unsigned value that is used for the following purposes:

• Selecting which interrupt to signal among multiple interrupts that can be signaled for an Interrupt Domain.

• Priority-based masking of interrupts.

• When NMIs are enabled for an Interrupt Domain, configuring an interrupt with a priority value of 0 indicates
that the interrupt is an NMI and should be signaled with Superpriority. See 2.9.5 Physical non-maskable
interrupts for more information about NMIs.

• When there are interrupts that can be signaled for multiple Interrupt Domains, the priority may be used
to decide whether an interrupt should be signaled using the IRQ or FIQ interrupt exception. See 2.9.3
Preemptive interrupts for more information.

IZCBZT The number of implemented priority bits is reported in ICC_IDR0_EL1.PRI_BITS.

The maximum number of implemented priority bits is 5, and the priority of an interrupt is always interpreted as a 5
bit unsigned value. Only bits [4:N] are implemented where N = (4 - ICC_IDR0_EL1.PRI_BITS). Unimplemented
bits are RES0.

This means that when fewer than 5 bits of priority is implemented, bits [3 - ICC_IDR0_EL1.PRI_BITS:0] are
RES0.

For example, if 4 bits of priority are implemented, only priority levels 0, 2, 4, 6, . . . , 30 are implemented.

IVWYWB The number of implemented priority bits may vary between the CPU interface and the IRI. In this case,
unimplemented lower order bits are treated as 0 by the component implementing the lowest number of bits.
Arm recommends that software only programs priority values within the range supported by both the CPU interface
and the IRI.

ICNQYT Some operating systems have requirements for a minimum number of interrupt priority levels. These requirements
will be captured as part of the Arm® Base System Architecture 1.0C[2].

IYQCPV The priority value of an interrupt is only interpreted within an Interrupt Domain. Priorities of interrupts belonging
to separate Interrupt Domains are never compared against one another.

Therefore, the full implemented priority space is available to prioritize interrupts within each Interrupt Domain.

IGDMTN The priority value of a virtual interrupt is only interpreted to select higher priority interrupts for that VM. The
priority value of a virtual interrupt is never compared against the priority value of a physical interrupt. Priorities of
interrupts belonging to separate VMs are never compared against one another.

Therefore, the full implemented priority space is available to prioritize interrupts within each VM.

RXBQTT In the GIC prioritization scheme, lower numbers have higher priority.

For example, an interrupt with priority value 0 is of higher priority than an interrupt with priority value 16.

DLDCKK The highest priority pending interrupt (HPPI) for an Interrupt Domain is the highest priority interrupt selected
among the candidate HPPIs.

An HPPI is defined for each Physical Interrupt Domain and the Virtual Interrupt Domain:

• The EL3 physical HPPI.
• The Secure physical HPPI.
• The Realm physical HPPI.
• The Non-secure physical HPPI.
• The virtual HPPI for the Virtual Interrupt Domain.

DRKWNS A candidate HPPI is a Pending, Inactive, and Enabled interrupt selected among a subset of interrupts for an
Interrupt Domain.

The PE considers the following candidate HPPIs for each Interrupt Domain:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

Chapter 2. PE architecture
2.7. Interrupt Prioritization

• The highest priority Pending, Inactive, and Enabled PPI for the Interrupt Domain.
• The candidate HPPI presented by the IRI for the Interrupt Domain.

RJXKKZ When the Pending, Active, or Enabled values of a PPI change, the effects on the HPPI determination complete in
finite time.

See 2.9.4 Physical interrupt signaling and 2.10.3 Virtual interrupt signaling for more information.

RKXFKH The IRI selects the highest priority Pending, Inactive, and Enabled interrupt for each Interrupt Domain in finite
time.

See 4.8.4 Physical interrupt signaling and 4.10.4 Virtual interrupt signaling for more information about the
guarantees provided by the GICv5 system architecture.

See also:

• 2.8 Interrupt handling
• 2.8.1 Interrupt life cycle
• 2.9 The physical CPU interface

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

Chapter 2. PE architecture
2.8. Interrupt handling

2.8 Interrupt handling

DQWBZR When the CPU interface acknowledges an interrupt, the interrupt’s priority becomes an active priority.

DDWSGL Each Interrupt Domain has a running priority, which is the highest active priority for that Interrupt Domain.

IFGFPH It is possible to have multiple active priorities at the same time.

For example, consider the following scenario where an interrupt handler is interrupted by an NMI:

1. Interrupt X with priority 16 is acknowledged. Priority 16 becomes an active priority and the running priority
of the Interrupt Domain becomes 16.

2. Another interrupt Y with priority 0 is signaled to the PE.
3. Interrupt Y is acknowledged. Priority 0 becomes an active priority and the running priority of the Interrupt

domain becomes 0.

At the end of the sequence above, priorities 16 and 0 are active priorities and the running priority for the Interrupt
Domain is 0.

DMQKDW When there are no active priorities, the running priority is the Idle priority. The Idle priority is 0xFF.

ICFYGY Only interrupts with a priority higher than the running priority are signaled by the CPU interface. This prevents a
high priority interrupt from being preempted by a low priority interrupt.

DVHCMF The CPU interface performs a Priority drop when software issues the GIC CDEOI instruction, and the running
priority is not the Idle priority.

RKWMNP On a Priority drop, the highest active priority for the Interrupt Domain stops being active.

IFGKMJ After a Priority drop, because the running priority is defined as the highest active priority, the running priority
becomes one of the following:

1. The highest active priority for which there has not been a Priority drop.
2. The Idle priority.

IXZFHX This allows pending interrupts with the previous running priority to be signaled by the CPU interface.

IQFZWR Active priorities stop being active in priority order, from the highest priority to the lowest priority.

IJFQSN GICv5 removes support for the binary point registers used in GICv3 to split the priority field into a preemption
level and subpriority.

IFYZVD Software handles an interrupt signaled by the CPU interface as follows:

1. Software acknowledges the HPPI for the Current Interrupt Domain and obtains its INTID.
2. Software uses the INTID to locate the handler function for the acknowledged interrupt.
3. Software performs a Priority drop when it is ready to receive other interrupts of the same priority as the

acknowledged interrupt.
4. Software deactivates the acknowledged interrupt once it is ready to receive that interrupt again.

IDFWSM FEAT_GCIE defines GIC System instructions to handle interrupts in the CPU interface. Each instruction executes
a command that applies to all interrupt types in the Current Interrupt Domain. The commands are listed below:

Command Name

IA Interrupt acknowledge

NMIA NMI acknowledge

EOI Interrupt priority drop

DI Interrupt deactivate

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Chapter 2. PE architecture
2.8. Interrupt handling

The System instructions for interrupt handling are listed below and described in 8.1 System instructions for the
Current Interrupt Domain.

• GICR CDIA.
• GICR CDNMIA.
• GIC CDEOI.
• GIC CDDI.

IZYDVS The architecture does not define the order in which the Priority Drop and Interrupt deactivate are performed by
software.

IWDLPR The GICR CDIA System instruction acknowledges the HPPI in the Current Interrupt Domain if there is an HPPI
with Sufficient priority and it is not an NMI.

The result of the instruction is returned in the <Xt> register.

The VALID field in <Xt> register indicates whether an interrupt was acknowledged by the GICR CDIA instruction.

When the VALID field is 1, the HPPI was acknowledged.

When the VALID field is 0, the HPPI was not acknowledged.

IXBBNJ The GICR CDNMIA system instruction acknowledges the HPPI in the Current Interrupt Domain if there is an HPPI
with Sufficient priority and it is an NMI.

The result of the instruction is returned in the <Xt> register.

The VALID field in <Xt> register indicates whether the HPPI was acknowledged.

When the VALID field is 1, the HPPI was acknowledged.

When the VALID field is 0, the HPPI was not acknowledged.

RWNKKW When an interrupt is acknowledged, all of the following are true:

• The interrupt becomes Active.
• If the interrupt Handling mode is Edge, its Pending state is cleared.
• The interrupt’s priority becomes active and the running priority for the Current Interrupt Domain is updated.
• The INTID of the interrupt is returned in the TYPE and ID fields of the <Xt> register.

IHBGJV The GIC CDEOI System instruction performs a Priority drop of the running priority in the Current Interrupt
Domain.

IRYBDB Unlike earlier versions of the GIC architecture, the GIC CDEOI System instruction does not take an INTID as an
argument.

IWPSSR The GIC CDDI System instruction performs an Interrupt deactivate for the specified INTID in the Current Interrupt
Domain.

2.8.1 Interrupt life cycle

RTCZMV Figure 2.2 shows the interrupt state machine for interrupts whose Handling mode is Edge.

Figure 2.3 shows the interrupt state machine for interrupts whose Handling mode is Level.

The interrupt Handling mode determines the effects on the interrupt state when the CPU Interface acknowledges
the interrupt as follows:

• For Edge interrupts, all of the following are true:

– The Pending state is atomically cleared to Idle.
– The Active state is set to Active.

• For Level interrupts, The Active state is set to Active.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

Chapter 2. PE architecture
2.8. Interrupt handling

Idle
Active

Idle
Inactive

Pending
Inactive

Pending
Active

D1: Deactivate

A1: Make Pending

A2: Make Pending

B2: Clear Pending

C: Acknowledge

B1: Clear Pending

D2: Deactivate

Figure 2.2: Interrupt state machine for Edge interrupts.

Idle
Active

Idle
Inactive

Pending
Inactive

Pending
Active

D2: Deactivate A1: Make Pending

C: Acknowlege
A2: Make Pending

B2: Clear Pending

B1: Clear Pending

D1: Deactivate

Figure 2.3: Interrupt state machine for Level interrupts.

The transitions shown in the figures can be caused by the following reasons:

• Transition A1 or A2: Make Pending

This transition occurs in one of the following situations:

– An LPI or SPI is signaled in the IRI or requested to be made Pending by software.

• Transition B1 or B2: Clear Pending

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

Chapter 2. PE architecture
2.8. Interrupt handling

This transition occurs in one of the following situations:

– A level-sensitive LPI or SPI signal is de-asserted in the IRI or the Pending state is requested to be cleared
by software.

• Transition C: Acknowledge

This transition occurs when the CPU Interface acknowledges the Interrupt.

For Edge interrupts, the Pending state is cleared, also known as consumed, as part of acknowledging the
interrupt.

For Level interrupts, the Pending state is not affected as part of acknowledging the interrupt.

• Transition D1 or D2: Deactivate

This transition occurs when the CPU Interface deactivates the Interrupt.

IDMXLN An interrupt cannot be set to Active using any other GIC instruction than GICR CDIA and GICR CDNMIA. An
interrupt can be deactivated from any PE. Deactivating an interrupt which is already Inactive has no effect.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45

Chapter 2. PE architecture
2.9. The physical CPU interface

2.9 The physical CPU interface

2.9.1 Physical PPIs

RRVCZW A physical PPI is only considered for being selected as the candidate HPPI in the Physical Interrupt Domain it is
assigned to.

ISHHCL The assignment of an architected PPI to a PPI source is defined by the architecture. Unassigned architected PPIs
are Reserved.

DHVJHM PPIs in the range of IDs 0 through 63 are referred to as architected PPIs.

RFSFSL The assignment of PPIs in the range of IDs 64 through 127 to their PPI sources is IMPLEMENTATION DEFINED.

IYGJWQ The assignment of a physical PPI to a Physical Interrupt Domain is done as follows:

• Architected PPIs are assigned by programming ICC_PPI_DOMAINR0_EL3 and ICC_PPI_DOMAINR1_EL3.
• IMPLEMENTATION DEFINED PPIs are assigned by programming ICC_PPI_DOMAINR2_EL3 and

ICC_PPI_DOMAINR3_EL3.

RRHCDS When EL3 is not implemented, each physical PPI is assigned to the Interrupt Domain identified by the Effective
value of SCR_EL3.NS.

RXDVCM The assignments of architected PPIs to their PPI sources are listed in Table 2.7.

Table 2.7: Architected PPI ID assignment

ID Name Source

31 TRBIRQ Trace Buffer Unit

30 CNTP EL1 Physical Timer

29 CNTPS EL3 Physical Timer

28 CNTHV Non-secure EL2 Virtual Timer

27 CNTV EL1 Virtual Timer

26 CNTHP Non-secure EL2 Physical Timer

25 GICMNT GIC maintenance interrupt

24 CTIIRQ Generic CTI interrupt trigger event

23 PMUIRQ PMU overflow interrupt request

22 COMMIRQ Debug communication channel

21 PMBIRQ Profiling Buffer management interrupt request

20 CNTHPS Secure EL2 Physical Timer

19 CNTHVS Secure EL2 Virtual Timer

15 HACDBSIRQ Hardware accelerator for cleaning Dirty state interrupt

3 SW_PPI Reserved for software usage.

2 NS_DB_PPI Doorbell PPI for a Non-secure Non-preemptive interrupt

1 RL_DB_PPI Doorbell PPI for a Realm Non-preemptive interrupt

0 S_DB_PPI Doorbell PPI for a Secure Non-preemptive interrupt

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter 2. PE architecture
2.9. The physical CPU interface

RCFSKX The Handling modes of architected PPIs are listed in Table 2.8.

Table 2.8: Architected PPI ID Handling modes

ID Name Handling Mode

31 TRBIRQ Level

30 CNTP Level

29 CNTPS Level

28 CNTHV Level

27 CNTV Level

26 CNTHP Level

25 GICMNT Level

24 CTIIRQ IMPLEMENTATION DEFINED

23 PMUIRQ Level

22 COMMIRQ Level

21 PMBIRQ Level

20 CNTHPS Level

19 CNTHVS Level

15 HACDBSIRQ Level

3 SW_PPI Edge

2 NS_DB_PPI Level

1 RL_DB_PPI Level

0 S_DB_PPI Level

IRRGLL The configuration and state of PPIs is held in the PE System registers.

For physical PPIs, the following registers are used:

Table 2.9: Physical PPI system registers

Register Name

ICC_PPI_SACTIVER<n>_EL1 Set interrupt Active

ICC_PPI_CACTIVER<n>_EL1 Clear interrupt Active

ICC_PPI_SPENDR<n>_EL1 Set interrupt Pending

ICC_PPI_CPENDR<n>_EL1 Clear interrupt Pending

ICC_PPI_ENABLER<n>_EL1 Interrupt Enable and Disable

ICC_PPI_PRIORITYR<n>_EL1 Interrupt Priority

ICC_PPI_DOMAINR<n>_EL3 Physical Interrupt Domain allocation

ICC_PPI_HMR<n>_EL1 Interrupt Handling mode (Level or Edge)

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter 2. PE architecture
2.9. The physical CPU interface

Register Name

IRBPKR The Active state of a PPI can also be updated as a side-effect of executing one of the following GIC System
instructions:

• GICR CDIA.
• GICR CDNMIA.
• GIC CDDI.
• GIC VDDI.
• GIC LDDI.

These System instructions are used during interrupt handling and are common across interrupt types.

IZLTKB A Context Synchronization event is required before software can rely on the effects of direct writes to a PPI System
register to affect instructions appearing in program order after the direct write. See Arm® Architecture Reference
Manual, for A-profile architecture[1] for more information. This applies to the PPI system registers listed in the
following tables:

• Table 2.9
• Table 2.15
• Table 2.16

RYRGMH If the individual enable of a PPI is cleared, a Context synchronization event is sufficient to guarantee that the PPI is
no longer the HPPI.

SXGNGQ A PPI might be shared between multiple Security states, and in this case, EL3 is expected to save and restore the
configuration of that PPI during a change of Security state.

ICPDGZ A physical PPI is permitted to be a candidate HPPI for a Physical Interrupt Domain if and only if all of the
following are true:

• ICC_PPI_ENABLER<n>_EL1.EN is 1.
• ICC_PPI_SPENDR<n>_EL1.PEND is 1.
• ICC_PPI_SACTIVER<n>_EL1.ACTIVE is 0.

IHTMYK The CPU interface selects the candidate HPPI among the PPIs for each Physical Interrupt Domain by selecting the
highest priority PPI that meets the physical candidate HPPI selection criteria.

RJSQBW If more than one PPI meets the physical candidate HPPI selection criteria for a Physical Interrupt Domain, it is
IMPLEMENTATION DEFINED which of those PPIs becomes the candidate HPPI.

IQMBYG Any PPI source may generate an IMPLEMENTATION DEFINED wake event for the PE that they are connected to.
The architecture does not specify when a PPI source may generate a wake event.

IHYVBT Examples of when a PPI source may generate an IMPLEMENTATION DEFINED wake event include the following:

• A generic timer is kept powered on while the PE is in low-power state and generates a wake event when the
timer condition is asserted.

• The Cross-Trigger interface is kept powered on while the PE is in a low-power state and asserts an output
trigger event.

2.9.2 Physical priority masking

DMLTJM The Physical Priority Mask is defined as follows:

• The Physical Priority Mask for a Non-EL3 Interrupt Domain is the value stored in the banked copy of
ICC_PCR_EL1.PRIORITY for that Interrupt Domain.

• The Physical Priority Mask for the EL3 Interrupt Domain is the value stored in ICC_PCR_EL3.PRIORITY.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter 2. PE architecture
2.9. The physical CPU interface

IRGRBD See 9.1 Synchronization requirements for GICv5 System registers for more information about synchronization
requirements for updates to the Physical Priority Mask.

DXMBQZ The physical running priority is defined as follows:

• The physical running priority for a Non-EL3 Interrupt Domain is the highest active priority stored in the
banked copy of ICC_APR_EL1 for that Interrupt Domain.

• The physical running priority for the EL3 Interrupt Domain is the highest active priority stored in
ICC_APR_EL3.

IFWVXZ The physical running priority for the Current Physical Interrupt Domain is reported in ICC_HAPR_EL1.PRIORITY.

DMSQKF A physical interrupt has Sufficient priority to be signaled when all of the following are true:

• The priority of the interrupt is higher than the physical running priority for the Physical Interrupt Domain.
• The priority of the interrupt is equal to or higher than the Physical Priority Mask for the Physical Interrupt

Domain.

IQYFVP The physical running priority is defined for each Physical Interrupt Domain even though ICC_HAPR_EL1 only
shows the running priority for the Current Physical Interrupt Domain.

The physical running priority is a factor in determining whether an interrupt has Sufficient priority in an Interrupt
Domain for each Physical Interrupt Domain, regardless of whether an Interrupt Domain is the Current Physical
Interrupt Domain.

For example, when the Current Physical Interrupt Domain is the Non-secure Interrupt Domain, an interrupt in
the Secure Interrupt Domain will only have Sufficient priority if the interrupt’s Priority is higher than the highest
active priority in the Secure banked copy of ICC_APR_EL1.

IWLVKM ICC_DOMHPPIR_EL3 reports if there is an HPPI of Sufficient priority for each Non-EL3 Interrupt Domain.

2.9.3 Preemptive interrupts

GLTFJK When the Current Physical Interrupt Domain is not the EL3 Interrupt Domain, and there is an HPPI of Sufficient
priority for another Physical Interrupt Domain, the PE may be configured to take one of the following actions:

• The Current Physical Interrupt Domain is preempted in order to switch to the Physical Interrupt Domain of
the HPPI so that it can be handled immediately. See also 2.9.4 Physical interrupt signaling.

• The Current Physical Interrupt Domain is notified through a separate interrupt that there is an HPPI for a
different Physical Interrupt Domain, and the Currrent Physical Interrupt Domain can switch to the other
Interrupt Domain when appropriate as defined by a software policy. See also 2.9.6 Doorbell PPIs.

DMQRSB The Interrupt Domain selected by ICC_CR0_EL3.PID is called the Preemptive Interrupt Domain.

IPJKYP When the value of ICC_CR0_EL3.PID corresponds to an Interrupt Domain that is not implemented, the PE behaves
as if there is no Preemptive Interrupt Domain.

IVFWFW ICC_CR0_EL1.PID indicates whether the Physical Interrupt Domain associated with the Security state selected by
SCR_EL3.{NSE,NS} is the Preemptive Interrupt Domain.

DNNBML The interrupt priority range of the Preemptive Interrupt Domain is split into two. The priority value used for
the split is called the Interrupt Preemptive Priority Threshold (IPPT). ICC_CR0_EL1.IPPT defines the Interrupt
Preemptive Priority Threshold for each Physical Interrupt Domain.

IRLTDB The value of ICC_CR0_EL1.IPPT has no effect on the signaling of interrupts for an Interrupt Domain which is not
the Preemptive Interrupt Domain.

DKXXGB A physical interrupt is a Preemptive interrupt when one of the following is true:

• The interrupt belongs to the EL3 Interrupt Domain and the Current Physical Interrupt Domain is not the EL3
Interrupt Domain.

• All of the following are true:
– The Current Physical Interrupt Domain is not the Preemptive Interrupt Domain.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter 2. PE architecture
2.9. The physical CPU interface

– The interrupt belongs to the Preemptive Interrupt Domain.
– The priority of the interrupt is higher than the IPPT of the Preemptive Interrupt Domain.

Otherwise, the interrupt is a Non-preemptive interrupt.

SYFVLN For example, on a system with Secure and Non-secure Security states, the Secure Interrupt Domain can configure
a subset of its interrupts as Preemptive interrupts and the remaining subset as Non-preemptive interrupts:

• The Preemptive interrupts preempt execution in the Non-secure Interrupt Domain before being handled in
the Secure Interrupt Domain.

• The Non-preemptive interrupts allow the Non-secure Interrupt Domain to yield execution control to the
Secure Interrupt Domain where they are handled.

2.9.4 Physical interrupt signaling

IWVKDZ The CPU interface determines the physical HPPI for each Physical Interrupt Domain and performs the following
actions:

1. Applies priority masking based on software configured priority masks and the running priority.
2. Determines whether the physical HPPIs signals the IRQ or FIQ interrupt to the PE.
3. Determines whether the interrupt is signaled with Superpriority.

This process is illustrated in Figure 2.4:

GICv5 physical CPU interface

IRI

Physical HPPI selection from candidate HPPIs for each Interrupt Domain

PPI sources

Candidate HPPIs from LPIs and SPIs

Candidate HPPIs
from physical PPIs

Priority masking and running priority check for each Interrupt Domain

Non-secure HPPI Secure HPPI Realm HPPI EL3 HPPI

Physical interrupt signaling

Non-secure HPPI Secure HPPI Realm HPPI EL3 HPPI

Current Physical Interrupt
Domain is EL3

Current Physical Interrupt
Domain is not EL3

Any Interrupt Domain
HPPI

FIQ and Superpriority
signals

Current Physical
Interrupt Domain HPPI

IRQ and Superpriority
signals

EL3 or Preemptive
Interrupt Domain HPPI

FIQ and Superpriority
signals

Non-preemptive Interrupt
Domain HPPI

Figure 2.4: Physical interrupt determination

RZSWWN The CPU interface determines whether there is an HPPI for a Physical Interrupt Domain when the value of
ICC_CR0_ELx.EN is 1 for the Interrupt Domain.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter 2. PE architecture
2.9. The physical CPU interface

The HPPI for an Interrupt Domain is determined by selecting the interrupt with the highest priority from the
following:

• The candidate HPPI presented by the IRI for the Interrupt Domain.
• The candidate HPPI selected among the physical PPIs for the Interrupt Domain.

If ICC_CR0_ELx.EN is 0, the CPU interface behaves as if there are no candidate HPPIs for the Interrupt Domain.

There is no HPPI for an Interrupt Domain if any of the following are true:

• ICC_CR0_ELx.EN is 0 for the Interrupt Domain.
• There are no candidate HPPIs for the Interrupt Domain.

RVVBPS If the candidate HPPI presented by the IRI has the same priority as the candidate HPPI selected among the PPIs
for a Physical Interrupt Domain, it is IMPLEMENTATION DEFINED which of the two candidate HPPIs is selected as
the HPPI for the Physical Interrupt Domain.

RXNDSJ When there is at least one candidate HPPI for a Physical Interrupt Domain, the CPU interface determines the HPPI
in finite time.

When there is a change to the candidate HPPIs due to updates to the configuration and state of the physical PPIs,
or due to the IRI presenting a new candidate HPPI for the Interrupt Domain, the CPU interface redetermines the
HPPI for the Physical Interrupt Domain in finite time.

RQLGBG The CPU interface signals the FIQ interrupt when one of the following is true:

• There is a Preemptive interrupt of Sufficient priority.
• All of the following are true:

– The Current Physical Interrupt Domain is the EL3 Interrupt Domain.
– There is an HPPI of Sufficient priority for any Interrupt Domain.

RZGHMN The CPU interface signals the IRQ interrupt when all of the following are true:

• The Current Physical Interrupt Domain is a Non-EL3 Interrupt Domain.
• There is no Preemptive interrupt of Sufficient priority.
• There is an HPPI of Sufficient priority for the Current Physical Interrupt Domain.

ISXXCJ The CPU interface never signals the IRQ and FIQ interrupts at the same time.

IRYDXC The following table illustrates the physical interrupt signal asserted by the CPU interface when the PE is executing
at any Exception level below EL3:

EL3 HPPI of
Sufficient priority
exists

Non-Current
Preemptive Domain
HPPI of Sufficient

priority exists

Current Domain HPPI
of Sufficient priority
exists

Interrupt
signal

Yes x x FIQ

No Yes x FIQ

No No Yes IRQ

No No No n/a

x: The value does not have any impact on which interrupt is signaled.

ILTYGD The following table illustrates the type of physical interrupt signaled by the CPU interface when the PE is executing
at EL3:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter 2. PE architecture
2.9. The physical CPU interface

EL3 HPPI of
Sufficient priority
exists

Non-EL3 Preemptive
HPPI of Sufficient
priority exists

Any non-Preemptive
HPPI of Sufficient

priority exists
Interrupt

signal

Yes x x FIQ

No Yes x FIQ

No No Yes FIQ

No No No n/a

x: The value does not have any impact on which interrupt is signaled.

SMKKWV Software executing at EL3 can read ICC_DOMHPPIR_EL3 to determine if there are HPPIs of Sufficient priority
for other Interrupt Domains. For example, this can be useful after taking the FIQ exception to determine what may
have caused the exception when execution of the GICR CDIA System instruction returns VALID as 0 in the <Xt>
register.

This may also be useful in certain power management scenarios to determine the idle state of the system.

IHDXLH Whether there is an HPPI of Sufficient priority is reported by the following registers based on the current Exception
level:

• When the current Exception level is EL2 or EL1, ICC_HPPIR_EL1 reports whether there is an HPPI of
Sufficient priority for the Current Physical Interrupt Domain.

• When the current Exception level is EL3, ICC_HPPIR_EL1 reports whether there is an HPPI of Sufficient
priority for the Logical Interrupt Domain as selected by SCR_EL3.{NSE,NS}.

If there is an HPPI of Sufficient priority, it also reports the INTID of that HPPI.

SDWXKH EL3 firmware can use ICC_DOMHPPIR_EL3 to determine if a Security state has an HPPI of Sufficient priority.
By switching SCR_EL3.{NSE,NS} to that Security state and subsequently reading ICC_HPPIR_EL1, the firmware
can identify the INTID of that HPPI. EL3 firmware can use this information to switch to the software component
responsible for handling the HPPI in the Security state.

IGVRTZ In GICv3, the ICx_HPPIRx_EL1 registers indicate the highest priority pending interrupt for the corresponding
interrupt group irrespective of whether the interrupt has sufficient priority to be signaled to the PE.

GICv5 changes this behavior such that the ICx_HPPIR_EL1 and ICC_DOMHPPIR_EL3 registers return
information for an HPPI only if it has Sufficient priority to be signaled.

Arm is not aware of any software component that relies on the GICv3 behavior. The GICv5 behavior helps simplify
the PE interface architecture as both the logic for acknowledging an HPPI and reporting information about an
HPPI rely on the same condition of Sufficient priority determination.

ISYCYB ICC_HPPIR_EL3 reports whether there is an HPPI of Sufficient priority for the EL3 Interrupt Domain.

ISXGQC In a system which only supports a single Interrupt Domain, the CPU interface never signals the FIQ interrupt.

2.9.5 Physical non-maskable interrupts

RCSBDX When there is an HPPI of Sufficient priority for the Current Physical Interrupt Domain, it is signaled to the PE
with Superpriority[1] when all of the following are true:

• The priority of the HPPI is 0.
• One of the following is true:

– The Current Physical Interrupt Domain is the EL3 Interrupt Domain and SCTLR_EL3.NMI is 1.
– The Current Physical Interrupt Domain is not the EL3 Interrupt Domain and one of the following is true:

* Physical IRQs are routed to EL2, and SCTLR_EL2.NMI is 1.
* Physical IRQs are routed to EL1, and SCTLR_EL1.NMI is 1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter 2. PE architecture
2.9. The physical CPU interface

Otherwise, the HPPI for the Current Physical Interrupt Domain is not signaled with Superpriority.

RVHGPR When there is a Preemptive interrupt of Sufficient priority, it is IMPLEMENTATION DEFINED whether the interrupt
is signaled to the PE with Superpriority, if all the following are true:

• The priority of the HPPI is 0.
• The Preemptive interrupt belongs to the EL3 Interrupt Domain.
• SCTLR_EL3.NMI is 1.

All other Preemptive interrupts are not signaled with Superpriority.

DSDQJW A physical interrupt that is signaled with Superpriority is referred to as a physical NMI.

IRPSFK If the priority of the HPPI is 0, but is not signaled with Superpriority due to not meeting the other conditions, then
the HPPI is not an NMI.

IDLGVX An NMI can never be acknowledged by executing the GICR CDIA instruction.

Similarly, an interrupt that is not an NMI can never be acknowledged by executing the GICR CDNMIA instruction.
This means that when SCTLR_ELx.NMI is 0 for the current Exception level, the GICR CDNMIA instruction cannot
acknowledge an interrupt.

RSPWCF When FEAT_GCIE is implemented, following a Context synchronization event as the result of taking or returning
from an exception, changes to whether the CPU interface has asserted or de-asserted the IRQ and FIQ signal for
the Interrupt Domain have taken effect and can be observed by a read of ISR_EL1.

See also:

• Chapter C1 Operational model

2.9.6 Doorbell PPIs

RQCVFJ Doorbell PPIs are level-sensitive PPIs.

RPNYKZ There is a separate Doorbell PPI for every Non-EL3 Interrupt Domain as described in Table 2.12.

Table 2.12: Doorbell PPI definitions

Non-EL3 Interrupt Domain Doorbell PPI name

Secure S_DB_PPI

Realm RL_DB_PPI

Non-secure NS_DB_PPI

RGSHXH The level of the NS_DB_PPI is asserted when all of the following are true:

• The Current Physical Interrupt Domain is one of the following:

– Secure Interrupt Domain.
– Realm Interrupt Domain.

• The NS_DB_PPI is assigned to the Current Physical Interrupt Domain.

• There is a Non-preemptive physical HPPI of Sufficient priority for the Non-secure Interrupt Domain.

Otherwise, the level of the NS_DB_PPI is not asserted.

The level of the S_DB_PPI is asserted when all of the following are true;

• The Current Physical Interrupt Domain is one of the following:

– Non-secure Interrupt Domain.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter 2. PE architecture
2.9. The physical CPU interface

– Realm Interrupt Domain.

• The S_DB_PPI is assigned to the Current Physical Interrupt Domain.

• There is a Non-preemptive physical HPPI of Sufficient priority for the Secure Interrupt Domain.

Otherwise, the level of the S_DB_PPI is not asserted.

The level of the RL_DB_PPI is asserted when all of the following are true;

• The Current Physical Interrupt Domain is one of the following:

– Non-secure Interrupt Domain.
– Secure Interrupt Domain.

• The RL_DB_PPI is assigned to the Current Physical Interrupt Domain.

• There is a Non-preemptive physical HPPI of Sufficient priority for the Realm Interrupt Domain.

Otherwise, the level of the RL_DB_PPI is not asserted.

RLWLPK When the level of a Doorbell PPI is asserted, it is asserted in finite time.

RYSCLK Table 2.13 lists the conditions for when a Doorbell PPI is implemented.

Table 2.13: Doorbell PPI implementation

Doorbell PPI name Condition

S_DB_PPI EL3 and Secure state are implemented

RL_DB_PPI FEAT_RME is implemented

NS_DB_PPI EL3 is implemented

IWGXJR When the Current Physical Interrupt Domain is a Non-EL3 Interrupt Domain, Table 2.14 describes when the level
of a Doorbell PPI is asserted.

Table 2.14: Doorbell PPI usage

Current Physical Interrupt Domain Doorbell PPI Asserted when

Non-secure S_DB_PPI There is a Secure Non-preemptive
HPPI of Sufficient priority.

Non-secure RL_DB_PPI There is a Realm Non-preemptive
HPPI of Sufficient priority.

Secure NS_DB_PPI There is a Non-secure
Non-preemptive HPPI of Sufficient
priority.

Secure RL_DB_PPI There is a Realm Non-preemptive
HPPI of Sufficient priority.

Realm S_DB_PPI There is a Secure Non-preemptive
HPPI of Sufficient priority.

Realm NS_DB_PPI There is a Non-secure
Non-preemptive HPPI of Sufficient
priority.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter 2. PE architecture
2.9. The physical CPU interface

Multiple Doorbell PPIs can be asserted at the same time. For example, if the Current Physical Interrupt Domain is
the Non-secure Interrupt Domain, and there is a Non-preemptive HPPI of Sufficient priority for both the Secure
and Realm Interrupt Domains, then the levels of both S_DB_PPI and RL_DB_PPI are asserted.

SFKVPW When the Current Physical Interrupt Domain is a Non-EL3 Interrupt Domain, if a Doorbell PPI for another
Non-EL3 Interrupt Domain is implemented, it must be assigned to the Current Physical Interrupt Domain so that it
can be signaled and handled in the Current Physical Interrupt Domain. This is done by software executing at EL3
as follows:

• Prior to a switch to the Non-secure Interrupt Domain from the EL3 Interrupt Domain, the S_DB_PPI and
RL_DB_PPI are assigned to the Non-secure Interrupt Domain.

• Prior to a switch to the Secure Interrupt Domain from the EL3 Interrupt Domain, the NS_DB_PPI and
RL_DB_PPI are assigned to the Secure Interrupt Domain.

• Prior to a switch to the Realm Interrupt Domain from the EL3 Interrupt Domain, the S_DB_PPI and
NS_DB_PPI are assigned to the Realm Interrupt Domain.

SQFPBH Software can manage Doorbell PPIs the same way as managing any other PPIs, including individually enabling
and disabling them, and configuring their priority. Doorbell PPIs can be used to yield control to another Security
State at an opportune time according to the scheduling policy in the current Security state.

RTCBST On taking an exception from Exception levels below EL3 to EL3, the CPU interface completes the following
sequence:

1. The levels of all Doorbell PPIs are de-asserted.
2. The HPPI for each Physical Interrupt Domain is re-evaluated.

See also:

• 2.9.3 Preemptive interrupts.
• 2.9.4 Physical interrupt signaling.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter 2. PE architecture
2.10. The virtual CPU interface

2.10 The virtual CPU interface

IXVDWC When HCR_EL2.IMO is 1 and ICH_VCTLR_EL2.V3 is 0, the GICv5 virtual CPU interface is used and all of the
following are true:

• When executing at EL1, all of the following are true:
– GICv5 System instruction that specify the Current Interrupt Domain as the domain parameter operate in

the Virtual Interrupt Domain.
– Accesses to GICv5 System registers that share an encoding between the ICC_* and ICV_* registers

access the ICV_* registers.
– Accesses to GICv3.3 Group 0, Group 1, and Common System registers are UNDEFINED.

• Accesses to ICH_VMCR_EL2 use the GICv5 version of the register.

See Chapter 8 System instructions and Chapter 9 System registers for more information.

SKFGFJ The Hypervisor at EL2 configures HCR_EL2.IMO to control whether the virtual or physical CPU interface is
accessed at EL1.

IFCTBZ The value of HCR_EL2.FMO has no effect on the operation of the GICv5 CPU interface when Legacy operation is
disabled because of the following reasons:

• Since SCR_EL3.FIQ is RES1 if EL3 is implemented, physical FIQ interrupts are taken to EL3.
• When Legacy operation is disabled, the GICv5 virtual CPU interface does not signal the virtual FIQ interrupt.

2.10.1 Virtual PPIs

GWWRGJ The architecture supports signaling virtual PPIs to software running at Exception levels below EL2. Virtual PPIs
may be signaled by hypervisor software emulating a PPI source or directly injected using the corresponding
physical PPI.

RGZRNG For each implemented physical PPI, if EL2 is implemented, the corresponding virtual PPI with the same ID is
implemented.

IQFGQN For each implemented PPI, the physical and virtual PPI with the same INTID are separate interrupts.

IRQBBW If the Virtual CPU interface is supported, virtual PPIs are configured using the following registers:

Table 2.15: Virtual PPI system registers

Register Name

ICV_PPI_SACTIVER<n>_EL1 Set interrupt Active

ICV_PPI_CACTIVER<n>_EL1 Clear interrupt Active

ICV_PPI_ENABLER<n>_EL1 Interrupt Enable and Disable

ICV_PPI_HMR<n>_EL1 Interrupt Handling mode (Level or Edge)

ICV_PPI_SPENDR<n>_EL1 Set interrupt Pending

ICV_PPI_CPENDR<n>_EL1 Clear interrupt Pending

ICV_PPI_PRIORITYR<n>_EL1 Interrupt Priority

ICBBCV To enable context switching, the configuration of virtual PPIs is also accessible using the following registers:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter 2. PE architecture
2.10. The virtual CPU interface

Table 2.16: Hypervisor configuration PPI system registers

Register Name

ICH_PPI_ACTIVER<n>_EL2 Interrupt Active, accesses same state as ICV_PPI_SACTIVER<n>_EL1 and
ICV_PPI_CACTIVER<n>_EL1.

ICH_PPI_DVIR<n>_EL2 Controls whether Pending physical PPIs are directly injected as virtual PPIs to the
Virtual Interrupt Domain.

ICH_PPI_ENABLER<n>_EL2 Alias of ICV_PPI_ENABLER<n>_EL1.

ICH_PPI_PENDR<n>_EL2 Interrupt Pending, accesses same state as ICV_PPI_SPENDR<n>_EL1 and
ICV_PPI_CPENDR<n>_EL1.

ICH_PPI_PRIORITYR<n>_EL2 Alias of ICV_PPI_PRIORITYR<n>_EL1.

RPQDYK If the Virtual CPU interface is supported, a virtual PPI is permitted to be a candidate HPPI if and only if all of the
following are true:

• ICV_PPI_ENABLER<n>_EL1.EN is 1.
• ICV_PPI_SPENDR<n>_EL1.PEND is 1.
• ICV_PPI_SACTIVER<n>_EL1.ACTIVE is 0.

RJMKJM The CPU interface selects the virtual candidate HPPI among the virtual PPIs by selecting the highest priority PPI
that meets the virtual candidate HPPI selection criteria.

RZXWQD If more than one virtual PPI meet the virtual candidate HPPI selection criteria, it is IMPLEMENTATION DEFINED
which of those PPIs becomes the virtual candidate HPPI.

ISXKHV A direct read or write to a PPI System register could cause an indirect write to its alias or a different PPI
System register. The indirect write is only guaranteed to be visible to subsequent reads or writes if a Context
synchronization event takes place after the direct read or write and before the subsequent reads or writes. See
Arm® Architecture Reference Manual, for A-profile architecture[1] for more information.

SKQQTX When software at EL1 performs a direct write to an ICV_ register, this causes an indirect write to the corresponding
ICH_ register. The value returned by a read at EL2 from the ICH_ register is guaranteed to observe the indirect
write, only if there is a context synchronization event between the indirect write and the direct read. If FEAT_ExS
is implemented and SCTLR_EL2.EIS is 0, an exception taken to EL2 is not a context synchronization event, and
software at EL2 must issue an ISB before reading the ICH_ registers to observe the latest value written by a guest
VM.

For example, ICH_PPI_PRIORITYR<n>_EL2 is an alias of ICV_PPI_PRIORITYR<n>_EL1. A direct write of a
priority value for a PPI ID to ICV_PPI_PRIORITYR<n>_EL1 causes an indirect write of the priority value to
ICH_PPI_PRIORITYR<n>_EL2 for the same PPI ID. A Context Synchronization Event is required after the write
to ICV_PPI_PRIORITYR<n>_EL1 to ensure that a subsequent read of ICH_PPI_PRIORITYR<n>_EL2 returns
the latest priority value.

2.10.1.1 Direct injection of virtual PPIs

DQNZMN The architecture supports direct injection of the physical PPI Pending state to the Pending state of a virtual PPI.

IVRZWD When ICH_PPI_DVIR<n>_EL2.DVI is 1, the Pending state of the corresponding physical PPI INTID is directly
injected to the Pending state of a virtual PPI.

RBMZFB Unless a timer PPI is redirected under nested virtualization, when the Pending state of a physical PPI is directly
injected to the Pending state of a virtual PPI, the INTID of the virtual PPI is the same as the INTID of the physical
PPI.

See 2.10.1.2 PPI redirection under nested virtualization for more information about redirection of timer PPIs
under nested virtualization.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter 2. PE architecture
2.10. The virtual CPU interface

IPGRWM The Pending state of a virtual PPI is one of the following:

• If the corresponding physical PPI is not directly injected, the Pending state of the virtual PPI is determined
by ICH_PPI_PENDR<n>.PEND<x>.

• If the corresponding physical PPI is directly injected, the Pending state of the virtual PPI is determined by
ICC_PPI_xPENDR<n>.PEND<x>.

When the Pending state of a physical PPI is directly injected as the Pending state of a virtual PPI,
the field in ICV_PPI_xPENDR<n>.PEND<x> corresponding to the virtual PPI becomes an alias of
the field in ICC_PPI_xPENDR<n>.PEND<x> corresponding to the physical PPI, and the value of
ICH_PPI_PENDR<n>.PEND<x> is IGNORED.

IXXSHB When a physical PPI is directly injected and becomes Pending, both the virtual and physical PPI are Pending and
are permitted to be acknowledged in either the corresponding Physical Interrupt Domain or in the Virtual Interrupt
Domain.

Arm recommends that the physical PPI is disabled when it is directly injected.

IKKCLT When the Pending state of a physical PPI is directly injected as the Pending state of a virtual PPI, it is the
configuration of the virtual PPI that determines when the PPI is signaled and how the PPI is handled.

IBKZQC For example, if the Pending state of physical PPI 23 is directly injected as the Pending state of a virtual PPI, all of
the following are true:

• The Pending state of physical PPI 23 is directly injected as the Pending state of virtual PPI 23.

• Virtual PPI 23 may be considered as the candidate HPPI in the Virtual Interrupt Domain when all of the
following are true:

– Physical PPI 23 is Pending.
– ICV_PPI_ENABLER0_EL1.EN23 is 1.
– ICV_PPI_xACTIVER0_EL1.ACTIVE23 is 0.

• ICV_PPI_PRIORITYR2_EL1.PRIORITY7 determines the Priority of virtual PPI 23.

RJBKGB If EL2 is not implemented, the Effective value of ICH_PPI_DVIR<n>_EL2.DVI is 0 for all implemented PPIs.

ICCLDF When the Pending state of a physical PPI is directly injected as the Pending state of a virtual PPI, all of the
following are true:

• Writes to the corresponding field in ICH_PPI_PENDR<n> update the value of that field.
• Reads from the corresponding field in ICH_PPI_PENDR<n> return the value of that field.
• The value of the corresponding field in ICH_PPI_PENDR<n> does not affect the value of the field

corresponding to the virtual PPI in ICV_PPI_xPENDR<n>.

SSVFBL Hypervisor software may save and restore the Pending state of a directly injected Edge PPI by accessing to the
fields corresponding to the physical PPI INTID in ICC_PPI_xPENDR<n>.

INVWGX The Effective value of ICH_PPI_DVIR<n>_EL2.DVI is 0 if PPI <x> is not assigned to the Current Physical
Interrupt Domain.

2.10.1.2 PPI redirection under nested virtualization

RGYGNW The outputs of the EL1 physical timer and EL1 virtual timer signal different PPI IDs when all of the following are
true:

• FEAT_GCIE is implemented.
• HCR_EL2.{NV,NV1} is {1,0}.
• EL2 is implemented and enabled in the Security state selected by SCR_EL3.{NSE,NS}.

In this case, all of the following are true:

• When SCR_EL3.NS is 1, all of the following are true:
– If ICH_PPI_DVIR0_EL2.DVI30 is 1, all of the following are true:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Chapter 2. PE architecture
2.10. The virtual CPU interface

* Physical PPI 30 is directly injected as virtual PPI 26.
* ICV_PPI_xPENDR0_EL2.PEND26 is an alias of ICC_PPI_PENDR_EL2.PEND30.
* ICV_PPI_xPENDR0_EL2.PEND30 accesses the Pending state of virtual PPI 30.
* ICH_PPI_PENDR0_EL2.PEND26 is IGNORED.
* ICH_PPI_DVIR0_EL2.DVI26 is treated as 0 for all other purposes than a direct read of the field.

– If ICH_PPI_DVIR0_EL2.DVI27 is 1, all of the following are true:
* Physical PPI 27 is directly injected as virtual PPI 28.
* ICV_PPI_xPENDR0_EL2.PEND28 is an alias of ICC_PPI_PENDR_EL2.PEND27.
* ICV_PPI_xPENDR0_EL2.PEND27 accesses the Pending state of virtual PPI 27.
* ICH_PPI_PENDR0_EL2.PEND28 is IGNORED.
* ICH_PPI_DVIR0_EL2.DVI28 is treated as 0 for all other purposes than a direct read of the field.

• When SCR_EL3.NS is 0, all of the following are true:
– If ICH_PPI_DVIR0_EL2.DVI30 is 1, all of the following are true:

* Physical PPI 30 is directly injected as virtual PPI 20.
* ICV_PPI_xPENDR0_EL2.PEND20 is an alias of ICC_PPI_PENDR_EL2.PEND30.
* ICV_PPI_xPENDR0_EL2.PEND30 accesses the Pending state of virtual PPI 30.
* ICH_PPI_PENDR0_EL2.PEND20 is IGNORED.
* ICH_PPI_DVIR0_EL2.DVI20 is treated as 0 for all other purposes than a direct read of the field.

– If ICH_PPI_DVIR0_EL2.DVI27 is 1, all of the following are true:
* Physical PPI 27 is directly injected as virtual PPI 19.
* ICV_PPI_xPENDR0_EL2.PEND19 is an alias of ICC_PPI_PENDR_EL2.PEND27.
* ICV_PPI_xPENDR0_EL2.PEND27 accesses the Pending state of virtual PPI 27.
* ICH_PPI_PENDR0_EL2.PEND19 is IGNORED.
* ICH_PPI_DVIR0_EL2.DVI19 is treated as 0 for all other purposes than a direct read of the field.

IQKGXM All fields corresponding to implemented PPIs in ICH_PPI_PENDR0_EL2 access the Pending state of the
corresponding virtual PPI, regardless of whether a directly injected PPI is being redirected to a different virtual
INTID due to nested virtualization. This means that all of the following are true:

• When Physical PPI 30 is directly injected as virtual PPI 26, all of the following are true:
– Whether virtual PPI 26 is considered Pending is determined by the Pending state of physical PPI 30.
– An access to ICH_PPI_PENDR0_EL2.PEND26 accesses the Pending state of virtual PPI 26.
– The value of ICH_PPI_PENDR0_EL2.PEND26 is IGNORED, meaning that it is not used in determining

whether virtual PPI 26 is considered Pending.
• When Physical PPI 27 is directly injected as virtual PPI 28, all of the following are true:

– Whether virtual PPI 28 is considered Pending is determined by the Pending state of physical PPI 27.
– An access to ICH_PPI_PENDR0_EL2.PEND28 accesses the Pending state of virtual PPI 28.
– The value of ICH_PPI_PENDR0_EL2.PEND28 is IGNORED, meaning that it is not used in determining

whether virtual PPI 28 is considered Pending.
• When Physical PPI 30 is directly injected as virtual PPI 20, all of the following are true:

– Whether virtual PPI 20 is considered Pending is determined by the Pending state of physical PPI 30.
– An access to ICH_PPI_PENDR0_EL2.PEND20 accesses the Pending state of virtual PPI 20.
– The value of ICH_PPI_PENDR0_EL2.PEND20 is IGNORED, meaning that it is not used in determining

whether virtual PPI 20 is considered Pending.
• When Physical PPI 27 is directly injected as virtual PPI 19, all of the following are true:

– Whether virtual PPI 19 is considered Pending is determined by the Pending state of physical PPI 27.
– An access to ICH_PPI_PENDR0_EL2.PEND19 accesses the Pending state of virtual PPI 19.
– The value of ICH_PPI_PENDR0_EL2.PEND19 is IGNORED, meaning that it is not used in determining

whether virtual PPI 19 is considered Pending.

2.10.2 Virtual priority masking

DBMLRF The Virtual Priority Mask is the value stored in ICV_PCR_EL1.PRIORITY.

IDDQBK See 9.1 Synchronization requirements for GICv5 System registers for more information about synchronization
requirements for updates to the Virtual Priority Mask.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter 2. PE architecture
2.10. The virtual CPU interface

DCZRGJ The virtual running priority is defined as the highest active priority stored in ICV_APR_EL1.

IDLHDR The virtual running priority is reported in ICV_HAPR_EL1.PRIORITY.

DWDGVW A virtual interrupt has Sufficient priority to be signaled when all of the following are true:

• The Priority of the interrupt is higher than the virtual running priority.
• The Priority of the interrupt is equal to or higher than the Virtual Priority Mask.

IGLZCB ICV_HPPIR_EL1 reports if there is a virtual HPPI of Sufficient priority for the Virtual Interrupt Domain. If there
is a virtual HPPI of Sufficient priority, it also reports the INTID of that HPPI.

IMDDZR The behavior of ICV_HPPIR_EL1 in GICv5 is different from the ICV_HPPIRx_EL1 registers in GICv3.

In GICv3, ICV_HPPIRx_EL1 return the highest priority interrupt for the corresponding interrupt group irrespective
of whether the interrupt has sufficient priority to be signaled to the PE.

GICv5 changes this behavior such that ICV_HPPIR_EL1 returns the highest priority interrupt only if it has
Sufficient priority to be signaled.

2.10.3 Virtual interrupt signaling

IVDZVT When the virtual CPU interface is not configured to use legacy operation, the GICv5 CPU interface determines the
virtual HPPI for the Virtual Interrupt Domain from the virtual candidate HPPIs from the IRI and the virtual PPIs
and performs the following actions:

1. Applies priority masking based on software configured virtual priority masks and the virtual running priority.
2. Determines if the virtual HPPI signals the virtual IRQ interrupt to the PE.
3. When the virtual CPU interface signals the virtual IRQ interrupt, it further determines whether the virtual

IRQ interrupt is signaled with Superpriority.

When Legacy operation is enabled, the Legacy virtual CPU interface determines the virtual HPPI from the list
registers and performs the following actions:

1. Applies interrupt grouping and priority masking based on software configured virtual priority masks and the
virtual running priority.

2. Determines if the virtual HPPI signals the virtual IRQ interrupt or the virtual FIQ interrupt to the PE.
3. When the virtual CPU interface signals the virtual IRQ interrupt, it further determines whether the virtual

IRQ interrupt should be signaled with Superpriority.

This process is illustrated in Figure 2.5.

See 2.10.7 Legacy virtual CPU interface for more information about the Legacy virtual CPU interface:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter 2. PE architecture
2.10. The virtual CPU interface

GICv5 virtual CPU interface

ICH_VCTLR_EL2.V3 is 1ICH_VCTLR_EL2.V3 is 0

IRI

Virtual HPPI selection from
candidate HPPIs.

PPI sources

Candidate HPPI from virtual LPIs
and virtual SPIs

Candidate HPPI
from virtual PPIs

GICv5 priority masking and
Running priority check

Virtual IRQ and Superpriority signals to the PE

Legacy GICv3
priority masking and Running

priority check

Virtual IRQ, FIQ, and Superpriority
signals to the PE

Virtual HPPI selection from list
registers

List registers

Figure 2.5: Virtual interrupt determination

RZKPVN When EL2 is implemented and is enabled in the Security state identified by SCR_EL3.{NSE, NS} and Legacy
operation is disabled, the GICv5 CPU interface determines whether there is an HPPI for the Virtual Interrupt
Domain when all of the following are true:

• ICV_CR0_EL1.EN is 1.
• ICH_VCTLR_EL2.EN is 1.

The HPPI for the Virtual Interrupt Domain is determined by selecting the interrupt with the higher priority from
the following:

• The candidate HPPI presented by the IRI for the resident VPE.
• The candidate HPPI selected among the virtual PPIs.

There is no HPPI for the Virtual Interrupt Domain if any of the following are true:

• ICV_CR0_EL1.EN is 0.
• ICH_VCTLR_EL2.EN is 0.
• There are no candidate HPPIs for the Virtual Interrupt Domain.

Note

The candidate HPPI presented by the IRI for the resident VPE is not considered when selecting the HPPI for the
Virtual Interrupt Domain when ICH_CONTEXTR_EL2.IRICHPPIDIS is 1.

See 2.10.5 Selecting the resident VPE for more information about managing the resident VPE.

RJKZLR If EL2 is not implemented, the Effective value of ICH_VCTLR_EL2.EN is 0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter 2. PE architecture
2.10. The virtual CPU interface

RXCFJD If the candidate HPPI presented by the IRI for the resident VPE has the same priority as the candidate HPPI
selected among the virtual PPIs, it is IMPLEMENTATION DEFINED which of the two candidate HPPIs is selected as
the HPPI for the Virtual Interrupt Domain.

RCGYDN When there is at least one candidate HPPI for the Virtual Interrupt Domain, the CPU interface determines the HPPI
for the Virtual Interrupt Domain in finite time.

When there is a change to the candidate HPPIs due to updates to the configuration and state of the virtual PPIs, or
due to the IRI presenting a new candidate HPPI for the resident VPE, the CPU interface redetermines the HPPI for
the Virtual Interrupt Domain in finite time.

RNGHYT The GICv5 CPU interface signals the vIRQ interrupt when there is an HPPI of Sufficient priority for the Virtual
Interrupt Domain.

INJPKJ When Legacy operation is disabled, the GICv5 virtual CPU interface does not signal the vFIQ interrupt.

See 2.10.7 Legacy virtual CPU interface for more information.

IBVMRK The behavior of the Legacy virtual CPU interface including when virtual interrupts are signaled is described in [3].

2.10.4 Virtual non-maskable interrupts

RXKMQC When there is an HPPI of Sufficient priority for the Virtual Interrupt Domain, it is signaled to the PE with
Superpriority[1] when all of the following are true:

• The priority of the virtual HPPI is 0.
• The current Exception level is EL1 or lower.
• SCTLR_EL1.NMI is 1.

Otherwise, the virtual HPPI is not signaled with Superpriority.

DQPMFG A virtual interrupt that is signaled with Superpriority is referred to as a virtual NMI.

IMQHTC If the priority of the virtual HPPI is 0, but is not signaled with Superpriority due to not meeting the other conditions,
then the virtual HPPI is not a virtual NMI.

2.10.5 Selecting the resident VPE

GCQBBT Hypervisor software manages multiple VMs and VPEs and selects different VPEs to be resident on a PE over time
to allow multiplexing VPEs on a single PE.

GPBWDL Separate VPEs from the same VM can be resident on separate PEs at the same time to support VMs with multiple
VPEs running concurrently.

DJRKYV The resident VPE is specified by writing the corresponding VPE ID and VM ID to ICH_CONTEXTR_EL2.

Each VM has a separate VPE ID namespace which means that two VPEs with the same VPE ID for different VM
IDs specify different VPEs.

IMLMSJ At any given time for each PE in the system, there is either one VPE resident or no VPE resident. It is not possible
for multiple VPEs to be resident on the same PE at the same time, even if those VPEs belong to different Security
states.

IYSVWR The VM ID used in this specification is not directly related to the VMSA VMID[1].

IBJSFF When ICH_CONTEXTR_EL2.V is 0, no VPE is resident and ICH_CONTEXTR_EL2.{VM,VPE} are IGNORED.

RXVRCV If EL2 is not implemented, the Effective value of ICH_CONTEXTR_EL2.V is 0.

IWCHLY ICH_CONTEXTR_EL2.IRICHPPIDIS allows software to specify whether the candidate HPPIs presented by the
IRI is considered when selecting the HPPI for the Virtual Interrupt Domain.

GIC system instructions that operate in the virtual interrupt domain access the configuration and state of virtual
LPIs and SPIs belonging to the resident VM, irrespective of the value of ICH_CONTEXTR_EL2.IRICHPPIDIS.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter 2. PE architecture
2.10. The virtual CPU interface

SBYBKL Making a VPE resident with ICH_CONTEXTR_EL2.IRICHPPIDIS set to 1 allows software to emulate an
environment where the virtual IRI is disabled by setting ICH_CONTEXTR_EL2.IRICHPPIDIS to 1 for all the
VPEs that belong to the same disabled virtual IRI.

RLHFXQ On a write that sets ICH_CONTEXTR_EL2.V to 1, the VM and VPE are resolved in the Physical Interrupt Domain
identified by SCR_EL3.{NSE,NS}.

RCDHXC If SCR_EL3.{NSE,NS} is set to a Reserved value, a write that sets ICH_CONTEXTR_EL2.V to 1 has the
following CONSTRAINED UNPREDICTABLE behaviors:

• No VPE is treated as being resident.
• SCR_EL3.{NSE,NS} is treated as an UNKNOWN non-reserved value.

IFDPDR An access by a GIC System instruction to the state or configuration of a virtual LPI or SPI, when the Current
Interrupt Domain is the Virtual Interrupt Domain, applies to the resident VM of that PE. Apart from GIC VDPEND,
where the target VM is specified as an argument to the instruction.

RRXMNN Changing SCR_EL3.{NSE,NS} when there is a resident VPE is CONSTRAINED UNPREDICTABLE with a choice
of the following:

• ICH_CONTEXTR_EL2.V is cleared to 0.
• The CPU interface behaves as if no VPE is resident, but the value of ICH_CONTEXTR_EL2 is unchanged.

– If ICH_CONTEXTR_EL2.V is subsequently written to 0, ICH_CONTEXTR_EL2.DB is RES0.

SXCDSV When switching Security state, Arm expects that software at EL3 writes to ICH_CONTEXTR_EL2 to either make
no VPE resident or make a VPE of the new Security state resident.

IKWFRF Following a write that sets ICH_CONTEXTR_EL2.V to 1, one of the following is true:

• The VPE becomes resident on the PE and ICH_CONTEXTR_EL2.F is set to 0.
• The VPE is not resident on the PE and ICH_CONTEXTR_EL2.F is set to 1.

RNHCGW While ICH_CONTEXTR_EL2.V is 1, if ICH_CONTEXTR_EL2.VM and ICH_CONTEXTR_EL2.VPE select an
invalid VPE, all of the following are true:

• The IRI behaves as if no VPE is resident on the PE.
• When a write updates ICH_CONTEXTR_EL2.V from 1 to 0, any doorbell request is ignored.
• It is CONSTRAINED UNPREDICTABLE whether a read of ICH_CONTEXTR_EL2.V returns 1 or 0.

See also 2.10.6 Requesting VPE doorbells.

RTXVLW When ICH_CONTEXTR_EL2.V is 1, if the VPE selected by ICH_CONTEXTR_EL2.{VM,VPE} becomes invalid
and a new VPE selected by the same values subsequently becomes valid, it is CONSTRAINED UNPREDICTABLE
whether the IRI continues to behave as if no VPE is resident on the PE or as if the new VPE had been made
resident.

RLLMWL The effect of setting ICH_CONTEXTR_EL2.V to 1 is not guaranteed to be visible until after a Context
synchronization event. After the Context synchronization event, if any virtual interrupt from the IRI is visible by
reading the CPU interface registers, it is for the new resident VPE.

RLJVNC The Context synchronization event after setting ICH_CONTEXTR_EL2.{V,IRICHPPIDIS} to {1,0} will not
complete until the IRI has presented the candidate HPPI for the new resident VPE, or the IRI has confirmed there
is currently no candidate HPPI for the new resident VPE.

ILXZBK When using GICv5 Stream Protocol, when the IRS sends the SetResident_Ack() packet it indicates that it has
either forwarded the first virtual interrupt for the new resident VPE or that there is no candidate HPPI for the
resident VPE.

RWDKXF ICH_HPPIR_EL2 returns the HPPI for the Virtual Interrupt Domain.

If there is no resident VPE, or ICH_CONTEXTR_EL2.IRICHPPIDIS is 1, the value returned represents whether
there is a candidate HPPI among the virtual PPIs.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter 2. PE architecture
2.10. The virtual CPU interface

If there is a resident VPE, the value returned represents whether there is a candidate HPPI among the virtual PPIs
and the virtual candidate HPPI presented by the IRI for the resident VPE.

RJSHCW The effect of clearing ICH_CONTEXTR_EL2.V to 0, or setting ICH_CONTEXTR_EL2.IRICHPPIDIS to 1, is
not guaranteed to be visible until after a Context synchronization event. After the Context synchronization event,
no virtual interrupt from the IRI is visible via the CPU interface registers.

RVFKHN Changing the value of ICH_CONTEXTR_EL2.VM or ICH_CONTEXTR_EL2.VPE when ICH_CONTEXTR_EL2.V
is 1 is CONSTRAINED UNPREDICTABLE with the following permitted behaviors:

• The write is ignored, for all other purposes than a direct read of the register.
• The previously selected VPE is made not resident and the VPE identified by the new ICH_CONTEXTR_EL2.VM

and ICH_CONTEXTR_EL2.VPE values is made resident.

SQPFVS To make a VPE no longer resident, software performs the following sequence:

1. Write ICH_CONTEXTR_EL2, clearing ICH_CONTEXTR_EL2.V from 1 to 0.
ICH_CONTEXTR_EL2.DB controls whether a doorbell interrupt is requested for the previously resident
VPE.

2. Issue an ISB.

To make a VPE resident, software performs the following sequence:

1. Write ICH_CONTEXTR_EL2, setting ICH_CONTEXTR_EL2.V from 0 to 1.
1. The ICH_CONTEXTR_EL2.VM and ICH_CONTEXTR_EL2.VPE fields specify which VPE is being

made resident.
2. The Domain for the VPE is taken from SCR_EL3.{NSE,NS}.

2. Issue an ISB.
3. Optionally read ICH_CONTEXTR_EL2.F to check if the operation succeeded.

To change the resident VPE, software must first ensure no VPE is resident, by performing the following sequence:

1. Write ICH_CONTEXTR_EL2, clearing ICH_CONTEXTR_EL2.V from 1 to 0.
2. Write ICH_CONTEXTR_EL2, setting ICH_CONTEXTR_EL2.V from 0 to 1 and selecting the new resident

VPE.
3. Issue an ISB.
4. Optionally read ICH_CONTEXTR_EL2.F to check if the operation succeeded.

2.10.6 Requesting VPE doorbells

DGFNFW When a resident VPE is made non-resident, software can optionally request a VPE doorbell.

The VPE doorbell is a request for a physical interrupt to signal that there is a candidate HPPI for the VPE when
the VPE is not resident on any PE.

IQYLFV When a VPE is made non-resident by writing 0 to ICH_CONTEXTR_EL2.V, software programs whether a VPE
doorbell is requested by setting ICH_CONTEXTR_EL2.DB to the appropriate value.

IRWSJW When a write that sets ICH_CONTEXTR_EL2.V to 0 also sets ICH_CONTEXTR_EL2.DB to 0, any previously
requested doorbells are no longer requested.

IGVGWJ ICH_CONTEXTR_EL2.DBPM allows software to specify a VPE Doorbell priority mask. If a VPE doorbell is
requested, the corresponding physical interrupt is only signaled if the candidate HPPI for the VPE is greater than
or equal to the value written to ICH_CONTEXTR_EL2.DBPM.

RVNZRM The mechanism to configure the interrupt used for the VPE doorbell is IMPLEMENTATION DEFINED.

When the GICv5 system architecture is used, the VPE doorbell configuration mechanism is described in 4.10.7
VPE doorbells.

2.10.7 Legacy virtual CPU interface

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Chapter 2. PE architecture
2.10. The virtual CPU interface

GVXDMK GICv5 enables the use of unmodified GICv3.3 compatible virtual machines.

IBSYYP GICv5 provides the optional FEAT_GCIE_LEGACY extension to support GICv3.3 VMs.

DQHKVW When ICH_VCTLR_EL2.V3 is 1, Legacy operation is enabled.

RBFNZT When FEAT_GCIE_LEGACY is not implemented, the Effective value of ICH_VCTLR_EL2.V3 is 0.

DTPCQT When Legacy operation is enabled, the virtual CPU interface functionality is referred to as the Legacy virtual CPU
interface.

IHKXPV When FEAT_GCIE_LEGACY is implemented and Legacy operation is enabled, the Legacy virtual CPU interface
is managed through the AArch64 virtualization control system registers described in Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4[3].

IJBZMP When Legacy operation is disabled, the Effective value of ICH_HCR_EL2.En is 0 and the Legacy virtual CPU
interface is disabled.

When Legacy operation is enabled, ICH_HCR_EL2.En determines whether the Legacy virtual CPU interface is
disabled.

The effects of enabling and disabling the GICv3 Virtual CPU interface using ICH_HCR_EL2.En is described in
[3].

ITQKBH When HCR_EL2.IMO is 1 and Legacy operation is enabled, the Legacy virtual CPU interface is used and all of
the following are true:

• When executing at EL1, all of the following are true:
– All GICv5 System instructions are UNDEFINED.
– Accesses to GICv5 System registers are UNDEFINED.
– Accesses to GICv3.3 Group 0, Group 1, and Common System registers are to Legacy virtual CPU

interface ICV_* registers.
• Accesses to ICH_VMCR_EL2 use the GICv3.3 version of the register.

See Chapter 8 System instructions and Chapter 9 System registers for more information.

RYZMJH When executing at Exception levels below EL2 and Legacy operation is enabled, the Effective value of
HCR_EL2.FMO is determined by HCR_EL2.IMO:

• When HCR_EL2.IMO is 0, the Effective value of HCR_EL2.FMO is 0.
• When HCR_EL2.IMO is 1, the Effective value of HCR_EL2.FMO is 1.

This means that when Legacy operation is enabled and executing at EL1, software either interacts entirely with the
GICv5 physical CPU interface or entirely with the Legacy virtual CPU interface.

IPJWMZ When Legacy operation is enabled, HCR_EL2.FMO enables GICv3.3 virtual Group 0 interrupts to be signaled as
virtual FIQ interrupts.

INFJYV FEAT_GCIE_LEGACY does not provide Interrupt bypass support as described in Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4[3]. Therefore, when Legacy
operation is enabled, the ICC_SRE_EL1.{DIB,DFB} field values are RAO/WI.

ILDWTK FEAT_GCIE_LEGACY only provides a system register interface to the Legacy virtual CPU interface. Therefore,
when Legacy operation is enabled, the ICC_SRE_EL1.SRE field value is RAO/WI.

RXXCLD When Legacy operation is enabled, the ICV_CTLR_EL1.{ExtRange,RSS} field values are RAZ/WI.

IDQPYT When FEAT_GCIE_LEGACY is implemented, if ICH_LR<n>_EL2.HW is set to 1, ICH_LR<n>_EL2.pINTID
identifies a PPI in the Current Physical Interrupt Domain.

IMTYHD When FEAT_GCIE_LEGACY is implemented, ICH_VTR_EL2.SEIS and ICH_HCR_EL2.TSEI are RES0,
meaning that local generation of system errors and trapping them to EL2 is not supported.

ISHBPG When FEAT_GCIE_LEGACY is implemented, ICH_VTR_EL2.PRIbits and ICH_VTR_EL2.PREbits are 0b100,
meaning that 5 bits of priority and preemption are available to GICv3 VMs.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

65

Chapter 2. PE architecture
2.10. The virtual CPU interface

IFPLXQ GICv3 recorded the active priorities for Group 0 in ICH_AP0R<n>_EL2 and active priorities for Group 1 in
ICH_AP1R<n>_EL2. In GICv5, the Legacy virtual CPU interface implements the same split, however the
ICH_AP1R0_EL2.P<n> fields access the same state as the corresponding fields in ICH_APR_EL2.

See also:

• 9.2 CPU interface registers
• 9.6 Hypervisor control registers
• 9.7 Legacy hypervisor control registers

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter 2. PE architecture
2.11. GIC synchronous exception priorities

2.11 GIC synchronous exception priorities

IFTLLT The relative priority of synchronous exceptions is described in R_ZFGJP of the L.a version of Arm® Architecture
Reference Manual, for A-profile architecture[1].

RMJLRP Exceptions that occur as a result of attempting to execute an instruction that is UNDEFINED due to the configuration
of ICH_VCTLR_EL2.V3 has a priority of 16.

RKNQBS For an exception taken to EL2 as the result of a configuration control in one of the following registers, the exception
priority is 22:

• ICH_HCR_EL2.
• ICH_HFGITR_EL2.
• ICH_HFGRTR_EL2.
• ICH_HFGWTR_EL2.

This is the same priority as exceptions due to the other fine-grained trap registers.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter 2. PE architecture
2.12. Interrupt ordering model and synchronization requirements

2.12 Interrupt ordering model and synchronization requirements

This section extends the Definitions of the Arm memory model in Arm® Architecture Reference Manual, for
A-profile architecture[1].

Interrupt Location

An Interrupt Location comprises all state and configuration values relative to an interrupt. See 2.4 Interrupt
types and identifiers for more information about interrupt state and configuration values. An Interrupt
Location is uniquely identified by an INTID.

Interrupt Effect

GIC and GICR System instructions might generate Interrupt Effects. An Interrupt Effect is an Interrupt Read
Effect or an Interrupt Write Effect. Interrupt Effects can be either Explicit or Implicit. For example, a GIC
System instruction with the RCFG command generates an Explicit Interrupt Read Effect, a GICR System
instruction generates Implicit Interrupt Read Effects and might also generate an Implicit Interrupt Write
Effect.

All Interrupt Write Effects are required to complete in finite time.

Coherence order There is a per-location Coherence order relation that provides a total order over all Interrupt
Write Effects to that Location, starting with a notional Interrupt Write Effect of the initial value. The
Coherence order of an Interrupt Location represents the order in which Interrupt Write Effects to the Interrupt
Location arrive at their destination.

Reads-from The Reads-from relation couples Interrupt Read and Write Effects to the same Interrupt Location so
that each Interrupt Read Effect is paired with exactly one Interrupt Write Effect in the execution of a program.
An Interrupt Read Effect E2 Reads-from an Interrupt Write Effect E1, if and only if E1 and E2 are to the same
Interrupt Location and E2 takes its data from E1.

For two Effects E1 and E2 if all of the following apply:

• E1 is an Explicit Interrupt Read Effect generated by a GIC instruction with the RCFG command.

• E1 appears in program order before E2.

• E1 and E2 are to the same Interrupt Location.

• E2 is an Interrupt Write Effect.

then it is architecturally forbidden that E1 Reads-from E2.

Coherence-before, Coherence-after An Interrupt Write Effect E1 is Coherence-before an Interrupt Write Effect
E2 to the same Interrupt Location if E1 is sequenced before E2 in the Coherence order for the Interrupt
Location.

An Interrupt Read Effect E1 is Coherence-before an Interrupt Write Effect E2 to the same Interrupt Location
if E1 Reads-from an Interrupt Write Effect E3 and E3 is Coherence-before E2.

An Effect E2 is Coherence-after an Effect E1 if E1 is Coherence-before E2.

For two Effects E1 and E2 if all of the following apply:

• E1 is an Implicit Interrupt Write Effect generated by a GICR system instruction.

• E1 appears in program order before E2.

• E1 and E2 are to the same Interrupt Location.

• E2 is an Interrupt Read Effect.

then it is architecturally forbidden that E2 is Coherence-before E1.

For two Effects E1 and E2 if all of the following apply:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter 2. PE architecture
2.12. Interrupt ordering model and synchronization requirements

• E1 is an Implicit Interrupt Write Effect generated by a GIC system instruction with the DI command.

• E1 appears in program order before E2.

• E1 and E2 are to the same Interrupt Location.

• One of the following applies:

– E2 is an Explicit Interrupt Read Effect generated by a GIC system instruction with the RCFG

command.

– E2 is an Implicit Interrupt Read Effect generated by a GICR system instruction.

then it is architecturally forbidden that E2 is Coherence-before E1.

For two Effects E1 and E2 if all of the following apply:

• E1 is an Explicit Interrupt Write Effect.

• E2 is an Explicit Interrupt Read Effect.

• E1 appears in program order before E2.

• E1 and E2 are to the same Interrupt Location.

then it is architecturally forbidden that E2 is Coherence-before E1.

Successful Read-Modify-Write pair of Interrupt Effects

Two Effects E1 and E2 form a Successful Read-Modify-Write pair if and only if all of the following apply:

• E1 is an Interrupt Read Effect.

• E2 is an Interrupt Write Effect.

• E1 and E2 are to the same Interrupt Location.

• E1 and E2 are generated by the same instruction.

All Read-Modify-Write pair of Interrupt Effects generated by GIC and GICR System instructions are Successful
Read-Modify-Write pairs of Interrupt Effects.

2.12.1 GIC and GICR ordering semantics

ISYSPH GIC System instructions generate Interrupt Effects as required by the instruction’s command. The domain together
with the INTID in <Xt> specify the Interrupt Location of the interrupt Effect.

A GIC System instruction with the EOI command does not generate any Interrupt Read Effects or Interrupt Write
Effects.

A GIC System instruction with the RCFG command generates an Interrupt Read Effect but no Interrupt Write
Effects.

All other GIC System instructions generate a Successful Read-Modify-Write pair of Interrupt Effects.

See 2.6 GIC System instructions for more information about the A64 assembly language syntax for the GIC
System instructions.

RZWSQL • A GIC system instruction with the RCFG command generates the following Effects:

– A Register Read Effect E1 of the <Xt> register.

– An Explicit Interrupt Read Effect E2 to the Interrupt Location determined by the domain and <Xt>.

– An Indirect Register Write Effect E3 to the System Register ICC_ICSR_EL1.

In addition, all of the following apply:

– There is an Intrinsic Data Dependency from E1 to E2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter 2. PE architecture
2.12. Interrupt ordering model and synchronization requirements

– There is an Intrinsic Data Dependency from E2 to E3.

RMLYCN • A GIC system instruction with the DI command generates the following Effects:

– A Register Read Effect E1 of the <Xt> register.

– An Implicit Interrupt Read Effect E2 to the Interrupt Location determined by the domain and <Xt>.

– An Implicit Interrupt Write Effect E3 to the Interrupt Location determined by the domain and <Xt>.

In addition, all of the following apply:

– There is an Intrinsic Data Dependency from E1 to E2.

– There is an Intrinsic Data Dependency from E2 to E3.

– E2 and E3 form a Successful Read-Modify-Write pair.

RXHKDN • A GIC system instruction with a command other than RFCG, DI or EOI generates the following Effects:

– A Register Read Effect E1 of the <Xt> register.

– An Explicit Interrupt Read Effect E2 to the Interrupt Location determined by the domain and <Xt>.

– An Explicit Interrupt Write Effect E3 to the Interrupt Location determined by the domain and <Xt>.

In addition, all of the following apply:

– There is an Intrinsic Data Dependency from E1 to E2.

– There is an Intrinsic Data Dependency from E2 to E3.

– E2 and E3 form a Successful Read-Modify-Write pair.

RFDSPZ • A GICR system instruction with the IA or NMIA command generates the following Effects:

– An Indirect System Register Read Effect E1 to ICC_HAPR_ELx.

– Implicit Interrupt Read Effect E2, E3, . . . ,En to all n Interrupt Locations for the Current Interrupt Domain.

– A Branching Effect En+1 that determines the HPPI.

– If there is an HPPI and its priority is higher than the current running priority:

* An Implicit Interrupt Write Effect En+2 to the Interrupt Location determined as the HPPI.

* An Indirect System Register Write Effect En+3 to ICC_HAPR_ELx.

– A Register Write Effect En+4 of the <Xt> register.

In addition, all of the following apply:

– There is an Intrinsic Data Dependency from E2 to En+1.

– There is an Intrinsic Data Dependency from E3 to En+1.

– . . .

– There is an Intrinsic Data Dependency from En to En+1.

– There is an Intrinsic Control Dependency from En+1 to En+4.

– If there is an HPPI and Ek is the Interrupt Read Effect from its Interrupt Location:

* There is an Intrinsic Data Dependency from Ek to En+2.

* There is an Intrinsic Control Dependency from En+1 to En+2.

* There is an Intrinsic Control Dependency from En+1 to En+3.

* Ek and En+2 form a successful Read-Modify-Write pair.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter 2. PE architecture
2.12. Interrupt ordering model and synchronization requirements

2.12.2 GSB instruction semantics

DKZFML The A64 assembly language syntax for GIC synchronization barrier instructions is one of the following:

• GSB SYS

• GSB ACK

DDLHHZ A GSB instruction generates an Effect named after the instruction.

• A GSB SYS instruction generates a GSB SYS Effect.

• A GSB ACK instruction generates a GSB ACK Effect.

2.12.3 GIC Ordering Model

2.12.3.1 GIC Ordering Relations
GIC-hazard-ordered-before

An Effect E1 is GIC-hazard-ordered-before an Effect E2 if and only if all the following apply:

• E1 is an Explicit Interrupt Read Effect generated by a GIC system instruction with the RCFG command.

• E1 appears in program order before E3.

• E1 and E3 are to the same Interrupt Location.

• E3 is an Interrupt Read Effect.

• E3 is Coherence-before E2.

• E2 is an Explicit Interrupt Write Effect.

If an Effect E1 is GIC-hazard-ordered-before an Effect E2 then E1 is Hazard-ordered-before E2.

GSB-ordered-before An Effect E1 is GSB-ordered-before an Effect E2 if and only if any of the following apply:

• All of the following apply:

– E1 is an Implicit Interrupt Effect generated by a GICR system instruction.

– E3 is a GSB ACK Effect.

– E1 appears in program order before E3.

– E3 appears in program order before E2.

– It is not the case that E2 is an Implicit Instruction Memory Read Effect.

• All of the following apply:

– E1 is an Interrupt Effect.

– E3 is a GSB SYS Effect.

– E1 appears in program order before E3.

– E3 appears in program order before E2.

– It is not the case that E2 is an Implicit Instruction Memory Read Effect.

If an Effect E1 is GSB-ordered-before an Effect E2 then E1 is Locally-ordered-before E2.

If an Effect E1 is GSB-ordered-before an Effect E2, E2 is an Instruction Fetch Barrier Effect and E2 is in
program-order before E3 then E1 is Instruction-fetch-barrier-ordered-before E3.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter 2. PE architecture
2.12. Interrupt ordering model and synchronization requirements

2.12.3.2 Adaptations to existing Ordering relations
The following relations are defined in the chapter “Ordering requirements defined by the formal concurrency
model” in Arm® Architecture Reference Manual, for A-profile architecture[1] and adapted to account for the
Interrupt Read or Write Effects.

Basic Dependency There is a Basic dependency from an Effect E1 to an Effect E2 if and only if all the following
apply:

• Any of the following applies:

– E1 is an Explicit Memory Read Effect.

– E1 is an Interrupt Read Effect.

– E1 is a Register Read Effect.

• Any of the following applies:

– There is a Dependency through registers and memory from E1 to E2.

– E1 and E2 are the same Effect.

Data dependency There is a Data dependency from an Effect E1 to an Effect E2 if and only if all the following
apply:

• Any of the following applies:

– E1 is an Explicit Memory Read Effect.

– E1 is an Interrupt Effect.

• There is a Basic dependency from E1 to E3.

• E3 affects the data value written by E2.

• There exists a chain of Intrinsic Data Dependency from E3 to E2.

• E2 is an Explicit Memory Write Effect.

• It is not the case that E1 and E2 are generated by the same instruction.

Address dependency

There is an Address dependency from an Effect E1 to an Effect E2 if and only if all the following apply:

• Any of the following applies:

– E1 is an Explicit Memory Read Effect.

– E1 is an Interrupt Read Effect.

• There is a Basic dependency from E1 to E3.

• E3 affects the address of the Location accessed by E2.

• There exists a chain of Intrinsic data dependency from E3 to E2.

• Any of the following applies:

– E2 is an Explicit Memory Effect.

– E2 is an Implicit Tag Memory Read Effect.

– E2 is an Implicit TTD Memory Read Effect.

– E2 is a Hardware Update Effect.

– E2 is a TLBI Effect.

– E2 is a DC CVAU Effect.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter 2. PE architecture
2.12. Interrupt ordering model and synchronization requirements

– E2 is an IC IVAU Effect.

– E2 is an Interrupt Effect

• It is not the case that E1 and E2 are generated by the same instruction.

Control dependency There is a Control dependency from an Effect E1 to an Effect E2 if and only if all the
following apply:

• Any of the following applies:

– E1 is an Explicit Memory Read Effect.

– E1 is an Interrupt Effect.

• There is a Basic dependency from E1 to E3.

• E3 is a Conditional Branching Effect.

• E3 appears in program order before E2.

Pick Basic dependency There is a Pick Basic dependency from an Effect E1 to an Effect E2 if and only if all the
following apply:

• Any of the following applies:

– E1 is an Explicit Memory Read Effect.

– E1 is a Register Read Effect.

– E1 is an Interrupt Effect.

• Any of the following applies:

– There is a Pick dependency through registers and memory from E1 to E2.

– E1 and E2 are the same Effect.

Pick Data dependency There is a Pick Data dependency from an Effect E1 to an Effect E2 if and only if all the
following apply:

• Any of the following applies:

– E1 is an Explicit Memory Read Effect.

– E1 is an Interrupt Read Effect.

• There is a Pick Basic dependency from E1 to E3.

• E3 affects the data value written by E2.

• Any of the following applies:

– There is an Intrinsic Data Dependency from E3 to E2.

– There is an Intrinsic Control Dependency from E3 to E2.

– There exists a chain of Intrinsic Data Dependency or Intrinsic Control Dependency from E3 to E2.

• E2 is an Explicit Memory Write Effect.

• It is not the case that E1 and E2 are generated by the same instruction.

Pick Address dependency There is a Pick Address dependency from an Effect E1 to an Effect E2 if and only if
all the following apply:

• Any of the following applies:

– E1 is an Explicit Memory Read Effect.

– E1 is an Interrupt Read Effect.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter 2. PE architecture
2.12. Interrupt ordering model and synchronization requirements

• There is a Pick Basic dependency from E1 to E3.

• E3 affects the address of the Location accessed by E2.

• There exists a chain of Intrinsic Data Dependency from E3 to E2.

• Any of the following applies:

– E2 is an Explicit Memory Effect.

– E2 is an Implicit Tag Memory Read Effect.

– E2 is an Implicit TTD Memory Read Effect.

– E2 is a Hardware Update Effect.

– E2 is a TLBI Effect.

– E2 is a DC CVAU Effect.

– E2 is an IC IVAU Effect.

– E2 is an Interrupt Read Effect.

• It is not the case that E1 and E2 are generated by the same instruction.

Pick Control dependency There is a Pick Control dependency from an Effect E1 to an Effect E2 if and only if all
the following apply:

• Any of the following applies:

– E1 is an Explicit Memory Read Effect.

– E1 is an Interrupt Read Effect.

• There is a Pick Basic dependency from E1 to E3.

• E3 is a Conditional Branching Effect.

• E3 appears in program order before E2.

2.12.3.3 GIC Observation Relations
GIC-observed-by An Effect E1 is GIC-observed-by an Effect E2 if and only if any of the following apply:

• All of the following apply:

– E1 is an Interrupt Write Effect.

– E2 Reads-from E1.

– E2 is an Interrupt Read Effect.

• All of the following apply:

– E1 is an Explicit Interrupt Effect.

– E1 is Coherence-before E2.

– E1 and E2 are from different Processing Elements.

– E2 is an Explicit Interrupt Write Effect.

If an Effect E1 is GIC-observed-by an Effect E2 then E1 is Observed-by E2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter 2. PE architecture
2.12. Interrupt ordering model and synchronization requirements

2.12.3.4 Ordering Requirements
Atomicity of Successful Read-Modify-Write pair of Interrupt Effects

For two Interrupt Effects E1 and E2 if and only if all the following apply:

• E1 and E2 form a successful Read-Modify-Write pair.

• There is an Interrupt Write Effect E3.

then it is not the case that E1 is Coherence-before E3 and E3 is Coherence-before E2.

An architecturally well-formed execution must not exhibit a cycle in the Ordered-before relation as defined in the
Arm® Architecture Reference Manual, for A-profile architecture[1] and extended by the definitions in this section
GIC Ordering Model.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

sec:pe:ordering_model

Chapter 2. PE architecture
2.13. Effects on the Transactional Memory Extension

2.13 Effects on the Transactional Memory Extension

IMCXXC The Transactional Memory Extension (TME)[4] defines a set of features to support transactional memory on
Armv9-A PEs. This section describes changes made by GICv5 to TME.

RPFDPV The following registers are added to the subset of AArch64 state included in a transaction checkpoint:

• If FEAT_GCIE is implemented, ICC_PCR_EL1, ICV_PCR_EL1, and ICC_PCR_EL3.
• If FEAT_GCIE_LEGACY is implemented, and ICV_PMR_EL1.

DNYKMG GIC Priority Mask is defined to mean the register containing the priority mask for the current interrupt regime.

In GICv3 and GICv4, or in GICv5 when using legacy mode, the GIC Priority Mask is:

• ICC_PMR_EL1 if in EL2 or EL3.
• ICC_PMR_EL1 or ICV_PMR_EL1 if in EL0 or EL1.

In GICv5, the GIC Priority Mask is:

• ICC_PCR_EL3 if in EL3.
• ICC_PCR_EL2 if in EL2.
• ICC_PCR_EL1 or ICV_PCR_EL1 if in EL0 or EL1.

IDNGVS Transactional code with sufficient privileges can change the value of DAIF or the GIC Priority Mask to mask or
unmask interrupts.

RPVHGH A transaction fails with IMP cause and INT set if both of the following happen:

• An unmasked interrupt delivered to a PE leads to the currently executing transaction on the PE to fail.
• Upon restoring DAIF and the GIC Priority Mask, the interrupt becomes masked again and will not be taken.

RRNKXD If FEAT_GCIE is implemented, the following system registers behave the same in Transactional state as
Non-transactional state:

• ICC_HAPR_EL1
• ICC_HPPIR_EL1
• ICC_HPPIR_EL3
• ICC_PCR_EL1
• ICC_PCR_EL2
• ICC_PCR_EL3
• ICV_PCR_EL1

If FEAT_GICv3 or FEAT_GCIE_LEGACY is implemented, the following system registers behave the same in
Transactional state as Non-transactional state:

• ICC_HPPIR0_EL1
• ICC_HPPIR1_EL1
• ICC_PMR_EL1
• ICC_RPR_EL1
• ICV_PMR_EL1

IXVVBP Attempting to read or write any other GIC system register, including the PPI registers, in Transactional state fails
the transaction with ERR cause.

RGQWJM While in Transactional state, the effect of GICv5 System instructions is:

Mnemonic Instruction Behavior

GICR GICv5 read operation Transaction fails with ERR cause

GIC GICv5 write operation Transaction fails with ERR cause

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76

Chapter 2. PE architecture
2.13. Effects on the Transactional Memory Extension

GSB GICv5 synchronization barrier Same effects as in non-transaction state.

INCLRB The restriction on use of GIC and GICR in Transactional state means that an interrupt cannot be acknowledged,
deactivated or re-configured inside a transaction. Additionally, software cannot perform a Priority drop inside a
transaction. It also means that the configuration and state of an interrupt cannot be queried within a transaction.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter 3
GICv5 system architecture

This section defines the GICv5 system architecture, including its components and interrupt handling behavior.

GBCPXN The IRI manages LPIs and SPIs.

If the PEs in the system implement EL2, the IRI tracks which VMs and VPEs are defined and maintains their
virtual interrupt state.

ICKLJJ This section describes an IRI implemented using the GICv5 system architecture.

IYXYKQ The GICv5 system architecture defines the following classes of system component:

1. The Interrupt Routing Service (IRS).
2. The Interrupt Translation Service (ITS).
3. The Interrupt Wire Bridge (IWB).

Figure 3.1 shows an overview of the GICv5 system architecture.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter 3. GICv5 system architecture

IRI

Cluster

PE PE

Cluster

PE PE

IRS

ITS

ITS

IWB

IWB

Memory

Device tables
Interrupt translation
tables

VM tables
VPE tables

Interrupt state tables

wires

wires

I/O

IRS

SMMU DeviceID
EventID

CPU
Interface

CPU
Interface

CPU
Interface

CPU
Interface

LPI
INTID
VM ID

…

LPI
INTID
VM ID

…

MSIs

GIC Stream GIC Stream

Inter-IRS
communication

SPIs

GPC GPC

GPC GPC

SPIs

Figure 3.1: System overview

DMZRCX A GICv5 system using the GICv5 system architecture comprises the following:

• One or more IRSs.
• Zero or more ITSs.
• Zero or more IWBs.

IBFXPB A GICv5 system has optional support for GIC PMUs. See Chapter 7 GIC Performance Monitoring Unit (PMU)
for more information.

IZWPSS IRSs and ITSs rely on data structures stored in memory to manage the routing and translation of interrupts.

Software allocates memory for the data structures used by the IRSs and ITSs and configures these components
using memory-mapped I/O interfaces.

DQJPLJ An IRS supports the following types of incoming interrupt events from peripherals:

Shared Peripheral Interrupts (SPIs) SPIs are used for interrupt signals that are directly connected to the IRS,
for example, using directly wired connections or via an IMPLEMENTATION DEFINED mechanism. SPIs do
not rely on memory for storage and may be used for interrupts that must meet certain early boot, reliability,
or real-time guarantees. Whether SPIs provide any guarantees of fixed latency is a property of a given
implementation. The number of supported SPIs is a fixed property of a given implementation.

Logical Peripheral Interrupts (LPIs) LPIs are used for interrupt signals that are translated by an ITS and
forwarded to the IRS as well as for VPE doorbells. LPIs are managed by the IRSs in the system and the state
and configuration of the LPIs are stored in memory allocated by system software.

Software may also signal interrupts managed by the IRS, for example to support IPIs and software emulated
peripherals. See 2.5 Inter-Processor Interrupts and 2.6 GIC System instructions for more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Chapter 3. GICv5 system architecture

IDWZTM When an IRS detects or receives an interrupt event, it updates the Pending state of the LPI or SPI specified by the
interrupt event INTID. An interrupt event can either set or clear the Pending state depending on the interrupt event
type.

The IRS supports IPIs by allowing CPU Interfaces to send commands to the IRS to make an interrupt Pending.

The IRSs keep track of all Pending, Inactive, and Enabled interrupts and route them to the target PEs. An IRS
forwards an interrupt to a PE if it meets the following criteria:

• The interrupt targets that PE, either directly or through 1ofN routing.
• The interrupt is Pending, Inactive, and Enabled.
• The interrupt has the highest priority among all interrupts that are Pending, Inactive, and Enabled for that PE.

A system can include one or more IRSs and an implementation manages shared interrupt state across IRSs. Each
PE is connected to exactly one IRS and an IRS can be connected to multiple PEs. The GICv5 architecture does
not define how multiple IRSs communicate with each other, for example in a multi-chip system. A system with
multiple IRSs supports changing the affinity of an interrupt from a PE on one IRS to a PE on another IRS, without
losing interrupt state or configuration.

The IRS also manages VM state, supports virtual interrupts, and manages VPE doorbells. The IRS uses data
structures stored in memory to manage the state of interrupts and configuration of VMs and VPEs.

IHNNWD An ITS provides translation of incoming interrupt events into LPI INTIDs and forwards the translation results as
interrupt events for an IRS. Interrupt events can be generated from wired interrupt signals connected to an IWB or
from Message Signaled Interrupts (MSIs) of other subsystems. For example, an ITS can translate MSIs generated
by PCIe endpoints routed through an SMMU. It can also translate MSIs generated by other system-specific
subsystems. ITS translations specify whether an event should be signaled as a physical interrupt or as a virtual
interrupt that is injected directly into a VM. The ITS uses data structures stored in memory to perform translation
of events.

IHXBQP An IWB generates interrupt events from wired interrupt signals and forwards the events to an ITS. An IWB
supports both edge-triggered and level-sensitive wires, and associates each wired interrupt with a Security state.
The GICv5 architecture supports systems with zero to any number of IWBs.

IWWTGL The GICv5 system architecture maintains the Arm CPU architecture security guarantees. As in the PE architecture,
the IRSs and ITSs can support multiple Security states and access to memory respect that each location in memory
belongs to a separate PAS. For a system that implements the Realm Management Extension (RME), this means all
accesses are subject to Granule Protection Checks (GPCs). The GPC mechanism can be implemented in various
ways and are outside the scope of this document. Even though the GPC is shown in Figure 3.1 as occurring
downstream from the ITS and IRS, it is possible to leverage the SMMU GPC mechanism for this purpose. See
Arm® System Memory Management Unit Architecture Specification, SMMU architecture version 3[5] for more
information.

Memory-mapped accesses to the IWB, ITS, and IRS registers are also subject to PAS filtering[6]. PAS filtering
For the IWB occurs at the level of individual registers. PAS filtering for the ITS and IRS is performed at page
granularity, either internally or externally to the component.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

80

Chapter 3. GICv5 system architecture
3.1. Interrupt Domains

3.1 Interrupt Domains

ILTWNQ In a GICv5 system, the supported Interrupt Domains depend on the Security states implemented by the PEs. See
2.3 Interrupt Domains for more information.

IZGKPP Each GICv5 system component may implement support for a subset of the Interrupt Domains supported by the
PEs, except from the IRS, which implements support for the same set Interrupt Domains as the connected PEs.
See 4.3 IRS Domains for more information.

Note

Implementing different Security state configurations across PEs in a system is not supported. This restriction
exists for reasons outside the scope of this specification See [2] for more information.

RVDTVW A Physical Interrupt Domain is associated with a Security state and a PAS:

Physical Interrupt Domain Security state PAS

Non-secure Non-secure Non-secure

Secure Secure Secure

Realm Realm Realm

When the EL3 Interrupt Domain is supported, it is either associated with the Secure or Root Security state and
PAS as follows:

Supported Security states EL3 Interrupt Domain Security state EL3 Interrupt Domain PAS

Non-secure, Secure Secure Secure

Non-secure, Realm, Root Root Root

Non-secure, Realm, Secure, Root Root Root

IKGBSN The PAS associated with a Physical Interrupt Domain is used in the following scenarios:

• When memory-mapped registers of the IWB, ITS, and IRS are accessed, the PAS defines the Physical
Interrupt Domain of the registers being accessed.

• When the ITS and IRS access data structures stored in memory, the access is always associated with a
Physical Interrupt Domain and uses the PAS associated with that Physical Interrupt Domain.

If the GIC performs a memory access which fails a GPC, it experiences an external abort. The behavior for each
GIC component is described in Chapter 4 Interrupt routing service (IRS) and Chapter 5 Interrupt translation
service (ITS).

DVJVNZ The GICv5 architecture defines the Most Privileged Security State (MPSS) and Most Privileged PAS (MPPAS) as
follows:

Supported Security states MPSS MPPAS

Non-secure Non-secure Non-secure

Secure Secure Secure

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

Chapter 3. GICv5 system architecture
3.1. Interrupt Domains

Supported Security states MPSS MPPAS

Non-secure, Secure Secure Secure

Non-secure, Realm, Root Root Root

Non-secure, Realm, Secure, Root Root Root

See also:

• 2.3 Interrupt Domains
• Chapter 4 Interrupt routing service (IRS)
• Chapter 5 Interrupt translation service (ITS)
• Chapter 6 Interrupt Wire Bridge (IWB)

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

Chapter 3. GICv5 system architecture
3.2. Communication between GIC system components

3.2 Communication between GIC system components

RZFCFX The mechanisms used for communication between GICv5 system components are IMPLEMENTATION DEFINED.

For example, the mechanism used by the ITS to send an interrupt message to the IRS is IMPLEMENTATION
DEFINED.

DZFVZM The architecture supports the following flows of events between GICv5 system components:

• An IWB can send events to an ITS.
• An ITS can send events to an IRS.

Each communication path involves a source and a destination.

When a source sends an event to the destination, the event is Accepted when the destination has sent a reply to the
source confirming that it has received the event.

An Accepted event is not guaranteed to have been handled by the destination. This means that all of the following
are true:

• If the destination is an ITS, an Accepted event is not guaranteed to have been translated by the ITS.
• If the destination is an IRS, an Accepted event is not guaranteed to have been processed by the IRS.

See also Chapter 3 GICv5 system architecture

IVFJSX An event is always Accepted by the destination regardless of whether the destination is enabled or disabled.

IMNGPV An example interconnect of two GICv5 system components is the AMBA® AXI Protocol Specification[7].

In this example, the source is a manager and the destination is a subordinate.

The subordinate has Accepted an event when it has sent a Write Response to the manager.

Further, in this example, an ITS would send a Write Response to the IWB when the ITS has Accepted an event
from the IWB.

In this example, it is assumed that transactions are not Bufferable. This means that AxCACHE[0] is deasserted and
therefore no intermediate send a Read or Write Response to the manager.

IMZDPH The GICv5 Stream Protocol defines an optional standard interface between an IRS and a CPU interface.

The GICV5 Stream Protocol defines a two-way communication mechanism that does not rely on the concept of
Accepted as defined in this specification.

See Chapter A1 GICv5 Stream Protocol overview for more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

83

Chapter 3. GICv5 system architecture
3.3. Coherency considerations for GIC data structures

3.3 Coherency considerations for GIC data structures

DNCTBH PEs and GIC system components communicate using shared data structures.

IJPHKW The GIC system components may be fully coherent with PE caches, IO-coherent, or not coherent.

Software must take actions to ensure that writes from the PE are visible to the GIC, and vice versa.

SMXSNW Arm expects that firmware data structures describe to the OS or hypervisor whether the GIC is cache-coherent
with PEs and is in the same Inner Shareability domain.

IQGRVW Arm recommends that all GIC system components are in the same Inner Shareability domain as the PEs.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter 4
Interrupt routing service (IRS)

IBRKFW An IRS implements support for LPIs and SPIs. An IRS is either connected to one or more PEs, or it is stand-alone
with no direct PE connections. A system can contain multiple IRSs.

The GICv5 architecture does not define the topological relationship between PEs and IRSs. Each PE is connected
to exactly one IRS and an IRS can be connected to multiple PEs. An IRS can also be standalone and not be
connected to any PE. This can be useful to support system topologies where an IRS and its associated ITS are
located separately from PEs, allowing a more flexible routing of interrupts and power management of components
close to the PE.

The mechanisms by which multiple IRSs communicate are IMPLEMENTATION DEFINED. The IRS stores interrupt
state and configuration in memory provisioned to the IRS by software. In a system with multiple IRSs, the Affinity
of an interrupt in an Interrupt Domain can be changed from a PE connected to an IRS to another one connected to
another IRS, without losing interrupt state or configuration, if both IRSs can access the provisioned memory for
that Interrupt Domain.

To support interrupt signaling in scenarios where memory is unavailable, such as during early boot, power
transitions, or RAS handling, the IRS supports SPIs.

SPIs do not require a data structure allocated by software in order to be signaled, or to be managed and handled by
PEs. Every SPI is assigned to an Interrupt Domain and the IRS exposes a programming interface to configure
which Interrupt Domain an SPI is assigned to.

The IRS also provides support for virtual interrupts and manages VMs and VPEs. The IRS supports storing
interrupt state and configuration in memory-backed data structures.

An IRS is responsible for:

• Generating SET_EDGE, SET_LEVEL, and CLEAR interrupt events for SPIs as a result of interrupts
connected to the IRS being signaled.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter 4. Interrupt routing service (IRS)

• Receiving SET_EDGE, SET_LEVEL, and CLEAR interrupt events from ITSs for LPIs.
• Generating SET_EDGE LPI interrupt events as a result of writes to the SETLPI register, if implemented.
• Selecting the physical candidate HPPIs among LPIs and SPIs for each PE connected to the IRS.
• Selecting the virtual candidate HPPIs among virtual LPIs and virtual SPIs for each resident VPE on PEs

connected to the IRS.
• Delivering virtual and physical HPPIs to the CPU interface.
• Processing Interrupt Effects from GIC System instructions executed on PEs.
• Managing residency state of VPEs on PEs, including:

– Generating doorbell interrupts for non-resident VPEs.

INZXZQ In this section, the term PE(s) refers to PE(s) connected to the IRS.

IFZLBL Arm strongly recommends that all PEs connected to a GIC are application PEs running a common system software
stack.

The architecture permits the PEs connected to an IRS to be a combination of application PEs and non-application
PEs, as long as all PEs implement a GICv5 compliant CPU interface.

However, the GIC architecture does not provide features to provide isolation or prevent interference between
equally privileged host software running in the same Interrupt Domain. Therefore, if the PEs connected to an IRS
are running separate system software stacks, a mechanism to manage the shared IRS and other GIC components
must be supported by system software.

IQBJVX The IRSs replace parts of the functionality of the Redistributors and Distributors in GICv3.

IGCWBM The IRS manages LPIs and SPIs.

RFMTPZ When a system includes more than one IRS, each IRS supports the same number of interrupt ID bits for each
interrupt type.

RDRRHH Each PE is associated with exactly one IRS. Zero or more PEs can be connected to a single IRS.

DLJQSX The IRS where an interrupt is signaled is referred to as the local IRS for that interrupt.

Similarly, the IRS that a PE is connected to is referred to as the local IRS for that PE.

DCHPRY A system with more than one IRS is referred to as a multi-IRS system.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

86

Chapter 4. Interrupt routing service (IRS)
4.1. Communication between the IRS and the CPU interface

4.1 Communication between the IRS and the CPU interface

RHWCBT The mechanism for communication between a CPU interface in a PE and the local IRS is IMPLEMENTATION
DEFINED.

INTXCC Arm recommends that an implementation uses the GICv5 Stream Protocol for communication between PEs and
IRSs.

See Chapter A1 GICv5 Stream Protocol overview for more information.

ILTXQF Access to virtual interrupt configuration and state is made in the context of the resident VPE on the PE. When the
PE switches the Current Physical Interrupt Domain, the PE and the IRS must ensure that software cannot access
configuration and state for interrupts in the context of a VPE from the previous Physical Interrupt Domain. The
GICv5 Stream Protocol avoids this by tagging all commands with the Physical Interrupt Domain.

ISBMVW The IRS manages the state and configuration of the LPIs and SPIs, and selects a candidate HPPI from among LPIs
and SPIs for each Interrupt Domain for each connected PE. The PE selects the HPPI for each Interrupt Domain
from the candidate HPPI and the PPIs managed in the PE.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

87

Chapter 4. Interrupt routing service (IRS)
4.2. Signaling interrupts

4.2 Signaling interrupts

DYDNDD An interrupt event is processed when the Interrupt Effects of the event are Ordered-before an Interrupt Read Effect
to the Interrupt Location.

DKLYXV An interrupt is signaled to an IRS when one of the following events occurs:

• An interrupt connected to the IRS as an SPI is asserted or de-asserted and generates an interrupt event to
change the Pending state of the SPI.

• An ITS associated with the IRS generates an interrupt event to change the Pending state of an LPI.
• A write to the IRS_SETLPI register occurs to set the Pending state of an LPI.
• The IRS processes Interrupt Effects of a GIC System instruction that sets the Pending state of an interrupt.

RJVVSD Updates to the Pending state of interrupts occur only in response to defined signaling events. Speculative updates
are not permitted.

RQHGBY The mechanism for signaling SPI interrupt events to the IRS is IMPLEMENTATION DEFINED.

RMJNXL The mechanism for communication between an ITS and the IRS is IMPLEMENTATION DEFINED.

RFNGRT When multiple interrupt events of different types are generated for the same Interrupt Location, their Interrupt
Effects are ordered in the same order in which the events are generated.

RVGJBD An interrupt event received from an ITS contains the following information:

• Interrupt Domain.
• Physical or virtual interrupt.
• VM ID for a virtual interrupt.
• LPI INTID.
• Event type: SET_EDGE, SET_LEVEL, or CLEAR.

RZHJMZ If more than one mapping for an LPI exists, either in a single ITS or across multiple ITSs, such that both mappings
are capable of generating events for the same LPI to one or more IRSs concurrently, all of the following are true
for events with multiple mappings:

• The order in which the events are received by the IRSs is UNKNOWN.
• The order in which the events are processed by the IRSs is UNKNOWN.
• It is CONSTRAINED UNPREDICTABLE whether the IRS processes all the events or ignores some of the events.

RDJDSY The following sequence avoids the CONSTRAINED UNPREDICTABLE behavior caused by multiple concurrent ITS
mappings to the same LPI:

1. For each ITS where a mapping to the LPI exists, the following sequence is performed:
1. The mapping is removed.
2. A synchronization request is issued.
3. A synchronization request is issued to the connected IRS.

2. A new mapping can be created on an ITS to the LPI.

See also 5.2.4 ITS synchronization requests and 4.5 IRS synchronization requests.

IJNQGW An IRS supports the following interrupt events generated for SPIs or received from ITSs to update the state and
configuration of an interrupt:

• SET_EDGE.
• SET_LEVEL.
• CLEAR.

An IRS supports the following interrupt events when processing Interrupt Effects of a GIC System instruction that
sets the Pending state of an interrupt:

• SET.
• CLEAR.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

88

term:irs-processed

Chapter 4. Interrupt routing service (IRS)
4.2. Signaling interrupts

When a write to IRS_SETLPI occurs, the IRS generates a SET_EDGE event locally for the specified LPI.

RHHKMN When the IRS processes an interrupt event, there is an Interrupt Write Effect to the interrupt state as follows:

• For a SET event, the interrupt Pending state is set to Pending.
• For a SET_EDGE event, the interrupt Handling mode is set to Edge and the Pending state is set to Pending.
• For a SET_LEVEL event, the interrupt Handling mode is set to Level and the interrupt Pending state is set to

Pending.
• For a CLEAR event, the interrupt Pending state is set to Idle.

IDRNMD As interrupts are asynchronous, the Interrupt Write Effects of an operation by a PE might be overwritten by a
subsequent event received from the interrupt source.

For SPIs where the Trigger mode is level-sensitive and where an interrupt signal is physically connected to the SPI,
updates to the Pending state from GIC System instruction executed on a PE are permitted to be ignored by the IRS,
as the Pending state may be determined by the current state of signal.

RQKYQM When a mapping for an LPI exists and the mapping is for events generated by an IWB, and the events are for a
wire that is configured as level-sensitive in the IWB, the IRS is permitted to generate a CLEAR event for the LPI
when the ITS mapping is updated or when the wire is assigned to a different Interrupt Domain in the IWB.

RDQTDV The SET_EDGE and SET_LEVEL interrupt events generate the following Interrupt Write Effects:

• An Interrupt Write Effect E1 that updates the Handling mode.
• An Interrupt Write Effect E2 that updates the Pending state.

For these events, E1 is Ordered-before E2.

INFMBM The IRS_SETLPI register can be used in a system that does not support virtualization to support MSIs without the
use of an ITS.

A hypervisor can also emulate this architected functionality to allow a VM to program a device assigned to the
VM to generate an MSI without requiring the hypervisor to emulate an ITS.

RLCSNJ If an interrupt event specifies an unreachable INTID at the IRS where it is signaled, the event has no effect on any
interrupt.

IXZDTX If an interrupt event specifies an unreachable INTID, and software error reporting is supported, this is reported
with an appropriate error code in IRS_SWERR_STATUSR.

See also:

• 2.2 The GICv5 CPU interface
• Chapter 5 Interrupt translation service (ITS)

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

89

Chapter 4. Interrupt routing service (IRS)
4.3. IRS Domains

4.3 IRS Domains

RTCWZB The IRSs support interrupt routing and delivery with separate configurations for each supported Interrupt Domain.

DLDYMZ The GICv5 architecture defines an IRS Domain that provides interrupt routing and management services for an
Interrupt Domain. An IRS Domain comprises register state and interrupt configuration structures across all IRSs in
the system. Each IRS Domain is configured independently from other IRS Domains. The IST and the VM table
are shared between all IRSs for the same IRS Domain, but are not shared across IRS Domains. The data structures
are accessed with the PAS associated with the IRS Domain.

IFGLKF Figure 4.1 shows an overview of the IRS Domains and the register frames for each IRS Domain for a single-IRS
system.

MemoryIRS

Non-secure Domain

Config frame

IST base
address

VM table
base address

NS PAS

Interrupt State
Table (IST)

Realm Domain
…

Secure Domain
…

EL3 Domain
…

Virtualization
data

structures

SETLPI frame

Set LPI
register

Realm PAS

…

Secure PAS

…

Root PAS

…

Figure 4.1: IRS Domains in a single-IRS system.

RGSNPJ Each IRS implements a separate IRS Domain for each Security state supported by the PEs in the system. Every PE
connected to an IRS implements the same set of Security states.

See 3.1 Interrupt Domains for more information about the relationship between Security states and Interrupt
Domains.

IKZGKR An IRS Domain is associated with the PAS of its corresponding Interrupt Domain.

RXXWDT An IRS exposes separate IRS configuration register frames for each IRS Domain.

ICKHSF The IRS Domain for an IRS configuration register frame is reported by IRS_IDR0.INT_DOM.

ITCTJK A VM is associated with exactly one IRS Domain which defines the Security state of the VM and its virtual
interrupts.

Similarly, the VPEs in the VM are associated with the IRS Domain and Security state of the VM.

For example, a VPE in a Non-secure VM receives Non-secure virtual interrupts, and a VPE in a Realm VM
receives Realm virtual interrupts.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter 4. Interrupt routing service (IRS)
4.3. IRS Domains

RNKVFJ Each non-EL3 Physical Interrupt Domain has a separate namespace for Virtual Machines (VMs).

RMHKVK VMs are supported for the Secure, Realm, or Non-secure Interrupt Domains. VMs are not supported in the EL3
Interrupt Domain.

See also:

• 3.1 Interrupt Domains

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter 4. Interrupt routing service (IRS)
4.4. IRS Configuration

4.4 IRS Configuration

RJJPMF For each Interrupt Domain, each IRS exposes the following register frames:

• IRS_CONFIG_FRAME: An IRS configuration frame for settings that are common to all PEs connected to
the IRS.

• IRS_SETLPI_FRAME: If IRS_IDR0.SETLPI is 1, a SETLPI register frame.

For each Interrupt Domain for each IRS, the IRS configuration register frame occupies a 64KB region in the
system address space.

For each Interrupt Domain for each IRS, if IRS_IDR0.SETLPI is 1, the IRS SETLPI register frame occupies a
64KB region in the system address space.

Each register frame is 64KB-aligned.

See 10.2 IRS register frames for more information.

IGVFTM There is at most one SETLPI register frame for each IRS for an Interrupt Domain.

IMZDWR The SETLPI register frame is not implemented when support for physical LPIs is not implemented.

SMTWNL The base addresses of the IRS configuration frame and the IRS SETLPI register frame, if implemented, for each
IRS and Interrupt Domain, are provided to software by firmware.

RQHDWM The value of IRS_IDR0.SETLPI is the same for all IRSs and all Interrupt Domains in the system.

INCXKF Each IRS has a unique IRSID which is reported in IRS_IDR0.IRSID. The IRSID is unique for each IRS in the
system. The IRSID reported in IRS_IDR0.IRSID is the same for each IRS_CONFIG_FRAME that belongs the
same IRS.

INRPRB The number of PEs connected to an IRS is reported by IRS_IDR1.PE_CNT.

RFRRGD Every PE is assigned a unique PE interrupt Affinity ID across all IRSs in the system.

RGSKQZ The PE interrupt Affinity ID is the same across all implemented Interrupt Domains.

RYBQML If a system is reset with the same configuration, each PE has the same interrupt Affinity as before the reset.

IXDFPV If a system is reset and reconfigured in a way that presents a different system, for example by physically partitioning
IRSs and PEs in a different topology after the system reset, each PE may be assigned a new interrupt Affinity ID in
the new topology.

ICWCZR The PE interrupt Affinity ID is reported by the PE in ICC_IAFFIDR_EL1.

IKZCQC The PE interrupt Affinity ID is used to configure the target PE for Targeted interrupts.

It can also be used to discover which IRS a PE is connected to and vice versa.

ILXNBN Information about each PE connected to an IRS may be accessed by writing to IRS_PE_SELR to select a PE and
accessing the following registers:

• IRS_PE_STATUSR.
• IRS_PE_CR0.

IRS_PE_STATUSR.IDLE reports whether the effects of a write to any of the above registers, including
IRS_PE_SELR, have completed.

IRS_PE_STATUSR.V reports whether the value written to IRS_PE_SELR selects a valid PE connected to the IRS.

IRS_PE_CR0 provides access to configuration settings for the selected PE.

SHHSMP To configure a PE connected to an IRS, software performs the following sequence:

1. Software selects the PE by writing to IRS_PE_SELR.
2. Software polls IRS_PE_STATUSR.IDLE until it reads as 1 and ensures that IRS_PE_STATUSR.V is 1.
3. Software can access the configuration of a PE by accessing IRS_PE_CR0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter 4. Interrupt routing service (IRS)
4.4. IRS Configuration

4. If software wrote to the PE configuration register, software polls IRS_PE_STATUSR.IDLE until it reads as 1
to ensure the effects of the write are complete.

RKCZYL When an IRS is reset, each PE connected to the IRS is reset as follows:

• If the IRS supports 1ofN interrupt routing, 1ofN PE selection is enabled for the PE.

IPPXSP The configuration of each PE at IRS reset is consistent with a read of IRS_PE_CR0.DPS returning 0 when the PE
is selected in IRS_PE_SELR and there was no write to IRS_PE_CR0 since the reset.

IMCXJN Arm expects that firmware describes the association of PEs to an IRS to system software using firmware data
structures.

The architecture also provides a mechanism for software to discover the association of PEs to an IRS which may
be useful for system bring-up and debugging.

SBCBQP Software can discover the association of IRSs and PEs by following this sequence:

1. When a PE is powered on, software reads ICC_IAFFIDR_EL1 to obtain the Interrupt Affinity ID for that PE.
2. For each IRS, software writes the Interrupt Affinity ID for that PE to IRS_PE_SELR and performs the

following actions:
1. Poll IRS_PE_STATUSR.IDLE until it reads as 1.
2. Read IRS_PE_STATUSR.V. If the value returned is 1, the IAFFID specifies a valid PE connected to that

IRS.
3. Otherwise, continue to the next IRS.

IHTTRN The number of supported IAFFID bits for physical interrupts is reported in IRS_IDR1.IAFFID_BITS.

RGCGDD The number of supported IAFFID bits for physical interrupts is the same across all IRSs and Interrupt Domains.

IZFSNT The number of supported IAFFID bits is sufficient to uniquely identify all physical PEs in the system.

IKVXQW The number of supported VPE ID bits for virtual interrupts is reported in IRS_IDR4.VPE_ID_BITS.

RNPTWH When processing an Interrupt Write Effect generated by a GIC System instruction that updates the Affinity of an
interrupt, all of the following are true:

• If the interrupt is a physical interrupt, unimplemented upper bits of IAFFID above IRS_IDR1.IAFFID_BITS
are RES0.

• If the interrupt is a virtual interrupt, unimplemented upper bits of IAFFID above IRS_IDR4.VPE_ID_BITS
are RES0.

See 4.9.2 The VPE table for more information about the relationship between the IAFFID of a virtual interrupt
and the VPE ID.

RQQCXG When IRS_CR0.IRSEN is 1 and IRS_CR0.IDLE is 1, an IRS is enabled for the Interrupt Domain and the IRS
selects a candidate HPPI for each connected PE for the Interrupt Domain, following the rules in this chapter.

Otherwise, the IRS is disabled for the Interrupt Domain and the IRS does not select any candidate HPPI for the
connected PEs for the Interrupt Domain.

IZYYLL An IRS can access data structures to which it has a valid pointer, irrespective of whether the IRS is enabled for the
corresponding Interrupt Domain.

SSMLQY To quiesce IRS accesses to IRS data structure, software makes the physical IST and VM table invalid, and polls the
relevant status bits to ensure that all IRS memory accesses to these data structures have completed.

RGQZNP An IRS processes incoming interrupt events irrespective of the value of IRS_CR0.IRSEN.

RLKCZP An IRS processes Interrupt Effects generated by GIC System instructions, irrespective of the value of
IRS_CR0.IRSEN.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

term:irs-processed

Chapter 4. Interrupt routing service (IRS)
4.4. IRS Configuration

ITQMVQ Interrupts may need to be delivered to an IRS before the IRS has been enabled.

For example, an edge-triggered SPI may cause wake-up of an IRS that is in a low power mode and the signal
should result in the Pending state of the SPI being updated as soon as the IRS is powered on.

See 4.11 IRS power management for more information.

See also:

• 2.6.1 LPI and SPI configuration
• 4.4.1 Enabling and disabling the IRS
• 4.6 Interrupt configuration and state
• 4.7 The interrupt state table (IST)
• 4.8 Physical interrupts
• 4.9 Virtualization data structures

4.4.1 Enabling and disabling the IRS

RJHYGJ When a write to IRS_CR0.IRSEN changes the value from 0 to 1, the IRS begins a transition from disabled to
enabled for the Interrupt Domain.

The transition from disabled to enabled is complete when IRS_CR0.IDLE is 1.

The transition from disabled to enabled completes in finite time.

Enabling an IRS does not affect the state and configuration of LPIs.

RSBXYL When a write to IRS_CR0.IRSEN changes the value from 1 to 0, the IRS begins a transition from enabled to
disabled for the Interrupt Domain.

The transition from enabled to disabled is complete when IRS_CR0.IDLE is 1.

The transition from enabled to disabled completes in finite time.

When the transition from enabled to disabled is complete, for each candidate HPPIs that were previously selected
by the IRS for connected PEs for the Interrupt Domain while the IRS was enabled, one of the following is true:

• The candidate HPPI is acknowledged by the PE before the IRS is disabled.
• The candidate HPPI is not acknowledged and is no longer selected as the candidate HPPI for the PE.

IZMTMZ The architecture allows enabling an IRS for an Interrupt Domain either before or after software provisions a valid
physical IST. See 4.8.1 Physical LPIs for more information.

See also:

• 4.7 The interrupt state table (IST)
• 4.9 Virtualization data structures

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Chapter 4. Interrupt routing service (IRS)
4.5. IRS synchronization requests

4.5 IRS synchronization requests

RHHDTJ Software can request synchronization of interrupt events for the IRS Domain by writing 1 to IRS_SYNCR.SYNC.

Writing 1 to IRS_SYNCR.SYNC requests synchronization of interrupt events and ensures that the following events
for the IRS Domain are processed:

• All interrupt events generated as a result of an SPI being asserted or de-asserted before the write to
IRS_SYNCR.

• All interrupt events Accepted by the IRS before the write to IRS_SYNCR.
• All interrupt events generated as a result of a write to IRS_SETLPI before the write to IRS_SYNCR.
• All VPE doorbell events generated before the write to IRS_SYNCR.

Following a write to IRS_SYNCR.SYNC that requests synchronization, when IRS_SYNC_STATUSR.IDLE is 1,
all of the following are true:

• Any Interrupt Write Effect E1 to an Interrupt Location from a processed event is Ordered-before an Interrupt
Read Effect E2, when all of the following are true:

– There is a Memory Read Effect E3 to IRS_SYNC_STATUSR that reads IRS_SYNC_STATUSR.IDLE is
0.

– E1 is Ordered-before E3.
– E3 is Ordered-before E2.

See 2.12 Interrupt ordering model and synchronization requirements for more information about observability of
Interrupt Effects by PEs.

Note

An interrupt that meets the candidate HPPI conditions after an interrupt event has been processed is not required
to be acknowledged by an interrupt acknowledge instruction executed on a PE following an IRS synchronization
request. This is because selecting the candidate HPPI is only required to happen in finite time. See 4.8.4
Physical interrupt signaling and 4.10.4 Virtual interrupt signaling for more information.

IMJPSN An interrupt event generates the following Interrupt Write Effects:

• If the interrupt event type is SET_EDGE or SET_LEVEL, an Interrupt Write Effect E1 that updates the
Pending state and an Interrupt Write Effect E2 that updates the Handling mode.

• If the interrupt event type is SET or CLEAR, an Interrupt Write Effect that updates the Pending state.

SBBHRQ Software can use synchronization of events to ensure that interrupt events have been processed before repurposing
an interrupt.

For example, if software disables a PCIe function, it can ensure that no additional Interrupt Effects originate from
that function by performing the following sequence:

1. Ensure that all MSIs have completed from the PCIe function.
2. Issue a synchronization request to the ITS and poll for completion.
3. Issue a synchronization request to the IRS and poll for completion.

After this sequence, software can remove any old translations in the ITS and create new translations to the same
INTID, knowing that Interrupt Effects to the INTID can only come from the new translations.

IMXYLG In a multi-IRS system, an IRS synchronization request applies to all IRSs in the system for the IRS Domain.

RZPNFL If a write to IRS_SYNCR occurs when IRS_SYNC_STATUSR.IDLE is 0 on any other IRS for the same IRS
Domain, it is CONSTRAINED UNPREDICTABLE whether the write synchronizes any interrupt events.

See also:

• 3.2 Communication between GIC system components

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

95

Chapter 4. Interrupt routing service (IRS)
4.5. IRS synchronization requests

• Chapter 5 Interrupt translation service (ITS)
• 5.2.4 ITS synchronization requests

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter 4. Interrupt routing service (IRS)
4.6. Interrupt configuration and state

4.6 Interrupt configuration and state

IJVVTZ The IRS manages the following states and configurations for each LPI and SPI:

• Pending.
• Active.
• Enabled.
• Handling mode.
• Priority.
• Routing mode.
• Affinity.

IBWPPP The IRS further manages the following for each SPI:

• Trigger mode.
• Interrupt Domain assignment.
• VM assignment.

DHJCLV An INTID specifying an LPI or SPI is reachable if the INTID.ID is within the configured range for the interrupt
type and if the IRS can access its configuration and state. Otherwise, the INTID is unreachable.

RPGDXN When the PE executes any of the following GIC System instructions to request the configuration of an unreachable
INTID, the IRS indicates a failure in the response to the PE:

• GIC CDRCFG.
• GIC VDRCFG.
• GIC LDRCFG.

When the PE executes any other GIC System instruction that accesses the state and configuration of an unreachable
INTID, there are no Interrupt Effects generated as a result of executing the instruction.

ISRPZD The maximum number of INTID.ID bits supported by an IRS is reported by IRS_IDR2.ID_BITS.

RSVDYQ The value of IRS_IDR2.ID_BITS is the same for all IRSs for all Interrupt Domains in the system.

IYKSNC Arm recommends that an IRS supports a number of INTID.ID bits greater than or equal to the number of INTID.ID
bits supported by the PEs connected to the IRS.

RBBZWX If an IRS supports fewer INTID.ID bits than a connected PE and the PE that specifies an INTID.ID beyond the
INTID.ID range supported by the IRS, the INTID specifies an unreachable interrupt.

See also 2.6.1 LPI and SPI configuration.

IGTVLX Support for physical LPIs is optional. Whether the IRS supports physical LPIs is reported in IRS_IDR2.LPI.

IBNDTT Arm recommends that IRSs in a system designed to run standard operating systems implements support for
physical LPIs. If physical LPIs are not implemented, sufficient physical SPIs that are not connected to any interrupt
sources must be implemented to be used for IPIs.

IYKQDJ Arm expects that support for LPIs is required for GICv5 systems in a future version of the Arm® Base System
Architecture 1.0C[2].

RMGQGH When the IRSs do not implement support for LPIs, there are no ITSs or IWBs in the system.

RRCGPT The value of IRS_IDR2.LPI is the same for all IRSs for all Interrupt Domains in the system.

IZKLJR The minimum number of LPI INTID.ID bits supported by an IRS is reported in IRS_IDR2.MIN_LPI_ID_BITS.

Arm expects that most hardware implementations will not require a minimum number of LPI INTID.ID bits.
However, specifying a minimum number of LPI INTID.ID bits is useful for virtualization.

RYHQLW The value of IRS_IDR2.MIN_LPI_ID_BITS is the same for all IRSs for all Interrupt Domains in the system.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

Chapter 4. Interrupt routing service (IRS)
4.6. Interrupt configuration and state

IPQBVF The definition of reachable and unreachable interrupts applies to both physical and virtual interrupts.

The conditions for when a physical interrupt is reachable differ from when a virtual interrupt is reachable.

See 4.8.1 Physical LPIs and 4.8.2 Physical SPIs for more information about when physical interrupts are
reachable.

See 4.10 Virtual interrupts for more information about when virtual interrupts are reachable.

RZMRVR The Handling mode property of an interrupt controls whether the interrupt should be handled using edge-triggered
or level-sensitive semantics as follows:

• When the interrupt Handling mode is Edge, the IRS clears the Pending state when the interrupt is
acknowledged by the PE.

• When the interrupt Handling mode is Level, the IRS does not clear the Pending state when the interrupt is
acknowledged by the PE.

IXBVHV The Priority property stores the Priority of an Interrupt.

IXWHLD The number of implemented Priority bits in the IRS is reported by IRS_IDR1.PRI_BITS, and the minimum is 1 bit.

The number of Priority bits supported may be different across Interrupt Domains.

IFRYMQ Some operating systems have requirements for a minimum number of interrupt priority levels. These requirements
will be captured as part of the Arm® Base System Architecture 1.0C[2].

RTZYHS For each Interrupt Domain, the number of supported Priority bits for the Interrupt Domain is the same across all
IRSs in the system.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

Chapter 4. Interrupt routing service (IRS)
4.7. The interrupt state table (IST)

4.7 The interrupt state table (IST)

ILQMKQ An Interrupt State Table (IST) is used by the IRS to store interrupt state and configuration.

DPDQBB An IST uses either a linear or 2-level structure.

For a linear IST, all of the following are true:

• The level 1 IST is omitted.
• The IST consists of a single level 2 IST.

DXTNLJ An IST is used to manage the state and configuration of interrupts in each of the following IST contexts:

• Physical LPI IST context: Used to manage physical LPIs for each Interrupt Domain. See 4.8.1 Physical
LPIs for more information.

• Virtual LPI IST context: Used to manage virtual LPIs for VMs. See 4.10.1 Virtual LPIs for more information.
• Virtual SPI IST context: Used to manage virtual SPIs for VMs. See 4.10.2 Virtual SPIs for more information.

DVBJJZ For a linear IST, the base address of the IST specifies the location of the level 2 IST.

For a 2-level IST, the base address of the IST specifies the location of the level 1 IST.

Figure 4.2 shows an overview of the linear and 2-level structure.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter 4. Interrupt routing service (IRS)
4.7. The interrupt state table (IST)

Linear interrupt state table (IST)IST base address

Level 2 IST
L2_ISTE
L2_ISTE
L2_ISTE
L2_ISTE
L2_ISTE

…

2-level interrupt state table (IST)

Level 2 IST

IST base address

L2_ISTE
L2_ISTE
L2_ISTE
L2_ISTE
L2_ISTE

…

Level 1 IST

L1_ISTE (VALID=1)
L1_ISTE (VALID=0)
L1_ISTE (VALID=0)
L1_ISTE (VALID=1)
L1_ISTE (VALID=0)

…

Level 2 IST
L2_ISTE
L2_ISTE
L2_ISTE
L2_ISTE
L2_ISTE

…

Figure 4.2: IST structure overview.

SNWLKP Software is responsible for allocating the IST from memory in the PAS associated with the Interrupt Domain where
the IST is used.

IMWLZJ An IST is indexed using the INTID.ID for an interrupt within the configured range for the IST.

DBXYVH An IST is either considered valid or invalid.

The mechanism that determines whether the IST is valid or invalid depends on the IST context used.

When the IST transitions from being invalid to being valid, the IST becomes valid.

When the IST transitions from being valid to being invalid, the IST becomes invalid.

IVVKXF An IST is either valid or invalid across all IRSs.

RSCLJY When an IST is valid, the IRS Domain is permitted to access the IST for any reason, including speculative reads.

When an IST is invalid, the IRS Domain does not access the IST.

DXQVBD An IST stores a number of INTIDs for a single INTID.Type.

The mechanism that determines the number of INTIDs stored in an IST depends on the IST context used.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter 4. Interrupt routing service (IRS)
4.7. The interrupt state table (IST)

IXTPFF An IST is used to manage the state and configuration for each INTID in the configured interrupt range for the IST
context used.

INQBVH The configuration of an IST is controlled by the following parameters:

STRUCTURE Selects if the IST uses a linear or 2-level structure.

ID_BITS Selects how many INTIDs are stored in the IST.

The number of INTIDs stored in the IST determines the size of the single level 2 IST when using a linear
table and the size of the level 1 IST when using a 2-level table.

The number of INTIDs stored in the IST also limits the supported size of each level 2 IST entry when the
IRS stores metadata in the IST.

L2SZ For a 2-level IST, selects the size of each level 2 IST. The number of INTIDs stored in each level 2 IST
depends on the size of a level 2 IST entry.

Arm recommends a linear IST is used when the total number of INTIDs can be stored in a single level 2 IST.

Level 2 IST entry size Selects the size of each level 2 IST entry.

The supported entry sizes depend on the number of INTIDs stored in the IST as well as the IRS requirements
for storing metadata in the IST. See 4.7.4 IST metadata for more information.

These parameters are programmed in a way that is specific to the IST context used. For the physical IST context,
each parameter is programmed in the physical IST base and configuration registers. For the virtual IST context,
each parameter is programmed in the VM table entry.

See 4.8.1 Physical LPIs, 4.10.1 Virtual LPIs, and 4.10.2 Virtual SPIs for more information.

DTWFKY The size of the IST is calculated based on the number of INTIDs and the size of each entry, including any metadata
if implemented, as follows:

• For a linear IST, the size of the level 2 IST is (Number of INTIDs) * (Level 2 IST entry size).

• For a 2-level IST, the size of the level 1 IST is ((Number of INTIDs) / (Level 2 IST size / Level 2 IST entry
size)) * (Level 1 IST entry size).

IQBVSN IRS_IDR2.IST_LEVELS reports whether 2-level IST support is implemented.

RZGTCN The value of IRS_IDR2.IST_LEVELS is the same for all IRSs for all Interrupt Domains in the system.

INCSJH For a 2-level IST, an implementation may only implement support for a subset of the possible L2SZ values. The
supported L2SZ values are reported by IRS_IDR2.IST_L2SZ.

RHVLTJ The value of IRS_IDR2.IST_L2SZ is the same for all IRSs for all Interrupt Domains in the system.

IPSTQD Arm strongly recommends that an implementation implements the L2SZ values corresponding to the stage 1 and
stage 2 translation granule sizes in the PEs in the same system.

See also:

• 4.8.1 Physical LPIs
• 4.10.1 Virtual LPIs
• 4.10.2 Virtual SPIs

4.7.1 Level 2 IST management

DHMZZP A level 2 IST is considered valid, if the IST is valid and one of the following is true:

• The IST uses a linear structure.
• The IST uses a 2-level structure and the corresponding L1_ISTE.VALID is 1.

Otherwise, the level 2 IST is considered invalid.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter 4. Interrupt routing service (IRS)
4.7. The interrupt state table (IST)

DLWRCC A level 2 IST becomes valid in any of the following scenarios:

• The IST uses a linear structure and the IST becomes valid.
• The IST uses a 2-level structure and any of the following occur:

– A write to the level 2 IST map register for the IST context makes the level 2 IST valid.
– The IST becomes valid and the corresponding L1_ISTE.VALID is 1.

IXLXLR The level 2 IST map register to use depends on the IST context used.

See 4.8.1 Physical LPIs, 4.10.1 Virtual LPIs, and 4.10.2 Virtual SPIs for more information.

IZDJBW When a 2-level IST becomes valid, if L1_ISTE.VALID is 1 for more than one level 1 IST entry, more than one
level 2 IST may become valid at the same time.

RCWRMM When the IST is valid and uses a 2-level structure, if software writes to an invalid level 1 IST entry and sets
L1_ISTE.VALID to 1, the behavior of the IRS Domain is UNPREDICTABLE.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the Interrupt
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

RLFYMV If software performs a write to any field in a valid level 1 IST entry, the IRS Domain behavior is UNPREDICTABLE.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the Interrupt
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

RDDPXH To recover from UNPREDICTABLE behavior resulting from an incorrect write to a level 1 IST entry, the IST is
made invalid.

IFSYTK The architecture does not support making an individual level 2 IST invalid when using a 2-level structure for an
IST.

RFKYJV When a write to the level 2 IST map register for the IST context makes the corresponding level 2 IST valid, all of
the following are true:

• The IRS generates the following Effects:
– A Register Write Effect E1 to the status register for the IST context which sets the IDLE field to 0.
– A Memory Write Effect E2 to the Location corresponding to the level 1 IST entry which updates

L1_ISTE.VALID from 0 to 1.
– A Register Write Effect E3 to the status register for the IST context which sets the IDLE field to 1.

• There is an Intrinsic order dependency from the Register Write Effect E1 to the Memory Write Effect E2.
• There is an Intrinsic order dependency from the Memory Write Effect E2 to the Register Write Effect E3.

This means that if there is a Memory Read Effect E4 which Reads-from the Register Write Effect E3, then E2 is
Ordered-before E4.

ILNDTY When the IST is valid and uses a 2-level structure, a level 2 IST is made valid by the following sequence:

1. Software writes the address of the new level 2 IST to L1_ISTE.L2_ADDR, with L1_ISTE.VALID remaining
to be 0.

2. Software writes to the level 2 IST map register for the IST context.
3. The IRS performs a write to the level 1 IST entry that updates L1_ISTE.VALID from 0 to 1.
4. The IRS reports that the effects of the write to the level 2 IST map register for the IST context are complete.

See 3.3 Coherency considerations for GIC data structures for more information about ensuring that memory
accesses are coherent between the IRS and a PE.

RSDVFP When the IST is valid and uses a 2-level structure, if software writes to the level 1 IST entry when the status
register IDLE field is 0 for the IST context, it is CONSTRAINED UNPREDICTABLE whether the IRS writes back the
entry using the updated or old level 1 IST entry value.

The CONSTRAINED UNPREDICTABLE behavior must not result in access to memory outside the PAS associated
with the Interrupt Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS
memory access rules.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter 4. Interrupt routing service (IRS)
4.7. The interrupt state table (IST)

DXCRJV A level 2 IST becomes invalid when the IST becomes invalid.

4.7.2 Initialization of level 2 IST entries

RLXJHZ When a level 2 IST becomes valid, the behavior is UNPREDICTABLE if all of the following are true:

• IRS_IDR2.ISTMD is 1.
• The metadata area of one or more level 2 IST entries are non-zero. See 4.7.4 IST metadata for more

information about the metadata area.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the Interrupt
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

RXJJYH To recover from UNPREDICTABLE behavior resulting from a level 2 IST containing non-zero metadata becoming
valid, the IST is made invalid.

IBNPSN A level 2 IST with non-zero metadata may become valid as part of an IMPLEMENTATION DEFINED IRS restore
mechanism. See 4.11 IRS power management and 4.7.4 IST metadata for more information.

RZFBKH When a level 2 IST becomes valid and L2_ISTE.HWU is not 0b00 for one or more level 2 IST entries, the behavior
is UNPREDICTABLE.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the Interrupt
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

RXZWJX To recover from UNPREDICTABLE behavior resulting from a level 2 IST containing entries with a non-zero HWU
field becoming valid, the IST is made invalid.

IGXNWY A level 2 IST with non-zero HWU values may become valid as part of an IMPLEMENTATION DEFINED IRS restore
mechanism. See 4.11 IRS power management for more information.

RGXLJR When a level 2 IST becomes valid and L2_ISTE.Pending is 1 for one or more level 2 IST entries, it is CONSTRAINED
UNPREDICTABLE whether the INTID is selected as the candidate HPPI even though it meets the candidate HPPI
conditions.

ICLSGT If a level 2 IST containing entries with a non-zero Pending field becomes valid, once the corresponding interrupts
are made Pending as a result of an interrupt being signaled, the IRS considers the interrupt when selecting a
candidate HPPI.

IXBHGH See 4.8.4 Physical interrupt signaling and 4.10.4 Virtual interrupt signaling for more information about the
candidate HPPI conditions.

IHMFBP A level 2 IST containing Pending interrupts may become valid as part of an IMPLEMENTATION DEFINED IRS
restore mechanism. See 4.11 IRS power management for more information.

RPFQHM When a level 2 IST becomes valid, the behavior is UNPREDICTABLE if all of the following are true for one or more
level 2 IST entries:

• L2_ISTE.IRM is 1.
• L2_ISTE.IAFFID is not 0.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the Interrupt
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

RVZCQM To recover from UNPREDICTABLE behavior resulting from a level 2 IST containing entries with a non-zero 1ofN
interrupt hint becoming valid, the IST is made invalid.

IKJLYK A level 2 IST containing non-zero 1ofN interrupt hints may become valid as part of an IMPLEMENTATION DEFINED
IRS restore mechanism. See 4.11 IRS power management for more information.

4.7.3 INTID state and configuration

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

Chapter 4. Interrupt routing service (IRS)
4.7. The interrupt state table (IST)

DPTGRK For each INTID in the configured range for an IST, there is a corresponding level 2 IST entry, if the IST is valid
and one of the following is true:

• The IST uses a linear structure.
• The IST uses a 2-level structure and the level 2 IST is valid.

Otherwise, there is no level 2 IST entry corresponding to the INTID.

RRFGXL When a level 2 IST becomes valid, the configuration of each INTID is consistent with the values stored in the
corresponding IST entry.

RRFXND When the IST is valid, the state and configuration of each INTID in the configured range for the IST are coherent
across all IRSs.

RNQXGQ After a level 2 IST becomes valid, the values stored in the level 2 IST entries are UNKNOWN.

The values stored in the level 2 IST entries remain UNKNOWN after the IST becomes invalid.

RBTYMB If software performs a write to a level 2 IST entry when the IST is valid, the behavior is UNPREDICTABLE.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the Interrupt
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

RXLYLQ To recover from UNPREDICTABLE behavior resulting from an incorrect write to a level 2 IST entry, the IST is
made invalid.

4.7.4 IST metadata

IRCFTT IRS_IDR2.ISTMD reports whether an IRS stores metadata in the level 2 IST entries.

DJKSZH If an IRS stores metadata in the level 2 IST entries, the bytes containing the metadata is called the metadata area.

RWDNFJ The value of IRS_IDR2.ISTMD is the same for all IRSs for each Interrupt Domain in the system.

IHPJWB The size of a level 2 IST entry is 4 bytes, 8 bytes, or 16 bytes.

If the size of a level 2 IST entry is more than 4 bytes, the higher address bytes are RES0.

The layout of the 4 lowest address bytes is defined by the architecture in 11.2.4 L2_ISTE, Level 2 interrupt state
table entry.

ICMFVK The metadata area is stored in the highest address bytes of the IST entry.

IQRFDQ IRS_IDR2.ISTMD_SZ describes the minimum number of INTID.ID bits which requires a level 2 IST entry size of
16 bytes to store metadata.

RTHDPW The value of IRS_IDR2.ISTMD_SZ is the same for all IRSs for all Interrupt Domains in the system.

IFFWQC The minimum size of the level 2 IST entries used for the physical IST depends on the whether the IRS stores
metadata in the level 2 IST entries and on the number of LPIs stored in the IST.

IRS_IDR2.ISTMD reports whether the IRS stores metadata in the level 2 IST entries.

The minimum size of the level 2 IST entries is 4 bytes, 8 bytes, or 16 bytes as follows:

• If the IRS does not store metadata in the IST, the minimum size of the level 2 IST entries is 4 bytes.

• If the IRS stores metadata in the IST and the number of INTID.ID bits is less than the value in
IRS_IDR2.ISTMD_SZ, the minimum size of the level 2 IST entries is 8 bytes.

• If the IRS stores metadata in the IST and the number of INTID.ID bits is greater than or equal to
IRS_IDR2.ISTMD_SZ, the minimum size of the level 2 IST entries is 16 bytes.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

104

Chapter 4. Interrupt routing service (IRS)
4.7. The interrupt state table (IST)

4.7.5 Example IST structures

ISSCKN The size of a level 1 IST entry is 8 bytes and the size of a level 2 IST entry may scale with the number of INTIDs
stored in the IST.

Table 4.1 shows some example IST structures for an implementation that does not require storing metadata in the
IST and therefore the size of the level 2 IST entry does not scale with the configured number of INTIDs.

Table 4.2 shows some example IST structures for an implementation that requires storing metadata in the IST. The
examples assume that the size of a level 2 IST entry is 8 bytes up to and including 16 bits of LPI ID, and 16 bytes
for more than 16 bits of LPI ID.

SBRMDG The L1 size and L2 size columns in Table 4.1 and Table 4.2 indicate the required maximum physically contiguous
allocation by software for the configuration.

Table 4.1: Example IST structures without metadata storage

STRUCTURE LPI_ID_BITS L2_ISTE size L2SZ L1 size L2 size
Maximum number of
LPIs

Linear 10 4 bytes - - 4 KB 1024

Linear 14 4 bytes - - 64 KB 16,384

Linear 16 4 bytes - - 256 KB 65,536

2-level 19 4 bytes 0b00, 10 bits 4 KB 4 KB 524,288

2-level 24 4 bytes 0b00, 10 bits 128 KB 4 KB 16,777,216

2-level 16 4 bytes 0b01, 12 bits 128 B 16 KB 65,536

2-level 24 4 bytes 0b01, 12 bits 32 KB 16 KB 16,777,216

2-level 16 4 bytes 0b10, 14 bits 32 B 64 KB 65,536

2-level 24 4 bytes 0b10, 14 bits 8 KB 64 KB 16,777,216

Table 4.2: Example IST structures with metadata storage

STRUCTURE LPI_ID_BITS L2_ISTE size L2SZ L1 size L2 size
Maximum number of

LPIs

Linear 9 8 bytes - - 4 KB 512

Linear 13 8 bytes - - 64 KB 8,192

Linear 16 8 bytes - - 512 KB 65,536

2-level 16 8 bytes 0b00, 9 bits 1 KB 4 KB 65,536

2-level 17 16 bytes 0b00, 8 bits 4 KB 4 KB 131,072

2-level 24 16 bytes 0b00, 8 bits 512 KB 4 KB 16,777,216

2-level 16 8 bytes 0b01, 11 bits 256 B 16 KB 65,536

2-level 24 16 bytes 0b01, 10 bits 128 KB 16 KB 16,777,216

2-level 16 8 bytes 0b10, 13 bits 64 B 64 KB 65,536

2-level 24 16 bytes 0b10, 12 bits 32 KB 64 KB 16,777,216

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

105

Chapter 4. Interrupt routing service (IRS)
4.7. The interrupt state table (IST)

ILWNFZ For a 2-level IST, an implementation may only implement support for a subset of the possible L2SZ values. The
supported L2SZ values are reported by IRS_IDR2.IST_L2SZ.

RFVVBH The value of IRS_IDR2.IST_L2SZ is the same for all IRSs for all Interrupt Domains in the system.

IMCFNW IRS_IDR2.{MIN_LPI_ID_BITS,ID_BITS} report the range of valid values for IRS_IST_CFGR.LPI_ID_BITS.

See also:

• 11.2 IRS Data Structures

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter 4. Interrupt routing service (IRS)
4.8. Physical interrupts

4.8 Physical interrupts

DRVLFH Physical interrupts are interrupts that belong to a Physical Interrupt Domain.

RZQGCF A physical interrupt is only permitted to be selected as the candidate HPPI for the corresponding Physical Interrupt
Domain.

INYGDM For a description of how the IRS supports virtualization, see 4.10 Virtual interrupts.

4.8.1 Physical LPIs

RVWVXB The physical IST contains the configuration and state for the physical LPIs in an IRS Domain.

IBHYYV When support for physical LPIs is not implemented, there is no physical IST. IRS_IDR2.LPI reports whether
support for physical LPIs is implemented. See 4.6 Interrupt configuration and state for more information.

IXZPJV The number of LPIs in an IRS Domain is configured in IRS_IST_CFGR.LPI_ID_BITS.

Software allocates the physical IST for an IRS Domain by writing a valid address to IRS_IST_BASER.ADDR and
writing 1 to IRS_IST_BASER.VALID to make the IST valid.

RQSXDB The physical IST is indexed using an INTID.ID value in the physical LPI range, from 0 to (2 ˆ
IRS_IST_CFGR.LPI_ID_BITS) - 1.

RTXDPZ When an IRS accesses the physical IST, the IRS does not access any memory location derived from an INTID
which is outside the configured LPI range.

This includes situations where the INTID is programmed in the parameters of a GIC System instruction executed
on a PE or the INTID is stored in the IST metadata areas.

RLFZVT An INTID specifying an LPI in the Physical Interrupt Domain is reachable, if all of the following are true:

• Support for physical LPIs is implemented.
• The physical IST is valid.
• There is a level 2 IST entry corresponding to the INTID.
• The INTID is in the configured physical LPI range for the IRS Domain.

Otherwise, the INTID is unreachable.

IMZRSK In the physical LPI IST context, the base address of the physical IST for an IRS Domain is stored in
IRS_IST_BASER.ADDR.

IXCVJT In the physical LPI IST context, IRS_IST_BASER.VALID determines whether the physical IST is valid.

IKYYPW A write to IRS_IST_BASER completes when IRS_IST_STATUSR.IDLE is 1.

SKMPNW The architecture relies on making a physical IST valid or invalid to support the following software sequences:

Initial configuration after system reset Software is expected to make the IST valid as part of the boot process.
Soft reboot Software can reclaim the memory used for the IST by making the IST invalid.

Making an IST valid or invalid is not intended to be used in power management sequences. See 4.11 IRS power
management for more information about power management of an IRS.

IZRRXD In a multi-IRS system, the physical IST is shared across all IRSs for an IRS Domain.

DMRGCV The physical IST becomes valid when a write that updates IRS_IST_BASER.VALID from 0 to 1 completes.

The physical IST becomes invalid when a write that updates IRS_IST_BASER.VALID from 1 to 0 completes.

See 4.7 The interrupt state table (IST) for more information about an IST becoming valid and invalid.

RNSNNN In a multi-IRS system, when a write to IRS_IST_BASER.VALID completes, a subsequent read of any of the
following registers on any IRS in the IRS Domain returns the same value.

• IRS_IST_BASER.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter 4. Interrupt routing service (IRS)
4.8. Physical interrupts

• IRS_IST_CFGR.

RKLBCH If a write occurs to IRS_IST_BASER.VALID when IRS_IST_STATUSR.IDLE is 0 on any other IRS for the same
IRS Domain, it is CONSTRAINED UNPREDICTABLE which configuration and base address is used for the IST.

The CONSTRAINED UNPREDICTABLE behavior must not result in access to memory outside the PAS associated
with the IRS Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory
access rules.

RSSTWT When the physical IST becomes invalid and an LPI for the IRS Domain is selected as the candidate HPPI for a PE
for the Interrupt Domain, one of the following is true:

• The candidate HPPI is acknowledged by the PE before the IST becomes invalid.
• The candidate HPPI is not acknowledged and is no longer selected as the candidate HPPI for the PE.

RLJXGD When the physical IST becomes invalid, if there are Accepted events for physical LPIs that are not yet processed,
all of the following are true:

• The events are dropped and have no effect on any interrupt.
• If software error reporting is supported, the IRS is permitted to report an error.

IKQGDP When the physical IST is valid, all IRSs are permitted to access the physical IST for any reason, including
speculative reads.

When the physical IST is invalid, the IRSs do not access the physical IST.

See 4.7 The interrupt state table (IST) for more information.

IJVVMS The configuration of the physical IST is controlled using the following register fields:

• IRS_IST_CFGR.STRUCTURE.
• IRS_IST_CFGR.LPI_ID_BITS.
• IRS_IST_CFGR.L2SZ.
• IRS_IST_CFGR.ISTSZ.

IMBKRT When IRS_IDR2.IST_levels is 0, IRS_IST_CFGR.STRUCTURE is RES0.

ICLPKT IRS_IDR2.{MIN_LPI_ID_BITS,ID_BITS} report the range of valid values for IRS_IST_CFGR.LPI_ID_BITS.

ITQCYG In the physical LPI IST context, when the physical IST is valid and uses a 2-level structure, a physical level 2 IST
is made valid by writing to IRS_MAP_L2_ISTR.

The effects of the write are complete when IRS_IST_STATUSR.IDLE is 1.

RCMYTZ If a write occurs to IRS_MAP_L2_ISTR when IRS_IST_STATUSR.IDLE is 0 on any other IRS for the same IRS
Domain, it is CONSTRAINED UNPREDICTABLE whether any effects of any of the writes complete successfully.

See also:

• 4.7 The interrupt state table (IST)
• 11.2 IRS Data Structures

4.8.2 Physical SPIs

GBJJKB SPIs are designed to enable implementations to meet the following requirements:

• SPIs can be used to connect interrupt signals directly to an IRS, without recourse to an ITS.
• SPIs can generate interrupts to PEs without requiring memory being allocated to the IRS.
• SPIs can reliably generate interrupts to PEs in the presence of memory system errors.
• SPIs can be implemented to provide predictable low latency guarantees for interrupt delivery.
• SPIs can be assigned to VMs to support system partitioning using virtualization techniques.

RTLLZS The storage location for physical SPIs is IMPLEMENTATION DEFINED.

IZFRNY The number of SPIs across all IRSs in the system across all Interrupt Domains is reported by IRS_IDR5.SPI_RANGE.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

term:irs-processed

Chapter 4. Interrupt routing service (IRS)
4.8. Physical interrupts

RKXMTR The value reported by IRS_IDR5.SPI_RANGE is the same across all Interrupt Domains across all IRSs in a
system.

RMHRZT An INTID specifying an SPI in a Physical Interrupt Domain is reachable, when all of the following are true:

• The SPI is implemented.
• The SPI is assigned to the Interrupt Domain.
• The SPI is not assigned to a VM.
• The INTID.ID is less than or equal to IRS_IDR5.SPI_RANGE - 1.

Otherwise, the INTID is unreachable.

IBVXHP See 4.10.2.1 Assigning physical SPIs to VMs for more information about assigning an SPI to a VM.

IHZSKP The configuration and state of a reachable SPI can be accessed via the GIC instructions on the PE.

DKZSTV An SPI is managed by a single IRS.

This means that an SPI can be assigned to an Interrupt Domain and to a VM only on the IRS where the SPI is
managed.

RVDLHR Each SPI is identified by a unique INTID.

IXYNMZ The range of SPIs managed by an IRS is reported in IRS_IDR6.SPI_IRS_RANGE

If IRS_IDR6.SPI_IRS_RANGE is 0, the IRS does not manage any SPIs, and IRS_IDR7.SPI_BASE is RES0.

The minimum INTID.ID of the SPIs managed by an individual IRS is reported by IRS_IDR7.SPI_BASE.

The range of SPI INTIDs managed by the IRS can be calculated as IRS_IDR7.SPI_BASE + IRS_IDR6.SPI_IRS_RANGE
- 1.

IYMKMH If IRS_IDR5.SPI_RANGE is 0, no SPIs are implemented on any IRS, and all of the following are true:

• IRS_IDR6.SPI_IRS_RANGE is RES0.
• IRS_IDR7.SPI_BASE is RES0.

RGCVXZ Not all SPIs in the range reported by IRS_IDR7.SPI_BASE and IRS_IDR6.SPI_IRS_RANGE are required to be
implemented.

RCSQHP The number reported by IRS_IDR6.SPI_IRS_RANGE is the same across all Interrupt Domains.

The number reported by IRS_IDR7.SPI_BASE is the same across all Interrupt Domains.

RZYGST For each IRS, all of the following are true for the range reported by IRS_IDR7.SPI_BASE and
IRS_IDR6.SPI_IRS_RANGE:

• The range does not overlap with the range reported by other IRSs in the system.
• The minimum and maximum SPI INTID included in the range are less than IRS_IDR5.SPI_RANGE.

IQNBQC It is permitted to implement SPIs that are not connected to any interrupt input signal. Such SPIs can only be made
Pending as a result of receiving a SET interrupt event from a PE.

This may be useful to support IPIs without requiring the configuration and state for IPIs to be stored in memory.

See also 2.5 Inter-Processor Interrupts.

RPDMTJ When an SPI is assigned to an Interrupt Domain, all of the following are true:

• The SPI is only considered for a candidate HPPI in the Interrupt Domain that the SPI is assigned to.
• The SPI is only reachable in the Interrupt Domain that the SPI is assigned to.

IYTLRC This means that an SPI is unreachable from any Interrupt Domain other than the SPI is assigned to.

DHWBBY The SPI IRS configuration for each SPI consists of the following configurations, which are separate from the SPI
INTID configuration and state:

• The assignment of an SPI to an Interrupt Domain.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter 4. Interrupt routing service (IRS)
4.8. Physical interrupts

• The assignment of an SPI to a VM.
• The Trigger mode of the SPI.

RZYJHT The SPI IRS configuration for an SPI can be accessed from the following IRS Domains:

• The IRS Domain correponding to the Interrupt Domain that the SPI is assigned to.
• The EL3 IRS Domain.

ISZZNP Software accesses the SPI IRS configuration state using one of the following registers after selecting an implemented
SPI managed by the IRS:

• IRS_SPI_CFGR.
• IRS_SPI_DOMAINR.
• IRS_SPI_VMR.

Software selects an SPI by writing the SPI INTID to IRS_SPI_SELR.

IRS_SPI_STATUSR.IDLE reports whether the effects of a write to any of these registers is completed.

IRS_SPI_STATUSR.V reports whether the value written to IRS_SPI_SELR selects an implemented SPI that is
managed by the IRS and where the configuration can be accessed in the IRS Domain.

IRS_SPI_STATUSR.V is updated on a write to any of the following registers:

• IRS_SPI_CFGR.
• IRS_SPI_SELR.
• IRS_SPI_VMR.

If an SPI is assigned to a new Interrupt Domain after being selected by IRS_SPI_SELR, then a subsequent write to
any of the registers above in the old Interrupt Domain causes IRS_SPI_STATUSR.V to become 0.

IRSFPY When an SPI is selected using IRS_SPI_SELR and IRS_SPI_STATUSR.{V,IDLE} is {1,1}, IRS_SPI_CFGR.TM
provides access to the Trigger mode of the SPI.

The Trigger mode of an SPI determines when the IRS generates events for an SPI and defines the type of the
events.

Following a write that updates IRS_SPI_CFGR.TM to 1, the effects of the write are complete when
IRS_SPI_STATUSR.{V,IDLE} is {1,1}.

See 4.6 Interrupt configuration and state for more information about the Handling mode.

RQBXXV When the Trigger mode of an SPI is edge-triggered, the IRS generates a SET_EDGE event when the interrupt
signal connected to an SPI is asserted.

When the Trigger mode of an SPI is level-sensitive, the IRS generates a SET_LEVEL event when the interrupt
signal connected to an SPI is asserted and a CLEAR event when the signal is de-asserted.

The IRS does not generate a CLEAR event when the Trigger mode is edge-triggered and the signal is de-asserted.

IBGJKL For each SPI, it is IMPLEMENTATION DEFINED whether the Trigger mode can be programmed by software.

If the Trigger mode cannot be programmed by software, access to the corresponding field is RO.

SDCPVJ Software can detect that the Trigger mode of an SPI cannot be programmed by attempting to update the Trigger
mode and reading it back. If the Trigger mode cannot be programmed, the Trigger mode is not updated.

RKBPXL When the Trigger mode of an SPI is updated from level-sensitive to edge-triggered and the interrupt signal is
asserted, the IRS generates a CLEAR event for the SPI.

For an SPI connected to an interrupt signal, when the Trigger mode of the SPI is updated from edge-triggered to
level-sensitive, the IRS generates a SET_LEVEL event if the interrupt signal is asserted, and a CLEAR event if the
signal is de-asserted.

For an SPI not connected to an interrupt signal, when the Trigger mode of the SPI is updated from edge-triggered
to level-sensitive, the IRS generates a CLEAR event for the SPI.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

110

Chapter 4. Interrupt routing service (IRS)
4.8. Physical interrupts

When an update of the Trigger mode of an SPI generates an Interrupt Write Effect E1 to the SPI Interrupt Location,
all of the following are true:

• There is a Register Write Effect E2 to IRS_SPI_STATUSR which updates the IDLE field from 1 to 0.
• There is a Register Write Effect E3 to IRS_SPI_STATUSR which updates the IDLE field from 0 to 1.
• There is an Intrinsic order dependency from the Register Write Effect E2 to the Interrupt Write Effect E1.
• There is an Intrinsic order dependency from the Interrupt Write Effects E1 to the Register Write Effect E3.

This means that if there is a Memory Read Effect E4 which Reads-from the Register Write Effect E3, then E1 is
Ordered-before E4.

RLKBBQ When the Trigger mode of an SPI is level-sensitive and connected to an interrupt input signal, the IRS is permitted
to IGNORE SetPending commands received from PEs specifying that SPI.

DXKYXL A write to IRS_SPI_RESAMPLER causes the IRS to resample the signal connected to an SPI, if all of the following
are true:

• The SPI is managed on the IRS where the write occurs.
• The SPI IRS configuration can be accessed in the IRS Domain where the write occurs.

Otherwise, the write has no effect beyond reporting a software error using EC 0x2B if supported.

RDMTFM When the signal of an SPI is resampled, all of the following are true:

• If the SPI Trigger mode is level-sensitive, all of the following are true:
– If the signal is asserted at the time of the resample, the IRS generates a SET_LEVEL event.
– If the signal is de-asserted at the time of the resample, the IRS generates a CLEAR event.

• If the SPI Trigger mode is edge-triggered, all of the following are true:
– If the signal is asserted at the time of the resample, the IRS generates a SET_EDGE event.
– If the signal is de-asserted at the time of the resample, the IRS generates no events.

RVYMHB When a resample of an SPI generates an Interrupt Write Effects E1 to the SPI Interrupt Location, all of the
following are true:

• There is a Register Write Effect E2 to IRS_SPI_STATUSR which updates the IDLE field from 1 to 0.
• There is a Register Write Effect E3 to IRS_SPI_STATUSR which updates the IDLE field from 0 to 1.
• There is an Intrinsic order dependency from the Register Write Effect E2 to the Interrupt Write Effects E1.
• There is an Intrinsic order dependency from the Interrupt Write Effects E1 to the Register Write Effect E3.

This means that if there is a Memory Read Effect E4 which Reads-from the Register Write Effect E3, then E1 is
Ordered-before E4.

SSNRXG Software may need to resample the state of an SPI to ensure that the Pending state of the SPI INTID corresponds
to the state of the signal connected to the SPI. For example, if software has updated the Pending state or Handling
mode of the SPI using GIC system instructions, it can use the resample mechanism to recover from this scenario.

Software may also need to resample an SPI if configuring the SPI for a source with level-sensitive semantics as
Edge-triggered. In this case, software can resample the SPI after handling each event to ensure that interrupt events
are not lost if the signal remained asserted while handling the interrupt.

DYGLYC The reset state of the SPI IRS configuration is the following:

• If the SPI Trigger mode can be programmed by software, it is reset to edge-triggered.
• The SPI is not assigned to a VM.
• The SPI is assigned to the Interrupt Domain corresponding to the MPSS supported by the IRS.

DTVVRZ The reset state of an SPI INTID is the following:

• The interrupt is Disabled.
• The interrupt is Inactive.
• The interrupt is Idle.
• If 1ofN interrupt routing is not supported, the SPI Routing mode is Targeted.
• All other interrupt configuration and state are UNKNOWN.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

Chapter 4. Interrupt routing service (IRS)
4.8. Physical interrupts

RQRHKF When an IRS is reset, all of the following are true:

• All SPI INTIDs are reset to their reset state.
• The IRS configuration for each SPI is reset to its reset state.

SHZPVX To configure the assignment of an SPI to a VM, software performs the following sequence:

1. Software selects the SPI by writing to IRS_SPI_SELR.
2. Software polls IRS_SPI_STATUS.IDLE until it reads as 1 and ensures that IRS_SPI_STATUS.V is 1.
3. Software accesses the VM assignment of the SPI by accessing IRS_SPI_VMR.
4. Following a write to IRS_SPI_VMR, software polls IRS_SPI_STATUS.IDLE until it reads as 1, and ensures

that IRS_SPI_STATUS.V is 1, to ensure the effects of the write are complete.

SGQDWY To configure the assignment of an Interrupt Domain, software performs the following sequence using the EL3
Interrupt Domain IRS configuration frame:

1. Software selects the SPI by writing to IRS_SPI_SELR.
2. Software polls IRS_SPI_STATUS.IDLE until it reads as 1 and ensures that IRS_SPI_STATUS.V is 1.
3. Software accesses the Interrupt Domain assignment of the SPI by accessing IRS_SPI_DOMAINR.
4. Following a write to IRS_SPI_DOMAINR, software polls IRS_SPI_STATUS.IDLE until it reads as 1.

To check whether an SPI is statically assigned to an Interrupt Domain or it can be dynamically assigned to an
Interrupt Domain, software can attempt to update the assignment of the SPI to an Interrupt Domain and read back
the assigned domain from IRS_SPI_DOMAINR.DOMAIN when IRS_SPI_STATUSR.IDLE is 1.

IDMFCZ An SPI may be statically assigned to an Interrupt Domain.

IBCQRT Arm recommends only statically assigning SPIs to an Interrupt Domain when it is known that the interrupt can only
be handled in that Domain. For example, RAS interrupts may be statically assigned to the EL3 Domain. Statically
assigning interrupts to a Domain may restrict how that interrupt can be used. For example, static assignment may
prevent the interrupt from being directly assigned to Realms.

RJJHJX When an SPI is assigned to a new Interrupt Domain as a result of selecting the SPI by writing to IRS_SPI_SELR and
writing to IRS_SPI_DOMAINR.DOMAIN, the effects of the write are complete when IRS_SPI_STATUSR.IDLE
is 1.

When the effects are complete, all of the following are true:

• If the SPI was selected as the candidate HPPI for a PE in the old Interrupt Domain, one of the following is
true:

– The SPI is acknowledged in the old Interrupt Domain before the SPI is assigned to the new Interrupt
Domain.

– The SPI is not acknowledged in the old Interrupt Domain and no longer selected as the candidate HPPI
in the old Interrupt Domain.

• If the SPI was assigned to a VM in the old Interrupt Domain, it is CONSTRAINED UNPREDICTABLE whether
the configuration and state of the virtual SPI INTID is UNKNOWN or reset to its reset state.

• The SPI is not assigned to a VM in the new Interrupt Domain.
• The SPI INTID is reset to its reset state.

See also:

• 3.1 Interrupt Domains
• 4.6 Interrupt configuration and state
• 4.7 The interrupt state table (IST)
• 4.8.4 Physical interrupt signaling

4.8.3 Physical interrupt routing

RLFYMS The Routing mode of a physical interrupt determines how the target PE is selected for the interrupt in the following
ways:

• If the Routing mode is Targeted, the target PE is the PE specified by the interrupt Affinity.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

112

Chapter 4. Interrupt routing service (IRS)
4.8. Physical interrupts

• If the Routing mode is 1ofN, the target PE is determined dynamically.

DVBQJG When an interrupt Routing mode is Targeted and the interrupt Affinity specifies a PE, the interrupt is said to be
targeted to that PE.

RHGPQH IRS support for 1ofN interrupt routing is optional.

DVPZNM An interrupt whose Routing mode is 1ofN is referred to as a 1ofN interrupt.

IGHKQS IRS_IDR0.ONE_N reports whether 1ofN interrupt routing is supported.

RFGVHX The value of IRS_IDR0.ONE_N is the same for all IRSs for all Interrupt Domains in the system.

RZMTLR If 1ofN interrupt routing is not supported, all of the following are true:

• If a GIC System instruction generates an Interrupt Effect that updates the Routing mode of a physical
interrupt, the Routing mode is set to Targeted regardless of the value provided in <Xt>.

• L2_ISTE.IRM is treated as 0 when the physical IST becomes valid.

RGJNGF Each physical 1ofN interrupt can be acknowledged by at most one PE.

RSTMZL The storage location for the Affinity of physical 1ofN interrupts may be used for an IMPLEMENTATION DEFINED
purpose to handle routing of physical 1ofN interrupts, with the restriction that an Affinity value of 0 has no
IMPLEMENTATION DEFINED meaning.

RQZWMR An IRS is permitted to update the Affinity of physical 1ofN interrupts.

RDJNNR A PE may only be selected as the target for a 1ofN interrupt, if 1ofN PE selection is enabled for the PE for the
Interrupt Domain

RCDXNW An IRS Domain selects a target PE for a reachable 1ofN interrupt in finite time, when all of the following are true:

• The interrupt is Pending.
• The interrupt is Inactive.
• The interrupt is Enabled.
• At least one IRS is enabled.
• At least one PE connected to an enabled IRS has 1ofN PE selection enabled.

RTMBZH An IRS Domain may select a new target PE for a physical 1ofN interrupt at any time.

IDBQSC Selecting a target PE does not guarantee that the interrupt is selected as the candidate HPPI for the target PE. For
example, the selected target PE may be masking the interrupt or another interrupt may be the candidate HPPI for
the selected target PE.

See 4.8.4 Physical interrupt signaling for more information about selecting the physical candidate HPPI.

RFYRLW The mechanism that an IRS uses to select a target PE among several possible target PEs is IMPLEMENTATION
DEFINED.

ILZSJY The architecture does not require that higher priority 1ofN interrupt are delivered before lower priority 1ofN
interrupts.

For example, the following situation may occur:

• The IRS selects PE 0 for a high priority 1ofN interrupt (INTID A).
• The IRS selects PE 1 for a low priority 1ofN interrupt (INTID B).
• There are several interrupts with higher priority than INTID A that are Targeted to PE 0.

In this situation, PE 1 may handle INTID B before PE 0 handles INTID A.

IXRMBH Whether a PE has 1ofN PE selection enabled or disabled is configured separately for each IRS Domain.

This configuration setting is accessed using the following sequence:

1. Select the PE using IRS_PE_SELR on the IRS where the PE is connected.
2. Poll IRS_PE_STATUSR.IDLE until it reads as 1.
3. Access IRS_PE_CR0.DPS.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

113

Chapter 4. Interrupt routing service (IRS)
4.8. Physical interrupts

4. Poll IRS_PE_STATUSR.IDLE until it reads as 1.

RLQMBW When 1ofN selection is disabled for PE for an Interrupt Domain, the corresponding PE is not selected as the target
for 1ofN interrupts belonging to that Interrupt Domain.

ISHQTF When IRS_PE_CR0.DPS is updated for a PE, and a physical 1ofN interrupt is selected as the physical candidate
HPPI for the PE, one of the following is true:

• The PE acknowledges the interrupt before IRS_PE_STATUSR.IDLE is 1.
• The PE does not acknowledge the interrupt.

See 4.8.4 Physical interrupt signaling for more information.

4.8.4 Physical interrupt signaling

RLXYDJ The Pending state of a physical LPI identified by an INTID is updated when all of the following are true:

• The physical LPI as identified by the INTID is reachable.
• Any of the following occur:

– An ITS generates an interrupt event that specifies the INTID.
– A write to the IRS_SETLPI register specifies the INTID.
– An IRS processes an Interrupt Effect generated by a GIC System instruction that updates the LPI Pending

state.

Otherwise, the physical LPI Pending state is not updated.

IDZSFL The Interrupt Domain of an LPI that is being signaled is determined by how the interrupt is signaled as follows:

• The Interrupt Domain is specified as part of the interrupt event received from the ITS.
• The Interrupt Domain as reported in IRS_IDR0.INT_DOM for the IRS where a write to IRS_SETLPI occurs.
• The Interrupt Domain that the GIC System instruction operates in.

RXYLLD The Pending state of a physical SPI identified by an INTID is updated when all of the following are true:

• The physical SPI as identified by the INTID is reachable.
• Any of the following occur:

– An interrupt connected to an IRS as an SPI is asserted or de-asserted and generates an interrupt event for
the physical SPI.

– An IRS processes an Interrupt Effect generated by a GIC System instruction that updates the SPI Pending
state.

Otherwise, the physical SPI Pending state is not updated.

ISKNHH The Interrupt Domain of an SPI that is being signaled is determined by the Interrupt Domain that the SPI is
assigned to.

See 4.8.2 Physical SPIs and 4.2 Signaling interrupts for more information.

ISZZVX If an SPI that is assigned to a VM is signaled, the SPI is a virtual SPI and the rules for when its Pending state is
updated are different. See 4.10 Virtual interrupts and 4.10.4 Virtual interrupt signaling for more information.

DNFYQX The IRS Domain selects a physical candidate HPPI for a PE for an Interrupt Domain if, and only if, at least one
physical interrupt meets the physical candidate HPPI conditions:

• The interrupt is Enabled.
• The interrupt is Pending.
• The interrupt is Inactive.
• One of the following is true:

– The interrupt Routing mode is Targeted and the interrupt Affinity specifies the PE.
– The interrupt Routing mode is 1ofN and the PE is selected as the target PE for the interrupt.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

114

term:irs-processed
term:irs-processed

Chapter 4. Interrupt routing service (IRS)
4.8. Physical interrupts

RWSBLV For a PE and an Interrupt Domain, all of the following apply to the physical candidate HPPI selection:

• If at least one interrupt satisfies the physical candidate HPPI conditions, the IRS Domain selects one of these
as the physical candidate HPPI in finite time.

• If no interrupts satisfy the physical candidate HPPI conditions, the IRS Domain does not select any interrupt
as the physical candidate HPPI.

RHGTSH If more than one interrupt satisfies the physical candidate HPPI conditions for a PE for an Interrupt Domain, the
IRS Domain selects the interrupt with the highest Priority as the physical candidate HPPI in finite time.

If there is more than one physical candidate HPPI with the same Priority, it is IMPLEMENTATION DEFINED which
of those interrupts is selected as the physical candidate HPPI.

IBGBFD The architecture only requires that the highest Priority interrupt that satisfies the candidate HPPI conditions is
selected in finite time, because the set of interrupts that satisfy the conditions changes over time as the state and
configuration of interrupts are updated. An implementation may need to consider the Priority of all the interrupts
that satisfy the conditions which may require processing time.

RKFYBX When at least one physical interrupt meets the physical candidate HPPI conditions for a PE for an Interrupt
Domain, and the IRS is enabled for the Interrupt Domain, the IRS selects a physical candidate HPPI in finite time.

IPZVZZ See 4.11 IRS power management for information about the IRS behavior if it has selected a physical candidate
HPPI for a PE and the PE is offline.

IZPJZL An interrupt might be signaled on one IRS and be targeted to a PE connected to a different IRS. Whether that
interrupt can be selected as the physical candidate HPPI for the PE depends only on the configuration of the IRS
local to the PE. If the IRS on which the interrupt was originally signaled is subsequently disabled, that has no
effect on whether the interrupt is selected as the physical candidate HPPI for the targeted PE.

RXWWNP When a physical interrupt that has been selected as the physical candidate HPPI for a PE for an Interrupt Domain
is no longer selected as the physical candidate HPPI, the PE will either acknowledge the old physical candidate
HPPI within finite time, or the old physical candidate HPPI will not be acknowledged.

RCHNVV If the IRS updates the configuration of an interrupt that has been selected as the physical candidate HPPI for an
Interrupt Domain for a PE, and the interrupt configuration data was communicated to the PE, the IRS will select
the same or a new physical interrupt as the physical candidate HPPI.

The IRS then communicates the selected physical candidate HPPI to the PE, including any updated interrupt
configuration data, in finite time.

For more information about ordering of such events, see 2.12 Interrupt ordering model and synchronization
requirements and Chapter B1 Interrupt ordering litmus tests.

Note

The following sequence is an example of the IRS communicating updated interrupt configuration data because
there was an update to the configuration data that was communicated to a PE:

1. An interrupt is selected as the physical candidate HPPI for a PE and its Priority is communicated to the PE.
2. The PE executes a GIC System instruction that updates the Priority of the interrupt.
3. The IRS selects the same interrupt as the physical candidate HPPI for the PE.
4. The IRS communicates that the interrupt is still the candidate HPPI with the updated Priority value to the

PE.

ITMRWF Updates to interrupt state or configuration can lead to the IRS selecting a different candidate HPPI. For example,
the current candidate HPPI may become Disabled, or a higher priority interrupt may be updated to meet the
candidate HPPI conditions. In such scenarios, the IRS selects a new candidate HPPI in finite time. However, the
PE may acknowledge the old candidate HPPI before the IRS communicates to the PE that a new candidate HPPI
has been selected.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

115

Chapter 4. Interrupt routing service (IRS)
4.9. Virtualization data structures

4.9 Virtualization data structures

IPKMJQ Figure 4.3 shows an overview of the data structures used to support VMs in the IRS.

VM table base address

Level 1 VM table

L1_VMTE (VALID=1)

L1_VMTE (VALID=0)

L1_VMTE (VALID=0)

L1_VMTE (VALID=0)

L1_VMTE (VALID=0)

L1_VMTE (VALID=0)

…

Level 2 VM table

L2_VMTE (VALID=1)

L2_VMTE (VALID=0)

L2_VMTE (VALID=0)

L2_VMTE (VALID=0)

L2_VMTE (VALID=0)

L2_VMTE (VALID=0)

…

Linear VM table2-level VM table

VM Descriptor
VM 0

VPE Table
VM 0

VPETE (VALID=1)

VPETE (VALID=1)

VPETE (VALID=0)

VPETE (VALID=0)

…

VPE Descriptor
VM 0, VPE 0

VPE Descriptor
VM 0, VPE 1

Virtual LPI IST
VM 0

Virtual SPI IST
VM 0

Figure 4.3: IRS virtualization structures

DCCSJV The GICv5 architecture defines the following virtualization data structures used by an IRS:

• The Virtual Machine Table (VM table).
• The Virtual PE Table (VPE table).

Each level 2 entry in the VM table describes the configuration of a VM and contains pointers to the following child
data structures:

• A VM descriptor, if required.
• A VPE table.
• A virtual LPI IST.
• A virtual SPI IST.

Each entry in the VPE table describes the configuration of the VPE and contains pointers to the VPE descriptor for
each VPE in the VM.

IBTVZZ A VM supports virtual LPIs, virtual SPIs, or both.

IYTSWN Virtual LPIs and virtual SPIs are stored in separate virtual ISTs.

SWXHNY Software is responsible for allocating the virtualization data structures from memory in the PAS associated with
the IRS Domain where the VM table is used.

See also:

• 4.7 The interrupt state table (IST)
• 4.10 Virtual interrupts
• 11.2 IRS Data Structures

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

116

Chapter 4. Interrupt routing service (IRS)
4.9. Virtualization data structures

4.9.1 The VM table

IPVHPD The VM table contains the configuration of the VMs defined in an IRS Domain.

For each VM, the VM table contains pointers to other data structures associated with that VM.

In a multi-IRS system, the VM table is shared between all IRSs for the IRS Domain.

DPZXMY The VM table uses either a linear or 2-level structure.

For a linear VM table, all of the following are true:

• The level 1 VM table is omitted.
• The VM table consists of a single level 2 VM table.

IDSPSD IRS_IDR3.VMT_LEVELS reports whether 2-level VM table support is implemented.

RKQYKZ The levels supported for the VM table are the same across all Interrupt Domains, except for the EL3 Interrupt
Domain, where VMs are not supported.

The levels supported for the VM table are the same across all IRSs.

DNRLZZ For a linear VM table, the base address of the VM table specifies the location of the level 2 VM table.

For a 2-level VM table, the base address of the VM table specifies the location of the level 1 VM table.

DLSPBK When the VM table uses a 2-level table structure, the size of each level 2 VM table is 4 KB.

RMKPCF The structure of the VM table is controlled using the following register fields:

• IRS_VMT_CFGR.STRUCTURE:

Selects if the VM table uses a linear or 2-level structure.

• IRS_VMT_CFGR.VM_ID_BITS:

Selects how many VMs the IRS Domain supports. This impacts the size of the level 2 VM table when using
a linear structure and the size of the level 1 VM table when using a 2-level structure.

IHCGJW The VM table is indexed using a VM ID ranging from 0 through (2 ˆ IRS_VMT_CFGR.VM_ID_BITS) - 1.

RNXJZZ When an IRS accesses the VM table for an IRS Domain, the IRS does not access any memory location derived
from a VM ID which is outside the configured VM ID range for the IRS Domain.

This includes situations where the VM ID is programmed in the parameters to a GIC System instruction, the VM
ID is received from an ITS, or the VM ID is stored in a physical SPI VM assignment register.

IZKGTX The maximum VM ID range supported is reported by IRS_IDR3.VM_ID_BITS.

RXYKND The maximum number of VM ID bits are the same across all Interrupt Domains, except for the EL3 Interrupt
Domain, where VMs are not supported.

The maximum number of VM ID bits is the same across all IRSs.

4.9.1.1 The VM table base address and configuration registers

IGMXKS The base address of the VM table is stored in IRS_VMT_BASER.ADDR.

IJLYPB IRS_VMT_BASER.VALID determines whether the VM table is valid.

IBNSSH A write to IRS_VMT_BASER completes when IRS_VMT_STATUSR.IDLE is 1.

IYJKRP In a multi-IRS system, the VM table is shared across all IRSs for an IRS Domain.

DVJFSP The VM table becomes valid when a write that updates IRS_VMT_BASER.VALID from 0 to 1 completes.

The VM table becomes invalid when a write that updates IRS_VMT_BASER.VALID from 1 to 0 completes.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

117

Chapter 4. Interrupt routing service (IRS)
4.9. Virtualization data structures

RRLYYJ In a multi-IRS system, when a write to IRS_VMT_BASER.VALID completes, the values of the following registers
on that IRS are returned on a subsequent read on any IRS in the IRS Domain:

• IRS_VMT_BASER.
• IRS_VMT_CFGR.

RWXTKP If a write occurs to IRS_VMT_BASER.VALID when IRS_VMT_STATUSR.IDLE is 0 on any other IRS for the
same IRS Domain, it is CONSTRAINED UNPREDICTABLE which configuration and base address is used for the
VM table.

The CONSTRAINED UNPREDICTABLE behavior must not result in access to memory outside the PAS associated
with the IRS Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory
access rules.

RQRSZL When the VM table is valid, all IRSs are permitted to access the virtualization data structures for any reason,
including speculative reads.

When the VM table is invalid, the IRSs do not access the virtualization data structures table.

See 4.9 Virtualization data structures for the definition of virtualization data structures.

4.9.1.2 Level 2 VM table management

DYPLVV A level 2 VM table is considered valid, if the VM table is valid and one of the following is true:

• The VM table uses a linear structure.
• The VM table uses a 2-level structure and the corresponding L1_VMTE.VALID is 1.

Otherwise, the level 2 VM table is considered invalid.

DQGKXL A level 2 VM table becomes valid in any of the following scenarios:

• The VM table uses a linear structure and the VM table becomes valid.
• The VM table uses a 2-level structure and any of the following occur:

– A write to IRS_VMAP_L2_VMTR makes the level 2 VM table valid.
– The VM table becomes valid and the corresponding L1_VMTE.VALID is 1.

ICSRYH When a 2-level VM table becomes valid, if L1_VMTE.VALID is 1 for more than one level 1 VM table entry, more
than one level 2 VM table may become valid at the same time.

RBXWBF When the VM table is valid and uses a 2-level structure, if software writes to an invalid level 1 VM table entry and
sets L1_VMTE.VALID to 1, the behavior of the IRS Domain is UNPREDICTABLE.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the Interrupt
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

RXBDXW For a 2-level VM table, if a write updates a valid level 1 VM table entry, the IRS Domain behavior is UNPRE-
DICTABLE.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the IRS
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

IDPCRG The architecture does not support making an individual level 2 VM table invalid when using a 2-level structure for
the VM table.

RRNSYR To recover from UNPREDICTABLE behavior resulting from an incorrect write to a level 1 VM table entry, the VM
table is made invalid.

RTZWTX When a write to IRS_VMAP_L2_VMTR makes the corresponding level 2 VM table valid, all of the following are
true:

• The IRS generates the following Effects:
– A Register Write Effect E1 to IRS_VMT_STATUSR which sets the IDLE field to 0.
– A Memory Write Effect E2 to the Location corresponding to the level 1 VM table entry which updates

L1_VMTE.VALID from 0 to 1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

118

Chapter 4. Interrupt routing service (IRS)
4.9. Virtualization data structures

– A Register Write Effect E3 to IRS_VMT_STATUSR which sets the IDLE field to 1.
• There is an Intrinsic order dependency from the Register Write Effect E1 to the Memory Write Effect E2.
• There is an Intrinsic order dependency from the Memory Write Effect E2 to the Register Write Effect E3.

This means that if there is a Memory Read Effect E4 which Reads-from the Register Write Effect E3, then E2 is
Ordered-before E4.

IYTWVR When the VM table is valid and uses a 2-level structure, a level 2 VM table is made valid by the following sequence:

1. Software writes the address of the new level 2 VM table to L1_VMTE.L2_ADDR, with L1_VMTE.VALID
remaining to be 0.

2. Software writes to IRS_VMAP_L2_VMTR.
3. The IRS performs a write to the level 1 VM table entry that updates L1_VMTE.VALID from 0 to 1.
4. The IRS reports that the effects of the write to IRS_VMAP_L2_VMTR are complete.

See 3.3 Coherency considerations for GIC data structures for more information about ensuring that memory
accesses are coherent between the IRS and a PE.

RKZZPQ When the VM table is valid and uses a 2-level structure, if software writes to the level 1 VM table entry when
IRS_VMT_STATUSR.IDLE is 0, it is CONSTRAINED UNPREDICTABLE whether the IRS writes back the entry
using the updated or old level 1 entry value.

The CONSTRAINED UNPREDICTABLE behavior must not result in access to memory outside the PAS associated
with the Interrupt Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS
memory access rules.

RKGTMJ If a write occurs to IRS_VMAP_L2_VMTR when IRS_VMT_STATUSR.IDLE is 0 on any other IRS for the same
IRS Domain, it is CONSTRAINED UNPREDICTABLE whether any effects of any of the writes complete successfully.

DCFNYD A level 2 VM table becomes invalid when the VM table becomes invalid.

4.9.1.3 VM management

DVBQTG A VM and the corresponding level 2 VM table entry are considered valid when all of the following are true:

• The level 2 VM table is valid.
• The corresponding L2_VMTE.VALID is 1.

Otherwise the VM and the corresponding level 2 VM table entry are considered invalid.

RYBMTV If a VM ID is outside the configured VM ID range for the IRS Domain, the VM ID is treated as invalid.

IJQFYM When a VM is valid, all of the following are true:

• Virtual interrupts in the VM can be signaled.
• VPEs can become resident.
• VPEs can access the configuration and state of reachable virtual interrupts.

When a VM is invalid, none of the above are true.

IJFWCL When the VM table is invalid, all of the following are true:

• All VM IDs specify invalid VMs.
• All VPEs are invalid.
• The IRS does not select any virtual candidate HPPIs to the PEs connected to the IRS.
• When a PE executes a GIC System instruction that operates in the Virtual Interrupt Domain, all Interrupt

Effects generated by that instruction, that are Ordered-after the VM table becomes invalid, are IGNORED.

See Chapter 2 PE architecture for more information about the relationship between a resident VPE and the Virtual
Interrupt Domain.

DQXMZT A VM becomes valid in any of the following scenarios:

• A write to IRS_VMAP_VMR makes the VM valid.
• The level 2 VM table becomes valid and the corresponding L2_VMTE.VALID is 1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

119

Chapter 4. Interrupt routing service (IRS)
4.9. Virtualization data structures

RVQKZB When a level 2 VM table is valid, if software writes to an invalid level 2 VM table entry and sets L2_VMTE.VALID
to 1, the behavior of the IRS Domain is UNPREDICTABLE.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the Interrupt
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

RHPDGY To recover from UNPREDICTABLE behavior resulting from a write to an invalid level 2 VM table entry that sets
L2_VMTE.VALID to 1, the VM table is made invalid.

RKBKBF When a write to IRS_VMAP_VMR makes the corresponding VM valid, all of the following are true:

• The IRS generates the following Effects:
– A Register Write Effect E1 to IRS_VMT_STATUSR which sets the IDLE field to 0.
– A Memory Write Effect E2 to the Location corresponding to the level 1 VM table entry which updates

L2_VMTE.VALID from 0 to 1.
– A Register Write Effect E3 to IRS_VMT_STATUSR which sets the IDLE field to 1.

• There is an Intrinsic order dependency from the Register Write Effect E1 to the Memory Write Effect E2.
• There is an Intrinsic order dependency from the Memory Write Effect E2 to the Register Write Effect E3.

This means that if there is a Memory Read Effect E4 which Reads-from the Register Write Effect E3, then E2 is
Ordered-before E4.

ILTQMV When a level 2 VM table is valid, a VM is made valid by the following sequence:

1. Software initializes the corresponding level 2 VM table entry, with L2_VMTE.VALID remaining to be 0.
2. Software writes to IRS_VMAP_VMR.
3. The IRS performs a write to the level 2 VM table entry that updates L2_VMTE.VALID from 0 to 1.
4. The IRS reports that the effects of the write to IRS_VMAP_VMR are complete.

See 3.3 Coherency considerations for GIC data structures for more information about ensuring that memory
accesses are coherent between the IRS and a PE.

IPYJLW When a VM becomes valid, the following fields are interpreted by the IRS Domain:

• L2_VMTE.VMD_ADDR
• L2_VMTE.VPE_ID_BITS
• L2_VMTE.VPET_ADDR
• L2_VMTE.LPI_IST_VALID
• L2_VMTE.SPI_IST_VALID

If the L2_VMTE.LPI_IST_VALID field is 1 when the VM becomes valid, the following fields are interpreted by
the IRS Domain:

• L2_VMTE.LPI_ID_BITS
• L2_VMTE.LPI_IST_STRUCTURE
• L2_VMTE.LPI_IST_ADDR
• L2_VMTE.LPI_ISTSZ

If the L2_VMTE.SPI_IST_VALID field is 1 when the VM becomes valid, the following fields are interpreted by
the IRS Domain:

• L2_VMTE.SPI_ID_BITS
• L2_VMTE.SPI_IST_STRUCTURE
• L2_VMTE.SPI_IST_ADDR
• L2_VMTE.SPI_ISTSZ

See 4.9.2 The VPE table for information about valid entries in the VPE table when a VM becomes valid.

RBYJYM For a write to a valid level 2 VM table entry, all of the following are true:

• If L2_VMTE.LPI_IST_VALID is 0, the following fields are permitted to be updated:
– L2_VMTE.LPI_ID_BITS.
– L2_VMTE.LPI_IST_STRUCTURE.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

120

Chapter 4. Interrupt routing service (IRS)
4.9. Virtualization data structures

– L2_VMTE.LPI_IST_ADDR.
– L2_VMTE.LPI_ISTSZ.

• If L2_VMTE.SPI_IST_VALID is 0, the following fields are permitted to be updated:
– L2_VMTE.SPI_ID_BITS.
– L2_VMTE.SPI_IST_STRUCTURE.
– L2_VMTE.SPI_IST_ADDR.
– L2_VMTE.SPI_ISTSZ.

Updating any other field in a valid level 2 VM table entry results in UNPREDICTABLE behavior.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the IRS
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

IHQDFR See 4.10.1 Virtual LPIs and 4.10.2 Virtual SPIs for information about how the virtual ISTs become valid and the
corresponding L2_VMTE.LPI_IST_VALID and L2_VMTE.SPI_IST_VALID are updated for a valid VM.

RLDKSX When a level 2 VM table is valid, the IRS behavior is UNPREDICTABLE if there is a write to the level 2 VM table
entry when IRS_VMT_STATUSR.IDLE is 0 because of a write to any of the following registers:

• IRS_VMAP_VMR.
• IRS_VMAP_VPER.
• IRS_VMAP_VISTR.
• IRS_VMAP_L2_VISTR.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the Interrupt
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

RFFCKZ If a write occurs to any of the following registers when IRS_VMT_STATUSR.IDLE is 0 on any other IRS for
the same IRS Domain, it is CONSTRAINED UNPREDICTABLE whether any effects of any of the writes complete
successfully:

• IRS_VMAP_VMR.
• IRS_VMAP_VPER.
• IRS_VMAP_VISTR.
• IRS_VMAP_L2_VISTR.

DBTKBB A VM becomes invalid in any of the following scenarios:

• A write to IRS_VMAP_VMR makes the VM invalid.
• The VM table becomes invalid.

RKFTFZ To recover from UNPREDICTABLE behavior resulting from an incorrect write to a valid level 2 VM table entry, the
VM is made invalid by a write to IRS_VMAP_VMR that sets IRS_VMAP_VMR.U to 1.

RXXVLZ If a VM becomes invalid and a VPE in the VM is resident on a PE, the resident VPE is treated as belonging to an
invalid VM and all of the following are true:

• If a virtual candidate HPPI was selected for the VPE, one of the following is true:
– The virtual candidate HPPI is acknowledged in finite time.
– The virtual candidate HPPI is not acknowledged.

• GIC System instructions operating in the Virtual Interrupt Domain and specify the VM are treated as
specifying an invalid VM.

• Doorbell requests from the PE where the VPE is resident are IGNORED.

If the VM with the same VM ID subsequently becomes valid, then it’s CONSTRAINED UNPREDICTABLE whether
the resident VPE is still treated as being resident and belonging to the new VM, or is treated as belonging to an
invalid VM.

SWKTGN Software can make a VM invalid and reclaim all resources related to the VM by performing the following sequence:

1. Make all VPEs non-resident.
2. Unmap and invalidate all ITS mappings that target the VM.
3. Unassign all SPIs assigned to the VM.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

121

Chapter 4. Interrupt routing service (IRS)
4.9. Virtualization data structures

4. Make the VM invalid by writing to IRS_VMAP_VMR.

4.9.1.4 The VM descriptor

IZVXTY An implementation may require a VM descriptor for each VM.

Whether a VM descriptor is required is reported by IRS_IDR3.VMD.

IQYYFH The VM descriptor is memory provided by software to the IRS Domain to manage the VM. The content and usage
of the VM descriptor is IMPLEMENTATION DEFINED. The VM descriptor cannot be moved once the VM is made
valid.

IYBLTD If a VM descriptor is required, a valid L2_VMTE contains the base addresses of the VM descriptor.

RBWKBG If a VM descriptor is required, when a VM becomes valid, the memory pointed to by L2_VMTE.VMD_ADDR is
expected to contain all zeros.

If the VM descriptor does not contain all zeros, all of the following are true:

• It is CONSTRAINED UNPREDICTABLE whether the IRS Domain selects a target VPE for virtual 1ofN
interrupts for the VM.

• The VM configuration, including the doorbell settings, is reset to UNKNOWN values.

RHQPRD The format and content of the VM descriptor is IMPLEMENTATION DEFINED.

IBBCFD The size of the VM descriptor is reported by IRS_IDR3.VMD_SZ.

RVNVHD Whether a VM descriptor is required, and its size, is the same across all Interrupt Domains, except for the EL3
Interrupt Domain, where VMs are not supported.

Whether a VM descriptor is required, and its size, is the same across all IRSs.

4.9.1.5 Example VM table structures

IBSPBV The size of a level 1 VMTE is 8 bytes and the size of a level 2 VMTE is 32 bytes.

Table 4.3 shows some example VM table structures.

SVKKQW The L1 size and L2 size columns in Table 4.3 indicate the required maximum physically contiguous allocation by
software for the configuration.

Table 4.3: Example VM table structures

STRUCTURE VM_ID_BITS L1 size L2 size Maximum number of VMs

Linear 7 - 4 KB 128

Linear 11 - 64 KB 2,048

Linear 15 - 1 MB 32,768

Linear 16 - 2 MB 65,536

2-level 16 4 KB 4 KB 65,536

4.9.2 The VPE table

IBGKFQ The VPE table contains the configuration of the VPEs defined for a VM.

For each VPE, the VPE table contains pointers to other data structures associated with that VPE.

In a multi-IRS system, the VPE table is shared between all IRSs for the IRS Domain.

The VPE table is not permitted to be shared across multiple VMs.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

122

Chapter 4. Interrupt routing service (IRS)
4.9. Virtualization data structures

DPFHDR The VPE table uses a linear structure.

DMPMBR The base address of the VPE table specifies the location of the VPE table.

IWXRZV L2_VMTE.VPE_ID_BITS selects maximum number of VPEs for the VM.

SPLJRT When a VM is made valid, it is configured to support a maximum number of VPEs. This value cannot
be modified once the VM is made valid. If more VPEs are required than the maximum configured in the
L2_VMTE.VPE_ID_BITS field, then the VM can be made invalid and a new VM can be made valid with a larger
maximum number of VPEs.

Note

L2_VMTE.VPE_ID_BITS specifies the maximum number of entries in the VPE table. For some of those entries,
VPETE.VALID may be 0, and therefore the number of valid VPEs in the VM may be smaller than the value
specified by L2_VMTE.VPE_ID_BITS.

IDRHQP The VPE table is indexed using a VPE ID ranging from 0 to (2 ˆ L2_VMTE.VPE_ID_BITS) - 1.

RWSDXY When an IRS accesses the VPE table for a VM, the IRS does not access any memory location derived from a VPE
ID which is outside the configured VPE ID range for the VM.

This includes situations where the VPE ID is programmed in the parameters to a GIC System instruction, written
to a GIC System register, or the VPE ID is stored in a virtualization data structure entry.

IQCQBD The maximum supported VPE ID is reported by IRS_IDR4.VPE_ID_BITS.

RHBNVF The number of supported VPE ID bits is the same across all Interrupt Domains, except for the EL3 Interrupt
Domain, where VMs are not supported.

The number of supported VPE ID bits is the same across all IRSs.

RNQDMK For virtual interrupts, when an Interrupt Affinity ID is specified, it is interpreted as the VPE ID.

SRMDNH A virtual Interrupt Affinity ID is interpreted as the VPE ID for virtual interrupts and used directly to index into the
VPE table.

Arm expects that hypervisor software at EL2 presents a virtual IRS with an emulated virtual IRS_PE_SELR
register. The value written to the emulated IRS_PE_SELR.IAFFID field should select the emulated configuration
registers corresponding to the VPE with the corresponding IAFFID and VPE ID.

4.9.2.1 The VPE table base address and configuration

ICFPXL The base address of the VPE table for a VM is stored in the corresponding L2_VMTE.VPET_ADDR.

See 4.9.1.3 VM management for more information.

ILTQZN A VPE table becomes valid when its VM becomes valid.

When a VPE table becomes valid, the VPE table can contain all invalid entries, a combination of valid and invalid
entries, or all valid entries.

RPSYQV When VPETE.VALID is 1, the IRS may speculatively access any memory location derived from the address and
configuration data in the VPE table entry.

See 4.12 IRS memory access rules for more information.

4.9.2.2 VPE management

DBKCHX A VPE for a VM, and the corresponding VPE table entry, are considered valid when all of the following are true:

• The VM is valid.
• The corresponding VPETE.VALID is 1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

123

Chapter 4. Interrupt routing service (IRS)
4.9. Virtualization data structures

Otherwise, the VPE and the corresponding VPE table entry are considered invalid.

RJKDCN If a VPE ID is outside the configured VPE ID range for the VM, the VPE ID is treated as specifying an invalid
VPE.

GQNPPW The architecture supports multiple ways to create a VM:

• A VM can be made valid without containing any valid VPEs, and each VPE is subsequently made valid.
• A VM can be made valid with pre-configured valid VPEs to reduce the overhead of setting up a new VM.

DHNRJX A VPE becomes valid in any of the following scenarios:

• A write to IRS_VMAP_VPER makes the VPE valid for an already valid VM.
• A VM becomes valid and VPETE.VALID is 1 for the corresponding VPE table entry for the VM.

RLSYNH When a VPE table is valid, if software writes to an invalid VPE table entry and sets VPETE.VALID to 1, the
behavior of the IRS Domain is UNPREDICTABLE.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the Interrupt
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

RXRNSL When a write to IRS_VMAP_VPER makes the corresponding VPE valid, all of the following are true:

• The IRS generates the following Effects:
– A Register Write Effect E1 to IRS_VMT_STATUSR which sets the IDLE field to 0.
– A Memory Write Effect E2 to the Location corresponding to the level 1 VM table entry which updates

VPETE.VALID from 0 to 1.
– A Register Write Effect E3 to IRS_VMT_STATUSR which sets the IDLE field to 1.

• There is an Intrinsic order dependency from the Register Write Effect E1 to the Memory Write Effect E2.
• There is an Intrinsic order dependency from the Memory Write Effect E2 to the Register Write Effect E3.

This means that if there is a Memory Read Effect E4 which Reads-from the Register Write Effect E3, then E2 is
Ordered-before E4.

ISBDHK When a VPE table is valid, a VPE is made valid by the following sequence:

1. Software initializes the corresponding VPE table entry, with VPETE.VALID remaining to be 0.
2. Software writes to IRS_VMAP_VPER.
3. The IRS performs a write to the VPE table entry that updates VPETE.VALID from 0 to 1.
4. The IRS reports that the effects of the write to IRS_VMAP_VPER are complete.

See 3.3 Coherency considerations for GIC data structures for more information about ensuring that memory
accesses are coherent between the IRS and a PE.

ITTRHV When the VPE becomes valid, the corresponding VPETE.VPED_ADDR specifies the location of the VPE
descriptor.

See 4.9.2.3 The VPE descriptor for more information.

RYLKWF When a VPE table is valid, the IRS behavior is UNPREDICTABLE if there is a write to the VPE table entry when
IRS_VMT_STATUSR.IDLE is 0 because of a write to IRS_VMAP_VPER.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the Interrupt
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

RLJJVP If a write updates any field in a valid VPE table entry, the IRS Domain behavior is UNPREDICTABLE.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the IRS
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

ILVSWT The architecture does not support making an individual VPE invalid without making the corresponding VM invalid.

RPKQLK To recover from UNPREDICTABLE behavior resulting from an incorrect write to a VPE table entry, the VM is made
invalid.

DVDSVN A VPE becomes invalid when the corresponding VM becomes invalid.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

124

Chapter 4. Interrupt routing service (IRS)
4.9. Virtualization data structures

4.9.2.3 The VPE descriptor

IYWLWM The VPE descriptor is memory provided by software to the IRSs to manage the VPE. The content and usage of the
VPE descriptor is IMPLEMENTATION DEFINED. The VPE descriptor cannot be moved once the VPE is created, for
as long as the VM remains valid.

RDLKTX When a VPE becomes valid, the memory pointed to by VPETE.VPED_ADDR is expected to contain all zeros.

If the VPE descriptor does not contain all zeros, all of the following are true:

• It is CONSTRAINED UNPREDICTABLE whether the IRS Domain selects a virtual candidate HPPI for the VPE.
• The VPE configuration, including the doorbell settings, is reset to UNKNOWN values.

RDHCDH The format and content of the VPE descriptor is IMPLEMENTATION DEFINED.

IQPDNG The size of the VPE descriptor is reported by IRS_IDR4.VPED_SZ.

RTJMHJ The size of the VPE descriptor is the same across all Interrupt Domains, except for the EL3 Interrupt Domain,
where VMs are not supported.

The size of the VPE descriptor is the same across all IRSs.

4.9.2.4 Example VPE table structures

ILFWWJ The size of a VPE table entry is 8 bytes.

Table 4.4 shows some example VPE table structures.

The VP_ID_BITS column represents the value stored in the L2_VMTE.VPE_ID_BITS field for the VM containing
the VPE table.

Table 4.4: Example VPE table sizes

VPE_ID_BITS VPE table size Maximum number of VPEs

2 32 B 4

3 64 B 8

4 128 B 16

7 1 KB 128

9 4 KB 512

14 128 KB 16,384

16 512 KB 65,536

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

125

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

4.10 Virtual interrupts

DYJQKX Virtual interrupts are interrupts that belong to a VM.

RXKHNL A virtual interrupt is only permitted to be selected as the candidate HPPI for the Virtual Interrupt Domain.

IBNPQR The IRS supports the following types of virtual interrupts for VMs:

• Virtual LPIs.
• Virtual SPIs.

Both types of virtual interrupts are stored in virtual ISTs.

IZDNVV Virtual interrupts are routed to a target VPE and selected as the virtual candidate HPPI for the PE where the target
VPE is resident.

See 4.10.6 VPE residency and 4.10.3 Virtual interrupt routing for more information.

RKPKLS IRS support for virtualization is optional.

IFYJLC IRS_IDR0.VIRT indicates whether virtualization is supported.

RDGHCV IRS_IDR0.VIRT is 0 for the EL3 Interrupt Domain.

RKDSPG When at least one PE connected to an IRS implements EL2, IRS_IDR0.VIRT is 1 for all IRSs for all Interrupt
Domains other than the EL3 Interrupt Domain.

When none of the PEs in the system implement EL2, IRS_IDR0.VIRT is 0 for all IRSs for all Interrupt Domains.

RJJPQJ The value of IRS_IDR0.VIRT is the same for all IRSs for the same Interrupt Domain in the system.

RTQFCT When virtualization is not supported, the IRS does not select any virtual candidate HPPIs to the PEs and any virtual
interrupts signaled to the IRS are IGNORED.

RTZBQY The number of Priority bits supported for virtual interrupts corresponds to the number of Priority bits supported in
the Interrupt Domain where the VM is defined.

See 4.6 Interrupt configuration and state for more information about the number of supported Priority bits.

4.10.1 Virtual LPIs

DJXYLG The virtual LPIs for a VM are stored in the virtual LPI IST for the VM.

IRMNHL The virtual LPI IST is allocated separately for each VM.

The virtual LPI IST for a VM is shared across all IRSs in the system.

A virtual LPI IST is not permitted to be shared across multiple VMs.

IWPHXH The number of virtual LPIs in a VM is configured in L2_VMTE.LPI_ID_BITS.

Software allocates and provides the virtual LPI IST for a VM by writing a valid address to L2_VMTE.LPI_IST_ADDR
and writing 1 to L2_VMTE.LPI_IST_VALID.

IWPZYD The virtual LPI IST is indexed using the INTID.ID in the range from 0 to (2 ˆ L2_VMTE.LPI_ID_BITS) - 1.

RCJYYQ When an IRS accesses the virtual LPI IST for a VM, the IRS does not access any memory location derived from an
INTID which is outside the configured virtual LPI range for the VM.

This includes situations where the INTID is programmed in the parameters to a GIC System instruction or the
INTID is stored in the IST metadata areas.

RDJZRM A virtual LPI specified by an INTID for a VM specified by a VM ID is reachable when all of the following are true:

• The VM ID is valid.
• The INTID is within the configured virtual LPI range for the VM.
• The virtual LPI IST for the VM is valid.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

126

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

• There is a level 2 IST entry corresponding to the INTID in the virtual LPI IST.

Otherwise, the virtual LPI is unreachable.

IGQQSW In the virtual LPI IST context, the base address of the virtual LPI IST for a VM is stored in L2_VMTE.LPI_IST_ADDR.

IJKPTM In the virtual LPI IST context, L2_VMTE.LPI_IST_VALID determines if the virtual LPI IST is valid for a VM.

DWDHDY A virtual LPI IST for a VM becomes valid in one of the following scenarios:

• The VM becomes valid and L2_VMTE.LPI_IST_VALID is 1 in the corresponding level 2 VM table entry.
• The VM is valid and a write to IRS_VMAP_VISTR makes the virtual LPI IST valid.

See 4.7 The interrupt state table (IST) for more information about an IST becoming valid and invalid.

RXKGXC When a write to IRS_VMAP_VISTR makes the corresponding LPI IST for the VM valid or invalid, all of the
following are true:

• The IRS generates the following Effects:
– A Register Write Effect E1 to IRS_VMT_STATUSR which sets the IDLE field to 0.
– A Memory Write Effect E2 to the Location corresponding to the level 2 VM table entry which updates

L2_VMTE.LPI_IST_VALID.
– A Register Write Effect E3 to IRS_VMT_STATUSR which sets the IDLE field to 1.

• There is an Intrinsic order dependency from the Register Write Effect E1 to the Memory Write Effect E2.
• There is an Intrinsic order dependency from the Memory Write Effect E2 to the Register Write Effect E3.

This means that if there is a Memory Read Effect E4 which Reads-from the Register Write Effect E3, then E2 is
Ordered-before E4.

IZTSBX When a VM is valid, the virtual LPI IST is made valid by the following sequence:

1. Software configures the virtual LPI IST by writing to the corresponding level 2 VM table entry, with
L2_VMTE.LPI_IST_VALID remaining to be 0.

2. Software writes to IRS_VMAP_VISTR.
3. The IRS performs a write to the level 2 VM table entry that updates L2_VMTE.LPI_IST_VALID from 0 to 1.
4. The IRS reports that the effects of the write to IRS_VMAP_VISTR are complete.

See 3.3 Coherency considerations for GIC data structures for more information about ensuring that memory
accesses are coherent between the IRS and a PE.

See 4.9.1.3 VM management for more information about which fields are permitted to be updated when the VM is
valid.

IBHBYF See 4.9.1.3 VM management for more information about updates to a level 2 VM table entry and the use of the
virtual map registers.

SKBXNL The architecture supports the following ways to configure virtual LPIs for a VM:

• Software can write a valid IST pointer and IST configuration data to the level 2 VM table entry after the VM
is made valid and write to the map virtual IST register.

• Software can provide a valid IST pointer in the level 2 VM table entry when the VM is made valid.

Adding an IST to add virtual LPI support for a VM can, for example, be done in response to a guest operating
system booting and configuring a virtual IRS emulated by software.

Providing a valid IST pointer at the time the VM is made valid can be used to support VM migration, or to support
suspend and resume of VMs.

ISYDWQ When a virtual LPI IST becomes valid, the following fields are interpreted by the IRS Domain:

• L2_VMTE.LPI_ID_BITS
• L2_VMTE.LPI_IST_STRUCTURE
• L2_VMTE.LPI_IST_ADDR
• L2_VMTE.LPI_ISTSZ

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

127

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

ILTXVZ When IRS_IDR2.IST_levels is 0, L2_VMTE.LPI_IST_STRUCTURE is treated as 0.

INMFLD IRS_IDR2.{MIN_LPI_ID_BITS,ID_BITS} report the range of valid values for L2_VMTE.LPI_ID_BITS.

In a multi-IRS system, when the virtual LPI IST is valid for a VM, and the VM table is valid, all IRSs are permitted
to access the virtual LPI IST for any reason, including speculative reads.

See 4.9.1.1 The VM table base address and configuration registers for more information.

RTDTCJ When the virtual LPI IST is invalid for a VM, the IRS Domain does not access the virtual LPI IST.

DPCVXZ A virtual LPI IST for a VM becomes invalid in one of the following scenarios:

• The VM becomes invalid.
• The VM is valid and a write to IRS_VMAP_VISTR makes the virtual LPI IST invalid.

See 4.7 The interrupt state table (IST) for more information about an IST becoming valid and invalid.

IQFTNB When a VM is valid, the virtual LPI IST is made invalid by the following sequence:

1. Software writes to IRS_VMAP_VISTR.
2. The IRS performs a write to the level 2 VM table entry that updates L2_VMTE.LPI_IST_VALID from 1 to 0.
3. The IRS reports that the effects of the write to IRS_VMAP_VISTR are complete.

See 3.3 Coherency considerations for GIC data structures for more information about ensuring that memory
accesses are coherent between the IRS and a PE.

RCXWBT If a virtual LPI IST for a VM becomes invalid, a VPE in the VM is resident on a PE, and a virtual LPI is the
candidate HPPI for the Virtual Interrupt Domain, one of the following is true:

• The candidate HPPI is acknowledged by the PE before the IST becomes invalid.
• The candidate HPPI is not acknowledged and is no longer selected as the candidate HPPI for the VPE.

RKYMTZ When a virtual LPI IST becomes invalid, if there are Accepted events for virtual LPIs targeting the VM that are not
yet processed, all of the following are true:

• The events are dropped and have no effect on any interrupt.
• If software error reporting is supported, the IRS is permitted to report an error.

SBWSKR If hypervisor software wishes to update the configuration of a virtual LPI IST, for example as the result of guest
software programming emulated IRS registers, software should perform the following sequence:

1. Make the virtual LPI IST invalid.
2. Update the relevant fields in the level 2 VM table entry.
3. Make the virtual LPI IST valid.

IPCNMM In the virtual LPI IST context, when the virtual LPI IST is valid and uses a 2-level structure, a virtual level 2 IST is
made valid by writing to IRS_VMAP_L2_VISTR.

The write specifies that the map applies to the LPI IST by setting IRS_VMAP_L2_VISTR.TYPE to LPI.

The effects of the write are complete when IRS_VMT_STATUSR.IDLE is 1.

See 4.7.1 Level 2 IST management for more information.

ISBDCY See 4.9.1.3 VM management for more information about the restrictions for the use of IRS_VMAP_L2_VIST
concurrently with updates to the virtualization data structures for the VM and the use of other virtual map registers
across IRSs.

See also:

• 4.7 The interrupt state table (IST)
• 4.9 Virtualization data structures

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

128

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

4.10.2 Virtual SPIs

DJSJKN The virtual SPIs for a VM are stored in the virtual SPI IST for the VM.

IYZPNL The virtual SPI IST is allocated separately for each VM.

The virtual SPI IST for a VM is shared across all IRSs in the system.

A virtual SPI IST is not permitted to be shared across multiple VMs.

IPVHMD The number of virtual SPIs in a VM is configured in L2_VMTE.SPI_ID_BITS.

Software allocates and provides the virtual SPI IST for a VM by writing a valid address to L2_VMTE.SPI_IST_ADDR
and writing 1 to L2_VMTE.SPI_IST_VALID.

IDXXHY The virtual SPI IST is indexed using the INTID.ID in the range from 0 through (2 ˆ L2_VMTE.SPI_ID_BITS) - 1.

RJQZKY When an IRS accesses the virtual SPI IST for a VM, the IRS does not access any memory location derived from an
INTID which is outside the configured virtual SPI range for the VM.

This includes situations where the INTID is programmed in the parameters of a GIC System instruction executed
on a PE or the INTID is stored in the IST metadata areas.

RMYLWH A virtual SPI specified by an INTID for a VM specified by a VM ID is reachable when all of the following are true:

• The VM is valid.
• The virtual SPI IST for the VM is valid.
• The INTID is within the configured virtual SPI range for the VM.
• There is a level 2 IST entry corresponding to the INTID in the virtual SPI IST.

Otherwise, the virtual SPI is unreachable.

IHRDGP In the virtual SPI IST context, the base address of the virtual SPI IST for a VM is stored in L2_VMTE.SPI_IST_ADDR.

ICSNJM In the virtual SPI IST context, L2_VMTE.SPI_IST_VALID determines if the virtual SPI IST is valid for a VM.

DBKKXD A virtual SPI IST for a VM becomes valid in one of the following scenarios:

• The VM becomes valid and L2_VMTE.SPI_IST_VALID is 1 in the corresponding level 2 VM table entry.
• The VM is valid and a write to IRS_VMAP_VISTR makes the virtual SPI IST valid.

See 4.7 The interrupt state table (IST) for more information about an IST becoming valid and invalid.

RMLTBD When a write to IRS_VMAP_VISTR makes the corresponding SPI IST for the VM valid or invalid, all of the
following are true:

• The IRS generates the following Effects:
– A Register Write Effect E1 to IRS_VMT_STATUSR which sets the IDLE field to 0.
– A Memory Write Effect E2 to the Location corresponding to the level 2 VM table entry which updates

L2_VMTE.SPI_IST_VALID.
– A Register Write Effect E3 to IRS_VMT_STATUSR which sets the IDLE field to 1.

• There is an Intrinsic order dependency from the Register Write Effect E1 to the Memory Write Effect E2.
• There is an Intrinsic order dependency from the Memory Write Effect E2 to the Register Write Effect E3.

This means that if there is a Memory Read Effect E4 which Reads-from the Register Write Effect E3, then E2 is
Ordered-before E4.

ICDTQL When a VM is valid, the virtual SPI IST is made valid by the following sequence:

1. Software configures the virtual SPI IST by writing to the corresponding level 2 VM table entry, with
L2_VMTE.SPI_IST_VALID remaining to be 0.

2. Software writes to IRS_VMAP_VISTR.
3. The IRS performs a write to the level 2 VM table entry that updates L2_VMTE.SPI_IST_VALID from 0 to 1.
4. The IRS reports that the effects of the write to IRS_VMAP_VISTR are complete.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

129

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

See 3.3 Coherency considerations for GIC data structures for more information about ensuring that memory
accesses are coherent between the IRS and a PE.

See 4.9.1.3 VM management for more information about which fields are permitted to be updated when the VM is
valid.

SLHQJY Arm expects that hypervisor software provides a valid virtual SPI when a VM is made valid with a fixed number of
SPIs for the lifetime of the VM. This is analogous to how SPIs work on a physical system.

IZZGXF When a virtual SPI IST becomes valid, the following fields are interpreted by the IRS Domain:

• L2_VMTE.SPI_ID_BITS
• L2_VMTE.SPI_IST_STRUCTURE
• L2_VMTE.SPI_IST_ADDR
• L2_VMTE.SPI_ISTSZ

IZKTZX When IRS_IDR2.IST_levels is 0, L2_VMTE.SPI_IST_STRUCTURE is treated as 0.

IRGNRJ IRS_IDR2.ID_BITS reports the maximum value for L2_VMTE.SPI_ID_BITS.

ITWRCJ See 4.9.1.3 VM management for more information about updates to a level 2 VM table entry and the use of the
virtual map registers.

In a multi-IRS system, when the virtual SPI IST is valid for a VM, and the VM table is valid, all IRSs are permitted
to access the virtual SPI IST for any reason, including speculative reads.

See 4.9.1.1 The VM table base address and configuration registers for more information.

RKYYYR When the virtual SPI IST is invalid for a VM, the IRS Domain does not access the virtual SPI IST.

DFYKVT A virtual SPI IST for a VM becomes invalid in one of the following scenarios:

• The VM becomes invalid.
• The VM is valid and a write to IRS_VMAP_VISTR makes the virtual SPI IST invalid.

See 4.7 The interrupt state table (IST) for more information about an IST becoming valid and invalid.

IPZQWR When a VM is valid, the virtual SPI IST is made invalid by the following sequence:

1. Software writes to IRS_VMAP_VISTR.
2. The IRS performs a write to the level 2 VM table entry that updates L2_VMTE.SPI_IST_VALID from 1 to 0.
3. The IRS reports that the effects of the write to IRS_VMAP_VISTR are complete.

See 3.3 Coherency considerations for GIC data structures for more information about ensuring that memory
accesses are coherent between the IRS and a PE.

RJZQCG If a virtual SPI IST for a VM becomes invalid, a VPE in the VM is resident on a PE, and a virtual SPI is the
candidate HPPI for the Virtual Interrupt Domain, one of the following is true:

• The candidate HPPI is acknowledged by the PE before the IST becomes invalid.
• The candidate HPPI is not acknowledged and is no longer selected as the candidate HPPI for the VPE.

RSGLWK When a virtual SPI IST becomes invalid, if there are Accepted events for virtual SPIs targeting the VM that are not
yet processed, all of the following are true:

• The events are dropped and have no effect on any interrupt.
• If software error reporting is supported, the IRS is permitted to report an error.

IGVQDH In the virtual SPI IST context, when the virtual SPI IST is valid and uses a 2-level structure, a virtual level 2 IST is
made valid by writing to IRS_VMAP_L2_VISTR.

The write specifies that the map applies to the SPI IST by setting IRS_VMAP_L2_VISTR.TYPE to SPI.

The effects of the write are complete when IRS_VMT_STATUSR.IDLE is 1.

See 4.7.1 Level 2 IST management for more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

130

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

See also:

• 4.7 The interrupt state table (IST)
• 4.9 Virtualization data structures

4.10.2.1 Assigning physical SPIs to VMs

DWGVHQ A physical SPI is assigned to a VM when all of the following are true:

• A write sets IRS_SPI_VMR.VIRT to 1.
• The write specifies a valid VM.
• The write completes successfully as indicated by IRS_SPI_STATUSR.{V,IDLE} being {1,1}.

IKJJNL Assigning SPIs to a VM is only supported when IRS_IDR0.VIRT is 1.

When IRS_IDR0.VIRT is 0, IRS_SPI_VMR is RAZ/WI.

IBSYVR When an SPI is statically assigned to the EL3 Interrupt Domain, it is not possible to assign the SPI to a VM.

Access to IRS_SPI_VMR is RAZ/WI when the SPI is assigned to the EL3 Interrupt Domain.

RPYSML For each SPI that is not statically assigned to the EL3 Interrupt Domain, it is IMPLEMENTATION DEFINED whether
the SPI can be assigned to a VM.

When support for assigning an SPI to a VM is implemented, the SPI is assigned to a VM in the Interrupt Domain
where the SPI is assigned.

When support for assigning an SPI to a VM is not implemented, access to IRS_SPI_VMR, when that SPI is
selected, is RAZ/WI.

ILKYQR Arm recommends that when IRS_IDR0.VIRT is 1, for all SPIs that are connected to an interrupt input signal, that
support for assigning the SPI to a VM is implemented.

RNZFQQ When an SPI is assigned to a VM, all of the following are true for the physical SPI:

• The SPI is not considered for a physical candidate HPPI.
• The SPI is unreachable.

The effects on virtual SPIs to which physical SPIs are assigned are described in 4.10.4 Virtual interrupt signaling.

RNSTHN If a physical SPI is assigned to a VM, GIC System instructions that update the Pending state of the physical SPI
are IGNORED.

RVYNSP When a physical SPI is assigned to a virtual SPI, the virtual SPI INTID is reset to its reset state.

If virtual 1ofN interrupt routing is not supported, the reset state of Routing mode for a virtual SPI is Targeted.

When a physical SPI is unassigned from a virtual SPI, all of the following are true:

• The physical SPI INTID is reset to its reset state.
• The virtual SPI INTID is reset to its reset state.

IBGSSV The Trigger mode of an SPI determines the type of the events that the IRS generates for the SPI, regardless of
whether the SPI is assigned to a VM.

RHHBSB If IRS_SPI_VMR.VM_ID does not specify a valid VM for an SPI written to IRS_SPI_SELR, it is CONSTRAINED
UNPREDICTABLE whether the SPI is treated as not being assigned to any VM, or assigned to an invalid VM.

If the SPI is treated as being assigned to an invalid VM, all of the following are true:

• The SPI is not considered for the physical or virtual candidate HPPI for any PE.
• The SPI is unreachable.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

131

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

4.10.3 Virtual interrupt routing

DPMQVK The Routing mode of a virtual interrupt determines how the target VPE is selected for that interrupt in the following
ways:

• If the Routing mode is Targeted, the target VPE is the VPE specified by the interrupt Affinity.
• If the Routing mode is 1ofN, the target VPE is determined dynamically.

DSZXHC When an interrupt Routing mode is Targeted and the interrupt Affinity specifies a VPE, the interrupt is said to be
targeted to that VPE.

IVSDPM If the Routing mode of a virtual interrupt is Targeted, the interrupt Affinity specifies the target VPE. If the Routing
mode of a virtual interrupt is 1ofN, the interrupt Affinity is IMPLEMENTATION DEFINED.

RBFGYB IRS support for virtual 1ofN interrupt routing is optional.

IJQMTB IRS_IDR0.VIRT_ONE_N reports whether virtual 1ofN interrupt routing is supported.

RXLGVV The value of IRS_IDR0.VIRT_ONE_N is the same across all Interrupt Domains, except for the EL3 Interrupt
Domain, where VMs are not supported.

The value of IRS_IDR0.VIRT_ONE_N is the same across all IRSs.

RJCSBY If virtual 1ofN interrupt routing is not supported, all of the following are true:

• If a GIC System instruction generates an Interrupt Effect that sets the Routing mode of a virtual interrupt, the
Routing mode remains set to Targeted regardless of the value provided in <Xt>.

• L2_ISTE.IRM is treated as 0 when a virtual IST becomes valid.

SQQDND When virtual 1ofN interrupt routing is not supported, the IRM field in the value encoded in the <Xt> parameter
of the GIC xDAFF System instruction is RES0 and GIC xDRCFG instructions always return 0 in the IRM field in
ICC_ICSR_EL1 when requesting the configuration of a virtual interrupt.

This means that virtual 1ofN interrupts are treated as Targeted interrupts and are always delivered to the VPE
specified by the interrupt Affinity.

Hypervisor software can support virtual 1ofN interrupt routing in systems where virtual 1ofN interrupt routing is
not implemented by emulating the 1ofN behavior.

Hypervisor software can emulate virtual 1ofN by trapping guest access to the configuration of virtual interrupts
and maintain a shadow configuration of each interrupt used by the physical IRS and updating the target VPE of the
shadow 1ofN interrupts to emulate a 1ofN selection algorithm.

RTBBTW Each virtual 1ofN interrupt can be acknowledged by at most one VPE.

RFHDFL The storage location for the Affinity of virtual 1ofN interrupts may be used for an IMPLEMENTATION DEFINED
purpose to handle routing of virtual 1ofN interrupts, with the restriction that an Affinity value of 0 has no
IMPLEMENTATION DEFINED meaning.

RFRMXL An IRS is permitted to update the Affinity of virtual 1ofN interrupts.

IBYXVC When virtual 1ofN is supported, the VPE can be configured to have 1ofN PE selection enabled or disabled by
accessing IRS_VPE_CR0.DPS.

RSCWSJ When virtual 1ofN is supported, an IRS does not choose a VPE which has 1ofN PE selection disabled as the target
VPE for a 1ofN interrupt.

RXMNZS When virtual 1ofN is supported, the IRS Domain selects a target VPE for a reachable virtual 1ofN interrupt
belonging to a valid VM in finite time, when all of the following are true:

• The interrupt is Enabled.
• The interrupt is Pending.
• The interrupt is Inactive.
• At least one IRS is enabled.
• At least one VPE in the VM has 1ofN PE selection enabled.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

132

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

The target VPE is selected among the VPEs in the VM that the virtual 1ofN interrupt belongs to.

Note

The target VPE selection behavior does not guarantee that the interrupt is selected as the virtual candidate HPPI
for a PE. For example, the selected target VPE may be masking the interrupt, the VPE may not be resident,
another virtual interrupt may be the virtual candidate HPPI for the target VPE.

RSKVBZ An IRS Domain may select a new target VPE for a virtual 1ofN interrupt at any time.

RQYKSH When virtual 1ofN is supported, the mechanism that an IRS uses to select a target VPE among several possible
target VPEs is IMPLEMENTATION DEFINED.

SRBXBB When virtual 1ofN is supported, the VPE 1ofN PE selection enable control may be used to support virtualization
of IRS_PE_CR0.DPS.

Arm expects that hypervisor software at EL2 traps the guest programming of the virtual IRS_PE_CR0.DPS field
and configures the VPE accordingly.

IDWNMY When IRS_VPE_CR0.DPS is updated for a VPE that is resident on a PE, and a virtual 1ofN interrupt is selected as
the virtual candidate HPPI for the VPE, one of the following is true:

• The PE acknowledges the interrupt before IRS_VPE_STATUSR.IDLE is 1.
• The PE does not acknowledge the interrupt.

See 4.10.4 Virtual interrupt signaling for more information.

4.10.4 Virtual interrupt signaling

RGMMHX The Pending state of a virtual LPI identified by an INTID and a VM ID is updated when all of the following are
true:

• The virtual LPI as identified by the INTID is reachable.
• The VM as identified by the VM ID is valid.
• Any of the following occur:

– An ITS generates an interrupt event that specifies the VM ID and INTID.
– A GIC System instruction generates an Interrupt Write Effect that updates the Pending state of the virtual

LPI.

Otherwise, the virtual LPI Pending state is not updated.

IYDCMB The IRS SETLPI register does not support signaling virtual interrupts.

RCQTDT The Pending state of a virtual SPI identified by an INTID and a VM ID is updated when all of the following are
true:

• The virtual SPI as identified by the INTID is reachable.
• The VM as identified by the VM ID is valid.
• Any of the following occur:

– An interrupt connected to an IRS as an SPI is asserted or de-asserted and generates an interrupt event for
the virtual SPI because the SPI is assigned to the VM.

– A GIC System instruction generates an Interrupt Write Effect that updates the Pending state of the virtual
SPI.

Otherwise, the virtual SPI Pending state is not updated.

IBZFTG When a virtual interrupt is signaled to the IRS, the IRS updates the Pending state of the virtual interrupt regardless
of whether the target VPE is resident or non-resident.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

133

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

DHCZPD The IRS selects a virtual candidate HPPI for a VPE for an Interrupt Domain, when at least one virtual interrupt
meets the virtual candidate HPPI conditions:

• The interrupt is Enabled.
• The interrupt is Pending.
• The interrupt is Inactive.
• One of the following is true:

– The interrupt Routing mode is Targeted and the interrupt Affinity specifies the VPE.
– The interrupt Routing mode is 1ofN and the VPE is selected as the target VPE for the interrupt.

RBFYMP For a virtual Targeted interrupt whose interrupt Affinity specifies an invalid VPE that is updated from invalid to
valid, whether the interrupt is considered for the virtual candidate HPPI selection for the VPE depends on whether
there is an update to the following states and configurations for the virtual interrupt:

• Pending.
• Active.
• Enabled.
• Routing mode.
• Affinity.

If there is no update to any of the mentioned states and configurations of the virtual interrupt after the VPE becomes
valid, it is CONSTRAINED UNPREDICTABLE whether the interrupt is considered for the virtual candidate HPPI
selection for the VPE.

If there is an update to any of the mentioned states and configurations for the virtual interrupt after the VPE
becomes valid, the virtual interrupt is considered for the virtual candidate HPPI selection for the VPE:

RCPCCK For a VPE in a VM, all of the following apply to the virtual candidate HPPI selection:

• If at least one interrupt satisfies the virtual candidate HPPI conditions, the IRS selects one of these as the
virtual candidate HPPI in finite time.

• If no interrupts satisfy the virtual candidate HPPI conditions, the IRS does not select any interrupt as the
virtual candidate HPPI.

RZDTYM If more than one interrupt satisfies the virtual candidate HPPI conditions for a VPE in a VM, the IRS selects the
interrupt with the highest Priority as the virtual candidate HPPI in finite time.

If there is more than one virtual candidate HPPI with the same Priority, it is IMPLEMENTATION DEFINED which of
those interrupts is selected as the virtual candidate HPPI.

RVBPZM An IRS selects a virtual candidate HPPI for a connected PE in finite time, when all of the following are true:

• There is a resident VPE on the PE.
• The IRS is enabled for the Physical Interrupt Domain corresponding to the resident VPE.
• There is at least one virtual interrupt that meets the virtual candidate HPPI conditions for the VPE.

IWZNJR If the IRS Domain has selected a virtual candidate HPPI for a non-resident VPE, it might generate a VPE doorbell.
See 4.10.7 VPE doorbells for more information.

RXBNGN When a virtual candidate HPPI that has been selected for a VPE is no longer the virtual candidate HPPI for the
VPE, and if the VPE is resident on a PE, one of the following is true:

• The PE acknowledges the old virtual candidate HPPI within finite time.
• The old virtual candidate HPPI is not acknowledged.

RZFVRC If the IRS updates the configuration of an interrupt that has been selected as the virtual candidate HPPI for the
Virtual Interrupt Domain for a PE, and the interrupt configuration data was communicated to the PE, the IRS will
select the same or a new virtual interrupt as the virtual candidate HPPI.

The IRS then communicates the selected virtual candidate HPPI to the PE, including any updated interrupt
configuration data, in finite time.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

134

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

For more information about ordering of such events, see 2.12 Interrupt ordering model and synchronization
requirements and Chapter B1 Interrupt ordering litmus tests.

See also:

• 4.8.4 Physical interrupt signaling

4.10.5 VPE selection and configuration

IBNNMF Software accesses the configuration and samples the HPPI of a VPE by selecting the VPE and accessing one of the
following registers:

• IRS_VPE_CR0.
• IRS_VPE_DBR.
• IRS_VPE_HPPIR.

Software selects a VPE by writing the VM ID and VPE ID to IRS_VPE_SELR.{VM_ID,VPE_ID} and writing 1
to IRS_VPE_SELR.S.

IRS_VPE_STATUSR.IDLE reports whether the effects of the write IRS_VPE_SELR.S are complete.

IRS_VPE_STATUSR.V reports whether the value written to IRS_VPE_SELR selected a valid VPE.

IRS_VPE_STATUSR.V is updated on a write to any of the following registers:

• IRS_VPE_CR0.
• IRS_VPE_DBR.
• IRS_VPE_HPPIR.
• IRS_VPE_SELR.

RMVDZK If a VPE is selected on more than one IRS in a multi-IRS system, and a write occurs to any of the VPE configuration
registers on one IRS while IRS_VPE_STATUSR.IDLE is 0 on any other IRS for the same IRS Domain due to a
write to the configuration registers, it is CONSTRAINED UNPREDICTABLE which one of the following is true:

• The write does not successfully update the VPE and IRS_VPE_STATUSR.V is 0 on one of the IRSs where a
write occurs.

• None of the writes updates the VPE configuration.
• Both of the writes successfully update the VPE configuration in UNKNOWN order.

RRLHSL When a VPE becomes valid, the VPE configuration is reset to the following values:

• If virtual 1ofN is supported, the VPE can receive both Targeted and 1ofN interrupts.
• If virtual 1ofN is not supported, the VPE can only receive Targeted interrupts.
• There are no doorbell settings for the VPE.

IMFSZW The configuration of a VPE when it becomes valid is consistent with a read of IRS_VPE_CR0.DPS returning 0,
assuming the VPE is selected in IRS_VPE_SELR and there was no write to IRS_VPE_CR0 since the VPE became
valid.

IHHWBZ A write to any of the VPE configuration registers is only guaranteed to have successfully completed when
IRS_VPE_STATUSR.{V,IDLE} is {1,1}.

If the VPE becomes invalid after the VPE is selected, a write to any of the VPE configuration registers results in
IRS_VPE_STATUSR.V being 0.

IRXTXP A read of IRS_VPE_HPPIR returns whether there is a candidate HPPI for the selected VPE.

If there is a candidate HPPI for the selected VPE, IRS_VPE_HPPIR.{TYPE,ID} returns the INTID of the candidate
HPPI.

IPNRVY IRS_VPE_HPPIR reports the virtual candidate HPPI for a VPE. When virtual 1ofN interrupt routing is not
supported, the reported candidate HPPI is a targeted interrupt. When virtual 1ofN interrupt routing is supported,
the reported candidate HPPI may be either a targeted or 1ofN virtual interrupt.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

135

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

4.10.6 VPE residency

DYTZXF The IRS tracks, for each VPE, whether the VPE is resident VPE, and if it is resident, which PE it is resident on. If
a VPE is not resident on any PE, the VPE is non-resident.

ILGVMQ A VPE is made resident or non-resident on a PE as a result of a write to ICH_CONTEXTR_EL2.

RZFXNN If a write to ICH_CONTEXTR_EL2 to make a VPE resident specifies an invalid VPE, the write does not cause a
VPE to be considered resident by the IRS.

RJJKJV If a PE requests that a VPE is made resident on a PE when the VPE is already resident on another PE, it is
CONSTRAINED UNPREDICTABLE which one of the following applies:

• The request is IGNORED.
• The request completes and all of the following are true:

– It is CONSTRAINED UNPREDICTABLE which of the PEs are allowed to acknowledge and configure
interrupts from the VPE context.

– It is CONSTRAINED UNPREDICTABLE whether making a VPE non-resident from some or all of the PEs
results in the VPE being resident on any PEs or non-resident.

To recover from the CONSTRAINED UNPREDICTABLE behavior, software makes the VPE non-resident on all PEs
where it was previously made resident, and the VPE can subsequently be made resident on a single PE.

See also:

• 4.9 Virtualization data structures

4.10.7 VPE doorbells

GMGLGB The architecture provides a mechanism to signal a physical interrupt when a virtual interrupt is available for a
non-resident VPE. This allows a hypervisor to make scheduling decisions about when to run a VPE.

DJNQYP A VPE doorbell is the mechanism that generates a physical interrupt event when the VPE doorbell conditions are
met.

RCWZMW A VPE doorbell event is generated for a VPE, when all of the following VPE doorbell conditions are true:

• The VPE is not resident on any PE.
• The VPE doorbell settings are valid for the VPE.
• A VPE doorbell is requested for the VPE.
• Any of the following are true:

– There is at least one Targeted virtual interrupt for the VPE that is Pending, Inactive, and Enabled.
– The 1ofN doorbell conditions are met for the VM and the VPE is the 1ofN VPE doorbell target. See

4.10.8 1ofN doorbells for more information.
• The interrupt causing the doorbell event to be generated has a priority greater than or equal to the doorbell

priority mask.

Note

The VPE doorbell priority mask is checked both when there is a Targeted virtual interrupt causing the VPE
doorbell to be generated, and when the VPE doorbell is generated because the 1ofN doorbell conditions are met.

This means that when the 1ofN doorbell conditions are met, they only cause a VPE doorbell event to be generated
when the virtual 1ofN interrupt Priority is greater than or equal to the doorbell priority mask.

RPCXCN When a VPE is created, the doorbell settings for the VPE are not valid. The doorbell settings become valid when
the VPE is selected using IRS_VPE_SELR and a write to IRS_VPE_DBR occurs.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

136

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

RKDQNS When support for LPIs is implemented, VPE doorbells generate SET_EDGE targeting physical LPIs in the
same Interrupt Domain as where the VPE is defined. Otherwise, the mechanism to signal a VPE doorbell is
IMPLEMENTATION DEFINED.

IGBLPY An LPI used for a VPE doorbell can be configured the same way as any other LPI including configuring its Priority,
Enabled value, Routing mode, and Affinity when relevant.

IKTNWK The doorbell settings of a VPE can be accessed by selecting the VPE by writing its VM ID and VPE ID to
IRS_VPE_SELR and accessing IRS_VPE_DBR.

IMZXXV The interrupt used for the VPE doorbell is programmed by writing to IRS_VPE_DBR.INTID.

DMGQPJ A VPE doorbell is requested when IRS_VPE_DBR.REQ_DB is 1.

ICVJVS A VPE doorbell is requested in any of the following ways:

• When software makes a VPE non-resident, it can program whether a VPE doorbell is requested.
• Software can access IRS_VPE_DBR.REQ_DB using the VPE selection and configuration interface on an

IRS.

RWTZVF Once a VPE doorbell event is generated, the doorbell is no longer requested for the VPE.

Note

The above rules mean that if a VPE doorbell is requested and a corresponding event is generated, an event is
only generated once, until it is requested again, because the doorbell stops being requested when an ev ent is
generated.

SRGZBY Once a VPE doorbell event has been generated, no further VPE doorbell events will be generated for that VPE
until the VPE doorbell is requested again. The VPE doorbell may be requested again by hypervisor software after
m aking the VPE resident and subsequently making it non-resident.

ISRMLF IRS_VPE_DBR.REQ_DB reflects the value of ICH_CONTEXTR_EL2.DB when the VPE was last made
non-resident, or the last write to IRS_VPE_DBR.REQ_DB, whichever happened last.

Once a VPE doorbell event is generated, this bit is cleared.

IBWQVY A doorbell priority mask is set when the PE makes a VPE non-resident and requests a VPE doorbell. The IRS
Domain only generates a VPE doorbell if there is a virtual interrupt for the VPE with a priority greater than or
equal to the minimum priority programmed in the doorbell priority mask, accessible via IRS_VPE_DBR.DBPM.

SWWFWZ When making a VPE non-resident, ICH_CONTEXTR_EL2.DBPM sets the minimum priority for a virtual interrupt
to trigger the VPE doorbell. Software can use this field to ensure that doorbells are only generated for virtual
interrupts which would be handled by the VPE if it were resident.

RDXSYV When the VPE doorbell conditions are met, the VPE doorbell interrupt event is generated in finite time.

If the VPE doorbell conditions are met for a short amount of time and are then no longer met, for example due
to a reconfiguration of an interrupt, and the VPE doorbell event was not yet generated, it is IMPLEMENTATION
DEFINED whether a VPE doorbell event is generated.

RRFWPN If a VPE doorbell event is generated for an INTID that is unreachable, the event is treated as any other interrupt
event for an unreachable INTID and the event does not make any interrupt Pending.

IXJQLG If a VPE doorbell event is generated for an INTID that is unreachable, the doorbell is no longer requested for the
VPE.

IDTTDM If a VPE doorbell event is generated for an INTID that is unreachable, and software error reporting is supported,
this error is reported in IRS_SWERR_STATUSR.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

137

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

RDHHRM If a VPE doorbell uses an LPI where any of the following are true, it is CONSTRAINED UNPREDICTABLE whether
the IRS makes the LPI Pending when the VPE doorbell event is generated, and whether any IRS synchronization
requests affect the LPI:

• There is an ITS mapping to the LPI.
• There is another VPE doorbell that uses the LPI.

See also:

• 2.10.6 Requesting VPE doorbells

4.10.8 1ofN doorbells

GTHLBD The architecture supports generating a VPE doorbell event when there is a virtual 1ofN interrupt for a VM and there
are no resident VPEs with 1ofN PE selection enabled for the VM. This allows a hypervisor to make scheduling
decisions about when to run a VPE to handle a 1ofN interrupt.

DFJTLC A 1ofN doorbell is the mechanism that generates a VPE doorbell when the 1ofN doorbell conditions are met. The
VPE doorbell is generated for the 1ofN VPE doorbell target.

IJRYKN The 1ofN doorbell configuration for a VM is managed by selecting the VM and accessing IRS_VM_DBR.

Software selects a VM by writing the VM ID to IRS_VM_SELR.VM_ID.

IRS_VM_STATUSR.IDLE reports whether the effects of the write IRS_VM_SELR are complete.

IRS_VM_STATUSR.V reports whether the value written to IRS_VM_SELR selects a valid VM.

IRS_VM_STATUSR.V is updated on a write to any of the following registers:

• IRS_VM_SELR.
• IRS_VM_DBR.

INWBYP Whether 1ofN doorbells are enabled or disabled for the VM is programmed in IRS_VM_DBR.EN.

IFKZMP The 1ofN VPE doorbell target is programmed in IRS_VM_DBR.VPE_ID.

DQTNVT The 1ofN doorbell conditions are met when all of the following are true:

• Virtual 1ofN interrupt routing is supported.
• There is no VPE belonging to the VM where all of the following are true:

– The VPE is resident.
– The VPE has 1ofN PE selection enabled.

• 1ofN doorbells are enabled for the VM.
• There is at least one virtual 1ofN interrupt for the VM that is Pending, Inactive, and Enabled.

See 4.10.7 VPE doorbells for more information about additional conditions for generating a VPE doorbell event.

RVVLPV When a VM is made valid, 1ofN doorbells are disabled for the VM.

4.10.9 Save and restore of virtual interrupts

GNSYHS The architecture is designed to support saving the state and configuration of all virtual interrupts in a VM to
memory, and restoring the saved state and configuration from memory.

This is to support common virtualization use cases such as VM live migration across physical hosts, snapshotting
of VM state, and provisioning of VMs from a pre-booted state.

DCZQCL This chapter refers to saving the state of a source VM and restoring it to a destination VM.

This is regardless of whether the source and destination VMs are running on separate physical machines, are
separate VMs with distinct VM IDs on the same physical machine, or are separate instances of a VM executing at
different times with the same VM ID on the same physical machine.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

138

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

DMGVXX A VM is Quiesced if all of the following are true:

• No VPEs in the VM are resident.
• There is no change in the Pending state of any virtual interrupt for the VM.
• There is no change to the number of valid PEs in the VM.
• The VM does not become invalid.

IGNLWX To Quiesce a VM, software should ensure that all of the following are true:

• The Pending states of LPIs are not updated by events from an ITS.
• The Pending states of SPIs are not updated by events generated by the IRS.
• The Pending states of LPIs or SPIs are not updated as a result of executing the GIC xDPEND instruction on a

PE.
• No VPE is resident.
• The virtual LPI IST and virtual SPI IST do not become valid or invalid.
• No VPE in the VM is made valid.
• The VM is not made invalid.

SJVVJM Software can prevent updates to virtual interrupts belonging to a VM when saving the state of virtual interrupts by
using any of the following mechanisms:

• Preventing devices from generating interrupts for the VM.
• Unmapping ITS events that are mapped to virtual interrupts belonging to the VM.
• Issuing a synchronization request on every ITS that had events mapped to virtual interrupts belonging to the

VM.
• Unassigning SPIs that are assigned to virtual SPIs in the VM.
• Issuing a synchronization request on all IRSs in the system.

SJKLZK To support saving the state of a source VM and restoring it to a destination VM, software is expected to perform
the following steps:

1. Quiesce the source VM.
2. Save the state and configuration of all virtual interrupts to the virtual ISTs.
3. Save a copy of the virtual IST from the source VM.
4. Scan the copy of the virtual IST and record which virtual interrupts are Pending.
5. Update all entries in the copy of the virtual IST as follows:

1. Set the L2_ISTE.Pending field to 0.
2. Set IAFFID to 0 if IRM is 1 and IRS_IDR0.ONE_N is 1.
3. Set the metadata area to 0 if IRS_IDR2.ISTMD is 1.

6. Configure the destination VM to use the copy of the virtual IST as the new IST.
7. Make the new virtual IST valid.
8. For each virtual interrupt that was recorded as Pending, make the virtual interrupt Pending using the

GIC VDPEND System instruction.

The destination VM must be configured with valid VPEs before making the virtual interrupts Pending to ensure
that the interrupts are considered for the virtual candidate HPPI for the VPEs.

IZKFGL The state and configuration of virtual interrupts is written to the virtual ISTs by writing the VM ID to
IRS_SAVE_VMR.VM_ID and writing 1 to IRS_SAVE_VMR.S when the VM is Quiesced.

The operation is complete when IRS_SAVE_VM_STATUSR.IDLE is 1.

Following a write that sets IRS_SAVE_VMR.S or IRS_SAVE_VMR.Q to 1, IRS_SAVE_VM_STATUSR.Q reports
whether the VM is Quiesced since the last write that set IRS_SAVE_VMR.S to 1.

Note

Saving the state and configuration of virtual interrupts applies to the ISTs that are valid for the VM. For example,

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

139

Chapter 4. Interrupt routing service (IRS)
4.10. Virtual interrupts

if a VM does not have a virtual SPI IST, but does have a valid virtual LPI IST, writing 1 to IRS_SAVE_VMR.S
saves the state of the virtual LPIs to the virtual LPI IST.

RXPMBB Following a write that sets IRS_SAVE_VMR.S to 1, for as long as the specified VM is Quiesced, the values stored
in the virtual ISTs are consistent with the state and configuration of the virtual interrupts.

IDBSGD Saving the state and configuration of virtual interrupts is requested on any IRS and saves the state of all virtual
interrupts for the VM to the virtual IST. In a multi-IRS system, an implementation coordinates this operation
across all IRSs.

RCFDQJ If a write occurs to IRS_SAVE_VMR when IRS_SAVE_VM_STATUSR.IDLE is 0 on any other IRS for the same
IRS Domain, it is CONSTRAINED UNPREDICTABLE whether the state and configuration of virtual interrupts are
saved to the virtual ISTs and the value returned in IRS_SAVE_VM_STATUSR.Q is UNKNOWN on both IRSs.

ISYNGG Following a write that sets IRS_SAVE_VMR.S to 1, the state and configuration of virtual interrupts are stored in
the virtual ISTs using the format defined in 11.2.4 L2_ISTE, Level 2 interrupt state table entry.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

140

Chapter 4. Interrupt routing service (IRS)
4.11. IRS power management

4.11 IRS power management

GCRTDH The architecture supports implementations that enable the following power management operations:

• System suspend and resume: All interrupt state and configuration, and register state of all IRSs in the system
for all Interrupt Domains, is stored to memory on suspend and restored from memory on resume.

• Opportunistic power management: The system may decide to power down one or more IRSs while preserving
the illusion to software that the IRSs are fully operational.

RFYSXL Support for system suspend and resume is supported using an IMPLEMENTATION DEFINED sequence.

The IMPLEMENTATION DEFINED sequence must support saving all of the following to memory for all Interrupt
Domains:

• Physical LPI state and configuration.
• Physical SPI state and configuration.
• If virtualization is supported in the Interrupt Domain, GIC-managed state related to the VM table, including

all of the following:
– State and configuration of virtual interrupts stored in the virtual ISTs.
– State stored in the VM descriptors, including the configuration of VMs.
– State stored in the VPE descriptors, including the configuration of VPEs.

The IMPLEMENTATION DEFINED sequence must support restoring all of the information from memory to the
values saved during suspend.

IXHGLK Data structures used by mechanisms for IRS save and restore for system suspend are IMPLEMENTATION DEFINED.

SNWXQM Arm expects that system suspend and resume is managed by system-specific software.

RHJFWL Support for opportunistic power management is IMPLEMENTATION DEFINED. The opportunistic power
management sequence must preserve the illusion to software that the IRSs remain powered on.

DBGYZW Each PE connected to an IRS is either offline or online.

Arm expects that a PE is offline when the PE is physically powered off and is unable to execute GIC System
instructions or write to GIC System registers.

ITCRZH Whether a PE is online or offline is reported in IRS_PE_STATUSR.ONLINE for the PE selected in IRS_PE_SELR.

RPMSHG The mechanism to detect whether a PE is offline or online is IMPLEMENTATION DEFINED.

DXGKCK When a PE is offline, the IRS generates a Wake Request to a PE to bring it online.

RCLDWD The mechanism through which an IRS generates a Wake Request to a PE is IMPLEMENTATION DEFINED.

RHPCRY When the IRS generates a Wake Request to a PE, the request is generated in finite time.

The Wake Request does not guarantee that the PE becomes online. The Wake Request is treated as a hint to the
power control subsystem.

IFYYJF When a PE becomes offline, and the PE is not expected to become online when receiving a Wake Request, Arm
strongly recommends that the system is configured to avoid sending Wake Requests to the PE.

The system is configured not to generate Wake Requests to the PE when all of the following are true for all IRS
Domains:

• No Targeted interrupts are programmed to target the PE.
• 1ofN PE selection is disabled for the PE.

An example of when a PE is not expected to become online when receiving a Wake Request is PSCI_CPU_OFF.
See Arm® Power State Coordination Interface[8] for more information about PSCI.

RYPBHL When a PE is offline, all of the following are true:

• The PE does not execute any instructions that generate Interrupt Effects.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

141

Chapter 4. Interrupt routing service (IRS)
4.11. IRS power management

• If the IRS has selected a physical candidate HPPI for a PE for any Interrupt Domain, and the IRS is enabled
for that Interrupt Domain, the IRS generates a Wake Request to the PE.

When a PE is online, the IRS does not generate any Wake Requests to the PE.

RFVFKC When a PE becomes offline and the IRS has selected any candidate HPPIs for the PE, each candidate HPPI is
either acknowledged before the PE becomes offline or is not acknowledged while the PE is offline.

When the PE subsequently becomes online, any selected candidate HPPIs for the PE for enabled Interrupt Domains,
can be acknoweldged by the PE.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

142

Chapter 4. Interrupt routing service (IRS)
4.12. IRS memory access rules

4.12 IRS memory access rules

RVHRSJ All IRS data structures are little-endian.

RFRXXQ The IRS accesses all its data structures using Normal memory types. See [1] for more information about memory
access types.

SXFKQH Software allocates memory for the data structures and programs the physical address of the allocated data structures
in IRS registers. Arm expects that such allocations will typically be done from Conventional memory.

IDPJZK IRS_CR1 specifies the Shareability and Cacheability attributes for memory accesses performed by the IRS.

Changes to IRS_CR1 can only be made when the IRS does not access memory, specifically when no data structures
are valid on the IRS.

The most recent values written to IRS_CR1 are used when the IRS accesses memory following a write to make
any data structure valid.

Arm recommends that IRS_CR1 is initialized with the same Shareability and Cacheability attributes on all IRSs in
the system for an IRS Domain before making any data structures valid.

RXKMVR An IRS does not access any memory location which is not derived from address and configuration data stored in
registers and structures belonging to the IRS Domain.

When a memory address is stored in an address field in a register or data structure entry, and that register or entry
includes a field indicating that the address is not valid, the IRS does not derive any memory location from that
address field.

This includes scenarios in which the IRS behavior is CONSTRAINED UNPREDICTABLE, UNPREDICTABLE, or
IMPLEMENTATION DEFINED.

IGTTMT When a memory address is stored in a data structure, and that entry includes a field indicating whether the address
is valid, the address only becomes invalid as a result of a write to an IRS map register.

In this case, IRS Domain is guaranteed to not derive an address from the entry once the effects of the write to the
map register are complete.

RCPXND When the IRS accesses an IRS data structure, and the contents of that data structure are not defined as UNKNOWN
at the time of the access, the access must be a 64-bit aligned, single-copy atomic access of at least 64 bits in size.

For data structures where the entries are smaller than 64 bits, accesses are permitted to be smaller than 64 bits,
provided that each access is:

• Single-copy atomic,
• exactly the size of the entry, and
• aligned to the size of the entry.

RLRRFV If an IRS access to any IRS data structure is performed into any PCIe address space, then the IRS is permitted to
return an UNKNOWN value or terminate the access and report the error.

In this case, the IRS is permitted to stop the operation as follows:

• If the operation was due to an incoming interrupt event, the IRS is permitted to drop the interrupt event.
• If the operation was requested as the result of executing a GIC System instruction or writing to a GIC System

register, the IRS is permitted to indicate a failure back to the PE or IGNORE the operation.

RRFYLF When an IRS accesses a memory location in a PAS, it relies on information stored in registers and data structures
structures that are accessible only within the same PAS to validate that the access is permitted.

This includes scenarios in which the IRS behavior is CONSTRAINED UNPREDICTABLE, UNPREDICTABLE, or
IMPLEMENTATION DEFINED.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

143

Chapter 4. Interrupt routing service (IRS)
4.12. IRS memory access rules

For example, an IRS access to a data structure is permitted only if the memory location lies within a region defined
by a base address and size held in a register or another data structure entry, where that defining information resides
in the same PAS as the access itself.

This prevents software running in a Security state from directing the IRS to access any memory location using
another PAS than the one associated with the software’s Security state.

IFJRHT If the IRS experiences an external abort during a memory access to an IRS data structure, the IRS stops the
operation.

If software error reporting is supported, the error is reported with IRS_SWERR_STATUSR.EC.

RLVNHK If the IRS experiences an external abort during a memory access to an IRS data structure, it is IMPLEMENTATION
DEFINED whether the IRS reports a RAS error using an IMPLEMENTATION DEFINED mechanism.

RGZJNW If the IRS experiences an external abort as part of an operation that occurs as a result of a GIC System instruction
or write to a GIC System register on a PE, the effects of the instruction are UNKNOWN and the IRS may optionally
report an error.

ILQCPD For example, if the IRS experiences an external abort when trying to access the IST as part of handling a GIC
↪→xDDIS instruction, the instruction is permitted to execute as a NOP and the IRS is permitted to report an error
using the software error reporting mechanism and by raising IMPLEMENTATION DEFINED RAS errors if the abort
is caused by a memory system error.

IDPBMS As another example, if the IRS experiences an external abort when trying to access the IST as part of handling
a GIC xDRCFG instruction, the IRS is permitted to indicate a failure to the PE that results in ICC_ICSR_EL1.F
being set to 1, and the IRS may optionally report an error.

RKMZHR If the IRS experiences an external abort as part of processing an interrupt that is being signaled, the effects on the
state and configuration of the signaled interrupt is UNKNOWN and the IRS is permitted to drop the event. The IRS
may optionally report an error using the software error reporting mechanism and by raising IMPLEMENTATION
DEFINED RAS errors if the abort is caused by a memory system error.

RZRWQP If an IRS data structure overlaps with any other IRS or ITS data structure, the IRS behavior is UNPREDICTABLE.
This applies to both IRS data structures for physical and virtual interrupts.

The UNPREDICTABLE behavior may result in loss of interrupt configuration and state, but must not result in access
to memory outside the PAS associated with the IRS Domain or in access to any memory location which is not
derived from address and configuration data in valid IRS registers.

Software can recover from this situation by performing the following sequence:

1. Disabling the ITS.
2. Making the corresponding data structures invalid in the IRS.
3. Reconfigure the base addresses of the data structure to avoid any overlap.

See also 5.3 Translation structures.

IQTYKR The following changes to system state when an interrupt event is processed by an IRS are not required to result in
a write to memory:

• Interrupt Write effects generated by interrupt events.
• Interrupt Write effects generated by GIC System instructions executed on a PE.
• Configuration changes generated by GIC System instructions executed on a PE.
• Configuration changes generated by writes to IRS registers.

In these cases, the change to system state does not correspond directly to any Memory Write effect to IRS data
structures.

However, the change may cause an update to architecturally invisible IRS caches and Memory Write effects to
write back cached data to IRS data structures where the content of the data structure is described as UNKNOWN.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

144

Chapter 4. Interrupt routing service (IRS)
4.12. IRS memory access rules

RFZBVM An IRS is permitted to implement caching of interrupt state, VMs, and VPE configurations using architecturally
invisible IRS-specific caches.

The IRS caches are not considered data or system caches belonging to the memory system, meaning they are not
managed by any cache maintenance instructions issued by a PE.

When an IRS data structure is invalid, the IRS does not cache previously accessed data in IRS-specific caches.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

145

Chapter 4. Interrupt routing service (IRS)
4.13. IRS support for MPAM

4.13 IRS support for MPAM

ILKQJP The Memory System Resource Partitioning and Monitoring Memory, MPAM, architecture defines per-transaction
attributes that affect system behavior or the behavior of components that the transactions pass through or Completers
that satisfy a transaction [1].

The additional attributes are two identifiers:

• Partition ID, or PARTID.
• Performance Monitoring Group, or PMG.

The PARTID and PMG are both interpreted within a PARTID space. The PARTID space used depends on the
Security state associated with an IRS Domain, and the PARTID and PMG values used may be programmed
independently for each IRS Domain. See [1] for more information about MPAM information bundles.

IWXHXM In the IRS, support for MPAM, is indicated in IRS_IDR0.MPAM.

If MPAM is supported, the supported PARTID and PMG width is indicated in
IRS_MPAM_IDR.{PARTID_MAX,PMG_MAX}.

RRMZLS If MPAM is supported, IRS accesses to memory are associated with the PARTID and PMG programmed in
IRS_MPAM_PARTID_R.{PARTID,PMG}.

INSQVT In systems without support for RME, the PARTID space used by the IRS is determined by the memory system
attribute MPAM_NS.

In systems with support for RME, the PARTID space used by the IRS is determined by the memory system attribute
MPAM_SP.

IHHRJR The IRS architecture has optional support for MPAM PARTID space selection indicated by
IRS_MPAM_IDR.HAS_MPAM_SP.

If IRS_MPAM_IDR.HAS_MPAM_SP is 0, each IRS for each Interrupt Domain uses a default MPAM PARTID
space.

The following table shows the MPAM PARTID space used for accesses made by the IRSs for each Interrupt
Domain if IRS_MPAM_IDR.HAS_MPAM_SP is 0 and the system does not support RME:

Interrupt Domain MPAM PARTID space

Secure Secure PARTID space

Non-Secure Non-secure PARTID space

EL3 Secure PARTID space

The following table shows the MPAM PARTID space used for accesses made by the IRSs for each Interrupt
Domain if IRS_MPAM_IDR.HAS_MPAM_SP is 0 and the system supports RME:

Interrupt Domain MPAM PARTID space

Secure Secure PARTID space

Non-Secure Non-secure PARTID space

EL3 Root PARTID space.

Realm Realm PARTID space.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

146

Chapter 4. Interrupt routing service (IRS)
4.13. IRS support for MPAM

If IRS_MPAM_IDR.HAS_MPAM_SP is 1, the IRS uses the MPAM PARTID specified by
IRS_MPAM_PARTID_R.MPAM_SP.

RNWLJQ If an IRS without support for MPAM is integrated in a system that supports MPAM, the PARTID and PMG used
for each IRS for each Interrupt Domain is IMPLEMENTATION DEFINED.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

147

Chapter 4. Interrupt routing service (IRS)
4.14. IRS support for Memory Encryption Contexts

4.14 IRS support for Memory Encryption Contexts

IFPYMT The Memory Encryption Contexts feature, FEAT_MEC, provides finer-grained memory encryption contexts,
within the Realm physical address space, to be assigned to Realms, with policy controlled by Realm EL2 [1].

GHJFYY The GICv5 architecture ensures that an IRS can function correctly in systems with support for Memory Encryption
Contexts (MEC).

IHJNXC In a system with support for MEC, data may be shared between the PEs and an IRS in the following scenarios:

• A PE allocates and initializes data structures used by an IRS.
• An IRS writes the contents of virtual ISTs to memory to support VM migration.

In such a system, all IRS Realm data structures are managed and configured by Realm EL2, and virtualized
software running at EL1 is not expected to have direct access to the IRS configuration registers. Therefore, the IRS
only supports configuration of a single MECID used for all IRS memory accesses to the Realm PAS. This allows
software running at Realm EL2 to initialize data structures that are read by the IRS and allows the IRS to write the
content of the virtual ISTs that are read by software running at Realm EL2.

IYQFXX Support for Memory Encryption Contexts (MEC) for an IRS is indicated in IRS_IDR0.MEC for the Realm Interrupt
Domain. If the MEC feature is supported, the supported MECID width is indicated in IRS_MEC_IDR.MECIDSIZE
for the Realm Interrupt Domain.

Arm strongly recommends that the MECID bit width supported by the IRS matches or exceeds the width supported
by the PEs in the system.

RYGVPR If the MEC feature is supported, IRS accesses to memory are associated with a MECID that identifies the Memory
Encryption Context of the access.

RQKQQW Accesses made by the IRS for Secure, Non-secure, and Root PA spaces are issued with the default MECID of zero.

ITKDGT Accesses made by the IRS to Realm PA space are associated with the global Realm PAS IRS MECID programmed
in IRS_MEC_MECID_R.MECID.

RKCCQN If an IRS without support for the Realm Interrupt Domain is integrated in a system that supports MEC, all IRS
accesses for that IRS are treated as having the default MECID of zero.

RGMPJJ In a multi-IRS system, if all of the following are true, the IRS Domain behavior is UNPREDICTABLE:

• One of the following is true:
– IRS_IST_BASER.VALID is 1.
– IRS_VMT_BASER.VALID is 1.

• An IRS uses a different MECID than another IRS, for the same PA space.

The UNPREDICTABLE behavior must not result in access to memory outside the PAS associated with the Interrupt
Domain or in an access to memory that does not follow the behaviors described in 4.12 IRS memory access rules.

To recover from the UNPREDICTABLE behavior, the IRS data structures are made invalid and the same MECID is
configured across all IRSs for the same PA space.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

148

Chapter 4. Interrupt routing service (IRS)
4.15. IRS support for software error reporting

4.15 IRS support for software error reporting

IGZRSS The IRS specifies a mechanism to report errors because of incorrect programming.

RQWVQB The IRS detects software errors when it performs any of the following operations:

• The IRS processes an interrupt event in response to a signaled interrupt.
• The IRS accesses state and configuration of interrupts in response to any of the following events:

– A system register access in the PE interface.
– Execution of a GIC system instruction in the PE interface.
– An MMIO access via the IRS configuration register frame.

ITQQTS Updates to the state and configuration of interrupts via the PE interface or the MMIO interface can be cached in
the IRS caches. The IRS could experience an external abort, when it commits the cached information to the IRS
data structures in memory at a specified address. The IRS uses the software error reporting mechanism to indicate
such errors.

For example, an update to the configuration of a physical LPI is cached in the IRS caches. The address of the
physical IST in IRS_IST_BASER.ADDR is invalid, and the IRS experiences an external abort when it commits
the cached information to the L2_ISTE in memory. The IRS sets IRS_SWERR_STATUSR.EC to report this error.

Due to the effects of caching, this error could be reported after the operation to update the configuration of the
physical LPI has completed from software’s perspective. This means that two reads of IRS_SWERR_STATUSR
can report errors without any interrupts or GIC System instructions executed on a PE having been processed by the
IRS between the two reads.

RYHKJZ IRS support for software error reporting is optional.

INMHQJ IRS_IDR0.SWE reports whether software error reporting is supported.

RHWQTK The value of IRS_IDR0.SWE is the same for all Interrupt Domains in an IRS in the system.

IZTBKN When IRS_IDR0.SWE is 1, the IRS uses the IRS_SWERR_STATUSR.IMP_EC to report any IMPLEMENTATION
DEFINED errors detected by the IRS.

INLLSH IRS_SWERR_STATUSR.EC is 0 when an IMPLEMENTATION DEFINED error is reported by the IRS.

IYMQZW Software error information can be read on each IRS for each Interrupt Domain via the following registers:

• IRS_SWERR_STATUSR.
• IRS_SWERR_SYNDROMER0.
• IRS_SWERR_SYNDROMER1.

IFCYCT When a software error is reported, the value of IRS_SWERR_STATUSR.V is 1. Otherwise, no software error is
reported and fields in this register are UNKNOWN.

IZLMMJ When the value of IRS_SWERR_STATUSR.V is 1, all of the following are true:

• IRS_SWERR_STATUSR.EC specifies the fault that caused the software error.
• IRS_SWERR_STATUSR.S0V indicates whether IRS_SWERR_SYNDROMER0 contains valid error

syndrome information.
• IRS_SWERR_STATUSR.S1V indicates whether IRS_SWERR_SYNDROMER1 contains valid error

syndrome information.
• IRS_SWERR_STATUSR.OF indicates whether multiple software errors were detected.

IDMCGM When IRS_SWERR_STATUSR.S0V is 1, IRS_SWERR_SYNDROMER0 reports the following information for
the software error:

• The type and ID of the interrupt that resulted in the software error.
• Whether the interrupt is virtual or physical.
• If the interrupt is virtual, the VM ID of the VM that the interrupt is assigned to.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

149

Chapter 4. Interrupt routing service (IRS)
4.15. IRS support for software error reporting

IHQSCK When IRS_SWERR_STATUSR.S1V is 1, IRS_SWERR_SYNDROMER1 reports the address of the IRS data
structure associated with the software error.

RXBYRF For each reported error, the values of IRS_SWERR_STATUSR.{S0V,S1V} are IMPLEMENTATION DEFINED and
set independently.

SMTHCH Arm recommends that software performs the following sequence to either clear the last error, or detect whether
new errors were reported:

1. Read IRS_SWERR_STATUSR and determine which fields need to be cleared to zero.
2. In a single-copy atomic write to IRS_SWERR_STATUSR:

1. Write ones to all the W1C fields that are nonzero in the read value.
2. Write zero to all the W1C fields that are zero in the read value.
3. Write zero to all the RW fields.

3. Read back IRS_SWERR_STATUSR after the write. If the value read back is the same as the value that was
written, all W1C fields that were non-zero are cleared, and no new errors were reported. Otherwise, one or
more new errors were reported.

See also:

• 10.2.1.32 IRS_SWERR_STATUSR.
• 10.2.1.33 IRS_SWERR_SYNDROMER0.
• 10.2.1.34 IRS_SWERR_SYNDROMER1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

150

Chapter 5
Interrupt translation service (ITS)

DMBMKY The Interrupt Translation Service (ITS) is responsible for generating ITS events and translating them into interrupt
events for delivery to the associated Interrupt Routing Service (IRS) in each Interrupt Domain.

Each translation specifies whether the resulting interrupt is physical or virtual, the associated Interrupt Domain, the
interrupt’s INTID, and, if the interrupt is virtual, the VMID of the target VM.

The ITS uses translation structures in the form of a Device Table (DT) and Interrupt Translation Tables (ITT).
These translation structures reside in memory and may be partially cached by the ITS. For more information, see
5.3 Translation structures.

Figure 5.1 illustrates the overall ITS translation flow.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

151

Chapter 5. Interrupt translation service (ITS)

Device table (DT)

Interrupt
translation table

(ITT)

Incoming
event

DeviceID

EventID

ITT base address

Physical / Virtual
(VM ID)
INTID

Interrupt Domain

Translation result

MSI

ITS Domain

Figure 5.1: GICv5 ITS translation flow

IVHDBC Translation of an ITS event may involve internal cache lookups and memory accesses to retrieve translation data.

IQQNWW An example of the ITS translating an event into an interrupt occurs when a Message Signaled Interrupt (MSI)
is generated by a device. In this case, the MSI write targets an ITS translation register. The ITS captures the
write and generates an ITS event. This event contains the DeviceID of the originator of the write and the EventID
value provided in the write data. The ITS uses the programmed entries in the Device Table (DT) and Interrupt
Translation Table (ITT) to translate the ITS event into an interrupt. The resulting interrupt is then forwarded to the
associated IRS for delivery to a PE.

RZZQCC An ITS event is generated by the ITS when any of the following occurs:

• A memory write to ITS_TRANSLATER or ITS_RL_TRANSLATER.
• A write to ITS_GEN_EVENTR.
• An IWB forwards an event using an IMPLEMENTATION DEFINED communication mechanism.
• A system peripheral forwards an event using an IMPLEMENTATION DEFINED communication mechanism.

DXCCZK An ITS event contains all of the following information:

• DeviceID.
• EventID.
• Interrupt event type.
• Originating Interrupt Domain.

DZVRSC The originating Interrupt Domain of an ITS event is determined as follows:

• If the event is generated by a write to ITS_TRANSLATER, ITS_RL_TRANSLATER, or ITS_GEN_EVENTR,
the originating Interrupt Domain is the ITS Domain associated with the PAS of the register.

• If the event is generated by an IWB, the originating Interrupt Domain is the Interrupt Domain that the
corresponding wire is assigned to.

• If the event is generated by a system peripheral using an IMPLEMENTATION DEFINED mechanism, the
originating Interrupt Domain is determined using an IMPLEMENTATION DEFINED mechanism.

Note

The originating Interrupt Domain may not correspond to the ITS Domain that translates the event. See 5.1 ITS
Domains for more information.

RRTVBF When multiple SET_LEVEL and CLEAR events are received for the same DeviceID and EventID, they must be
translated and forwarded to the IRS in the order in which they are received.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

152

@sec:interrupt_event_types

Chapter 5. Interrupt translation service (ITS)

RBZTJM When the ITS receives a memory write transaction to ITS_TRANSLATER, the ITS generates an ITS event that is
translated by the ITS in finite time.

INBTNK ITS events can be Message Signaled Interrupts (MSIs), for example generated by PCIe endpoints, or can be events
generated by IWBs or other system components.

Arm expects that MSIs are typically generated as a result of an MSI source performing a write to
ITS_TRANSLATER.

SHFCND Software ensures that a PCIe posted write to an ITS_TRANSLATER_FRAME is Accepted by the ITS, by ensuring
that the PCIe subsystem issues a Completion TLP following the posted MSI write.

See PCI Express® Base Specification Revision 6.0[9] for more information on the PCIe TLP ordering rules.

RCHRYR For an incoming memory write transaction to ITS_TRANSLATER Accepted by the ITS, the ITS handles the
incoming write independently from the state of the source.

ICNGJZ The ITS Accepts an incoming memory write transaction to ITS_TRANSLATER without waiting for the IRS to
Accept a corresponding interrupt event and without waiting for the IRS to present the corresponding interrupt to a
PE.

The IRS separates the process of making an interrupt Pending from signaling the interrupt to the PE.

See Chapter 4 Interrupt routing service (IRS) for more information.

IYDBCQ Interrupt events sent by an ITS to the associated IRS contain all of the following:

• LPI ID.
• Physical or virtual interrupt.
• VM ID if virtual.
• Interrupt event type.
• Interrupt Domain.

RNYJRF An Interrupt event is never sent to the associated IRS speculatively. It is only sent when an ITS event is generated
and translated by the ITS.

IPTZXC The mechanism used by the ITS to communicate events to the IRS is IMPLEMENTATION DEFINED. See 3.2
Communication between GIC system components for more information.

RHPDKY An ITS is associated with a single IRS and all interrupt events generated by an ITS are sent to that IRS.

RDXDFC The DeviceID in an ITS event is a unique identifier within the DeviceID namespace of each ITS. The DeviceID is
unique for each device that can generate events to the ITS.

For example, Arm expects that the 16-bit Requester ID from a PCIe Root Complex is used to derive the DeviceID.

Note

Each ITS has a separate namespace for the DeviceID which is shared across the Interrupt Domains.

RDJZVX The number of DeviceID bits supported by an ITS is in the range from 0 to 32 inclusively, and is reported by
ITS_IDR1.DEVICEID_BITS.

IVCJFT An ITS can support 0 DeviceID bits, which means that the ITS only supports a single device.

RWXGDP The DeviceID namespace is unique for each ITS.

For example, DeviceID 0 on ITS A identifies a device distinct from the device identified by DeviceID 0 on ITS B.

RCMZTW The number of EventID bits supported by an ITS is in the range from 0 to 16 inclusively, and is reported by
ITS_IDR2.EVENTID_BITS.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

153

@sec:interrupt_event_types

Chapter 5. Interrupt translation service (ITS)

RWCDFX The EventID namespace is separate for each ITS DeviceID.

For example, EventID 0 for DeviceID 0 on ITS A identifies an event distinct from the event identified by EventID
0 for DeviceID 1 on ITS A.

ITNTVS The number of EventID bits supported for a DeviceID is programmed in L2_DTE.EVENTID_BITS. See 5.3.2
The Interrupt Translation Table (ITT) for more information.

RRYJGM The mechanism by which a DeviceID is communicated to the ITS is IMPLEMENTATION DEFINED.

However, a unique DeviceID is provided for each requesting device, and the DeviceID is presented to the ITS
when a write to the ITS translation registers occurs in a manner that cannot be spoofed by any agent capable of
performing writes.

GTTLHL The ITS translation mechanism supports interrupt isolation.

This allows an untrusted software agent such as a virtual machine to directly control the EventID used by an
interrupt source without being able to generate interrupts with INTIDs used for other interrupt sources.

IRWJXV Interrupt isolation can be achieved through the use of an ITS by only allowing the hypervisor to control the ITS.
The hypervisor therefore controls the translation of each DeviceID and EventID value pair into an INTID for the
Physical Interrupt Domain or a specified VM. In this scenario, the ITS only translates EventIDs programmed by
the hypervisor for a given DeviceID, and since the DeviceID is not under control of the VM, the hypervisor fully
controls which INTIDs can be signaled irrespective of the EventID programmed by the VM.

RQWVTC For the interrupt isolation mechanism to work, the DeviceID used to identify a device context assigned to untrusted
software must be static and not under direct or indirect control of the untrusted software.

IWRXRW Each ITS has a unique ITSID which is reported in ITS_IDR0.ITSID. The ITSID is unique for each ITS in the
system.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

154

Chapter 5. Interrupt translation service (ITS)
5.1. ITS Domains

5.1 ITS Domains

GQYXKS An ITS operates independently for each Interrupt Domain.

DWNGLR The GICv5 architecture defines an ITS Domain which provides translation services for an Interrupt Domain. An
ITS Domain comprises register state and translation structures independently configured from other ITS Domains
on the same ITS.

An ITS Domain is associated with an Interrupt Domain and its corresponding PAS.

IPXYHF Each ITS Domain implements a separate ITS_CONFIG_FRAME. The ITSID reported in ITS_IDR0.ITSID is the
same for each ITS_CONFIG_FRAME that belongs to the same ITS.

RPMQQB The ITS Domain that translates an ITS event is determined as follows:

• If the ITS event is generated by a write to ITS_TRANSLATER, the ITS Domain is the originating Interrupt
Domain.

• If the ITS event is generated by a write to ITS_GEN_EVENTR, the ITS Domain is the ITS Domain specified
by ITS_GEN_EVENTR.TARGET_DOMAIN.

• If the ITS event is generated by a write to ITS_RL_TRANSLATER, the ITS Domain is the Realm ITS
Domain.

• If the ITS event is generated by an IWB, the ITS Domain is the originating Interrupt Domain.
• If the event is generated by a system peripheral using an IMPLEMENTATION DEFINED mechanism, the ITS

Domain is the ITS Domain that corresponds to the originating Interrupt Domain.

RYJNYY If an ITS is associated with an IWB, the ITS provides an ITS Domain for each Interrupt Domain implemented by
the IWB.

RDZYMW An ITS does not support any Interrupt Domain not supported by the IRSs.

IXCBRD The IRS associated with the ITS implements support for all the ITS Domains provided by the ITS, because an IRS
implements support for all the Interrupt Domains supported by the PEs in the system.

IKFVMT An ITS exposes separate control register frames for each ITS Domain.

IKKYFF An ITS exposes separate translation register frames for each ITS Domain.

INJHMG An ITS implements at least one ITS translate register frame, ITS_TRANSLATE_FRAME, for each ITS Domain.
If an ITS Domain implements more than one translate register frame, the DeviceID space is shared across all the
translate register frames belonging to the same ITS.

RFGHHH Each ITS Domain can have a maximum of 256 ITS translate register frames.

RTZMYP Each ITS translate register frame has an 8 bit identifier that is unique within an ITS Domain.

ICXPWJ The ITS translation register frame identifier is used by software when issuing ITS synchronization requests.

See 5.2.4 ITS synchronization requests for more information about synchronization requests.

SHPMNL Arm expects that the ITS translation register frame identifier, as well as the relationship between ITS translate
register frames and an ITS Domain and its configuration register frame, is communicated to system software via
firmware data structures.

ITNYVZ The ITS does not provide a mechanism to identify via registers which ITS translation register frames are associated
with which ITS configuration register frames.

IGCJFM Different from GICv3, the GICv5 architecture does not require the control register frame and translation register
frame to be contiguous with respect to each other.

IYCFZC The base address of each register frame for each ITS Domain should be provided to software by firmware.

IXFTTF The ITS Domain for a register frame is reported in ITS_IDR0.INT_DOM.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

155

Chapter 5. Interrupt translation service (ITS)
5.1. ITS Domains

RPSXLG All memory accesses performed by the ITS are subject to GPT checks.

An access is performed using the PAS associated with the ITS Domain where the translation is requested.

IDRTDZ Figure 5.2 shows an overview of the ITS Domain registers and translation structures.

ITS

Secure Domain

NS PAS

NS Domain
Device Table
base address

Realm Domain
Device Table
base address

Device Table
base address

Translate
registers

EL3 Domain
Device Table
base address

Level 1 DT

L2_ADDR
Level 2 DT

ITT_ADDR

Level 1 ITT

L2_ADDR
Level 2 ITT

Virtual, VM ID,
INTID

Translate
registers

Translate
registers

Translate
registers

Figure 5.2: GICv5 ITS Domains

Translation structures are only shown for the Non-secure domain but exist separately for each ITS Domain.

ISRZCQ Arm expects an interrupt source to be configured to use the translation register frame of an ITS Domain
corresponding to the Security state and PAS that manages the device. This allows end-to-end isolation of
interrupt events and interrupt configuration within a Security state. For example, a device managed by Software in
the Secure state can generate MSIs to the Secure ITS Domain in the Secure PAS, and only software with access to
the Secure PAS can configure this interrupt, and only that specific device can generate a Secure interrupt with the
configured INTID.

RSXLJQ The following ITS Domains support virtual interrupts:

• Non-secure.
• Realm.
• Secure.

The EL3 ITS Domain does not support virtual interrupts.

RNTTVJ An event can only be translated to generate interrupt events for a VM in the Interrupt Domain corresponding to the
ITS Domain. This is a consequence of the VM ID namespace being separate in each Interrupt Domain.

See also:

• 3.1 Interrupt Domains

5.1.1 Supporting Realm interrupts from Non-secure writes

GYLHMP The GICv5 architecture supports direct injection of MSIs generated by Non-secure devices to Realms.

IBGWGH An ITS event is translated in the Realm ITS Domain, even though the event is generated as a result of a write to a
register in the Non-secure PAS, if any of the following are true:

• The event is generated in response to a write to ITS_RL_TRANSLATER.

• The event is generated in response to a write to ITS_GEN_EVENTR in the Non-secure PAS, and the write
sets ITS_GEN_EVENTR.TARGET_DOMAIN to 0b01.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

156

Chapter 5. Interrupt translation service (ITS)
5.1. ITS Domains

IJKXQV Software in the Realm Security state controls whether an ITS event generated by a write to an ITS register in the
Non-secure PAS is permitted to be translated in the Realm ITS Domain by programming L2_ITTE.DAC to allow
such a translation.

See 5.3.2 The Interrupt Translation Table (ITT) for more information about the DAC field.

SGYSSD When an untrusted PCIe function is assigned to a VM, its MSI-X vectors are programmed to generate MSI writes
to ITS_TRANSLATER. The MSI writes use the Non-secure PAS.

The ITS events are generated as a result of the write to a register in the Non-secure Interrupt Domain and translated
in the Non-secure ITS Domain. If the translation is successful, LPIs are generated in the Non-secure Interrupt
Domain.

When the function is assigned to Realm, its MSI-X vectors can be programmed to generate MSI writes to the
ITS_RL_TRANSLATER. The MSI writes still use the Non-secure PAS, however, they are translated in the Realm
ITS Domain. If the translation is successful, LPIs are generated in the Realm Interrupt Domain.

SSZVBR On a system that implements the Realm Management Extension, for an untrusted device that is assigned to Realm,
there are scenarios where the host hypervisor must be able to inject a virtual LPI into Realm. The host hypervisor
and the target VPE of Realm could be running on different PEs.

For example, an untrusted VirtIO[10] device is assigned to Realm. The device is emulated in the host hypervisor.
The host hypervisor must be able to inject virtual LPIs into Realm.

The host hypervisor can write to ITS_GEN_EVENTR with TARGET_DOMAIN set to 0b01 in the Non-secure
PAS to generate these ITS events translated by the Realm ITS Domain.

See also:

• 5.3.2 The Interrupt Translation Table (ITT).
• 10.3.2.2 ITS_RL_TRANSLATER.
• 11.1.4 L2_ITTE, Level 2 interrupt translation table entry.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

157

Chapter 5. Interrupt translation service (ITS)
5.2. Operation

5.2 Operation

RSXWCM When ITS_CR0.ITSEN is 1, the ITS Domain is enabled and all of the following are true:

• The ITS translates ITS events and may generate corresponding interrupt messages to the associated IRS.
• The ITS Domain may perform memory accesses to the ITS Domain’s translation structures as part of

processing ITS events or as a result of handling ITS register accesses.

When ITS_CR0.ITSEN is 0 and ITS_CR0.IDLE is 1, the ITS Domain is disabled and all of the following are true:

• The ITS does not process ITS events; ITS events are dropped and have no effects on the ITS.
• The ITS Domain does not generate outgoing interrupt events to the associated IRS.
• The ITS Domain does not perform memory accesses to the ITS Domain’s translation structures.

RRNQHC An ITS event is ignored if it cannot be translated by the ITS.

IXFFRW If software error reporting is supported, the ITS reports if an ITS event cannot be translated using the appropriate
error code in ITS_SWERR_STATUSR.EC.

IHYKFL A change to ITS_CR0.ITSEN is not guaranteed to be observed by the ITS until ITS_CR0.IDLE is 1.

See also:

• 5.2.1 Enabling and disabling the ITS

5.2.1 Enabling and disabling the ITS

RFXDRJ When a write to ITS_CR0.ITSEN changes the value from 0 to 1, the ITS Domain begins a transition from disabled
to enabled, and all of the following are true:

• The transition completes in finite time.
• The transition is complete when ITS_CR0.IDLE is 1.
• The ITS will process all events that are Accepted after the transition is complete.

Note

While the ITS is transitioning from disabled to enabled, transactions arriving at the ITS will observe the ITS
being enabled or disabled. The architecture only guarantees transactions arriving after the transition from
disabled to enabled is complete to observe that the ITS is enabled.

RYSGFF When a write to ITS_CR0.ITSEN changes the value from 1 to 0, the ITS Domain begins a transition from enabled
to disabled, and all of the following are true:

• The transition completes in finite time.
• The transition is complete when ITS_CR0.IDLE is 1.
• All ITS events, Accepted before the transition is complete, are processed.
• All outgoing interrupt events generated for the associated IRS before the transition is complete, are Accepted

by the IRS.

Note

While the ITS is transitioning from enabled to disabled, transactions arriving at the ITS will observe the ITS as
being enabled or disabled. The architecture only guarantees that transactions arriving after the transition from
enabled to disabled is complete to observe that the ITS is disabled.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

158

Chapter 5. Interrupt translation service (ITS)
5.2. Operation

SDNGJG When ITS_CR0.ITSEN is 1, the ITS accesses the translation structures described in 5.3 Translation structures.
Software is expected to initialize the base address and configuration registers for the structures before enabling the
ITS.

For example, software can provide a device table where all entries are invalid, or it can be a device table with valid
entries containing the addresses of one or more valid ITTs, and initialize the ITS_DT_BASER and ITS_DT_CFGR
to point to the device table.

SZFWSP When the ITS Domain is disabled, the ITS Domain no longer accesses translation structures and software can
reclaim the memory used to hold the translation structures.

See also:

• 5.3 Translation structures

5.2.2 Interrupt event types

DCBDTC The type of an interrupt event generated by the ITS for an IRS is one of the following:

• SET_EDGE: The IRS should make the interrupt Pending and set its Handling mode to Edge.
• SET_LEVEL: The IRS should make the interrupt Pending and set its Handling mode to Level.
• CLEAR: The IRS should make the interrupt Idle.

RJFGLF A write to ITS_TRANSLATER generates a SET_EDGE event to the ITS.

ILKLYH The ITS only supports MSI sources that generate interrupts with edge-triggered semantics. MSI sources that are
designed to signal interrupts with level-sensitive semantics using message based writes are not supported by the
ITS.

RPQCKZ SET_LEVEL events are only supported for events generated by an IWB.

RTDXLR The interrupt event type generated to the IRS is the same as the ITS event type.

ILQZSR When a write updates an ITS translation structure entry, the ITS does not generate a CLEAR event as a result of
the update to the translation structures. For EventIDs that represent Level interrupts and that had a valid translation
before the update, if those EventIDs do not have a valid translation after the update, the corresponding interrupts
may still be in the Pending state in the IRS. See 5.3 Translation structures for more information.

SKSFMZ Software must disable or explicitly clear the Pending state of a Level interrupt in the IRS after unmapping the
event in the ITS to avoid that the interrupt is signaled to a PE. An Edge interrupt may also remain Pending after
being unmapped in the ITS, but its Pending state would be cleared when the interrupt is acknowledged.

5.2.3 Software generated ITS events

IQTNPX Software may generate an ITS event for an EventID and DeviceID in an ITS Domain via the following ITS
registers:

• ITS_GEN_EVENT_DIDR. A write to this register selects the DeviceID of the event.

• ITS_GEN_EVENT_EIDR. A write to this register selects the EventID of the event.

• ITS_GEN_EVENTR. The TARGET_DOMAIN field in this register selects the ITS Domain where the ITS
event is translated.

• A write of 1 to the R field requests the ITS to generate an ITS event of the selected type for the specified
EventID and DeviceID.

• ITS_GEN_EVENT_STATUSR. A read of this register reports when generation of an ITS event is complete.

SVKLMK An event generated by writing to ITS_GEN_EVENTR may be synchronized once the write is complete to ensure
that the corresponding interrupt event has been Accepted by the IRS by writing 1 to ITS_SYNCR.SYNC and
polling ITS_SYNC_STATUSR.IDLE until it is 1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

159

Chapter 5. Interrupt translation service (ITS)
5.2. Operation

5.2.4 ITS synchronization requests

ITWLSC Software requests synchronization of ITS events for the ITS by writing 1 to ITS_SYNCR.SYNC.

ITS_SYNCR.SYNCALL specifies whether the synchronization request should apply to all Accepted ITS events or
is only required to apply to those specified by ITS_SYNCR.DEVICE_ID.

See 10.3.1.28 ITS_SYNCR for more information about the effects of a write to ITS_SYNCR.SYNC.

SKDJBY Software can use synchronization of events to ensure that the Pending state of Level interrupts is cleared by the
IRS.

This is, for example, useful when changing the Interrupt Domain association of a wire in the IWB.

See also:

• 3.2 Communication between GIC system components
• 4.5 IRS synchronization requests
• 6.2 IWB support for multiple Interrupt Domains

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

160

Chapter 5. Interrupt translation service (ITS)
5.3. Translation structures

5.3 Translation structures

IKBTLK The GICv5 architecture defines two translation structures which can be used by an ITS:

• The Device Table (DT).
• The Interrupt Translation Table (ITT).

RSDBRM All ITS translation structures are little-endian.

RSVKHY The ITS accesses its translation structures using Normal memory types. See [1] for more information about
memory access types.

SKZJVX Software allocates memory for the translation structures and programs the physical address of the allocated
translation structures in ITS registers. Arm expects that such allocations will typically be done from Conventional
memory [1].

IXTRLS ITS_CR1 specifies the Shareability and Cacheability attributes for memory accesses performed by the ITS.

ITS_CR1 is read-only when the ITS is enabled.

The most recent values written to ITS_CR1 are used when the ITS accesses memory following a write that enables
the ITS.

DZQBDN The GICv5 architecture defines two types of translation structures entries:

• An entry in a DT, a device table entry (DTE).
• An entry in an ITT, an interrupt translation table entry (ITTE).

DYMZNC The VALID field of an ITS translation structure entry defines the validity of the entry:

• When the VALID field is 1, the entry is a valid entry.
• When the VALID field is 0, the entry is an invalid entry.

RMJPHW The DT translates a DeviceID into an ITT base address. The DeviceID is used as an index into the DT.

RXHKFY The ITT translates a per-device EventID into an LPI ID, a physical/virtual qualifier, and a VM ID for virtual
interrupts. The EventID is used as an index into the ITT.

RTLTPV An ITS Domain has a valid translation for the DeviceID and EventID of an ITS event, if all of the following are
true:

• One of the following is true:
– The DT does not use a 2-level table structure.
– The level 1 DTE for the DeviceID is valid.

• The level 2 DTE for the DeviceID is valid.
• One of the following is true:

– The ITT does not use a 2-level table structure.
– The level 1 ITTE for the EventID is valid.

• The level 2 ITTE for the EventID is valid.
• One of the following is true:

– The event is generated by a write to a register in the PAS native to the ITS Domain.
– The event is generated by a write to a register in the Non-secure PAS, and all of the following are true:

* The event is translated in the Realm ITS Domain.
* L2_ITTE.DAC is 0b01 in the L2_ITTE for the EventID.

Otherwise, if any of the above conditions are false, the ITS Domain does not have a valid translation for the ITS
event.

RPGCPL If any of the following is true, it is CONSTRAINED UNPREDICTABLE whether any events are sent to the IRS:

• The ITS Domain has more than one valid translation to the same physical INTID.
• The ITS Domain has more than one valid translation to the same virtual INTID with the same VM ID.

See also:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

161

Chapter 5. Interrupt translation service (ITS)
5.3. Translation structures

• 11.1 ITS Data Structures

5.3.1 The Device Table (DT)

DXJQMP The DT structure is either linear or 2-level.

IGRMKZ ITS_IDR1.DT_LEVELS reports whether 2-level DT support is implemented.

RWKPKD The value of ITS_IDR1.DT_LEVELS is the same for all ITS Domains for an ITS in the system.

IVZYWW Arm strongly recommends that an implementation that supports more than 9 bits of DeviceID implements 2-level
device tables.

ISWCZW The GICv5 architecture defines the formats of the level 1 DTE and level 2 DTE.

IZMRVW The base address of the DT is stored in ITS_DT_BASER.ADDR.

IVZVJN When ITS_CR0.ITSEN is 1, accesses to fields in ITS_DT_BASER and ITS_DT_CFGR are RO.

IWBLVK When the DT uses a 2-level table structure, the address stored in ITS_DT_BASER.ADDR is the base address of
the level 1 table.

When the DT uses a linear table structure, the address stored in ITS_DT_BASER.ADDR is the base address of the
array of level 2 DTEs.

SLDVFG Software is responsible for allocating the DT from memory in the PAS associated with the ITS Domain where the
DT is used.

IKRKBH The structure of the DT is controlled using the following register and translation structure fields:

• ITS_DT_CFGR.DEVICEID_BITS:

Selects how many bits of DeviceID the DT can translate. This impacts the size of the level 2 DT when using
a linear structure and the size of the level 1 DT when using 2-level structure.

• ITS_DT_CFGR.STRUCTURE:

Selects if the DT uses a linear or 2-level structure.

• ITS_DT_CFGR.L2SZ:

When using a 2-level DT, this field configures the number of DeviceID bits resolved by each level 2 DT.

• L1_DTE.SPAN:

When using a 2-level DT, for the level 1 entry corresponding to a range of DeviceIDs, this field configures
the number of entries in the level 2 DT.

IPZYZM The supported values for ITS_DT_CFGR.L2SZ are reported in ITS_IDR1.L2SZ.

INTYVG The size of a level 1 DTE and a level 2 DTE is 8 bytes.

Table 5.1 shows some example DT structures:

Table 5.1: Example DT structures.

STRUCTURE DEVICEID_BITS L2SZ L1 size L2 size Maximum number of devices

Linear 4 - - 128 B 16

Linear 9 - - 4 KB 512

Linear 13 - - 64 KB 8,192

Linear 18 - - 2 MB 262,144

2-level 18 0b00, 9 bits 4 KB 4 KB 262,144

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

162

Chapter 5. Interrupt translation service (ITS)
5.3. Translation structures

STRUCTURE DEVICEID_BITS L2SZ L1 size L2 size Maximum number of devices

2-level 27 0b00, 9 bits 2 MB 4 KB 134,217,728

2-level 22 0b01, 11 bits 16 KB 16 KB 4,194,304

2-level 26 0b10, 13 bits 64 KB 64 KB 67,108,864

2-level 32 0b10, 13 bits 4 MB 64 KB 4,290,000,000

In the table above, the L2SZ column shows the value of ITS_DT_CFGR.L2SZ along with its interpretation in bits
of DeviceID resolved by each level.

See 11.1 ITS Data Structures and 10.3.1.6 ITS_DT_CFGR for more information.

SYMMZX The L1 size and L2 size columns in Table 5.1 indicate the required maximum physically contiguous allocation by
software for the configuration. Arm expects that for large systems with many devices, a 2-level structure with a
large level 1 table can be allocated by software on system boot.

SFGKBW L1_DTE.SPAN field is used to limit the amount of storage required for the level 2 DT. For example, if the L2SZ is
configured at 9 bits, and only two devices are differentiated using bit 0 of the DeviceID for the DeviceID space
defined by bits N:9, then a SPAN of 1 can be used to only require that two level 2 DTEs are allocated. See Figure
5.3 for an illustration where the L2SZ is configured at 9 bits and where two level 1 DTEs use different SPAN
values.

L1_DTE
L1_DTE
L1_DTE
L1_DTE
L1_DTE

…

IT_DT_BASER.ADDR

DeviceID[15:9]

L2_DTE
L2_DTE

L1_DT

L2_DT DeviceID[0]L2_ADDR, SPAN=1

L2_DTE
L2_DTE

L2_DT DeviceID[1:0]

L2_DTE
L2_DTE

L2_ADDR, SPAN=2

Figure 5.3: Example device table using L1_DTE.SPAN

SCQRVC ITS_DT_CFGR.DEVICEID_BITS determines the number of level 2 DTEs the DT contains. When using a 2-level
structure, the number of DeviceID bits resolved by each level 2 table is decided by ITS_DT_CFGR.L2SZ, and
software must allocate enough level 1 DTEs to cover the full DeviceID space for the DT.

DQFTBH A DeviceID is considered invalid if any of the following is true:

• The DeviceID is larger than (2 ˆ ITS_DT_CFGR.DEVICEID_BITS) - 1.
• DeviceIDs which do not have a corresponding level 2 DTE because of how the L1_DTE.SPAN field is

configured.

RHGKJK Events signaled with an invalid DeviceID are ignored and are not translated by the ITS.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

163

Chapter 5. Interrupt translation service (ITS)
5.3. Translation structures

IXSFXB A level 1 DT is aligned to the size of the level 1 table.

A level 2 DTE array is aligned to the size of the array.

See 10.3.1.5 ITS_DT_BASER for more information.

ICFRYB When limiting a level 2 DT size by using the level 1 SPAN field, the level 2 DT address is aligned to the size of the
level 2 DTE array.

RXNJYG When an ITS Domain is enabled, a write to any field in a valid level 2 DTE other than when setting the
L2_DTE.VALID field to 0, results in CONSTRAINED UNPREDICTABLE behavior with a choice of:

• The old values are used for the device.
• The new values are used for the device.
• A combination of the old and new values is used for the device.

IDHHJN When the ITS Domain is enabled, changing the address of an ITT for a valid level 2 DTE, requires performing the
following series of actions to avoid UNPREDICTABLE behavior:

1. Performing a write that sets the L2_DTE.VALID field to 0.
2. Ensuring that the write is visible to the ITS Domain by performing the necessary cache invalidation.
3. Writing the address and configuration fields of the new ITT to the level 2 DTE.
4. Performing a write that sets the L2_DTE.VALID field to 1.

See 5.4.2 ITS cache management for DeviceIDs for more information about ITS device cache management.

5.3.2 The Interrupt Translation Table (ITT)

DPPZDD The ITT structure is either linear or 2-level.

IRPQVS ITS_IDR1.ITT_LEVELS reports whether 2-level ITT support is implemented.

RTJCMV The value of ITS_IDR1.ITT_LEVELS is the same for all ITS Domains in an ITS in the system.

IPLTFB The GICv5 architecture defines the formats of the level 1 ITTE and level 2 ITTE.

IQJTXY The base address of the ITT is stored in L2_DTE.ITT_ADDR.

IFMQQL When the ITT uses a 2-level table structure, the address stored in L2_DTE.ITT_ADDR is the base address of the
level 1 table.

When the ITT uses a linear table structure, the address stored in L2_DTE.ITT_ADDR is the base address of the
array of level 2 ITTEs.

DCFDKB A level 2 ITT overlaps with another level 2 ITT, if the same address for a level 2 ITTE can be reached via separate
DTs or ITTs.

For example, a level 2 ITT overlaps with another level 2 ITT, if any of the following are true:

• Two separate level 2 DTEs point to the same level 1 ITT.
• Two separate level 2 DTEs point to the same level 2 ITT.
• Two separate level 1 ITTEs point to the same level 2 ITT.
• The base address of a level 2 ITT is between the base and end addresses of another level 2 ITT.

RXGPSP If any part of either a level 1 or level 2 ITT overlaps with another ITT, the ITS behavior is CONSTRAINED
UNPREDICTABLE with any of the following:

• Any ITS cache invalidation by DeviceID or EventID may not work as expected.
• ITS events may not be translated.
• The ITS may translate an ITS event resulting in sending an interrupt event to the IRS with UNKNOWN data.

Software can recover from this situation by disabling the ITS and configuring the translation structures without any
overlap before re-enabling the ITS.

See 5.5 ITS memory access rules for more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

164

Chapter 5. Interrupt translation service (ITS)
5.3. Translation structures

SYDTKM Software is responsible for allocating the ITT from memory in the PAS associated with the ITS Domain where the
ITT is used.

ISRXXT The structure of the ITT is controlled using the following fields in the ITS translation structures:

• L2_DTE.EVENTID_BITS:

Selects how many bits of EventID the ITT can translate. This impacts the size of the level 2 ITT when using
a linear structure and the size of the level 1 ITT when using 2-level structure.

• L2_DTE.ITT_STRUCTURE:

Selects if the ITT uses a linear or 2-level structure.

• L2_DTE.ITT_L2SZ:

When using a 2-level ITT, this field configures the number of EventID bits resolved by each level 2 ITT.

• L1_ITTE.SPAN:

When using a 2-level ITT, for the level 1 entry corresponding to a range of EventIDs, this field configures the
number of entries in the level 2 ITT.

IHPWVL The supported values for L2_DTE.ITT_L2SZ are reported in ITS_IDR1.L2SZ.

INJHFT The size of a level 1 ITTE and a level 2 ITTE is 8 bytes.

Table 5.2 shows some example ITT structures:

Table 5.2: Example ITT structures.

STRUCTURE EVENTID_BITS L2SZ L1 size L2 size Maximum number of events

Linear 4 - - 128 B 16

Linear 9 - - 4 KB 512

Linear 11 - - 16 KB 2,048

Linear 13 - - 64 KB 8,192

Linear 16 - - 512 KB 65,536

2-level 11 0b00, 9 bits 32 B 4 KB 2,048

2-level 16 0b00, 9 bits 1 KB 4 KB 65,536

In the table above, the L2SZ column shows the value of L2_DTE.ITT_L2SZ field along with its interpretation in
bits of EventID resolved by each level.

See 11.1 ITS Data Structures for more information.

SFYKKL The L1 size and L2 size columns in Table 5.2 indicate the required maximum physically contiguous allocation by
software for the configuration. Arm expects that 4KB allocations will satisfy the capabilities of most devices. For
example, PCIe MSI-X supports a maximum of 2,048 events for a device. 2,048 events can either be supported
with a linear 16KB table or using a 2-level structure with 4 level 1 entries each pointing to 4KB level 2 tables.

SYSMWP The L1_ITTE.SPAN field can be used to limit the amount of storage required for the level 2 ITT. For example, if a
2-level ITT contains entries for 544 events and the L2SZ is configured at 9 bits, then the last level 1 ITTE can
configure a SPAN of 5 such that the second level 2 ITT only contains 32 entries.

SZFWKT L2_DTE.EVENTID_BITS determines the number of level 2 ITTEs that the ITT contains. When using a 2-level
structure, the number of EventID bits resolved by each level 2 table is decided by L2_DTE.ITT_L2SZ, and
software must allocate enough level 1 ITTEs to cover the full EventID space for the ITT.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

165

Chapter 5. Interrupt translation service (ITS)
5.3. Translation structures

DXVTYL An EventID is considered invalid if any of the following is true:

• The EventID is larger than (2 ˆ L2_DTE.EVENTID_BITS) - 1.
• EventIDs which are not described by level 2 ITTEs because of how the L1_ITTE.SPAN field is configured.

RXJGWV Events signaled with an invalid EventID are ignored and are not translated by the ITS.

IXRKXZ If software error reporting is supported, the ITS reports if an ITS event cannot be translated due to an invalid
EventID using the appropriate error code in ITS_SWERR_STATUSR.EC.

RFVJTG The ITTs are always aligned to the size of the table.

IWBPQX When limiting a level 2 ITT size by using the level 1 SPAN field, the level 2 ITT address is aligned to the size of
the level 2 ITTE array.

ICKRKW Software may configure the ITS to translate an ITS event, generated by a write to a register in the Non-secure PAS,
using the Realm ITS Domain. Such an event does not violate the separation between Interrupt Domains, because
the event is only translated successfully in the Realm ITS Domain if L2_ITTE.DAC is 0b01 for the event.

See also:

• 5.1.1 Supporting Realm interrupts from Non-secure writes.

ITSBSN Software may read translation information for an EventID and DeviceID in an ITS Domain via the following ITS
registers:

• ITS_DIDR. A write to this register selects the DeviceID of the event.

• ITS_EIDR. A write to this register selects the EventID of the event.

• ITS_READ_EVENTR. A write of 1 to the R field requests that the ITS returns translation information for
the selected event.

• ITS_STATUSR. A read of this register reports when the translation information for the event is available.

• ITS_READ_EVENT_DATAR. A read of this register provides the translation information for the event once
it is available.

See also:

• 10.3.1.4 ITS_DIDR.
• 10.3.1.7 ITS_EIDR.
• 10.3.1.8 ITS_GEN_EVENTR.
• 10.3.1.9 ITS_GEN_EVENT_STATUSR.
• 10.3.1.10 ITS_GEN_EVENT_EIDR.
• 10.3.1.11 ITS_GEN_EVENT_DIDR.
• 10.3.1.22 ITS_READ_EVENTR.
• 10.3.1.23 ITS_READ_EVENT_DATAR.
• 10.3.1.24 ITS_STATUSR.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

166

Chapter 5. Interrupt translation service (ITS)
5.4. ITS cache management

5.4 ITS cache management

RFXXDG An ITS is permitted to cache any part of the ITS translation structures at any time when they are accessible by the
ITS.

IKKDTR The ITS caches are not considered data or system caches belonging to the memory system, meaning they are not
managed by any cache maintenance instructions issued by a PE.

Note

This means that information from all of level 1 DTEs, level 2 DTEs, level 1 ITTEs, and level 2 ITTEs may be
cached by the ITS.

INRPBV An ITS is permitted to cache both valid and invalid entries of ITS translation structures.

RXVTHB Entries held in ITS caches are associated with the ITS Domain that contains the ITS translation structures used to
derive the entry.

Note

This ensures isolation between ITS Domains and ensures that modifying translation structures and performing
cache maintenance for one ITS Domain does not affect the behavior of another ITS Domain.

RMKQFF When an ITS Domain is disabled, the ITS caches contain no data from ITS translation structures associated with
that ITS Domain.

RJTCBT Cached information from an ITS translation structure entry is not guaranteed to remain in the ITS caches.

IQSGHD Cached information from an ITS translation structure entry is not guaranteed to remain in the ITS caches. This
means that when the ITS caches an ITS translation structure entry with different values than what is stored in
memory, the ITS may naturally evict the cached entry and read the updated translation structure entry from memory,
without any ITS cache invalidation operation having been performed.

RHQFDL An update to an ITS translation structure entry is not guaranteed to be visible to the ITS until an appropriate cache
invalidation operation has completed.

IGMVTV When software updates the fields in an ITS translation structure entry, the ITS is permitted to cache both the old
and the new entry. For as long as both entries exist in the ITS cache, each translation of a DeviceID and EventID
affected by the updated entry is permitted to use either the old or the new entry.

SPJDQP To avoid the ITS using the old translation entries, software should perform the following steps:

1. Ensure that no events are generated for that DeviceID.
2. Synchronize events Accepted by the ITS that use the old translation structures. See also 5.2.4 ITS synchro-

nization requests for more information.
3. Update the fields in the ITS translation structure entry and perform the appropriate cache invalidation

operation. See also 5.4.1 ITS cache management for EventIDs and 5.4.2 ITS cache management for
DeviceIDs for more information.

4. Enable events for that DeviceID.

IWBWHP ITS cache invalidation is done for a device or an event. A device is identified by its DeviceID. An event is identified
by its DeviceID and EventID.

IBPDHC The ITS provides cache invalidation operations that apply to any cached information from ITS translation structure
entries for the specified device or event. An invalidation operation applies to the cached information from ITS
translation structures irrespective of the values stored in the ITS translation structures in memory.

For example, for an event, the state of the corresponding level 2 ITTE could be as follows:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

167

Chapter 5. Interrupt translation service (ITS)
5.4. ITS cache management

• There is cached information from a valid level 2 ITTE for that event.
• There is no cached information from the level 2 DTE for the DeviceID of the event.
• The level 2 DTE for the DeviceID of the event is invalid.

The ITS cache invalidation operation for that event invalidates the cached information from the valid level 2 ITTE
even though the level 2 DTE is invalid.

ILNLHV ITS cache invalidation operations invalidate cached information regardless of the value of the VALID field in the
cached translation structure entry.

IWZQQN The effects of ITS cache invalidation operations are complete when ITS_STATUSR.IDLE is 1.

RZXXJF When ITS_STATUSR.IDLE transitions from 0 to 1, any ITS event that used information from ITS translation
structure entries prior to the invalidate have been Accepted by the IRS.

5.4.1 ITS cache management for EventIDs

IRPBTZ An ITS cache invalidation operation for a single EventID is performed as follows:

1. The EventID is written to ITS_EIDR.EVENT_ID and the DeviceID to ITS_DIDR.DEVICE_ID.
2. A write to ITS_INV_EVENTR is performed with the fields set to the following:

• ITS_INV_EVENTR.L1 is set to 0.
• ITS_INV_EVENTR.I is set to 1.

RKYPHL An ITS cache invalidation operation for an EventID invalidates all cached information from the L2 ITTE
corresponding to the EventID.

IGLSYM The ITS supports invalidating a range of EventIDs corresponding to the number of EventIDs described by a single
level 2 ITT. The size of the range is selected using ITS_INV_EVENTR.ITT_L2SZ.

An ITS cache invalidation operation for a range of EventIDs is performed as follows:

1. Any EventID within the range is written to ITS_EIDR.EVENT_ID and the DeviceID is written to
ITS_DIDR.DEVICE_ID.

2. A write to ITS_INV_EVENTR is performed with the fields set to the following:
• ITS_INV_EVENTR.L1 is set to 1.
• ITS_INV_EVENTR.ITT_L2SZ is set to the size of a level 2 ITT corresponding to the range of EventIDs

that are invalidated.
• ITS_INV_EVENTR.I is set to 1.

RPBJYK An ITS cache invalidation operation for a range of EventIDs invalidates all cached information from the
L1 ITTE and L2 ITTEs for the DeviceID corresponding to the invalidate operation’s DeviceID and for the
EventID bits[15:N] corresponding to the invalidate operation’s EventID’s bits[15:N], where N equals (9 + 2 *
ITS_INV_EVENTR.ITT_L2SZ).

Note

An ITS cache invalidation for a range of EventIDs applies to cached information from that range of EventIDs,
regardless of whether a linear or 2-level structure is used for the ITT when the information is cached.

IJNKRH In an invalidation operation for a range of EventIDs, for each EventID in the range, the ITS invalidates the same
cached information as when an invalidate operation is performed for a single EventID. See rule KYPHL for more
information.

IFLZSK The effects of a write to ITS_INV_EVENTR are complete when ITS_STATUSR.IDLE is 1.

See also:

• 10.3.1.4 ITS_DIDR.
• 10.3.1.7 ITS_EIDR.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

168

Chapter 5. Interrupt translation service (ITS)
5.4. ITS cache management

• 10.3.1.17 ITS_INV_EVENTR.
• 10.3.1.24 ITS_STATUSR.

5.4.2 ITS cache management for DeviceIDs

ITKFBL An ITS cache invalidation operation for a single DeviceID is performed as follows:

1. The DeviceID is written to ITS_DIDR.DEVICE_ID.
2. A write to ITS_INV_DEVICER is performed with the fields set to the following:

• ITS_INV_DEVICER.L1 is set to 0.
• ITS_INV_DEVICER.EVENTID_BITS is set to the number of EventID bits to which the invalidation

operation applies.
• ITS_INV_DEVICER.I is set to 1.

RNWHYF An ITS cache invalidation operation for a DeviceID invalidates all of the following:

• All cached information from the L2 DTE that corresponds to the DeviceID.
• All cached information from all L1 ITTEs that correspond to the DeviceID.
• All cached information from L2 ITTEs for the DeviceID where the EventID is less than 2 ˆ

ITS_INV_DEVICER.EVENTID_BITS.

IDWLGT The ITS supports invalidating a range of DeviceIDs corresponding to the number of DeviceIDs described by a
single level 2 DT.

An ITS cache invalidation operation for a range of DeviceIDs is performed as follows:

1. A DeviceID within the range is written to ITS_DIDR.DEVICE_ID.
2. A write to ITS_INV_DEVICER is performed with the fields set to the following:

• ITS_INV_DEVICER.L1 is set to 1.
• ITS_INV_DEVICER.I is set to 1.

RFWYGP An ITS cache invalidation operation for a range of DeviceIDs invalidates all cached information from the L1 DTE,
L2 DTEs, L1 ITTEs, and L2 ITTEs for DeviceID bits[31:N] corresponding to the invalidate operation’s DeviceID
bits[31:N], where N equals (9 + 2 * ITS_DT_CFGR.L2SZ) and the effective value of EVENTID_BITS is the
value reported in ITS_IDR2.EVENTID_BITS.

INTHYD When a cache invalidation operation for a range of DeviceIDs is performed, the Effective value of EVENTID_BITS
used to invalidate each DeviceID is the maximum implemented number of EventID bits reported in
ITS_IDR2.EVENTID_BITS.

IXBVDN In an invalidation operation for a range of DeviceIDs, for each DeviceID in the range, the ITS invalidates the same
cached information as when an invalidate operation is performed for a single DeviceID.

This means that cached information from the following translation structures is invalidated for each DeviceID
when invalidating a range of DeviceIDs:

• The L2 DTE that corresponds to the DeviceID.
• All L1 ITTEs that correspond to the DeviceID.
• All L2 ITTEs that correspond to the DeviceID.

See rule NWHYF for more information.

IWWQDF The effects of a write to ITS_INV_DEVICER are complete when ITS_STATUSR.IDLE is 1.

IQNNQG When a write to a level 1 DTE sets VALID to 0, and there is cached information from a valid level 2 DTE for a
DeviceID in the range covered by that level 1 DTE, the ITS may also contain cached information of the previously
valid level 1 DTE.

This means that the ITS is permitted to treat the DeviceID either as valid or invalid, and to ensure the ITS treats the
DeviceID as invalid, the level 1 DTE cache entries for the DeviceID range must be invalidated.

See also:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

169

Chapter 5. Interrupt translation service (ITS)
5.4. ITS cache management

• 10.3.1.6 ITS_DT_CFGR.
• 10.3.1.16 ITS_INV_DEVICER.
• 10.3.1.24 ITS_STATUSR.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

170

Chapter 5. Interrupt translation service (ITS)
5.5. ITS memory access rules

5.5 ITS memory access rules

RBXBXJ If an ITS access to any ITS translation structure occurs in PCIe address space, then the ITS is permitted to return
an UNKNOWN value or terminate the access and report the error.

In this case, the ITS is permitted to drop the translation and not send any outgoing interrupt events to the IRS.

RGRXYB When an ITS accesses a memory location in a PAS, it relies on information stored in registers and translation
structures that are accessible only within the same PAS to validate that the access is permitted.

This includes scenarios in which the ITS behavior is CONSTRAINED UNPREDICTABLE, UNPREDICTABLE, or
IMPLEMENTATION DEFINED.

For example, an ITS access to a translation structure is permitted only if the memory location lies within a region
defined by a base address and size held in a register or another translation structure entry, where that defining
information resides in the same PAS as the access itself.

This prevents software running in a Security state from directing the ITS to access any memory location using
another PAS than the one associated with the software’s Security state.

RBLYPY An ITS does not access any memory location which is not derived from address and configuration data in the ITS
registers and translation structures.

When a memory address is stored in an address field in a register or translation structure entry, and that register or
entry contains a field indicating that the address is not valid, the ITS does not derive any memory location from
that address field.

This includes scenarios in which the ITS behavior is CONSTRAINED UNPREDICTABLE, UNPREDICTABLE, or
IMPLEMENTATION DEFINED.

RLTFQT When the ITS accesses an ITS translation structure, the access must be a 64-bit aligned, single-copy atomic access
of at least 64 bits in size.

IJXSPX If the ITS experiences an external abort during a memory access to an ITS translation structure, the ITS stops the
operation and reports the error.

If software error reporting is supported, the error is reported with ITS_SWERR_STATUSR.EC in the range from
0x00 to 0x04.

RLSCDT If the ITS experiences an external abort as part of translating an event, the translation is dropped and no outgoing
interrupt event is sent to the IRS.

RPGRJQ If an ITS translation structure overlaps with any other ITS or IRS translation structure, the ITS behavior is
UNPREDICTABLE.

The UNPREDICTABLE behavior may result in loss of interrupt configuration and state, but must not result in access
to memory outside the PAS associated with the ITS Domain or in access to any memory location which is not
derived from address and configuration of the DT or ITT.

For more information about the IRS translation structures, see 4.7 The interrupt state table (IST) and 4.9
Virtualization data structures.

Software can recover from this situation by performing the following sequence:

1. Disabling the ITS.
2. Making the corresponding translation structures invalid in the IRS.
3. Reconfigure the base addresses of the translation structure to avoid overlap.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

171

Chapter 5. Interrupt translation service (ITS)
5.6. ITS support for MPAM

5.6 ITS support for MPAM

IXZGHC The Memory System Resource Partitioning and Monitoring Memory, MPAM, architecture defines per-transaction
attributes that affect system behavior or the behavior of components that the transactions pass through or Completers
that satisfy a transaction [1].

The ITS supports MPAM with the following additional attributes:

• Partition ID, or PARTID.
• Performance Monitoring Group, or PMG.

The PARTID and PMG are both interpreted within a PARTID space. The PARTID space used depends on the
Security state associated with an ITS Domain, and the PARTID and PMG values used may be programmed
independently for each ITS Domain. See [1] for more information about MPAM information bundles.

IFBPMW In the ITS, support for MPAM is indicated by ITS_IDR0.MPAM.

If MPAM is supported, the supported PARTID and PMG width is indicated in ITS_MPAM_IDR.{PARTID_MAX,PMG_MAX}.

RFCMHZ If MPAM is supported, ITS accesses to memory are associated with the PARTID and PMG programmed in
ITS_MPAM_PARTID_R.{PARTID,PMG}.

ITHJMY In systems without support for RME, the PARTID space used by the ITS is determined by the memory system
attribute MPAM_NS.

In systems with support for RME, the PARTID space used by the ITS is determined by the memory system attribute
MPAM_SP.

IVCSKZ The ITS architecture has optional support for MPAM PARTID space selection indicated by ITS_MPAM_IDR.HAS_MPAM_SP.

If ITS_MPAM_IDR.HAS_MPAM_SP is 0, each ITS Domain uses a default MPAM PARTID space.

The following table shows the MPAM PARTID space used for accesses made by the ITS Domains if
ITS_MPAM_IDR.HAS_MPAM_SP is 0 and the system does not support RME:

ITS Domain MPAM PARTID space

Secure Secure PARTID space

Non-Secure Non-secure PARTID space

EL3 Secure PARTID space

The following table shows the MPAM PARTID space used for accesses made by the ITS Domains if
ITS_MPAM_IDR.HAS_MPAM_SP is 0 and the system supports RME:

ITS Domain MPAM PARTID space

Secure Secure PARTID space

Non-Secure Non-secure PARTID space

EL3 Root PARTID space.

Realm Realm PARTID space.

If ITS_MPAM_IDR.HAS_MPAM_SP is 1, the ITS uses the MPAM PARTID specified by ITS_MPAM_PARTID_R.MPAM_SP.

RBJQFG If an ITS without support for MPAM is integrated in a system that supports MPAM, the PARTID and PMG used
for each ITS Domain is IMPLEMENTATION DEFINED.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

172

Chapter 5. Interrupt translation service (ITS)
5.7. ITS support for Memory Encryption Contexts

5.7 ITS support for Memory Encryption Contexts

IPRBCL The Memory Encryption Contexts feature, FEAT_MEC, provides finer-grained memory encryption contexts,
within the Realm physical address space, to be assigned to Realms, with policy controlled by Realm EL2 [1].

GZHPQC The GICv5 architecture ensures that an ITS can function correctly in systems with support for Memory Encryption
Contexts (MEC).

IYQGHF In a system with support for MEC, the PEs write ITS translation structures to memory and these are read by the
ITS.

In such a system, all ITS Realm translation structures are managed and configured by Realm EL2, and virtualized
software running at EL1 is not expected to have direct access to the ITS configuration registers or translation
structures. Therefore, the ITS only supports configuration of a single MECID used for all ITS memory accesses to
the Realm PAS. This allows software running at Realm EL2 to write to the ITS translation structures and allows
the ITS to read the translations.

IVRVQV In the ITS, support for Memory Encryption Contexts (MEC) is indicated in ITS_IDR0.MEC for the Realm ITS
Domain. If the MEC feature is supported, the supported MECID width is indicated in ITS_MEC_IDR.MECIDSIZE
for the Realm ITS Domain.

Arm strongly recommends that the MECID bit width supported by the ITS matches or exceeds the width supported
by the PEs in the system.

RXKTWP If the MEC feature is supported, ITS accesses to memory are associated with a MECID that identifies the Memory
Encryption Context of the access.

RXTVVQ Accesses made by the ITS for Secure, Non-secure, and Root PA spaces are issued with the default MECID of zero.

IFPSSV Accesses made by the ITS to Realm PA space are associated with the global Realm PAS ITS MECID programmed
in ITS_MEC_MECID_R.MECID.

RDGJXQ If an ITS without support for the Realm ITS Domain is integrated in a system that supports MEC, all ITS accesses
for that ITS are treated as having the default MECID of zero.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

173

Chapter 5. Interrupt translation service (ITS)
5.8. ITS support for software error reporting

5.8 ITS support for software error reporting

IFWKKS The ITS specifies a mechanism to report errors because of incorrect programming.

RFBVQN The ITS detects software errors while processing ITS events. Otherwise, the ITS does not detect software errors.

RRLHPC Software error codes that refer to incoming events apply to incoming events generated by all supported mechanisms.
See Chapter 5 Interrupt translation service (ITS) for more information about the supported mechanisms for
incoming events.

RRLJNX ITS support for software error reporting is optional.

IHKRKL ITS_IDR0.SWE reports whether software error reporting is supported.

RQRYDD The value of ITS_IDR0.SWE is the same for all ITS Domains in an ITS in the system.

IFCPZL When ITS_IDR0.SWE is 1, the ITS uses the ITS_SWERR_STATUSR.IMP_EC to report any IMPLEMENTATION
DEFINED errors detected by the ITS.

IZGMTB ITS_SWERR_STATUSR.EC is 0 when an IMPLEMENTATION DEFINED error is reported by the ITS.

IZNSVM When L2_DTE.DSWE is 0, the ITS does not report errors for the following error codes in ITS_SWERR_STATUSR.EC:

• 0x03: Failed lookup of L1_ITTE due to an external abort.
• 0x04: Failed lookup of L2_ITTE due to an external abort.
• 0x06: An incoming event could not be translated because L2_DTE.VALID is 0.
• 0x07: An incoming event could not be translated because L1_ITTE.VALID is 0.
• 0x08: An incoming event could not be translated because L2_ITTE.VALID is 0.
• 0x0A: An incoming event could not be translated because the EventID > (2 ˆ L2_DTE.EVENTID_BITS) - 1.
• 0x0C: An incoming event could not be translated because the EventID exceeds the L1_ITTE.SPAN.
• 0x0D: An incoming event could not be translated because the event is associated with the Non-secure

Interrupt Domain and L2_ITTE.DAC = 0.

SFPVFM When a device is assigned to a VM, the Hypervisor can set L2_DTE.DSWE to 0 in the L2 DTE of the device to
mask reporting of software errors caused by misconfiguration of the device by VM.

IZKJKN Software error information can be read in an ITS Domain via the following ITS registers:

• ITS_SWERR_STATUSR.
• ITS_SWERR_SYNDROMER0.
• ITS_SWERR_SYNDROMER1.

IYSSCL When a software error is reported in the ITS Domain, the value of ITS_SWERR_STATUSR.V is 1. Otherwise, no
software error is reported in the ITS Domain and fields in this register are UNKNOWN.

IPVQYF When the value of ITS_SWERR_STATUSR.V is 1, all of the following are true in that ITS Domain:

• ITS_SWERR_STATUSR.EC specifies the fault that caused the software error.
• ITS_SWERR_STATUSR.S0V indicates whether ITS_SWERR_SYNDROMER0 contains valid error

syndrome information.
• ITS_SWERR_STATUSR.S1V indicates whether ITS_SWERR_SYNDROMER1 contains valid error

syndrome information.
• ITS_SWERR_STATUSR.OF indicates whether multiple software errors were detected.

IZBHQQ When ITS_SWERR_STATUSR.S0V is 1, ITS_SWERR_SYNDROMER0 reports the following information for
the software error:

• The DeviceID and EventID of the incoming event that resulted in the software error.
• The Interrupt Domain the incoming event is associated with.

IBBZNG When ITS_SWERR_STATUSR.S1V is 1, ITS_SWERR_SYNDROMER1 reports the address of the ITS translation
structure associated with the software error.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

174

Chapter 5. Interrupt translation service (ITS)
5.8. ITS support for software error reporting

RLKLQG For each reported error, the values of ITS_SWERR_STATUSR.{S0V,S1V} are IMPLEMENTATION DEFINED and
set independently.

SNZTWH Arm recommends that software performs the following sequence of operations to either clear the last error, or
detect if new errors were reported:

1. Read ITS_SWERR_STATUSR and determine which fields need to be cleared to zero.
2. In a single-copy atomic write to ITS_SWERR_STATUSR:

1. Write ones to all the W1C fields that are nonzero in the read value.
2. Write zero to all the W1C fields that are zero in the read value.
3. Write zero to all the RW fields.

3. Read back ITS_SWERR_STATUSR after the write. If the value read back is the same as the value that was
written, all W1C fields that were non-zero are cleared, and no new errors were reported. Otherwise, one or
more new errors were reported.

See also:

• 10.3.1.25 ITS_SWERR_STATUSR.
• 10.3.1.26 ITS_SWERR_SYNDROMER0.
• 10.3.1.27 ITS_SWERR_SYNDROMER1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

175

Chapter 6
Interrupt Wire Bridge (IWB)

IFJFTJ This section describes the architecture of an IWB. The IWB detects changes to the state of input wires and signals
an ITS. The ITS generates ITS events from the signals and translates them into interrupt events that are forwarded
to an IRS.

RLMVTM A system is permitted to have zero, one, or many IWB instances.

RFYRGC Each IWB is associated with a single ITS in the system.

DYQYMC Every input wire connected to the IWB is asserted or de-asserted.

RGXTZZ The mechanism for making an input wire asserted or de-asserted is IMPLEMENTATION DEFINED.

IHBSZB For example, a wire connecting a device that signals interrupt events to the IWB may assert the input wire whenever
the device signals an event and de-assert the input wire at any time after signaling the event. Only the assertion
(and not the de-assertion) of the input wire matters for such a device.

As another example, a wire connecting a device signals interrupt state to the IWB may keep the input wire asserted
to indicate a state in the device and keep the wire de-asserted to indicate a different state in the device. The input
wire would be asserted and de-asserted when the device transitions between such states.

IDXLSJ The number of implemented wire control registers IWB_WTMR<n>, IWB_WDOMAINR<n>, and
IWB_WENABLER<n> is reported in IWB_IDR0.IW_RANGE.

ILTGCB The maximum number of implemented wires for a single IWB instance is 65536.

RMMWGD The number of implemented wires by an IWB is less than or equal to (IWB_IDR0.IW_RANGE + 1) * 32.

DRLQKQ Each input wire to an IWB can be uniquely identified by its input wire index which is a number from 0 through
(IWB_IDR0.IW_RANGE + 1) * 32 - 1.

IZQSGD Accesses to wire control fields for wires that are not implemented in the wire control registers are RAZ/WI.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

176

Chapter 6. Interrupt Wire Bridge (IWB)

RVKMRC The IWB is identified with a DeviceID that is unique in the DeviceID namespace of the associated ITS.

All wire events signaled to the ITS from the same IWB are signaled using the same DeviceID.

RRMRTF An input wire uses the input wire index as the EventID when signaling an event to the ITS.

IMBFPR Each input wire is signaled with an EventID that is unique across all input wires implemented by the IWB.

IQHCJD Arm strongly recommends implementing wires contiguously to avoid the need to allocate a sparse ITT for the ITS.

SHYHGF The relationship between wires and the connected interrupt source is available to system software in firmware
tables.

RRVNRP The mechanism used by the IWB to communicate events to the ITS is IMPLEMENTATION DEFINED.

ITVRKT IWB_CR0.IWBEN controls whether the IWB is enabled or disabled.

IRQJMN The Trigger mode of each wire connected to an IWB is configured to be either edge-triggered or level-sensitive.

RWLHDQ When the IWB is enabled, events are generated according to the input wire settings:

• If an input wire is enabled and configured as edge-triggered, the IWB generates a SET_EDGE event when
the input wire becomes asserted.

• If an input wire is enabled and configured as level-sensitive, the IWB generates a SET_LEVEL event when
the input wire becomes asserted and a CLEAR event when the level becomes de-asserted.

• If an input wire is disabled, the IWB does not generate any events as a result of the wire becoming asserted
or de-asserted.

When the IWB is disabled, it generates no events to the ITS.

RMXGNY When the IWB generates an event as a result of a wire being asserted or de-asserted, the event is generated in finite
time.

RPKSVB For an edge-triggered input wire, if the wire is asserted multiple times without the IWB having sent an event to the
ITS, the IWB is permitted to only generate a single SET_EDGE event and send it to the ITS.

Once an event is generated and sent to the ITS, when the wire is subsequently asserted, the IWB generates a new
SET_EDGE event in finite time.

IHTKHT For example, when a wire that is configured as edge-triggered goes through the following transition, the IWB is
permitted to generate only a single SET_EDGE event:

1. The wire is asserted
2. The wire is de-asserted
3. The wire is asserted

RPHYZS If an input wire is configured as level-sensitive, the IWB is permitted to discard the SET_LEVEL and CLEAR
events when the wire is asserted and de-asserted before the IWB sends any event to the ITS.

IHTBRD For example, for a wire that is configured as level-sensitive and goes through the following transition, the IWB is
permitted not to generate any events to the ITS:

1. The wire is asserted
2. The wire is de-asserted

RGJJZH For an edge-triggered input wire, when the IWB or the input wire is disabled, the IWB is permitted to detect that
the input wire is asserted and generate a SET_EDGE event later when the IWB and the input wire are enabled.

If the input wire’s Trigger mode is updated from edge-triggered to level-sensitive when the IWB or input wire is
disabled, the IWB does not generate any SET_EDGE events when the IWB and the input wire are subsequently
enabled.

IBGSBG Changing the value of IWB_CR0.IWBEN does not affect the values in other IWB registers.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

177

Chapter 6. Interrupt Wire Bridge (IWB)

RVWTHK When a write to IWB_CR0.IWBEN changes the value from 0 to 1, the IWB begins a transition from disabled to
enabled.

The transition from disabled to enabled is complete when IWB_CR0.IDLE is 1.

When the transition from disabled to enabled is complete, the IWB processes the following events:

For wires where IWB_WTMR<n>.TM<x> is 1 (level-sensitive) and IWB_WENABLER<n>.WEN<x> is 1:

• If the wire is asserted when the transition is complete, the IWB generates a SET_LEVEL event.
• If the wire is de-asserted when the transition is complete, the IWB generates a CLEAR event.

For wires where IWB_WTMR<n>.TM<x> is 0 (edge-triggered):

• The IWB does not generate any events for edge-triggered input wires when the IWB becomes enabled.

IXFJKK If a level-sensitive input wire becomes asserted or de-asserted during the IWB transitions from disabled to enabled,
the IWB either generates a single event corresponding to the final state of the input wire or generates multiple
events for the input wire where the last event corresponds to the final state of the input wire.

RDRQYB When a write to IWB_CR0.IWBEN changes the value from 1 to 0, the IWB begins a transition from enabled to
disabled.

When the IWB is transitioning from enabled to disabled, the IWB is not guaranteed to detect when input wires are
asserted or de-asserted.

The transition from enabled to disabled is complete when IWB_CR0.IDLE is 1.

When the transition from enabled to disabled is complete, the IWB has generated a CLEAR event for every
level-sensitive wire where it had sent a SET_LEVEL event and no corresponding CLEAR. These events are
Accepted by the ITS when the transition is complete.

Note

If the assignment of an input wire to an Interrupt Domain is changed when IWB_CR0.IDLE is 0, and before a
corresponding CLEAR event is Accepted by the ITS, the IWB does not guarantee that a CLEAR event is sent or
Accepted by the ITS when IWB_CR0.IDLE is 1.

See 6.2 IWB support for multiple Interrupt Domains for more information about assigning input wires to
Interrupt Domains.

RXCTCW If the IWB is enabled or disabled when IWB_WENABLE_STATUSR.IDLE is 0 for any PAS, it is CONSTRAINED
UNPREDICTABLE whether the IWB generates events for level-sensitive wires affected by the write to ongoing
write to IWB_WENABLER<n>.

See 6.1 IWB wire control registers for more information about individually enabling and disabling wires.

RXDGSG Following a write to IWB_CR0.IWBEN, when IWB_CR0.IDLE is 1, all events generated as a result of the write
are Accepted by the ITS.

SXWPYQ When the IWB is reset, software is expected to configure wired interrupts using a sequence similar to the following:

• Software executing in a Security state that can access the MPPAS of the IWB performs the following steps:

1. Individually disable all input wires to the IWB.
2. Initialize the Interrupt Domain association for the input wires in the IWB.
3. Enable the IWB.

• Software executing in any Security state performs the following steps to configure a wired interrupt in an
Interrupt Domain that the input wire is assigned to:

1. Enable and configure the IRS, including providing the necessary data structures in memory.
2. Enable and configure the associated ITS, including providing the necessary data structures in memory.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

178

Chapter 6. Interrupt Wire Bridge (IWB)

3. Configure a valid translation in the ITS for the DeviceID and EventID associated with the IWB and
input wire.

4. Configure the input wire in the IWB as edge-triggered or level-sensitive.
5. Individually enable the wire in the IWB.

See also:

• Chapter 4 Interrupt routing service (IRS)
• 4.8.2 Physical SPIs
• Chapter 5 Interrupt translation service (ITS)

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

179

Chapter 6. Interrupt Wire Bridge (IWB)
6.1. IWB wire control registers

6.1 IWB wire control registers

DFKXGT The IWB allows software to control the behavior of the IWB for each input wire through the following wire control
registers:

• IWB_WENABLER<n>: Enables and disables individual wires.
• IWB_WTMR<n>: Configures if individual wires are edge-triggered or level-sensitive.
• IWB_WDOMAINR<n>: Selects the Interrupt Domain that the individual wires are assigned to.

DWLWFZ The following terms are used to indicate programming of a single wire as opposed to a configuration setting which
applies to all of the IWB:

• Individually enabling a wire refers to a write to IWB_WENABLER<n>.WEN<x> that updates the value
from 0 to 1.

• Individually disabling a wire refers to a write to IWB_WENABLER<n>.WEN<x> that updates the value
from 1 to 0.

RSDJBH When individually enabling one or more wires, the IWB behaves as follows:

• For wires where IWB_WTMR<n>.TM<x> is 1 (level-sensitive):
– If the wire is asserted at the time of the write to IWB_WENABLER<n>, the IWB generates a

SET_LEVEL event.
– If the wire is de-asserted at the time of the write to IWB_WENABLER<n>, the IWB generates a CLEAR

event.
• For wires where IWB_WTMR<n>.TM<x> is 0 (edge-triggered):

– The IWB does not generate any events for the wire.

When individually disabling one or more wires, the IWB behaves as follows:

• For wires where IWB_WTMR<n>.TM<x> is 1 (level-sensitive):
– If a SET_LEVEL event was previously generated for that wire without a corresponding CLEAR event,

the IWB generates a CLEAR event.
• For wires where IWB_WTMR<n>.TM<x> is 0 (edge-triggered):

– The IWB does not generate any events for the wire.

Writing to IWB_WENABLER<n> when IWB_CR0.IWBEN is 0 has no effect other than changing the values
stored in IWB_WENABLER<n>.

IWLHND The effects of a write to IWB_WENABLER<n> are complete when a read using the same PAS as the write of
IWB_WENABLE_STATUSR.IDLE returns 1.

RHJXNH When the effects of a write to IWB_WENABLER<n> are complete, all of the following are true:

• Each input wire affected by the write becomes either disabled or enabled.
• All CLEAR events generated as a result of individually disabling wires are Accepted by the ITS.

Note

The IWB is required to generate a CLEAR event as a result of individually disabling a level-sensitive wire. The
effects of the write to IWB_WENABLER<n> are not complete until the CLEAR events are accepted by the ITS.

The IWB is not required to generate any events and ensure that they are Accepted by the ITS before
IWB_WENABLE_STATUSR.IDLE is 1 when individually enabling a wire.

SDDQDS The IWB is required to generate CLEAR events when individually disabling a wire to support the following use
case:

• To re-sample the level of a level-sensitive interrupt, software can rely on a CLEAR being sent when the
effects of individually disabling a wire are complete, and subsequent SET_EDGE or SET_LEVEL events

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

180

Chapter 6. Interrupt Wire Bridge (IWB)
6.1. IWB wire control registers

being sent in finite time.
• Software may remove a mapping for an event in the ITS and ensure that the ITS does not report failed

translations for that wire due to events being sent by the IWB after the wire has been disabled.

Note

If the assignment of an input wire to an Interrupt Domain is changed when IWB_WENABLE_STATUSR.IDLE
is 0 due to a write to IWB_WENABLER<n> that disables that wire, and before a corresponding CLEAR event
is Accepted by the ITS, the IWB does not guarantee that a CLEAR event is sent or Accepted by the ITS when
IWB_WENABLE_STATUSR.IDLE is 1.

See 6.2 IWB support for multiple Interrupt Domains for more information about assigning input wires to
Interrupt Domains.

STFNWQ Software can poll IWB_WENABLE_STATUSR.IDLE until it is 1, using the same PAS as was used to individually
disable the wire, to ensure that all events for a wire that has been disabled are Accepted by the ITS and that no
further events will be generated for that wire.

Software can rely on this functionality combined with an ITS synchronization request to ensure that all events are
translated by the ITS before unmapping the event to avoid spurious translation errors being logged by the ITS.

IVXFZX Arm strongly recommends that a translation exists in the ITS for the wire before individually enabling the wire,
and that the translation is not changed or made invalid in the ITS until the wire is individually disabled.

Further, Arm strongly recommends that a wire is individually disabled before changing the Interrupt Domain that
the wire is assigned to. See 6.2 IWB support for multiple Interrupt Domains for more information.

RHWHSV It is IMPLEMENTATION DEFINED whether software is permitted to program the Trigger mode of individual wires.

If software is not permitted to program the Trigger mode, any access to the Trigger mode of individual wires is
RO.

IYQYHL The permission to program the Trigger mode is expressed by the pseudocode function IsWireConfigRO().

RMQFZD Writing to IWB_WTMR<n>.TM<x> when any of the following are true results in a CONSTRAINED UNPRE-
DICTABLE behavior:

• The wire is enabled.
• IWB_WENABLE_STATUSR.IDLE is 0 due to a write to IWB_WENABLER<n> affecting that wire.

The CONSTRAINED UNPREDICTABLE behavior is one of the following:

• The write is IGNORED and the configuration is not updated.
• The configuration is updated and no events are generated as a result of changing the configuration.
• The configuration is updated and the IWB generates a SET_EDGE, SET_LEVEL, or CLEAR event to the

ITS.

STQWXV Software is expected to configure the wire to be edge-triggered or level-sensitive when the wire is individually
disabled.

IBNWSF Software may resample a wire by writing the input wire index to IWB_WRESAMPLER.

RQSYNQ A wire can only be resampled by writing the input wire index to IWB_WRESAMPLER using one of the following
PA spaces:

• The MPPAS of the IWB.
• The PAS associated with the Interrupt Domain that the wire is assigned to.

Writing the input wire index to IWB_WRESAMPLER using any other PAS has no effects.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

181

Chapter 6. Interrupt Wire Bridge (IWB)
6.1. IWB wire control registers

RHFMBM Resampling an enabled wire has the following effects:

• For wires where IWB_WTMR<n>.TM<x> is 1 (level-sensitive), all of the following are true:
– If the wire is asserted, the IWB generates a SET_LEVEL event.
– If the wire is de-asserted, the IWB generates a CLEAR event.

• For wires where IWB_WTMR<n>.TM<x> is 0 (edge-triggered), all of the following are true:
– If the wire is asserted, the IWB generates a SET_EDGE event.
– If the wire is de-asserted, the IWB generates no events.

Resampling a disabled wire has no effects and generates no events.

RRKLJP Events generated as a result of resampling a wire are generated in finite time.

RMQVNP If a wire is being individually enabled or disabled at the same time that a wire is resampled, it is CONSTRAINED
UNPREDICTABLE whether the resample has any effects.

See also:

• 4.5 IRS synchronization requests
• 5.2.4 ITS synchronization requests
• 10.4 IWB register frames

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

182

Chapter 6. Interrupt Wire Bridge (IWB)
6.2. IWB support for multiple Interrupt Domains

6.2 IWB support for multiple Interrupt Domains

RZDJNJ An IWB only implements support for Interrupt Domains supported by PEs in the system.

It is possible for an IWB to implement a subset of the Interrupt Domains that the PEs support.

IWYBFB For a system with more than one IWB, it is possible for each IWB to implement a different set of Interrupt
Domains.

The Interrupt Domains implemented by an IWB are reported in IWB_IDR0.INT_DOMS.

RZLWKJ The MPPAS of an IWB is determined from the subset of Interrupt Domains implemented by the IWB as follows:

Implemented Interrupt Domains IWB MPPAS

Non-secure Non-secure

Secure Secure

Non-secure, Secure, EL3 Secure

Non-secure, Realm, EL3 Root

Non-secure, Realm, Secure, EL3 Root

IVTYPK For example, if an IWB implements the Non-secure, Secure, and EL3 Interrupt Domains, the MPPAS of the IWB
is the Secure PAS. If the PEs in the system implement FEAT_RME, the MPPAS of the PEs is the Root PAS.
Software executing in either Root state or Secure state can access the MPPAS of the IWB.

RZGJQC The ITS associated with the IWB provides an ITS Domain for each Interrupt Domain implemented by the IWB.

DTDVQF Each input wire connected to the IWB is assigned to an Interrupt Domain.

RQWBDZ The assignment of a wire to an Interrupt Domain is configured in IWB_WDOMAINR<n>.

For each wire, the assignment of a wire to an Interrupt Domain is either fixed or software programmable.

SMMLFL The assignment of a wire to an Interrupt Domain is either fixed or software programmable. Software checks the
configuration by attempting to assign a new Interrupt Domain for the wire in IWB_WDOMAINR<n> using the
IWB MPPAS and reading back the value once IWB_WDOMAIN_STATUSR.IDLE is 1. If the value returned has
not been updated, the wire assignment to the Interrupt Domain is fixed. Otherwise, the wire assignment is software
programmable.

INZYYK The Interrupt Domains supported by the IWB are reported in IWB_IDR0.INT_DOMS.

RGFGYY When the IWB communicates an event related to a wire to the ITS, the Interrupt Domain of the event is the
Interrupt Domain that the wire is assigned to.

IVGSJN To provide isolation between Interrupt Domains, the configuration of an input wire is restricted based on the PAS
used to write to IWB wire registers.

IPVVMN IWB_WDOMAINR<n> is only accessible in the MPPAS of the IWB.

For any other PAS, the registers are RAZ/WI.

IVFDHJ The fields in IWB_WENABLER<n> and IWB_WTMR<n> are modified only through one of the following PA
spaces:

• The MPPAS of the IWB.
• The PAS associated with the Interrupt Domain that the wire is assigned to.

IHTBXZ For example, in an implementation supporting all four Interrupt Domains, an input wire configured to be assigned
to the Secure Interrupt Domain can only be configured and enabled when writing to the MMIO registers using
either the Secure or Root PAS.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

183

Chapter 6. Interrupt Wire Bridge (IWB)
6.2. IWB support for multiple Interrupt Domains

IFTMVV The effects of a write to IWB_WDOMAINR<n> are complete when IWB_WDOMAIN_STATUSR.IDLE is 1.

RRXCQB When a write to IWB_WDOMAINR<n> is complete, for each wire that was affected by the write, the wire is
assigned to the new Interrupt Domain.

Events generated after the write to IWB_WDOMAINR<n>, but before the write completes, for wires affected by
the write, are either signaled in the old Interrupt Domain or the new Interrupt Domain of the wires.

IYZCLL The IWB does not generate any events as a result of a write to IWB_WDOMAINR<n>.

RBMZMZ If the IWB is being enabled or disabled at the same time that a wire is being assigned to a new Interrupt Domain,
the IWB is not required to generate any events for that wire as a result of enabling or disabling the IWB.

See Chapter 6 Interrupt Wire Bridge (IWB) for more information about enabling and disabling the IWB.

RTXFJS If a wire is being individually enabled or disabled at the same time that a wire is being assigned to a new Interrupt
Domain, the IWB is not required to generate any events for that wire as a result of individually enabling or
disabling the wire.

See 6.1 IWB wire control registers for more information about individually enabling and disabling wires.

SXWKVY Software can use the following sequence to change the assignment of a wire from an old Interrupt Domain to a
new Interrupt Domain:

1. Software in the old Interrupt Domain performs the following actions:
1. Disable the interrupt in the IRS where the wire is signaled.
2. Individually disable the wire in the IWB.
3. Wait until IWB_WENABLE_STATUSR.IDLE is 1 to ensure that no further events will be generated for

the wire.
4. Perform a synchronization request in the ITS and wait until it has completed.
5. Unmap the event from the ITS and invalidate the required ITS caches.
6. Request that software running in a Security state that can access the MPPAS of the IWB, assigns the

input wire to the new Interrupt Domain.
2. Software in the Security state that can access the MPPAS of the IWB performs the following actions:

1. Writes to IWB_WDOMAINR<n>.WDDOM<x> to assign the wire to the new Interrupt Domain.
2. Waits until IWB_WDOMAIN_STATUSR.IDLE is 1.

3. Software in the Security state that can access the MPPAS of the IWB notifies software in the new Interrupt
Domain that the wire has been re-assigned.

4. Software in the new Interrupt Domain performs the following actions:
1. Allocate and configure an interrupt in the IRS.
2. Map the wire event in the ITS for the new Interrupt Domain.
3. Individually enable the wire in the IWB.

See also:

• 10.2 IRS register frames
• 10.4 IWB register frames

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

184

Chapter 7
GIC Performance Monitoring Unit (PMU)

DWQRHY A GICv5 system may implement one or more GIC Performance Monitoring Units (PMU) that counts events for
one or more GICv5 system components.

RGSJJJ A GIC PMU is an implementation of the Arm® CoreSight™ Architecture Performance Monitoring Unit Architec-
ture[11].

ICXHZH The GIC PMU registers for each GIC PMU are accessible in a separate 64KB aligned GIC_PMU_FRAME.

RQZHLT The base address of the GIC_PMU_FRAME is IMPLEMENTATION DEFINED.

SBPXJG Arm expects that firmware describes the base address of ITS PMU register frames to system software using
firmware data structures.

RVGHTV For a GIC PMU, monitor 0 is 64 bits. The sizes of all other monitors are IMPLEMENTATION DEFINED. This means
that PMCFGR.SIZE is 0b111111.

SHTCFV Arm expects that monitor 0 is used to count GIC cycles.

DLTMWH A GIC PMU counts events from GIC components. This is referred to as the agent being monitored in the Arm®

CoreSight™ Architecture Performance Monitoring Unit Architecture[11]. The agent being monitored is one of the
following:

• The GIC PMU counts events for a single ITS.
• The GIC PMU counts events for a single IRS.
• The GIC PMU counts events for a single IRS and all of its associated ITSs.

Figure 7.1 shows different implementation options for GIC PMUs in a GICv5 system.

RFKJCW When a GIC PMU counts events for a system component that supports multiple Interrupt Domains, the GIC PMU
counts events for all the supported Interrupt Domains.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

185

Chapter 7. GIC Performance Monitoring Unit (PMU)

ITS

NS ITS
Domain

Realm ITS
Domain

GIC PMU

IRS

NS IRS
Domain

Realm IRS
Domain

GIC PMU

IRS

NS IRS
Domain

Realm IRS
Domain

GIC PMU

ITS

NS ITS
Domain

Realm ITS
Domain

Separate PMUs for ITS and IRS Shared PMU for ITS and IRS

Figure 7.1: GIC PMU implementation options

Note

The GIC PMU implementation options are shown using only the Non-secure and Realm Interrupt Domains for
illustrative purposes. The GIC PMU is also supported for the Secure and EL3 Interrupt Domains.

IHLZWW GIC_PMIDR0.IRS_PMU reports whether the GIC PMU counts events for an IRS.

GIC_PMIDR0.ITS_PMU reports whether the GIC PMU counts events for one or more ITSs.

RBMCHW GIC_PMIDR0.{IRS_PMU, ITS_PMU} is not permitted to be {0, 0}.

See also:

• 10.5.1 GIC_PMU_FRAME, GIC PMU register frame

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

186

Chapter 7. GIC Performance Monitoring Unit (PMU)
7.1. CoreSight PMU extensions

7.1 CoreSight PMU extensions

RFVCHK A GIC PMU implements the 64-bit programmers’ model extension defined in [11].

ISCHGW A GIC PMU implements the direct access to enables and overflows extension because it is always implemented
when the 64-bit programmers’ model extension is implemented.

RTGDSP A GIC PMU implements the observability and access control extension defined in [11] if, for any of the components
in the agent being monitored, all of the following are true:

• Multiple Interrupt Domains are supported.
• Any of the following are true:

– The agent supports the Secure Interrupt Domain.
– The agent supports the EL3 Interrupt Domain.

Otherwise, it is IMPLEMENTATION DEFINED whether the GIC PMU implements the observability and access
control extension.

RSKSTY If a GIC PMU does not implement the observability and access control extension, it is IMPLEMENTATION DEFINED
which physical address space is used to access the GIC PMU registers.

IJMZMR GIC_PMIDR0.OACE reports whether the observability and access control extension is implemented.

RQZCCM When the Observability and access control extension is implemented, all of the following are true:

• It is IMPLEMENTATION DEFINED whether PMSCR and PMROOTCR are implemented in the GIC PMU
register frame or at an IMPLEMENTATION DEFINED location.

• PMSCR is only accessible in the MPPAS for the system.

RPMHYN When the Observability and access control extension is implemented, and the agent being monitored supports the
Realm interrupt domain, all of the following are true:

• The configuration of PMSCR.NSRA has no impact on the access controls to the GIC PMU configuration
registers.

• The configuration of PMSCR.NSMSI has no impact on physical address space used for message-signaled
interrupts from the GIC PMU.

• The following fields are added to PMROOTCR, Root and Realm Control Register:

RA, bits [6:4] Register Access.

This field determines physical address space for which register access is enabled for the PMU.

RA Description

0b000 Root register access is enabled. Access from other address spaces is disabled, meaning
accesses to all PMU registers are RAZ/WI.

0b001 Root and Realm register access is enabled. Access from other address spaces is
disabled, meaning accesses to all PMU registers are RAZ/WI.

0b010 Root and Secure register access is enabled. Access from other address spaces is
disabled, meaning accesses to all PMU registers are RAZ/WI.

0b011 All access is enabled.

Other values are reserved.

For the CoreSight management registers, 0xFA8 to 0xFFC, it is IMPLEMENTATION DEFINED whether these
registers are RO or RAZ/WI when register access is disabled by this field.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

187

Chapter 7. GIC Performance Monitoring Unit (PMU)
7.1. CoreSight PMU extensions

The reset value of this field is IMPLEMENTATION DEFINED, and depends on the security policy of the
component implementing this register.

RMSI, bits [11:10] Root control for MSI PA space

When PMCFGR.MSI is 1, this field determines the physical address space used for MSIs.

RA Description

0b000 MSIs are generated using the Root PAS. If PMROOTCR.RA is not 0b000, this value
results in the Non-secure PAS being used for MSIs.

0b001 MSIs are generated using the Realm PAS. If PMROOTCR.RA is 0b010, this value
results in the Non-secure PAS being used for MSIs.

0b010 MSIs are generated using the Secure PAS. If PMROOTCR.RA is 0b0x1, this value
results in the Non-secure PAS being used for MSIs.

0b011 MSIs are generated using the Non-secure PAS.

Other values are reserved.

The reset value of this field is IMPLEMENTATION DEFINED, and depends on the security policy of the
component implementing this register.

RTSZTF It is IMPLEMENTATION DEFINED whether GIC PMU implements the Freeze on overflow extension defined in [11].

RKLJSW A GIC PMU does not implement the Halt-on-debug extension defined in [11]. For GIC PMU, PMCFGR.HDBG is
0.

RXHQVD A GIC PMU does not implement the Fixed-function cycle counter extension defined in [11].

RVQYFY A GIC PMU does not implement the monitor group extension defined in [11]. For GIC PMU, PMCFGR.NCG is 0.

RCZMLC A GIC PMU does not implement the Counter chaining extension defined in [11].

RDSXHC A GIC PMU does not implement the event counter threshold and edge detection extensions defined in [11].

ISKNKR The Arm® CoreSight™ Architecture Performance Monitoring Unit Architecture[11] defines Reusable event filter
definitions.

When a GIC PMU implements the observability and access control extension, the GIC PMU implements the
Security operating state filtering. Otherwise, the GIC PMU does not use the Security operating state filtering. See
7.4 Event filtering for more information.

No other Reusable event filter definitions are used.

RJZTKK It is IMPLEMENTATION DEFINED whether GIC PMU implements support for the Snapshot extension defined in
[11].

IZRJLK If the Snapshot extension is implemented, PMCFGR.SS is 1.

RXTRZB It is IMPLEMENTATION DEFINED whether the GIC PMU does implements the Trace generation extension defined
in [11].

RRRYKG A GIC PMU does not implement the Export extension defined in [11]. For GIC PMU, PMCFG.EX is 0.

RGYDWV A GIC PMU does not implement the Dual-page extension defined in [11].

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

188

Chapter 7. GIC Performance Monitoring Unit (PMU)
7.2. GIC PMU Overflow interrupt

7.2 GIC PMU Overflow interrupt

RHVTMV A GIC PMU implements an overflow interrupt.

The permitted overflow interrupt types depend on which type of agent is being monitored as follows:

• If the GIC PMU counts events for an IRS, or for an IRS and its associated ITSs, the overflow interrupt is an
SPI connected to that IRS.

• If the GIC PMU counts events for a single ITS, the overflow interrupt is one of the following:
– An interrupt signal connected to an SPI on the associated IRS.
– An interrupt wire signal connected to an IWB.
– An ITS event generated from the ITS PMU as a system peripheral and translated by the ITS.

RDRWTL If the overflow interrupt is an ITS event generated from the GIC PMU as a system peripheral and translated by the
ITS, all of the following are true:

• The GIC PMU uses the message-signaled interrupt functionality to configure the overflow interrupt as defined
in [11].

• PMCFGR.MSI is 1.
• PMIRQCR0 is IGNORED and access to the register is permitted to be RES0 or RAZ/WI.
• The DeviceID for the ITS event is IMPLEMENTATION DEFINED.
• The EventID for the ITS event is programmed using PMIRQCR1.DATA.
• The originating Interrupt Domain is the Interrupt Domain corresponding to the physical address space

configured for the message-signaled interrupt.

ILLFNW The Arm® CoreSight™ Architecture Performance Monitoring Unit Architecture[11] defines rules and controls that
specify the physical address space used for message-signaled interrupts.

These rules are extended to also support the Root and Realm physical address space for message-signaled interrupts.
See 7.1 CoreSight PMU extensions for more information.

RPTFKG When Non-secure register access is enabled, message-signaled interrupts are always Non-secure.

Note

This replaces an incorrect statement in [11] that states the opposite rule for Non-secure register access and the
MSI physical address space.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

189

Chapter 7. GIC Performance Monitoring Unit (PMU)
7.3. GIC PMU event types

7.3 GIC PMU event types

DQTVKY GIC PMU events are identified by a 4-bit PMEVTYPE value specifying an event type, and a 12-bit PMEVTID
value specifying the event for the event type.

The PMEVTYPE space is interpreted as follows:

• 0b0000: Architected IRS event.
• 0b0001: IMPLEMENTATION DEFINED IRS event.
• 0b0010: Architected ITS event.
• 0b0011: IMPLEMENTATION DEFINED ITS event.

All PMEVTYPE values not defined above are reserved.

See 7.5 IRS PMU events and 7.6 ITS PMU events for information about the architected events.

IRWFQW An implementation may implement support for fewer than 16 bits of PMEVTID. In this case, unimplemented
upper bits are RES0.

IVSWDJ When an event is selected using GIC_PMEVTYPER<n>.{PMEVTYPE, PMEVTID}, GIC_PMEVTYPER<n>.V
reports whether an implemented event is selected.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

190

Chapter 7. GIC Performance Monitoring Unit (PMU)
7.4. Event filtering

7.4 Event filtering

IJLHGK The GIC PMU supports filtering of events using various filters. The available filters depend on the event type and
the event. See 7.5 IRS PMU events and 7.6 ITS PMU events for information about which filters are supported for
the event types and architected events.

INYZYT When an event is selected using GIC_PMEVTYPER<n>.{PMEVTYPE, PMEVTID}, GIC_PMEVTYPER<n>.FS
reports whether filtering is supported for the selected event.

RMZLWX When more than one filter for an event is enabled, the event is counted if and only if it matches on all enabled
filters.

IRFZHB When a GIC PMU implements the observability and access control extension, the GIC PMU supports filtering of
events based on their association with the Security state using the Security operating state filtering defined as part
of the Reusable event filter definitions defined in Arm® CoreSight™ Architecture Performance Monitoring Unit
Architecture[11].

The Security operating state filtering State match controls are implemented using GIC_PMEVTYPER<n>.{RL,EL3,NS,S}.

By filtering events using the Security state, the GIC PMU filters events matching the corresponding Interrupt
Domains.

DDGSKD On some filters, the GIC PMU supports filtering on a range of values instead of matching on an exact value.

When filtering on a range, the range is specified by splitting the value into X most significant bits that must match,
and Y least significant bits that are allowed to differ as follows:

• Bit[Y-1] is 0. That is, the most significant bit in the group of bits that do not need to match is zero.
• Bits[(Y-2:0] are 1. That is, the remaining bits that are allowed to differ are all programmed to 1.
• The remainder of bits (the X most-significant bits, from bit Y upwards) contain a value that must match the

corresponding bits for the value associated with monitored event.

IGSLNM GIC_PMEVTYPER<n>.FSPAN reports whether filtering by a range of values is supported for the selected event.

RMZTYJ For each event that may support filtering on a range of values, it is IMPLEMENTATION DEFINED whether filtering
on a range of values is supported or filtering is only supported on an exact value.

SLKPXH Arm expects that when a virtual GIC PMU is presented to a VM, the virtual GIC PMU does not support filtering
on a range of values for identifiers where ranges in the host system do not correspond to similar ranges in the guest
system.

IVMFDS The following are examples (in binary) of specifying ranges for GIC PMU filtering:

• 0000:0000:0001:1011:1111:0111:1111:0111 matches
0000:0000:0001:1011:1111:0111:1111:xxxx

• 0000:0000:0001:1011:1111:0111:1111:0110 matches
0000:0000:0001:1011:1111:0111:1111:011x

• 0000:0000:0001:1011:1111:0101:1111:1111 matches
0000:0000:0001:1011:1111:01xx:xxxx:xxxx

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

191

Chapter 7. GIC Performance Monitoring Unit (PMU)
7.5. IRS PMU events

7.5 IRS PMU events

RJPYSX The architected IRS PMU events are listed in Table 7.3.

Table 7.3: Architected IRS PMU events

PMEVTYPE PMEVTID Name Description

0 0 PMIRSCC Counts IRS cycles.

0 1 PMIRSPENDSETIN Counts incoming interrupt events to make an interrupt Pending.
The events are counted when received from an SPI, an ITS, or
another IRS.

0 2 PMIRSPENDCLEARIN Counts incoming interrupt events to make an interrupt Idle. The
events are counted when received from an SPI, an ITS, or another
IRS.

0 3 PMIRSPENDSETOUT Counts incoming interrupt events to make an interrupt Pending
that are forwarded to another IRS.

0 4 PMIRSPENDCLROUT Counts incoming interrupt events to make an interrupt Idle that
are forwarded to another IRS.

0 5 PMIRSPENDSETPRO Counts interrupt events to make an interrupt Pending that are
processed at this IRS.

0 6 PMIRSPENDCLRPRO Counts interrupt events to make an interrupt Idle that are
processed at this IRS.

0 7 PMIRSPECMDPEND Counts commands received from a PE to update an interrupt
Pending state.

0 8 PMIRSPECMDHANDLE Counts commands received from a PE related to handling of an
interrupt. Includes only Activate and Deactivate commands.

0 9 PMIRSPECMDCFG Counts commands received from a PE to update or request the
configuration and state of an interrupt.

0 10 PMIRSVPEMIGR Counts when a VPE is made resident on an IRS and was not
previously resident on that IRS.

0 11 PMIRSISTMISS IST cache miss. Counts for each interrupt effect requiring an
access to the IST.

0 12 PMIRSVMTMISS VM table cache miss. Counts for each interrupt effect to a virtual
interrupt requiring an access to the VM table.

0 13 PMIRSVPETMISS VPE table cache miss. Counts for each interrupt effect to a virtual
interrupt requiring an access to the VPE table.

0 14 PMIRSVMDMISS VM descriptor miss. Counts for each interrupt effect to a virtual
interrupt requiring an access to the VM descriptor.

0 15 PMIRSVPEDMISS VPE descriptor miss. Counts for each interrupt effect to a virtual
interrupt requiring an access to the VPE descriptor.

0 16 PMIRSL1ISTLU Level 1 IST table access. Counts for each memory access to a
level 1 IST.

0 17 PMIRSL2ISTLU Level 2 IST table access. Counts for each memory access to a
level 2 IST.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

192

Chapter 7. GIC Performance Monitoring Unit (PMU)
7.5. IRS PMU events

PMEVTYPE PMEVTID Name Description

0 18 PMIRSL1VMTLU Level 1 VM table access. Counts for each memory access to a
level 1 VM table.

0 19 PMIRSL2VMTLU Level 2 VM table access. Counts for each memory access to a
level 2 VM table.

0 20 PMIRSVPETLU VPE table access. Counts for each memory access to a VPE table.

0 21 PMIRSVMDLU VM descriptor access. Counts for each memory access to a VM
descriptor.

0 22 PMIRSVPEDLU VPE descriptor access. Counts for each memory access to a VPE
descriptor.

0 23 PMIRSVPEDB Counts when a VPE doorbell event is generated.

0 24 PMIRS1NPESEL Counts when a new PE or VPE selected for a 1ofN interrupt.

0 25 PMIRS1NDB Counts when the 1ofN doorbell configuration for a VM causes a
VPE doorbell to be generated.

All other PMEVTID values for the architected IRS event type are reserved.

RGFFRF In a multi-IRS system, the events are counted only for the IRS being being monitored by the GIC PMU.

SZKMFB Software is expected to combine events from multiple GIC PMUs to gather counts of events globally for the
system.

RCTPKW When the IRS cycle counter event PMIRSCC is monitored, the event always counts IRS cycles, unless the IRS is
in a low power state.

RHBFMK When an incoming interrupt event is received at the same IRS that processed the event, the event is counted both as
incoming and as processing for the same interrupt event.

RKKJVF Table 7.4 lists the GIC System instructions that are processed by the IRS and recorded by IRS PMU events when
the PE indicates to the IRS that the instruction is being executed. See 2.6 GIC System instructions for more
information.

Table 7.4: IRS PMU events counting processing of GIC System instructions

PMIRSPECMDPEND PMIRSPECMDHANDLE PMIRSPECMDCFG

GIC xDPEND GICR CDIA GIC xDDIS

GICR CDNMIA GIC xDEN

GIC xDDI GIC xDRCFG

GIC xDPRI

GIC xDAFF

GIC xDHM

RXJKZC When monitoring any of the following events, the event is counted when the IRS performs any access to IRS data
structures in memory as part of processing an Interrupt Effect or when making a VPE resident:

• 11: PMIRSISTMISS.
• 12: PMIRSVMTMISS.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

193

Chapter 7. GIC Performance Monitoring Unit (PMU)
7.5. IRS PMU events

• 13: PMIRSVPETMISS.
• 14: PMIRSVMDMISS.
• 15: PMIRSVPEDMISS.

RJJNGJ The IRS data structure access events are counted for an access to the corresponding IRS data structure in memory
for any of the following reasons:

• There was an access to the data structure related to an Interrupt Effect.
• There was an access to the data structure related to making a VPE resident.
• There was a speculative access performed by the IRS.

7.5.1 IRS PMU events filtering

RCSDPD The GIC PMU supports the following filter types for the IRS events:

• Filtering on INTID.
• Filtering on physical or virtual interrupts, and a specific VM ID for virtual interrupts (VM and VM ID).
• Filtering on whether an access to an IRS data structure was a read or a write (RW).
• Filtering on the which PE sent a PE command to the IRS (Source PE).

Table 7.5 shows which filters are supported for the architected IRS events.

Table 7.5: Supported filters for IRS PMU events

PMEVTID Name INTID filter VM and VM ID filter RW filter Source PE filter

0 PMIRSCC No No No No

1 PMIRSPENDSETIN Yes Yes No No

2 PMIRSPENDCLEARIN Yes Yes No No

3 PMIRSPENDSETOUT Yes Yes No No

4 PMIRSPENDCLROUT Yes Yes No No

5 PMIRSPENDSETPRO Yes Yes No No

6 PMIRSPENDCLRPRO Yes Yes No No

7 PMIRSPECMDPEND Yes Yes No Yes

8 PMIRSPECMDHANDLE Yes Yes No Yes

9 PMIRSPECMDCFG Yes Yes No Yes

10 PMIRSVPEMIGR No Yesa No Yes

11 PMIRSISTMISS Yes Yes Yes No

12 PMIRSVMTMISS No Yes Yes No

13 PMIRSVPETMISS No Yes Yes No

14 PMIRSVMDMISS No Yes Yes No

15 PMIRSVPEDMISS No Yes Yes No

16 PMIRSL1ISTLU Yes Yes Yes No

17 PMIRSL2ISTLU Yes Yes Yes No

18 PMIRSL1VMTLU No Yes Yes No

19 PMIRSL2VMTLU No Yes Yes No

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

194

Chapter 7. GIC Performance Monitoring Unit (PMU)
7.5. IRS PMU events

PMEVTID Name INTID filter VM and VM ID filter RW filter Source PE filter

20 PMIRSVPETLU No Yes Yes No

21 PMIRSVMDLU No Yes Yes No

22 PMIRSVPEDLU No Yes Yes No

23 PMIRSVPEDB No Yes No No

24 PMIRS1NPESEL Yes Yes No No

25 PMIRS1NDB No Yes No No

a. The event is not counted when filtering on physical events only.

All other PMEVTID values for the architected IRS event type are reserved.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

195

Chapter 7. GIC Performance Monitoring Unit (PMU)
7.6. ITS PMU events

7.6 ITS PMU events

RGCNFY The architected ITS PMU events are listed in Table 7.6.

Table 7.6: Architected ITS PMU events

PMEVTYPE PMEVTID Name Description

2 0 PMITSCC Counts ITS cycles.

2 1 PMITSTRQ Counts for each translation request performed by the ITS.

2 2 PMITSDIDMISS DeviceID cache miss. Counts for each translation of a DeviceID
that could not be satisfied from cache.

2 3 PMITSEIDMISS EventID cache miss. Counts for each translation of an EventID
that could not be satisfied from cache.

2 4 PMITSL1DTLU L1 device table lookup. Counts every time a level 1 DTE is
looked up in memory. Does not count when the entry is read from
cache.

2 5 PMITSL2DTLU L2 device table lookup. Counts every time a level 2 DTE is
looked up in memory. Does not count when the entry is read from
cache.

2 6 PMITSL1ITTLU L1 interrupt translation table lookup. Counts every time a level 1
ITTE is looked up in memory. Does not count when the entry is
read from cache.

2 7 PMITSL2ITTLU L2 interrupt translation table lookup. Counts every time a level 2
ITTE is looked up in memory. Does not count when the entry is
read from cache.

All other PMEVTID values for the architected ITS event type are reserved.

RMSFLT When the ITS cycle counter event PMITSCC is monitored, it counts regardless of the event being translated by the
ITS, unless the ITS is in a low power state.

RYFQCW The ITS DeviceID and EventID cache miss events, PMITSDIDMISS and PMITSEIDMISS, are counted when the
translation causes any access to the ITS translation structures in memory to perform the translation.

RZJTPS The ITS table lookup events are counted for each access to an ITS translation structure in memory caused by
performing a translation or by speculative accesses.

RGKBVK ITS events are counted regardless of whether the translation was successful or not.

7.6.1 ITS PMU events filtering

RHXGVQ A GIC PMU supports filtering of ITS events by any of the following combinations of DeviceID and EventID:

• No filtering on DeviceID or EventID.
• DeviceID.
• DeviceID and EventID.

RLNVGM Filtering on DeviceID and EventID is supported for all other ITS events than ITS event 0 PMITSCC.

IZJXHT When a GIC PMU counts events for an IRS and multiple associated ITSs, a monitor always counts ITS events for
a single ITS specified by GIC_PMEVFILT2R<n>.ITSID.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

196

Chapter 7. GIC Performance Monitoring Unit (PMU)
7.6. ITS PMU events

IXGBDQ When GIC_PMEVFILT2R<n>.FILTER_DID is 0, the monitor counts the selected PMU event for all translation
requests.

When GIC_PMEVFILT2R<n>.FILTER_DID is 1 and GIC_PMEVFILT2R<n>.FILTER_DID_SPAN is 0, the
monitor counts the selected PMU event for translation requests where the DeviceID matches the DeviceID specified
in GIC_PMEVFILTR<n>.DEVICE_ID.

When GIC_PMEVFILT2R<n>.FILTER_DID is 1 and GIC_PMEVFILT2R<n>.FILTER_DID_SPAN is 1, the
monitor counts the selected PMU event for translation requests where the DeviceID matches a range of DeviceIDs
specified in GIC_PMEVFILTR<n>.DEVICE_ID.

If the ITS being monitored supports less than 2 bits of DeviceID, GIC_PMEVFILT2R<n>.FILTER_DID_SPAN is
RES0 and matching a range of DeviceIDs is not supported.

INTCKY When GIC_PMEVFILT2R<n>.FILTER_DID is 0, the monitor counts the selected PMU event for all translation
requests, and filtering on EventID is not supported.

When GIC_PMEVFILT2R<n>.FILTER_DID is 1 and GIC_PMEVFILT2R<n>.FILTER_EID is 0, the monitor
counts the selected PMU event for translation requests where the DeviceID matches the DeviceID filter value, for
all EventIDs.

When GIC_PMEVFILT2R<n>.FILTER_DID is 1, GIC_PMEVFILT2R<n>.FILTER_EID is 1, and
GIC_PMEVFILT2R<n>.FILTER_EID_SPAN is 0, the monitor counts the selected PMU event for translation
requests where the DeviceID matches the DeviceID filter value, and the EventID matches the EventID specified in
GIC_PMEVTILFTR<n>.EVENT_ID.

When GIC_PMEVFILT2R<n>.FILTER_DID is 1, GIC_PMEVFILT2R<n>.FILTER_EID is 1, and
GIC_PMEVFILT2R<n>.FILTER_EID_SPAN is 1, the monitor counts the selected PMU event for translation
requests where the DeviceID matches the DeviceID filter value, and the EventID matches the EventID matches a
range of EventIDs specified in GIC_PMEVTILFTR<n>.EVENT_ID.

If the ITS supports less than 2 bits of EventID, GIC_PMEVFILT2R<n>.FILTER_EID_SPAN is RES0 and matching
a range of EventIDs is not supported.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

197

Chapter 8
System instructions

This chapter describes the GICv5 system intructions.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

198

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

8.1 System instructions for the Current Interrupt Domain

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

199

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

8.1.1 GIC CDAFF, Interrupt Set Target in the Current Interrupt Domain

The GIC CDAFF characteristics are:

Purpose

Sets the routing mode and target PE for the specified INTID in the Current Interrupt Domain.

If the Current Interrupt Domain is the Virtual Interrupt Domain, this operation applies to the virtual
INTID in the VM identified by the resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to GIC
CDAFF are UNDEFINED.

Attributes

GIC CDAFF is a 64-bit System instruction.

Field descriptions
The GIC CDAFF bit assignments are:

RES0

63 48

IAFFID

47 32

TYPE

31 29 28

RES0

27 24

ID

23 0

IRM

Bits [63:48]

Reserved, RES0.

IAFFID, bits [47:32]

The interrupt Affinity value.

The IRS may support fewer than 16 bits of IAFFID. Unimplemented upper bits are treated as RES0 by the IRS.

When IRM is 1, this field provides an IMPLEMENTATION DEFINED hint to 1ofN selection algorithm. A value of 0
means that no hint is provided.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

IRM, bit [28]

Controls how the interrupt is routed.

If the GIC IRS does not support 1ofN distribution of the specified interrupt Type, this configuration is treated as
RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

200

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

IRM Meaning

0b0 The interrupt Routing mode is Targeted

0b1 The interrupt Routing mode is 1ofN

Bits [27:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC CDAFF
This instruction has no effect if the INTID is unreachable.

This instruction is treated as a NOP if the operation applies to the Virtual Interrupt Domain and there is no resident
VPE.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC CDAFF, <Xt>

op0 op1 CRn CRm op2

0b01 0b000 0b1100 0b0001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGITR_EL2.GICCDAFF == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_AFF);
else

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_AFF);
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_AFF);
elsif PSTATE.EL == EL3 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_AFF);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

201

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

8.1.2 GIC CDDI, Interrupt Deactivate in the Current Interrupt Domain

The GIC CDDI characteristics are:

Purpose

Clears the Active state of the specified INTID at the CPU interface in the Current Interrupt Domain.

This instruction applies to all interrupt types, including PPIs.

If the Current Interrupt Domain is the Virtual Interrupt Domain and the interrupt type is a PPI, this
operation applies to the virtual PPI identified by the specified INTID.

If the Current Interrupt Domain is the Virtual Interrupt Domain and the interrupt type is not a PPI, this
operation applies to the virtual INTID in the VM identified by the resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to GIC
CDDI are UNDEFINED.

Attributes

GIC CDDI is a 64-bit System instruction.

Field descriptions
The GIC CDDI bit assignments are:

RES0

63 33

WI

32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

Bit [32]

Reserved, WI.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b001 PPI

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

202

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC CDDI
This instruction has no effect if the INTID is unreachable

This instruction is treated as a NOP if the operation applies to the Virtual Interrupt Domain, the interrupt type is
not a PPI and there is no resident VPE.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC CDDI, <Xt>

op0 op1 CRn CRm op2

0b01 0b000 0b1100 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGITR_EL2.GICCDDI == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_DI);
else

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_DI);
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_DI);
elsif PSTATE.EL == EL3 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_DI);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

203

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

8.1.3 GIC CDDIS, Interrupt Disable in the Current Interrupt Domain

The GIC CDDIS characteristics are:

Purpose

Disables the specified INTID in the Current Interrupt Domain.

If the Current Interrupt Domain is the Virtual Interrupt Domain this operation applies to the virtual
INTID in the VM identified by the resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to GIC
CDDIS are UNDEFINED.

Attributes

GIC CDDIS is a 64-bit System instruction.

Field descriptions
The GIC CDDIS bit assignments are:

RES0

63 32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:32]

Reserved, RES0.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Valued not defined above are reserved

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC CDDIS
This instruction has no effect if the INTID is unreachable

This instruction is treated as a NOP if the operation applies to the Virtual Interrupt Domain and there is no resident
VPE.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

204

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC CDDIS, <Xt>

op0 op1 CRn CRm op2

0b01 0b000 0b1100 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGITR_EL2.GICCDDIS == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_DIS);
else

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_DIS);
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_DIS);
elsif PSTATE.EL == EL3 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_DIS);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

205

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

8.1.4 GIC CDEN, Interrupt Enable in the Current Interrupt Domain

The GIC CDEN characteristics are:

Purpose

Enables the specified INTID in the Current Interrupt Domain.

If the Current Interrupt Domain is the Virtual Interrupt Domain, this operation applies to the virtual
INTID in the VM identified by the resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to GIC
CDEN are UNDEFINED.

Attributes

GIC CDEN is a 64-bit System instruction.

Field descriptions
The GIC CDEN bit assignments are:

RES0

63 32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:32]

Reserved, RES0.

TYPE, bits [31:29]

Type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC CDEN
This instruction has no effect if the INTID is unreachable

This instruction is treated as a NOP if the operation applies to the Virtual Interrupt Domain, the interrupt type is
not a PPI and there is no resident VPE.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

206

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC CDEN, <Xt>

op0 op1 CRn CRm op2

0b01 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGITR_EL2.GICCDEN == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_EN);
else

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_EN);
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_EN);
elsif PSTATE.EL == EL3 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_EN);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

207

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

8.1.5 GIC CDEOI, Priority Drop in the Current Interrupt Domain

The GIC CDEOI characteristics are:

Purpose

Performs a Priority Drop of the running priority at the CPU interface in the Current Interrupt Domain.

If the Current Interrupt Domain is the Virtual Interrupt Domain, the Priority Drop applies to the virtual
running priority.

Otherwise, it applies to the physical running priority in the Current Physical Interrupt Domain.

Configuration

This instruction is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to GIC
CDEOI are UNDEFINED.

Attributes

GIC CDEOI is a 64-bit System instruction.

Field descriptions
The GIC CDEOI bit assignments are:

RES0

63 32

RES0

31 0

Bits [63:0]

Reserved, RES0.

Accessing GIC CDEOI
The Rt field should be set to 0b11111. If the Rt field is not set to 0b11111, it is CONSTRAINED UNPREDICTABLE
whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Rt field is set to 0b11111.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC CDEOI, <Xt>

op0 op1 CRn CRm op2

0b01 0b000 0b1100 0b0001 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGITR_EL2.GICCDEOI == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_EOI);
else

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

208

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_EOI);
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_EOI);
elsif PSTATE.EL == EL3 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_EOI);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

209

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

8.1.6 GIC CDHM, Interrupt Handling mode state in the Current Interrupt Domain

The GIC CDHM characteristics are:

Purpose

Sets the Handling mode of the specified INTID in the Current Interrupt Domain.

If the Current Interrupt Domain is the Virtual Interrupt Domain this operation applies to the virtual
INTID in the VM identified by the resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to GIC
CDHM are UNDEFINED.

Attributes

GIC CDHM is a 64-bit System instruction.

Field descriptions
The GIC CDHM bit assignments are:

RES0

63 33

HM

32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

HM, bit [32]

Handling mode

HM Meaning

0b0 Edge

0b1 Level

TYPE, bits [31:29]

Type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

210

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC CDHM
This instruction has no effect if the INTID is unreachable

This instruction is treated as a NOP if the operation applies to the Virtual Interrupt Domain and there is no resident
VPE.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC CDHM, <Xt>

op0 op1 CRn CRm op2

0b01 0b000 0b1100 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGITR_EL2.GICCDHM == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_HM);
else

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_HM);
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_HM);
elsif PSTATE.EL == EL3 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_HM);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

211

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

8.1.7 GIC CDPEND, Interrupt Set/Clear Pending state in the Current Interrupt Domain

The GIC CDPEND characteristics are:

Purpose

Generates a SET or CLEAR event for the specified INTID in the Current Interrupt Domain.

If the Current Interrupt Domain is the Virtual Interrupt Domain this operation applies to the virtual
INTID in the VM identified by the resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to GIC
CDPEND are UNDEFINED.

Attributes

GIC CDPEND is a 64-bit System instruction.

Field descriptions
The GIC CDPEND bit assignments are:

RES0

63 33 32

PENDING

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

PENDING, bit [32]

Pending status

PENDING Meaning

0b0 Generate CLEAR event to the IRS.

0b1 Generate SET event to the IRS.

TYPE, bits [31:29]

Type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

212

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC CDPEND
This instruction has no effect if the INTID is unreachable

This instruction is treated as a NOP if the operation applies to the Virtual Interrupt Domain and there is no resident
VPE.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC CDPEND, <Xt>

op0 op1 CRn CRm op2

0b01 0b000 0b1100 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGITR_EL2.GICCDPEND == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_PEND);
else

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_PEND);
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_PEND);
elsif PSTATE.EL == EL3 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_PEND);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

213

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

8.1.8 GIC CDPRI, Interrupt Set priority in the Current Interrupt Domain

The GIC CDPRI characteristics are:

Purpose

Sets the priority for the specified INTID in the Current Interrupt Domain.

If the Current Interrupt Domain is the Virtual Interrupt Domain this operation applies to the virtual
INTID in the VM identified by the resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to GIC
CDPRI are UNDEFINED.

Attributes

GIC CDPRI is a 64-bit System instruction.

Field descriptions
The GIC CDPRI bit assignments are:

RES0

63 40

PRIORITY

39 35

RES0

34 32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:40]

Reserved, RES0.

PRIORITY, bits [39:35]

The priority of the specified INTID

Only the upper N bits of the Priority field are implemented where N = (ICC_IDR0_EL1.PRI_BITS + 1).
Unimplemented bits are RES0.

Bits [34:32]

Reserved, RES0.

TYPE, bits [31:29]

Type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

214

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC CDPRI
This instruction has no effect if the INTID is unreachable

This instruction is treated as a NOP if the operation applies to the Virtual Interrupt Domain and there is no resident
VPE.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC CDPRI, <Xt>

op0 op1 CRn CRm op2

0b01 0b000 0b1100 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGITR_EL2.GICCDPRI == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_PRI);
else

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_PRI);
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_PRI);
elsif PSTATE.EL == EL3 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_PRI);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

215

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

8.1.9 GIC CDRCFG, Request Interrupt Configuration in the Current Interrupt Domain

The GIC CDRCFG characteristics are:

Purpose

Request to read configuration of the specified INTID in the Current Interrupt Domain into
ICC_ICSR_EL1.

If the Current Interrupt Domain is the Virtual Interrupt Domain, this operation applies to the virtual
INTID in the VM identified by the resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to GIC
CDRCFG are UNDEFINED.

Attributes

GIC CDRCFG is a 64-bit System instruction.

Field descriptions
The GIC CDRCFG bit assignments are:

RES0

63 32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:32]

Reserved, RES0.

TYPE, bits [31:29]

Type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC CDRCFG
This instruction is treated as a NOP if the operation applies to the Virtual Interrupt Domain and there is no resident
VPE.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

216

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC CDRCFG, <Xt>

op0 op1 CRn CRm op2

0b01 0b000 0b1100 0b0001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGITR_EL2.GICCDRCFG == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_RCFG);
else

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_RCFG);
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_RCFG);
elsif PSTATE.EL == EL3 then

GIC(X[t, 64], GICInstrDomain_CD, GICInstr_RCFG);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

217

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

8.1.10 GICR CDIA, Interrupt Acknowledge in the Current Interrupt Domain

The GICR CDIA characteristics are:

Purpose

Acknowledges the HPPI in the Current Interrupt Domain.

Configuration

This instruction is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to GICR
CDIA are UNDEFINED.

Attributes

GICR CDIA is a 64-bit System instruction.

Field descriptions
The GICR CDIA bit assignments are:

RES0

63 33 32

VALID

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

VALID, bit [32]

Indicates whether the instruction successfully acknowledged an interrupt.

VALID Meaning

0b0 No interrupt was acknowledged.

0b1 The HPPI was acknowledged.

When this field is 1, the instruction acknowledges an HPPI of Sufficient priority that is not an NMI.

TYPE, bits [31:29]

The type of the acknowledged interrupt.

TYPE Meaning

0b001 PPI

0b010 LPI

0b011 SPI

If VALID is 0, this field is RES0.

Values not defined above are reserved.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

218

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the acknowledged interrupt.

If VALID is 0, this field is RES0.

Accessing GICR CDIA
Accesses to this instruction use the following encodings in the System instruction encoding space:

GICR <Xt>, CDIA

op0 op1 CRn CRm op2

0b01 0b000 0b1100 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGITR_EL2.GICRCDIA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = GICR(GICInstrDomain_VD, GICInstr_IA);
else

X[t, 64] = GICR(GICInstrDomain_CD, GICInstr_IA);
elsif PSTATE.EL == EL2 then

X[t, 64] = GICR(GICInstrDomain_CD, GICInstr_IA);
elsif PSTATE.EL == EL3 then

X[t, 64] = GICR(GICInstrDomain_CD, GICInstr_IA);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

219

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

8.1.11 GICR CDNMIA, Non-maskable Interrupt Acknowledge in the Current Interrupt Domain

The GICR CDNMIA characteristics are:

Purpose

Acknowledges the HPPI, if it is an NMI, in the Current Interrupt Domain.

Configuration

This instruction is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to GICR
CDNMIA are UNDEFINED.

Attributes

GICR CDNMIA is a 64-bit System instruction.

Field descriptions
The GICR CDNMIA bit assignments are:

RES0

63 33 32

VALID

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

VALID, bit [32]

Indicates whether the instruction successfully acknowledged an NMI.

VALID Meaning

0b0 No interrupt was acknowledged.

0b1 The HPPI was acknowledged.

When this field is 1, the instruction acknowledges an HPPI of Sufficient priority that is an NMI.

TYPE, bits [31:29]

The type of the acknowledged interrupt.

TYPE Meaning

0b001 PPI

0b010 LPI

0b011 SPI

If VALID is 0, this field is RES0.

Values not defined above are reserved.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

220

Chapter 8. System instructions
8.1. System instructions for the Current Interrupt Domain

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the acknowledged interrupt.

If VALID is 0, this field is RES0.

Accessing GICR CDNMIA
Accesses to this instruction use the following encodings in the System instruction encoding space:

GICR <Xt>, CDNMIA

op0 op1 CRn CRm op2

0b01 0b000 0b1100 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGITR_EL2.GICRCDNMIA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = GICR(GICInstrDomain_VD, GICInstr_NMIA);
else

X[t, 64] = GICR(GICInstrDomain_CD, GICInstr_NMIA);
elsif PSTATE.EL == EL2 then

X[t, 64] = GICR(GICInstrDomain_CD, GICInstr_NMIA);
elsif PSTATE.EL == EL3 then

X[t, 64] = GICR(GICInstrDomain_CD, GICInstr_NMIA);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

221

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

8.2 System instructions for the Virtual Interrupt Domain

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

222

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

8.2.1 GIC VDAFF, Interrupt Set Target in the Virtual Interrupt Domain

The GIC VDAFF characteristics are:

Purpose

Sets the routing mode and target VPE for the specified INTID in the Virtual Interrupt Domain.

This operation applies to the virtual INTID in the VM identified by the resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to GIC VDAFF are UNDEFINED.

Attributes

GIC VDAFF is a 64-bit System instruction.

Field descriptions
The GIC VDAFF bit assignments are:

RES0

63 48

IAFFID

47 32

TYPE

31 29 28

RES0

27 24

ID

23 0

IRM

Bits [63:48]

Reserved, RES0.

IAFFID, bits [47:32]

The interrupt Affinity value.

The IRS may support fewer than 16 bits of IAFFID. Unimplemented upper bits are treated as RES0 by the IRS.

When IRM is 1, this field provides an IMPLEMENTATION DEFINED hint to 1ofN selection algorithm. A value of 0
means that no hint is provided.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

IRM, bit [28]

Controls how the interrupt is routed.

If the GIC IRS does not support 1ofN distribution of the specified interrupt Type, this configuration is treated as
RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

223

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

IRM Meaning

0b0 The interrupt Routing mode is Targeted

0b1 The interrupt Routing mode is 1ofN

Bits [27:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC VDAFF
This instruction has no effect if the INTID is unreachable.

This instruction is treated as a NOP if there is no resident VPE.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC VDAFF, <Xt>

op0 op1 CRn CRm op2

0b01 0b100 0b1100 0b0001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_AFF);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
GIC(X[t, 64], GICInstrDomain_VD, GICInstr_AFF);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

224

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

8.2.2 GIC VDDI, Interrupt Deactivate in the Virtual Interrupt Domain

The GIC VDDI characteristics are:

Purpose

Clears the Active state of the specified INTID in the Virtual Interrupt Domain.

This instruction applies to all interrupt types, including PPIs.

If the interrupt type is a PPI, this operation applies to the virtual PPI identified by the specified INTID.

If the interrupt type is not a PPI, this operation applies to the virtual INTID in the VM identified by the
resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to GIC VDDI are UNDEFINED.

Attributes

GIC VDDI is a 64-bit System instruction.

Field descriptions
The GIC VDDI bit assignments are:

RES0

63 33

WI

32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

Bit [32]

Reserved, WI.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b001 PPI

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

225

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC VDDI
This instruction has no effect if the INTID is unreachable

This instruction is treated as a NOP if the operation applies to the Virtual Interrupt Domain, the interrupt type is
not a PPI and there is no resident VPE.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC VDDI, <Xt>

op0 op1 CRn CRm op2

0b01 0b100 0b1100 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_DI);
elsif PSTATE.EL == EL3 then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_DI);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

226

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

8.2.3 GIC VDDIS, Interrupt Disable in the Virtual Interrupt Domain

The GIC VDDIS characteristics are:

Purpose

Disables the specified INTID in the Virtual Interrupt Domain.

This operation applies to the virtual INTID in the VM identified by the resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to GIC VDDIS are UNDEFINED.

Attributes

GIC VDDIS is a 64-bit System instruction.

Field descriptions
The GIC VDDIS bit assignments are:

RES0

63 32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:32]

Reserved, RES0.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Valued not defined above are reserved

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC VDDIS
This instruction has no effect if the INTID is unreachable.

This instruction is treated as a NOP if there is no resident VPE.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC VDDIS, <Xt>

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

227

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

op0 op1 CRn CRm op2

0b01 0b100 0b1100 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_DIS);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
GIC(X[t, 64], GICInstrDomain_VD, GICInstr_DIS);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

228

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

8.2.4 GIC VDEN, Interrupt Enable in the Virtual Interrupt Domain

The GIC VDEN characteristics are:

Purpose

Enables the specified INTID in the Virtual Interrupt Domain.

This operation applies to the virtual INTID in the VM identified by the resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to GIC VDEN are UNDEFINED.

Attributes

GIC VDEN is a 64-bit System instruction.

Field descriptions
The GIC VDEN bit assignments are:

RES0

63 32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:32]

Reserved, RES0.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC VDEN
This instruction has no effect if the INTID is unreachable.

This instruction is treated as a NOP if there is no resident VPE.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC VDEN, <Xt>

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

229

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

op0 op1 CRn CRm op2

0b01 0b100 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_EN);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
GIC(X[t, 64], GICInstrDomain_VD, GICInstr_EN);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

230

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

8.2.5 GIC VDHM, Interrupt Handling mode in the Virtual Interrupt Domain

The GIC VDHM characteristics are:

Purpose

Sets the Handling mode of the specified INTID in the Virtual Interrupt Domain.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to GIC VDHM are UNDEFINED.

Attributes

GIC VDHM is a 64-bit System instruction.

Field descriptions
The GIC VDHM bit assignments are:

RES0

63 33

HM

32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

HM, bit [32]

Handling mode

HM Meaning

0b0 Edge

0b1 Level

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

231

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC VDHM
This instruction has no effect if the INTID is unreachable.

This instruction is treated as a NOP if there is no resident VPE.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC VDHM, <Xt>

op0 op1 CRn CRm op2

0b01 0b100 0b1100 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_HM);
elsif PSTATE.EL == EL3 then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_HM);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

232

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

8.2.6 GIC VDPEND, Interrupt Set/Clear Pending state in the Virtual Interrupt Domain

The GIC VDPEND characteristics are:

Purpose

Generates a SET or CLEAR event for the specified INTID in the Virtual Interrupt Domain.

This operation applies to the virtual INTID in the VM identified by the specified VM identifier.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to GIC VDPEND are UNDEFINED.

Attributes

GIC VDPEND is a 64-bit System instruction.

Field descriptions
The GIC VDPEND bit assignments are:

RES0

63 48

VM

47 33 32

PENDING

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:48]

Reserved, RES0.

VM, bits [47:33]

The Virtual Machine identifier.

PENDING, bit [32]

Pending status

PENDING Meaning

0b0 Generate CLEAR event to the IRS.

0b1 Generate SET event to the IRS.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

233

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC VDPEND
This instruction has no effect if the INTID is unreachable.

This instruction has no effect if the VM is invalid.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC VDPEND, <Xt>

op0 op1 CRn CRm op2

0b01 0b100 0b1100 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_PEND);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
GIC(X[t, 64], GICInstrDomain_VD, GICInstr_PEND);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

234

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

8.2.7 GIC VDPRI, Interrupt Set priority in the Virtual Interrupt Domain

The GIC VDPRI characteristics are:

Purpose

Sets the priority for the specified INTID in the Virtual Interrupt Domain.

This operation applies to the virtual INTID in the VM identified by the resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to GIC VDPRI are UNDEFINED.

Attributes

GIC VDPRI is a 64-bit System instruction.

Field descriptions
The GIC VDPRI bit assignments are:

RES0

63 40

PRIORITY

39 35

RES0

34 32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:40]

Reserved, RES0.

PRIORITY, bits [39:35]

The priority of the specified INTID

Only the upper N bits of the Priority field are implemented where N = (ICC_IDR0_EL1.PRI_BITS + 1).
Unimplemented bits are RES0.

Bits [34:32]

Reserved, RES0.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

235

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented lower bits are RES0.

Accessing GIC VDPRI
This instruction has no effect if the INTID is unreachable.

This instruction is treated as a NOP if there is no resident VPE.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC VDPRI, <Xt>

op0 op1 CRn CRm op2

0b01 0b100 0b1100 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_PRI);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
GIC(X[t, 64], GICInstrDomain_VD, GICInstr_PRI);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

236

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

8.2.8 GIC VDRCFG, Request Interrupt Configuration in the Virtual Interrupt Domain

The GIC VDRCFG characteristics are:

Purpose

Request to read configuration of the specified INTID in the Virtual Interrupt Domain into
ICC_ICSR_EL1.

This operation applies to the virtual INTID in the VM identified by the resident VPE.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to GIC VDRCFG are UNDEFINED.

Attributes

GIC VDRCFG is a 64-bit System instruction.

Field descriptions
The GIC VDRCFG bit assignments are:

RES0

63 32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:32]

Reserved, RES0.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC VDRCFG
This instruction is treated as a NOP if there is no resident VPE.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC VDRCFG, <Xt>

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

237

Chapter 8. System instructions
8.2. System instructions for the Virtual Interrupt Domain

op0 op1 CRn CRm op2

0b01 0b100 0b1100 0b0001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

GIC(X[t, 64], GICInstrDomain_VD, GICInstr_RCFG);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

else
GIC(X[t, 64], GICInstrDomain_VD, GICInstr_RCFG);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

238

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

8.3 System instructions for the Logical Interrupt Domain

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

239

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

8.3.1 GIC LDAFF, Interrupt Set Target in the Logical Interrupt Domain

The GIC LDAFF characteristics are:

Purpose

Sets the routing mode and target PE for the specified INTID in the Logical Interrupt Domain associated
with the Security state selected by the SCR_EL3.{NS, NSE} bits.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to GIC LDAFF are UNDEFINED.

Attributes

GIC LDAFF is a 64-bit System instruction.

Field descriptions
The GIC LDAFF bit assignments are:

RES0

63 48

IAFFID

47 32

TYPE

31 29 28

RES0

27 24

ID

23 0

IRM

Bits [63:48]

Reserved, RES0.

IAFFID, bits [47:32]

The interrupt Affinity value.

The IRS may support fewer than 16 bits of IAFFID. Unimplemented upper bits are treated as RES0 by the IRS.

When IRM is 1, this field provides an IMPLEMENTATION DEFINED hint to 1ofN selection algorithm. A value of 0
means that no hint is provided.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

IRM, bit [28]

Controls how the interrupt is routed.

If the GIC IRS does not support 1ofN distribution of the specified interrupt Type, this configuration is treated as
RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

240

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

IRM Meaning

0b0 The interrupt Routing mode is Targeted

0b1 The interrupt Routing mode is 1ofN

Bits [27:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC LDAFF
When executed at EL3, if SCR_EL3.{NS, NSE} select a reserved value, the behavior is CONSTRAINED UNPRE-
DICTABLE with the permitted options:

• SCR_EL3.{NS, NSE} is treated as having an UNKNOWN value.

• The instruction is treated as a NOP.

This instruction has no effect if the INTID is unreachable

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC LDAFF, <Xt>

op0 op1 CRn CRm op2

0b01 0b110 0b1100 0b0001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
GIC(X[t, 64], GICInstrDomain_LD, GICInstr_AFF);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

241

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

8.3.2 GIC LDDI, Interrupt Deactivate in the Logical Interrupt Domain

The GIC LDDI characteristics are:

Purpose

Enables the specified INTID in the Logical Interrupt Domain associated with the Security state selected
by the SCR_EL3.{NS, NSE} bits.

This instruction applies to all interrupt types, including PPIs.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to GIC LDDI are UNDEFINED.

Attributes

GIC LDDI is a 64-bit System instruction.

Field descriptions
The GIC LDDI bit assignments are:

RES0

63 33

WI

32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

Bit [32]

Reserved, WI.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b001 PPI

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

242

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC LDDI
When executed at EL3, if SCR_EL3.{NS, NSE} select a reserved value, the behavior is CONSTRAINED UNPRE-
DICTABLE with the permitted options:

• SCR_EL3.{NS, NSE} is treated as having an UNKNOWN value.

• The instruction is treated as a NOP.

This instruction has no effect if the INTID is unreachable.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC LDDI, <Xt>

op0 op1 CRn CRm op2

0b01 0b110 0b1100 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
GIC(X[t, 64], GICInstrDomain_LD, GICInstr_DI);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

243

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

8.3.3 GIC LDDIS, Interrupt Disable in the Logical Interrupt Domain

The GIC LDDIS characteristics are:

Purpose

Disables the specified INTID in the Logical Interrupt Domain associated with the Security state selected
by the SCR_EL3.{NS, NSE} bits.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to GIC LDDIS are UNDEFINED.

Attributes

GIC LDDIS is a 64-bit System instruction.

Field descriptions
The GIC LDDIS bit assignments are:

RES0

63 32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:32]

Reserved, RES0.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Valued not defined above are reserved

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC LDDIS
When executed at EL3, if SCR_EL3.{NS, NSE} select a reserved value, the behavior is CONSTRAINED UNPRE-
DICTABLE with the permitted options:

• SCR_EL3.{NS, NSE} is treated as having an UNKNOWN value.

• The instruction is treated as a NOP.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

244

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

This instruction has no effect if the INTID is unreachable.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC LDDIS, <Xt>

op0 op1 CRn CRm op2

0b01 0b110 0b1100 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
GIC(X[t, 64], GICInstrDomain_LD, GICInstr_DIS);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

245

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

8.3.4 GIC LDEN, Interrupt Enable in the Logical Interrupt Domain

The GIC LDEN characteristics are:

Purpose

Enables the specified INTID in the Logical Interrupt Domain associated with the Security state selected
by the SCR_EL3.{NS, NSE} bits.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to GIC LDEN are UNDEFINED.

Attributes

GIC LDEN is a 64-bit System instruction.

Field descriptions
The GIC LDEN bit assignments are:

RES0

63 32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:32]

Reserved, RES0.

TYPE, bits [31:29]

Type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC LDEN
When executed at EL3, if SCR_EL3.{NS, NSE} select a reserved value, the behavior is CONSTRAINED UNPRE-
DICTABLE with the permitted options:

• SCR_EL3.{NS, NSE} is treated as having an UNKNOWN value.

• The instruction is treated as a NOP.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

246

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

This instruction has no effect if the INTID is unreachable.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC LDEN, <Xt>

op0 op1 CRn CRm op2

0b01 0b110 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
GIC(X[t, 64], GICInstrDomain_LD, GICInstr_EN);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

247

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

8.3.5 GIC LDHM, Interrupt Handling mode in the Logical Interrupt Domain

The GIC LDHM characteristics are:

Purpose

Sets the Handling mode of the specified INTID in the Logical Interrupt Domain associated with the
Security state selected by the SCR_EL3.{NS, NSE} bits.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to GIC LDHM are UNDEFINED.

Attributes

GIC LDHM is a 64-bit System instruction.

Field descriptions
The GIC LDHM bit assignments are:

RES0

63 33

HM

32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

HM, bit [32]

Handling mode

HM Meaning

0b0 Edge

0b1 Level

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

248

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC LDHM
When executed at EL3, if SCR_EL3.{NS, NSE} select a reserved value, the behavior is CONSTRAINED UNPRE-
DICTABLE with the permitted options:

• SCR_EL3.{NS, NSE} is treated as having an UNKNOWN value.

• The instruction is treated as a NOP.

This instruction has no effect if the INTID is unreachable.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC LDHM, <Xt>

op0 op1 CRn CRm op2

0b01 0b110 0b1100 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
GIC(X[t, 64], GICInstrDomain_LD, GICInstr_HM);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

249

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

8.3.6 GIC LDPEND, Interrupt Set/Clear Pending state in the Logical Interrupt Domain

The GIC LDPEND characteristics are:

Purpose

Generates a SET or CLEAR event for the specified INTID in the Logical Interrupt Domain associated
with the Security state selected by the SCR_EL3.{NS, NSE} bits.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to GIC LDPEND are UNDEFINED.

Attributes

GIC LDPEND is a 64-bit System instruction.

Field descriptions
The GIC LDPEND bit assignments are:

RES0

63 33 32

PENDING

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

PENDING, bit [32]

Pending status

PENDING Meaning

0b0 Generate CLEAR event to the IRS.

0b1 Generate SET event to the IRS.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

250

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC LDPEND
When executed at EL3, if SCR_EL3.{NS, NSE} select a reserved value, the behavior is CONSTRAINED UNPRE-
DICTABLE with the permitted options:

• SCR_EL3.{NS, NSE} is treated as having an UNKNOWN value.

• The instruction is treated as a NOP.

This instruction has no effect if the INTID is unreachable.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC LDPEND, <Xt>

op0 op1 CRn CRm op2

0b01 0b110 0b1100 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
GIC(X[t, 64], GICInstrDomain_LD, GICInstr_PEND);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

251

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

8.3.7 GIC LDPRI, Interrupt Set priority in the Logical Interrupt Domain

The GIC LDPRI characteristics are:

Purpose

Sets the priority for the specified INTID in the Logical Interrupt Domain associated with the Security
state selected by the SCR_EL3.{NS, NSE} bits.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to GIC LDPRI are UNDEFINED.

Attributes

GIC LDPRI is a 64-bit System instruction.

Field descriptions
The GIC LDPRI bit assignments are:

RES0

63 40

PRIORITY

39 35

RES0

34 32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:40]

Reserved, RES0.

PRIORITY, bits [39:35]

The priority of the specified INTID

Only the upper N bits of the Priority field are implemented where N = (ICC_IDR0_EL1.PRI_BITS + 1).
Unimplemented bits are RES0.

Bits [34:32]

Reserved, RES0.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

252

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC LDPRI
When executed at EL3, if SCR_EL3.{NS, NSE} select a reserved value, the behavior is CONSTRAINED UNPRE-
DICTABLE with the permitted options:

• SCR_EL3.{NS, NSE} is treated as having an UNKNOWN value.

• The instruction is treated as a NOP.

This instruction has no effect if the INTID is unreachable.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC LDPRI, <Xt>

op0 op1 CRn CRm op2

0b01 0b110 0b1100 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
GIC(X[t, 64], GICInstrDomain_LD, GICInstr_PRI);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

253

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

8.3.8 GIC LDRCFG, Request Interrupt Configuration in the Logical Interrupt Domain

The GIC LDRCFG characteristics are:

Purpose

Request to read configuration of the specified INTID in the Logical Interrupt Domain associated with
the Security state selected by the SCR_EL3.{NS, NSE} bits into ICC_ICSR_EL1.

Configuration

This instruction is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to GIC LDRCFG are UNDEFINED.

Attributes

GIC LDRCFG is a 64-bit System instruction.

Field descriptions
The GIC LDRCFG bit assignments are:

RES0

63 32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:32]

Reserved, RES0.

TYPE, bits [31:29]

Type of the interrupt

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The ID of the interrupt.

ID and TYPE together form an INTID.

The number of ID bits implemented is reported in ICC_IDR0_EL1.ID_BITS. Unimplemented upper bits are RES0.

Accessing GIC LDRCFG
When executed at EL3, if SCR_EL3.{NS, NSE} select a reserved value, the behavior is CONSTRAINED UNPRE-
DICTABLE with the permitted options:

• SCR_EL3.{NS, NSE} is treated as having an UNKNOWN value.

• The instruction is treated as a NOP.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

254

Chapter 8. System instructions
8.3. System instructions for the Logical Interrupt Domain

ICC_ICSR_EL1.F is set to 1 and other fields become UNKNOWN after execution of this instruction if the INTID is
unreachable.

Accesses to this instruction use the following encodings in the System instruction encoding space:

GIC LDRCFG, <Xt>

op0 op1 CRn CRm op2

0b01 0b110 0b1100 0b0001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
GIC(X[t, 64], GICInstrDomain_LD, GICInstr_RCFG);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

255

Chapter 8. System instructions
8.4. GIC synchronization barrier instructions

8.4 GIC synchronization barrier instructions

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

256

Chapter 8. System instructions
8.4. GIC synchronization barrier instructions

8.4.1 GSB SYS, GIC Synchronization Barrier System

The GSB SYS characteristics are:

Purpose

GIC Synchronization Barrier System ensures completion of the effects of GIC instructions and prevents
loads, stores, and GIC instructions from executing part of their functionality before the GSB SYS.

See 2.12 Interrupt ordering model and synchronization requirements for more information.

Configuration

This instruction is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to GSB
SYS are UNDEFINED.

Accessing GSB SYS
Accesses to this instruction use the following encodings in the System instruction encoding space:

GSB SYS

op0 op1 CRn CRm op2

0b01 0b000 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
GSB(GICInstr_SYS);

elsif PSTATE.EL == EL2 then
GSB(GICInstr_SYS);

elsif PSTATE.EL == EL3 then
GSB(GICInstr_SYS);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

257

Chapter 8. System instructions
8.4. GIC synchronization barrier instructions

8.4.2 GSB ACK, GIC Synchronization Barrier Interrupt Acknowledge

The GSB ACK characteristics are:

Purpose

GIC Synchronization Barrier Interrupt Acknowledge ensures completion of the effects of the GICR
↪→CDIA and GICR CDNMIA instructions and prevents loads, stores, and GIC instructions from executing
part of their functionality before the GSB ACK.

See 2.12 Interrupt ordering model and synchronization requirements for more information.

Configuration

This instruction is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to GSB
ACK are UNDEFINED.

Accessing GSB ACK
Accesses to this instruction use the following encodings in the System instruction encoding space:

GSB ACK

op0 op1 CRn CRm op2

0b01 0b000 0b1100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
GSB(GICInstr_ACK);

elsif PSTATE.EL == EL2 then
GSB(GICInstr_ACK);

elsif PSTATE.EL == EL3 then
GSB(GICInstr_ACK);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

258

Chapter 9
System registers

This chapter describes the GICv5 system registers.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

259

Chapter 9. System registers
9.1. Synchronization requirements for GICv5 System registers

9.1 Synchronization requirements for GICv5 System registers

ICWKLD The GICv5 System registers follow the requirements for System registers in the Arm® Architecture Reference
Manual, for A-profile architecture[1].

RNWMPV Access to the following System registers are self-synchronizing:

• ICC_PCR_EL3
• ICC_PCR_EL1
• ICV_PCR_EL1

This means that the architectural side effects of direct writes to any of the above System registers are visibile to
instructions in program order after the direct write. The effects of a direct write include updates to the pending
state of the IRQ, FIQ, vIRQ, and vFIQ asynchronous exceptions.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

260

Chapter 9. System registers
9.2. CPU interface registers

9.2 CPU interface registers

Configuration and state of the CPU interface.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

261

Chapter 9. System registers
9.2. CPU interface registers

9.2.1 ICC_APR_EL1, Interrupt Controller Physical Active Priorities Register

The ICC_APR_EL1 characteristics are:

Purpose

Records physical active priorities for the Non-secure, Realm, and Secure Interrupt Domains.

Configuration

There are separate banked copies of this register for Non-secure, Realm and Secure state.

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_APR_EL1 are UNDEFINED.

Attributes

ICC_APR_EL1 is a 64-bit register.

This register has the following instances:

• ICC_APR_EL1, when EL3 is not implemented
• ICC_APR_EL1_NS, when EL3 is implemented
• ICC_APR_EL1_RL, when FEAT_RME is implemented
• ICC_APR_EL1_S, when (EL3 is implemented and FEAT_RME is not implemented) or

(FEAT_RME is implemented and FEAT_SEL2 is implemented)

Field descriptions
The ICC_APR_EL1 bit assignments are:

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20

Bits [63:32]

Reserved, RES0.

P<x>, bits [x], for x = 31 to 0

Provides access to the active priorities.

P<x> Meaning

0b0 Priority not active

0b1 Priority active

Fields in this register are indexed using the 5-bit priority as an unsigned integer, P[Priority].

The reset behavior of this field is:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

262

Chapter 9. System registers
9.2. CPU interface registers

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• Access is RES0 if all of the following are true:
– x MOD 2 == 1
– ICC_IDR0_EL1.PRI_BITS == 0b011

• Otherwise, access to this field is RW

Accessing ICC_APR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_APR_EL1

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_APR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_APR_EL1;
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
X[t, 64] = ICC_APR_EL1_S;

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
X[t, 64] = ICC_APR_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_APR_EL1_NS;

else
UNDEFINED;

else
X[t, 64] = ICC_APR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) then

if SCR_EL3.NS == '0' then
X[t, 64] = ICC_APR_EL1_S;

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
X[t, 64] = ICC_APR_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_APR_EL1_NS;

else
UNDEFINED;

else
X[t, 64] = ICC_APR_EL1;

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

X[t, 64] = ICC_APR_EL1_S;
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS == '1'

↪→ then
X[t, 64] = ICC_APR_EL1_RL;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

263

Chapter 9. System registers
9.2. CPU interface registers

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_APR_EL1_NS;

else
UNDEFINED;

MSR ICC_APR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_APR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_APR_EL1 = X[t, 64];
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_APR_EL1_S = X[t, 64];

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
ICC_APR_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_APR_EL1_NS = X[t, 64];

else
UNDEFINED;

else
ICC_APR_EL1 = X[t, 64];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_APR_EL1_S = X[t, 64];

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
ICC_APR_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_APR_EL1_NS = X[t, 64];

else
UNDEFINED;

else
ICC_APR_EL1 = X[t, 64];

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

ICC_APR_EL1_S = X[t, 64];
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS == '1'

↪→ then
ICC_APR_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_APR_EL1_NS = X[t, 64];

else
UNDEFINED;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

264

Chapter 9. System registers
9.2. CPU interface registers

9.2.2 ICC_APR_EL3, Interrupt Controller Physical Active Priorities Register for EL3

The ICC_APR_EL3 characteristics are:

Purpose

Records active priorities for the EL3 Interrupt Domain.

Configuration

This register is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to ICC_APR_EL3 are UNDEFINED.

Attributes

ICC_APR_EL3 is a 64-bit register.

Field descriptions
The ICC_APR_EL3 bit assignments are:

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20

Bits [63:32]

Reserved, RES0.

P<x>, bits [x], for x = 31 to 0

Provides access to the active priorities.

P<x> Meaning

0b0 Priority not active

0b1 Priority active

Fields in this register are indexed using the 5-bit priority as an unsigned integer, P[Priority].

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• Access is RES0 if all of the following are true:
– x MOD 2 == 1
– ICC_IDR0_EL1.PRI_BITS == 0b011

• Otherwise, access to this field is RW

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

265

Chapter 9. System registers
9.2. CPU interface registers

Accessing ICC_APR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_APR_EL3

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b1000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
X[t, 64] = ICC_APR_EL3;

MSR ICC_APR_EL3, <Xt>

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b1000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
ICC_APR_EL3 = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

266

Chapter 9. System registers
9.2. CPU interface registers

9.2.3 ICC_CR0_EL1, Interrupt Controller EL1 Physical Control Register

The ICC_CR0_EL1 characteristics are:

Purpose

Controls behavior of the physical CPU interface for the Non-secure, Realm, and Secure Interrupt
Domains.

Configuration

There are separate banked copies of this register for Non-secure, Realm and Secure state.

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_CR0_EL1 are UNDEFINED.

Attributes

ICC_CR0_EL1 is a 64-bit register.

This register has the following instances:

• ICC_CR0_EL1, when EL3 is not implemented
• ICC_CR0_EL1_NS, when EL3 is implemented
• ICC_CR0_EL1_RL, when FEAT_RME is implemented
• ICC_CR0_EL1_S, when (EL3 is implemented and FEAT_RME is not implemented) or

(FEAT_RME is implemented and FEAT_SEL2 is implemented)

Field descriptions
The ICC_CR0_EL1 bit assignments are:

RES0

63 39 38

IPPT

37 32

PID

RES0

31 1

EN

0

Bits [63:39]

Reserved, RES0.

PID, bit [38]

When EL3 is implemented:

Preemptive Interrupt Domain. Indicates whether the Interrupt Domain associated with the Security state selected
by SCR_EL3.{NSE,NS} is the Preemptive Interrupt Domain.

Access to this field is RO.

Otherwise:

RAZ/WI

IPPT, bits [37:32]

When ICC_CR0_EL1.PID == 1:

Interrupt Preemptive Priority Threshold value for the Preemptive Interrupt Domain.

When fewer than 5 bits of priority is implemented, only bits [5:N] are implemented where N = (4 -
ICC_IDR0_EL1.PRI_BITS). Unimplemented bits are RES0.

Note: ICC_CR0_EL1.IPPT is a 6 bits field to ensure it can be strictly higher than the interrupt priority, which is a
5-bit unsigned value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

267

Chapter 9. System registers
9.2. CPU interface registers

See 2.9.3 Preemptive interrupts for more information.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

Bits [31:1]

Reserved, RES0.

EN, bit [0]

Enable interrupts for the Interrupt Domain.

When this field is 0, there is no HPPI of Sufficient priority for the Interrupt Domain.

EN Meaning

0b0 Disabled.

0b1 Enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Accessing ICC_CR0_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_CR0_EL1

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_CR0_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_CR0_EL1;
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
X[t, 64] = ICC_CR0_EL1_S;

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
X[t, 64] = ICC_CR0_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_CR0_EL1_NS;

else
UNDEFINED;

else

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

268

Chapter 9. System registers
9.2. CPU interface registers

X[t, 64] = ICC_CR0_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) then
if SCR_EL3.NS == '0' then

X[t, 64] = ICC_CR0_EL1_S;
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==

↪→ '1' then
X[t, 64] = ICC_CR0_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_CR0_EL1_NS;

else
UNDEFINED;

else
X[t, 64] = ICC_CR0_EL1;

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

X[t, 64] = ICC_CR0_EL1_S;
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS == '1'

↪→ then
X[t, 64] = ICC_CR0_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_CR0_EL1_NS;

else
UNDEFINED;

MSR ICC_CR0_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_CR0_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_CR0_EL1 = X[t, 64];
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_CR0_EL1_S = X[t, 64];

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
ICC_CR0_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_CR0_EL1_NS = X[t, 64];

else
UNDEFINED;

else
ICC_CR0_EL1 = X[t, 64];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_CR0_EL1_S = X[t, 64];

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

269

Chapter 9. System registers
9.2. CPU interface registers

ICC_CR0_EL1_RL = X[t, 64];
elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then

ICC_CR0_EL1_NS = X[t, 64];
else

UNDEFINED;
else

ICC_CR0_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
ICC_CR0_EL1_S = X[t, 64];

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS == '1'
↪→ then
ICC_CR0_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_CR0_EL1_NS = X[t, 64];

else
UNDEFINED;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

270

Chapter 9. System registers
9.2. CPU interface registers

9.2.4 ICC_CR0_EL3, Interrupt Controller EL3 Physical Control Register

The ICC_CR0_EL3 characteristics are:

Purpose

Controls behavior of the CPU interface in the EL3 Interrupt Domain.

Configuration

This register is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to ICC_CR0_EL3 are UNDEFINED.

Attributes

ICC_CR0_EL3 is a 64-bit register.

Field descriptions
The ICC_CR0_EL3 bit assignments are:

RES0

63 34

PID

33 32

RES0

31 1

EN

0

Bits [63:34]

Reserved, RES0.

PID, bits [33:32]

Preemptive Interrupt Domain.

The PE behaves as if there is no Preemptive Interrupt Domain when any of the following are true:

• This field is set to 0b10.

• This field is set to an Interrupt Domain that is not implemented.

PID Meaning

0b00 Secure Interrupt Domain

0b01 Non-secure Interrupt Domain

0b10 None

0b11 Realm Interrupt Domain

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Bits [31:1]

Reserved, RES0.

EN, bit [0]

Enable interrupts for the EL3 Interrupt Domain.

When this field is set to 0, the PE behaves as if there is no HPPI of Sufficient priority in the EL3 Interrupt Domain.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

271

Chapter 9. System registers
9.2. CPU interface registers

EN Meaning

0b0 Disabled.

0b1 Enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Accessing ICC_CR0_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_CR0_EL3

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b1001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
X[t, 64] = ICC_CR0_EL3;

MSR ICC_CR0_EL3, <Xt>

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b1001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
ICC_CR0_EL3 = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

272

Chapter 9. System registers
9.2. CPU interface registers

9.2.5 ICC_DOMHPPIR_EL3, Interrupt Controller Domain Highest Priority Pending Interrupt
Register

The ICC_DOMHPPIR_EL3 characteristics are:

Purpose

Reports the HPPI for a Non-EL3 Interrupt Domain.

Configuration

This register is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to ICC_DOMHPPIR_EL3 are UNDEFINED.

Attributes

ICC_DOMHPPIR_EL3 is a 64-bit register.

Field descriptions
The ICC_DOMHPPIR_EL3 bit assignments are:

RES0

63 32

RES0

31 4 3 2 1 0

P_HPPI
RL_HPPI

NS_HPPI
S_HPPI

Bits [63:4]

Reserved, RES0.

P_HPPI, bit [3]

Preemptive HPPI for the Preemptive Interrupt Domain valid bit.

P_HPPI Meaning

0b0 There is no Preemptive HPPI of Sufficient priority for the
Preemptive Interrupt Domain.

0b1 There is an Preemptive HPPI of Sufficient priority for the
Preemptive Interrupt Domain.

Accessing this field has the following behavior:

• RO if HavePreemptiveDomain()
• Otherwise, access to this field is RES0

RL_HPPI, bit [2]

HPPI for Realm Interrupt Domain valid bit.

RL_HPPI Meaning

0b0 There is no HPPI of Sufficient priority for Realm Interrupt
Domain.

0b1 There is an HPPI of Sufficient priority for Realm Interrupt
Domain.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

273

Chapter 9. System registers
9.2. CPU interface registers

Accessing this field has the following behavior:

• RO if HaveDomain(GICDomain_RL)
• Otherwise, access to this field is RES0

S_HPPI, bit [1]

HPPI for Secure Interrupt Domain valid bit.

S_HPPI Meaning

0b0 There is no HPPI of Sufficient priority for Secure Interrupt
Domain.

0b1 There is an HPPI of Sufficient priority for Secure Interrupt
Domain.

Accessing this field has the following behavior:

• RO if HaveDomain(GICDomain_S)
• Otherwise, access to this field is RES0

NS_HPPI, bit [0]

HPPI for Non-secure Interrupt Domain valid bit.

NS_HPPI Meaning

0b0 There is no HPPI of Sufficient priority for Non-secure
Interrupt Domain.

0b1 There is an HPPI of Sufficient priority for Non-secure
Interrupt Domain.

Accessing this field has the following behavior:

• RO if HaveDomain(GICDomain_NS)
• Otherwise, access to this field is RES0

Accessing ICC_DOMHPPIR_EL3
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_DOMHPPIR_EL3

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b1000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
X[t, 64] = ICC_DOMHPPIR_EL3;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

274

Chapter 9. System registers
9.2. CPU interface registers

9.2.6 ICC_HAPR_EL1, Interrupt Controller Physical Highest Active Priority Register

The ICC_HAPR_EL1 characteristics are:

Purpose

Reports the running priority of the Current Physical Interrupt Domain.

Configuration

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_HAPR_EL1 are UNDEFINED.

Attributes

ICC_HAPR_EL1 is a 64-bit register.

Field descriptions
The ICC_HAPR_EL1 bit assignments are:

RES0

63 32

RES0

31 8

PRIORITY

7 0

Bits [63:8]

Reserved, RES0.

PRIORITY, bits [7:0]

The running priority for the Current Physical Interrupt Domain.

If there are no active priorities on the CPU interface in the applicable Interrupt Domain, or all active priorities have
undergone a priority drop, the value returned is the Idle priority.

Accessing ICC_HAPR_EL1
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_HAPR_EL1

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_HAPR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_HAPR_EL1;
else

X[t, 64] = ICC_HAPR_EL1;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_HAPR_EL1;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

275

Chapter 9. System registers
9.2. CPU interface registers

elsif PSTATE.EL == EL3 then
X[t, 64] = ICC_HAPR_EL1;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

276

Chapter 9. System registers
9.2. CPU interface registers

9.2.7 ICC_HPPIR_EL1, Interrupt Controller Physical Highest Priority Pending Interrupt Register

The ICC_HPPIR_EL1 characteristics are:

Purpose

Reports the HPPI for the Physical Interrupt Domain associated with the Security state selected by
SCR_EL3.{NS, NSE}.

Configuration

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_HPPIR_EL1 are UNDEFINED.

Attributes

ICC_HPPIR_EL1 is a 64-bit register.

Field descriptions
The ICC_HPPIR_EL1 bit assignments are:

RES0

63 33 32

HPPIV

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

HPPIV, bit [32]

HPPI valid.

There is an HPPI with Sufficient priority for the Interrupt Domain.

HPPIV Meaning

0b0 Invalid: There is no HPPI with Sufficient priority for the
Interrupt Domain.

0b1 VALID: There is an HPPI with Sufficient priority for the
Interrupt Domain.

If ICC_HPPIR_EL1.HPPIV is 1, ID and TYPE together form the INTID of the HPPI for the Interrupt Domain.

TYPE, bits [31:29]

The encoding of this field depends on the value of HPPIV as described below:

• If ICC_HPPIR_EL1.HPPIV is 0, TYPE is RES0.

• If ICC_HPPIR_EL1.HPPIV is 1, TYPE specifies the Type of the interrupt.

TYPE Meaning

0b001 PPI

0b010 LPI

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

277

Chapter 9. System registers
9.2. CPU interface registers

TYPE Meaning

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The encoding of this field depends on the value of HPPIV as described below:

• If ICC_HPPIR_EL1.HPPIV is 0, ID is RES0.

• If ICC_HPPIR_EL1.HPPIV is 1, ID specifies the interrupt ID.

Accessing ICC_HPPIR_EL1
Read-only

When accessed at EL3, if SCR_EL3.{NS, NSE} select a reserved value, the behavior is CONSTRAINED UNPRE-
DICTABLE with the permitted options:

• SCR_EL3.{NS, NSE} is treated as having an UNKNOWN value.

• The access is treated as a NOP.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_HPPIR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_HPPIR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_HPPIR_EL1;
else

X[t, 64] = ICC_HPPIR_EL1;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_HPPIR_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_HPPIR_EL1;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

278

Chapter 9. System registers
9.2. CPU interface registers

9.2.8 ICC_HPPIR_EL3, Interrupt Controller Physical Highest Priority Pending Interrupt Register

The ICC_HPPIR_EL3 characteristics are:

Purpose

Reports the HPPI for the EL3 Interrupt Domain.

Configuration

This register is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to ICC_HPPIR_EL3 are UNDEFINED.

Attributes

ICC_HPPIR_EL3 is a 64-bit register.

Field descriptions
The ICC_HPPIR_EL3 bit assignments are:

RES0

63 33 32

HPPIV

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

HPPIV, bit [32]

HPPI valid.

There is an HPPI with Sufficient priority for the Interrupt Domain.

HPPIV Meaning

0b0 Invalid: There is no HPPI with Sufficient priority for the
Interrupt Domain.

0b1 VALID: There is an HPPI with Sufficient priority for the
Interrupt Domain.

If ICC_HPPIR_EL3.HPPIV is 1, ID and TYPE together form the INTID of the HPPI for the Interrupt Domain.

TYPE, bits [31:29]

The encoding of this field depends on the value of HPPIV as described below:

• If ICC_HPPIR_EL3.HPPIV is 0, TYPE is RES0.

• If ICC_HPPIR_EL3.HPPIV is 1, TYPE specifies the Type of the interrupt.

TYPE Meaning

0b001 PPI

0b010 LPI

0b011 SPI

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

279

Chapter 9. System registers
9.2. CPU interface registers

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The encoding of this field depends on the value of HPPIV as described below:

• If ICC_HPPIR_EL3.HPPIV is 0, ID is RES0.

• If ICC_HPPIR_EL3.HPPIV is 1, ID specifies the interrupt ID.

Accessing ICC_HPPIR_EL3
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_HPPIR_EL3

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b1001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
X[t, 64] = ICC_HPPIR_EL3;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

280

Chapter 9. System registers
9.2. CPU interface registers

9.2.9 ICC_IAFFIDR_EL1, Interrupt Controller PE Interrupt Affinity ID Register

The ICC_IAFFIDR_EL1 characteristics are:

Purpose

Reports the PE interrupt Affinity ID for the PE.

Configuration

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_IAFFIDR_EL1 are UNDEFINED.

Attributes

ICC_IAFFIDR_EL1 is a 64-bit register.

Field descriptions
The ICC_IAFFIDR_EL1 bit assignments are:

RES0

63 32

RES0

31 16

IAFFID

15 0

Bits [63:16]

Reserved, RES0.

IAFFID, bits [15:0]

PE interrupt Affinity ID.

Accessing ICC_IAFFIDR_EL1
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_IAFFIDR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1010 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_IAFFIDR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

X[t, 64] = ICC_IAFFIDR_EL1;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_IAFFIDR_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_IAFFIDR_EL1;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

281

Chapter 9. System registers
9.2. CPU interface registers

9.2.10 ICC_ICSR_EL1, Interrupt Controller Interrupt Configuration and State Register

The ICC_ICSR_EL1 characteristics are:

Purpose

Reports the configuration and state of the INTID specified to a previous GIC request interrupt
configuration instruction.

Configuration

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_ICSR_EL1 are UNDEFINED.

Attributes

ICC_ICSR_EL1 is a 64-bit register.

Field descriptions
The ICC_ICSR_EL1 bit assignments are:

RES0

63 48

IAFFID

47 32

RES0

31 16

Priority

15 11

RES0

10 6

HM

5 4 3 2 1

F

0

Active
IRM

Enabled
Pending

Bits [63:48]

Reserved, RES0.

IAFFID, bits [47:32]

The interrupt Affinity value.

The IRS may support fewer than 16 bits of IAFFID. Upper bits not implemented by the IRS are returned as zero.

When IRM is 1, this field is IMPLEMENTATION SPECIFIC.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Bits [31:16]

Reserved, RES0.

Priority, bits [15:11]

The interrupt’s Priority.

Bits [4:N] of the priority value are implemented where N = (4 - ICC_IDR0_EL1.PRI_BITS). Unimplemented bits
are RES0.

This means that when fewer than 5 bits of priority is implemented, Priority[14 - ICC_IDR0_EL1.PRI_BITS:11]
are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

282

Chapter 9. System registers
9.2. CPU interface registers

Bits [10:6]

Reserved, RES0.

HM, bit [5]

The interrupt’s Handling mode.

HM Meaning

0b0 Edge-triggered

0b1 Level-sensitive

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Active, bit [4]

The interrupt’s Active state.

Active Meaning

0b0 Inactive

0b1 Active

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

IRM, bit [3]

Interrupt Routing mode.

IRM Meaning

0b0 The interrupt Routing mode is Targeted.

0b1 The interrupt Routing mode is 1ofN.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Pending, bit [2]

The interrupt’s Pending state.

Pending Meaning

0b0 Not pending

0b1 Pending

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

283

Chapter 9. System registers
9.2. CPU interface registers

Enabled, bit [1]

The interrupt’s individual enable.

Enabled Meaning

0b0 Disabled

0b1 Enabled

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

F, bit [0]

Indicates whether the IRS returned valid data.

F Meaning

0b0 Request completed successfully.

0b1 Request did not complete successfully.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing ICC_ICSR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_ICSR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1010 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_ICSR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

X[t, 64] = ICC_ICSR_EL1;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_ICSR_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_ICSR_EL1;

MSR ICC_ICSR_EL1, <Xt>

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

284

Chapter 9. System registers
9.2. CPU interface registers

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1010 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_ICSR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

ICC_ICSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then

ICC_ICSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then

ICC_ICSR_EL1 = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

285

Chapter 9. System registers
9.2. CPU interface registers

9.2.11 ICC_IDR0_EL1, Interrupt Controller ID Register 0

The ICC_IDR0_EL1 characteristics are:

Purpose

Contains read-only fields with information about the CPU interface.

Configuration

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_IDR0_EL1 are UNDEFINED.

Attributes

ICC_IDR0_EL1 is a 64-bit register.

Field descriptions
The ICC_IDR0_EL1 bit assignments are:

RES0

63 32

RES0

31 12 11 8

PRI_BITS

7 4

ID_BITS

3 0

GCIE_LEGACY

Bits [63:12]

Reserved, RES0.

GCIE_LEGACY, bits [11:8]

Indicates support for legacy GICv3.3 virtual CPU interface.

GCIE_LEGACY Meaning

0b0000 Legacy GICv3.3 virtual CPU interface is not implemented

0b0001 Legacy GICv3.3 virtual CPU interface is implemented

FEAT_GCIE_LEGACY extension implements the functionality identified by the value 1.

PRI_BITS, bits [7:4]

The number of priority bits implemented, minus one.

PRI_BITS Meaning

0b0011 4 bits of priority

0b0100 5 bits of priority

Values not defined above are reserved.

When FEAT_GCIE_LEGACY is implemented, the only permitted value of this field is 0b100.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

286

Chapter 9. System registers
9.2. CPU interface registers

ID_BITS, bits [3:0]

Identifier bits.

Read-only and writes are ignored.

The number of interrupt identifier bits supported.

ID_BITS Meaning

0b0000 16 bits

0b0001 24 bits

Accessing ICC_IDR0_EL1
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_IDR0_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_IDRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

X[t, 64] = ICC_IDR0_EL1;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_IDR0_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_IDR0_EL1;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

287

Chapter 9. System registers
9.2. CPU interface registers

9.2.12 ICC_PCR_EL1, Interrupt Controller Physical Interrupt Priority Control Register

The ICC_PCR_EL1 characteristics are:

Purpose

Reports the Physical priority mask for the Non-secure, Realm, and Secure Interrupt Domains.

Configuration

There are separate banked copies of this register for Non-secure, Realm and Secure state.

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_PCR_EL1 are UNDEFINED.

Attributes

ICC_PCR_EL1 is a 64-bit register.

This register has the following instances:

• ICC_PCR_EL1, when EL3 is not implemented
• ICC_PCR_EL1_NS, when EL3 is implemented
• ICC_PCR_EL1_RL, when FEAT_RME is implemented
• ICC_PCR_EL1_S, when (EL3 is implemented and FEAT_RME is not implemented) or

(FEAT_RME is implemented and FEAT_SEL2 is implemented)

Field descriptions
The ICC_PCR_EL1 bit assignments are:

RES0

63 32

RES0

31 5

PRIORITY

4 0

Bits [63:5]

Reserved, RES0.

PRIORITY, bits [4:0]

The priority mask for the Interrupt Domain.

When fewer than 5 bits of priority is implemented, only bits [4:N] are implemented where N = (4 -
ICC_IDR0_EL1.PRI_BITS). Unimplemented bits are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing ICC_PCR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PCR_EL1

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b010

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

288

Chapter 9. System registers
9.2. CPU interface registers

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PCR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PCR_EL1;
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
X[t, 64] = ICC_PCR_EL1_S;

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
X[t, 64] = ICC_PCR_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_PCR_EL1_NS;

else
UNDEFINED;

else
X[t, 64] = ICC_PCR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) then

if SCR_EL3.NS == '0' then
X[t, 64] = ICC_PCR_EL1_S;

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
X[t, 64] = ICC_PCR_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_PCR_EL1_NS;

else
UNDEFINED;

else
X[t, 64] = ICC_PCR_EL1;

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

X[t, 64] = ICC_PCR_EL1_S;
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS == '1'

↪→ then
X[t, 64] = ICC_PCR_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_PCR_EL1_NS;

else
UNDEFINED;

MSR ICC_PCR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

289

Chapter 9. System registers
9.2. CPU interface registers

elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PCR_EL1 == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
ICV_PCR_EL1 = X[t, 64];

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

ICC_PCR_EL1_S = X[t, 64];
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==

↪→ '1' then
ICC_PCR_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_PCR_EL1_NS = X[t, 64];

else
UNDEFINED;

else
ICC_PCR_EL1 = X[t, 64];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_PCR_EL1_S = X[t, 64];

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
ICC_PCR_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_PCR_EL1_NS = X[t, 64];

else
UNDEFINED;

else
ICC_PCR_EL1 = X[t, 64];

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

ICC_PCR_EL1_S = X[t, 64];
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS == '1'

↪→ then
ICC_PCR_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_PCR_EL1_NS = X[t, 64];

else
UNDEFINED;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

290

Chapter 9. System registers
9.2. CPU interface registers

9.2.13 ICC_PCR_EL3, Interrupt Controller Interrupt Priority Control Register for EL3

The ICC_PCR_EL3 characteristics are:

Purpose

Reports the Physical priority mask for the physical CPU interface for the EL3 Interrupt Domain.

Configuration

This register is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to ICC_PCR_EL3 are UNDEFINED.

Attributes

ICC_PCR_EL3 is a 64-bit register.

Field descriptions
The ICC_PCR_EL3 bit assignments are:

RES0

63 32

RES0

31 5

PRIORITY

4 0

Bits [63:5]

Reserved, RES0.

PRIORITY, bits [4:0]

The priority mask for the EL3 Interrupt Domain.

When fewer than 5 bits of priority is implemented, only bits [4:N] are implemented where N = (4 -
ICC_IDR0_EL1.PRI_BITS). Unimplemented bits are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing ICC_PCR_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PCR_EL3

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b1000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
X[t, 64] = ICC_PCR_EL3;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

291

Chapter 9. System registers
9.2. CPU interface registers

MSR ICC_PCR_EL3, <Xt>

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b1000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
ICC_PCR_EL3 = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

292

Chapter 9. System registers
9.2. CPU interface registers

9.2.14 ID_AA64PFR2_EL1, AArch64 Processor Feature Register 2

The ID_AA64PFR2_EL1 characteristics are:

Purpose

Provides additional information about implemented PE features in AArch64 state.

Configuration

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_AA64PFR2_EL1 is a 64-bit register.

Field descriptions
The ID_AA64PFR2_EL1 bit assignments are:

RES0

63 36

FPMR

35 32

RES0

31 20

UINJ

19 16

GCIE

15 12

MTEFAR

11 8 7 4

MTEPERM

3 0

MTESTOREONLY

Bits [63:36]

Reserved, RES0.

FPMR, bits [35:32]

Bits [31:20]

Reserved, RES0.

UINJ, bits [19:16]

GCIE, bits [15:12]

Support for the GICv5 CPU interface extension.

GCIE Meaning

0b0000 GICv5 CPU interface registers not supported.

0b0001 GICv5 CPU interface registers supported.

All other values are reserved.

FEAT_GCIE implements the functionality identified by the value 0b0001.

MTEFAR, bits [11:8]

MTESTOREONLY, bits [7:4]

MTEPERM, bits [3:0]

Accessing ID_AA64PFR2_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64PFR2_EL1

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

293

Chapter 9. System registers
9.2. CPU interface registers

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b010

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !FALSE && (IsFeatureImplemented(FEAT_FGT) || !IsZero(

↪→ID_AA64PFR2_EL1) || boolean IMPLEMENTATION_DEFINED "ID_AA64PFR2_EL1
↪→trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = ID_AA64PFR2_EL1;

elsif PSTATE.EL == EL2 then
X[t, 64] = ID_AA64PFR2_EL1;

elsif PSTATE.EL == EL3 then
X[t, 64] = ID_AA64PFR2_EL1;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

294

Chapter 9. System registers
9.3. Virtual CPU interface registers

9.3 Virtual CPU interface registers

ITRMKL Each ICC_ system register that is accessible at EL1 and higher and whose state is specific to the Virtual Interrupt
Domain, has a corresponding virtual ICV_ register. The ICV_ registers are accessed using the same system register
encodings as their ICC_ counterparts.

ITBPCJ ICC_IDR0 does not have an ICV_ equivalent register.

ILBWLV When Legacy operation is disabled, the field layouts and interpretations of the ICV_ registers are identical to the
ICC_ registers. This enables binary compatibility for software between the physical and virtual CPU interfaces.

IMCZFN ICC_ICSR_EL1 does not have an ICV_ equivalent register.

INMXVC ICC_IAFFIDR_EL1 does not have an ICV_ equivalent register. When virtualization is being used, Arm expects
EL2 software to trap EL1 accesses to ICC_IAFFIDR_EL1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

295

Chapter 9. System registers
9.3. Virtual CPU interface registers

9.3.1 ICV_APR_EL1, Interrupt Controller Virtual Active Priorities Register

The ICV_APR_EL1 characteristics are:

Purpose

Records active priorities for the Virtual CPU interface.

Configuration

AArch64 system register ICV_APR_EL1 bits [63:0] are architecturally mapped to AArch64 system
register ICH_APR_EL2[63:0].

This register is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to ICV_APR_EL1 are UNDEFINED.

Attributes

ICV_APR_EL1 is a 64-bit register.

Field descriptions
The ICV_APR_EL1 bit assignments are:

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20

Bits [63:32]

Reserved, RES0.

P<x>, bits [x], for x = 31 to 0

Provides access to the active priorities.

P<x> Meaning

0b0 Priority not active

0b1 Priority active

Fields in this register are indexed using the 5-bit priority as an unsigned integer, P[Priority].

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• Access is RES0 if all of the following are true:
– x MOD 2 == 1
– ICC_IDR0_EL1.PRI_BITS == 0b011

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

296

Chapter 9. System registers
9.3. Virtual CPU interface registers

• Otherwise, access to this field is RW

Accessing ICV_APR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_APR_EL1

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_APR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_APR_EL1;
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
X[t, 64] = ICC_APR_EL1_S;

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
X[t, 64] = ICC_APR_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_APR_EL1_NS;

else
UNDEFINED;

else
X[t, 64] = ICC_APR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) then

if SCR_EL3.NS == '0' then
X[t, 64] = ICC_APR_EL1_S;

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
X[t, 64] = ICC_APR_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_APR_EL1_NS;

else
UNDEFINED;

else
X[t, 64] = ICC_APR_EL1;

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

X[t, 64] = ICC_APR_EL1_S;
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS == '1'

↪→ then
X[t, 64] = ICC_APR_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_APR_EL1_NS;

else
UNDEFINED;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

297

Chapter 9. System registers
9.3. Virtual CPU interface registers

MSR ICC_APR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_APR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_APR_EL1 = X[t, 64];
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_APR_EL1_S = X[t, 64];

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
ICC_APR_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_APR_EL1_NS = X[t, 64];

else
UNDEFINED;

else
ICC_APR_EL1 = X[t, 64];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_APR_EL1_S = X[t, 64];

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
ICC_APR_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_APR_EL1_NS = X[t, 64];

else
UNDEFINED;

else
ICC_APR_EL1 = X[t, 64];

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

ICC_APR_EL1_S = X[t, 64];
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS == '1'

↪→ then
ICC_APR_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_APR_EL1_NS = X[t, 64];

else
UNDEFINED;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

298

Chapter 9. System registers
9.3. Virtual CPU interface registers

9.3.2 ICV_CR0_EL1, Interrupt Controller EL1 Virtual Control Register

The ICV_CR0_EL1 characteristics are:

Purpose

Controls behavior of the CPU interface in the Virtual Interrupt Domain.

Configuration

This register is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to ICV_CR0_EL1 are UNDEFINED.

Attributes

ICV_CR0_EL1 is a 64-bit register.

Field descriptions
The ICV_CR0_EL1 bit assignments are:

RES0

63 39 38

RES0

37 32

RES0

RES0

31 1

EN

0

Bits [63:39]

Reserved, RES0.

Bit [38]

Reserved, RES0.

Bits [37:32]

Reserved, RES0.

Bits [31:1]

Reserved, RES0.

EN, bit [0]

Enable interrupts for the Interrupt Domain.

When this field is 0, there is no HPPI of Sufficient priority for the Interrupt Domain.

EN Meaning

0b0 Disabled.

0b1 Enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

299

Chapter 9. System registers
9.3. Virtual CPU interface registers

Accessing ICV_CR0_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_CR0_EL1

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_CR0_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_CR0_EL1;
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
X[t, 64] = ICC_CR0_EL1_S;

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
X[t, 64] = ICC_CR0_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_CR0_EL1_NS;

else
UNDEFINED;

else
X[t, 64] = ICC_CR0_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) then

if SCR_EL3.NS == '0' then
X[t, 64] = ICC_CR0_EL1_S;

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
X[t, 64] = ICC_CR0_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_CR0_EL1_NS;

else
UNDEFINED;

else
X[t, 64] = ICC_CR0_EL1;

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

X[t, 64] = ICC_CR0_EL1_S;
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS == '1'

↪→ then
X[t, 64] = ICC_CR0_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_CR0_EL1_NS;

else
UNDEFINED;

MSR ICC_CR0_EL1, <Xt>

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

300

Chapter 9. System registers
9.3. Virtual CPU interface registers

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_CR0_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_CR0_EL1 = X[t, 64];
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_CR0_EL1_S = X[t, 64];

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
ICC_CR0_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_CR0_EL1_NS = X[t, 64];

else
UNDEFINED;

else
ICC_CR0_EL1 = X[t, 64];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_CR0_EL1_S = X[t, 64];

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
ICC_CR0_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_CR0_EL1_NS = X[t, 64];

else
UNDEFINED;

else
ICC_CR0_EL1 = X[t, 64];

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

ICC_CR0_EL1_S = X[t, 64];
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS == '1'

↪→ then
ICC_CR0_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_CR0_EL1_NS = X[t, 64];

else
UNDEFINED;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

301

Chapter 9. System registers
9.3. Virtual CPU interface registers

9.3.3 ICV_HAPR_EL1, Interrupt Controller Virtual Highest Active Priority Register

The ICV_HAPR_EL1 characteristics are:

Purpose

Reports the running priority of the Virtual Interrupt Domain.

Configuration

This register is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to ICV_HAPR_EL1 are UNDEFINED.

Attributes

ICV_HAPR_EL1 is a 64-bit register.

Field descriptions
The ICV_HAPR_EL1 bit assignments are:

RES0

63 32

RES0

31 8

PRIORITY

7 0

Bits [63:8]

Reserved, RES0.

PRIORITY, bits [7:0]

The running priority for the Virtual Interrupt Domain.

If there are no active priorities on the CPU interface in the applicable Interrupt Domain, or all active priorities have
undergone a priority drop, the value returned is the Idle priority.

Accessing ICV_HAPR_EL1
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_HAPR_EL1

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_HAPR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_HAPR_EL1;
else

X[t, 64] = ICC_HAPR_EL1;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_HAPR_EL1;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

302

Chapter 9. System registers
9.3. Virtual CPU interface registers

elsif PSTATE.EL == EL3 then
X[t, 64] = ICC_HAPR_EL1;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

303

Chapter 9. System registers
9.3. Virtual CPU interface registers

9.3.4 ICV_HPPIR_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register

The ICV_HPPIR_EL1 characteristics are:

Purpose

Reports the HPPI for the Virtual Interrupt Domain.

Configuration

AArch64 system register ICV_HPPIR_EL1 bits [63:0] are architecturally mapped to AArch64 system
register ICH_HPPIR_EL2[63:0].

This register is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to ICV_HPPIR_EL1 are UNDEFINED.

Attributes

ICV_HPPIR_EL1 is a 64-bit register.

Field descriptions
The ICV_HPPIR_EL1 bit assignments are:

RES0

63 33 32

HPPIV

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

HPPIV, bit [32]

HPPI valid.

There is an HPPI with Sufficient priority for the Interrupt Domain.

HPPIV Meaning

0b0 Invalid: There is no HPPI with Sufficient priority for the
Interrupt Domain.

0b1 VALID: There is an HPPI with Sufficient priority for the
Interrupt Domain.

If ICV_HPPIR_EL1.HPPIV is 1, ID and TYPE together form the INTID of the HPPI for the Interrupt Domain.

TYPE, bits [31:29]

The encoding of this field depends on the value of HPPIV as described below:

• If ICV_HPPIR_EL1.HPPIV is 0, TYPE is RES0.

• If ICV_HPPIR_EL1.HPPIV is 1, TYPE specifies the Type of the interrupt.

TYPE Meaning

0b001 PPI

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

304

Chapter 9. System registers
9.3. Virtual CPU interface registers

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The encoding of this field depends on the value of HPPIV as described below:

• If ICV_HPPIR_EL1.HPPIV is 0, ID is RES0.

• If ICV_HPPIR_EL1.HPPIV is 1, ID specifies the interrupt ID.

Accessing ICV_HPPIR_EL1
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_HPPIR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_HPPIR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_HPPIR_EL1;
else

X[t, 64] = ICC_HPPIR_EL1;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_HPPIR_EL1;
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_HPPIR_EL1;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

305

Chapter 9. System registers
9.3. Virtual CPU interface registers

9.3.5 ICV_PCR_EL1, Interrupt Controller Virtual Interrupt Priority Control Register

The ICV_PCR_EL1 characteristics are:

Purpose

Reports the Virtual priority mask for the Virtual Interrupt Domain.

Configuration

This register is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to ICV_PCR_EL1 are UNDEFINED.

Attributes

ICV_PCR_EL1 is a 64-bit register.

Field descriptions
The ICV_PCR_EL1 bit assignments are:

RES0

63 32

RES0

31 5

PRIORITY

4 0

Bits [63:5]

Reserved, RES0.

PRIORITY, bits [4:0]

The priority mask for the Interrupt Domain.

When fewer than 5 bits of priority is implemented, only bits [4:N] are implemented where N = (4 -
ICC_IDR0_EL1.PRI_BITS). Unimplemented bits are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing ICV_PCR_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PCR_EL1

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PCR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PCR_EL1;
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

306

Chapter 9. System registers
9.3. Virtual CPU interface registers

X[t, 64] = ICC_PCR_EL1_S;
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==

↪→ '1' then
X[t, 64] = ICC_PCR_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_PCR_EL1_NS;

else
UNDEFINED;

else
X[t, 64] = ICC_PCR_EL1;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) then

if SCR_EL3.NS == '0' then
X[t, 64] = ICC_PCR_EL1_S;

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
X[t, 64] = ICC_PCR_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_PCR_EL1_NS;

else
UNDEFINED;

else
X[t, 64] = ICC_PCR_EL1;

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

X[t, 64] = ICC_PCR_EL1_S;
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS == '1'

↪→ then
X[t, 64] = ICC_PCR_EL1_RL;

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
X[t, 64] = ICC_PCR_EL1_NS;

else
UNDEFINED;

MSR ICC_PCR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b001 0b1100 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PCR_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_PCR_EL1 = X[t, 64];
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_PCR_EL1_S = X[t, 64];

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
ICC_PCR_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_PCR_EL1_NS = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

307

Chapter 9. System registers
9.3. Virtual CPU interface registers

else
UNDEFINED;

else
ICC_PCR_EL1 = X[t, 64];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_PCR_EL1_S = X[t, 64];

elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS ==
↪→ '1' then
ICC_PCR_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_PCR_EL1_NS = X[t, 64];

else
UNDEFINED;

else
ICC_PCR_EL1 = X[t, 64];

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

ICC_PCR_EL1_S = X[t, 64];
elsif IsFeatureImplemented(FEAT_RME) && SCR_EL3.NSE == '1' && SCR_EL3.NS == '1'

↪→ then
ICC_PCR_EL1_RL = X[t, 64];

elsif SCR_EL3.NSE == '0' && SCR_EL3.NS == '1' then
ICC_PCR_EL1_NS = X[t, 64];

else
UNDEFINED;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

308

Chapter 9. System registers
9.4. PPI registers

9.4 PPI registers

Configuration and state of PPIs.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

309

Chapter 9. System registers
9.4. PPI registers

9.4.1 ICC_PPI_CACTIVER<n>_EL1, Interrupt Controller Physical PPI Clear Active Registers, n
= 0 - 1

The ICC_PPI_CACTIVER<n>_EL1 characteristics are:

Purpose

Clear Active state for physical PPIs.

Configuration

AArch64 system register ICC_PPI_CACTIVER<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICC_PPI_SACTIVER<n>_EL1[63:0].

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_PPI_CACTIVER<n>_EL1 are UNDEFINED.

Attributes

ICC_PPI_CACTIVER<n>_EL1 is a 64-bit register.

Field descriptions
The ICC_PPI_CACTIVER<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ACTIVE63
ACTIVE62

ACTIVE61
ACTIVE60

ACTIVE59
ACTIVE58

ACTIVE57
ACTIVE56

ACTIVE55
ACTIVE54

ACTIVE53
ACTIVE52

ACTIVE51
ACTIVE50

ACTIVE49
ACTIVE48

ACTIVE32
ACTIVE33

ACTIVE34
ACTIVE35

ACTIVE36
ACTIVE37

ACTIVE38
ACTIVE39

ACTIVE40
ACTIVE41

ACTIVE42
ACTIVE43

ACTIVE44
ACTIVE45

ACTIVE46
ACTIVE47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACTIVE31
ACTIVE30

ACTIVE29
ACTIVE28

ACTIVE27
ACTIVE26

ACTIVE25
ACTIVE24

ACTIVE23
ACTIVE22

ACTIVE21
ACTIVE20

ACTIVE19
ACTIVE18

ACTIVE17
ACTIVE16

ACTIVE0
ACTIVE1

ACTIVE2
ACTIVE3

ACTIVE4
ACTIVE5

ACTIVE6
ACTIVE7

ACTIVE8
ACTIVE9

ACTIVE10
ACTIVE11

ACTIVE12
ACTIVE13

ACTIVE14
ACTIVE15

ACTIVE<x>, bits [x], for x = 63 to 0

Configures whether PPIs are Active.

Reads return the Active state of the INTID.

Writing 1 clears the Active state of the INTID. Writing 0 has no effect.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

310

Chapter 9. System registers
9.4. PPI registers

ACTIVE<x> Meaning

0b0 Inactive

0b1 Active

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• Access is RAZ/WI if all of the following are true:

– !IsPPIAssignedToCurrentDomain((n * 64) + x)
– PSTATE.EL IN {EL2, EL1}

• Otherwise, access to this field is W1C

Accessing ICC_PPI_CACTIVER<n>_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_CACTIVER<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b00:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_ACTIVERn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_CACTIVER_EL1[n];
else

X[t, 64] = ICC_PPI_CACTIVER_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_CACTIVER_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_CACTIVER_EL1[n];

MSR ICC_PPI_CACTIVER<n>_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b00:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

311

Chapter 9. System registers
9.4. PPI registers

elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PPI_ACTIVERn_EL1 == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
ICV_PPI_CACTIVER_EL1[n] = X[t, 64];

else
ICC_PPI_CACTIVER_EL1[n] = X[t, 64];

elsif PSTATE.EL == EL2 then
ICC_PPI_CACTIVER_EL1[n] = X[t, 64];

elsif PSTATE.EL == EL3 then
ICC_PPI_CACTIVER_EL1[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

312

Chapter 9. System registers
9.4. PPI registers

9.4.2 ICC_PPI_CPENDR<n>_EL1, Interrupt Controller Physical PPI Clear Pending State Regis-
ters, n = 0 - 1

The ICC_PPI_CPENDR<n>_EL1 characteristics are:

Purpose

Clear pending state for physical PPIs.

Configuration

AArch64 system register ICC_PPI_CPENDR<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICC_PPI_SPENDR<n>_EL1[63:0].

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_PPI_CPENDR<n>_EL1 are UNDEFINED.

Attributes

ICC_PPI_CPENDR<n>_EL1 is a 64-bit register.

Field descriptions
The ICC_PPI_CPENDR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

PEND63
PEND62

PEND61
PEND60

PEND59
PEND58

PEND57
PEND56

PEND55
PEND54

PEND53
PEND52

PEND51
PEND50

PEND49
PEND48

PEND32
PEND33

PEND34
PEND35

PEND36
PEND37

PEND38
PEND39

PEND40
PEND41

PEND42
PEND43

PEND44
PEND45

PEND46
PEND47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEND31
PEND30

PEND29
PEND28

PEND27
PEND26

PEND25
PEND24

PEND23
PEND22

PEND21
PEND20

PEND19
PEND18

PEND17
PEND16

PEND0
PEND1

PEND2
PEND3

PEND4
PEND5

PEND6
PEND7

PEND8
PEND9

PEND10
PEND11

PEND12
PEND13

PEND14
PEND15

PEND<x>, bits [x], for x = 63 to 0

Controls the Pending state of PPIs.

Reads return the current state of the INTIDs.

Writing 1 to a field clears the Pending state of the corresponding INTID. Writing 0 has no effect.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

313

Chapter 9. System registers
9.4. PPI registers

PEND<x> Meaning

0b0 Not pending

0b1 Pending

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• Access is RAZ/WI if all of the following are true:

– !IsPPIAssignedToCurrentDomain((n * 64) + x)
– PSTATE.EL IN {EL2, EL1}

• When ICC_PPI_HMR<n>_EL1.HM<x> == 1, access to this field is RO
• Otherwise, access to this field is W1C

Accessing ICC_PPI_CPENDR<n>_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_CPENDR<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b10:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_PENDRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_CPENDR_EL1[n];
else

X[t, 64] = ICC_PPI_CPENDR_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_CPENDR_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_CPENDR_EL1[n];

MSR ICC_PPI_CPENDR<n>_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b10:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

314

Chapter 9. System registers
9.4. PPI registers

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PPI_PENDRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_PPI_CPENDR_EL1[n] = X[t, 64];
else

ICC_PPI_CPENDR_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL2 then

ICC_PPI_CPENDR_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICC_PPI_CPENDR_EL1[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

315

Chapter 9. System registers
9.4. PPI registers

9.4.3 ICC_PPI_DOMAINR<n>_EL3, Interrupt Controller PPI Domain Registers, n = 0 - 3

The ICC_PPI_DOMAINR<n>_EL3 characteristics are:

Purpose

Controls which Interrupt Domain PPI sources are assigned to.

Configuration

This register is present only when FEAT_GCIE is implemented and EL3 is implemented. Otherwise,
direct accesses to ICC_PPI_DOMAINR<n>_EL3 are UNDEFINED.

Attributes

ICC_PPI_DOMAINR<n>_EL3 is a 64-bit register.

Field descriptions
The ICC_PPI_DOMAINR<n>_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

DOM31
DOM30

DOM29
DOM28

DOM27
DOM26

DOM25
DOM24

DOM16
DOM17

DOM18
DOM19

DOM20
DOM21

DOM22
DOM23

31 30 29 28 27 26 25 24 23 22 21 20

DOM9

19 18

DOM8

17 16

DOM7

15 14

DOM6

13 12

DOM5

11 10

DOM4

9 8

DOM3

7 6

DOM2

5 4

DOM1

3 2

DOM0

1 0

DOM15
DOM14

DOM13

DOM10
DOM11

DOM12

DOM<x>, bits [2x+1:2x], for x = 31 to 0

Controls the Physical Interrupt Domain that a PPI is assigned to.

Encodings for unimplemented Interrupt Domains are reserved.

DOM<x> Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 32) + x)
• Otherwise, access to this field is RW

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

316

Chapter 9. System registers
9.4. PPI registers

Accessing ICC_PPI_DOMAINR<n>_EL3
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_DOMAINR<n>_EL3

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b1000 0b1:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
X[t, 64] = ICC_PPI_DOMAINR_EL3[n];

MSR ICC_PPI_DOMAINR<n>_EL3, <Xt>

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b1000 0b1:n[1:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
ICC_PPI_DOMAINR_EL3[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

317

Chapter 9. System registers
9.4. PPI registers

9.4.4 ICC_PPI_ENABLER<n>_EL1, Interrupt Controller Physical PPI Enable Registers, n = 0 - 1

The ICC_PPI_ENABLER<n>_EL1 characteristics are:

Purpose

Access to Enable state for physical PPIs.

Configuration

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_PPI_ENABLER<n>_EL1 are UNDEFINED.

Attributes

ICC_PPI_ENABLER<n>_EL1 is a 64-bit register.

Field descriptions
The ICC_PPI_ENABLER<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

EN63
EN62

EN61
EN60

EN59
EN58

EN57
EN56

EN55
EN54

EN53
EN52

EN51
EN50

EN49
EN48

EN32
EN33

EN34
EN35

EN36
EN37

EN38
EN39

EN40
EN41

EN42
EN43

EN44
EN45

EN46
EN47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN31
EN30

EN29
EN28

EN27
EN26

EN25
EN24

EN23
EN22

EN21
EN20

EN19
EN18

EN17
EN16

EN0
EN1

EN2
EN3

EN4
EN5

EN6
EN7

EN8
EN9

EN10
EN11

EN12
EN13

EN14
EN15

EN<x>, bits [x], for x = 63 to 0

Configures whether PPIs are enabled.

Reads return the current state of the INTID.

EN<x> Meaning

0b0 Disabled

0b1 Enabled

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

318

Chapter 9. System registers
9.4. PPI registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• Access is RAZ/WI if all of the following are true:

– !IsPPIAssignedToCurrentDomain((n * 64) + x)
– PSTATE.EL IN {EL2, EL1}

• Otherwise, access to this field is RW

Accessing ICC_PPI_ENABLER<n>_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_ENABLER<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1010 0b11:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_ENABLERn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_ENABLER_EL1[n];
else

X[t, 64] = ICC_PPI_ENABLER_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_ENABLER_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_ENABLER_EL1[n];

MSR ICC_PPI_ENABLER<n>_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1010 0b11:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PPI_ENABLERn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_PPI_ENABLER_EL1[n] = X[t, 64];
else

ICC_PPI_ENABLER_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL2 then

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

319

Chapter 9. System registers
9.4. PPI registers

ICC_PPI_ENABLER_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICC_PPI_ENABLER_EL1[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

320

Chapter 9. System registers
9.4. PPI registers

9.4.5 ICC_PPI_HMR<n>_EL1, Interrupt Controller Physical PPI Handling mode Registers, n = 0
- 1

The ICC_PPI_HMR<n>_EL1 characteristics are:

Purpose

Report whether physical PPIs are Edge or Level.

Configuration

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_PPI_HMR<n>_EL1 are UNDEFINED.

Attributes

ICC_PPI_HMR<n>_EL1 is a 64-bit register.

Field descriptions
The ICC_PPI_HMR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

HM63
HM62

HM61
HM60

HM59
HM58

HM57
HM56

HM55
HM54

HM53
HM52

HM51
HM50

HM49
HM48

HM32
HM33

HM34
HM35

HM36
HM37

HM38
HM39

HM40
HM41

HM42
HM43

HM44
HM45

HM46
HM47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HM31
HM30

HM29
HM28

HM27
HM26

HM25
HM24

HM23
HM22

HM21
HM20

HM19
HM18

HM17
HM16

HM0
HM1

HM2
HM3

HM4
HM5

HM6
HM7

HM8
HM9

HM10
HM11

HM12
HM13

HM14
HM15

HM<x>, bits [x], for x = 63 to 0

The PPI Handling mode.

HM<x> Meaning

0b0 Edge

0b1 Level

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

321

Chapter 9. System registers
9.4. PPI registers

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• Otherwise, access to this field is RO

Accessing ICC_PPI_HMR<n>_EL1
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_HMR<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1010 0b00:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_HMRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_HMR_EL1[n];
else

X[t, 64] = ICC_PPI_HMR_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_HMR_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_HMR_EL1[n];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

322

Chapter 9. System registers
9.4. PPI registers

9.4.6 ICC_PPI_PRIORITYR<n>_EL1, Interrupt Controller Physical PPI Priority Registers, n = 0 -
15

The ICC_PPI_PRIORITYR<n>_EL1 characteristics are:

Purpose

Configures the priority of physical PPIs.

Configuration

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_PPI_PRIORITYR<n>_EL1 are UNDEFINED.

Attributes

ICC_PPI_PRIORITYR<n>_EL1 is a 64-bit register.

Field descriptions
The ICC_PPI_PRIORITYR<n>_EL1 bit assignments are:

RES0

63 61

PRIORITY7

60 56

RES0

55 53

PRIORITY6

52 48

RES0

47 45

PRIORITY5

44 40

RES0

39 37

PRIORITY4

36 32

RES0

31 29

PRIORITY3

28 24

RES0

23 21

PRIORITY2

20 16

RES0

15 13

PRIORITY1

12 8

RES0

7 5

PRIORITY0

4 0

Bits [63:61, 55:53, 47:45, 39:37, 31:29, 23:21, 15:13, 7:5]

Reserved, RES0.

PRIORITY<x>, bits [60:56, 52:48, 44:40, 36:32, 28:24, 20:16, 12:8, 4:0], for x = 7 to 0, where each field is
5 bits wide

Configures the priority of the corresponding PPI.

Only the upper N bits of each 5-bit Priority field are implemented where N = (ICC_IDR0_EL1.PRI_BITS + 1).
Unimplemented bits are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 8) + x)
• Access is RAZ/WI if all of the following are true:

– !IsPPIAssignedToCurrentDomain((n * 8) + x)
– PSTATE.EL IN {EL2, EL1}

• Otherwise, access to this field is RW

Accessing ICC_PPI_PRIORITYR<n>_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_PRIORITYR<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b111:n[3] n[2:0]

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

323

Chapter 9. System registers
9.4. PPI registers

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_PRIORITYRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_PRIORITYR_EL1[n];
else

X[t, 64] = ICC_PPI_PRIORITYR_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_PRIORITYR_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_PRIORITYR_EL1[n];

MSR ICC_PPI_PRIORITYR<n>_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b111:n[3] n[2:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PPI_PRIORITYRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_PPI_PRIORITYR_EL1[n] = X[t, 64];
else

ICC_PPI_PRIORITYR_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL2 then

ICC_PPI_PRIORITYR_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICC_PPI_PRIORITYR_EL1[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

324

Chapter 9. System registers
9.4. PPI registers

9.4.7 ICC_PPI_SACTIVER<n>_EL1, Interrupt Controller Physical PPI Set Active Registers, n =
0 - 1

The ICC_PPI_SACTIVER<n>_EL1 characteristics are:

Purpose

Set Active state for physical PPIs.

Configuration

AArch64 system register ICC_PPI_SACTIVER<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICC_PPI_CACTIVER<n>_EL1[63:0].

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_PPI_SACTIVER<n>_EL1 are UNDEFINED.

Attributes

ICC_PPI_SACTIVER<n>_EL1 is a 64-bit register.

Field descriptions
The ICC_PPI_SACTIVER<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ACTIVE63
ACTIVE62

ACTIVE61
ACTIVE60

ACTIVE59
ACTIVE58

ACTIVE57
ACTIVE56

ACTIVE55
ACTIVE54

ACTIVE53
ACTIVE52

ACTIVE51
ACTIVE50

ACTIVE49
ACTIVE48

ACTIVE32
ACTIVE33

ACTIVE34
ACTIVE35

ACTIVE36
ACTIVE37

ACTIVE38
ACTIVE39

ACTIVE40
ACTIVE41

ACTIVE42
ACTIVE43

ACTIVE44
ACTIVE45

ACTIVE46
ACTIVE47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACTIVE31
ACTIVE30

ACTIVE29
ACTIVE28

ACTIVE27
ACTIVE26

ACTIVE25
ACTIVE24

ACTIVE23
ACTIVE22

ACTIVE21
ACTIVE20

ACTIVE19
ACTIVE18

ACTIVE17
ACTIVE16

ACTIVE0
ACTIVE1

ACTIVE2
ACTIVE3

ACTIVE4
ACTIVE5

ACTIVE6
ACTIVE7

ACTIVE8
ACTIVE9

ACTIVE10
ACTIVE11

ACTIVE12
ACTIVE13

ACTIVE14
ACTIVE15

ACTIVE<x>, bits [x], for x = 63 to 0

Configures whether PPIs are Active.

Reads return the Active state of the INTID.

Writing 1 sets the Active state of the INTID. Writing 0 has no effect.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

325

Chapter 9. System registers
9.4. PPI registers

ACTIVE<x> Meaning

0b0 Inactive

0b1 Active

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• Access is RAZ/WI if all of the following are true:

– !IsPPIAssignedToCurrentDomain((n * 64) + x)
– PSTATE.EL IN {EL2, EL1}

• Otherwise, access to this field is W1S

Accessing ICC_PPI_SACTIVER<n>_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_SACTIVER<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b01:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_ACTIVERn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_SACTIVER_EL1[n];
else

X[t, 64] = ICC_PPI_SACTIVER_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_SACTIVER_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_SACTIVER_EL1[n];

MSR ICC_PPI_SACTIVER<n>_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b01:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

326

Chapter 9. System registers
9.4. PPI registers

elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PPI_ACTIVERn_EL1 == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
ICV_PPI_SACTIVER_EL1[n] = X[t, 64];

else
ICC_PPI_SACTIVER_EL1[n] = X[t, 64];

elsif PSTATE.EL == EL2 then
ICC_PPI_SACTIVER_EL1[n] = X[t, 64];

elsif PSTATE.EL == EL3 then
ICC_PPI_SACTIVER_EL1[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

327

Chapter 9. System registers
9.4. PPI registers

9.4.8 ICC_PPI_SPENDR<n>_EL1, Interrupt Controller Physical PPI Set Pending State Registers,
n = 0 - 1

The ICC_PPI_SPENDR<n>_EL1 characteristics are:

Purpose

Set pending state for Physical PPIs.

Configuration

AArch64 system register ICC_PPI_SPENDR<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICC_PPI_CPENDR<n>_EL1[63:0].

This register is present only when FEAT_GCIE is implemented. Otherwise, direct accesses to
ICC_PPI_SPENDR<n>_EL1 are UNDEFINED.

Attributes

ICC_PPI_SPENDR<n>_EL1 is a 64-bit register.

Field descriptions
The ICC_PPI_SPENDR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

PEND63
PEND62

PEND61
PEND60

PEND59
PEND58

PEND57
PEND56

PEND55
PEND54

PEND53
PEND52

PEND51
PEND50

PEND49
PEND48

PEND32
PEND33

PEND34
PEND35

PEND36
PEND37

PEND38
PEND39

PEND40
PEND41

PEND42
PEND43

PEND44
PEND45

PEND46
PEND47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEND31
PEND30

PEND29
PEND28

PEND27
PEND26

PEND25
PEND24

PEND23
PEND22

PEND21
PEND20

PEND19
PEND18

PEND17
PEND16

PEND0
PEND1

PEND2
PEND3

PEND4
PEND5

PEND6
PEND7

PEND8
PEND9

PEND10
PEND11

PEND12
PEND13

PEND14
PEND15

PEND<x>, bits [x], for x = 63 to 0

Controls the Pending state of PPIs.

Reads return the current state of the INTIDs.

Writing 1 to a field sets the Pending state of the corresponding INTID. Writing 0 has no effect.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

328

Chapter 9. System registers
9.4. PPI registers

PEND<x> Meaning

0b0 Not pending

0b1 Pending

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• Access is RAZ/WI if all of the following are true:

– !IsPPIAssignedToCurrentDomain((n * 64) + x)
– PSTATE.EL IN {EL2, EL1}

• When ICC_PPI_HMR<n>_EL1.HM<x> == 1, access to this field is RO
• Otherwise, access to this field is W1S

Accessing ICC_PPI_SPENDR<n>_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_SPENDR<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b11:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_PENDRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_SPENDR_EL1[n];
else

X[t, 64] = ICC_PPI_SPENDR_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_SPENDR_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_SPENDR_EL1[n];

MSR ICC_PPI_SPENDR<n>_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b11:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

329

Chapter 9. System registers
9.4. PPI registers

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PPI_PENDRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_PPI_SPENDR_EL1[n] = X[t, 64];
else

ICC_PPI_SPENDR_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL2 then

ICC_PPI_SPENDR_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICC_PPI_SPENDR_EL1[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

330

Chapter 9. System registers
9.5. Virtual PPI registers

9.5 Virtual PPI registers

IQCYQL Each ICC_PPI_ system register which is accessible at EL1 has a corresponding virtual ICV_PPI_ register. The
ICV_PPI_ registers are accessed using the same system register encodings as their ICC_PPI_ counterparts.

Configuration and state of virtual PPIs.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

331

Chapter 9. System registers
9.5. Virtual PPI registers

9.5.1 ICV_PPI_CACTIVER<n>_EL1, Interrupt Controller Virtual PPI Clear Active Registers, n =
0 - 1

The ICV_PPI_CACTIVER<n>_EL1 characteristics are:

Purpose

Clear Active state for virtual PPIs.

Configuration

AArch64 system register ICV_PPI_CACTIVER<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICH_PPI_ACTIVER<n>_EL2[63:0].

AArch64 system register ICV_PPI_CACTIVER<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICV_PPI_SACTIVER<n>_EL1[63:0].

This register is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to ICV_PPI_CACTIVER<n>_EL1 are UNDEFINED.

Attributes

ICV_PPI_CACTIVER<n>_EL1 is a 64-bit register.

Field descriptions
The ICV_PPI_CACTIVER<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ACTIVE63
ACTIVE62

ACTIVE61
ACTIVE60

ACTIVE59
ACTIVE58

ACTIVE57
ACTIVE56

ACTIVE55
ACTIVE54

ACTIVE53
ACTIVE52

ACTIVE51
ACTIVE50

ACTIVE49
ACTIVE48

ACTIVE32
ACTIVE33

ACTIVE34
ACTIVE35

ACTIVE36
ACTIVE37

ACTIVE38
ACTIVE39

ACTIVE40
ACTIVE41

ACTIVE42
ACTIVE43

ACTIVE44
ACTIVE45

ACTIVE46
ACTIVE47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACTIVE31
ACTIVE30

ACTIVE29
ACTIVE28

ACTIVE27
ACTIVE26

ACTIVE25
ACTIVE24

ACTIVE23
ACTIVE22

ACTIVE21
ACTIVE20

ACTIVE19
ACTIVE18

ACTIVE17
ACTIVE16

ACTIVE0
ACTIVE1

ACTIVE2
ACTIVE3

ACTIVE4
ACTIVE5

ACTIVE6
ACTIVE7

ACTIVE8
ACTIVE9

ACTIVE10
ACTIVE11

ACTIVE12
ACTIVE13

ACTIVE14
ACTIVE15

ACTIVE<x>, bits [x], for x = 63 to 0

Configures whether PPIs are Active.

Reads return the Active state of the INTID.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

332

Chapter 9. System registers
9.5. Virtual PPI registers

Writing 1 clears the Active state of the INTID. Writing 0 has no effect.

ACTIVE<x> Meaning

0b0 Inactive

0b1 Active

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• Otherwise, access to this field is W1C

Accessing ICV_PPI_CACTIVER<n>_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_CACTIVER<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b00:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_ACTIVERn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_CACTIVER_EL1[n];
else

X[t, 64] = ICC_PPI_CACTIVER_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_CACTIVER_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_CACTIVER_EL1[n];

MSR ICC_PPI_CACTIVER<n>_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b00:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PPI_ACTIVERn_EL1 == '0' then

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

333

Chapter 9. System registers
9.5. Virtual PPI registers

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_PPI_CACTIVER_EL1[n] = X[t, 64];
else

ICC_PPI_CACTIVER_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL2 then

ICC_PPI_CACTIVER_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICC_PPI_CACTIVER_EL1[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

334

Chapter 9. System registers
9.5. Virtual PPI registers

9.5.2 ICV_PPI_CPENDR<n>_EL1, Interrupt Controller Virtual PPI Clear Pending State Registers,
n = 0 - 1

The ICV_PPI_CPENDR<n>_EL1 characteristics are:

Purpose

Clear pending state for virtual PPIs.

Configuration

AArch64 system register ICV_PPI_CPENDR<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICH_PPI_PENDR<n>_EL2[63:0].

AArch64 system register ICV_PPI_CPENDR<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICV_PPI_SPENDR<n>_EL1[63:0].

This register is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to ICV_PPI_CPENDR<n>_EL1 are UNDEFINED.

Attributes

ICV_PPI_CPENDR<n>_EL1 is a 64-bit register.

Field descriptions
The ICV_PPI_CPENDR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

PEND63
PEND62

PEND61
PEND60

PEND59
PEND58

PEND57
PEND56

PEND55
PEND54

PEND53
PEND52

PEND51
PEND50

PEND49
PEND48

PEND32
PEND33

PEND34
PEND35

PEND36
PEND37

PEND38
PEND39

PEND40
PEND41

PEND42
PEND43

PEND44
PEND45

PEND46
PEND47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEND31
PEND30

PEND29
PEND28

PEND27
PEND26

PEND25
PEND24

PEND23
PEND22

PEND21
PEND20

PEND19
PEND18

PEND17
PEND16

PEND0
PEND1

PEND2
PEND3

PEND4
PEND5

PEND6
PEND7

PEND8
PEND9

PEND10
PEND11

PEND12
PEND13

PEND14
PEND15

PEND<x>, bits [x], for x = 63 to 0

Controls the Pending state of PPIs.

Reads return the current state of the INTIDs.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

335

Chapter 9. System registers
9.5. Virtual PPI registers

Writing 1 to a field clears the Pending state of the corresponding INTID. Writing 0 has no effect.

PEND<x> Meaning

0b0 Not pending

0b1 Pending

When the Pending state of a physical PPI is directly injected to the Pending state of virtual PPI <x>, all of the
following are true:

• Reads of Pend<x> return the value of the field corresponding to the physical PPI in ICC_PPI_CPENDR<n>_EL1.

• Writes to Pend<x> have the same effect as writes to the field corresponding to the physical PPI in
ICC_PPI_CPENDR<n>_EL1.

Otherwise, all of the following are true:

• Reads of Pend<x> return the value of ICH_PPI_PENDR<n>_EL2.Pend<x>.

• Writes to Pend<x> update the value of ICH_PPI_PENDR<n>_EL2.Pend<x>.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• When ICV_PPI_HMR<n>_EL1.HM<x> == 1, access to this field is RO
• Otherwise, access to this field is W1C

Accessing ICV_PPI_CPENDR<n>_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_CPENDR<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b10:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_PENDRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_CPENDR_EL1[n];
else

X[t, 64] = ICC_PPI_CPENDR_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_CPENDR_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_CPENDR_EL1[n];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

336

Chapter 9. System registers
9.5. Virtual PPI registers

MSR ICC_PPI_CPENDR<n>_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b10:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PPI_PENDRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_PPI_CPENDR_EL1[n] = X[t, 64];
else

ICC_PPI_CPENDR_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL2 then

ICC_PPI_CPENDR_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICC_PPI_CPENDR_EL1[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

337

Chapter 9. System registers
9.5. Virtual PPI registers

9.5.3 ICV_PPI_ENABLER<n>_EL1, Interrupt Controller Virtual PPI Clear Enable Registers, n =
0 - 1

The ICV_PPI_ENABLER<n>_EL1 characteristics are:

Purpose

Access to Enabled state for virtual PPIs.

Configuration

AArch64 system register ICV_PPI_ENABLER<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICH_PPI_ENABLER<n>_EL2[63:0].

This register is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to ICV_PPI_ENABLER<n>_EL1 are UNDEFINED.

Attributes

ICV_PPI_ENABLER<n>_EL1 is a 64-bit register.

Field descriptions
The ICV_PPI_ENABLER<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

EN63
EN62

EN61
EN60

EN59
EN58

EN57
EN56

EN55
EN54

EN53
EN52

EN51
EN50

EN49
EN48

EN32
EN33

EN34
EN35

EN36
EN37

EN38
EN39

EN40
EN41

EN42
EN43

EN44
EN45

EN46
EN47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN31
EN30

EN29
EN28

EN27
EN26

EN25
EN24

EN23
EN22

EN21
EN20

EN19
EN18

EN17
EN16

EN0
EN1

EN2
EN3

EN4
EN5

EN6
EN7

EN8
EN9

EN10
EN11

EN12
EN13

EN14
EN15

EN<x>, bits [x], for x = 63 to 0

Configures whether PPIs are enabled.

Reads return the current state of the INTID.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

338

Chapter 9. System registers
9.5. Virtual PPI registers

EN<x> Meaning

0b0 Disabled

0b1 Enabled

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• Otherwise, access to this field is RW

Accessing ICV_PPI_ENABLER<n>_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_ENABLER<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1010 0b11:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_ENABLERn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_ENABLER_EL1[n];
else

X[t, 64] = ICC_PPI_ENABLER_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_ENABLER_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_ENABLER_EL1[n];

MSR ICC_PPI_ENABLER<n>_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1010 0b11:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PPI_ENABLERn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

339

Chapter 9. System registers
9.5. Virtual PPI registers

ICV_PPI_ENABLER_EL1[n] = X[t, 64];
else

ICC_PPI_ENABLER_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL2 then

ICC_PPI_ENABLER_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICC_PPI_ENABLER_EL1[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

340

Chapter 9. System registers
9.5. Virtual PPI registers

9.5.4 ICV_PPI_HMR<n>_EL1, Interrupt Controller Virtual PPI Handling mode Registers, n = 0 -
1

The ICV_PPI_HMR<n>_EL1 characteristics are:

Purpose

Report whether virtual PPIs are Edge or Level.

Configuration

This register is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to ICV_PPI_HMR<n>_EL1 are UNDEFINED.

Attributes

ICV_PPI_HMR<n>_EL1 is a 64-bit register.

Field descriptions
The ICV_PPI_HMR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

HM63
HM62

HM61
HM60

HM59
HM58

HM57
HM56

HM55
HM54

HM53
HM52

HM51
HM50

HM49
HM48

HM32
HM33

HM34
HM35

HM36
HM37

HM38
HM39

HM40
HM41

HM42
HM43

HM44
HM45

HM46
HM47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HM31
HM30

HM29
HM28

HM27
HM26

HM25
HM24

HM23
HM22

HM21
HM20

HM19
HM18

HM17
HM16

HM0
HM1

HM2
HM3

HM4
HM5

HM6
HM7

HM8
HM9

HM10
HM11

HM12
HM13

HM14
HM15

HM<x>, bits [x], for x = 63 to 0

The PPI Handling mode.

HM<x> Meaning

0b0 Edge

0b1 Level

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

341

Chapter 9. System registers
9.5. Virtual PPI registers

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• Otherwise, access to this field is RO

Accessing ICV_PPI_HMR<n>_EL1
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_HMR<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1010 0b00:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_HMRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_HMR_EL1[n];
else

X[t, 64] = ICC_PPI_HMR_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_HMR_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_HMR_EL1[n];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

342

Chapter 9. System registers
9.5. Virtual PPI registers

9.5.5 ICV_PPI_PRIORITYR<n>_EL1, Interrupt Controller Virtual PPI Priority Registers, n = 0 -
15

The ICV_PPI_PRIORITYR<n>_EL1 characteristics are:

Purpose

Configures the priority of virtual PPIs.

Configuration

AArch64 system register ICV_PPI_PRIORITYR<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICH_PPI_PRIORITYR<n>_EL2[63:0].

This register is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to ICV_PPI_PRIORITYR<n>_EL1 are UNDEFINED.

Attributes

ICV_PPI_PRIORITYR<n>_EL1 is a 64-bit register.

Field descriptions
The ICV_PPI_PRIORITYR<n>_EL1 bit assignments are:

RES0

63 61

PRIORITY7

60 56

RES0

55 53

PRIORITY6

52 48

RES0

47 45

PRIORITY5

44 40

RES0

39 37

PRIORITY4

36 32

RES0

31 29

PRIORITY3

28 24

RES0

23 21

PRIORITY2

20 16

RES0

15 13

PRIORITY1

12 8

RES0

7 5

PRIORITY0

4 0

Bits [63:61, 55:53, 47:45, 39:37, 31:29, 23:21, 15:13, 7:5]

Reserved, RES0.

PRIORITY<x>, bits [60:56, 52:48, 44:40, 36:32, 28:24, 20:16, 12:8, 4:0], for x = 7 to 0, where each field is
5 bits wide

Configures the priority of the corresponding PPI.

Only the upper N bits of each 5-bit Priority field are implemented where N = (ICC_IDR0_EL1.PRI_BITS + 1).
Unimplemented bits are RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 8) + x)
• Otherwise, access to this field is RW

Accessing ICV_PPI_PRIORITYR<n>_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_PRIORITYR<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b111:n[3] n[2:0]

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

343

Chapter 9. System registers
9.5. Virtual PPI registers

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_PRIORITYRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_PRIORITYR_EL1[n];
else

X[t, 64] = ICC_PPI_PRIORITYR_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_PRIORITYR_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_PRIORITYR_EL1[n];

MSR ICC_PPI_PRIORITYR<n>_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b111:n[3] n[2:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PPI_PRIORITYRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_PPI_PRIORITYR_EL1[n] = X[t, 64];
else

ICC_PPI_PRIORITYR_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL2 then

ICC_PPI_PRIORITYR_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICC_PPI_PRIORITYR_EL1[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

344

Chapter 9. System registers
9.5. Virtual PPI registers

9.5.6 ICV_PPI_SACTIVER<n>_EL1, Interrupt Controller Virtual PPI Set Active Registers, n = 0 -
1

The ICV_PPI_SACTIVER<n>_EL1 characteristics are:

Purpose

Set Active state for virtual PPIs.

Configuration

AArch64 system register ICV_PPI_SACTIVER<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICH_PPI_ACTIVER<n>_EL2[63:0].

AArch64 system register ICV_PPI_SACTIVER<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICV_PPI_CACTIVER<n>_EL1[63:0].

This register is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to ICV_PPI_SACTIVER<n>_EL1 are UNDEFINED.

Attributes

ICV_PPI_SACTIVER<n>_EL1 is a 64-bit register.

Field descriptions
The ICV_PPI_SACTIVER<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ACTIVE63
ACTIVE62

ACTIVE61
ACTIVE60

ACTIVE59
ACTIVE58

ACTIVE57
ACTIVE56

ACTIVE55
ACTIVE54

ACTIVE53
ACTIVE52

ACTIVE51
ACTIVE50

ACTIVE49
ACTIVE48

ACTIVE32
ACTIVE33

ACTIVE34
ACTIVE35

ACTIVE36
ACTIVE37

ACTIVE38
ACTIVE39

ACTIVE40
ACTIVE41

ACTIVE42
ACTIVE43

ACTIVE44
ACTIVE45

ACTIVE46
ACTIVE47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACTIVE31
ACTIVE30

ACTIVE29
ACTIVE28

ACTIVE27
ACTIVE26

ACTIVE25
ACTIVE24

ACTIVE23
ACTIVE22

ACTIVE21
ACTIVE20

ACTIVE19
ACTIVE18

ACTIVE17
ACTIVE16

ACTIVE0
ACTIVE1

ACTIVE2
ACTIVE3

ACTIVE4
ACTIVE5

ACTIVE6
ACTIVE7

ACTIVE8
ACTIVE9

ACTIVE10
ACTIVE11

ACTIVE12
ACTIVE13

ACTIVE14
ACTIVE15

ACTIVE<x>, bits [x], for x = 63 to 0

Configures whether PPIs are Active.

Reads return the Active state of the INTID.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

345

Chapter 9. System registers
9.5. Virtual PPI registers

Writing 1 sets the Active state of the INTID. Writing 0 has no effect.

ACTIVE<x> Meaning

0b0 Inactive

0b1 Active

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• Otherwise, access to this field is W1S

Accessing ICV_PPI_SACTIVER<n>_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_SACTIVER<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b01:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_ACTIVERn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_SACTIVER_EL1[n];
else

X[t, 64] = ICC_PPI_SACTIVER_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_SACTIVER_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_SACTIVER_EL1[n];

MSR ICC_PPI_SACTIVER<n>_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b01:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PPI_ACTIVERn_EL1 == '0' then

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

346

Chapter 9. System registers
9.5. Virtual PPI registers

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_PPI_SACTIVER_EL1[n] = X[t, 64];
else

ICC_PPI_SACTIVER_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL2 then

ICC_PPI_SACTIVER_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICC_PPI_SACTIVER_EL1[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

347

Chapter 9. System registers
9.5. Virtual PPI registers

9.5.7 ICV_PPI_SPENDR<n>_EL1, Interrupt Controller Virtual PPI Set Pending State Registers,
n = 0 - 1

The ICV_PPI_SPENDR<n>_EL1 characteristics are:

Purpose

Set pending state for virtual PPIs.

Configuration

AArch64 system register ICV_PPI_SPENDR<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICH_PPI_PENDR<n>_EL2[63:0].

AArch64 system register ICV_PPI_SPENDR<n>_EL1 bits [63:0] are architecturally mapped to
AArch64 system register ICV_PPI_CPENDR<n>_EL1[63:0].

This register is present only when FEAT_GCIE is implemented and EL2 is implemented. Otherwise,
direct accesses to ICV_PPI_SPENDR<n>_EL1 are UNDEFINED.

Attributes

ICV_PPI_SPENDR<n>_EL1 is a 64-bit register.

Field descriptions
The ICV_PPI_SPENDR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

PEND63
PEND62

PEND61
PEND60

PEND59
PEND58

PEND57
PEND56

PEND55
PEND54

PEND53
PEND52

PEND51
PEND50

PEND49
PEND48

PEND32
PEND33

PEND34
PEND35

PEND36
PEND37

PEND38
PEND39

PEND40
PEND41

PEND42
PEND43

PEND44
PEND45

PEND46
PEND47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEND31
PEND30

PEND29
PEND28

PEND27
PEND26

PEND25
PEND24

PEND23
PEND22

PEND21
PEND20

PEND19
PEND18

PEND17
PEND16

PEND0
PEND1

PEND2
PEND3

PEND4
PEND5

PEND6
PEND7

PEND8
PEND9

PEND10
PEND11

PEND12
PEND13

PEND14
PEND15

PEND<x>, bits [x], for x = 63 to 0

Controls the Pending state of PPIs.

Reads return the current state of the INTIDs.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

348

Chapter 9. System registers
9.5. Virtual PPI registers

Writing 1 to a field sets the Pending state of the corresponding INTID. Writing 0 has no effect.

PEND<x> Meaning

0b0 Not pending

0b1 Pending

When the Pending state of a physical PPI is directly injected to the Pending state of virtual PPI <x>, all of the
following are true:

• Reads of Pend<x> return the value of the field corresponding to the physical PPI in ICC_PPI_SPENDR<n>_EL1.

• Writes to Pend<x> have the same effect as writes to the field corresponding to the physical PPI in
ICC_PPI_SPENDR<n>_EL1.

Otherwise, all of the following are true:

• Reads of Pend<x> return the value of ICH_PPI_PENDR<n>_EL2.Pend<x>.

• Writes to Pend<x> update the value of ICH_PPI_PENDR<n>_EL2.Pend<x>.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• When ICV_PPI_HMR<n>_EL1.HM<x> == 1, access to this field is RO
• Otherwise, access to this field is W1S

Accessing ICV_PPI_SPENDR<n>_EL1
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_PPI_SPENDR<n>_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b11:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGRTR_EL2.ICC_PPI_PENDRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

X[t, 64] = ICV_PPI_SPENDR_EL1[n];
else

X[t, 64] = ICC_PPI_SPENDR_EL1[n];
elsif PSTATE.EL == EL2 then

X[t, 64] = ICC_PPI_SPENDR_EL1[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICC_PPI_SPENDR_EL1[n];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

349

Chapter 9. System registers
9.5. Virtual PPI registers

MSR ICC_PPI_SPENDR<n>_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b1101 0b11:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.IMO == '1' && ICH_VCTLR_EL2.V3 == '1' then

UNDEFINED;
elsif EL2Enabled() && ICH_HFGWTR_EL2.ICC_PPI_PENDRn_EL1 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_PPI_SPENDR_EL1[n] = X[t, 64];
else

ICC_PPI_SPENDR_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL2 then

ICC_PPI_SPENDR_EL1[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICC_PPI_SPENDR_EL1[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

350

Chapter 9. System registers
9.6. Hypervisor control registers

9.6 Hypervisor control registers

Registers to manage operation of the GICv5 and Legacy virtual CPU interface.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

351

Chapter 9. System registers
9.6. Hypervisor control registers

9.6.1 ICH_APR_EL2, Interrupt Controller Active Virtual Priorities Register

The ICH_APR_EL2 characteristics are:

Purpose

Records active priorities for the virtual interrupt domain.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

AArch64 system register ICH_APR_EL2 bits [63:0] are architecturally mapped to AArch64 system
register ICV_APR_EL1[63:0].

This register is present only when FEAT_GCIE is implemented and (EL2 is implemented or EL3 is
implemented). Otherwise, direct accesses to ICH_APR_EL2 are UNDEFINED.

Attributes

ICH_APR_EL2 is a 64-bit register.

Field descriptions
The ICH_APR_EL2 bit assignments are:

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20

Bits [63:32]

Reserved, RES0.

P<x>, bits [x], for x = 31 to 0

Provides access to the active virtual priorities.

P<x> Meaning

0b0 Priority not active

0b1 Priority active

This field is an alias of the equivalent field in ICV_APR_EL1.

Accessing this field has the following behavior:

• Access is RES0 if all of the following are true:
– x MOD 2 == 1
– ICC_IDR0_EL1.PRI_BITS == 0b011

• Otherwise, access to this field is RW

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

352

Chapter 9. System registers
9.6. Hypervisor control registers

Accessing ICH_APR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_APR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1000 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0xB00];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICH_APR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = ICH_APR_EL2;

MSR ICH_APR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1000 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0xB00] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ICH_APR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

ICH_APR_EL2 = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

353

Chapter 9. System registers
9.6. Hypervisor control registers

9.6.2 ICH_CONTEXTR_EL2, Interrupt Controller Virtual Context Register

The ICH_CONTEXTR_EL2 characteristics are:

Purpose

Selects the current resident VPE.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register is present only when FEAT_GCIE is implemented and (EL2 is implemented or EL3 is
implemented). Otherwise, direct accesses to ICH_CONTEXTR_EL2 are UNDEFINED.

Attributes

ICH_CONTEXTR_EL2 is a 64-bit register.

Field descriptions
The ICH_CONTEXTR_EL2 bit assignments are:

V

63

F

62 61

DB

60

DBPM

59 55

RES0

54 48

VPE

47 32

IRICHPPIDIS

RES0

31 16

VM

15 0

V, bit [63]

Indicates whether a VPE is currently resident.

If EL2 is not enabled in the Security state identified by SCR_EL3.{NSE,NS}, the Effective value of this field is 0.

V Meaning

0b0 No VPE is resident.

0b1 A VPE is resident.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

F, bit [62]

Indicates whether the last write that set V to 1 succeeded in making a VPE resident.

F Meaning

0b0 Success

0b1 Fault

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

354

Chapter 9. System registers
9.6. Hypervisor control registers

IRICHPPIDIS, bit [61]

Specifies whether the candidate HPPI presented by the IRI for the resident VPE is considered when selecting the
HPPI for the Virtual Interrupt Domain.

When V is 0, this field is IGNORED.

IRICHPPIDIS Meaning

0b0 The CPU interface considers both the virtual PPIs and the
candidate HPPI presented by the IRS when determining the
HPPI for the Virtual Interrupt Domain.

0b1 The CPU interface only considers the virtual PPIs when
determining the HPPI for the Virtual Interrupt Domain.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

DB, bit [60]

Specifies whether a doorbell interrupt is requested when making a VPE non-resident.

DB Meaning

0b0 No doorbell requested.

0b1 Doorbell requested.

On a write that changes V from 1 to 0, this field specifies whether a doorbell interrupt is requested for the previously
resident VPE.

For all other writes, and for reads, this field is RES0.

If the current value of SCR_EL3.{NSE,NS} is different from the value at the time the VPE was made resident, this
field behaves as if set to 0.

This field has no effect if EL2 is not enabled in the Security state identified by SCR_EL3.{NSE,NS}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

DBPM, bits [59:55]

Doorbell priority mask.

On writes, when DB is 1, this field specifies the minimum priority for a virtual interrupt to trigger the VPE’s
doorbell.

On writes, when DB is 0, this field is IGNORED.

On reads, this field is UNKNOWN.

This field has no effect if EL2 is not enabled in the Security state identified by SCR_EL3.{NSE,NS}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

355

Chapter 9. System registers
9.6. Hypervisor control registers

Bits [54:48]

Reserved, RES0.

VPE, bits [47:32]

When V is 1, identifies the resident VPE.

When V is 0, this field is IGNORED.

This field has no effect if EL2 is not enabled in the Security state identified by SCR_EL3.{NSE,NS}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Bits [31:16]

Reserved, RES0.

VM, bits [15:0]

When V is 1, identifies the resident VM.

When V is 0, this field is IGNORED.

This field has no effect if EL2 is not enabled in the Security state identified by SCR_EL3.{NSE,NS}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing ICH_CONTEXTR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_CONTEXTR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1011 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0xB08];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICH_CONTEXTR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = ICH_CONTEXTR_EL2;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

356

Chapter 9. System registers
9.6. Hypervisor control registers

MSR ICH_CONTEXTR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1011 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0xB08] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ICH_CONTEXTR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

ICH_CONTEXTR_EL2 = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

357

Chapter 9. System registers
9.6. Hypervisor control registers

9.6.3 ICH_HFGITR_EL2, Hypervisor GIC Fine-Grained Instruction Trap Register

The ICH_HFGITR_EL2 characteristics are:

Purpose

Provides instruction trap controls for GIC System instructions.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register is present only when FEAT_GCIE is implemented and (EL2 is implemented or EL3 is
implemented). Otherwise, direct accesses to ICH_HFGITR_EL2 are UNDEFINED.

Attributes

ICH_HFGITR_EL2 is a 64-bit register.

Field descriptions
The ICH_HFGITR_EL2 bit assignments are:

RES0

63 32

RES0

31 11 10 9 8 7 6 5 4 3 2 1 0

GICRCDNMIA
GICRCDIA

GICCDDI
GICCDEOI

GICCDHM

GICCDEN
GICCDDIS

GICCDPRI
GICCDAFF

GICCDPEND
GICCDRCFG

Bits [63:11]

Reserved, RES0.

GICRCDNMIA, bit [10]

Trap execution of GICR CDNMIA at EL1 to EL2.

GICRCDNMIA Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then execution of GICR CDNMIA at EL1 is trapped to
EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of GICR CDNMIA is not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

GICRCDIA, bit [9]

Trap execution of GICR CDIA at EL1 to EL2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

358

Chapter 9. System registers
9.6. Hypervisor control registers

GICRCDIA Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then execution of GICR CDIA at EL1 is trapped to EL2
and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of GICR CDIA is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

GICCDDI, bit [8]

Trap execution of GIC CDDI at EL1 to EL2.

GICCDDI Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then execution of GIC CDDI at EL1 is trapped to EL2
and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of GIC CDDI is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

GICCDEOI, bit [7]

Trap execution of GIC CDEOI at EL1 to EL2.

GICCDEOI Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then execution of GIC CDEOI at EL1 is trapped to EL2
and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of GIC CDEOI is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

GICCDHM, bit [6]

Trap execution of GIC CDHM at EL1 to EL2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

359

Chapter 9. System registers
9.6. Hypervisor control registers

GICCDHM Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then execution of GIC CDHM at EL1 is trapped to EL2
and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of GIC CDHM is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

GICCDRCFG, bit [5]

Trap execution of GIC CDRCFG at EL1 to EL2.

GICCDRCFG Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then execution of GIC CDRCFG at EL1 is trapped to
EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of GIC CDRCFG is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

GICCDPEND, bit [4]

Trap execution of GIC CDPEND at EL1 to EL2.

GICCDPEND Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then execution of GIC CDPEND at EL1 is trapped to
EL2 and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of GIC CDPEND is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

GICCDAFF, bit [3]

Trap execution of GIC CDAFF at EL1 to EL2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

360

Chapter 9. System registers
9.6. Hypervisor control registers

GICCDAFF Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then execution of GIC CDAFF at EL1 is trapped to EL2
and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of GIC CDAFF is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

GICCDPRI, bit [2]

Trap execution of GIC CDPRI at EL1 to EL2.

GICCDPRI Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then execution of GIC CDPRI at EL1 is trapped to EL2
and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of GIC CDPRI is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

GICCDDIS, bit [1]

Trap execution of GIC CDDIS at EL1 to EL2.

GICCDDIS Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then execution of GIC CDDIS at EL1 is trapped to EL2
and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of GIC CDDIS is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

GICCDEN, bit [0]

Trap execution of GIC CDEN at EL1 to EL2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

361

Chapter 9. System registers
9.6. Hypervisor control registers

GICCDEN Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then execution of GIC CDEN at EL1 is trapped to EL2
and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

0b1 Execution of GIC CDEN is not trapped by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing ICH_HFGITR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_HFGITR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1001 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0xB10];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICH_HFGITR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = ICH_HFGITR_EL2;

MSR ICH_HFGITR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1001 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0xB10] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ICH_HFGITR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

ICH_HFGITR_EL2 = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

362

Chapter 9. System registers
9.6. Hypervisor control registers

9.6.4 ICH_HFGRTR_EL2, Hypervisor GIC Fine-Grained Read Trap Register

The ICH_HFGRTR_EL2 characteristics are:

Purpose

Provides controls for traps of MRS reads of GIC System registers.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register is present only when FEAT_GCIE is implemented and (EL2 is implemented or EL3 is
implemented). Otherwise, direct accesses to ICH_HFGRTR_EL2 are UNDEFINED.

Attributes

ICH_HFGRTR_EL2 is a 64-bit register.

Field descriptions
The ICH_HFGRTR_EL2 bit assignments are:

RES0

63 32

RES0

31 21 20 19 18 17 16

RES0

15 8 7 6 5 4 3 2 1 0

ICC_PPI_ACTIVERn_EL1
ICC_PPI_PRIORITYRn_EL1

ICC_PPI_PENDRn_EL1
ICC_PPI_ENABLERn_EL1

ICC_PPI_HMRn_EL1
ICC_IAFFIDR_EL1

ICC_APR_E
L1

ICC_IDRn_EL
1

ICC_CR0_EL1
ICC_HAPR_EL1

ICC_HPPIR_EL1
ICC_PCR_EL1

ICC_ICSR_EL1

Bits [63:21]

Reserved, RES0.

ICC_PPI_ACTIVERn_EL1, bit [20]

Trap MRS reads of ICC_PPI_CACTIVER<n>_EL1, ICC_PPI_SACTIVER<n>_EL1, ICV_PPI_CACTIVER<n>_EL1
and ICV_PPI_SACTIVER<n>_EL1 at EL1 using AArch64 to EL2.

ICC_PPI_ACTIVERn_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MRS reads of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

363

Chapter 9. System registers
9.6. Hypervisor control registers

ICC_PPI_PRIORITYRn_EL1, bit [19]

Trap MRS reads of ICC_PPI_PRIORITYR<n>_EL1 and ICV_PPI_PRIORITYR<n>_EL1 at EL1 using AArch64
to EL2.

ICC_PPI_PRIORITYRn_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MRS reads of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_PPI_PENDRn_EL1, bit [18]

Trap MRS reads of ICC_PPI_CPENDR<n>_EL1, ICC_PPI_SPENDR<n>_EL1 ICV_PPI_CPENDR<n>_EL1
and ICV_PPI_SPENDR<n>_EL1 at EL1 using AArch64 to EL2.

ICC_PPI_PENDRn_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MRS reads of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_PPI_ENABLERn_EL1, bit [17]

Trap MRS reads of ICC_PPI_ENABLER<n>_EL1 and ICV_PPI_ENABLER<n>_EL1 at EL1 using AArch64 to
EL2.

ICC_PPI_ENABLERn_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MRS reads of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

364

Chapter 9. System registers
9.6. Hypervisor control registers

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_PPI_HMRn_EL1, bit [16]

Trap MRS reads of ICC_PPI_HMR<n>_EL1 and ICV_PPI_HMR<n>_EL1 at EL1 using AArch64 to EL2.

ICC_PPI_HMRn_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MRS reads of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Bits [15:8]

Reserved, RES0.

ICC_IAFFIDR_EL1, bit [7]

Trap MRS reads of ICC_IAFFIDR_EL1 at EL1 using AArch64 to EL2.

ICC_IAFFIDR_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MRS reads of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_ICSR_EL1, bit [6]

Trap MRS reads of ICC_ICSR_EL1 at EL1 using AArch64 to EL2.

ICC_ICSR_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MRS reads of the specified registers are not trapped by this
mechanism.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

365

Chapter 9. System registers
9.6. Hypervisor control registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_PCR_EL1, bit [5]

Trap MRS reads of ICC_PCR_EL1 and ICV_PCR_EL1 at EL1 using AArch64 to EL2.

ICC_PCR_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MRS reads of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_HPPIR_EL1, bit [4]

Trap MRS reads of ICC_HPPIR_EL1 and ICV_HPPIR_EL1 at EL1 using AArch64 to EL2.

ICC_HPPIR_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MRS reads of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_HAPR_EL1, bit [3]

Trap MRS reads of ICC_HAPR_EL1 and ICV_HAPR_EL1 at EL1 using AArch64 to EL2.

ICC_HAPR_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MRS reads of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

366

Chapter 9. System registers
9.6. Hypervisor control registers

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_CR0_EL1, bit [2]

Trap MRS reads of ICC_CR0_EL1 and ICV_CR0_EL1 at EL1 using AArch64 to EL2.

ICC_CR0_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MRS reads of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_IDRn_EL1, bit [1]

Trap MRS reads of ICC_IDR0_EL1 at EL1 using AArch64 to EL2.

ICC_IDRn_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MRS reads of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_APR_EL1, bit [0]

Trap MRS reads of ICC_APR_EL1 and ICV_APR_EL1 at EL1 using AArch64 to EL2.

ICC_APR_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MRS reads of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

367

Chapter 9. System registers
9.6. Hypervisor control registers

Accessing ICH_HFGRTR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_HFGRTR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0xB18];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICH_HFGRTR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = ICH_HFGRTR_EL2;

MSR ICH_HFGRTR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0xB18] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ICH_HFGRTR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

ICH_HFGRTR_EL2 = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

368

Chapter 9. System registers
9.6. Hypervisor control registers

9.6.5 ICH_HFGWTR_EL2, Hypervisor GIC Fine-Grained Write Trap Register

The ICH_HFGWTR_EL2 characteristics are:

Purpose

Provides controls for traps of MSR writes of GIC System registers.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register is present only when FEAT_GCIE is implemented and (EL2 is implemented or EL3 is
implemented). Otherwise, direct accesses to ICH_HFGWTR_EL2 are UNDEFINED.

Attributes

ICH_HFGWTR_EL2 is a 64-bit register.

Field descriptions
The ICH_HFGWTR_EL2 bit assignments are:

RES0

63 32

RES0

31 21 20 19 18 17

RES0

16 7 6 5

RES0

4 3 2 1 0

ICC_PPI_ACTIVERn_EL1
ICC_PPI_PRIORITYRn_EL1

ICC_PPI_PENDRn_EL1
ICC_PPI_ENABLERn_EL1

ICC_APR_E
L1

RES0
ICC_CR0_EL1

ICC_PCR_EL1
ICC_ICSR_EL1

Bits [63:21]

Reserved, RES0.

ICC_PPI_ACTIVERn_EL1, bit [20]

Trap MSR writes of ICC_PPI_CACTIVER<n>_EL1, ICC_PPI_SACTIVER<n>_EL1, ICV_PPI_CACTIVER<n>_EL1
and ICV_PPI_SACTIVER<n>_EL1 at EL1 using AArch64 to EL2.

ICC_PPI_ACTIVERn_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MSR writes of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MSR writes of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_PPI_PRIORITYRn_EL1, bit [19]

Trap MSR writes of ICC_PPI_PRIORITYR<n>_EL1 and ICV_PPI_PRIORITYR<n>_EL1 at EL1 using AArch64
to EL2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

369

Chapter 9. System registers
9.6. Hypervisor control registers

ICC_PPI_PRIORITYRn_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MSR writes of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MSR writes of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_PPI_PENDRn_EL1, bit [18]

Trap MSR writes of ICC_PPI_CPENDR<n>_EL1, ICC_PPI_SPENDR<n>_EL1 ICV_PPI_CPENDR<n>_EL1
and ICV_PPI_SPENDR<n>_EL1 at EL1 using AArch64 to EL2.

ICC_PPI_PENDRn_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MSR writes of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MSR writes of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_PPI_ENABLERn_EL1, bit [17]

Trap MSR writes of ICC_PPI_ENABLER<n>_EL1 and ICV_PPI_ENABLER<n>_EL1 at EL1 using AArch64 to
EL2.

ICC_PPI_ENABLERn_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MSR writes of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MSR writes of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

370

Chapter 9. System registers
9.6. Hypervisor control registers

Bits [16:7]

Reserved, RES0.

ICC_ICSR_EL1, bit [6]

Trap MSR writes of ICC_ICSR_EL1 at EL1 using AArch64 to EL2.

ICC_ICSR_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MSR writes of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MSR writes of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ICC_PCR_EL1, bit [5]

Trap MSR writes of ICC_PCR_EL1 and ICV_PCR_EL1 at EL1 using AArch64 to EL2.

ICC_PCR_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MSR writes of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MSR writes of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Bits [4:3]

Reserved, RES0.

ICC_CR0_EL1, bit [2]

Trap MSR writes of ICC_CR0_EL1 and ICV_CR0_EL1 at EL1 using AArch64 to EL2.

ICC_CR0_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MSR writes of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

371

Chapter 9. System registers
9.6. Hypervisor control registers

ICC_CR0_EL1 Meaning

0b1 MSR writes of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Bit [1]

Reserved, RES0.

ICC_APR_EL1, bit [0]

Trap MSR writes of ICC_APR_EL1 and ICV_APR_EL1 at EL1 using AArch64 to EL2.

ICC_APR_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, then MSR writes of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher priority
exception.

0b1 MSR writes of the specified registers are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing ICH_HFGWTR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_HFGWTR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0xB20];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICH_HFGWTR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = ICH_HFGWTR_EL2;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

372

Chapter 9. System registers
9.6. Hypervisor control registers

MSR ICH_HFGWTR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0xB20] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ICH_HFGWTR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

ICH_HFGWTR_EL2 = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

373

Chapter 9. System registers
9.6. Hypervisor control registers

9.6.6 ICH_HPPIR_EL2, Interrupt Controller Hypervisor Highest Priority Pending Interrupt Reg-
ister

The ICH_HPPIR_EL2 characteristics are:

Purpose

Reports the HPPI for the Virtual Interrupt Domain.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

AArch64 system register ICH_HPPIR_EL2 bits [63:0] are architecturally mapped to AArch64 system
register ICV_HPPIR_EL1[63:0].

This register is present only when FEAT_GCIE is implemented and (EL2 is implemented or EL3 is
implemented). Otherwise, direct accesses to ICH_HPPIR_EL2 are UNDEFINED.

Attributes

ICH_HPPIR_EL2 is a 64-bit register.

Field descriptions
The ICH_HPPIR_EL2 bit assignments are:

RES0

63 33 32

HPPIV

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:33]

Reserved, RES0.

HPPIV, bit [32]

HPPI valid.

There is an HPPI with Sufficient priority for the Interrupt Domain.

HPPIV Meaning

0b0 Invalid: There is no HPPI with Sufficient priority for the
Interrupt Domain.

0b1 VALID: There is an HPPI with Sufficient priority for the
Interrupt Domain.

If ICH_HPPIR_EL2.HPPIV is 1, ID and TYPE together form the INTID of the HPPI for the Interrupt Domain.

TYPE, bits [31:29]

The encoding of this field depends on the value of HPPIV as described below:

• If ICH_HPPIR_EL2.HPPIV is 0, TYPE is RES0.

• If ICH_HPPIR_EL2.HPPIV is 1, TYPE specifies the Type of the interrupt.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

374

Chapter 9. System registers
9.6. Hypervisor control registers

TYPE Meaning

0b001 PPI

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The encoding of this field depends on the value of HPPIV as described below:

• If ICH_HPPIR_EL2.HPPIV is 0, ID is RES0.

• If ICH_HPPIR_EL2.HPPIV is 1, ID specifies the interrupt ID.

Accessing ICH_HPPIR_EL2
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_HPPIR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICH_HPPIR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = ICH_HPPIR_EL2;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

375

Chapter 9. System registers
9.6. Hypervisor control registers

9.6.7 ICH_PPI_ACTIVER<n>_EL2, Interrupt Controller Virtual Interrupt Active Registers, n = 0 -
1

The ICH_PPI_ACTIVER<n>_EL2 characteristics are:

Purpose

Access to Active state for virtual PPIs.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

AArch64 system register ICH_PPI_ACTIVER<n>_EL2 bits [63:0] are architecturally mapped to
AArch64 system register ICV_PPI_CACTIVER<n>_EL1[63:0].

AArch64 system register ICH_PPI_ACTIVER<n>_EL2 bits [63:0] are architecturally mapped to
AArch64 system register ICV_PPI_SACTIVER<n>_EL1[63:0].

This register is present only when FEAT_GCIE is implemented and (EL2 is implemented or EL3 is
implemented). Otherwise, direct accesses to ICH_PPI_ACTIVER<n>_EL2 are UNDEFINED.

Attributes

ICH_PPI_ACTIVER<n>_EL2 is a 64-bit register.

Field descriptions
The ICH_PPI_ACTIVER<n>_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ACTIVE63
ACTIVE62

ACTIVE61
ACTIVE60

ACTIVE59
ACTIVE58

ACTIVE57
ACTIVE56

ACTIVE55
ACTIVE54

ACTIVE53
ACTIVE52

ACTIVE51
ACTIVE50

ACTIVE49
ACTIVE48

ACTIVE32
ACTIVE33

ACTIVE34
ACTIVE35

ACTIVE36
ACTIVE37

ACTIVE38
ACTIVE39

ACTIVE40
ACTIVE41

ACTIVE42
ACTIVE43

ACTIVE44
ACTIVE45

ACTIVE46
ACTIVE47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ACTIVE31
ACTIVE30

ACTIVE29
ACTIVE28

ACTIVE27
ACTIVE26

ACTIVE25
ACTIVE24

ACTIVE23
ACTIVE22

ACTIVE21
ACTIVE20

ACTIVE19
ACTIVE18

ACTIVE17
ACTIVE16

ACTIVE0
ACTIVE1

ACTIVE2
ACTIVE3

ACTIVE4
ACTIVE5

ACTIVE6
ACTIVE7

ACTIVE8
ACTIVE9

ACTIVE10
ACTIVE11

ACTIVE12
ACTIVE13

ACTIVE14
ACTIVE15

ACTIVE<x>, bits [x], for x = 63 to 0

Accesses the Active state of the virtual PPI.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

376

Chapter 9. System registers
9.6. Hypervisor control registers

ACTIVE<x> Meaning

0b0 Inactive

0b1 Active

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• Otherwise, access to this field is RW

Accessing ICH_PPI_ACTIVER<n>_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_PPI_ACTIVER<n>_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1010 0b11:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0xB30 + (8 * n)];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICH_PPI_ACTIVER_EL2[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICH_PPI_ACTIVER_EL2[n];

MSR ICH_PPI_ACTIVER<n>_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1010 0b11:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0xB30 + (8 * n)] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

377

Chapter 9. System registers
9.6. Hypervisor control registers

ICH_PPI_ACTIVER_EL2[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICH_PPI_ACTIVER_EL2[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

378

Chapter 9. System registers
9.6. Hypervisor control registers

9.6.8 ICH_PPI_DVIR<n>_EL2, Interrupt Controller PPI Direct-inject Virtual Interrupt Registers,
n = 0 - 1

The ICH_PPI_DVIR<n>_EL2 characteristics are:

Purpose

Controls whether Pending physical PPIs are directly injected as virtual PPIs to the Virtual Interrupt
Domain.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register is present only when FEAT_GCIE is implemented and (EL2 is implemented or EL3 is
implemented). Otherwise, direct accesses to ICH_PPI_DVIR<n>_EL2 are UNDEFINED.

Attributes

ICH_PPI_DVIR<n>_EL2 is a 64-bit register.

Field descriptions
The ICH_PPI_DVIR<n>_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

DVI63
DVI62

DVI61
DVI60

DVI59
DVI58

DVI57
DVI56

DVI55
DVI54

DVI53
DVI52

DVI51
DVI50

DVI49
DVI48

DVI32
DVI33

DVI34
DVI35

DVI36
DVI37

DVI38
DVI39

DVI40
DVI41

DVI42
DVI43

DVI44
DVI45

DVI46
DVI47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DVI31
DVI30

DVI29
DVI28

DVI27
DVI26

DVI25
DVI24

DVI23
DVI22

DVI21
DVI20

DVI19
DVI18

DVI17
DVI16

DVI0
DVI1

DVI2
DVI3

DVI4
DVI5

DVI6
DVI7

DVI8
DVI9

DVI10
DVI11

DVI12
DVI13

DVI14
DVI15

DVI<x>, bits [x], for x = 63 to 0

Controls whether the physical PPI Pending state is directly injected to a virtual PPI in the Virtual Interrupt Domain.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

379

Chapter 9. System registers
9.6. Hypervisor control registers

DVI<x> Meaning

0b0 Physical PPI <x> is not directly injected as a virtual PPI.

0b1 Physical PPI <x> is directly injected as a virtual PPI.

The Effective value of DVI<x> is 0 if any of the following are true:

• Physical PPI <x> is not assigned to Current Physical Interrupt Domain.

• Physical PPI <x> is assigned to the EL3 Interrupt Domain.

• Physical PPI <x> is assigned to the Secure Interrupt Domain and SCR_EL3.EEL2 is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• Access is RAZ/WI if all of the following are true:

– !IsPPIAssignedToCurrentDomain((n * 64) + x)
– PSTATE.EL IN {EL2, EL1}

• Otherwise, access to this field is RW

Accessing ICH_PPI_DVIR<n>_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_PPI_DVIR<n>_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1010 0b00:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0xB40 + (8 * n)];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICH_PPI_DVIR_EL2[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICH_PPI_DVIR_EL2[n];

MSR ICH_PPI_DVIR<n>_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1010 0b00:n[0]

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

380

Chapter 9. System registers
9.6. Hypervisor control registers

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0xB40 + (8 * n)] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ICH_PPI_DVIR_EL2[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICH_PPI_DVIR_EL2[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

381

Chapter 9. System registers
9.6. Hypervisor control registers

9.6.9 ICH_PPI_ENABLER<n>_EL2, Interrupt Controller Virtual Interrupt Enable Registers, n = 0
- 1

The ICH_PPI_ENABLER<n>_EL2 characteristics are:

Purpose

Access to Enable state for virtual PPIs.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

AArch64 system register ICH_PPI_ENABLER<n>_EL2 bits [63:0] are architecturally mapped to
AArch64 system register ICV_PPI_ENABLER<n>_EL1[63:0].

This register is present only when FEAT_GCIE is implemented and (EL2 is implemented or EL3 is
implemented). Otherwise, direct accesses to ICH_PPI_ENABLER<n>_EL2 are UNDEFINED.

Attributes

ICH_PPI_ENABLER<n>_EL2 is a 64-bit register.

Field descriptions
The ICH_PPI_ENABLER<n>_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

EN63
EN62

EN61
EN60

EN59
EN58

EN57
EN56

EN55
EN54

EN53
EN52

EN51
EN50

EN49
EN48

EN32
EN33

EN34
EN35

EN36
EN37

EN38
EN39

EN40
EN41

EN42
EN43

EN44
EN45

EN46
EN47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EN31
EN30

EN29
EN28

EN27
EN26

EN25
EN24

EN23
EN22

EN21
EN20

EN19
EN18

EN17
EN16

EN0
EN1

EN2
EN3

EN4
EN5

EN6
EN7

EN8
EN9

EN10
EN11

EN12
EN13

EN14
EN15

EN<x>, bits [x], for x = 63 to 0

Alias of equivalent ICV_PPI_ENABLER<n>_EL1 field.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

382

Chapter 9. System registers
9.6. Hypervisor control registers

• Otherwise, access to this field is RW

Accessing ICH_PPI_ENABLER<n>_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_PPI_ENABLER<n>_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1010 0b01:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0xB50 + (8 * n)];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICH_PPI_ENABLER_EL2[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICH_PPI_ENABLER_EL2[n];

MSR ICH_PPI_ENABLER<n>_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1010 0b01:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0xB50 + (8 * n)] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ICH_PPI_ENABLER_EL2[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICH_PPI_ENABLER_EL2[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

383

Chapter 9. System registers
9.6. Hypervisor control registers

9.6.10 ICH_PPI_PENDR<n>_EL2, Interrupt Controller Virtual Interrupt Pending State Registers,
n = 0 - 1

The ICH_PPI_PENDR<n>_EL2 characteristics are:

Purpose

Pending state for virtual PPIs.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

AArch64 system register ICH_PPI_PENDR<n>_EL2 bits [63:0] are architecturally mapped to AArch64
system register ICV_PPI_CPENDR<n>_EL1[63:0].

AArch64 system register ICH_PPI_PENDR<n>_EL2 bits [63:0] are architecturally mapped to AArch64
system register ICV_PPI_SPENDR<n>_EL1[63:0].

This register is present only when FEAT_GCIE is implemented and (EL2 is implemented or EL3 is
implemented). Otherwise, direct accesses to ICH_PPI_PENDR<n>_EL2 are UNDEFINED.

Attributes

ICH_PPI_PENDR<n>_EL2 is a 64-bit register.

Field descriptions
The ICH_PPI_PENDR<n>_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

PEND63
PEND62

PEND61
PEND60

PEND59
PEND58

PEND57
PEND56

PEND55
PEND54

PEND53
PEND52

PEND51
PEND50

PEND49
PEND48

PEND32
PEND33

PEND34
PEND35

PEND36
PEND37

PEND38
PEND39

PEND40
PEND41

PEND42
PEND43

PEND44
PEND45

PEND46
PEND47

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEND31
PEND30

PEND29
PEND28

PEND27
PEND26

PEND25
PEND24

PEND23
PEND22

PEND21
PEND20

PEND19
PEND18

PEND17
PEND16

PEND0
PEND1

PEND2
PEND3

PEND4
PEND5

PEND6
PEND7

PEND8
PEND9

PEND10
PEND11

PEND12
PEND13

PEND14
PEND15

PEND<x>, bits [x], for x = 63 to 0

Pend<x> accesses the Pending state of virtual PPI <x>.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

384

Chapter 9. System registers
9.6. Hypervisor control registers

PEND<x> Meaning

0b0 Not pending

0b1 Pending

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 64) + x)
• Otherwise, access to this field is RW

Accessing ICH_PPI_PENDR<n>_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_PPI_PENDR<n>_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1010 0b10:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICH_PPI_PENDR_EL2[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICH_PPI_PENDR_EL2[n];

MSR ICH_PPI_PENDR<n>_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1010 0b10:n[0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ICH_PPI_PENDR_EL2[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICH_PPI_PENDR_EL2[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

385

Chapter 9. System registers
9.6. Hypervisor control registers

9.6.11 ICH_PPI_PRIORITYR<n>_EL2, Interrupt Controller Virtual Interrupt Priority Registers, n
= 0 - 15

The ICH_PPI_PRIORITYR<n>_EL2 characteristics are:

Purpose

Priority of virtual PPIs.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

AArch64 system register ICH_PPI_PRIORITYR<n>_EL2 bits [63:0] are architecturally mapped to
AArch64 system register ICV_PPI_PRIORITYR<n>_EL1[63:0].

This register is present only when FEAT_GCIE is implemented and (EL2 is implemented or EL3 is
implemented). Otherwise, direct accesses to ICH_PPI_PRIORITYR<n>_EL2 are UNDEFINED.

Attributes

ICH_PPI_PRIORITYR<n>_EL2 is a 64-bit register.

Field descriptions
The ICH_PPI_PRIORITYR<n>_EL2 bit assignments are:

RES0

63 61

PRIORITY7

60 56

RES0

55 53

PRIORITY6

52 48

RES0

47 45

PRIORITY5

44 40

RES0

39 37

PRIORITY4

36 32

RES0

31 29

PRIORITY3

28 24

RES0

23 21

PRIORITY2

20 16

RES0

15 13

PRIORITY1

12 8

RES0

7 5

PRIORITY0

4 0

Bits [63:61, 55:53, 47:45, 39:37, 31:29, 23:21, 15:13, 7:5]

Reserved, RES0.

PRIORITY<x>, bits [60:56, 52:48, 44:40, 36:32, 28:24, 20:16, 12:8, 4:0], for x = 7 to 0, where each field is
5 bits wide

Alias of equivalent ICV_PPI_PRIORITY<n>_EL1 field.

Fields corresponding to unimplemented INTIDs are RES0.

Accessing this field has the following behavior:

• RES0 if !IsPPIImplemented((n * 8) + x)
• Otherwise, access to this field is RW

Accessing ICH_PPI_PRIORITYR<n>_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_PPI_PRIORITYR<n>_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b111:n[3] n[2:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

386

Chapter 9. System registers
9.6. Hypervisor control registers

X[t, 64] = NVMem[0xB80 + (8 * n)];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICH_PPI_PRIORITYR_EL2[n];
elsif PSTATE.EL == EL3 then

X[t, 64] = ICH_PPI_PRIORITYR_EL2[n];

MSR ICH_PPI_PRIORITYR<n>_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b111:n[3] n[2:0]

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0xB80 + (8 * n)] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ICH_PPI_PRIORITYR_EL2[n] = X[t, 64];
elsif PSTATE.EL == EL3 then

ICH_PPI_PRIORITYR_EL2[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

387

Chapter 9. System registers
9.6. Hypervisor control registers

9.6.12 ICH_VCTLR_EL2, Interrupt Controller Virtual CPU interface Control Register

The ICH_VCTLR_EL2 characteristics are:

Purpose

Controls behavior of the Virtual CPU interface.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register is present only when FEAT_GCIE is implemented and (EL2 is implemented or EL3 is
implemented). Otherwise, direct accesses to ICH_VCTLR_EL2 are UNDEFINED.

Attributes

ICH_VCTLR_EL2 is a 64-bit register.

Field descriptions
The ICH_VCTLR_EL2 bit assignments are:

RES0

63 32

RES0

31 2

V3

1

EN

0

Bits [63:2]

Reserved, RES0.

V3, bit [1]

When FEAT_GCIE_LEGACY is implemented:

Enable bit for Legacy operation.

If EL2 is not enabled in the Security state identified by SCR_EL3.{NSE,NS}, the Effective value of this field is 0.

When the Effective value of this field is 0, the Effective value of ICH_HCR_EL2.En is 0.

See ‘Legacy virtual CPU interface’ for more information.

V3 Meaning

0b0 Legacy operation disabled.

0b1 Legacy operation enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

388

Chapter 9. System registers
9.6. Hypervisor control registers

EN, bit [0]

When ICH_VCTLR_EL2.V3 == 0:

Enable interrupts for the Virtual Interrupt Domain.

If EL2 is not enabled in the Security state identified by SCR_EL3.{NSE,NS}, the Effective value of this field is 0.

EN Meaning

0b0 Disabled.

0b1 Enabled.

When this field is 0, there is no HPPI of Sufficient priority for the Virtual Interrupt Domain.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Accessing ICH_VCTLR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_VCTLR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1011 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0xB28];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

X[t, 64] = ICH_VCTLR_EL2;
elsif PSTATE.EL == EL3 then

X[t, 64] = ICH_VCTLR_EL2;

MSR ICH_VCTLR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1011 0b100

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

389

Chapter 9. System registers
9.6. Hypervisor control registers

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0xB28] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ICH_VCTLR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

ICH_VCTLR_EL2 = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

390

Chapter 9. System registers
9.6. Hypervisor control registers

9.6.13 ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register

The ICH_VMCR_EL2 characteristics are:

Purpose

Enables the hypervisor to save and restore the state of the Virtual CPU interface.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register is present only when (FEAT_GICv3 is implemented or FEAT_GCIE is implemented) and
(EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to ICH_VMCR_EL2 are
UNDEFINED.

Attributes

ICH_VMCR_EL2 is a 64-bit register.

Field descriptions
The ICH_VMCR_EL2 bit assignments are:

When ICH_VCTLR_EL2.V3 == 0:

RES0

63 32

VPMR

31 27

RES0

26 1

EN

0

Bits [63:32]

Reserved, RES0.

VPMR, bits [31:27]

Alias of ICV_PCR_EL1.Priority.

Bits [26:1]

Reserved, RES0.

EN, bit [0]

Alias of ICV_CR0_EL1.EN.

When ICH_VCTLR_EL2.V3 == 1:

RES0

63 32

VPMR

31 24

VBPR0

23 21

VBPR1

20 18

RES0

17 10 9

RES0

8 5 4 3 2 1 0

VEOIM
VCBPR
VFIQEn

VENG0
VENG1

VAckCtl

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

391

Chapter 9. System registers
9.6. Hypervisor control registers

Fields listed below are as described in the ICH_VMCR_EL2 register in [3].

Bits [63:32]

Reserved, RES0.

VPMR, bits [31:24]

Alias of ICV_PMR_EL1.Priority.

VBPR0, bits [23:21]

Alias of ICV_BPR0_EL1.BinaryPoint.

VBPR1, bits [20:18]

Alias of ICV_BPR1_EL1.BinaryPoint.

Bits [17:10]

Reserved, RES0.

VEOIM, bit [9]

Alias of ICV_CTLR_EL1.EOImode.

Bits [8:5]

Reserved, RES0.

VCBPR, bit [4]

Alias of ICV_CTLR_EL1.CBPR.

VFIQEn, bit [3]

Virtual FIQ enable.

This field is RES1 as GICv2 compatibility is not supported.

VAckCtl, bit [2]

Virtual AckCtl.

VENG1, bit [1]

Alias ICV_IGRPEN1_EL1.Enable.

VENG0, bit [0]

Alias of ICV_IGRPEN0_EL1.Enable.

Accessing ICH_VMCR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_VMCR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1011 0b111

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

392

Chapter 9. System registers
9.6. Hypervisor control registers

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0x4C8];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = ICH_VMCR_EL2;

elsif PSTATE.EL == EL3 then
if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

X[t, 64] = ICH_VMCR_EL2;

MSR ICH_VMCR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1011 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0x4C8] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
ICH_VMCR_EL2 = X[t, 64];

elsif PSTATE.EL == EL3 then
if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICH_VMCR_EL2 = X[t, 64];

9.6.14 Nested virtualization

IXDKPJ The Arm architecture’s enhanced support for nested virtualization (FEAT_NV2) provides a mechanism for
hardware to transform reads and writes from System registers into reads and writes from memory.

See “Enhanced support for nested virtualization” in the Architecture Reference Manual for A-profile [1].

RKZTGX When system register accesses are transformed to memory accesses Table D8-63 (Memory address offset associated
with transformed register access) in the Architecture Reference Manual for A-profile [1] describes the offsets used
for each affected regiser. This table is extended as follows to cover the GICv5 system registers:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

393

Chapter 9. System registers
9.6. Hypervisor control registers

Register access if HCR_EL2.NV1 is 0 Register access if HCR_EL2.NV1 is 1 Memory offset

ICH_APR_EL2 ICH_APR_EL2 OxB00

ICH_CONTEXTR_EL2 ICH_CONTEXTR_EL2 OxB08

ICH_HFGITR_EL2 ICH_HFGITR_EL2 OxB10

ICH_HFGRTR_EL2 ICH_HFGRTR_EL2 OxB18

ICH_HFGWTR_EL2 ICH_HFGWTR_EL2 OxB20

ICH_PPI_ACTIVER<n>_EL2 ICH_PPI_ACTIVER<n>_EL2 OxB30 + 8*n

ICH_PPI_DVIR<n>_EL2 ICH_PPI_DVIR<n>_EL2 OxB40 + 8*n

ICH_PPI_ENABLER<n>_EL2 ICH_PPI_ENABLER<n>_EL2 OxB50 + 8*n

ICH_PPI_PRIORITYR<n>_EL2 ICH_PPI_PRIORITYR<n>_EL2 OxB80 + 8*n

ICH_VCTLR_EL2 ICH_VCTLR_EL2 OxB28

ICH_VMCR_EL2 ICH_VMCR_EL2 Ox4C8

Offsets for registers introduced by GICv3 or GICv4 are unchanged.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

394

Chapter 9. System registers
9.7. Legacy hypervisor control registers

9.7 Legacy hypervisor control registers

Registers to manage operation of the Legacy virtual CPU interface.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

395

Chapter 9. System registers
9.7. Legacy hypervisor control registers

9.7.1 ICH_AP0R<n>_EL2, Interrupt Controller Active Virtual Priorities Registers 0, n = 0 - 3

The ICH_AP0R<n>_EL2 characteristics are:

Purpose

Records active Group 0 virtual priorities in the Legacy virtual CPU interface.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

This register is present only when (FEAT_GICv3 is implemented or FEAT_GCIE_LEGACY is
implemented) and (EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to
ICH_AP0R<n>_EL2 are UNDEFINED.

Attributes

ICH_AP0R<n>_EL2 is a 64-bit register.

Field descriptions
The ICH_AP0R<n>_EL2 bit assignments are:

RES0

63 32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20

All fields listed below are as described in the ICH_AP0R<n>_EL2 register description in [3].

Bits [63:32]

Reserved, RES0.

P<x>, bits [x], for x = 31 to 0

Provides the access to the active virtual Group 0 priorities.

Accessing ICH_AP0R<n>_EL2
When FEAT_GCIE_LEGACY is implemented, only 32 priority levels is supported meaning that ICH_AP0R1_EL2,
ICH_AP0R2_EL2, and ICH_AP0R3_EL2 are not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_AP0R<m>_EL2 ; Where m = 0-3

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1000 0b0:m[1:0]

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

396

Chapter 9. System registers
9.7. Legacy hypervisor control registers

integer m = UInt(op2<1:0>);

if m == 1 && NUM_GIC_PREEMPTION_BITS < 6 then
UNDEFINED;

elsif (m == 2 || m == 3) && NUM_GIC_PREEMPTION_BITS < 7 then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0x480 + (8 * m)];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = ICH_AP0R_EL2[m];

elsif PSTATE.EL == EL3 then
if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

X[t, 64] = ICH_AP0R_EL2[m];

MSR ICH_AP0R<m>_EL2, <Xt> ; Where m = 0-3

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1000 0b0:m[1:0]

integer m = UInt(op2<1:0>);

if m == 1 && NUM_GIC_PREEMPTION_BITS < 6 then
UNDEFINED;

elsif (m == 2 || m == 3) && NUM_GIC_PREEMPTION_BITS < 7 then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0x480 + (8 * m)] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
ICH_AP0R_EL2[m] = X[t, 64];

elsif PSTATE.EL == EL3 then
if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICH_AP0R_EL2[m] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

397

Chapter 9. System registers
9.7. Legacy hypervisor control registers

9.7.2 ICH_AP1R<n>_EL2, Interrupt Controller Active Virtual Priorities Registers 1, n = 0 - 3

The ICH_AP1R<n>_EL2 characteristics are:

Purpose

Records active Group 1 virtual priorities in the Legacy virtual CPU interface.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

This register is present only when (FEAT_GICv3 is implemented or FEAT_GCIE_LEGACY is
implemented) and (EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to
ICH_AP1R<n>_EL2 are UNDEFINED.

Attributes

ICH_AP1R<n>_EL2 is a 64-bit register.

Field descriptions
The ICH_AP1R<n>_EL2 bit assignments are:

63

RES0

62 32

NMI
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

P9

9

P8

8

P7

7

P6

6

P5

5

P4

4

P3

3

P2

2

P1

1

P0

0

P31
P30

P29
P28

P27
P26

P25
P24

P23
P22

P21

P10
P11

P12
P13

P14
P15

P16
P17

P18
P19

P20

All fields listed below are as described in the ICH_AP1R<n>_EL2 register description in [3].

NMI, bit [63]

When (FEAT_GICv3_NMI is implemented or FEAT_GCIE_LEGACY is implemented) and n == 0:

Indicates whether there is an active virtual NMI priority.

NMI Meaning

0b0 There is no active Group 1 NMI, or all active Group 1 NMIs
have undergone priority drop.

0b1 There is an active Group 1 NMI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

398

Chapter 9. System registers
9.7. Legacy hypervisor control registers

Bits [62:32]

Reserved, RES0.

P<x>, bits [x], for x = 31 to 0

Provides the access to the active virtual Group 1 priorities.

If FEAT_GCIE_LEGACY is implemented, this field accesses the same state as ICH_APR_EL2

The number of implemented priority bits is reported by ICC_IDR0_EL1.PRI_BITS. Fields corresponding to
unimplemented priority levels are RES0.

Accessing ICH_AP1R<n>_EL2
When FEAT_GCIE_LEGACY is implemented, only 32 priority levels is supported meaning that ICH_AP1R1_EL2,
ICH_AP1R2_EL2, and ICH_AP1R3_EL2 are not implemented.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_AP1R<m>_EL2 ; Where m = 0-3

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1001 0b0:m[1:0]

integer m = UInt(op2<1:0>);

if m == 1 && NUM_GIC_PREEMPTION_BITS < 6 then
UNDEFINED;

elsif (m == 2 || m == 3) && NUM_GIC_PREEMPTION_BITS < 7 then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0x480 + (8 * m)];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = ICH_AP1R_EL2[m];

elsif PSTATE.EL == EL3 then
if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

X[t, 64] = ICH_AP1R_EL2[m];

MSR ICH_AP1R<m>_EL2, <Xt> ; Where m = 0-3

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1001 0b0:m[1:0]

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

399

Chapter 9. System registers
9.7. Legacy hypervisor control registers

integer m = UInt(op2<1:0>);

if m == 1 && NUM_GIC_PREEMPTION_BITS < 6 then
UNDEFINED;

elsif (m == 2 || m == 3) && NUM_GIC_PREEMPTION_BITS < 7 then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0x480 + (8 * m)] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
ICH_AP1R_EL2[m] = X[t, 64];

elsif PSTATE.EL == EL3 then
if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICH_AP1R_EL2[m] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

400

Chapter 9. System registers
9.7. Legacy hypervisor control registers

9.7.3 ICH_EISR_EL2, Interrupt Controller End of Interrupt Status Register

The ICH_EISR_EL2 characteristics are:

Purpose

Enables a hypervisor to determine which List registers have outstanding EOI maintenance interrupts.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

This register is present only when (FEAT_GICv3 is implemented or FEAT_GCIE_LEGACY is
implemented) and (EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to
ICH_EISR_EL2 are UNDEFINED.

Attributes

ICH_EISR_EL2 is a 64-bit register.

Field descriptions
The ICH_EISR_EL2 bit assignments are:

RES0

63 32

RES0

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Status15
Status14

Status13
Status12

Status11
Status10

Status9
Status8

Status0
Status1

Status2
Status3

Status4
Status5

Status6
Status7

All fields listed below are as described in the ICH_EISR_EL2 register description in [3].

Bits [63:16]

Reserved, RES0.

Status<x>, bits [x], for x = 15 to 0

EOI maintenance interrupt status bit for List register.

Accessing ICH_EISR_EL2
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_EISR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1011 0b011

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

401

Chapter 9. System registers
9.7. Legacy hypervisor control registers

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = ICH_EISR_EL2;

elsif PSTATE.EL == EL3 then
if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

X[t, 64] = ICH_EISR_EL2;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

402

Chapter 9. System registers
9.7. Legacy hypervisor control registers

9.7.4 ICH_ELRSR_EL2, Interrupt Controller Empty List Register Status Register

The ICH_ELRSR_EL2 characteristics are:

Purpose

Enables a hypervisor to locate a usable List register to deliver an interrupt to a VM.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

This register is present only when (FEAT_GICv3 is implemented or FEAT_GCIE_LEGACY is
implemented) and (EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to
ICH_ELRSR_EL2 are UNDEFINED.

Attributes

ICH_ELRSR_EL2 is a 64-bit register.

Field descriptions
The ICH_ELRSR_EL2 bit assignments are:

RES0

63 32

RES0

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Status15
Status14

Status13
Status12

Status11
Status10

Status9
Status8

Status0
Status1

Status2
Status3

Status4
Status5

Status6
Status7

All fields listed below are as described in the ICH_ELRSR_EL2 register description in [3].

Bits [63:16]

Reserved, RES0.

Status<x>, bits [x], for x = 15 to 0

Status bit for List register.

Accessing ICH_ELRSR_EL2
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_ELRSR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1011 0b101

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

403

Chapter 9. System registers
9.7. Legacy hypervisor control registers

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = ICH_ELRSR_EL2;

elsif PSTATE.EL == EL3 then
if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

X[t, 64] = ICH_ELRSR_EL2;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

404

Chapter 9. System registers
9.7. Legacy hypervisor control registers

9.7.5 ICH_HCR_EL2, Interrupt Controller Hyp Control Register

The ICH_HCR_EL2 characteristics are:

Purpose

Enables the hypervisor to control the behavior of the Virtual CPU interface in Legacy operation

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

This register is present only when (FEAT_GICv3 is implemented or FEAT_GCIE_LEGACY is
implemented) and (EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to
ICH_HCR_EL2 are UNDEFINED.

Attributes

ICH_HCR_EL2 is a 64-bit register.

Field descriptions
The ICH_HCR_EL2 bit assignments are:

RES0

63 32

EOIcount

31 27

RES0

26 16 15 14 13 12 11

TC

10

RES0

9 8 7 6 5 4 3 2 1

En

0

DVIM
TDIR

TSEI
TALL1

TALL0
VGrp1DIE

UIE
LRENPIE

NPIE
VGrp0EIE

VGrp0DIE
VGrp1EIE

All fields listed below are as described in the ICH_HCR_EL2 register description in [3].

Bits [63:32]

Reserved, RES0.

EOIcount, bits [31:27]

This field is incremented whenever a successful write to a virtual EOIR or DIR register would have resulted in a
virtual interrupt deactivation.

Bits [26:16]

Reserved, RES0.

DVIM, bit [15]

When FEAT_GICv3 is implemented:

Directly-injected Virtual Interrupt Mask.

Otherwise:

RES0

TDIR, bit [14]

Trap EL1 writes to ICx_DIR_EL1 to EL2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

405

Chapter 9. System registers
9.7. Legacy hypervisor control registers

When ICH_VCTLR_EL2.V3 == ‘0’, the Effective value of this field is 0.

TSEI, bit [13]

When FEAT_GICv3 is implemented:

Trap all locally generated SEIs.

Otherwise:

RES0

TALL1, bit [12]

Trap all EL1 accesses to ICC_* and ICV_* System registers for Group 1 interrupts to EL2.

When ICH_VCTLR_EL2.V3 == ‘0’, the Effective value of this field is 0.

TALL0, bit [11]

Trap all EL1 accesses to ICC_* and ICV_* System registers for Group 0 interrupts to EL2.

When ICH_VCTLR_EL2.V3 == ‘0’, the Effective value of this field is 0.

TC, bit [10]

Trap all EL1 accesses to System registers that are common to Group 0 and Group 1 to EL2.

When ICH_VCTLR_EL2.V3 == ‘0’, the Effective value of this field is 0.

Bits [9:8]

Reserved, RES0.

VGrp1DIE, bit [7]

VM Group 1 Disabled Interrupt Enable.

When ICH_VCTLR_EL2.V3 == ‘0’, the Effective value of this field is 0.

VGrp1EIE, bit [6]

VM Group 1 Enabled Interrupt Enable.

When ICH_VCTLR_EL2.V3 == ‘0’, the Effective value of this field is 0.

VGrp0DIE, bit [5]

VM Group 0 Disabled Interrupt Enable.

When ICH_VCTLR_EL2.V3 == ‘0’, the Effective value of this field is 0.

VGrp0EIE, bit [4]

VM Group 0 Enabled Interrupt Enable.

When ICH_VCTLR_EL2.V3 == ‘0’, the Effective value of this field is 0.

NPIE, bit [3]

No Pending Interrupt Enable.

When ICH_VCTLR_EL2.V3 == ‘0’, the Effective value of this field is 0.

LRENPIE, bit [2]

List Register Entry Not Present Interrupt Enable.

When ICH_VCTLR_EL2.V3 == ‘0’, the Effective value of this field is 0.

UIE, bit [1]

Underflow Interrupt Enable.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

406

Chapter 9. System registers
9.7. Legacy hypervisor control registers

When ICH_VCTLR_EL2.V3 == ‘0’, the Effective value of this field is 0.

En, bit [0]

Global enable bit for the virtual CPU interface.

When ICH_VCTLR_EL2.V3 == ‘0’, the Effective value of this field is 0.

Accessing ICH_HCR_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_HCR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0x4C0];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = ICH_HCR_EL2;

elsif PSTATE.EL == EL3 then
if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

X[t, 64] = ICH_HCR_EL2;

MSR ICH_HCR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0x4C0] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

407

Chapter 9. System registers
9.7. Legacy hypervisor control registers

ICH_HCR_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
ICH_HCR_EL2 = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

408

Chapter 9. System registers
9.7. Legacy hypervisor control registers

9.7.6 ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15

The ICH_LR<n>_EL2 characteristics are:

Purpose

Enables a hypervisor to provide interrupt context information to the Legacy virtual CPU interface.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

If list register n is not implemented, then accesses to this register are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

This register is present only when (FEAT_GICv3 is implemented or FEAT_GCIE_LEGACY is
implemented) and (EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to
ICH_LR<n>_EL2 are UNDEFINED.

Attributes

ICH_LR<n>_EL2 is a 64-bit register.

Field descriptions
The ICH_LR<n>_EL2 bit assignments are:

63 62

HW

61 60 59

RES0

58 56

Priority

55 48

RES0

47 45

pINTID

44 32

State NMI
Group

vINTID

31 0

All fields listed below are as described in the ICH_LR<n>_EL2 register description in [3].

State, bits [63:62]

See the register description in [3].

HW, bit [61]

Indicates whether this virtual interrupt maps directly to a hardware interrupt, meaning that it corresponds to a
physical interrupt. Deactivation of the virtual interrupt also causes the deactivation of the physical interrupt with
the ID that the pINTID field indicates.

HW Meaning

0b0 The interrupt is triggered entirely by software.

0b1 The interrupt maps directly to a hardware interrupt.
Deactivating the virtual interrupt also deactivates the physical
interrupt specified in pINTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

409

Chapter 9. System registers
9.7. Legacy hypervisor control registers

Group, bit [60]

See the register description in [3].

NMI, bit [59]

See the register description in [3].

Bits [58:56]

Reserved, RES0.

Priority, bits [55:48]

See the register description in [3].

When FEAT_GCIE_LEGACY is implemented, 5 bits of priority are implemented meaning that bits[50:48] are
RES0.

Bits [47:45]

Reserved, RES0.

pINTID, bits [44:32]

When FEAT_GICv3 is implemented

pINTID, bits [12:0] of bits [44:32]

See the register description in [3].

When FEAT_GCIE_LEGACY is implemented

pINTID, bits [12:0] of bits [44:32]

Physical PPI INTID, for hardware interrupts.

When ICH_LR<n>_EL2.HW is 0 (there is no corresponding physical interrupt), this field has the following
meaning:

• Bits[44:42]: RES0.
• Bit[41]: EOI. If this bit is 1, then when the interrupt identified by vINTID is deactivated, a maintenance

interrupt is asserted.
• Bits[40:32]: RES0.

When ICH_LR<n>_EL2.HW is 1 (there is a corresponding physical interrupt):

• This field specifies the ID of a physical PPI in the Current Physical Interrupt Domain.
• This field is only required to implement enough bits to hold a valid value for the implemented physical PPIs.

Any unused higher order bits are RES0.
• If pINTID specifies an unreachable PPI, no physical interrupt is deactivated.

Otherwise:

RES0

vINTID, bits [31:0]

See the register description in [3].

Accessing ICH_LR<n>_EL2
Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_LR<n>_EL2

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

410

Chapter 9. System registers
9.7. Legacy hypervisor control registers

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b110:n[3] n[2:0]

if n >= NUM_GIC_LIST_REGS then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

X[t, 64] = NVMem[0x400 + (8 * n)];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = ICH_LR_EL2[n];

elsif PSTATE.EL == EL3 then
if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

X[t, 64] = ICH_LR_EL2[n];

MSR ICH_LR<n>_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b110:n[3] n[2:0]

if n >= NUM_GIC_LIST_REGS then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' && ICH_VCTLR_EL2.V3 == '0' then

NVMem[0x400 + (8 * n)] = X[t, 64];
elsif EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
ICH_LR_EL2[n] = X[t, 64];

elsif PSTATE.EL == EL3 then
if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ICH_LR_EL2[n] = X[t, 64];

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

411

Chapter 9. System registers
9.7. Legacy hypervisor control registers

9.7.7 ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register

The ICH_MISR_EL2 characteristics are:

Purpose

Indicates which maintenance interrupts are asserted.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

This register is present only when (FEAT_GICv3 is implemented or FEAT_GCIE_LEGACY is
implemented) and (EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to
ICH_MISR_EL2 are UNDEFINED.

Attributes

ICH_MISR_EL2 is a 64-bit register.

Field descriptions
The ICH_MISR_EL2 bit assignments are:

RES0

63 32

RES0

31 8 7 6 5 4

NP

3 2

U

1 0

VGrp1D
VGrp1E

VGrp0D

EOI
LRENP

VGrp0E

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

412

Chapter 9. System registers
9.7. Legacy hypervisor control registers

All fields listed below are as described in the ICH_MISR_EL2 register description in [3].

Bits [63:8]

Reserved, RES0.

VGrp1D, bit [7]

vPE Group 1 Disabled.

VGrp1E, bit [6]

vPE Group 1 Enabled.

VGrp0D, bit [5]

vPE Group 0 Disabled.

VGrp0E, bit [4]

vPE Group 0 Enabled.

NP, bit [3]

No Pending.

LRENP, bit [2]

List Register Entry Not Present.

U, bit [1]

Underflow.

EOI, bit [0]

End of Interrupt.

Accessing ICH_MISR_EL2
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_MISR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = ICH_MISR_EL2;

elsif PSTATE.EL == EL3 then
if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

413

Chapter 9. System registers
9.7. Legacy hypervisor control registers

X[t, 64] = ICH_MISR_EL2;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

414

Chapter 9. System registers
9.7. Legacy hypervisor control registers

9.7.8 ICH_VTR_EL2, Interrupt Controller VGIC Type Register

The ICH_VTR_EL2 characteristics are:

Purpose

Reports supported GIC virtualization features.

Configuration

If EL2 is not implemented, all bits in this register are RES0 from EL3, except for nV4, which is RES1
from EL3 when EL2 is not implemented.

This register has no effect if EL2 is not enabled in the current Security state.

This register is present only when (FEAT_GICv3 is implemented or FEAT_GCIE_LEGACY is
implemented) and (EL2 is implemented or EL3 is implemented). Otherwise, direct accesses to
ICH_VTR_EL2 are UNDEFINED.

Attributes

ICH_VTR_EL2 is a 64-bit register.

Field descriptions
The ICH_VTR_EL2 bit assignments are:

RES0

63 32

31 29 28 26

IDbits

25 23 22 21 20 19 18

RES0

17 5

ListRegs

4 0

PRIbits
PREbits

SEIS

DVIM
TDS

nV4
A3V

All fields listed below are as described in the ICH_VTR_EL2 register description in [3].

Bits [63:32]

Reserved, RES0.

PRIbits, bits [31:29]

The number of virtual priority bits implemented, minus one.

If FEAT_GCIE_LEGACY is implemented, this field returns 4 (5 bits of priority).

PREbits, bits [28:26]

The number of virtual preemption bits implemented, minus one.

If FEAT_GCIE_LEGACY is implemented, this field returns 4 (5 bits of preemption).

IDbits, bits [25:23]

The number of virtual interrupt identifier bits supported.

IDbits Meaning

0b000 16 bits

0b001 24 bits

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

415

Chapter 9. System registers
9.7. Legacy hypervisor control registers

SEIS, bit [22]

When FEAT_GICv3 is implemented:

SEI Support.

Otherwise:

RES0

A3V, bit [21]

Affinity 3 VALID.

A3V Meaning

0b0 The virtual CPU interface logic only supports zero values of
Affinity 3 in SGI generation System registers.

0b1 The virtual CPU interface logic supports non-zero values of
Affinity 3 in SGI generation System registers.

nV4, bit [20]

Direct injection of virtual interrupts not supported.

This bit is RES1.

TDS, bit [19]

When FEAT_GICv3 is implemented:

Support for ICH_HCR_EL2.TDIR.

Otherwise:

RES1

DVIM, bit [18]

When FEAT_GICv3 is implemented:

Masking of directly-injected virtual interrupts.

Otherwise:

RES0

Bits [17:5]

Reserved, RES0.

ListRegs, bits [4:0]

The number of List Registers minus 1.

Accessing ICH_VTR_EL2
Read-only

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICH_VTR_EL2

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

416

Chapter 9. System registers
9.7. Legacy hypervisor control registers

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b1011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' && ICH_VCTLR_EL2.V3 == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
X[t, 64] = ICH_VTR_EL2;

elsif PSTATE.EL == EL3 then
if IsFeatureImplemented(FEAT_GICv3) && ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

X[t, 64] = ICH_VTR_EL2;

9.7.9 Nested virtualization

IHPNKC The Arm architecture’s enhanced support for nested virtualization (FEAT_NV2) provides a mechanism for
hardware to transform reads and writes from System registers into reads and writes from memory.

When accesses to system registers introduced by GICv3 are transformed into memory accesses, the offsets are
unchanged by GICv5. See “Enhanced support for nested virtualization” in the Architecture Reference Manual for
A-profile [1].

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

417

Chapter 9. System registers
9.8. Legacy virtual CPU interface registers

9.8 Legacy virtual CPU interface registers

Configuration and state of Legacy virtual CPU interface accessible from a GICv3.3 VM.

9.8.1 AArch64 Legacy virtual CPU interface registers

RWSWHT When FEAT_GICv3 or FEAT_GCIE_LEGACY is implemented, the following registers are present:

• ICV_AP0R0_EL1, Interrupt Controller Virtual Active Priorities Group 0 Registers
• ICV_AP1R0_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers
• ICV_BPR0_EL1, Interrupt Controller Virtual Binary Point Register 0
• ICV_BPR1_EL1, Interrupt Controller Virtual Binary Point Register 1
• ICV_CTLR_EL1, Interrupt Controller Virtual Control Register
• ICV_DIR_EL1, Interrupt Controller Deactivate Virtual Interrupt Register
• ICV_EOIR0_EL1, Interrupt Controller Virtual End Of Interrupt Register 0
• ICV_EOIR1_EL1, Interrupt Controller Virtual End Of Interrupt Register 1
• ICV_HPPIR0_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
• ICV_HPPIR1_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
• ICV_IAR0_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 0
• ICV_IAR1_EL1, Interrupt Controller Virtual Interrupt Acknowledge Register 1
• ICV_IGRPEN0_EL1, Interrupt Controller Virtual Interrupt Group 0 Enable Register
• ICV_IGRPEN1_EL1, Interrupt Controller Virtual Interrupt Group 1 Enable Register
• ICV_NMIAR1_EL1, Interrupt Controller Virtual Non-maskable Interrupt Acknowledge Register 1
• ICV_PMR_EL1, Interrupt Controller Virtual Interrupt Priority Mask Register
• ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register

The above registers are as described in [3].

RXKKDD When either FEAT_GICv3 or FEAT_GCIE_LEGACY is implemented, the registers listed in Table 9.184 are
present.

When FEAT_GCIE_LEGACY is implemented, all of the following are true:

• When HCR_EL2.IMO is 1 and Legacy operation is enabled, all of the following are true:
– Accesses at EL1 to the registers listed in Table 9.184 generate a Trap exception taken to EL2 and

reported using EC syndrome value 0x18.
– Accesses at any Exception level other than EL1 to the registers listed in Table 9.184 are UNDEFINED.

• When HCR_EL2.IMO is 0 or Legacy operation is disabled, the registers listed in Table 9.184 are UNDEFINED
at any Exception level.

Table 9.184: GICv3 CPU Interface registers

Register

ICC_SGI0R_EL1

ICC_SGI1R_EL1

ICC_ASGI1R_EL1

The registers listed in Table 9.184 are described in [3].

RMCTMX When either FEAT_GICv3 or FEAT_GCIE_LEGACY is implemented, ICC_SRE_EL1 is present.

When FEAT_GCIE_LEGACY is implemented, all of the following are true:

• When HCR_EL2.IMO is 1 and Legacy operation is enabled, all of the following are true:
– For an access at EL1 to ICC_SRE_EL1, accesses to the following fields are RAO/WI:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

418

Chapter 9. System registers
9.8. Legacy virtual CPU interface registers

* ICC_SRE_EL1.SRE
* ICC_SRE_EL1.DFB
* ICC_SRE_EL1.DIB

– Access at any Exception level other than EL1 to ICC_SRE_EL1 is UNDEFINED.
• When HCR_EL2.IMO is 0 or Legacy operation is disabled, ICC_SRE_EL1 is UNDEFINED at any Exception

level.

ICC_SRE_EL1 Table 9.184 is described in [3].

RPWDWZ When either FEAT_GICv3 or FEAT_GCIE_LEGACY is implemented, the following fields are present:

• HFGRTR_EL2.ICC_IGRPENn_EL1
• HFGWTR_EL2.ICC_IGRPENn_EL1

The above fields are described in [1].

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

419

Chapter 10
Registers and memory maps

This chapter describes the registers and memory mapped interfaces of GICv5 components.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

420

Chapter 10. Registers and memory maps
10.1. Memory-mapped programmer’s model

10.1 Memory-mapped programmer’s model

RJYKRN Accesses to registers that are not implemented is CONSTRAINED UNPREDICTABLE and results in either:

• The access has RAZ/WI behavior.
• The location has the same behavior as RES0.

RJGRJR The access type definitions for the memory-mapped register interface are:

• RW: Read and write.
• RO: Read only. Writes are ignored.
• WO: Write only. Reads return an UNKNOWN value.
• WI: Write ignore. Reads return an UNKNOWN value.
• UNKNOWN/WI: The same as WI.
• RAZ/WI: Read-As-Zero, Writes Ignored.
• RES0: RES0 as defined in [1].
• RES1: RES1 as defined in [1].

RDQMPD In the register definitions, references to other registers are always to a register in the same register frame as where
the access is made.

RHQTXF All registers for the IWB, the ITS, and IRS are little-endian.

RWRLMJ All registers are either 32-bit or 64-bit.

An implementation supports aligned 32-bit accesses to all registers and aligned 64-bit accesses to 64-bit registers.
When a 32-bit access occurs to a 64-bit register, bits[63:32] of the register are accessed at offset +4 and bits[31:0]
at offset 0.

All aligned single-copy atomic accesses to a register of the same size as the access are treated as single-copy
atomic accesses by the GIC.

Aligned 16-bit halfword accesses are supported only to the lower half of the following registers:

• ITS_TRANSLATER
• ITS_RL_TRANSLATER

All other accesses are illegal accesses.

RVXDYH The behavior of an illegal access is CONSTRAINED UNPREDICTABLE to one of the following:

• The access is RAZ/WI.
• The access completes on the GIC and one of the following is true:

– The access is a read and the read returns an UNKNOWN value.
– The access is a write and the write sets any field of the accessed register, including fields outside the

access, to an UNKNOWN value. It is CONSTRAINED UNPREDICTABLE whether side effects of a write
occur or not.

• The access generates an abort.

A 64-bit access to two adjacent 32-bit registers is CONSTRAINED UNPREDICTABLE and has one of the following
behaviors:

• The access is RAZ/WI.
• A read returns the value of both registers and a write updates both registers, as though two 32-bit accesses

were performed in an UNPREDICTABLE order.
• One of the pair of registers is read or written and the other register is RAZ/WI, as though a single 32-bit

access was performed to an UNPREDICTABLE one of the pair of registers.
• The access generates an abort.

DRFLQG Some register fields are Guarded by another field in the same or another register. In the GICv5 specification, a
Guarded register field is RO or WI unless the field by which it is Guarded is in a certain state.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

421

Chapter 10. Registers and memory maps
10.1. Memory-mapped programmer’s model

For example, IRS_IST_BASER.ADDR is Guarded by IRS_IST_BASER.VALID and IRS_PE_SELR.IAFFID is
Guarded by IRS_PE_STATUSR.IDLE.

RBRRWQ Writing to Guarded register fields that are RO or WI have no effects beyond optionally reporting an error in the
software error reporting mechanism.

SMXQGP Software must ensure proper ordering when updating Guarded fields.

For a write that updates the field by which other fields are Guarded, all of the following are true:

• In order to update the Guarded fields, software must ensure that the GIC has observed the write before it
observes a write to the Guarded fields .

• This ordering can be enforced through the use of an appropriate memory type for accesses and by issuing
appropriate barriers, or by reading back the write before making another write to the Guarded fields.

For a write that updates Guarded fields, all of the following are true:

• To make sure the GIC observes the write to the Guarded fields, software must ensure that the GIC has
observed the write to the Guarded fields before it observes a write to the field by which they are Guarded.

• This ordering can be enforced through the use of an appropriate memory type for accesses and by issuing
appropriate barriers, or by reading back the value written to the Guarded fields before making another write
to the field by which they are Guarded.

DDYZRK Some registers that have write side-effects define an action bit. The side effects take place when a write occurs that
sets the action bit to 1.

Registers with an action bit are always tracked with an IDLE bit in a status register to indicate when the write
side-effects are complete.

ITWSRH Following a write that sets the action bit to 1, when the corresponding IDLE bit is 1, another write that sets the
action bit to 1, without any intervening write that sets the action bit to 0, will cause the side-effects defined by the
register.

IXXQBX If a write occurs to a register that has write side-effects and define an action bit, and the write does not write 1 to
the action bit, the write side-effects will not take place and other registers controlled by the register with the action
bit are not affected.

For example, if a write occurs to IRS_VPE_SELR that does not set IRS_VPE_SELR.S to 1, updates to any of the
IRS_VPE_x registers apply to the VPE selected the last time a write occurred that set IRS_VPE_SELR.S to 1.

IFFYYH 64-bit registers that have write side-effects, and support 32-bit accesses, define an action bit in either of the 32-bit
halves.

The write side-effects can use the full 64-bit register value as input to their operation when a write follows this
sequence:

1. Write to the 32-bit half of the register which does not contain the action bit.
2. Ensure the write is observed before a following write by using a barrier instruction or reading back the value

written to the 32-bit half of the register.
3. Write to the other 32-bit half of the register, which contains the action bit, setting the action bit to 1.

RSCDGF Registers are not required to support being the target of exclusive or atomic read-modify-write update operations.

IVBHBM Register frames associated with an Interrupt Domain are accessible via the PAS associated with that Interrupt
Domain.

For register frames not associated with the MPPAS, except for the ITS_TRANSLATE_FRAME and
IRS_SETLPI_FRAME, it is IMPLEMENTATION DEFINED whether the register frames are also accessible in the
MPPAS at the same addresses.

IWJTJR Any memory-mapped access to a GICv5 register region is defined to be beyond the PE.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

422

Chapter 10. Registers and memory maps
10.1. Memory-mapped programmer’s model

SDGVJR Armv9 does not require the size of each element accessed by a multi-register load or store instruction to be
identifiable by the memory system beyond the PE.

Software can use a Device-nGRE or stronger memory-type, and use only single register load and store instructions,
to create memory accesses that are supported by a GICv5 implementation.

Reads and writes of the memory-mapped registers complete in the order in which they arrive at the GIC.

For accesses to different register locations, software can determine the order in which they are arrive at the GIC by
doing all of the following:

• Accessing the GIC using the Device-nGnRnE or Device-nGnRE memory types.
• Using the appropriate memory barriers.

Software can determine the completion of a write by doing one of the following:

• Accessing the GIC using the Device-nGnRnE memory type and executing a DSB barrier.
• Reading back the value written.

For more information on memory types and barriers ensuring completion, see [1].

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

423

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2 IRS register frames

IDLZJM For each Interrupt Domain, the IRS exposes the following register frames:

1. The IRS configuration frame.
2. Optionally, the SETLPI register frame.

Each register frame size is 64K.

IJWWVY In the IRS register definitions, references to other registers are always to a register in the register frame for the
same Interrupt Domain on the same IRS as where the access is made.

IGGXDW If IRS_IDR0.SETLPI is 0, the SETLPI register frame is not present.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

424

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1 IRS_CONFIG_FRAME, IRS configuration register frame

The IRS_CONFIG_FRAME characteristics are:

Purpose

Contains control registers for an IRS for an Interrupt Domain.

An IRS configuration register frame is present for each supported Interrupt Domain on each IRS.

This register frame is accessible in the PAS associated with the Interrupt Domain.

It is IMPLEMENTATION DEFINED whether this register frame is also accessible in the MPPAS at the
same address.

The base address is distinct from the base address of any other GIC register frame, including the
configuration register frames for other Interrupt Domains on all IRSs.

The base address is aligned to 64KB.

Attributes

The IRS_CONFIG_FRAME block is of size 64KB

Default access

Accesses to the address space of this block that do not resolve to a register or a further block are treated
as RAZ/WI.

Contents

Offset Name Notes

0x0000 IRS_IDR0 Most permissive access: RO

0x0004 IRS_IDR1 Most permissive access: RO

0x0008 IRS_IDR2 Most permissive access: RO

0x000C IRS_IDR3 Most permissive access: RO

0x0010 IRS_IDR4 Most permissive access: RO

0x0014 IRS_IDR5 Most permissive access: RO

0x0018 IRS_IDR6 Most permissive access: RO

0x001C IRS_IDR7 Most permissive access: RO

0x0040 IRS_IIDR Most permissive access: RO

0x0044 IRS_AIDR Most permissive access: RO

0x0080 IRS_CR0 Most permissive access: RW

0x0084 IRS_CR1 Most permissive access: RW

0x00C0 IRS_SYNCR Most permissive access: WO

0x00C4 IRS_SYNC_STATUSR Most permissive access: RO

0x0100 IRS_SPI_VMR Most permissive access: RW

0x0108 IRS_SPI_SELR Most permissive access: WO

0x010C IRS_SPI_DOMAINR Most permissive access: RW

0x0110 IRS_SPI_RESAMPLER Most permissive access: WO

0x0114 IRS_SPI_CFGR Most permissive access: RW

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

425

Chapter 10. Registers and memory maps
10.2. IRS register frames

Offset Name Notes

0x0118 IRS_SPI_STATUSR Most permissive access: RO

0x0140 IRS_PE_SELR Most permissive access: WO

0x0144 IRS_PE_STATUSR Most permissive access: RO

0x0148 IRS_PE_CR0 Most permissive access: RW

0x0180 IRS_IST_BASER Most permissive access: RW

0x0190 IRS_IST_CFGR Most permissive access: RW

0x0194 IRS_IST_STATUSR Most permissive access: RO

0x01C0 IRS_MAP_L2_ISTR Most permissive access: WO

0x0200 IRS_VMT_BASER Most permissive access: RW

0x0210 IRS_VMT_CFGR Most permissive access: RW

0x0214 IRS_VMT_STATUSR Most permissive access: RO

0x0240 IRS_VPE_SELR Most permissive access: RW

0x0248 IRS_VPE_DBR Most permissive access: RW

0x0250 IRS_VPE_HPPIR Most permissive access: RO

0x0258 IRS_VPE_CR0 Most permissive access: RW

0x025C IRS_VPE_STATUSR Most permissive access: RO

0x0280 IRS_VM_DBR Most permissive access: RW

0x0288 IRS_VM_SELR Most permissive access: WO

0x028C IRS_VM_STATUSR Most permissive access: RO

0x02C0 IRS_VMAP_L2_VMTR Most permissive access: RW

0x02C8 IRS_VMAP_VMR Most permissive access: RW

0x02D0 IRS_VMAP_VISTR Most permissive access: RW

0x02D8 IRS_VMAP_L2_VISTR Most permissive access: RW

0x02E0 IRS_VMAP_VPER Most permissive access: RW

0x0300 IRS_SAVE_VMR Most permissive access: RW

0x0308 IRS_SAVE_VM_STATUSR Most permissive access: RO

0x0340 IRS_MEC_IDR Most permissive access: RO

0x0344 IRS_MEC_MECID_R Most permissive access: RW

0x0380 IRS_MPAM_IDR Most permissive access: RO

0x0384 IRS_MPAM_PARTID_R Most permissive access: RW

0x03C0 IRS_SWERR_STATUSR Most permissive access: RW

0x03C8 IRS_SWERR_SYNDROMER0 Most permissive access: RO

0x03D0 IRS_SWERR_SYNDROMER1 Most permissive access: RO

0x0E00 + (4 * n)for n in

↪→63:0

- Most permissive access: ImplementationDefined

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

426

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.1 IRS_AIDR
The IRS_AIDR characteristics are:

Purpose

IRS Architecture Identification Register. Identifies the GIC architecture version to which the
implementation conforms.

Attributes

IRS_AIDR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_AIDR bit assignments are:

RES0

31 12 11 8 7 4 3 0

Component ArchMinorRev
ArchMajorRev

Bits [31:12]

Reserved, RES0.

Component, bits [11:8]

GIC component

Component Meaning

0b0000 IRS

0b0001 ITS

0b0010 IWB

ArchMajorRev, bits [7:4]

Major Architecture revision.

ArchMajorRev Meaning

0b0000 GICv5.x

ArchMinorRev, bits [3:0]

Minor Architecture revision.

ArchMinorRev Meaning

0b0000 GICv5.0

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

427

Chapter 10. Registers and memory maps
10.2. IRS register frames

Accessing IRS_AIDR

Accesses to this register use the following encodings:

Accessible at address 0x0044

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

428

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.2 IRS_CR0
The IRS_CR0 characteristics are:

Purpose

IRS control register 0.

Attributes

IRS_CR0 is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_CR0 bit assignments are:

RES0

31 2 1 0

IDLE IRSEN

Bits [31:2]

Reserved, RES0.

IDLE, bit [1]

Whether the transition between enabled and disabled states of the IRS for the Interrupt Domain is complete.

IDLE Meaning

0b0 The effects of updating IRSEN are not guaranteed to have
completed.

0b1 The effects of updating IRSEN are have completed.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Access to this field is RO.

IRSEN, bit [0]

Controls whether the IRS Forwards and Recalls candidate HPPIs to PEs for the Interrupt Domain.

IRSEN Meaning

0b0 The IRS is disabled for the Interrupt Domain.

0b1 The IRS is enabled for the Interrupt Domain.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b0.

Accessing this field has the following behavior:

• When IRS_CR0.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

429

Chapter 10. Registers and memory maps
10.2. IRS register frames

Accessing IRS_CR0

Accesses to this register use the following encodings:

Accessible at address 0x0080

Access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

430

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.3 IRS_CR1
The IRS_CR1 characteristics are:

Purpose

IRS configuration register 1

Attributes

IRS_CR1 is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_CR1 bit assignments are:

RES0

31 16 15 14 13 12 11 10 9 8 7 6

IC

5 4

OC

3 2

SH

1 0

VPED_WA
VPED_RA

VMD_WA
VMD_RA
VPET_WA

IST_RA
IST_WA

VMT_RA
VMT_WA

VPET_RA

Bits [31:16]

Reserved, RES0.

VPED_WA, bit [15]

When IRS_IDR0.VIRT == 1:

Write-Allocate hint for the VPE descriptors.

VPED_WA Meaning

0b0 No Write-Allocate.

0b1 Write-Allocate.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

VPED_RA, bit [14]

When IRS_IDR0.VIRT == 1:

Read-Allocate hint for the VPE descriptors.

VPED_RA Meaning

0b0 No Read-Allocate.

0b1 Read-Allocate.

The reset behavior of this field is:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

431

Chapter 10. Registers and memory maps
10.2. IRS register frames

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

VMD_WA, bit [13]

When IRS_IDR0.VIRT == 1:

Write-Allocate hint for the VM descriptors.

VMD_WA Meaning

0b0 No Write-Allocate.

0b1 Write-Allocate.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

VMD_RA, bit [12]

When IRS_IDR0.VIRT == 1:

Read-Allocate hint for the VM descriptors.

VMD_RA Meaning

0b0 No Read-Allocate.

0b1 Read-Allocate.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

VPET_WA, bit [11]

When IRS_IDR0.VIRT == 1:

Write-Allocate hint for the VPE table.

VPET_WA Meaning

0b0 No Write-Allocate.

0b1 Write-Allocate.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

432

Chapter 10. Registers and memory maps
10.2. IRS register frames

Otherwise:

RES0

VPET_RA, bit [10]

When IRS_IDR0.VIRT == 1:

Read-Allocate hint for the VPE table.

VPET_RA Meaning

0b0 No Read-Allocate.

0b1 Read-Allocate.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

VMT_WA, bit [9]

When IRS_IDR0.VIRT == 1:

Write-Allocate hint for the VM table.

VMT_WA Meaning

0b0 No Write-Allocate.

0b1 Write-Allocate.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

VMT_RA, bit [8]

When IRS_IDR0.VIRT == 1:

Read-Allocate hint for the VM table.

VMT_RA Meaning

0b0 No Read-Allocate.

0b1 Read-Allocate.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

433

Chapter 10. Registers and memory maps
10.2. IRS register frames

IST_WA, bit [7]

Write-Allocate hint for ISTs.

When IRS_IDR0.VIRT is 1, this control applies to the virtual ISTs as well as the physical IST.

IST_WA Meaning

0b0 No Write-Allocate.

0b1 Write-Allocate.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

IST_RA, bit [6]

Read-Allocate hint for ISTs.

When IRS_IDR0.VIRT is 1, this control applies to the virtual ISTs as well as the physical IST.

IST_RA Meaning

0b0 No Read-Allocate.

0b1 Read-Allocate.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

IC, bits [5:4]

Controls the Inner Cacheability attribute used when the IRS accesses tables as a requester.

IC Meaning

0b00 Non-cacheable.

0b01 Write-Back Cacheable.

0b10 Write-Through Cacheable.

0b11 Reserved, treated as 0b00.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

OC, bits [3:2]

Controls the Outer Cacheability attribute used when the IRS accesses tables as a requester.

OC Meaning

0b00 Non-cacheable.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

434

Chapter 10. Registers and memory maps
10.2. IRS register frames

OC Meaning

0b01 Write-Back Cacheable.

0b10 Write-Through Cacheable.

0b11 Reserved, treated as 0b00.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

SH, bits [1:0]

Controls the Shareability attribute used when the IRS accesses tables as a requester.

SH Meaning

0b00 Non-shareable.

0b01 Reserved, treated as 0b00.

0b10 Outer Shareable.

0b11 Inner Shareable.

When IRS_CR1.OC is 0b00 and IRS_CR1.IC is 0b00, this field is IGNORED and behaves as Outer Shareable.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing IRS_CR1

Accesses to this register use the following encodings:

Accessible at address 0x0084

• When IRS_IST_BASER.VALID == 1 or IRS_IST_STATUSR.IDLE == 0, access on this interface is RO.

• When IRS_VMT_BASER.VALID == 1 or IRS_VMT_STATUSR.IDLE == 0, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

435

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.4 IRS_IDR0
The IRS_IDR0 characteristics are:

Purpose

IRS identification register 0. Contains read-only fields with information about the IRS GIC component.

Attributes

IRS_IDR0 is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_IDR0 bit assignments are:

IRSID

31 16

RES0

15 13 12 11 10 9 8 7 6

PA_RANGE

5 2 1 0

SWE
MPAM

MEC
SETLPI

INT_DOM
VIRT

ONE_N
VIRT_ONE_N

IRSID, bits [31:16]

Unique identifier for this IRS in the system.

This value is the same across all Interrupt Domains for this IRS.

Bits [15:13]

Reserved, RES0.

SWE, bit [12]

Software error reporting support in the Interrupt Domain.

SWE Meaning

0b0 Software error reporting is not supported.

0b1 Software error reporting is supported.

Support for Software error reporting is optional.

MPAM, bit [11]

Memory Partitioning And Monitoring (MPAM) support.

MPAM Meaning

0b0 MPAM is not supported.

0b1 MPAM is supported.

Support for MPAM is optional.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

436

Chapter 10. Registers and memory maps
10.2. IRS register frames

MEC, bit [10]

When IRS_IDR0.INT_DOM == 0b11:

Support for Memory Encryption Contexts (MEC) for the Realm Interrupt Domain.

MEC Meaning

0b0 Memory Encryption Contexts are not supported.

0b1 Memory Encryption Contexts are supported.

Support for MEC is optional.

Otherwise:

RES0

SETLPI, bit [9]

When IRS_IDR2.LPI == 1:

Whether the IRS implements the IRS SETLPI register.

The IRS SETLPI register allows an MSI to set a physical LPI Pending without translation by an ITS.

SETLPI Meaning

0b0 The IRS does not implement the IRS SETLPI register.

0b1 The IRS implements the IRS SETLPI register.

Otherwise:

RES0

VIRT_ONE_N, bit [8]

Whether virtual 1ofN is supported.

VIRT_ONE_N Meaning

0b0 Virtual 1ofN is not supported.

0b1 Virtual 1ofN is supported.

This field is RES0, if any of the following are true:

• Virt is 0.

• ONE_N is 0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

437

Chapter 10. Registers and memory maps
10.2. IRS register frames

ONE_N Meaning

ONE_N, bit [7]

ONE_N Meaning

0b0 1ofN is not supported.

0b1 1ofN is supported.

VIRT, bit [6]

This field is RES0 for the EL3 Interrupt Domain

VIRT Meaning

0b0 Virtualization is not supported.

0b1 Virtualization is supported.

PA_RANGE, bits [5:2]

Physical Address range supported.

The physical address range corresponds to the system physical address size.

The value of this field is the same for all Interrupt Domains across all IRSs in the system.

PA_RANGE Meaning

0b0000 32 bits, 4GB

0b0001 36 bits, 64GB

0b0010 40 bits, 1TB

0b0011 42 bits, 4TB

0b0100 44 bits, 16TB

0b0101 48 bits, 256TB

0b0110 52 bits, 4PB

0b0111 56 bits, 64PB

Values not defined above are reserved.

INT_DOM, bits [1:0]

The Interrupt Domain that the register frame containing this register controls.

INT_DOM Meaning

0b00 Secure

0b01 Non-secure

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

438

Chapter 10. Registers and memory maps
10.2. IRS register frames

INT_DOM Meaning

0b10 EL3

0b11 Realm

Accessing IRS_IDR0

Accesses to this register use the following encodings:

Accessible at address 0x0000

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

439

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.5 IRS_IDR1
The IRS_IDR1 characteristics are:

Purpose

IRS identification register 1. Contains read-only fields with information about the IRS GIC component.

Attributes

IRS_IDR1 is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_IDR1 bit assignments are:

RES0

31 23 22 20 19 16

PE_CNT

15 0

PRI_BITS IAFFID_BITS

Bits [31:23]

Reserved, RES0.

PRI_BITS, bits [22:20]

The number of priority bits implemented, minus one.

PRI_BITS Meaning

0b000 1 bit of priority.

0b001 2 bits of priority.

0b010 3 bits of priority.

0b011 4 bits of priority.

0b100 5 bits of priority.

Values not defined above are reserved.

When fewer than 5 bits are implemented, the lower order priority bits are RES0.

IAFFID_BITS, bits [19:16]

Number of bits of IAFFID supported - 1.

Unimplemented upper bits of IAFFID are RES0 when sending and receiving commands between a PE and the IRS.

PE_CNT, bits [15:0]

The number of PEs connected to this IRS.

Accessing IRS_IDR1

Accesses to this register use the following encodings:

Accessible at address 0x0004

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

440

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.6 IRS_IDR2
The IRS_IDR2 characteristics are:

Purpose

IRS identification register 2. Contains read-only fields with information about the IRS GIC component.

Attributes

IRS_IDR2 is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_IDR2 bit assignments are:

RES0

31 20

ISTMD_SZ

19 15 14 13 11 10 9 6 5

ID_BITS

4 0

ISTMD
IST_L2SZ

LPI
MIN_LPI_ID_BITS

IST_LEVELS

Bits [31:20]

Reserved, RES0.

ISTMD_SZ, bits [19:15]

Describes the minimum number of INTID.ID bits which requires a level 2 ISTE size of 16 bytes to store metadata.

When the configured number of INTID.ID bits is smaller than ISTMD_SZ, the minimum required size of a level 2
ISTE is 8 bytes.

When the configured number of INTID.ID bits is larger than or equal to ISTMD_SZ, the minimum required size of
a level 2 ISTE is 16 bytes.

When ISTMD is 0, this field is RES0.

ISTMD, bit [14]

Whether the IST entries contain metadata storage.

When the IST entires contain metadata storage, the size of a level 2 ISTE is 8 bytes or 16 bytes.

The size of an IST entry containing metadata depends on the configured ID range and the values reported in
ISTMD_SZ.

ISTMD Meaning

0b0 The IST entries do not require storage for metadata and the
size of a level 2 ISTE is 4 bytes.

0b1 The IST entries require storage for metadata and the size of a
level 2 ISTE is 8 bytes or 16 bytes.

IST_L2SZ, bits [13:11]

Supported level 2 IST sizes when a 2-level IST structure is used.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

441

Chapter 10. Registers and memory maps
10.2. IRS register frames

IST_L2SZ Meaning

0b001 Level 2 IST sizes supported: 4KB

0b010 Level 2 IST sizes supported: 16KB

0b011 Level 2 IST sizes supported: 4KB and 16KB

0b100 Level 2 IST sizes supported: 64KB

0b101 Level 2 IST sizes supported: 4KB and 64KB

0b110 Level 2 IST sizes supported: 16KB and 64KB

0b111 Level 2 IST sizes supported: 4KB, 16KB, and 64KB

Values not defined above are reserved.

When IST_LEVELS is 0, this field is RES0.

When LPI is 0, this field is RES0.

IST_LEVELS, bit [10]

Levels supported for the IST.

When LPI is 0, this field is RES0.

IST_LEVELS Meaning

0b0 Only a single level linear structure is supported.

0b1 2-level structure is supported in addition to the linear structure.

MIN_LPI_ID_BITS, bits [9:6]

The minimum number of LPI_ID_BITS supported.

The maximum value supported for this field is 14.

When LPI is 0, this field is RES0.

LPI, bit [5]

Whether physical LPIs are implemented.

When physical LPIs are not supported, the physical IST registers are not implemented.

ID_BITS, bits [4:0]

The maximum number of INTID.ID bits that the IRS supports.

The maximum supported value of this field is 24.

Accessing IRS_IDR2

Accesses to this register use the following encodings:

Accessible at address 0x0008

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

442

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.7 IRS_IDR3
The IRS_IDR3 characteristics are:

Purpose

IRS identification register 3. Contains read-only fields with information about the IRS GIC component.

Attributes

IRS_IDR3 is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_IDR3 bit assignments are:

RES0

31 11 10

VM_ID_BITS

9 5

VMD_SZ

4 1 0

VMT_LEVELS VMD

Bits [31:11]

Reserved, RES0.

VMT_LEVELS, bit [10]

When IRS_IDR0.VIRT == 1:

Levels supported for the VM table.

VMT_LEVELS Meaning

0b0 Only a single level linear structure is supported.

0b1 2-level structure is supported in addition to the linear structure.

Otherwise:

RES0

VM_ID_BITS, bits [9:5]

When IRS_IDR0.VIRT == 1:

The maximum number of VM ID bits that the IRS supports.

The minimum supported value of this field is 8 and the maximum supported value is 16.

Otherwise:

RES0

VMD_SZ, bits [4:1]

When IRS_IDR0.VIRT == 1:

Specifies the size in bytes of a VM descriptor.

Each VM descriptor is 2ˆ(VMD_SZ) bytes.

The minimum valid value for this field is 3 and the maximum valid value is 12.

This corresponds to a minimum descriptor size of 8 bytes and a maximum descriptor size of 4096 bytes.

Otherwise:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

443

Chapter 10. Registers and memory maps
10.2. IRS register frames

RES0

VMD, bit [0]

When IRS_IDR0.VIRT == 1:

Whether each VM requires an IMPLEMENTATION DEFINED memory area.

VMD Meaning

0b0 The VMs do not require VM descriptor areas.

0b1 Each VM requires a VM descriptor area.

Otherwise:

RES0

Accessing IRS_IDR3

Accesses to this register use the following encodings:

Accessible at address 0x000C

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

444

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.8 IRS_IDR4
The IRS_IDR4 characteristics are:

Purpose

IRS identification register 4. Contains read-only fields with information about the IRS GIC component.

Attributes

IRS_IDR4 is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_IDR4 bit assignments are:

RES0

31 10 9 6

VPED_SZ

5 0

VPE_ID_BITS

Bits [31:10]

Reserved, RES0.

VPE_ID_BITS, bits [9:6]

The number of VPE ID bits supported - 1.

The minimum supported value of this field is 8 and the maximum supported value is 16.

Accessing this field has the following behavior:

• When IRS_IDR0.VIRT == 0, access to this field is RES0
• Otherwise, access to this field is RO

VPED_SZ, bits [5:0]

Specifies the size in bytes of a VPE Descriptor.

Each VPE Descriptor is 2ˆ(VPED_SZ) bytes.

The minimum valid value for this field is 3 and the maximum valid value is 12.

This corresponds to a minimum descriptor size of 8 bytes and a maximum descriptor size of 4096 bytes.

Accessing this field has the following behavior:

• When IRS_IDR0.VIRT == 0, access to this field is RES0
• Otherwise, access to this field is RO

Accessing IRS_IDR4

Accesses to this register use the following encodings:

Accessible at address 0x0010

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

445

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.9 IRS_IDR5
The IRS_IDR5 characteristics are:

Purpose

IRS identification register 5. Contains read-only fields with information about the IRS GIC component.

Attributes

IRS_IDR5 is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_IDR5 bit assignments are:

RES0

31 25

SPI_RANGE

24 0

Bits [31:25]

Reserved, RES0.

SPI_RANGE, bits [24:0]

The total number of SPIs in the system.

The maximum value reported in this field is 2ˆ24.

The number reported in this register is the same across all Interrupt Domains and across all IRSs in a system.

Accessing IRS_IDR5

Accesses to this register use the following encodings:

Accessible at address 0x0014

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

446

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.10 IRS_IDR6
The IRS_IDR6 characteristics are:

Purpose

IRS identification register 6. Contains read-only fields with information about the range of SPI INTIDs
managed by this IRS.

Attributes

IRS_IDR6 is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_IDR6 bit assignments are:

RES0

31 25

SPI_IRS_RANGE

24 0

Bits [31:25]

Reserved, RES0.

SPI_IRS_RANGE, bits [24:0]

The number of SPI INTID.ID managed on this IRS.

The value reported in this field is less than or equal to the value reported in IRS_IDR5.SPI_RANGE.

If IRS_IDR5.SPI_RANGE is 0, this field is RES0.

Accessing IRS_IDR6

Accesses to this register use the following encodings:

Accessible at address 0x0018

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

447

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.11 IRS_IDR7
The IRS_IDR7 characteristics are:

Purpose

IRS identification register 7. Contains read-only fields with information about the minimum SPI
INTID.ID value implemented on this IRS.

Attributes

IRS_IDR7 is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_IDR7 bit assignments are:

RES0

31 24

SPI_BASE

23 0

Bits [31:24]

Reserved, RES0.

SPI_BASE, bits [23:0]

The minimum SPI INTID.ID implemented on this IRS.

If IRS_IDR5.SPI_RANGE is 0 or IRS_IDR6.SPI_IRS_RANGE is 0, this field is RES0.

Accessing IRS_IDR7

Accesses to this register use the following encodings:

Accessible at address 0x001C

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

448

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.12 IRS_IIDR
The IRS_IIDR characteristics are:

Purpose

IRS Implementer Identification Register. Provides information about the implementation and
implementer of the GIC, and architecture version supported.

Attributes

IRS_IIDR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_IIDR bit assignments are:

ProductID

31 20

Variant

19 16

Revision

15 12

Implementer

11 0

ProductID, bits [31:20]

IMPLEMENTATION DEFINED value identifying the GIC part

When the IRS_PIDR{0,1} registers are present, Arm expects that the IRS_PIDR{0,1}.PART_{0,1} fields match
the value of IRS_IIDR.ProductID.

If required, however, an implementation is permitted to provide values for IRS_PIDR.{0,1}.PART_{0,1} that do
not match the value of IRS_IIDR.ProductID

Variant, bits [19:16]

IMPLEMENTATION DEFINED value used to distinguish product variants, or major revisions of the product

Revision, bits [15:12]

IMPLEMENTATION DEFINED value used to distinguish minor revisions of the product

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the GIC

For an Arm implementation, the JEP106 code is 0x43B

When the IRS_PIDR{1,2,4} registers are present, Arm expects that the IRS_PIDR{0,1}.PART_{0,1} fields match
the value of IRS_IIDR.Implementer.

Accessing IRS_IIDR

Accesses to this register use the following encodings:

Accessible at address 0x0040

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

449

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.13 IRS_IST_BASER
The IRS_IST_BASER characteristics are:

Purpose

IRS IST base address register

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_IST_STATUSR.IDLE
is 1.

Attributes

IRS_IST_BASER is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_IST_BASER bit assignments are:

RES0

63 56

ADDR

55 32

ADDR

31 6

RES0

5 1 0

VALID

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:6]

Bits[55:6] of the base physical address of the IST.

When IRS_IST_CFGR.STRUCTURE is 0, ADDR points to a linear IST and all of the following are true:

• Bits[N:0] of the resulting address are 0 where N depends on the ISTSZ and LPI_ID_BITS fields in
IRS_IST_CFGR as follows:

N = Max(5, (ISTSZ + 1) + LPI_ID_BITS).

• This means that the level 2 ISTE array is aligned to the size of the array or to a 64-byte boundary when its
size is smaller than 64 bytes.

When IRS_IST_CFGR.STRUCTURE is 1, ADDR points to the level 1 table in a 2-level IST and all of the
following are true:

• Bits[N:0] of the resulting address are 0 where N depends on L2SZ, ISTSZ, and LPI_ID_BITS in
IRS_IST_CFGR as follows:

N = Max(5, LPI_ID_BITS - ((10 - ISTSZ) + (2 * L2SZ)) + 2)

• This means that the level 1 IST is aligned to the size of the level 1 table or to a 64-byte boundary when its
size is smaller than 64 bytes.

See 4.7 The interrupt state table (IST) for more information.

Access to any level of the IST and any additional memory accesses occurring as a result of the address in this field
are performed using the PAS of the Interrupt Domain where this register is accessed.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in IRS_IDR0.PA_RANGE.

The reset behavior of this field is:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

450

Chapter 10. Registers and memory maps
10.2. IRS register frames

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• When IRS_IST_BASER.VALID == 1, access to this field is RO
• Otherwise, access to this field is RW

Bits [5:1]

Reserved, RES0.

VALID, bit [0]

Whether the ADDR points to a valid IST.

VALID Meaning

0b0 The IST address is not valid.

0b1 The IST address is valid.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b0.

Accessing IRS_IST_BASER

Accesses to this register use the following encodings:

Accessible at address 0x0180

• When IRS_IDR2.LPI == 0, access on this interface is RAZ/WI.

• When IRS_IST_STATUSR.IDLE == 0, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

451

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.14 IRS_IST_CFGR
The IRS_IST_CFGR characteristics are:

Purpose

IRS IST configuration register

Attributes

IRS_IST_CFGR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_IST_CFGR bit assignments are:

RES0

31 17 16

RES0

15 9 8 7

L2SZ

6 5 4 0

STRUCTURE ISTSZ LPI_ID_BITS

Bits [31:17]

Reserved, RES0.

STRUCTURE, bit [16]

Whether the IST uses a linear or 2-level structure.

STRUCTURE Meaning

0b0 A linear IST structure is used.

0b1 A 2-level IST structure is used.

When IRS_IDR2.IST_LEVELS is 0, this field is RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Bits [15:9]

Reserved, RES0.

ISTSZ, bits [8:7]

The size of each level 2 ISTE.

Values not defined above are reserved.

If this field is programmed to specify a size smaller than the minimum required size or programmed to a reserved
value, it is treated as having the value corresponding to the minimum required size for all other purposes than a
direct read of the register.

See 4.7 The interrupt state table (IST) for more information about the minimum required size.

ISTSZ Meaning

0b00 The size of a level 2 ISTE is 4 bytes.

0b01 The size of a level 2 ISTE is 8 bytes.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

452

Chapter 10. Registers and memory maps
10.2. IRS register frames

ISTSZ Meaning

0b10 The size of a level 2 ISTE is 16 bytes.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

L2SZ, bits [6:5]

Level 2 IST size when a 2-level IST structure is used.

L2SZ Meaning

0b00 The level 2 IST size is 4KB.

0b01 The level 2 IST size is 16KB.

0b10 The level 2 IST size is 64KB.

Values not defined above are reserved.

IRS_IDR2.IST_L2SZ reports the supported values.

If LPI_ID_BITS <= ((10 - ISTSZ) + (2 * L2SZ)) and STRUCTURE is 1, all of the following are true:

• The IST consists of a single L1_ISTE and a single level 2 IST.
• The level 2 IST contains (2 ˆ LPI_ID_BITS) entries.
• The IRS Domain is allowed to access the full level 2 IST size as specified by L2SZ.

Arm recommends that STRUCTURE is 0 when LPI_ID_BITS <= ((10 - ISTSZ) + (2 * L2SZ)).

See 4.7 The interrupt state table (IST) for more information.

If programming a reserved value or an unsupported value, the IRS Domain behavior is CONSTRAINED UNPRE-
DICTABLE to any behavior which could be achieved by programming a valid and supported value.

When STRUCTURE is 0, this field is RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

LPI_ID_BITS, bits [4:0]

The number of LPIs for the IRS Domain.

The IST contains 2ˆ(LPI_ID_BITS) level 2 IST entries in total.

The minimum value for this field is IRS_IDR2.MIN_LPI_ID_BITS.

If programmed to a value smaller than the minimum, the field is treated as having the minimum value for all other
purposes than reading back the field.

The maximum value for this field is IRS_IDR2.ID_BITS.

If this field is programmed to a value larger than the maximum, it is treated as having the maximum value for all
other purposes than a direct read of the register. The maximum value is reported in IRS_IDR2.ID_BITS.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

453

Chapter 10. Registers and memory maps
10.2. IRS register frames

Accessing IRS_IST_CFGR

Accesses to this register use the following encodings:

Accessible at address 0x0190

• When IRS_IDR2.LPI == 0, access on this interface is RAZ/WI.

• When IRS_IST_BASER.Valid == 1 or IRS_IST_STATUSR.IDLE == 0, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

454

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.15 IRS_IST_STATUSR
The IRS_IST_STATUSR characteristics are:

Purpose

IRS physical IST management status register.

Attributes

IRS_IST_STATUSR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_IST_STATUSR bit assignments are:

RES0

31 1 0

IDLE

Bits [31:1]

Reserved, RES0.

IDLE, bit [0]

Whether the effects of any of the following writes are complete:

• A write that updates IRS_IST_BASER.VALID.
• A write to IRS_MAP_L2_ISTR.ID.

IDLE Meaning

0b0 The effects of the write are not complete.

0b1 The effects of the write are complete.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Access to this field is RO.

Accessing IRS_IST_STATUSR

Accesses to this register use the following encodings:

Accessible at address 0x0194

• When IRS_IDR2.LPI == 0, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

455

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.16 IRS_MAP_L2_ISTR
The IRS_MAP_L2_ISTR characteristics are:

Purpose

IRS map physical level 2 IST register

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_IST_STATUSR.IDLE
is 1.

Attributes

IRS_MAP_L2_ISTR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_MAP_L2_ISTR bit assignments are:

RES0

31 24

ID

23 0

A write to this register makes the specified physical level 2 IST valid.

There are no effects of a write to this register, if any of the following are true:

• The physical IST is invalid.

• The physical IST uses a linear structure.

• The LPI INTID.ID is outside the configured physical LPI range.

• The level 2 IST is already valid.

Bits [31:24]

Reserved, RES0.

ID, bits [23:0]

An LPI INTID.ID covered by the level 1 ISTE corresponding to the level 2 IST that is made valid.

If unimplemented upper bits of the INTID.ID are not zero, it is IMPLEMENTATION DEFINED whether the upper
bits are treated as 0 or the interrupt message is ignored by the IRS.

The reset behavior of this field is:

• This field resets to an UNKNOWN value.

Accessing IRS_MAP_L2_ISTR

Accesses to this register use the following encodings:

Accessible at address 0x01C0

• When IRS_IDR2.LPI == 0, access on this interface is RAZ/WI.

• When IRS_IST_STATUSR.IDLE == 0, access on this interface is UNKNOWN/WI.

• When IRS_IST_BASER.VALID == 0, access on this interface is UNKNOWN/WI.

• When IRS_IST_CFGR.STRUCTURE == 0, access on this interface is UNKNOWN/WI.

• Otherwise, access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

456

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.17 IRS_MEC_IDR
The IRS_MEC_IDR characteristics are:

Purpose

IRS MEC identification register. Contains read-only fields with information about the IRS support for
MEC.

Attributes

IRS_MEC_IDR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_MEC_IDR bit assignments are:

RES0

31 4 3 0

MECIDSIZE

Bits [31:4]

Reserved, RES0.

MECIDSIZE, bits [3:0]

When IRS_IDR0.MEC == 1:

The number of bits minus one of MECID supported by the IRS.

The maximum permitted value is 0xF which indicates a MECID width of 16 bits.

The value 0x0 is a valid encoding and indicates that one bit of MECID is supported.

Otherwise:

RES0

Accessing IRS_MEC_IDR

Accesses to this register use the following encodings:

Accessible at address 0x0340

• When IRS_IDR0.INT_DOM != 0b11, access on this interface is RAZ/WI.

• When IRS_IDR0.MEC != 1, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

457

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.18 IRS_MEC_MECID_R
The IRS_MEC_MECID_R characteristics are:

Purpose

IRS MEC MECID register for the Realm PAS.

Attributes

IRS_MEC_MECID_R is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_MEC_MECID_R bit assignments are:

RES0

31 16

MECID

15 0

Bits [31:16]

Reserved, RES0.

MECID, bits [15:0]

MECID for IRS access to Realm PA space for:

• Accesses to physical and virtual IST entries.
• Accesses to VM table entries and VPE table entrie.
• Accesses to VM descriptors and VPE descriptors.

Bits above the supported MECID size, indicated in IRS_MEC_IDR.MECIDSIZE are RES0.

If MECIDSIZE is less than 0xF, the IRS treats bits [15:MECIDSIZE+1] of this field as zero.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing IRS_MEC_MECID_R

Accesses to this register use the following encodings:

Accessible at address 0x0344

• When IRS_IDR0.INT_DOM != 0b11, access on this interface is RAZ/WI.

• When IRS_IDR0.MEC != 1, access on this interface is RAZ/WI.

• When IRS_IST_BASER.VALID == 1 or IRS_IST_STATUSR.IDLE == 0, access on this interface is RO.

• When IRS_VMT_BASER.VALID == 1 or IRS_VMT_STATUSR.IDLE == 0, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

458

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.19 IRS_MPAM_IDR
The IRS_MPAM_IDR characteristics are:

Purpose

IRS MPAM identification register. Contains read-only fields with information about the IRS support for
MPAM.

Attributes

IRS_MPAM_IDR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_MPAM_IDR bit assignments are:

RES0

31 25 24

PMG_MAX

23 16

PARTID_MAX

15 0

HAS_MPAM_SP

Bits [31:25]

Reserved, RES0.

HAS_MPAM_SP, bit [24]

Whether the IRS has support for MPAM PARTID space selection for the Interrupt Domain.

If HAS_MPAM_SP is 1, the IRS uses the MPAM PARTID specified by IRS_MPAM_PARTID_R.MPAM_SP.

If HAS_MPAM_SP is 0, the following PARTID space is used for IRS accesses to memory:

• Accesses made for the Secure Interrupt Domain use the Secure PARTID space.

• Accesses made for the Non-secure Interrupt Domain use the Non-secure PARTID space.

• Accesses made for the EL3 Interrupt Domain use the Root or Secure PARTID space.

• Accesses made for the Realm Interrupt Domain use the Realm PARTID space.

The value of this field is the same across all Interrupt Domains for an IRS.

PMG_MAX, bits [23:16]

The maximum PMG value that is permitted to be used for the IRS for the Interrupt Domain.

The PMG bit width is defined as the bit position of the most significant 1 in PMG_MAX[7:0], plus one, or is
defined as zero if PMG_MAX is zero.

For example, if PMG_MAX == 0x0f, the PMG bit width is 4.

This field is permitted to be zero-sized.

PARTID_MAX, bits [15:0]

The maximum PARTID value that is permitted to be used for the IRS for the Interrupt Domain.

The PARTID bit width is defined as the bit position of the most significant 1 in PARTID_MAX[15:0], plus one, or
is defined as zero if PARTID_MAX is zero.

For example, if PARTID_MAX == 0x0034, the PARTID bit width is 6.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

459

Chapter 10. Registers and memory maps
10.2. IRS register frames

This field is permitted to be zero-sized, but Arm recommends that it is non-zero when MPAM is implemented.

Accessing IRS_MPAM_IDR

Accesses to this register use the following encodings:

Accessible at address 0x0380

• When IRS_IDR0.MPAM != 1, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

460

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.20 IRS_MPAM_PARTID_R
The IRS_MPAM_PARTID_R characteristics are:

Purpose

IRS MPAM PARTID and PMG register.

Attributes

IRS_MPAM_PARTID_R is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_MPAM_PARTID_R bit assignments are:

31

RES0

30 26 25 24

PMG

23 16

PARTID

15 0

IDLE MPAM_SP

IDLE, bit [31]

Whether the effects of the previous write to this register are complete.

IDLE Meaning

0b0 The effects of the previous write to this register are not
complete.

0b1 The effects of the previous write to this register are complete.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Access to this field is RO.

Bits [30:26]

Reserved, RES0.

MPAM_SP, bits [25:24]

When IRS_MPAM_IDR.HAS_MPAM_SP == 1 and IRS_IDR0.INT_DOM == 0b00

MPAM_SP, bits [1:0] of bits [25:24]

MPAM PARTID space for the IRS for the Secure Interrupt Domain.

MPAM_SP Meaning

0b00 Secure PARTID space.

0b01 Non-secure PARTID space.

Values not defined above are reserved.

Programming a reserved value results in the IRS using an UNKNOWN PARTID space.

The reset behavior of this field is:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

461

Chapter 10. Registers and memory maps
10.2. IRS register frames

• On a GIC reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

• When IRS_MPAM_PARTID_R.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

When IRS_MPAM_IDR.HAS_MPAM_SP == 1 and IRS_IDR0.INT_DOM == 0b01

MPAM_SP, bits [1:0] of bits [25:24]

MPAM PARTID space for the IRS for the Non-secure Interrupt Domain.

MPAM_SP Meaning

0b01 Non-secure PARTID space.

Values not defined above are reserved.

Programming a reserved value results in the IRS using an UNKNOWN PARTID space.

The reset behavior of this field is:

• On a GIC reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

• When IRS_MPAM_PARTID_R.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

When IRS_MPAM_IDR.HAS_MPAM_SP == 1 and IRS_IDR0.INT_DOM == 0b10

MPAM_SP, bits [1:0] of bits [25:24]

MPAM PARTID space for the IRS for the EL3 Interrupt Domain.

MPAM_SP Meaning

0b00 Secure PARTID space.

0b01 Non-secure PARTID space.

0b10 Root PARTID space.

0b11 Realm PARTID space.

Values not defined above are reserved.

Programming a reserved value results in the IRS using an UNKNOWN PARTID space.

The reset behavior of this field is:

• On a GIC reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

• When IRS_MPAM_PARTID_R.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

When IRS_MPAM_IDR.HAS_MPAM_SP == 1 and IRS_IDR0.INT_DOM == 0b11

MPAM_SP, bits [1:0] of bits [25:24]

MPAM PARTID space for the IRS for the Realm Interrupt Domain.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

462

Chapter 10. Registers and memory maps
10.2. IRS register frames

MPAM_SP Meaning

0b01 Non-secure PARTID space.

0b11 Realm PARTID space.

Values not defined above are reserved.

Programming a reserved value results in the IRS using an UNKNOWN PARTID space.

The reset behavior of this field is:

• On a GIC reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

• When IRS_MPAM_PARTID_R.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

Otherwise:

RES0

PMG, bits [23:16]

PMG for accesses to memory by the IRS for the Interrupt Domain.

Bits above the supported PMG bit width, as indicated by IRS_MPAM_IDR.PMG_MAX, are RES0.

If a value greater than IRS_MPAM_IDR.PMG_MAX is programmed, an UNKNOWN PMG is used.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0x00.

Accessing this field has the following behavior:

• When IRS_MPAM_PARTID_R.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

PARTID, bits [15:0]

PARTID for accesses to memory by the IRS for the Interrupt Domain.

Bits above the supported PARTID bit width, as indicated by IRS_MPAM_IDR.PARTID_MAX, are RES0.

If a value greater than IRS_MPAM_IDR.PARTID_MAX is programmed, an UNKNOWN PARTID is used.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0x0000.

Accessing this field has the following behavior:

• When IRS_MPAM_PARTID_R.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

Accessing IRS_MPAM_PARTID_R

Accesses to this register use the following encodings:

Accessible at address 0x0384

• When IRS_IDR0.MPAM != 1, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

463

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.21 IRS_PE_CR0
The IRS_PE_CR0 characteristics are:

Purpose

IRS PE control register 0.

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_PE_STATUSR.IDLE
is 1.

Following a write to this register, IRS_PE_STATUSR.V is updated.

Attributes

IRS_PE_CR0 is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_PE_CR0 bit assignments are:

RES0

31 1 0

DPS

The fields in this register provide access to the configuration of the PE specified in the last write to IRS_PE_SELR.

The PE configuration applies to the IRS Domain corresponding to the PAS that this register is accessed in.

Bits [31:1]

Reserved, RES0.

DPS, bit [0]

Disable 1ofN PE selection.

DPS Meaning

0b0 1ofN PE selection is enabled. An interrupt configured to use
the 1ofN Routing mode is permitted to select this PE.

0b1 1ofN PE selection is disabled. An interrupt configured to use
the 1ofN Routing mode is not permitted to select this PE.

This field determines whether the selected PE is permitted to be selected for 1ofN interrupt delivery.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• When IRS_IDR0.ONE_N == 0, access to this field is RES0
• Otherwise, access to this field is RW

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

464

Chapter 10. Registers and memory maps
10.2. IRS register frames

Accessing IRS_PE_CR0

Accesses to this register use the following encodings:

Accessible at address 0x0148

• When IRS_PE_STATUSR.[V,IDLE] != 0b11, access on this interface is UNKNOWN/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

465

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.22 IRS_PE_SELR
The IRS_PE_SELR characteristics are:

Purpose

IRS PE selection register.

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_PE_STATUSR.IDLE
is 1.

Attributes

IRS_PE_SELR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_PE_SELR bit assignments are:

RES0

31 16

IAFFID

15 0

Bits [31:16]

Reserved, RES0.

IAFFID, bits [15:0]

PE interrupt Affinity ID.

Selects a PE whose configuration can be accessed via IRS_PE_CR0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing IRS_PE_SELR

Accesses to this register use the following encodings:

Accessible at address 0x0140

• When IRS_PE_STATUSR.IDLE == 0, access on this interface is WI.

• Otherwise, access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

466

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.23 IRS_PE_STATUSR
The IRS_PE_STATUSR characteristics are:

Purpose

IRS PE status register

Attributes

IRS_PE_STATUSR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_PE_STATUSR bit assignments are:

RES0

31 3 2

V

1 0

ONLINE IDLE

The fields in this register return information about the PE specified in the last write to IRS_PE_SELR and the
status of the last write to IRS_PE_CR0.

Bits [31:3]

Reserved, RES0.

ONLINE, bit [2]

Whether the PE is online or offline.

When the IRS determines that there is a candidate HPPI for the PE and the PE is offline the IRS generates a Wake
Request to the PE.

When the IRS determines that there is a candidate HPPI for the PE and the PE is online the IRS Forwards the
candidate HPPI to the PE.

When {V, IDLE} is not ‘0b11’, the value of this field is UNKNOWN.

ONLINE Meaning

0b0 The PE is offline.

0b1 The PE is online.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

V, bit [1]

Whether the value last written to IRS_PE_SELR selected a valid PE.

When IDLE is 0, the value of this field is UNKNOWN.

V Meaning

0b0 The PE selected using IRS_PE_SELR is not valid.

0b1 The PE selected using IRS_PE_SELR is valid.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

467

Chapter 10. Registers and memory maps
10.2. IRS register frames

This field resets to 0 to indicate that there was no write to IRS_PE_SELR that selected a valid PE since the IRS
was reset.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b0.

IDLE, bit [0]

Following a write to IRS_PE_SELR, when this field returns 1 and V is 1, a read from IRS_PE_CR0 returns the
configuration value for the PE when the accesses are performed on the same IRS.

Following a write to IRS_PE_CR0, when this field returns 1, the effects of the write have completed.

IDLE Meaning

0b0 The effects of writing to IRS_PE_SELR and IRS_PE_CR0 are
not guaranteed to be complete.

0b1 The effects of writing to IRS_PE_SELR and IRS_PE_CR0 are
complete.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Accessing IRS_PE_STATUSR

Accesses to this register use the following encodings:

Accessible at address 0x0144

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

468

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.24 IRS_SAVE_VMR
The IRS_SAVE_VMR characteristics are:

Purpose

IRS save VM register

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_SAVE_VM_STATUSR.IDLE
is 1.

Attributes

IRS_SAVE_VMR is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_SAVE_VMR bit assignments are:

S

63

Q

62

RES0

61 32

RES0

31 16

VM_ID

15 0

S, bit [63]

Writing 1 to this field saves the state of virtual interrupts to the virtual ISTs for the VM specified by VM_ID.

S Meaning

0b0 The write has no effect on the virtual ISTs.

0b1 The write saves the state of virtual interrupts to the virtual
ISTs.

Access to this field is WO/UNKNOWN.

Q, bit [62]

Writing 1 to this field queries whether he VM specified by VM_ID is Quiesced on all IRSs since the last write that
set S to 1 and returns the result in IRS_SAVE_VM_STATUSR.Q when IRS_SAVE_VM_STATUSR.IDLE is 1.

When a write sets S to 1, the Effective value written to this field is 1.

Following a write that updates VM_ID, if there has been no write that set S to 1, the value returned in
IRS_SAVE_VM_STATUSR.Q is UNKNOWN.

Q Meaning

0b0 The write has no effect on the value returned in
IRS_SAVE_VM_STATUSR.Q.

0b1 The write queries whether the VM is Quiesced on all IRSs
since the last write that set S to 1.

Access to this field is WO/UNKNOWN.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

469

Chapter 10. Registers and memory maps
10.2. IRS register frames

Bits [61:16]

Reserved, RES0.

VM_ID, bits [15:0]

The VM ID specifying the VM whose virtual interrupt state should be written to the ISTs.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing IRS_SAVE_VMR

Accesses to this register use the following encodings:

Accessible at address 0x0300

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• When IRS_SAVE_VM_STATUSR.IDLE == 0, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

470

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.25 IRS_SAVE_VM_STATUSR
The IRS_SAVE_VM_STATUSR characteristics are:

Purpose

IRS save VM status register.

Attributes

IRS_SAVE_VM_STATUSR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_SAVE_VM_STATUSR bit assignments are:

RES0

31 2

Q

1 0

IDLE

The fields in this register return information about the last write to IRS_SAVE_VMR.

Bits [31:2]

Reserved, RES0.

Q, bit [1]

Reports whether the VM specified by IRS_SAVE_VMR.VM_ID is Quiesced since the last write that set
IRS_SAVE_VMR.S to 1.

If there has been no write that set IRS_SAVE_VMR.S to 1 since IRS_SAVE_VMR.VM_ID was updated, the value
of this field is UNKNOWN.

If the VM ID specified an invalid VM, the value of this field is UNKNOWN.

Q Meaning

0b0 The VM is Quiesced.

0b1 The VM is not Quiesced.

If IDLE is 0, this field is UNKNOWN.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

IDLE, bit [0]

Reports the status of the last write to IRS_SAVE_VMR.

IDLE Meaning

0b0 The effects of the last write to IRS_SAVE_VMR are not
guaranteed to be complete.

0b1 The effects of the last write to IRS_SAVE_VMR are complete.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

471

Chapter 10. Registers and memory maps
10.2. IRS register frames

This field resets to 1 to allow initial writes to registers Guarded by this field. Because there has been no write at
reset, this does not imply that any invalidate operation is complete.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Accessing IRS_SAVE_VM_STATUSR

Accesses to this register use the following encodings:

Accessible at address 0x0308

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

472

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.26 IRS_SPI_CFGR
The IRS_SPI_CFGR characteristics are:

Purpose

IRS SPI configuration register.

Allows software to read and update the configuration of the SPI selected by IRS_SPI_SELR.

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_SPI_STATUSR.IDLE
is 1.

Following a write to this register, IRS_SPI_STATUSR.V is updated.

Attributes

IRS_SPI_CFGR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_SPI_CFGR bit assignments are:

RES0

31 1

TM

0

This register is updated after a write to IRS_SPI_SELR when IRS_SPI_STATUSR.{V, IDLE} is {1, 1}.

Bits [31:1]

Reserved, RES0.

TM, bit [0]

The Trigger mode of the SPI.

TM Meaning

0b0 Edge-triggered

0b1 Level-sensitive

It is IMPLEMENTATION DEFINED whether access to this field for the selected SPI is RW or RO.

Note: This field controls the type of event generated by SPI signals. This is a separate control from the INTID
Handling mode.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing IRS_SPI_CFGR

Accesses to this register use the following encodings:

Accessible at address 0x0114

• When IRS_SPI_STATUSR.[V,IDLE] != 0b11, access on this interface is UNKNOWN/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

473

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.27 IRS_SPI_DOMAINR
The IRS_SPI_DOMAINR characteristics are:

Purpose

IRS SPI Interrupt Domain configuration Register.

Allows software to read and update the Interrupt Domain assignment of the SPI selected by
IRS_SPI_SELR.

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_SPI_STATUSR.IDLE
is 1.

Following a write to this register, IRS_SPI_STATUSR.V is updated.

Attributes

IRS_SPI_DOMAINR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_SPI_DOMAINR bit assignments are:

RES0

31 2 1 0

DOMAIN

This register is updated after a write to IRS_SPI_SELR when IRS_SPI_STATUSR.{V, IDLE} is {1, 1}.

Bits [31:2]

Reserved, RES0.

DOMAIN, bits [1:0]

Configures the Interrupt Domain associated with the SPI.

Some SPIs may be statically assigned to a Domain, in which case this field always returns the statically assigned
Domain for the SPI.

To check if a SPI can be dynamically assigned to a Domain, software must read back the value in this field after
attempting an update to establish if the update was successful once IRS_SPI_STATUSR.IDLE is 1.

DOMAIN Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

Programming an Interrupt Domain not supported by the IRS results in CONSTRAINED UNPREDICTABLE behavior
with the following options:

• The SPI behaves as if it is not assigned to any Interrupt Domain.
• The SPI is treated as being assigned to another supported Interrupt Domain for all other purposes than reading

back this field

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

474

Chapter 10. Registers and memory maps
10.2. IRS register frames

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing IRS_SPI_DOMAINR

Accesses to this register use the following encodings:

Accessible at address 0x010C

• When IRS_IDR0.INT_DOM != 0b10, access on this interface is RAZ/WI.

• When IRS_SPI_STATUSR.[V,IDLE] != 0b11, access on this interface is UNKNOWN/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

475

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.28 IRS_SPI_RESAMPLER
The IRS_SPI_RESAMPLER characteristics are:

Purpose

IRS SPI resample register.

Resample an SPI signal.

Attributes

IRS_SPI_RESAMPLER is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_SPI_RESAMPLER bit assignments are:

RES0

31 24

SPI_ID

23 0

This register allows resampling an SPI.

Bits [31:24]

Reserved, RES0.

SPI_ID, bits [23:0]

SPI INTID.ID of the SPI to resample.

Following a write to this register, if all of the following are true, the SPI is resampled:

• The SPI is managed on this IRS.
• The SPI can be accessed in this IRS Domain.

Otherwise, the write to this register has no effect.

See ‘Physical SPIs’ for more information.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing IRS_SPI_RESAMPLER

Accesses to this register use the following encodings:

Accessible at address 0x0110

Access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

476

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.29 IRS_SPI_SELR
The IRS_SPI_SELR characteristics are:

Purpose

IRS SPI selection register.

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_SPI_STATUSR.IDLE
is 1.

Attributes

IRS_SPI_SELR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_SPI_SELR bit assignments are:

RES0

31 24

ID

23 0

Bits [31:24]

Reserved, RES0.

ID, bits [23:0]

Selects the SPI that the following registers access:

• IRS_SPI_CFGR
• IRS_SPI_DOMAINR
• IRS_SPI_VMR

Only implemented SPIs with INTID.ID in the range from IRS_IDR7.SPI_BASE to (IRS_IDR7.SPI_BASE +
IRS_IDR6.SPI_IRS_RANGE - 1) may be selected.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing IRS_SPI_SELR

Accesses to this register use the following encodings:

Accessible at address 0x0108

• When IRS_SPI_STATUSR.IDLE == 0, access on this interface is WI.

• Otherwise, access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

477

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.30 IRS_SPI_STATUSR
The IRS_SPI_STATUSR characteristics are:

Purpose

IRS SPI status register.

Attributes

IRS_SPI_STATUSR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_SPI_STATUSR bit assignments are:

RES0

31 2

V

1 0

IDLE

Bits [31:2]

Reserved, RES0.

V, bit [1]

Whether the value last written to IRS_SPI_SELR selects a valid SPI that is managed on this IRS and can be
accessed in this IRS Domain.

This field is updated if and only if a write occurs to any of the following registers in this IRS Domain:

• IRS_SPI_CFGR
• IRS_SPI_SELR
• IRS_SPI_VMR

Following a write to any of the above registers, if this field returns 0, the write to the register has no effects other
than updating the values in this register.

SPIs with INTID.ID in the range described by IRS_IDR7.SPI_BASE and IRS_IDR6.SPI_IRS_RANGE are
managed on this IRS.

If the in IRS_SPI_SELR specifies an SPI and all of the following are true, this field returns 1:

• The selected SPI is implemented.
• The selected SPI is managed by this IRS.
• The selected SPI is assigned to this IRS Domain or this IRS Domain is the EL3 IRS Domain.

Otherwise, this field returns 0.

When IDLE is 0, the value of this field is UNKNOWN.

V Meaning

0b0 The SPI selected using IRS_SPI_SELR is not a valid SPI that
is managed on this IRS and can be accessed in this IRS
Domain.

0b1 The SPI selected using IRS_SPI_SELR is a valid SPI that is
managed on this IRS and can be accessed in this IRS Domain.

This field resets to 0 to indicate that there was no write to IRS_SPI_SELR that selected a valid SPI that is managed
on this IRS since the IRS was reset.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

478

Chapter 10. Registers and memory maps
10.2. IRS register frames

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b0.

IDLE, bit [0]

Whether writes to any of the following registers have completed:

• IRS_SPI_CFGR
• IRS_SPI_DOMAINR
• IRS_SPI_SELR
• IRS_SPI_VMR

Following a write to IRS_SPI_SELR, when {IDLE, V} is {1, 1}, a read from any of the other registers returns the
configuration value for the SPI.

Following a write to any of the registers listed above, on this IRS, when {IDLE, V} is {1, 1}, the effects of the
write are complete.

IDLE Meaning

0b0 The effects of writing to the SPI selection and configuration
registers are not guaranteed to have completed.

0b1 The effects of writing to the SPI selection and configuration
registers have completed.

This field resets to 1 to allow initial writes to registers Guarded by this field. Because there has been no write at
reset, this does not imply that any invalidate operation is complete.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Accessing IRS_SPI_STATUSR

Accesses to this register use the following encodings:

Accessible at address 0x0118

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

479

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.31 IRS_SPI_VMR
The IRS_SPI_VMR characteristics are:

Purpose

IRS SPI VM assignment register.

Allows software to read and update the VM assignment of the SPI selected by ‘IRS_SPI_SELR’.

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_SPI_STATUSR.IDLE
is 1.

Following a write to this register, IRS_SPI_STATUSR.V is updated.

Attributes

IRS_SPI_VMR is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_SPI_VMR bit assignments are:

63

RES0

62 32

VIRT

RES0

31 16

VM_ID

15 0

This register is updated after a write to IRS_SPI_SELR when IRS_SPI_STATUSR.{V, IDLE} is {1, 1}.

VIRT, bit [63]

Whether the SPI selected by IRS_SPI_SELR is assigned as a virtual SPI to the VM.

VIRT Meaning

0b0 The SPI is not assigned to a VM.

0b1 The SPI is assigned to the VM specified by VM_ID.

Bits [62:16]

Reserved, RES0.

VM_ID, bits [15:0]

Identifies the VM.

On a read, when VIRT is 0, the value of this field is UNKNOWN.

On a write, if the existing value of VIRT is 1, the write to this field is IGNORED.

Accessing IRS_SPI_VMR

When the value of VIRT in the register is 1, meaning that the selected SPI is assigned to a VM, any write that does
not set VIRT to 0 is ignored.

To assign an SPI to a different VM, the SPI must first be unassigned from the old VM, and then subsequently
assigned to the new VM.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

480

Chapter 10. Registers and memory maps
10.2. IRS register frames

Accesses to this register use the following encodings:

Accessible at address 0x0100

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• When IRS_SPI_STATUSR.[V,IDLE] != 0b11, access on this interface is UNKNOWN/WI.

• When !IsSPIDVISupported(IRS_SPI_SELR.ID), access on this interface is RAZ/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

481

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.32 IRS_SWERR_STATUSR
The IRS_SWERR_STATUSR characteristics are:

Purpose

IRS software error status register. Specifies whether a software error has been reported. If an error is
reported, it contains syndrome information for the error.

Attributes

IRS_SWERR_STATUSR is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_SWERR_STATUSR bit assignments are:

RES0

63 32

IMP_EC

31 24

EC

23 16

RES0

15 4

OF

3 2 1

V

0

S1V S0V

Bits [63:32]

Reserved, RES0.

IMP_EC, bits [31:24]

IMPLEMENTATION DEFINED error code when IRS_SWERR_STATUS.EC == 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• Access is RES0 if any of the following are true:
– IRS_SWERR_STATUSR.V == 0
– IRS_SWERR_STATUSR.EC != 0

• Otherwise, access to this field is RO

EC, bits [23:16]

Specifies the error code that software can use to triage and handle the error.

EC Meaning

0x00 An error was reported because of an IMPLEMENTATION
DEFINED reason.

0x01 Failed lookup of L1_ISTE due to an external abort.

0x02 Failed lookup of L2_ISTE due to an external abort.

0x03 Failed lookup of L1_VMTE due to an external abort.

0x04 Failed lookup of L2_VMTE due to an external abort.

0x05 Failed lookup of VPE Table due to an external abort.

0x06 Failed lookup of VPE descriptor due to an external abort.

0x07 Failed lookup of VM descriptor due to an external abort.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

482

Chapter 10. Registers and memory maps
10.2. IRS register frames

EC Meaning

0x08 A physical LPI could not be processed because
IRS_IST_BASER.VALID is 0.

0x09 A physical LPI could not be processed because
L1_ISTE.VALID is 0.

0x0A A physical LPI was not processed because the LPI INTID.ID >
(2 ˆ IRS_IST_CFGR.LPI_ID_BITS) - 1.

0x0B A virtual interrupt could not be processed because
L1_ISTE.VALID is 0

0x0C A virtual interrupt could not be processed because
L1_VMTE.VALID is 0.

0x0D A virtual interrupt could not be processed because
L2_VMTE.VALID is 0.

0x0E A virtual LPI was not processed because
L2_VMTE.LPI_IST_VALID is 0.

0x0F A virtual SPI was not processed because
L2_VMTE.SPI_IST_VALID is 0.

0x10 A virtual LPI was not processed because the LPI INTID.ID >
(2 ˆ L2_VMTE.LPI_ID_BITS) - 1.

0x11 A virtual SPI was not processed because the SPI INTID.ID >
(2 ˆ L2_VMTE.SPI_ID_BITS) - 1.

0x12 A virtual LPI signaled by an ITS was not processed because
the VM ID > (2 ˆ IRS_VMT_CFGR.VM_ID_BITS) - 1.

0x13 A virtual interrupt was not processed because the VPE ID > (2
ˆ L2_VMTE.VPE_ID_BITS) - 1.

0x14 A virtual interrupt was signaled in a non-EL3 Interrupt
Domain by an ITS, or via the GIC VDPEND system instruction,
and the interrupt was unreachable because IRS_IDR0.VIRT is
0 or the VM was invalid.

0x15 A physical interrupt whose Routing mode is Targeted specified
an invalid IAFFID.

0x16 A virtual interrupt whose Routing mode is Targeted specified a
VPE ID that is < 2 ˆ L2_VMTE.VPE_ID_BITS but invalid
otherwise.

0x17 The IRS was trying to signal a VPE doorbell but the VPE
doorbell INTID is unreachable.

0x19 The IRS has detected corrupt metadata in the L2_ISTE.

0x1A The IRS has detected corrupt metadata in a VPE descriptor.

0x1B The IRS has detected corrupt metadata in a VM descriptor.

0x1C IRS_MAP_L2_ISTR was written when
IRS_IST_STATUSR.IDLE == 0.

0x1D IRS_VMAP_L2_VMTR was written when
IRS_VMT_STATUSR.IDLE == 0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

483

Chapter 10. Registers and memory maps
10.2. IRS register frames

EC Meaning

0x1E IRS_VMAP_VMR was written when
IRS_VMT_STATUSR.IDLE == 0.

0x1F IRS_VMAP_VISTR was written when
IRS_VMT_STATUSR.IDLE == 0.

0x20 IRS_VMAP_L2_VISTR was written when
IRS_VMT_STATUSR.IDLE == 0.

0x21 IRS_VMAP_VPER was written when
IRS_VMT_STATUSR.IDLE == 0.

0x22 IRS_IST_BASER was written when
IRS_IST_STATUSR.IDLE == 0.

0x23 IRS_PE_SELR was written when IRS_PE_STATUSR.IDLE
== 0.

0x24 IRS_SAVE_VMR was written when
IRS_SAVE_VM_STATUSR.IDLE == 0.

0x25 IRS_SPI_SELR was written when IRS_SPI_STATUSR.IDLE
== 0.

0x26 IRS_SYNCR was written when IRS_SYNC_STATUSR.IDLE
== 0.

0x27 IRS_VM_SELR was written when IRS_VM_STATUSR.IDLE
== 0.

0x28 IRS_VMT_BASER was written when
IRS_VMT_STATUSR.IDLE == 0.

0x29 IRS_VPE_SELR was written when
IRS_VPE_STATUSR.IDLE == 0.

0x2A The IRS has detected that L2_ISTE.IRM is 1 and 1ofN is not
supported.

0x2B A resample request for an SPI from a write to
IRS_SPI_RESAMPLER failed.

All other values are reserved.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• When IRS_SWERR_STATUSR.V == 0, access to this field is UNKNOWN/WI
• Otherwise, access to this field is RO

Bits [15:4]

Reserved, RES0.

OF, bit [3]

Specifies whether multiple software errors have been detected.

When this field is 1, the syndrome information reports information about the error that last caused
IRS_SWERR_STATUSR.V to transition from 0 to 1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

484

Chapter 10. Registers and memory maps
10.2. IRS register frames

OF Meaning

0b0 No errors have been detected, since the error that was reported
when IRS_SWERR_STATUSR.V last transitioned from 0 to 1.

0b1 At least one error has been detected, since the error that was
reported when IRS_SWERR_STATUSR.V last transitioned
from 0 to 1.

When clearing IRS_SWERR_STATUSR.V to 0, if this field is nonzero, software writes 1 to clear this field to zero.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• When IRS_SWERR_STATUSR.V == 0, access to this field is UNKNOWN/WI
• Otherwise, access to this field is W1C

S1V, bit [2]

Specifies whether IRS_SWERR_SYNDROMER1 is valid.

S1V Meaning

0b0 IRS_SWERR_SYNDROMER1 is not valid.

0b1 IRS_SWERR_SYNDROMER1 is valid.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• When IRS_SWERR_STATUSR.V == 0, access to this field is UNKNOWN/WI
• Otherwise, access to this field is RO

S0V, bit [1]

Specifies whether IRS_SWERR_SYNDROMER0 is valid.

S0V Meaning

0b0 IRS_SWERR_SYNDROMER0 is not valid.

0b1 IRS_SWERR_SYNDROMER0 is valid.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• When IRS_SWERR_STATUSR.V == 0, access to this field is UNKNOWN/WI
• Otherwise, access to this field is RO

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

485

Chapter 10. Registers and memory maps
10.2. IRS register frames

V, bit [0]

Specifies whether other fields in this register are valid and at least one software error has been reported.

V Meaning

0b0 IRS_SWERR_STATUSR is not valid.

0b1 IRS_SWERR_STATUSR is valid.

Software writes 1 to this field to clear it to zero.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Access to this field is W1C.

Accessing IRS_SWERR_STATUSR

After reading IRS_SWERR_STATUSR, software clears the valid fields in the register to allow new errors to be
reported.

However, between reading the register and clearing the valid fields, a new error might have overwritten the register.

To prevent this error being lost by software, the register prevents updates to fields that might have been updated by
a new error.

This is done by ensuring a write to the register is ignored if all of the following are true:

• Any of IRS_SWERR_STATUSR.{V, OF} are nonzero before the write.

• The write does not clear the nonzero IRS_SWERR_STATUSR.{V, OF} fields to zero by writing ones to the
applicable field or fields.

Accesses to this register use the following encodings:

Accessible at address 0x03C0

• When IRS_IDR0.SWE != 1, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

486

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.33 IRS_SWERR_SYNDROMER0
The IRS_SWERR_SYNDROMER0 characteristics are:

Purpose

IRS software error syndrome register 0. Records IRS specific software error syndrome information.

Attributes

IRS_SWERR_SYNDROMER0 is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_SWERR_SYNDROMER0 bit assignments are:

63

TYPE

62 60

RES0

59 56

ID

55 32

VIRTUAL

RES0

31 16

VM_ID

15 0

VIRTUAL, bit [63]

Specifies whether the error syndrome information is for a physical or virtual interrupt.

VIRTUAL Meaning

0b0 The error syndrome information is for a physical interrupt

0b1 The error syndrome information is for a virtual interrupt

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

TYPE, bits [62:60]

The type of the interrupt for which an error was detected.

TYPE Meaning

0b010 LPI

0b011 SPI

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Bits [59:56]

Reserved, RES0.

ID, bits [55:32]

ID of the interrupt for which an error was detected.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

487

Chapter 10. Registers and memory maps
10.2. IRS register frames

Bits [31:16]

Reserved, RES0.

VM_ID, bits [15:0]

Bits[15:0] of the VM ID of the virtual interrupt that could not be routed by the IRS as described below.

• For a virtual LPI, this is the VM ID specified in the incoming interrupt event.

• For a virtual SPI, this is the VM ID to which the virtual SPI was assigned.

When VIRTUAL is 0, this field is RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing IRS_SWERR_SYNDROMER0

Accesses to this register use the following encodings:

Accessible at address 0x03C8

• When IRS_IDR0.SWE != 1, access on this interface is RAZ/WI.

• When IRS_SWERR_STATUSR.V == 1 and IRS_SWERR_STATUSR.S0V == 1, access on this interface is
RO.

• Otherwise, access on this interface is UNKNOWN/WI.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

488

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.34 IRS_SWERR_SYNDROMER1
The IRS_SWERR_SYNDROMER1 characteristics are:

Purpose

IRS software error syndrome register 1. Records IRS specific software error syndrome information.

Attributes

IRS_SWERR_SYNDROMER1 is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_SWERR_SYNDROMER1 bit assignments are:

RES0

63 56

ADDR

55 32

ADDR

31 3

RES0

2 0

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:3]

Bits[55:3] of the physical address of a translation structure associated with the detected error.

The address in this field is associated with the PAS of the Interrupt Domain where the error is detected.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in IRS_IDR0.PA_RANGE.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Bits [2:0]

Reserved, RES0.

Accessing IRS_SWERR_SYNDROMER1

Accesses to this register use the following encodings:

Accessible at address 0x03D0

• When IRS_IDR0.SWE != 1, access on this interface is RAZ/WI.

• When IRS_SWERR_STATUSR.V == 1 and IRS_SWERR_STATUSR.S1V == 1, access on this interface is
RO.

• Otherwise, access on this interface is UNKNOWN/WI.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

489

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.35 IRS_SYNCR
The IRS_SYNCR characteristics are:

Purpose

IRS synchronize interrupt events register.

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_SYNC_STATUSR.IDLE
is 1.

Attributes

IRS_SYNCR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_SYNCR bit assignments are:

31

RES0

30 0

SYNC

SYNC, bit [31]

Writing 1 to this field requests synchronization of interrupt events for the IRS Domain.

Writing 0 to this field has no effect.

See ’IRS synchronization requests‘ for more information.

SYNC Meaning

0b0 Ignored.

0b1 Issue synchronization request.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Bits [30:0]

Reserved, RES0.

Accessing IRS_SYNCR

Accesses to this register use the following encodings:

Accessible at address 0x00C0

• When IRS_SYNC_STATUSR.IDLE == 0, access on this interface is WI.

• Otherwise, access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

490

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.36 IRS_SYNC_STATUSR
The IRS_SYNC_STATUSR characteristics are:

Purpose

IRS synchronize interrupt events status register.

Attributes

IRS_SYNC_STATUSR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_SYNC_STATUSR bit assignments are:

RES0

31 1 0

IDLE

Bits [31:1]

Reserved, RES0.

IDLE, bit [0]

Whether the effects of the last write to IRS_SYNCR have completed.

IDLE Meaning

0b0 The effects of writing to IRS_SYNCR not guaranteed to have
completed.

0b1 The effects of writing to IRS_SYNCR have completed.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Access to this field is RO.

Accessing IRS_SYNC_STATUSR

This register is read-only.

Accesses to this register use the following encodings:

Accessible at address 0x00C4

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

491

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.37 IRS_VM_DBR
The IRS_VM_DBR characteristics are:

Purpose

IRS VM 1ofN doorbell configuration register.

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_VM_STATUSR.IDLE
is 1.

Following a write to this register, IRS_VM_STATUSR.V is updated

Attributes

IRS_VM_DBR is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VM_DBR bit assignments are:

EN

63

RES0

62 32

RES0

31 16

VPE_ID

15 0

The fields in this register return information about the VM selected in IRS_VM_SELR.

This register is updated after a write to IRS_VM_SELR when IRS_VM_STATUSR.{V, IDLE} is {1, 1}.

EN, bit [63]

Whether the doorbell settings are valid for the VM.

EN Meaning

0b0 1ofN doorbells are disabled for the VM.

0b1 1ofN doorbells are enabled for the VM.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Bits [62:16]

Reserved, RES0.

VPE_ID, bits [15:0]

The VPE ID of the 1ofN VPE doorbell target.

See ‘VPE doorbells for 1ofN interrupts’ for more information.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

492

Chapter 10. Registers and memory maps
10.2. IRS register frames

Accessing IRS_VM_DBR

Accesses to this register use the following encodings:

Accessible at address 0x0280

• When IRS_IDR0.VIRT == 0 or IRS_IDR0.VIRT_ONE_N == 0, access on this interface is RAZ/WI.

• When IRS_VM_STATUSR.[V,IDLE] != 0b11, access on this interface is UNKNOWN/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

493

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.38 IRS_VM_SELR
The IRS_VM_SELR characteristics are:

Purpose

IRS VM selection register.

Selects a VM whose 1ofN doorbell configuration can be accessed via IRS_VM_DBR.

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_VM_STATUSR.IDLE
is 1.

Attributes

IRS_VM_SELR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VM_SELR bit assignments are:

RES0

31 16

VM_ID

15 0

Bits [31:16]

Reserved, RES0.

VM_ID, bits [15:0]

Identifies the VM.

Accessing IRS_VM_SELR

Accesses to this register use the following encodings:

Accessible at address 0x0288

• When IRS_IDR0.VIRT == 0 or IRS_IDR0.VIRT_ONE_N == 0, access on this interface is RAZ/WI.

• When IRS_VM_STATUSR.IDLE == 0, access on this interface is WI.

• Otherwise, access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

494

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.39 IRS_VM_STATUSR
The IRS_VM_STATUSR characteristics are:

Purpose

IRS VM status register

Attributes

IRS_VM_STATUSR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VM_STATUSR bit assignments are:

RES0

31 2

V

1 0

IDLE

Bits [31:2]

Reserved, RES0.

V, bit [1]

Whether IRS_VM_SELR selects a valid VM.

This field is updated if and only if any of following occur:

• A write to IRS_VM_DBR.
• A write to IRS_VM_SELR

When IDLE is 0, the value of this field is UNKNOWN.

V Meaning

0b0 The VM selected using IRS_VM_SELR is not valid.

0b1 The VM selected using IRS_VM_SELR is valid.

This field resets to 0 to indicate that there was no write to IRS_VM_SELR that selected a valid VM since the IRS
was reset.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b0.

IDLE, bit [0]

When this field returns 1 and V is 1, a read from IRS_VM_CR0 returns the VM configuration for the selected VM.

Following a write to IRS_VM_CR0, when this field returns 1 and V is 1, the effects of the write have completed:

IDLE Meaning

0b0 The effects of writing to the VM selection and configuration
registers are not guaranteed to have completed.

0b1 The effects of writing to the VM selection and configuration
registers have completed.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

495

Chapter 10. Registers and memory maps
10.2. IRS register frames

This field resets to 1 to allow initial writes to registers Guarded by this field. Because there has been no write at
reset, this does not imply that any invalidate operation is complete.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Accessing IRS_VM_STATUSR

Accesses to this register use the following encodings:

Accessible at address 0x028C

• When IRS_IDR0.VIRT == 0 or IRS_IDR0.VIRT_ONE_N == 0, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

496

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.40 IRS_VMAP_L2_VISTR
The IRS_VMAP_L2_VISTR characteristics are:

Purpose

IRS map level 2 virtual IST register

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_VMT_STATUSR.IDLE
is 1.

Attributes

IRS_VMAP_L2_VISTR is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VMAP_L2_VISTR bit assignments are:

M

63

RES0

62 48

VM_ID

47 32

TYPE

31 29

RES0

28 24

ID

23 0

M, bit [63]

Writing 1 to this field makes the virtual level 2 IST specified by TYPE and ID for the VM specified by VM_ID
valid.

M Meaning

0b0 The write to this field has no effect.

0b1 The write to this field makes the specified virtual level 2 IST
valid.

There are no effects to the virtual IST on a write to this register, if any of the following are true:

• The VM specified by VM_ID is invalid.
• The virtual IST is invalid.
• The virtual IST uses a linear format.
• The INTID.ID is outside the configured virtual interrupt range for the specified VM.
• The level 2 IST is valid.
• The write to this register does not set this field to 1.

If this field is not set to 1 on a write to this register, updates to any other field in this register has no effect beyond
updating the value of that field.

Access to this field is WO/UNKNOWN.

Bits [62:48]

Reserved, RES0.

VM_ID, bits [47:32]

The VM ID specifying the VM for which a virtual level 2 IST is being made valid.

The reset behavior of this field is:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

497

Chapter 10. Registers and memory maps
10.2. IRS register frames

• This field resets to an UNKNOWN value.

TYPE, bits [31:29]

Whether the operation applies to the virtual LPI IST or virtual SPI IST.

Values not defined are reserved.

When programming a reserved value, it is CONSTRAINED UNPREDICTABLE whether the invalidate is IGNORED or
an UNKNOWN value is used for this field.

TYPE Meaning

0b010 LPI

0b011 SPI

The reset behavior of this field is:

• This field resets to an UNKNOWN value.

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

An INTID.ID covered by the level 1 ISTE corresponding to the level 2 IST that is made valid.

If unimplemented upper bits of the INTID.ID are not zero, it is CONSTRAINED UNPREDICTABLE whether the
upper bits are treated as 0 or a request to invalidate is IGNORED.

The reset behavior of this field is:

• This field resets to an UNKNOWN value.

Accessing IRS_VMAP_L2_VISTR

Accesses to this register use the following encodings:

Accessible at address 0x02D8

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• When IRS_VMT_STATUSR.IDLE == 0, access on this interface is RO.

• When IRS_VMT_BASER.VALID == 0, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

498

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.41 IRS_VMAP_L2_VMTR
The IRS_VMAP_L2_VMTR characteristics are:

Purpose

IRS map level 2 VM table register

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_VMT_STATUSR.IDLE
is 1.

Attributes

IRS_VMAP_L2_VMTR is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VMAP_L2_VMTR bit assignments are:

M

63

RES0

62 32

RES0

31 16

VM_ID

15 0

M, bit [63]

Writing 1 to this field makes the level 2 VM table specified by VM_ID valid.

M Meaning

0b0 The write to this field has no effect.

0b1 The write to this field makes the specified level 2 VM table
valid.

There are no effects to the VM table on a write to this register, if any of the following are true:

• The VM table is invalid.
• The VM table uses a linear structure.
• The VM ID specified by VM_ID is outside the configured VM ID range.
• The level 2 VM table is valid.
• The write to this register does not set this field to 1.

If this field is not set to 1 on a write to this register, updates to any other field in this register has no effect beyond
updating the value of that field.

Access to this field is WO/UNKNOWN.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

499

Chapter 10. Registers and memory maps
10.2. IRS register frames

Bits [62:16]

Reserved, RES0.

VM_ID, bits [15:0]

The VM ID specifying the level 2 VM table being made valid.

Accessing IRS_VMAP_L2_VMTR

Accesses to this register use the following encodings:

Accessible at address 0x02C0

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• When IRS_VMT_STATUSR.IDLE == 0, access on this interface is RAZ/WI.

• When IRS_VMT_CFGR.STRUCTURE == 0, access on this interface is RAZ/WI.

• When IRS_VMT_BASER.VALID == 0, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

500

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.42 IRS_VMAP_VISTR
The IRS_VMAP_VISTR characteristics are:

Purpose

IRS map virtual IST register

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_VMT_STATUSR.IDLE
is 1.

Attributes

IRS_VMAP_VISTR is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VMAP_VISTR bit assignments are:

M

63

U

62

RES0

61 48

VM_ID

47 32

TYPE

31 29

RES0

28 0

M, bit [63]

Writing 1 to this field makes the virtual IST specified by TYPE for the VM specified by VM_ID valid or invalid as
specified by U.

M Meaning

0b0 The write to this field has no effect.

0b1 The write to this field makes the specified virtual IST valid.

There are no effects to the validity of the virtual IST on a write to this register, if any of the following are true:

• The VM specified by VM_ID is invalid.
• The VM ID is outside the configured VM ID range.
• The virtual IST is valid and U is 0.
• The virtual IST is invalid and U is 1.
• The write to this register does not set this field to 1.

If this field is not set to 1 on a write to this register, updates to any other field in this register has no effect beyond
updating the value of that field.

Access to this field is WO/UNKNOWN.

U, bit [62]

Whether a write that sets M to 1 makes the specified virtual IST valid or invalid.

U Meaning

0b0 A write that sets M to 1 makes the specified virtual IST valid.

0b1 A write that sets M to 1 makes the specified virtual IST invalid.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

501

Chapter 10. Registers and memory maps
10.2. IRS register frames

Bits [61:48]

Reserved, RES0.

VM_ID, bits [47:32]

The VM ID specifying the VM for which a virtual IST is being made valid.

The reset behavior of this field is:

• This field resets to an UNKNOWN value.

TYPE, bits [31:29]

Whether the operation applies to the virtual LPI IST or virtual SPI IST.

Values not defined are reserved.

When programming a reserved value, it is CONSTRAINED UNPREDICTABLE whether the invalidate is IGNORED or
an UNKNOWN value is used for this field.

TYPE Meaning

0b010 LPI

0b011 SPI

The reset behavior of this field is:

• This field resets to an UNKNOWN value.

Bits [28:0]

Reserved, RES0.

Accessing IRS_VMAP_VISTR

Accesses to this register use the following encodings:

Accessible at address 0x02D0

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• When IRS_VMT_STATUSR.IDLE == 0, access on this interface is RO.

• When IRS_VMT_BASER.VALID == 0, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

502

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.43 IRS_VMAP_VMR
The IRS_VMAP_VMR characteristics are:

Purpose

IRS map VM register

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_VMT_STATUSR.IDLE
is 1.

Attributes

IRS_VMAP_VMR is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VMAP_VMR bit assignments are:

M

63

U

62

RES0

61 32

RES0

31 16

VM_ID

15 0

M, bit [63]

Writing 1 to this field makes the VM specified by VM_ID valid or invalid as specified by U.

M Meaning

0b0 The write to this field has no effect.

0b1 The write to this field makes the specified VM valid or invalid.

There are no effects to the validity of the VM on a write to this register, if any of the following are true:

• The level 2 VM table containing the entry corresponding to the VM specified by VM_ID is invalid.
• The VM ID is outside the configured VM ID range.
• The VM valid and U is 0.
• The VM invalid and U is 1.
• The write to this register does not set this field to 1.

If this field is not set to 1 on a write to this register, updates to any other field in this register has no effect beyond
updating the value of that field.

Access to this field is WO/UNKNOWN.

U, bit [62]

Whether a write that sets M to 1 makes the specified VM valid or invalid.

U Meaning

0b0 A write that sets M to 1 makes the specified VM valid.

0b1 A write that sets M to 1 makes the specified VM invalid.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

503

Chapter 10. Registers and memory maps
10.2. IRS register frames

Bits [61:16]

Reserved, RES0.

VM_ID, bits [15:0]

The VM ID specifying the VM being made valid or invalid.

Accessing IRS_VMAP_VMR

Accesses to this register use the following encodings:

Accessible at address 0x02C8

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• When IRS_VMT_STATUSR.IDLE == 0, access on this interface is RAZ/WI.

• When IRS_VMT_BASER.VALID == 0, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

504

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.44 IRS_VMAP_VPER
The IRS_VMAP_VPER characteristics are:

Purpose

IRS map VPE register

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_VMT_STATUSR.IDLE
is 1.

Attributes

IRS_VMAP_VPER is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VMAP_VPER bit assignments are:

M

63

RES0

62 48

VM_ID

47 32

RES0

31 16

VPE_ID

15 0

M, bit [63]

Writing 1 to this field makes the VPE specified by VM_ID and VPE_ID valid.

M Meaning

0b0 The write to this field has no effect.

0b1 The write to this field makes the specified VPE valid.

There are no effects to the validity of the VPE on a write to this register, if any of the following are true:

• The VM specified by VM_ID is invalid.
• The VM ID is outside the configured VM ID range.
• The VPE ID is outside the configured VPE range for the VM.
• The VPE is valid.
• The write to this register does not set this field to 1.

If this field is not set to 1 on a write to this register, updates to any other field in this register has no effect beyond
updating the value of that field.

Access to this field is WO/UNKNOWN.

Bits [62:48]

Reserved, RES0.

VM_ID, bits [47:32]

Identifies the VM.

The reset behavior of this field is:

• This field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

505

Chapter 10. Registers and memory maps
10.2. IRS register frames

Bits [31:16]

Reserved, RES0.

VPE_ID, bits [15:0]

Identifies the VPE.

The reset behavior of this field is:

• This field resets to an UNKNOWN value.

Accessing IRS_VMAP_VPER

Accesses to this register use the following encodings:

Accessible at address 0x02E0

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• When IRS_VMT_STATUSR.IDLE == 0, access on this interface is RO.

• When IRS_VMT_BASER.VALID == 0, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

506

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.45 IRS_VMT_BASER
The IRS_VMT_BASER characteristics are:

Purpose

IRS VM table base address register

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_VMT_STATUSR.IDLE
is 1.

Attributes

IRS_VMT_BASER is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VMT_BASER bit assignments are:

RES0

63 56

ADDR

55 32

ADDR

31 3

RES0

2 1 0

VALID

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:3]

Bits[55:3] of the VM table base physical address.

When IRS_VMT_CFGR.STRUCTURE is 0, ADDR points to a linear VM table and all of the following are true:

• Bits[N:0] of the resulting address are 0 where N = 4 + IRS_VMT_CFGR.VM_ID_BITS.

• This means that the level 2 VMTE array is aligned to the size of the array.

When IRS_VMT_CFGR.STRUCTURE is 1, ADDR points to the level 1 table in a 2-level VM table and all of the
following are true:

• Bits[N:0] of the resulting address are 0 where N depends on VM_ID_BITS in IRS_VMT_CFGR as follows:

N = Max(2, VM_ID_BITS - 7 + 2)

• This means that the level 1 VMT is aligned to the size of the level 1 VMTE array.

Access to any level of the VM table and any additional memory accesses occurring as a result of the address in this
field are performed using the PAS of the IRS Domain where this register is accessed.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in IRS_IDR0.PA_RANGE.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• When IRS_VMT_BASER.VALID == 1, access to this field is RO
• Otherwise, access to this field is RW

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

507

Chapter 10. Registers and memory maps
10.2. IRS register frames

Bits [2:1]

Reserved, RES0.

VALID, bit [0]

Whether the ADDR points to a valid VM table.

VALID Meaning

0b0 The VM table address is not valid.

0b1 The VM table address is valid.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b0.

Accessing IRS_VMT_BASER

Accesses to this register use the following encodings:

Accessible at address 0x0200

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• When IRS_VMT_STATUSR.IDLE == 0, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

508

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.46 IRS_VMT_CFGR
The IRS_VMT_CFGR characteristics are:

Purpose

IRS VM table configuration register

Attributes

IRS_VMT_CFGR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VMT_CFGR bit assignments are:

RES0

31 17 16

RES0

15 5

VM_ID_BITS

4 0

STRUCTURE

Bits [31:17]

Reserved, RES0.

STRUCTURE, bit [16]

Whether the VM table uses a linear or 2-level structure.

STRUCTURE Meaning

0b0 A linear VM table structure is used.

0b1 A 2-level VM table structure is used.

If VM_ID_BITS < 8 and STRUCTURE is 1, all of the following are true:

• The IST consists of a single level 1 VM table entry and a single level 2 VM table.
• The level 2 VM table contains (2 ˆ VM_ID_BITS) entries.
• The IRS is allowed to access the full 4KB levl 2 VM table.

Arm recommends that STRUCTURE is 0 when VM_ID_BITS < 8.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Bits [15:5]

Reserved, RES0.

VM_ID_BITS, bits [4:0]

The number of VM_ID bits for the IRS Domain.

If this field is programmed to a value larger than the maximum, it is treated as having the maximum value for all
other purposes than a direct read of the register. The maximum value is reported in IRS_IDR3.VM_ID_BITS.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

509

Chapter 10. Registers and memory maps
10.2. IRS register frames

Accessing IRS_VMT_CFGR

Accesses to this register use the following encodings:

Accessible at address 0x0210

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• When IRS_VMT_BASER.Valid == 1 or IRS_VMT_STATUSR.IDLE == 0, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

510

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.47 IRS_VMT_STATUSR
The IRS_VMT_STATUSR characteristics are:

Purpose

IRS virtualization data structures management status register.

Attributes

IRS_VMT_STATUSR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VMT_STATUSR bit assignments are:

RES0

31 1 0

IDLE

Bits [31:1]

Reserved, RES0.

IDLE, bit [0]

Whether the effects of any of the following writes are complete:

• A write that updates IRS_VMT_BASER.Valid.
• A write that sets IRS_VMAP_L2_VMTR.M to 1.
• A write that sets IRS_VMAP_VMR.M to 1.
• A write that sets IRS_VMAP_VPER.M to 1.
• A write that sets IRS_VMAP_VISTR.M to 1.
• A write that sets IRS_VMAP_L2_VISTR.M to 1.

IDLE Meaning

0b0 The effects a write to any of the virtualization data structure
management registers are not complete

0b1 The effects a write to any of the virtualization data structure
management registers are complete

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Access to this field is RO.

Accessing IRS_VMT_STATUSR

Accesses to this register use the following encodings:

Accessible at address 0x0214

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

511

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.48 IRS_VPE_CR0
The IRS_VPE_CR0 characteristics are:

Purpose

IRS VPE Control Register 0

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_VPE_STATUSR.IDLE
is 1.

Following a write to this register, IRS_VPE_STATUSR.V is updated.

Attributes

IRS_VPE_CR0 is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VPE_CR0 bit assignments are:

RES0

31 1 0

DPS

This register is updated after a write that sets IRS_VPE_SELR.S to 1 when IRS_VPE_STATUSR.{V, IDLE} is {1,
1}.

Bits [31:1]

Reserved, RES0.

DPS, bit [0]

Disable 1ofN PE selection.

DPS Meaning

0b0 1ofN PE selection is enabled. A virtual interrupt configured to
use the 1ofN Routing mode is permitted to select this VPE.

0b1 1ofN PE selection is disabled. A virtual interrupt configured to
use the 1ofN Routing mode is not permitted to select this VPE.

This field determines whether the selected VPE is permitted to be selected for 1ofN interrupt delivery.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing IRS_VPE_CR0

Accesses to this register use the following encodings:

Accessible at address 0x0258

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• When IRS_VPE_STATUSR.[V,IDLE] != 0b11, access on this interface is UNKNOWN/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

512

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.49 IRS_VPE_DBR
The IRS_VPE_DBR characteristics are:

Purpose

IRS VPE doorbell settings register.

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_VPE_STATUSR.IDLE
is 1.

Following a write to this register, IRS_VPE_STATUSR.V is updated.

Attributes

IRS_VPE_DBR is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VPE_DBR bit assignments are:

63 62

RES0

61 37

DBPM

36 32

DBV REQ_DB

RES0

31 24

INTID

23 0

This register is updated after a write that sets IRS_VPE_SELR.S to 1 when IRS_VPE_STATUSR.{V, IDLE} is {1,
1}.

DBV, bit [63]

Whether the doorbell settings for the VPE are valid.

DBV Meaning

0b0 The doorbell settings for the VPE are not valid.

0b1 The doorbell settings for the VPE are valid.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

REQ_DB, bit [62]

Whether a doorbell is requested for the VPE.

When a VPE doorbell is requested for the VPE, the doorbell event is generated when the VPE doorbell conditions
are met.

See ‘VPE doorbells’ for more information.

REQ_DB Meaning

0b0 A doorbell is not requested for the VPE

0b1 A doorbell is requested for the VPE.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

513

Chapter 10. Registers and memory maps
10.2. IRS register frames

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• When IRS_VPE_DBR.DBV == 1, access to this field is RW
• Otherwise, access to this field is WO/UNKNOWN

Bits [61:37]

Reserved, RES0.

DBPM, bits [36:32]

Doorbell priority mask.

This field specifies the minimum priority for a virtual interrupt to trigger the VPE’s doorbell.

Accessing this field has the following behavior:

• When IRS_VPE_DBR.REQ_DB == 1, access to this field is RW
• Otherwise, access to this field is WO/UNKNOWN

Bits [31:24]

Reserved, RES0.

INTID, bits [23:0]

If ext-IRS_IDR2.LPI is 1, this field specifies the LPI INTID.ID of the VPE doorbell.

The number of ID bits implemented is reported in IRS_IDR2.ID_BITS. Unimplemented upper bits are RES0.

If ext-IRS_IDR2.LPI is 0, this field is IMPLEMENTATION DEFINED.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• When IRS_VPE_DBR.DBV == 1, access to this field is RW
• Otherwise, access to this field is WO/UNKNOWN

Accessing IRS_VPE_DBR

Accesses to this register use the following encodings:

Accessible at address 0x0248

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• When IRS_VPE_STATUSR.[V,IDLE] != 0b11, access on this interface is UNKNOWN/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

514

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.50 IRS_VPE_HPPIR
The IRS_VPE_HPPIR characteristics are:

Purpose

IRS VPE HPPI register.

Attributes

IRS_VPE_HPPIR is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VPE_HPPIR bit assignments are:

RES0

63 33 32

HPPIV

TYPE

31 29

RES0

28 24

ID

23 0

This register reports information about the candidate HPPI for the VPE selected by IRS_VPE_SELR.

This register is updated after a write that sets IRS_VPE_SELR.S to 1 when IRS_VPE_STATUSR.{V, IDLE} is {1,
1}.

If there is a change in the HPPI for the VPE following the write that set IRS_VPE_SELR.S to 1, it is IMPLEMEN-
TATION DEFINED whether the old or the new HPPI is reported in this register.

Bits [63:33]

Reserved, RES0.

HPPIV, bit [32]

Whether there is a candidate HPPI for the VPE.

HPPIV Meaning

0b0 Invalid: There is no candidate HPPI for the VPE.

0b1 VALID: There is a candidate HPPI for the VPE.

When the value of this field is 1, ID and TYPE together form the INTID of the candidate HPPI for the VPE.

TYPE, bits [31:29]

The encoding of this field depends upon the value in HPPIV as described below:

• If HPPIV is 0, this field is RES0.

• If HPPIV is 1, this field contains valid information.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

515

Chapter 10. Registers and memory maps
10.2. IRS register frames

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

The encoding of this field depends upon the value in HPPIV as described below:

• If HPPIV is 0, this field is RES0.

• If HPPIV is 1, this field contains valid information.

Accessing IRS_VPE_HPPIR

Accesses to this register use the following encodings:

Accessible at address 0x0250

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• When IRS_VPE_STATUSR.[V,IDLE] != 0b11, access on this interface is UNKNOWN/WI.

• Otherwise, access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

516

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.51 IRS_VPE_SELR
The IRS_VPE_SELR characteristics are:

Purpose

IRS VPE selection register.

Configuration

The effects of a write to this register are not guaranteed to have completed before IRS_VPE_STATUSR.IDLE
is 1.

Attributes

IRS_VPE_SELR is a 64-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VPE_SELR bit assignments are:

S

63

RES0

62 48

VPE_ID

47 32

RES0

31 16

VM_ID

15 0

S, bit [63]

Writing 1 to this field selects a VPE whose configuration can be accessed via the following registers:

• IRS_VPE_DBR
• IRS_VPE_HPPIR
• IRS_VPE_CR0

S Meaning

0b0 The write to this register has no effect.

0b1 The write to this register selects a VPE.

If this field is not set to 1 on a write to this register, updates to any other field in this register has no effect beyond
updating the value of that field.

This means that if IRS_VPE_STATUSR.V is updated as a result of a write to another register, the value returned
reflects the VPE selected when this field was set to 1.

Access to this field is WO/UNKNOWN.

Bits [62:48]

Reserved, RES0.

VPE_ID, bits [47:32]

Identifies the VPE.

The reset behavior of this field is:

• This field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

517

Chapter 10. Registers and memory maps
10.2. IRS register frames

Bits [31:16]

Reserved, RES0.

VM_ID, bits [15:0]

Identifies the VM.

The reset behavior of this field is:

• This field resets to an UNKNOWN value.

Accessing IRS_VPE_SELR

Accesses to this register use the following encodings:

Accessible at address 0x0240

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• When IRS_VPE_STATUSR.IDLE == 0, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

518

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.1.52 IRS_VPE_STATUSR
The IRS_VPE_STATUSR characteristics are:

Purpose

IRS VPE status register

Attributes

IRS_VPE_STATUSR is a 32-bit register.

This register is part of the IRS_CONFIG_FRAME block.

Field descriptions

The IRS_VPE_STATUSR bit assignments are:

RES0

31 2

V

1 0

IDLE

Bits [31:2]

Reserved, RES0.

V, bit [1]

Whether the value last written to IRS_VPE_SELR selects a valid VPE.

This field is updated if and only if any of following occur:

• A write to IRS_VPE_CR0.
• A write to IRS_VPE_DBR.
• A write that sets IRS_VPE_SELR.S to 1.

When IDLE is 0, the value of this field is UNKNOWN.

V Meaning

0b0 The VPE selected using IRS_VPE_SELR is not valid.

0b1 The VPE selected using IRS_VPE_SELR is valid.

This field resets to 0 to indicate that there was no write to IRS_VPE_SELR that selected a valid VPE that is
managed on this IRS since the IRS was reset.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b0.

IDLE, bit [0]

A write that sets IRS_VPE_SELR.S to 1 is complete when this field is 1.

When this field is 1 and V is 1, a read from any of the following registers returns values for the selected VPE:

• IRS_VPE_DBR.
• IRS_VPE_HPPIR.
• IRS_VPE_CR0.

Following a write to one of the following registers, when this field returns 1, the effects of the write have completed:

• IRS_VPE_DBR.
• IRS_VPE_CR0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

519

Chapter 10. Registers and memory maps
10.2. IRS register frames

IDLE Meaning

0b0 The effects of the last write that set IRS_VPE_SELR.S to 1
and any write to VPE configuration registers are not
guaranteed to be complete.

0b1 The effects of the last write that set IRS_VPE_SELR.S to 1
and any write to VPE configuration registers are complete.

This field resets to 1 to allow initial writes to registers Guarded by this field. Because there has been no write at
reset, this does not imply that any invalidate operation is complete.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Accessing IRS_VPE_STATUSR

Accesses to this register use the following encodings:

Accessible at address 0x025C

• When IRS_IDR0.VIRT == 0, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

520

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.2 IRS_SETLPI_FRAME, IRS SETLPI register frame

The IRS_SETLPI_FRAME characteristics are:

Purpose

Contains the IRS_SETLPIR register used to generate a SET_EDGE message for an LPI without going
through an ITS.

An IRS SETLPI register frame is present for each supported Interrupt Domain on each IRS where
IRS_IDR0.SETLPI is 1.

Arm strongly recommends that this register frame is not accessible by PEs. This is because a write to
this register can require the IRS access to memory, leading to in-out dependencies than can potentially
lead to deadlocks in the system. If this register frame is not accessible by PEs, the behavior on an
attempted access from a PE is IMPLEMENTATION DEFINED and is likely to result in an External abort.

This register frame is only accessible in the PAS associated with the Interrupt Domain.

The base address is distinct from addresses of registers accessible in any other PAS.

The base address is aligned to 64KB.

Configuration

This Register Block is present only when IRS_IDR0.SETLPI == 1.

Attributes

The IRS_SETLPI_FRAME block is of size 64KB

Default access

Accesses to the address space of this block that do not resolve to a register or a further block are treated
as RAZ/WI.

Contents

Offset Name Notes

0x0000 IRS_SETLPIR Most permissive access: WO

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

521

Chapter 10. Registers and memory maps
10.2. IRS register frames

10.2.2.1 IRS_SETLPIR
The IRS_SETLPIR characteristics are:

Purpose

IRS SETLPI register.

A write to this register generates a SET_EDGE message for the LPI ID specified as part of the write.

Configuration

This register is present only when IRS_IDR0.SETLPI == 1. Otherwise, direct accesses to IRS_SETLPIR
are RAZ/WI.

Attributes

IRS_SETLPIR is a 32-bit register.

This register is part of the IRS_SETLPI_FRAME block.

Field descriptions

The IRS_SETLPIR bit assignments are:

RES0

31 24

ID

23 0

Bits [31:24]

Reserved, RES0.

ID, bits [23:0]

Bits[23:0] of the LPI INTID.ID to set generate a SET_EDGE message for.

If unimplemented upper bits of the INTID.ID are not zero, it is IMPLEMENTATION DEFINED whether the upper
bits are treated as 0 or the interrupt message is ignored by the IRS.

Accessing IRS_SETLPIR

Writes to this register are ignored if the IRS is not enabled for the Interrupt Domain.

Accesses to this register use the following encodings:

Accessible at address 0x0000

Access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

522

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3 ITS register frames

IDQKQD Each ITS Domain exposes the following two register frames:

• The ITS configuration register frame.
• The ITS translation register frame.

Different from GICv3, the GICv5 architecture does not require the ITS register frames to be contiguous with
respect to each other.

IBHGQG In the ITS register definitions, references to other registers are always to a register in the register frame for the
same ITS Domain as where the access is made.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

523

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1 ITS_CONFIG_FRAME, ITS configuration register frame

The ITS_CONFIG_FRAME characteristics are:

Purpose

Contains control registers for an ITS Domain.

An ITS configuration register frame is present for each supported ITS Domain.

This register frame is accessible in the PAS associated with the ITS Domain.

It is IMPLEMENTATION DEFINED whether this register frame is also accessible in the MPPAS at the
same address.

The base address is distinct from the base address of any other GIC register frame, including the ITS
configuration register frames for other ITS Domains.

The base address is aligned to 64KB.

Attributes

The ITS_CONFIG_FRAME block is of size 64KB

Default access

Accesses to the address space of this block that do not resolve to a register or a further block are treated
as RAZ/WI.

Contents

Offset Name Notes

0x0000 ITS_IDR0 Most permissive access: RO

0x0004 ITS_IDR1 Most permissive access: RO

0x0008 ITS_IDR2 Most permissive access: RO

0x0040 ITS_IIDR Most permissive access: RO

0x0044 ITS_AIDR Most permissive access: RO

0x0080 ITS_CR0 Most permissive access: RW

0x0084 ITS_CR1 Most permissive access: RW

0x00C0 ITS_DT_BASER Most permissive access: RW

0x00D0 ITS_DT_CFGR Most permissive access: RW

0x0100 ITS_DIDR Most permissive access: RW

0x0108 ITS_EIDR Most permissive access: RW

0x010C ITS_INV_EVENTR Most permissive access: WO

0x0110 ITS_INV_DEVICER Most permissive access: WO

0x0114 ITS_READ_EVENTR Most permissive access: WO

0x0118 ITS_READ_EVENT_DATAR Most permissive access: RO

0x0120 ITS_STATUSR Most permissive access: RO

0x0140 ITS_SYNCR Most permissive access: WO

0x0148 ITS_SYNC_STATUSR Most permissive access: RO

0x0180 ITS_GEN_EVENT_DIDR Most permissive access: RW

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

524

Chapter 10. Registers and memory maps
10.3. ITS register frames

Offset Name Notes

0x0188 ITS_GEN_EVENT_EIDR Most permissive access: RW

0x018C ITS_GEN_EVENTR Most permissive access: WO

0x0190 ITS_GEN_EVENT_STATUSR Most permissive access: RO

0x01C0 ITS_MEC_IDR Most permissive access: RO

0x01C4 ITS_MEC_MECID_R Most permissive access: RW

0x0200 ITS_MPAM_IDR Most permissive access: RO

0x0204 ITS_MPAM_PARTID_R Most permissive access: RW

0x0240 ITS_SWERR_STATUSR Most permissive access: RW

0x0248 ITS_SWERR_SYNDROMER0 Most permissive access: RO

0x0250 ITS_SWERR_SYNDROMER1 Most permissive access: RO

0x0E00 + (4 * n)for n in

↪→63:0

- Most permissive access: ImplementationDefined

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

525

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.1 ITS_AIDR
The ITS_AIDR characteristics are:

Purpose

ITS Architecture Identification Register. Identifies the GIC architecture version to which the
implementation conforms.

Attributes

ITS_AIDR is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_AIDR bit assignments are:

RES0

31 12 11 8 7 4 3 0

Component ArchMinorRev
ArchMajorRev

Bits [31:12]

Reserved, RES0.

Component, bits [11:8]

GIC component

Component Meaning

0b0000 IRS

0b0001 ITS

0b0010 IWB

ArchMajorRev, bits [7:4]

Major Architecture revision.

ArchMajorRev Meaning

0b0000 GICv5.x

ArchMinorRev, bits [3:0]

Minor Architecture revision.

ArchMinorRev Meaning

0b0000 GICv5.0

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

526

Chapter 10. Registers and memory maps
10.3. ITS register frames

Accessing ITS_AIDR

Accesses to this register use the following encodings:

Accessible at address 0x0044

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

527

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.2 ITS_CR0
The ITS_CR0 characteristics are:

Purpose

ITS configuration register 0

Attributes

ITS_CR0 is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_CR0 bit assignments are:

RES0

31 2 1 0

IDLE ITSEN

Bits [31:2]

Reserved, RES0.

IDLE, bit [1]

Whether the transition between enabled and disabled states of the ITS Domain is complete.

IDLE Meaning

0b0 The effects of updating ITSEN are not guaranteed to have
completed.

0b1 The effects of updating ITSEN have completed.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Access to this field is RO.

ITSEN, bit [0]

Controls if the ITS Domain is enabled and whether it can generate interrupt messages to an IRS for the Interrupt
Domain.

ITSEN Meaning

0b0 Disabled. The ITS does not generate any interrupt messages
for the Interrupt Domain

0b1 Enabled. The ITS may generate interrupt messages for the
Interrupt Domain

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b0.

Accessing this field has the following behavior:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

528

Chapter 10. Registers and memory maps
10.3. ITS register frames

• When ITS_CR0.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

Accessing ITS_CR0

Accesses to this register use the following encodings:

Accessible at address 0x0080

Access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

529

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.3 ITS_CR1
The ITS_CR1 characteristics are:

Purpose

ITS configuration register 1

Attributes

ITS_CR1 is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_CR1 bit assignments are:

RES0

31 8 7 6

IC

5 4

OC

3 2

SH

1 0

ITT_RA DT_RA

Bits [31:8]

Reserved, RES0.

ITT_RA, bit [7]

Read-Allocate hint for the interrupt translation tables.

ITT_RA Meaning

0b0 No Read-Allocate.

0b1 Read-Allocate.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

DT_RA, bit [6]

Read-Allocate hint for the device table.

DT_RA Meaning

0b0 No Read-Allocate.

0b1 Read-Allocate.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

IC, bits [5:4]

Controls the Inner Cacheability attribute used when the ITS accesses tables as a requester.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

530

Chapter 10. Registers and memory maps
10.3. ITS register frames

IC Meaning

0b00 Non-cacheable.

0b01 Write-Back Cacheable.

0b10 Write-Through Cacheable.

0b11 Reserved, treated as 0b00.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

OC, bits [3:2]

Controls the Outer Cacheability attribute used when the ITS accesses tables as a requester.

OC Meaning

0b00 Non-cacheable

0b01 Write-Back Cacheable.

0b10 Write-Through Cacheable.

0b11 Reserved, treated as 0b00.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

SH, bits [1:0]

Controls the Shareability attribute used when the ITS accesses tables as a requester.

SH Meaning

0b00 Non-shareable.

0b01 Reserved, treated as 0b00.

0b10 Outer Shareable.

0b11 Inner Shareable.

When ITS_CR1.OC is 0b00 and ITS_CR1.IC is 0b00, this field is IGNORED and behaves as Outer Shareable.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing ITS_CR1

Accesses to this register use the following encodings:

Accessible at address 0x0084

• When ITS_CR0.ITSEN == 1 or ITS_CR0.IDLE == 0, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

531

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.4 ITS_DIDR
The ITS_DIDR characteristics are:

Purpose

ITS DeviceID Register.

This register is used to specify the DeviceID for the following requests:

• Invalidation of cached information for DeviceIDs issued by a write to ITS_INV_DEVICER.

• Invalidation of cached information for EventIDs issued by a write to ITS_INV_EVENTR.

• Requesting the read of the translation for an event by a write to ITS_READ_EVENTR.

Attributes

ITS_DIDR is a 64-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_DIDR bit assignments are:

RES0

63 32

DEVICE_ID

31 0

Bits [63:32]

Reserved, RES0.

DEVICE_ID, bits [31:0]

The DeviceID as it should apply to a cache invalidation or reading an event translation request.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing ITS_DIDR

Accesses to this register use the following encodings:

Accessible at address 0x0100

• When ITS_CR0.[IDLE,ITSEN] != 0b11 or ITS_STATUSR.IDLE != 1, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

532

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.5 ITS_DT_BASER
The ITS_DT_BASER characteristics are:

Purpose

ITS device table base address register

Attributes

ITS_DT_BASER is a 64-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_DT_BASER bit assignments are:

RES0

63 56

ADDR

55 32

ADDR

31 3

RES0

2 0

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:3]

Bits[55:3] of the DT base physical address.

When ITS_DT_CFGR.STRUCTURE is 0, ADDR points to a linear DT and all of the following are true:

• Bits[N:0] of the resulting address are 0 where N = 2 + ITS_DT_CFGR.DEVICEID_BITS.

• This means that the level 2 DTE array is aligned to the size of the array.

When ITS_DT_CFGR.STRUCTURE is 1, ADDR points to the level 1 table in a 2-level DT and all of the following
are true:

• Bits[N:0] of the resulting address are 0 where N depends on L2SZ and DEVICEID_BITS in ITS_DT_CFGR
as follows:

Max(2, DEVICEID_BITS - (9 + (2 * L2SZ)) + 2)

• This means that the level 1 DT is aligned to the size of the table.

Access to any level of the DT and any additional memory accesses occurring as a result of the address in this field
are performed using the PAS of the ITS Domain where this register is accessed.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in ITS_IDR0.PA_RANGE.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Bits [2:0]

Reserved, RES0.

Accessing ITS_DT_BASER

Accesses to this register use the following encodings:

Accessible at address 0x00C0

• When ITS_CR0.ITSEN == 1 or ITS_CR0.IDLE == 0, access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

533

Chapter 10. Registers and memory maps
10.3. ITS register frames

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

534

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.6 ITS_DT_CFGR
The ITS_DT_CFGR characteristics are:

Purpose

ITS device table base address configuration register

Attributes

ITS_DT_CFGR is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_DT_CFGR bit assignments are:

RES0

31 17 16

RES0

15 8

L2SZ

7 6

DEVICEID_BITS

5 0

STRUCTURE

Bits [31:17]

Reserved, RES0.

STRUCTURE, bit [16]

Whether the device table uses a linear or 2-level structure.

If ITS_IDR1.DT_LEVELS is 0, this field is RES0.

STRUCTURE Meaning

0b0 A linear device table structure is used.

0b1 A 2-level device table structure is used.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Bits [15:8]

Reserved, RES0.

L2SZ, bits [7:6]

Level 2 device table size when a 2-level device table structure is used.

L2SZ Meaning

0b00 A level 2 device table is maximum 4KB and resolves 9 bits of
DeviceID.

0b01 A level 2 device table is maximum 16KB and resolves 11 bits
of DeviceID.

0b10 A level 2 device table is maximum 64KB and resolves 13 bits
of DeviceID.

Values not defined above are reserved.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

535

Chapter 10. Registers and memory maps
10.3. ITS register frames

If DEVICEID_BITS <= (9 + (2 * L2SZ)) and STRUCTURE is 1, the DT consists of a single L1_DTE and a single
L2_DT.

The L2_DT contains (2 ˆ DEVICEID_BITS) entries.

When the value of L1_DTE.SPAN is programmed to a value larger than DEVICEID_BITS, the ITS is allowed to
access memory in the range specified by L1_DTE.SPAN.

Arm recommends that STRUCTURE is 0 when DEVICEID_BITS <= (9 + (2 * L2SZ)).

When programming a reserved value or an unsupported value, the ITS behavior is CONSTRAINED UNPREDICTABLE
to any behavior which could be achieved by programming a valid and supported value.

When STRUCTURE is 0, this field is RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

DEVICEID_BITS, bits [5:0]

The number of DeviceID bits which can be translated for the accessing Security state by the ITS.

If this field is programmed to a value larger than the maximum, it is treated as having the maximum value for all
other purposes than a direct read of the register. The maximum value is reported in ITS_IDR1.DEVICEID_BITS.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing ITS_DT_CFGR

Accesses to this register use the following encodings:

Accessible at address 0x00D0

• When ITS_CR0.ITSEN == 1 or ITS_CR0.IDLE == 0, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

536

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.7 ITS_EIDR
The ITS_EIDR characteristics are:

Purpose

ITS EventID Register.

This register is used to specify the EventID for the following requests:

• Invalidation of cached information for EventIDs issued by a write to ITS_INV_EVENTR.

• Requesting the read of the configuration for an event by a write to ITS_READ_EVENTR.

Attributes

ITS_EIDR is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_EIDR bit assignments are:

RES0

31 16

EVENT_ID

15 0

Bits [31:16]

Reserved, RES0.

EVENT_ID, bits [15:0]

The EventID as it should apply to a cache invalidation or reading an event translation request.

The reset behavior of this field is:

• This field resets to an UNKNOWN value.

Accessing ITS_EIDR

Accesses to this register use the following encodings:

Accessible at address 0x0108

• When ITS_CR0.[IDLE,ITSEN] != 0b11 or ITS_STATUSR.IDLE != 1, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

537

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.8 ITS_GEN_EVENTR
The ITS_GEN_EVENTR characteristics are:

Purpose

ITS generate incoming event register.

This register is used to generate a SET_EDGE event for the EventID specified in ITS_GEN_EVENT_EIDR
and the DeviceID specified in ITS_GEN_EVENT_DIDR.

Configuration

The effects of a write to this register are not guaranteed to have completed before ITS_GEN_EVENT_STATUSR.IDLE
is 1.

Attributes

ITS_GEN_EVENTR is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_GEN_EVENTR bit assignments are:

R

31

RES0

30 2 1 0

TARGET_DOM
AIN

R, bit [31]

Request the ITS to generate an incoming event.

R Meaning

0b0 The write has no effect on the ITS.

0b1 Generate an incoming event with the following information:
• Event is associated with the Interrupt Domain associated

with the PAS of the write.
• The event is translated in the ITS Domain specified in

TARGET_DOMAIN.
• DeviceID is specified in the ITS_GEN_EVENT_DIDR

register.
• EventID is specified in the ITS_GEN_EVENT_EIDR

register.

Bits [30:2]

Reserved, RES0.

TARGET_DOMAIN, bits [1:0]

Specifies the ITS Domain in which the incoming event is translated.

If the specified ITS Domain is not enabled, the write to this register does not generate an incoming event.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

538

Chapter 10. Registers and memory maps
10.3. ITS register frames

TARGET_DOMAIN Meaning Applies

0b00 The incoming event is translated in the ITS Domain specified
by ITS_IDR0.INT_DOM.

0b01 The incoming event is translated in the Realm ITS Domain. When
ITS_IDR0.INT_DOM
== 0b01

Values not defined above are reserved.

Values corresponding to unimplemented Domains are reserved.

If a reserved value is programmed, the ITS behavior is CONSTRAINED UNPREDICTABLE to any behavior which
could be achieved by programming a valid value.

Accessing ITS_GEN_EVENTR

Accesses to this register use the following encodings:

Accessible at address 0x018C

• When ITS_CR0.[IDLE,ITSEN] != 0b11 or ITS_GEN_EVENT_STATUSR.IDLE != 1, access on this interface
is WI.

• Otherwise, access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

539

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.9 ITS_GEN_EVENT_STATUSR
The ITS_GEN_EVENT_STATUSR characteristics are:

Purpose

ITS generate incoming event status register.

Reports the status of a request to generate an incoming event via a write to the ITS_GEN_EVENTR
register.

Attributes

ITS_GEN_EVENT_STATUSR is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_GEN_EVENT_STATUSR bit assignments are:

RES0

31 1 0

IDLE

Bits [31:1]

Reserved, RES0.

IDLE, bit [0]

Reports whether the effects of the last write to ITS_GEN_EVENTR are complete.

IDLE Meaning

0b0 The effects of the last write to ITS_GEN_EVENTR are not
guaranteed to be complete.

0b1 The effects of the last write to ITS_GEN_EVENTR are
complete.

The reset behavior of this field is:

• This field resets to an UNKNOWN value.

Access to this field is RO.

Accessing ITS_GEN_EVENT_STATUSR

Accesses to this register use the following encodings:

Accessible at address 0x0190

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

540

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.10 ITS_GEN_EVENT_EIDR
The ITS_GEN_EVENT_EIDR characteristics are:

Purpose

ITS generate incoming event EventID register.

This register is used to specify the EventID in a request to the ITS to generate an incoming event. The
DeviceID of the event is specified in the ITS_GEN_EVENT_DIDR register.

Attributes

ITS_GEN_EVENT_EIDR is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_GEN_EVENT_EIDR bit assignments are:

RES0

31 16

EVENT_ID

15 0

Bits [31:16]

Reserved, RES0.

EVENT_ID, bits [15:0]

EventID in the ITS Domain containing the register.

The reset behavior of this field is:

• This field resets to an UNKNOWN value.

Accessing ITS_GEN_EVENT_EIDR

Accesses to this register use the following encodings:

Accessible at address 0x0188

• When ITS_CR0.[IDLE,ITSEN] != 0b11 or ITS_GEN_EVENT_STATUSR.IDLE != 1, access on this interface
is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

541

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.11 ITS_GEN_EVENT_DIDR
The ITS_GEN_EVENT_DIDR characteristics are:

Purpose

ITS generate incoming event DeviceID register.

This register is used to specify the DeviceID in a request to the ITS to generate an incoming event. The
EventID of the event is specified in the ITS_GEN_EVENT_EIDR register.

Attributes

ITS_GEN_EVENT_DIDR is a 64-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_GEN_EVENT_DIDR bit assignments are:

RES0

63 32

DEVICE_ID

31 0

Bits [63:32]

Reserved, RES0.

DEVICE_ID, bits [31:0]

The DeviceID for the event generated as the result of a write to ITS_GEN_EVENTR.

The reset behavior of this field is:

• This field resets to an UNKNOWN value.

Accessing ITS_GEN_EVENT_DIDR

Accesses to this register use the following encodings:

Accessible at address 0x0180

• When ITS_CR0.[IDLE,ITSEN] != 0b11 or ITS_GEN_EVENT_STATUSR.IDLE != 1, access on this interface
is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

542

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.12 ITS_IDR0
The ITS_IDR0 characteristics are:

Purpose

ITS identification register 0. Contains read-only fields with information about the ITS GIC component.

Attributes

ITS_IDR0 is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_IDR0 bit assignments are:

ITSID

31 16

RES0

15 9 8 7 6

PA_RANGE

5 2 1 0

SWE
MPAM

INT_DOM
MEC

ITSID, bits [31:16]

Unique identifier for this ITS in the system.

This value is the same across all Interrupt Domains for this ITS.

Bits [15:9]

Reserved, RES0.

SWE, bit [8]

Software error reporting support in the Interrupt Domain.

SWE Meaning

0b0 Software error reporting is not supported.

0b1 Software error reporting is supported.

Support for Software error reporting is optional.

MPAM, bit [7]

Memory Partitioning And Monitoring (MPAM) support.

MPAM Meaning

0b0 MPAM is not supported.

0b1 MPAM is supported.

Support for MPAM is optional.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

543

Chapter 10. Registers and memory maps
10.3. ITS register frames

MEC, bit [6]

When ITS_IDR0.INT_DOM == 0b11:

Support for Memory Encryption Contexts (MEC) for the Realm ITS Domain.

MEC Meaning

0b0 Memory Encryption Contexts are not supported.

0b1 Memory Encryption Contexts are supported.

Support for MEC is optional.

Otherwise:

RES0

PA_RANGE, bits [5:2]

Physical Address range supported.

The physical address range corresponds to the system physical address size.

The value of this field is the same for all ITS Domains across all ITSs in the system

PA_RANGE Meaning

0b0000 32 bits, 4GB

0b0001 36 bits, 64GB

0b0010 40 bits, 1TB

0b0011 42 bits, 4TB

0b0100 44 bits, 16TB

0b0101 48 bits, 256TB

0b0110 52 bits, 4PB

0b0111 56 bits, 64PB

Values not defined above are reserved.

INT_DOM, bits [1:0]

The ITS Domain that the register frame containing this register controls.

INT_DOM Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

544

Chapter 10. Registers and memory maps
10.3. ITS register frames

Accessing ITS_IDR0

Accesses to this register use the following encodings:

Accessible at address 0x0000

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

545

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.13 ITS_IDR1
The ITS_IDR1 characteristics are:

Purpose

ITS identification register 1. Contains read-only fields with information about the ITS GIC component.

Attributes

ITS_IDR1 is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_IDR1 bit assignments are:

RES0

31 11

L2SZ

10 8 7 6

DEVICEID_BITS

5 0

ITT_LEVELS DT_LEVELS

Bits [31:11]

Reserved, RES0.

L2SZ, bits [10:8]

Supported level 2 ITS table sizes when a 2-level table structure is used.

L2SZ Meaning

0b1xx Level 2 DT and ITT sizes supported: 64KiB

0bx1x Level 2 DT and ITT sizes supported: 16KiB

0bxx1 Level 2 DT and ITT sizes supported: 4KiB

Values not defined above are reserved.

When both ITT_LEVELS and DT_LEVELS are 0, this field is RES0.

Arm strongly recommends that the ITS supports L2SZ value 0b111

ITT_LEVELS, bit [7]

Levels supported for the ITT.

ITT_LEVELS Meaning

0b0 Only a linear ITT structure is supported

0b1 Both a 2-level and a linear ITT structure is supported.

DT_LEVELS, bit [6]

Levels supported for the device table.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

546

Chapter 10. Registers and memory maps
10.3. ITS register frames

DT_LEVELS Meaning

0b0 Only a linear device table structure is supported

0b1 Both a 2-level and a linear device table structure is supported.

DEVICEID_BITS, bits [5:0]

The ITS can support translation of up to (2 ˆ DEVICEID_BITS) DeviceIDs.

The maximum permitted value of this field is 32.

Accessing ITS_IDR1

Accesses to this register use the following encodings:

Accessible at address 0x0004

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

547

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.14 ITS_IDR2
The ITS_IDR2 characteristics are:

Purpose

ITS identification register 2. Contains read-only fields with information about how the ITS GIC
component is implemented.

Attributes

ITS_IDR2 is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_IDR2 bit assignments are:

RES0

31 7 6 5 4 0

XDMN_EVENTS EVENTID_BITS

Bits [31:7]

Reserved, RES0.

XDMN_EVENTS, bits [6:5]

Indicates whether the ITS Domain supports translation of events associated with other Interrupt Domains.

XDMN_EVENTS Meaning Applies

0b00 The ITS Domain does not support translation of incoming
events associated with other Interrupt Domains.

0b01 The ITS Domain supports translation of incoming events
associated with the Non-secure Interrupt Domain.

When
ITS_IDR0.INT_DOM
== 0b11

Values not defined above are reserved.

EVENTID_BITS, bits [4:0]

The ITS can support translation of up to 2ˆ(EVENTID_BITS) EventIDs.

The maximum permitted value of this field is 16.

Accessing ITS_IDR2

Accesses to this register use the following encodings:

Accessible at address 0x0008

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

548

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.15 ITS_IIDR
The ITS_IIDR characteristics are:

Purpose

ITS Implementer Identification Register. Provides information about the implementation and
implementer of the GIC, and architecture version supported.

Attributes

ITS_IIDR is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_IIDR bit assignments are:

ProductID

31 20

Variant

19 16

Revision

15 12

Implementer

11 0

ProductID, bits [31:20]

IMPLEMENTATION DEFINED value identifying the GIC part

When the ITS_PIDR{0,1} registers are present, Arm expects that the ITS_PIDR{0,1}.PART_{0,1} fields match
the value of ITS_IIDR.ProductID.

If required, however, an implementation is permitted to provide values for ITS_PIDR.{0,1}.PART_{0,1} that do
not match the value of ITS_IIDR.ProductID

Variant, bits [19:16]

IMPLEMENTATION DEFINED value used to distinguish product variants, or major revisions of the product

Revision, bits [15:12]

IMPLEMENTATION DEFINED value used to distinguish minor revisions of the product

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the GIC

For an Arm implementation, the JEP106 code is 0x43B

When the ITS_PIDR{1,2,4} registers are present, Arm expects that the ITS_PIDR{0,1}.PART_{0,1} fields match
the value of ITS_IIDR.Implementer.

Accessing ITS_IIDR

Accesses to this register use the following encodings:

Accessible at address 0x0040

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

549

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.16 ITS_INV_DEVICER
The ITS_INV_DEVICER characteristics are:

Purpose

ITS cache invalidation register for a single device or a range of devices.

Configuration

The effects of a write to this register are not guaranteed to have completed before ITS_STATUSR.IDLE
is 1.

Attributes

ITS_INV_DEVICER is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_INV_DEVICER bit assignments are:

I

31

RES0

30 6 5 1

L1

0

EVENTID_BITS

I, bit [31]

Writing 1 to this field invalidates cached information from DTEs for the DeviceID specified in ITS_DIDR.DEVICE_ID.

I Meaning

0b0 The write has no effect.

0b1 Invalidate cached information for the specified DeviceID.

Bits [30:6]

Reserved, RES0.

EVENTID_BITS, bits [5:1]

The range of EventIDs that the invalidation operation applies to for the specified DeviceID.

If this field is programmed to a value larger than the maximum, it is treated as having the maximum value for all
other purposes than reading back the field.

The maximum value is reported in ITS_IDR2.EVENTID_BITS.

If ITS_INV_DEVICER.L1 is 1, the effective value of this field is the maximum value reported in
ITS_IDR2.EVENTID_BITS.

L1, bit [0]

Controls which cached information the invalidation operation applies to.

When this field is 0, the operation invalidates cached information from the single level 2 DTE specified by
ITS_DIDR.DEVICE_ID.

When this field is 1, the operation invalidates cached information from the level 1 DTE specified by
ITS_DIDR.DEVICE_ID as well as any level 2 DTE covered by the range of DeviceIDs given by
ITS_DT_CFGR.L2SZ for the DeviceID specified in ITS_DIDR.DEVICE_ID.

If ITS_DT_CFGR.STRUCTURE is 0, the effective value of this field is 0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

550

Chapter 10. Registers and memory maps
10.3. ITS register frames

L1 Meaning

0b0 The cache invalidation operation invalidates information from
the specified level 2 DTE.DEVICE_ID.

0b1 The cache invalidation operation invalidates information from
the specified level 1 DTE and level 2 DTEs.

Accessing ITS_INV_DEVICER

Accesses to this register use the following encodings:

Accessible at address 0x0110

• When ITS_CR0.[IDLE,ITSEN] != 0b11 or ITS_STATUSR.IDLE != 1, access on this interface is WI.

• Otherwise, access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

551

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.17 ITS_INV_EVENTR
The ITS_INV_EVENTR characteristics are:

Purpose

ITS cache invalidation register for a single event or a range of events.

Configuration

The effects of a write to this register are not guaranteed to have completed before ITS_STATUSR.IDLE
is 1.

Attributes

ITS_INV_EVENTR is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_INV_EVENTR bit assignments are:

I

31

RES0

30 3 2 1

L1

0

ITT_L2SZ

I, bit [31]

Writing 1 to this field invalidates cached information from ITTEs for the DeviceID and EventID specified in
ITS_DIDR.DEVICE_ID and ITS_EIDR.EVENT_ID, respectively.

I Meaning

0b0 The write has no effect.

0b1 Invalidate cached information for the specified DeviceID and
EventID.

Bits [30:3]

Reserved, RES0.

ITT_L2SZ, bits [2:1]

The range of EventIDs that the invalidation operation applies to.

ITT_L2SZ Meaning

0b00 The invalidate operation applies to cached information from
any level 2 ITTE whose EventID bits [15:9] matches
ITS_EIDR.EVENT_ID bits [15:9].

0b01 The invalidate operation applies to cached information from
any level 2 ITTE whose EventID bits [15:11] matches
ITS_EIDR.EVENT_ID bits [15:11].

0b10 The invalidate operation applies to cached information from
any level 2 ITTE whose EventID bits [15:13] matches
ITS_EIDR.EVENT_ID bits [15:13].

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

552

Chapter 10. Registers and memory maps
10.3. ITS register frames

If ITS_INV_EVENTR.L1 is 0, this field is IGNORED.

Values not defined are reserved.

When programming a reserved value or an unsupported value, the ITS behavior is CONSTRAINED UNPREDICTABLE
to any behavior which could be achieved by programming a valid and supported value.

L1, bit [0]

Controls which cached information the invalidation operation applies to.

When this field is 0, the operation invalidates cached information from the single level 2 ITTE specified by
ITS_DIDR.DEVICE_ID and ITS_EIDR.EVENT_ID.

When this field is 1, the operation invalidates cached information from the level 1 ITTE specified by
ITS_DIDR.DEVICE_ID and ITS_EIDR.EVENT_ID as well as any level 2 ITTE covered by the range of EventIDs
given by ITS_EIDR.EVENT_ID and ITT_L2SZ for the DeviceID specified in ITS_DIDR.DEVICE_ID.

L1 Meaning

0b0 The cache invalidation operation invalidates information from
the specified level 2 ITTE.

0b1 The cache invalidation operation invalidates information from
the specified level 1 ITTE and level 2 ITTEs.

Accessing ITS_INV_EVENTR

Accesses to this register use the following encodings:

Accessible at address 0x010C

• When ITS_CR0.[IDLE,ITSEN] != 0b11 or ITS_STATUSR.IDLE != 1, access on this interface is WI.

• Otherwise, access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

553

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.18 ITS_MEC_IDR
The ITS_MEC_IDR characteristics are:

Purpose

ITS MEC identification register. Contains read-only fields with information about the ITS support for
MEC.

Attributes

ITS_MEC_IDR is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_MEC_IDR bit assignments are:

RES0

31 4 3 0

MECIDSIZE

Bits [31:4]

Reserved, RES0.

MECIDSIZE, bits [3:0]

When ITS_IDR0.MEC == 1:

The number of bits minus one of MECID supported by the ITS.

The maximum permitted value is 0xF which indicates a MECID width of 16 bits.

The value 0x0 is a valid encoding and indicates that one bit of MECID is supported.

Otherwise:

RES0

Accessing ITS_MEC_IDR

Accesses to this register use the following encodings:

Accessible at address 0x01C0

• When ITS_IDR0.INT_DOM != 0b11, access on this interface is RAZ/WI.

• When ITS_IDR0.MEC != 1, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

554

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.19 ITS_MEC_MECID_R
The ITS_MEC_MECID_R characteristics are:

Purpose

ITS MEC MECID register for the Realm PAS.

Attributes

ITS_MEC_MECID_R is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_MEC_MECID_R bit assignments are:

RES0

31 16

MECID

15 0

Bits [31:16]

Reserved, RES0.

MECID, bits [15:0]

MECID for ITS access to Realm PA space for:

• Fetches of device table entries.
• Fetches of interrupt translation table entries.

Bits above the supported MECID size, indicated in ITS_MEC_IDR.MECIDSIZE are RES0.

If MECIDSIZE is less than 0xF, the ITS treats bits [15:MECIDSIZE+1] of this field as zero.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing ITS_MEC_MECID_R

Accesses to this register use the following encodings:

Accessible at address 0x01C4

• When ITS_IDR0.INT_DOM != 0b11, access on this interface is RAZ/WI.

• When ITS_IDR0.MEC != 1, access on this interface is RAZ/WI.

• When ITS_CR0.ITSEN == 1 or ITS_CR0.IDLE == 0, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

555

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.20 ITS_MPAM_IDR
The ITS_MPAM_IDR characteristics are:

Purpose

ITS MPAM identification register. Contains read-only fields with information about the ITS support for
MPAM.

Attributes

ITS_MPAM_IDR is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_MPAM_IDR bit assignments are:

RES0

31 25 24

PMG_MAX

23 16

PARTID_MAX

15 0

HAS_MPAM_SP

Bits [31:25]

Reserved, RES0.

HAS_MPAM_SP, bit [24]

Whether the ITS Domain has support for MPAM PARTID space selection.

If HAS_MPAM_SP is 1, the ITS uses the MPAM PARTID specified by ITS_MPAM_PARTID_R.MPAM_SP.

If HAS_MPAM_SP is 0, the following PARTID space is used for ITS accesses to memory:

• Accesses made by the Secure ITS Domain use the Secure PARTID space.

• Accesses made by the Non-secure ITS Domain use the Non-secure PARTID space.

• Accesses made by the EL3 ITS Domain use the Root or Secure PARTID space.

• Accesses made by the Realm ITS Domain use the Realm PARTID space.

The value of this field is the same across all ITS Domains for an ITS.

PMG_MAX, bits [23:16]

The maximum PMG value that is permitted to be used in the ITS Domain.

The PMG bit width is defined as the bit position of the most significant 1 in PMG_MAX[7:0], plus one, or is
defined as zero if PMG_MAX is zero.

For example, if PMG_MAX == 0x0f, the PMG bit width is 4.

This field is permitted to be zero-sized.

PARTID_MAX, bits [15:0]

The maximum PARTID value that is permitted to be used in the ITS Domain.

The PARTID bit width is defined as the bit position of the most significant 1 in PARTID_MAX[15:0], plus one, or
is defined as zero if PARTID_MAX is zero.

For example, if PARTID_MAX == 0x0034, the PARTID bit width is 6.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

556

Chapter 10. Registers and memory maps
10.3. ITS register frames

This field is permitted to be zero-sized, but Arm recommends that it is non-zero when MPAM is implemented.

Accessing ITS_MPAM_IDR

Accesses to this register use the following encodings:

Accessible at address 0x0200

• When ITS_IDR0.MPAM != 1, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

557

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.21 ITS_MPAM_PARTID_R
The ITS_MPAM_PARTID_R characteristics are:

Purpose

ITS MPAM PARTID and PMG register.

Attributes

ITS_MPAM_PARTID_R is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_MPAM_PARTID_R bit assignments are:

31

RES0

30 26 25 24

PMG

23 16

PARTID

15 0

IDLE MPAM_SP

IDLE, bit [31]

Whether the effects of the previous write to this register are complete.

Following a write to this register, when this field is 1, the new values written to this register is guaranteed to be
used for subsequent memory accesses by the ITS.

IDLE Meaning

0b0 The effects of the previous write to this register are not
complete.

0b1 The effects of the previous write to this register are complete.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Access to this field is RO.

Bits [30:26]

Reserved, RES0.

MPAM_SP, bits [25:24]

When ITS_MPAM_IDR.HAS_MPAM_SP == 1 and ITS_IDR0.INT_DOM == 0b00

MPAM_SP, bits [1:0] of bits [25:24]

MPAM PARTID space for the Secure ITS Domain.

MPAM_SP Meaning

0b00 Secure PARTID space.

0b01 Non-secure PARTID space.

Values not defined above are reserved.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

558

Chapter 10. Registers and memory maps
10.3. ITS register frames

Programming a reserved value results in the ITS using an UNKNOWN PARTID space.

The reset behavior of this field is:

• On a GIC reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

• When ITS_MPAM_PARTID_R.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

When ITS_MPAM_IDR.HAS_MPAM_SP == 1 and ITS_IDR0.INT_DOM == 0b01

MPAM_SP, bits [1:0] of bits [25:24]

MPAM PARTID space for the Non-secure ITS Domain.

MPAM_SP Meaning

0b01 Non-secure PARTID space.

Values not defined above are reserved.

Programming a reserved value results in the ITS using an UNKNOWN PARTID space.

The reset behavior of this field is:

• On a GIC reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

• When ITS_MPAM_PARTID_R.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

When ITS_MPAM_IDR.HAS_MPAM_SP == 1 and ITS_IDR0.INT_DOM == 0b10

MPAM_SP, bits [1:0] of bits [25:24]

MPAM PARTID space for the EL3 ITS Domain.

MPAM_SP Meaning

0b00 Secure PARTID space.

0b01 Non-secure PARTID space.

0b10 Root PARTID space.

0b11 Realm PARTID space.

Values not defined above are reserved.

Programming a reserved value results in the ITS using an UNKNOWN PARTID space.

The reset behavior of this field is:

• On a GIC reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

• When ITS_MPAM_PARTID_R.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

559

Chapter 10. Registers and memory maps
10.3. ITS register frames

When ITS_MPAM_IDR.HAS_MPAM_SP == 1 and ITS_IDR0.INT_DOM == 0b11

MPAM_SP, bits [1:0] of bits [25:24]

MPAM PARTID space for the Realm ITS Domain.

MPAM_SP Meaning

0b01 Non-secure PARTID space.

0b11 Realm PARTID space.

Values not defined above are reserved.

Programming a reserved value results in the ITS using an UNKNOWN PARTID space.

The reset behavior of this field is:

• On a GIC reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

• When ITS_MPAM_PARTID_R.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

Otherwise:

RES0

PMG, bits [23:16]

PMG for accesses to memory by the ITS Domain.

Bits above the supported PMG bit width, as indicated by ITS_MPAM_IDR.PMG_MAX, are RES0.

If a value greater than ITS_MPAM_IDR.PMG_MAX is programmed, an UNKNOWN PMG is used.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0x00.

Accessing this field has the following behavior:

• When ITS_MPAM_PARTID_R.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

PARTID, bits [15:0]

PARTID for accesses to memory by the ITS Domain.

Bits above the supported PARTID bit width, as indicated by ITS_MPAM_IDR.PARTID_MAX, are RES0.

If a value greater than ITS_MPAM_IDR.PARTID_MAX is programmed, an UNKNOWN PARTID is used.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0x0000.

Accessing this field has the following behavior:

• When ITS_MPAM_PARTID_R.IDLE == 0, access to this field is RO
• Otherwise, access to this field is RW

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

560

Chapter 10. Registers and memory maps
10.3. ITS register frames

Accessing ITS_MPAM_PARTID_R

Accesses to this register use the following encodings:

Accessible at address 0x0204

• When ITS_IDR0.MPAM != 1, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

561

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.22 ITS_READ_EVENTR
The ITS_READ_EVENTR characteristics are:

Purpose

ITS read event request register.

This register is used to read the translation information for an EventID and DeviceID specified in
ITS_EIDR and ITS_DIDR registers, respectively.

Configuration

The effects of a write to this register are not guaranteed to have completed before ITS_STATUSR.IDLE
is 1.

Attributes

ITS_READ_EVENTR is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_READ_EVENTR bit assignments are:

R

31

RES0

30 0

R, bit [31]

Request ITS to read event translation information.

R Meaning

0b0 The write has no effect on the ITS.

0b1 Read the translation information for the specified DeviceID
and EventID into ITS_READ_EVENT_DATAR.

Bits [30:0]

Reserved, RES0.

Accessing ITS_READ_EVENTR

Accesses to this register use the following encodings:

Accessible at address 0x0114

• When ITS_CR0.[IDLE,ITSEN] != 0b11 or ITS_STATUSR.IDLE != 1, access on this interface is WI.

• Otherwise, access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

562

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.23 ITS_READ_EVENT_DATAR
The ITS_READ_EVENT_DATAR characteristics are:

Purpose

ITS read event data register.

This register is used to return translation information for an EventID and DeviceID specified in
ITS_EIDR and ITS_DIDR registers, respectively.

Attributes

ITS_READ_EVENT_DATAR is a 64-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_READ_EVENT_DATAR bit assignments are:

63

RES0

62 48

VM_ID

47 32

VIRT
31

RES0

30 24

LPI_ID

23 0

VALID

VIRT, bit [63]

When ITS_IDR0.INT_DOM != 0b10:

Specifies if the interrupt message generated by the ITS to the IRS in response to this event is for a physical or a
virtual interrupt.

VIRT Meaning

0b0 The interrupt message generated by the ITS is for a physical
interrupt

0b1 The interrupt message generated by the ITS is for a virtual
interrupt

If VALID is 0, the value of this field is UNKNOWN.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

Bits [62:48]

Reserved, RES0.

VM_ID, bits [47:32]

Bits[15:0] of the VM ID passed to the IRS as part of the interrupt message targeting virtual interrupts.

If VIRT is 0, this field is RES0.

If VALID 0, the value of this field is UNKNOWN.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

563

Chapter 10. Registers and memory maps
10.3. ITS register frames

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

VALID, bit [31]

Specifies whether the ITS has valid translation information for the specified EventID and DeviceID.

VALID Meaning

0b0 The EventID does not have a valid translation.

0b1 The EventID has a valid translation.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Bits [30:24]

Reserved, RES0.

LPI_ID, bits [23:0]

Bits[23:0] of the LPI ID for the specified EventID.

If unimplemented upper bits of the LPI_ID are not zero, it is IMPLEMENTATION DEFINED whether the upper bits
are treated as 0 or the interrupt message is ignored by the IRS.

If VALID 0, the value of this field is UNKNOWN.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing ITS_READ_EVENT_DATAR

Accesses to this register use the following encodings:

Accessible at address 0x0118

• When ITS_CR0.[IDLE,ITSEN] != 0b11 or ITS_STATUSR.IDLE != 1, access on this interface is UN-
KNOWN/WI.

• Otherwise, access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

564

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.24 ITS_STATUSR
The ITS_STATUSR characteristics are:

Purpose

ITS Status Register.

Reports whether the effects of the last write to all of the following registers are complete:

• ITS_INV_DEVICER.
• ITS_INV_EVENTR.
• ITS_READ_EVENTR.

Attributes

ITS_STATUSR is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_STATUSR bit assignments are:

RES0

31 1 0

IDLE

Bits [31:1]

Reserved, RES0.

IDLE, bit [0]

Reports the status of the last write to all of the following registers:

• ITS_INV_DEVICER.
• ITS_INV_EVENTR.
• ITS_READ_EVENTR.

IDLE Meaning

0b0 The effects of the last write are not guaranteed to be complete.

0b1 The effects of the last write are guaranteed to be complete.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Access to this field is RO.

Accessing ITS_STATUSR

Accesses to this register use the following encodings:

Accessible at address 0x0120

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

565

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.25 ITS_SWERR_STATUSR
The ITS_SWERR_STATUSR characteristics are:

Purpose

ITS software error status register. Specifies whether a software error has been reported. If an error is
reported, it contains syndrome information for the error.

Attributes

ITS_SWERR_STATUSR is a 64-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_SWERR_STATUSR bit assignments are:

RES0

63 32

IMP_EC

31 24

EC

23 16

RES0

15 4

OF

3 2 1

V

0

S1V S0V

Bits [63:32]

Reserved, RES0.

IMP_EC, bits [31:24]

IMPLEMENTATION DEFINED error code when ITS_SWERR_STATUS.EC == 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• Access is RES0 if any of the following are true:
– ITS_SWERR_STATUSR.V == 0
– ITS_SWERR_STATUSR.EC != 0

• Otherwise, access to this field is RO

EC, bits [23:16]

Specifies the error code that software can use to triage and handle the error.

EC Meaning

0x00 An error was reported because of an IMPLEMENTATION
DEFINED reason.

0x01 Failed lookup of L1_DTE due to an external abort.

0x02 Failed lookup of L2_DTE due to an external abort.

0x03 Failed lookup of L1_ITTE due to an external abort.

0x04 Failed lookup of L2_ITTE due to an external abort.

0x05 An incoming event could not be translated because
L1_DTE.VALID is 0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

566

Chapter 10. Registers and memory maps
10.3. ITS register frames

EC Meaning

0x06 An incoming event could not be translated because
L2_DTE.VALID is 0.

0x07 An incoming event could not be translated because
L1_ITTE.VALID is 0.

0x08 An incoming event could not be translated because
L2_ITTE.VALID is 0.

0x09 An incoming event could not be translated because the
DeviceID > (2 ˆ ITS_DT_CFGR.DEVICEID_BITS) - 1.

0x0A An incoming event could not be translated because the
EventID > (2 ˆ L2_DTE.EVENTID_BITS) - 1.

0x0B An incoming event could not be translated because the
DeviceID exceeds the L1_DTE.SPAN.

0x0C An incoming event could not be translated because the
EventID exceeds the L1_ITTE.SPAN.

0x0D An incoming event could not be translated because the event is
associated with the Non-secure Interrupt Domain and
L2_ITTE.DAC = 0.
The error is reported in the Realm ITS Domain.

0x0E ITS_GEN_EVENTR was written when
ITS_GEN_EVENT_STATUSR.IDLE == 0.

0x0F ITS_READ_EVENTR was written when
ITS_STATUSR.IDLE == 0.

0x10 ITS_INV_DEVICER was written when ITS_STATUSR.IDLE
== 0.

0x11 ITS_INV_EVENTR was written when ITS_STATUSR.IDLE
== 0.

0x12 ITS_SYNCR was written when ITS_SYNC_STATUSR.IDLE
== 0.

0x13 An incoming event could not be translated because the
EventID exceeds (2 ˆ ITS_IDR2.EVENTID_BITS) - 1.

0x14 An incoming event specified an EventID with a write to a
reserved location.

All other values are reserved.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• When ITS_SWERR_STATUSR.V == 0, access to this field is UNKNOWN/WI
• Otherwise, access to this field is RO

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

567

Chapter 10. Registers and memory maps
10.3. ITS register frames

Bits [15:4]

Reserved, RES0.

OF, bit [3]

Specifies whether multiple software errors have been detected.

When this field is 1, the syndrome information reports information about the error that last caused
ITS_SWERR_STATUSR.V to transition from 0 to 1.

OF Meaning

0b0 No errors have been detected, since the error that was reported
when ITS_SWERR_STATUSR.V last transitioned from 0 to 1.

0b1 At least one error has been detected, since the error that was
reported when ITS_SWERR_STATUSR.V last transitioned
from 0 to 1.

When clearing ITS_SWERR_STATUSR.V to 0, if this field is nonzero, software writes 1 to clear this field to zero.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• When ITS_SWERR_STATUSR.V == 0, access to this field is UNKNOWN/WI
• Otherwise, access to this field is W1C

S1V, bit [2]

Specifies whether ITS_SWERR_SYNDROMER1 is valid.

S1V Meaning

0b0 ITS_SWERR_SYNDROMER1 is not valid.

0b1 ITS_SWERR_SYNDROMER1 is valid.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• When ITS_SWERR_STATUSR.V == 0, access to this field is UNKNOWN/WI
• Otherwise, access to this field is RO

S0V, bit [1]

Specifies whether ITS_SWERR_SYNDROMER0 is valid.

S0V Meaning

0b0 ITS_SWERR_SYNDROMER0 is not valid.

0b1 ITS_SWERR_SYNDROMER0 is valid.

The reset behavior of this field is:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

568

Chapter 10. Registers and memory maps
10.3. ITS register frames

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• When ITS_SWERR_STATUSR.V == 0, access to this field is UNKNOWN/WI
• Otherwise, access to this field is RO

V, bit [0]

Specifies whether ITS_SWERR_STATUSR is valid and at least one software error has been reported.

V Meaning

0b0 ITS_SWERR_STATUSR is not valid.

0b1 ITS_SWERR_STATUSR is valid.

Software writes 1 to this field to clear it to zero.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Access to this field is W1C.

Accessing ITS_SWERR_STATUSR

After reading ITS_SWERR_STATUSR, software clears the valid fields in the register to allow new errors to be
reported.

However, between reading the register and clearing the valid fields, a new error might have overwritten the register.

To prevent this error being lost by software, the register prevents updates to fields that might have been updated by
a new error.

This is done by ensuring a write to the register is ignored if all of the following are true:

• Any of ITS_SWERR_STATUSR.{V, OF} are nonzero before the write.

• The write does not clear the nonzero ITS_SWERR_STATUSR.{V, OF} fields to zero by writing ones to the
applicable field or fields.

Accesses to this register use the following encodings:

Accessible at address 0x0240

• When ITS_IDR0.SWE != 1, access on this interface is RAZ/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

569

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.26 ITS_SWERR_SYNDROMER0
The ITS_SWERR_SYNDROMER0 characteristics are:

Purpose

ITS software error syndrome register 0. Records ITS specific software error syndrome information.

Attributes

ITS_SWERR_SYNDROMER0 is a 64-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_SWERR_SYNDROMER0 bit assignments are:

DEVICE_ID

63 32

RES0

31 16

EVENT_ID

15 0

DEVICE_ID, bits [63:32]

The DeviceID for the incoming event that generated the software error.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Bits [31:16]

Reserved, RES0.

EVENT_ID, bits [15:0]

The EventID for the incoming event that generated the software error.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing ITS_SWERR_SYNDROMER0

Accesses to this register use the following encodings:

Accessible at address 0x0248

• When ITS_IDR0.SWE != 1, access on this interface is RAZ/WI.

• When ITS_SWERR_STATUSR.V == 1 and ITS_SWERR_STATUSR.S0V == 1, access on this interface is
RO.

• Otherwise, access on this interface is UNKNOWN/WI.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

570

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.27 ITS_SWERR_SYNDROMER1
The ITS_SWERR_SYNDROMER1 characteristics are:

Purpose

ITS software error syndrome register 1. Records ITS specific software error syndrome information.

Attributes

ITS_SWERR_SYNDROMER1 is a 64-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_SWERR_SYNDROMER1 bit assignments are:

RES0

63 56

ADDR

55 32

ADDR

31 3

RES0

2 0

Bits [63:56]

Reserved, RES0.

ADDR, bits [55:3]

Bits[55:3] of the physical address of a translation structure associated with the detected error.

The address in this field is associated with the PAS of the ITS Domain where the error is detected.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in ITS_IDR0.PA_RANGE.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Bits [2:0]

Reserved, RES0.

Accessing ITS_SWERR_SYNDROMER1

Accesses to this register use the following encodings:

Accessible at address 0x0250

• When ITS_IDR0.SWE != 1, access on this interface is RAZ/WI.

• When ITS_SWERR_STATUSR.V == 1 and ITS_SWERR_STATUSR.S1V == 1, access on this interface is
RO.

• Otherwise, access on this interface is UNKNOWN/WI.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

571

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.28 ITS_SYNCR
The ITS_SYNCR characteristics are:

Purpose

ITS synchronize translation events register.

Configuration

The effects of a write to this register are not guaranteed to have completed before ITS_SYNC_STATUSR.IDLE
is 1.

Attributes

ITS_SYNCR is a 64-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_SYNCR bit assignments are:

63

RES0

62 33 32

SYNC SYNCALL

DEVICE_ID

31 0

SYNC, bit [63]

A synchronization request applies to the following Accepted events:

• Events that are generated from an IWB.
• Events that are generated from a system peripheral using an IMPLEMENTATION DEFINED mechanism.
• Events that are generated as a result of a write to ITS_GEN_EVENTR.
• Events that are generated as a result of a write to a register in an ITS translate register frame associated with

the ITS Domain.

Writing 0 to this field has no effect.

SYNC Meaning

0b0 The write is IGNORED.

0b1 The write issuess a synchronization request to the ITS Domain.

All events covered by the synchronization request, that are Accepted at the time of the write to this register, are
guaranteed to have been translated when ITS_SYNC_STATUSR.IDLE is 1.

For each such event, if the event has a valid translation, the ITS has generated an interrupt event that is Accepted
by the associated IRS.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

572

Chapter 10. Registers and memory maps
10.3. ITS register frames

Bits [62:33]

Reserved, RES0.

SYNCALL, bit [32]

Whether a synchronization request issued by writing 1 to SYNC applies to all Accepted ITS events or is only
required to apply to those with specified DeviceID.

SYNCALL Meaning

0b0 Synchronize only events for the specified DeviceID.

0b1 Synchronize all events for the ITS Domain.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

DEVICE_ID, bits [31:0]

An ITS synchronization request synchronized all Accepted ITS events with the specified DeviceID.

When SYNCALL is 1, this field is IGNORED.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing ITS_SYNCR

Accesses to this register use the following encodings:

Accessible at address 0x0140

• When ITS_CR0.[IDLE,ITSEN] != 0b11 or ITS_SYNC_STATUSR.IDLE != 1, access on this interface is WI.

• Otherwise, access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

573

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.1.29 ITS_SYNC_STATUSR
The ITS_SYNC_STATUSR characteristics are:

Purpose

ITS synchronize interrupt events status register.

Attributes

ITS_SYNC_STATUSR is a 32-bit register.

This register is part of the ITS_CONFIG_FRAME block.

Field descriptions

The ITS_SYNC_STATUSR bit assignments are:

RES0

31 1 0

IDLE

Bits [31:1]

Reserved, RES0.

IDLE, bit [0]

Whether the effects of the last write to ITS_SYNCR have completed.

IDLE Meaning

0b0 The effects of writing to ITS_SYNCR not guaranteed to have
completed.

0b1 The effects of writing to ITS_SYNCR have completed.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Access to this field is RO.

Accessing ITS_SYNC_STATUSR

This register is read-only.

Accesses to this register use the following encodings:

Accessible at address 0x0148

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

574

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.2 ITS_TRANSLATE_FRAME, ITS translate register frame

The ITS_TRANSLATE_FRAME characteristics are:

Purpose

Contains translate registers used to generate translated interrupts for an ITS Domain.

One or more ITS translate register frames are present for each supported ITS Domain.

Arm strongly recommends that translate register frame is not accessible by PEs. This is because a write
to an translate register may require the ITS access to memory, leading to in-out dependencies than can
potentially lead to deadlocks in the system. The translate register frames may be mapped in stage 2
translation tables shared between an SMMU and a PE, and software in a VM may perform an access to
any of the mapped translate register frames. If the translate register frames are not accessible by PEs,
the behavior on an attempted access from a PE is IMPLEMENTATION DEFINED and is likely to result in
an External abort. If the translate register frames are accessible by PEs, writes from each PE must use a
unique DeviceID that cannot spoof a write originating from a different PE or requesting device.

Each translate register frame is only accessible in the PAS associated with the ITS Domain.

The base address of each translate register frame is distinct from addresses of registers accessible in any
other PAS.

The base address of each translate register frame is aligned to 64KB.

Attributes

The ITS_TRANSLATE_FRAME block is of size 64KB

Default access

Accesses to the address space of this block that do not resolve to a register or a further block are treated
as RAZ/WI.

Contents

Offset Name Notes

0x0000 ITS_TRANSLATER Most permissive access: WO

0x0008 ITS_RL_TRANSLATER Most permissive access: WO

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

575

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.2.1 ITS_TRANSLATER
The ITS_TRANSLATER characteristics are:

Purpose

ITS translate event register.

A write to this register generates a SET_EDGE event for the DeviceID of the agent writing to the
register and the EventID specified as part of the write.

Attributes

ITS_TRANSLATER is a 32-bit register.

This register is part of the ITS_TRANSLATE_FRAME block.

Field descriptions

The ITS_TRANSLATER bit assignments are:

RES0

31 16

EVENT_ID

15 0

Bits [31:16]

Reserved, RES0.

EVENT_ID, bits [15:0]

The EventID to translate.

Accessing ITS_TRANSLATER

This register is write-only.

16-bit access to bits [15:0] of this register must be supported. When this register is written by a 16-bit transaction,
bits [31:16] are written as zero.

Implementations must ensure that a unique DeviceID is provided for each requesting device, and the DeviceID is
presented to the ITS when a write to this register occurs in a manner that cannot be spoofed by any agent capable
of performing writes.

Writes to this register are ignored if the ITS Domain is not enabled.

See Chapter 5 Interrupt translation service (ITS) for more information about ordering and completion requirements
for writes to this register.

Accesses to this register use the following encodings:

Accessible at address 0x0000

Access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

576

Chapter 10. Registers and memory maps
10.3. ITS register frames

10.3.2.2 ITS_RL_TRANSLATER
The ITS_RL_TRANSLATER characteristics are:

Purpose

ITS translate event in Realm ITS Domain register.

A write to this register that uses the Non-secure PAS, generates a SET_EDGE event for the DeviceID
of the agent writing to the register and the EventID specified as part of the write.

The SET_EDGE event is associated with the Non-secure Interrupt Domain and processed by the ITS in
the Realm ITS Domain.

If the translation of the SET_EDGE event is successful, a SET_EDGE interrupt event is generated for
the IRS in the Realm Interrupt Domain

Attributes

ITS_RL_TRANSLATER is a 32-bit register.

This register is part of the ITS_TRANSLATE_FRAME block.

Field descriptions

The ITS_RL_TRANSLATER bit assignments are:

RES0

31 16

EVENT_ID

15 0

Bits [31:16]

Reserved, RES0.

EVENT_ID, bits [15:0]

The EventID to translate.

Accessing ITS_RL_TRANSLATER

This register is write-only.

16-bit access to bits [15:0] of this register must be supported. When this register is written by a 16-bit transaction,
bits [31:16] are written as zero.

Implementations must ensure that a unique DeviceID is provided for each requesting device, and the DeviceID is
presented to the ITS when a write to this register occurs in a manner that cannot be spoofed by any agent capable
of performing writes.

Writes to this register are IGNORED if any of the following are true:

• The Non-secure ITS Domain is not enabled.

• The Realm ITS Domain is not enabled.

See Chapter 5 Interrupt translation service (ITS) for more information about ordering and completion requirements
for writes to this register.

Accesses to this register use the following encodings:

Accessible at address 0x0008

• When ITS_IDR0.INT_DOM == 0b01 and IsITSDomainImplemented(Realm), access on this interface is
WO.

• Otherwise, access on this interface is RAZ/WI.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

577

Chapter 10. Registers and memory maps
10.4. IWB register frames

10.4 IWB register frames

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

578

Chapter 10. Registers and memory maps
10.4. IWB register frames

10.4.1 IWB_CONFIG_FRAME, IWB configuration registers frame

The IWB_CONFIG_FRAME characteristics are:

Purpose

Contains control registers for an IWB.

The base address is aligned to 64KB.

Access to this register frame in a PAS associated with an unimplemented Interrupt Domain is CON-
STRAINED UNPREDICTABLE with a choice of:

• The access is RAZ/WI

• The access is made to an implemented Interrupt Domain as follows:

• An access in the Realm PAS is translated to an access in the Non-secure Interrupt Domain

• An access in the Secure PAS is translated to an access in the Non-secure Interrupt Domain

• An access in the Root PAS is translated to an access in the MPPAS of the IWB

Attributes

The IWB_CONFIG_FRAME block is of size 64KB

Default access

Accesses to the address space of this block that do not resolve to a register or a further block are treated
as RAZ/WI.

Contents

Offset Name Notes

0x0000 IWB_IDR0 Most permissive access: RO

0x0040 IWB_IIDR Most permissive access: RO

0x0044 IWB_AIDR Most permissive access: RO

0x0080 IWB_CR0 Most permissive access: RW

0x00C0 IWB_WENABLE_STATUSR Most permissive access: RO

0x00C4 IWB_WDOMAIN_STATUSR Most permissive access: RO

0x00C8 IWB_WRESAMPLER Most permissive access: WO

0x2000 + (4 * n) IWB_WENABLER[n] Most permissive access: RW

0x4000 + (4 * n) IWB_WTMR[n] Most permissive access: RW

0x6000 + (4 * n) IWB_WDOMAINR[n] Most permissive access: RW

0x0E00 + (4 * n)for n in

↪→63:0

- Most permissive access: ImplementationDefined

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

579

Chapter 10. Registers and memory maps
10.4. IWB register frames

10.4.1.1 IWB_AIDR
The IWB_AIDR characteristics are:

Purpose

IWB Architecture Identification Register. Identifies the GIC architecture version to which the
implementation conforms.

Attributes

IWB_AIDR is a 32-bit register.

This register is part of the IWB_CONFIG_FRAME block.

Field descriptions

The IWB_AIDR bit assignments are:

RES0

31 12 11 8 7 4 3 0

Component ArchMinorRev
ArchMajorRev

Bits [31:12]

Reserved, RES0.

Component, bits [11:8]

GIC component

Component Meaning

0b0000 IRS

0b0001 ITS

0b0010 IWB

ArchMajorRev, bits [7:4]

Major Architecture revision.

ArchMajorRev Meaning

0b0000 GICv5.x

ArchMinorRev, bits [3:0]

Minor Architecture revision.

ArchMinorRev Meaning

0b0000 GICv5.0

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

580

Chapter 10. Registers and memory maps
10.4. IWB register frames

Accessing IWB_AIDR

Accesses to this register use the following encodings:

Accessible at address 0x0044

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

581

Chapter 10. Registers and memory maps
10.4. IWB register frames

10.4.1.2 IWB_IDR0
The IWB_IDR0 characteristics are:

Purpose

IWB ID register 0. Contains read-only fields with information about the IWB GIC component.

Attributes

IWB_IDR0 is a 32-bit register.

This register is part of the IWB_CONFIG_FRAME block.

Field descriptions

The IWB_IDR0 bit assignments are:

RES0

31 15

INT_DOMS

14 11

IW_RANGE

10 0

Bits [31:15]

Reserved, RES0.

INT_DOMS, bits [14:11]

The Interrupt Domains supported by the IWB.

INT_DOMS Meaning

0b0001 Only the Secure Interrupt Domain is supported

0b0010 Only the Non-secure Interrupt Domain is supported

0b0111 The EL3, Secure and Non-secure Interrupt Domains are
supported

0b1110 The EL3, Realm, and Non-secure Interrupt Domains are
supported

0b1111 The EL3, Realm, Secure, and Non-secure Interrupt Domains
are supported

All values not listed are reserved.

IW_RANGE, bits [10:0]

Indicates the number of implemented wire control registers.

The number is reported as the highest numbered wire control field as multiple of 32 minus one.

For example:

• A value of 0 means that the IWB supports register accesses to control wires 0-31
• A value of 1 means that the IWB supports register accesses to control wires 0-63
• . . . and so on until 0-65535.

Accessing IWB_IDR0

Accesses to this register use the following encodings:

Accessible at address 0x0000

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

582

Chapter 10. Registers and memory maps
10.4. IWB register frames

10.4.1.3 IWB_IIDR
The IWB_IIDR characteristics are:

Purpose

IWB Implementer Identification Register. Provides information about the implementation and
implementer of the GIC, and architecture version supported.

Attributes

IWB_IIDR is a 32-bit register.

This register is part of the IWB_CONFIG_FRAME block.

Field descriptions

The IWB_IIDR bit assignments are:

ProductID

31 20

Variant

19 16

Revision

15 12

Implementer

11 0

ProductID, bits [31:20]

IMPLEMENTATION DEFINED value identifying the GIC part

When the IWB_PIDR{0,1} registers are present, Arm expects that the IWB_PIDR{0,1}.PART_{0,1} fields match
the value of IWB_IIDR.ProductID.

If required, however, an implementation is permitted to provide values for IWB_PIDR.{0,1}.PART_{0,1} that do
not match the value of IWB_IIDR.ProductID

Variant, bits [19:16]

IMPLEMENTATION DEFINED value used to distinguish product variants, or major revisions of the product

Revision, bits [15:12]

IMPLEMENTATION DEFINED value used to distinguish minor revisions of the product

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the GIC

For an Arm implementation, the JEP106 code is 0x43B

When the IWB_PIDR{1,2,4} registers are present, Arm expects that the IWB_PIDR{0,1}.PART_{0,1} fields
match the value of IWB_IIDR.Implementer.

Accessing IWB_IIDR

Accesses to this register use the following encodings:

Accessible at address 0x0040

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

583

Chapter 10. Registers and memory maps
10.4. IWB register frames

10.4.1.4 IWB_CR0
The IWB_CR0 characteristics are:

Purpose

IWB control register 0.

Attributes

IWB_CR0 is a 32-bit register.

This register is part of the IWB_CONFIG_FRAME block.

Field descriptions

The IWB_CR0 bit assignments are:

RES0

31 2 1 0

IDLE IWBEN

Bits [31:2]

Reserved, RES0.

IDLE, bit [1]

Whether the transition between enabled and disabled states of the IWB is complete.

IDLE Meaning

0b0 The effects of updating IWBEN are not guaranteed to have
completed.

0b1 The effects of updating IWBEN have completed.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b1.

Access to this field is RO.

IWBEN, bit [0]

Controls if the IWB is enabled.

IWBEN Meaning

0b0 Disabled. The IWB does not generate any events its
destination.

0b1 Enabled. The IWB may generate events to its destination.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0b0.

Accessing this field has the following behavior:

• When IWB_CR0.IDLE == 0, access to this field is RO
• RO if !IsAccessIWBMPPAS()
• Otherwise, access to this field is RW

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

584

Chapter 10. Registers and memory maps
10.4. IWB register frames

Accessing IWB_CR0

Accesses to this register use the following encodings:

Accessible at address 0x0080

Access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

585

Chapter 10. Registers and memory maps
10.4. IWB register frames

10.4.1.5 IWB_WDOMAIN_STATUSR
The IWB_WDOMAIN_STATUSR characteristics are:

Purpose

IWB wire assignment status register for an Interrupt Domain.

Attributes

IWB_WDOMAIN_STATUSR is a 32-bit register.

This register is part of the IWB_CONFIG_FRAME block.

Field descriptions

The IWB_WDOMAIN_STATUSR bit assignments are:

RES0

31 1 0

IDLE

Bits [31:1]

Reserved, RES0.

IDLE, bit [0]

Tracks status of writes to IWB_WDOMAINR<n> on this IWB.

IDLE Meaning

0b0 A write to IWB_WDOMAINR<n> is in progress.

0b1 No write to IWB_WDOMAINR<n> is in progress.

Accessing IWB_WDOMAIN_STATUSR

Accesses to this register use the following encodings:

Accessible at address 0x00C4

• When IsAccessIWBMPPAS(), access on this interface is RO.

• Otherwise, access on this interface is RAZ/WI.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

586

Chapter 10. Registers and memory maps
10.4. IWB register frames

10.4.1.6 IWB_WDOMAINR<n>, n = 0 - 4095
The IWB_WDOMAINR<n> characteristics are:

Purpose

IWB wire Interrupt Domain selection register. Allows software to configure the Interrupt Domain that
wires n * 16 through ((n * 16) + 15) are assigned to.

Configuration

The number of implemented IWB_WDOMAINR<n> registers is (IWB_IDR0.IW_RANGE + 1) * 2.

The effects of a write to this register are not guaranteed to have completed until IWB_WDOMAIN_STATUSR.IDLE
is 1.

Attributes

IWB_WDOMAINR<n> is a 32-bit register.

This register is part of the IWB_CONFIG_FRAME block.

Field descriptions

The IWB_WDOMAINR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDOM15
WDOM14

WDOM13
WDOM12

WDOM11
WDOM10

WDOM9
WDOM8

WDOM0
WDOM1

WDOM2
WDOM3

WDOM4
WDOM5

WDOM6
WDOM7

WDOM<x>, bits [2x+1:2x], for x = 15 to 0

Configures the Interrupt Domain that wire ((16 * n) + x) is assigned to.

Programming an Interrupt Domain not supported by the IWB results in CONSTRAINED UNPREDICTABLE behavior
with the following options:

• No signals are generated by the IWB for a wire assigned to an unsupported Interrupt Domain.
• The wire is treated as being assigned to another supported Interrupt Domain and a read of this field returns

the Interrupt Domain the wire is assigned to.

Access to control fields for wires which are not implemented are RAZ/WI.

WDOM<x> Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

587

Chapter 10. Registers and memory maps
10.4. IWB register frames

• RO if IsWireDomainRO((n * 16) + x)
• Otherwise, access to this field is RW

Accessing IWB_WDOMAINR<n>

When the Interrupt Domain assigned of a wire is fixed, access to the corresponding field is RO.

This register can only be accessed through the MPPAS of the IWB.

Accesses to this register use the following encodings:

Accessible at address 0x6000 + (4 * n)

• When IWB_CR0.IDLE == 0, access on this interface is RO.

• When !IsAccessIWBMPPAS(), access on this interface is RAZ/WI.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

588

Chapter 10. Registers and memory maps
10.4. IWB register frames

10.4.1.7 IWB_WENABLE_STATUSR
The IWB_WENABLE_STATUSR characteristics are:

Purpose

IWB wire enable status register for an Interrupt Domain.

Attributes

IWB_WENABLE_STATUSR is a 32-bit register.

This register is part of the IWB_CONFIG_FRAME block.

Field descriptions

The IWB_WENABLE_STATUSR bit assignments are:

RES0

31 1 0

IDLE

Bits [31:1]

Reserved, RES0.

IDLE, bit [0]

Tracks status of writes to IWB_WENABLER<n> on this IWB where the writes used the same PAS that was used
to access this register.

IDLE Meaning

0b0 A write to IWB_WENABLER<n> using the PAS that was
used to access this register is in progress.

0b1 No write to IWB_WENABLER<n> using the PAS that was
used to access this register is in progress.

Accessing IWB_WENABLE_STATUSR

Accesses to this register use the following encodings:

Accessible at address 0x00C0

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

589

Chapter 10. Registers and memory maps
10.4. IWB register frames

10.4.1.8 IWB_WENABLER<n>, n = 0 - 2047
The IWB_WENABLER<n> characteristics are:

Purpose

IWB wire enable register. Allows software to configure if individual wires are enabled or disabled.

Configuration

The number of implemented IWB_WENABLER<n> registers is IWB_IDR0.IW_RANGE + 1.

The effects of a write to this register are not guaranteed to have completed before IWB_WENABLE_STATUSR.IDLE
is 1.

Attributes

IWB_WENABLER<n> is a 32-bit register.

This register is part of the IWB_CONFIG_FRAME block.

Field descriptions

The IWB_WENABLER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WEN31
WEN30

WEN29
WEN28

WEN27
WEN26

WEN25
WEN24

WEN23
WEN22

WEN21
WEN20

WEN19
WEN18

WEN17
WEN16

WEN0
WEN1

WEN2
WEN3

WEN4
WEN5

WEN6
WEN7

WEN8
WEN9

WEN10
WEN11

WEN12
WEN13

WEN14
WEN15

WEN<x>, bits [x], for x = 31 to 0

Configures if wire ((32 * n) + x) is enabled or disabled.

Access to control fields for wires which are not implemented are RAZ/WI.

WEN<x> Meaning

0b0 Wire disabled

0b1 Wire enabled

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

• RAZ/WI if !IsWireAccessible(n, x)
• Otherwise, access to this field is RW

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

590

Chapter 10. Registers and memory maps
10.4. IWB register frames

Accessing IWB_WENABLER<n>

When accessed using the MPPAS of the IWB, all fields are RW.

When accessed using any other PAS, a field is RW if all of the following are true:

• The wire corresponding to the field is assigned to an Interrupt Domain that is implemented by the IWB.

• The PAS corresponding to the access is same as the PAS associated with the Interrupt Domain to which the
wire is assigned.

Otherwise, the field is RAZ/WI for that access.

Accesses to this register use the following encodings:

Accessible at address 0x2000 + (4 * n)

• When IWB_CR0.IDLE == 0, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

591

Chapter 10. Registers and memory maps
10.4. IWB register frames

10.4.1.9 IWB_WRESAMPLER
The IWB_WRESAMPLER characteristics are:

Purpose

IWB wire resample register.

Attributes

IWB_WRESAMPLER is a 32-bit register.

This register is part of the IWB_CONFIG_FRAME block.

Field descriptions

The IWB_WRESAMPLER bit assignments are:

RES0

31 16

IWI

15 0

Bits [31:16]

Reserved, RES0.

IWI, bits [15:0]

Input Wire Index. Specifies the wire to resample.

Following a write to this register, if all of the following are true, the wire is resampled:

• The access to this register is performed using the PAS associated with the Interrupt Domain that the wire is
assigned to or the MPPAS of the IWB.

• The specified wire is enabled.

If the specified wire is disabled, the write to this register has no effect.

See ‘IWB wire control registers’ for more information.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing IWB_WRESAMPLER

Accesses to this register use the following encodings:

Accessible at address 0x00C8

• When IWB_CR0.IDLE == 0, access on this interface is WI.

• Otherwise, access on this interface is WO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

592

Chapter 10. Registers and memory maps
10.4. IWB register frames

10.4.1.10 IWB_WTMR<n>, n = 0 - 2047
The IWB_WTMR<n> characteristics are:

Purpose

IWB Wire Trigger mode register. Allows software to configure if the wire signal is level-sensitive or
edge-triggered.

Configuration

The number of implemented IWB_WTMR<n> registers is IWB_IDR0.IW_RANGE + 1.

Attributes

IWB_WTMR<n> is a 32-bit register.

This register is part of the IWB_CONFIG_FRAME block.

Field descriptions

The IWB_WTMR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TM31
TM30

TM29
TM28

TM27
TM26

TM25
TM24

TM23
TM22

TM21
TM20

TM19
TM18

TM17
TM16

TM0
TM1

TM2
TM3

TM4
TM5

TM6
TM7

TM8
TM9

TM10
TM11

TM12
TM13

TM14
TM15

TM<x>, bits [x], for x = 31 to 0

Configures if wire ((32 * n) + x) is level-sensitive or edge-triggered.

When the wire is configured as level-sensitive, a CLEAR event is sent to the ITS when the wire signal is de-asserted,
and a SET_LEVEL event is sent to the ITS when the wire signal is asserted.

When the wire is configured as edge-triggered, only SET_EDGE event are generated to the ITS and only when the
wire changes from de-asserted to asserted.

When IsWireConfigRO(n * 32 + x) is 0, this field resets to 0.

Access to control fields for wires which are not implemented are RAZ/WI.

TM<x> Meaning

0b0 Edge-triggered

0b1 Level-sensitive

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Accessing this field has the following behavior:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

593

Chapter 10. Registers and memory maps
10.4. IWB register frames

• Access is RO if any of the following are true:
– !IsWireAccessible(n, x)
– IsWireConfigRO((n * 32) + x)

• Otherwise, access to this field is RW

Accessing IWB_WTMR<n>

When the Trigger mode of a wire is software programmable, all of the following are true:

• When accessed using the MPPAS of the IWB, all fields are RW.

• When accessed using any other PAS, a field is RW if all of the following are true:

– The wire corresponding to the field is assigned to an Interrupt Domain that is implemented by the IWB.

– The PAS corresponding to the access is same as the PAS associated with the Interrupt Domain to which
the wire is assigned.

Otherwise, the field is RO for that access.

Accesses to this register use the following encodings:

Accessible at address 0x4000 + (4 * n)

• When IWB_CR0.IDLE == 0, access on this interface is RO.

• Otherwise, access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

594

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

10.5 GIC PMU register frame

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

595

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

10.5.1 GIC_PMU_FRAME, GIC PMU register frame

The GIC_PMU_FRAME characteristics are:

Purpose

Contains GIC PMU registers.

The GIC PMU register frame is accessible in each PAS corresponding to an Interrupt Domain that the
PMU can count events for.

The base address of the GIC PMU register frame is distinct from any other GIC register frame.

The base address of the GIC PMU register frame is aligned to 64KB.

Attributes

The GIC_PMU_FRAME block is of size 64KB

Default access

Accesses to the address space of this block that do not resolve to a register or a further block are treated
as RAZ/WI.

Contents

Offset Name Notes

0x400 + (8 * n) GIC_PMEVTYPER[n] Most permissive access: RW

0x800 + (8 * n) GIC_PMEVFILT2R[n] Most permissive access: RW

0xA00 + (8 * n) GIC_PMEVFILTR[n] Most permissive access: RW

0xD80 GIC_PMIDR0 Most permissive access: RO

IKCDRK The GIC PMU frame describes the register frame of a GIC PMU compliant with the register formats and layouts
defined by the Arm® CoreSight™ Architecture Performance Monitoring Unit Architecture[11].

Not all registers are shown. Only those registers where the ITS architecture specifies an architected behavior of an
IMPLEMENTATION DEFINED field as specified in [11] are shown. These registers are renamed as their behavior is
specified by the GICv5 architecture. For the remaining offsets and register definitions, see [11].

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

596

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

10.5.1.1 GIC_PMEVFILT2R<n>, n = 0 - 63
The GIC_PMEVFILT2R<n> characteristics are:

Purpose

GIC PMU Event Filter 2 Register

Attributes

GIC_PMEVFILT2R<n> is a 64-bit register.

This register is part of the GIC_PMU_FRAME block.

Field descriptions

The GIC_PMEVFILT2R<n> bit assignments are:

When GIC_PMEVTYPER<n>.PMEVTYPE IN {0b01x}:

RES0

63 61 60 59 58 57

RES0

56 32

FILTER_EID_SPAN
FILTER_EID

FILTER_DID
FILTER_DID_SPAN

RES0

31 16

ITSID

15 0

Bits [63:61]

Reserved, RES0.

FILTER_EID_SPAN, bit [60]

When GIC_PMEVTYPER<n>.FS == 1, GIC_PMEVTYPER<n>.FSPAN == 1 and FILTER_EID == 1:

Controls if filtering using EventID uses exact matching or matches a range of values.

If the ITS being monitored only implements support for 1 bit of EventID, this field is treated as 0.

See ‘GIC Performance Monitoring Units’ for more information.

FILTER_EID_SPAN Meaning

0b0 GIC_PMEVFILTR<n>.EVENT_ID filters EventID on an
exact match.

0b1 GIC_PMEVFILTR<n>.EVENT_ID filters EventID on a range
of values.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

FILTER_EID, bit [59]

When GIC_PMEVTYPER<n>.FS == 1 and FILTER_DID == 1:

Controls whether filtering using EventID is enabled.

Filtering on EventID is only supported when also filtering on DeviceID.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

597

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

See ‘GIC Performance Monitoring Units’ for more information.

FILTER_EID Meaning

0b0 Count events from all EventIDs for the matched DeviceIDs.

0b1 Count events that match the DeviceID and EventID filter
programming.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

FILTER_DID_SPAN, bit [58]

When GIC_PMEVTYPER<n>.FS == 1, GIC_PMEVTYPER<n>.FSPAN == 1 and FILTER_DID == 1:

Controls if filtering using DeviceID uses exact matching or matches a range of values.

If the ITS being monitored only implements support for 1 bit of DeviceID, this field is treated as 0.

See ‘GIC Performance Monitoring Units’ for more information.

FILTER_DID_SPAN Meaning

0b0 GIC_PMEVFILTR<n>.DEVICE_ID filters DeviceID on an
exact match.

0b1 GIC_PMEVFILTR<n>.DEVICE_ID filters DeviceID on a
range of values.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

FILTER_DID, bit [57]

When GIC_PMEVTYPER<n>.FS == 1:

Controls whether filtering using DeviceID is enabled.

FILTER_DID Meaning

0b0 Count events from all DeviceIDs.

0b1 Count events that match the DeviceID filter programming.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

598

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

Otherwise:

RES0

Bits [56:16]

Reserved, RES0.

ITSID, bits [15:0]

Events from the ITS that match this value are counted.

If the agent being monitored does not contain more than one ITS, this field is RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

When GIC_PMEVTYPER<n>.PMEVTYPE IN {0b00x}:

63 62 61 60 59 58 57 56

RES0

55 32

FILTER_VM
_ID

FILTER_VIRT
FILTER_INTID_SP

AN

FILTER_SRC_PE
FILTER_RW

FILTER_INTID

RES0

31 16

IAFFID

15 0

FILTER_VM_ID, bit [63]

When GIC_PMEVTYPER<n>.FS == 1 and FILTER_VIRT == 0b01:

Controls whether counting of virtual events is filtered based on their VM ID.

When an event is selected that does not support filtering on virtual events, this field is RES0 and has no impact on
the counted events.

FILTER_VM_ID Meaning

0b0 Events translated to virtual interrupt events are not filtered on
VM ID.

0b1 Events translated to virtual interrupt events are only counted if
the VM ID matches the value specified in
GIC_PMEVFILTR<n>.VM_ID.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

FILTER_VIRT, bits [62:61]

When GIC_PMEVTYPER<n>.FS == 1:

Controls whether counting of events is filtered based on whether they are virtual or physical.

When an event is selected that does not support filtering on virtual events, this field is RES0 and has no impact on
the counted events.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

599

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

FILTER_VIRT Meaning

0b00 Physical and virtual interrupt events are counted.

0b01 Only virtual interrupt events are counted.

0b10 Only physical interrupt events are counted.

Values not defined are reserved.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

FILTER_INTID_SPAN, bit [60]

When GIC_PMEVTYPER<n>.FS == 1, GIC_PMEVTYPER<n>.FSPAN == 1 and FILTER_INTID == 1:

Controls if filtering using INTID uses exact matching or matches a range of INTID.ID values.

When an event is selected that does not support filtering on INTID, this field is RES0 and has no impact on the
counted events.

See ‘GIC Performance Monitoring Units’ for more information.

FILTER_INTID_SPAN Meaning

0b0 GIC_PMEVFILTR<n>.ID filters INTID.ID on an exact match.

0b1 GIC_PMEVFILTR<n>.ID filters INTID.ID on a range of
values.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

FILTER_INTID, bit [59]

When GIC_PMEVTYPER<n>.FS == 1:

Controls whether filtering using INTID is enabled.

When an event is selected that does not support filtering on INTID, this field is RES0 and has no impact on the
counted events.

FILTER_INTID Meaning

0b0 Count interrupt events for all INTIDs.

0b1 Count interrupt events that match the
GIC_PMEVFILTR<n>.INTID filter programming.

The reset behavior of this field is:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

600

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

FILTER_RW, bits [58:57]

When GIC_PMEVTYPER<n>.FS == 1:

Controls whether counting of events is filtered based on whether they are read or write events.

When an event is selected that does not support filtering on reads or writes, this field is RES0 and has no impact on
the counted events.

FILTER_RW Meaning

0b00 Both read and write events are counted.

0b01 Only read events are counted.

0b10 Only write events are counted.

Values not defined are reserved.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

FILTER_SRC_PE, bit [56]

When GIC_PMEVTYPER<n>.FS == 1:

Controls whether filtering of PE commands using source PE IAFFID is enabled.

When an event is selected that does not support filtering on source PE IAFFID, this field is RES0 and has no impact
on the counted events.

FILTER_SRC_PE Meaning

0b0 Count PE commands from all PEs.

0b1 Count PE commands sent from PEs whose IAFFID match the
GIC_PMEVFILTR<n>.IAFFID filter value.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

Bits [55:16]

Reserved, RES0.

IAFFID, bits [15:0]

When GIC_PMEVTYPER<n>.FS == 1 and FILTER_SRC_PE == 1:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

601

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

When filtering on source PE IAFFID, only PE commands from a PE whose IAFFID matches this value are counted.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

Accessing GIC_PMEVFILT2R<n>

Accesses to this register use the following encodings:

Accessible at address 0x800 + (8 * n)

Access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

602

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

10.5.1.2 GIC_PMEVFILTR<n>, n = 0 - 63
The GIC_PMEVFILTR<n> characteristics are:

Purpose

GIC PMU Event Filter Register

Attributes

GIC_PMEVFILTR<n> is a 64-bit register.

This register is part of the GIC_PMU_FRAME block.

Field descriptions

The GIC_PMEVFILTR<n> bit assignments are:

When GIC_PMEVTYPER<n>.PMEVTYPE IN {0b01x}:

RES0

63 48

EVENT_ID

47 32

DEVICE_ID

31 0

Bits [63:48]

Reserved, RES0.

EVENT_ID, bits [47:32]

When filtering by EventID, the EventIDs that match this value are counted.

When GIC_PMEVFILT2R<n>.FILTER_EID is 0, this field is IGNORED.

When GIC_PMEVFILT2R<n>.FILTER_EID is 1, GIC_PMEVFILT2R<n>.FILTER_EID_SPAN controls how the
EventID is matched against this value.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

DEVICE_ID, bits [31:0]

When filtering by DeviceID, the DeviceIDs that match this value are counted.

When GIC_PMEVFILT2R<n>.FILTER_DID is 0, this field is IGNORED.

When GIC_PMEVFILT2R<n>.FILTER_DID is 1, GIC_PMEVFILT2R<n>.FILTER_DID_SPAN controls how the
DeviceID is matched against this value.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

When GIC_PMEVTYPER<n>.PMEVTYPE IN {0b00x}:

RES0

63 48

VM_ID

47 32

TYPE

31 29

RES0

28 24

ID

23 0

Bits [63:48]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

603

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

VM_ID, bits [47:32]

When GIC_PMEVFILT2R<n>.FILTER_VM_ID == 1:

When filtering on VM_ID only events that are translated to virtual interrupt events matching this VM_ID are
counted.

When an event is selected that does not support filtering on VM ID, this field is RES0 and has no impact on the
counted events.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

TYPE, bits [31:29]

When GIC_PMEVFILT2R<n>.FILTER_INTID == 1:

Type of the interrupt.

When an event is selected that does not support filtering on INTID, this field is RES0 and has no impact on the
counted events.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

Bits [28:24]

Reserved, RES0.

ID, bits [23:0]

When GIC_PMEVFILT2R<n>.FILTER_INTID == 1:

The ID of the interrupt.

ID and TYPE together form an INTID.

The monitored IRS may implement fewer than 24 bits of ID. Unimplemented upper bits are RES0.

When GIC_PMEVFILT2R<n>.FILTER_INTID is 1, GIC_PMEVFILT2R<n>.FILTER_INTID_SPAN controls
how the INTID is matched against this value.

When an event is selected that does not support filtering on INTID, this field is RES0 and has no impact on the
counted events.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

604

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

Otherwise:

RES0

Accessing GIC_PMEVFILTR<n>

Accesses to this register use the following encodings:

Accessible at address 0xA00 + (8 * n)

Access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

605

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

10.5.1.3 GIC_PMEVTYPER<n>, n = 0 - 63
The GIC_PMEVTYPER<n> characteristics are:

Purpose

GIC PMU Event Type Select Register

Attributes

GIC_PMEVTYPER<n> is a 64-bit register.

This register is part of the GIC_PMU_FRAME block.

Field descriptions

The GIC_PMEVTYPER<n> bit assignments are:

RES0

63 32

V

31

FS

30 29

RL

28 27

NS

26

S

25

RES0

24 16

PMEVTYPE

15 12

PMEVTID

11 0

FSPAN EL3

Bits [63:32]

Reserved, RES0.

V, bit [31]

Whether PMEVTYPE and PMEVTID select a valid event.

V Meaning

0b0 The event selected by PMEVTYPE and PMEVTID is invalid.

0b1 The event selected by PMEVTYPE and PMEVTID is valid.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Access to this field is RO.

FS, bit [30]

Whether filtering is supported for the event selected in GIC_PMEVTID.

When V is 0, the value of this field is UNKNOWN.

FS Meaning

0b0 Filtering for the selected event is not supported.

0b1 Filtering for the selected event is supported.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Access to this field is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

606

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

FSPAN, bit [29]

Whether filtering using a range of values is supported for the event selected in GIC_PMEVTID. See ‘GIC
Performance Monitoring Units’ for more information about filtering on a range of values.

When V is 0 or FS is 0, the value of this field is UNKNOWN.

FSPAN Meaning

0b0 Filtering using a range of values is not supported.

0b1 Filtering using a range of values is supported.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Access to this field is RO.

RL, bit [28]

When GIC_PMIDR0.OACE == 1 and GIC_PMIDR0.DOM_RL == 1:

Configures matching the Realm Interrupt Domain.

RL Meaning

0b0 Events or characteristics attributable to the Realm Interrupt
Domain are unaffected by this bit.

0b1 Do not count events or monitor characteristics attributable to
the Realm Interrupt Domain.

This bit is ignored by the PMU when the PMU is not allowed to observe events or characteristics attributable to
Realm operation of the agent being monitored.

Accessing this bit has the following behavior:

• This bit reads-as-zero if the PMU is never allowed to observe events or characteristics attributable to Realm
operation of the agent being monitored.

• Otherwise, this bit is read/write.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

EL3, bit [27]

When GIC_PMIDR0.OACE == 1 and GIC_PMIDR0.DOM_EL3 == 1:

Configures matching the EL3 Interrupt Domain.

EL3 Meaning

0b0 Events or characteristics attributable to the EL3 Interrupt
Domain are unaffected by this bit.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

607

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

EL3 Meaning

0b1 Do not count events or monitor characteristics attributable to
the EL3 Interrupt Domain.

This bit is ignored by the PMU when the PMU is not allowed to observe events or characteristics attributable to
EL3 operation of the agent being monitored.

Accessing this bit has the following behavior:

• This bit reads-as-zero if the PMU is never allowed to observe events or characteristics attributable to EL3
operation of the agent being monitored.

• Otherwise, this bit is read/write.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

NS, bit [26]

When GIC_PMIDR0.OACE == 1 and GIC_PMIDR0.DOM_NS == 1:

Configures matching the Non-secure Interrupt Domain.

NS Meaning

0b0 Events or characteristics attributable to the Non-secure
Interrupt Domain are unaffected by this bit.

0b1 Do not count events or monitor characteristics attributable to
the Non-secure Interrupt Domain.

This bit is ignored by the PMU when the PMU is not allowed to observe events or characteristics attributable to
Non-secure operation of the agent being monitored.

Accessing this bit has the following behavior:

• This bit reads-as-zero if the PMU is never allowed to observe events or characteristics attributable to
Non-secure operation of the agent being monitored.

• Otherwise, this bit is read/write.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

S, bit [25]

When GIC_PMIDR0.OACE == 1 and GIC_PMIDR0.DOM_S == 1:

Configures matching the Secure Interrupt Domain.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

608

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

S Meaning

0b0 Events or characteristics attributable to the Secure Interrupt
Domain are unaffected by this bit.

0b1 Do not count events or monitor characteristics attributable to
the Secure Interrupt Domain.

This bit is ignored by the PMU when the PMU is not allowed to observe events or characteristics attributable to
Secure operation of the agent being monitored.

Accessing this bit has the following behavior:

• This bit reads-as-zero if the PMU is never allowed to observe events or characteristics attributable to Secure
operation of the agent being monitored.

• Otherwise, this bit is read/write.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

Otherwise:

RES0

Bits [24:16]

Reserved, RES0.

PMEVTYPE, bits [15:12]

The performance monitor event type.

The value in this field selects the event for the type selected in PMEVTYPE.

Values not defined are reserved.

PMEVTYPE Meaning

0b0000 Architected IRS event.

0b0001 IMPLEMENTATION DEFINED IRS event.

0b0010 Architected ITS event.

0b0011 IMPLEMENTATION DEFINED ITS event.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

PMEVTID, bits [11:0]

The performance monitor event ID.

The value in this field selects the event for the type selected in PMEVTYPE.

If the value in this field combined with the value in PMEVTYPE selects an invalid event, all other fields in this
register are IGNORED.

If less than 16 bits of event ID is implemented, unimplemented upper bits are RES0.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

609

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

Accessing GIC_PMEVTYPER<n>

Accesses to this register use the following encodings:

Accessible at address 0x400 + (8 * n)

Access on this interface is RW.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

610

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

10.5.1.4 GIC_PMIDR0
The GIC_PMIDR0 characteristics are:

Purpose

GIC PMU identification register 0. Contains read-only fields with information about the GIC PMU.

Attributes

GIC_PMIDR0 is a 32-bit register.

This register is part of the GIC_PMU_FRAME block.

Field descriptions

The GIC_PMIDR0 bit assignments are:

RES0

31 7 6 5 4 3 2 1 0

DOM_RL
DOM_EL3

DOM_NS

IRS_PMU
ITS_PMU

OACE
DOM_S

Bits [31:7]

Reserved, RES0.

DOM_RL, bit [6]

Whether a component in the agent being monitored supports the Realm Interrupt Domain.

DOM_RL Meaning

0b0 The Realm Interrupt Domain is not supported by any
component in the agent being monitored.

0b1 The Realm Interrupt Domain is supported by a component in
the agent being monitored.

DOM_EL3, bit [5]

Whether a component in the agent being monitored supports the EL3 Interrupt Domain.

DOM_EL3 Meaning

0b0 The EL3 Interrupt Domain is not supported by any component
in the agent being monitored.

0b1 The EL3 Interrupt Domain is supported by a component in the
agent being monitored.

DOM_NS, bit [4]

Whether a component in the agent being monitored supports the Non-secure Interrupt Domain.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

611

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

DOM_NS Meaning

0b0 The Non-secure Interrupt Domain is not supported by any
component in the agent being monitored.

0b1 The Non-secure Interrupt Domain is supported by a
component in the agent being monitored.

DOM_S, bit [3]

Whether a component in the agent being monitored supports the Secure Interrupt Domain.

DOM_S Meaning

0b0 The Secure Interrupt Domain is not supported by any
component in the agent being monitored.

0b1 The Secure Interrupt Domain is supported by a component in
the agent being monitored.

OACE, bit [2]

Whether the PMU implements the observability and access control extension.

OACE Meaning

0b0 The PMU does not implement the observability and access
control extension.

0b1 The PMU implements the observability and access control
extension.

ITS_PMU, bit [1]

Whether this PMU counts events from an ITS.

This field can be interpreted in combination with IRS_PMU to determine the GIC PMU configuration.

See ‘GIC Performance Monitoring Unit (PMU)’ for more information.

ITS_PMU Meaning

0b0 This PMU does not count events from an ITS.

0b1 This PMU counts events from at least one ITS.

IRS_PMU, bit [0]

Whether this PMU counts events from an ITS.

This field can be interpreted in combination with ITS_PMU to determine the GIC PMU configuration.

See ‘GIC Performance Monitoring Unit (PMU)’ for more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

612

Chapter 10. Registers and memory maps
10.5. GIC PMU register frame

IRS_PMU Meaning

0b0 This PMU does not count events from an IRS.

0b1 This PMU counts events from an IRS.

Accessing GIC_PMIDR0

Accesses to this register use the following encodings:

Accessible at address 0xD80

Access on this interface is RO.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

613

Chapter 10. Registers and memory maps
10.6. Identification registers

10.6 Identification registers

RJTSPV In the following register frames, offsets 0xFFD0-0xFFFC are defined as read-only identification register space:

• IRS_CONFIG_FRAME
• ITS_CONFIG_FRAME
• IWB_CONFIG_FRAME

ISMPQP For Arm implementations, the following assignment of fields, consistent with CoreSight ID registers[12], is used:

Offset Name Field Value Meaning

0xFFF0 x_CIDR0, Component ID0 [7:0] 0x0D Preamble

0xFFF4 x_CIDR1, Component ID1 [7:4] 0xF CLASS

[3:0] 0x0 Preamble

0xFFF8 x_CIDR2, Component ID2 [7:0] 0x05 Preamble

0xFFFC x_CIDR3, Component ID3 [7:0] 0xB1 Preamble

0xFFE0 x_PIDR0, Peripheral ID0 [7:0] IMPLEMENTATION DEFINED Bits [7:0] of the Part number

0xFFE4 x_PIDR1, Peripheral ID1 [7:4] IMPLEMENTATION DEFINED Bits [3:0] of the JEP106 Designer code

[3:0] IMPLEMENTATION DEFINED Bits [11:8] of the Part number

0xFFE8 x_PIDR2, Peripheral ID2 [7:4] IMPLEMENTATION DEFINED REVISION

[3] 1 JEDEC-assigned value for DES always used

[2:0] IMPLEMENTATION DEFINED Bits [6:4] bits of the JEP106 Designer code

0xFFEC x_PIDR3, Peripheral ID3 [7:4] IMPLEMENTATION DEFINED REVAND

[3:0] IMPLEMENTATION DEFINED CMOD

0xFFD0 x_PIDR4, Peripheral ID4 [7:4] 0 SIZE

[3:0] IMPLEMENTATION DEFINED JEP106 Designer continuation code

0xFFD4 x_PIDR5, Peripheral ID5 - RES0 Reserved

0xFFD8 x_PIDR6, Peripheral ID6 - RES0 Reserved

0xFFEC x_PIDR7, Peripheral ID7 - RES0 Reserved

0xFFBC x_DEVARCH [31:21] 0x23b JEP106 continuation and identification codes

[20] 1 DEVARCH is present.

[19:16] 0 GICv5.0

[15:0] TBC ARCHID, GICv5.

Where “x” is replaced with:

• IRS for the IRS_CONFIG_FRAME
• ITS for the ITS_CONFIG_FRAME
• IWB for the IWB_CONFIG_FRAME

Offsets and fields outside of those defined in this table are RES0.

Arm recommends that implementers use this scheme to provide a consistent software discovery model. If the
CoreSight ID registers are not implemented, Arm recommends that all the locations in the table are RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

614

Chapter 10. Registers and memory maps
10.6. Identification registers

The Designer code fields for Arm-designed implementations use continuation code 0x4 and Designer code 0x3B.
Non-Arm implementations that follow this CoreSight ID register layout set the Designer fields appropriate to the
implementer.

ILFDTN For a full descriptions of the CoreSight ID registers see the Arm CoreSight Architecture Specification [12].

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

615

Chapter 11
Data structures

This chapter describes the GICv5 data structures.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

616

Chapter 11. Data structures
11.1. ITS Data Structures

11.1 ITS Data Structures

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

617

Chapter 11. Data structures
11.1. ITS Data Structures

11.1.1 L1_DTE, Level 1 device table entry

The L1_DTE characteristics are:

Attributes

L1_DTE is a 8-byte structure.

Field descriptions
The L1_DTE bit assignments are:

SPAN

63 60

RES0

59 56

L2_ADDR

55 32

L2_ADDR

31 3

RES0

2 1 0

VALID

VALID, bit [0]

Entry is valid

VALID Meaning

0b0 This entry is invalid. All events identified by a DeviceID and
EventID covered by this entry are ignored.

0b1 This entry is valid and L2_ADDR points to a level 2 device
table.

Bits [2:1]

Reserved, RES0.

L2_ADDR, bits [55:3]

Bits[55:3] of the address of the start of the level 2 array of device table entries.

Bits[N:0] of the resulting address are 0 where N = 2 + SPAN.

This means that the level 2 DTE array is aligned to the size of the array.

The level 2 array is accessed using the same PAS as the level 1 DTE.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in ITS_IDR0.PA_RANGE.

Bits [59:56]

Reserved, RES0.

SPAN, bits [63:60]

Size of the structure pointed to by L2_ADDR

The level 2 device table pointed to by L2_ADDR contains 2 ˆ SPAN entries.

If this field is programmed to a value larger than the maximum, it is treated as having the maximum value
for all other purposes than reading back the field. The maximum allowed value of this field is determined by
ITS_DT_CFGR.L2SZ.

If ITS_DT_CFGR.L2SZ is 0b00, then the maximum value of this field is 9. If ITS_DT_CFGR.L2SZ is 0b01, then
the maximum value of this field is 11. If ITS_DT_CFGR.L2SZ is 0b10, then the maximum value of this field is 13.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

618

Chapter 11. Data structures
11.1. ITS Data Structures

11.1.2 L2_DTE, Level 2 device table entry

The L2_DTE characteristics are:

Attributes

L2_DTE is a 8-byte structure.

Field descriptions
The L2_DTE bit assignments are:

63 59 58 57 56

ITT_ADDR

55 32

EVENTID_BITS
ITT_STRUCTURE

RES0
DSWE

ITT_ADDR

31 3 2 1 0

ITT_L2SZ VALID

VALID, bit [0]

Entry is valid

VALID Meaning

0b0 This entry is invalid. All events identified by a DeviceID and
EventID covered by this entry are ignored.

0b1 This entry is valid and ITT_ADDR points to a valid ITT.

ITT_L2SZ, bits [2:1]

Level 2 ITT size when a 2-level ITT structure is used.

ITT_L2SZ Meaning

0b00 A level 2 ITT is maximum 4KB and resolves 9 bits of EventID.

0b01 A level 2 ITT is maximum 16KB and resolves 11 bits of
EventID.

0b10 A level 2 ITT is maximum 64KB and resolves 13 bits of
EventID.

Values not defined above are reserved.

If EVENTID_BITS <= (9 + (2 * ITT_L2SZ)) and ITT_STRUCTURE is 1, the ITT consists of a single L1_ITTE
and a single L2_ITT.

The L2_ITT contains (2 ˆ EVENTID_BITS) entries.

If ITT_STRUCTURE is 1, and EVENTID_BITS < (9 + (2 * ITT_L2SZ)), it is possible to program L1_ITTE.SPAN
to a value larger than EVENTID_BITS. In this case, the number of EventIDs for the DeviceID is defined by 2 ˆ
EVENTID_BITS, but the ITS is permitted to access all the L2_ITTEs in the range described by L1_ITTE.SPAN.

Arm recommends that ITT_STRUCTURE is 0 when EVENTID_BITS <= (9 + (2 * ITT_L2SZ)).

When programming a reserved value or an unsupported value, the ITS behavior is CONSTRAINED UNPREDICTABLE
to any behavior which could be achieved by programming a valid and supported value.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

619

Chapter 11. Data structures
11.1. ITS Data Structures

ITT_ADDR, bits [55:3]

Bits[55:3] of the base physical address of the ITT for the device described by this entry.

When ITT_STRUCTURE is 0, ITT_ADDR points to a linear ITT and all of the following are true:

• Bits[N:0] of the resulting address are 0 where N = 2 + EVENTID_BITS.

• This means that the level 2 ITTE array is aligned to the size of the array.

When ITT_STRUCTURE is 1, ITT_ADDR points to a 2-level ITT and all of the following are true:

• Bits[N:0] of the resulting address are 0 where N is:

Max(2, (EVENTID_BITS - (9 + (2 * ITT_L2SZ)) + 2)

• This means that the level 1 ITT is aligned to the size of the table.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in ITS_IDR0.PA_RANGE.

Bit [56]

Reserved, RES0.

DSWE, bit [57]

For any ITS event generated by the device described by this entry, disable reporting of software errors for the
following error codes in ITS_SWERR_STATUSR.EC:

• 0x03.

• 0x04.

• 0x06.

• 0x07.

• 0x08.

• 0x0A.

• 0x0C.

• 0x0D.

• 0x13.

• 0x14.

DSWE Meaning

0b0 Error reporting for the specified error codes is disabled.

0b1 Error reporting for the specified error codes is enabled.

This field is RES0, if ITS_IDR0.SWE is 0.

ITT_STRUCTURE, bit [58]

Whether the the ITT pointed to by ITT_ADDR uses a linear or 2-level structure.

ITT_STRUCTURE Meaning

0b0 A linear ITT structure is used.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

620

Chapter 11. Data structures
11.1. ITS Data Structures

ITT_STRUCTURE Meaning

0b1 A 2-level ITT structure is used.

If ITS_IDR1.ITT_LEVELS is 0, this field is RES0.

EVENTID_BITS, bits [63:59]

The number of EventID bits which can be translated for this device.

The ITT pointed to by ITT_ADDR contains 2 ˆ EVENTID_BITS level 2 ITT entries in total.

If this field is programmed to a value larger than the maximum, it is treated as having the maximum value for all
other purposes than reading back the field. The maximum value is reported in ITS_IDR2.EVENTID_BITS.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

621

Chapter 11. Data structures
11.1. ITS Data Structures

11.1.3 L1_ITTE, Level 1 interrupt translation table entry

The L1_ITTE characteristics are:

Attributes

L1_ITTE is a 8-byte structure.

Field descriptions
The L1_ITTE bit assignments are:

SPAN

63 60

RES0

59 56

L2_ADDR

55 32

L2_ADDR

31 3

RES0

2 1 0

VALID

VALID, bit [0]

Entry is valid

VALID Meaning

0b0 This entry is invalid. All events identified by a DeviceID and
EventID covered by this entry are ignored.

0b1 This entry is valid and L2_ADDR points to a level 2 ITT.

Bits [2:1]

Reserved, RES0.

L2_ADDR, bits [55:3]

Bits[55:3] of the level 2 array of ITT entries.

Bits[N:0] of the resulting address are 0 where N = 2 + SPAN.

This means that the level 2 ITTE array is aligned to the size of the array.

The level 2 array is accessed using the same PAS as the level 1 ITTE.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in ITS_IDR0.PA_RANGE.

Bits [59:56]

Reserved, RES0.

SPAN, bits [63:60]

Size of structure pointed to by L2_ADDR

The level 2 ITT pointed to by L2_ADDR contains 2 ˆ SPAN entries.

If this field is programmed to a value larger than the maximum, it is treated as having the maximum value
for all other purposes than reading back the field. The maximum allowed value of this field is constrained by
L2DTE.ITT_L2SZ.

If L2_DTE.ITT_L2SZ is 0b00, then the maximum value of this field is 9. If L2_DTE.ITT_L2SZ is 0b01, then the
maximum value of this field is 11. If L2_DTE.ITT_L2SZ is 0b10, then the maximum value of this field is 13.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

622

Chapter 11. Data structures
11.1. ITS Data Structures

11.1.4 L2_ITTE, Level 2 interrupt translation table entry

The L2_ITTE characteristics are:

Attributes

L2_ITTE is a 8-byte structure.

Field descriptions
The L2_ITTE bit assignments are:

RES0

63 48

VM_ID

47 32

31 30

DAC

29 28

RES0

27 24

LPI_ID

23 0

VALID VIRTUAL

LPI_ID, bits [23:0]

Bits[23:0] of the LPI ID for the event described by this entry.

If unimplemented upper bits of the LPI_ID are not zero, it is IMPLEMENTATION DEFINED whether the upper bits
are treated as 0 or the interrupt message is ignored by the IRS.

Bits [27:24]

Reserved, RES0.

DAC, bits [29:28]

Controls whether the event described by this entry can be associated with an Interrupt Domain different from the
one associated with this ITS Domain.

DAC Meaning Applies

0b00 The event described by this entry is not permitted to be
translated when it is generated by a write to a register in the
PAS associated with another ITS Domain.

0b01 The event described by this entry is permitted to be translated
when it is generated by a write to a register in the Non-secure
PAS.

When
ITS_IDR2.XDMN_EVENTS
== 0b01

Values not defined above are reserved.

The event is ignored and not translated if any of the following are true:

• The event is not associated with the Interrupt Domain specified by this field.

• A reserved value is programmed into this field.

VIRTUAL, bit [30]

Controls if the interrupt message generated to the IRS is for a physical or a virtual interrupt.

VIRTUAL Meaning

0b0 The interrupt message generated by the ITS is a physical
interrupt.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

623

Chapter 11. Data structures
11.1. ITS Data Structures

VIRTUAL Meaning

0b1 The interrupt message generated by the ITS is a virtual
interrupt.

When the ITT is used in the EL3 ITS Domain, this field is RES0.

VALID, bit [31]

Interrupt translation entry is valid.

VALID Meaning

0b0 This entry is invalid. All events identified by a DeviceID and
EventID covered by this entry are ignored.

0b1 This entry is valid and events identified by a DeviceID and
EventID covered by this entry are translated into events to the
IRS using the VM ID and LPI ID above.

VM_ID, bits [47:32]

Bits[15:0] of the VM ID passed to the IRS as part of the interrupt message targeting virtual interrupts.

When Virtual is 0, this field is RES0.

Bits [63:48]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

624

Chapter 11. Data structures
11.2. IRS Data Structures

11.2 IRS Data Structures

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

625

Chapter 11. Data structures
11.2. IRS Data Structures

11.2.1 L1_VMTE, Level 1 VM table entry

The L1_VMTE characteristics are:

Attributes

L1_VMTE is a 8-byte structure.

Field descriptions
The L1_VMTE bit assignments are:

RES0

63 56

L2_ADDR

55 32

L2_ADDR

31 12

RES0

11 1 0

VALID

VALID, bit [0]

Entry is valid

VALID Meaning

0b0 This entry is invalid. All lookups of a VM ID covered by this
entry are ignored.

0b1 This entry is valid and L2_ADDR points to a level 2 VMT.

Bits [11:1]

Reserved, RES0.

L2_ADDR, bits [55:12]

Bits[55:12] of the address of the start of the array of level 2 VMT entries.

This means that the level 2 VMTE array is aligned to the size of a level 2 VMT (4KB).

The level 2 array is accessed using the same PAS as the level 1 VMTE.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in IRS_IDR0.PA_RANGE.

Bits [63:56]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

626

Chapter 11. Data structures
11.2. IRS Data Structures

11.2.2 L2_VMTE, Level 2 VM table entry

The L2_VMTE characteristics are:

Attributes

L2_VMTE is a 32-byte structure.

Field descriptions
The L2_VMTE bit assignments are:

255 251 250 249 248

SPI_IST_ADDR

247 224

SPI_ID_BITS SPI_ISTSZ
SPI_IST_STRUCTURE

SPI_IST_ADDR

223 198

RES0

197 195 194 193 192

SPI_IST_L2SZ SPI_IST_V
ALID

191 187 186 185 184

LPI_IST_ADDR

183 160

LPI_ID_BITS LPI_ISTSZ
LPI_IST_STRUCTURE

LPI_IST_ADDR

159 134

RES0

133 131 130 129 128

LPI_IST_L2SZ LPI_IST_V
ALID

127 123

RES0

122 120

VPET_ADDR

119 96

VPE_ID_BITS

VPET_ADDR

95 67

RES0

66 64

RES0

63 56

VMD_ADDR

55 32

VMD_ADDR

31 3

RES0

2 1 0

VALID

VALID, bit [0]

Entry is valid

VALID Meaning

0b0 This entry describes an invalid VM.

0b1 This entry describes a valid VM.

Bits [2:1]

Reserved, RES0.

VMD_ADDR, bits [55:3]

When IRS_IDR3.VMD == 1:

Bits[55:3] of the base address of the VM Descriptor for the VM described by this entry.

The VM Descriptor address is aligned to its size as follows:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

627

Chapter 11. Data structures
11.2. IRS Data Structures

• Bits[N:0] of the resulting address are 0 where N = IRS_IDR3.VMD_SZ - 1.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in IRS_IDR0.PA_RANGE.

Otherwise:

RES0

Bits [63:56]

Reserved, RES0.

Bits [66:64]

Reserved, RES0.

VPET_ADDR, bits [119:67]

Bits[55:3] of the base physical address of the array of VPE table entries for the VM described by this entry.

The VPE table always uses a linear structure and is aligned as follows:

• Bits[N:0] of the resulting address are 0 where N = 2 + VPE_ID_BITS.

• This means that the level 2 VPETE array is aligned to the size of the array.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in IRS_IDR0.PA_RANGE.

Bits [122:120]

Reserved, RES0.

VPE_ID_BITS, bits [127:123]

The number of VPEs which are supported for this VM.

The VPE table must contain (2 ˆ VPE_ID_BITS) VPE table entries in total.

If this field is programmed to a value larger than the maximum, it is treated as having the maximum value for all
other purposes than reading back the field.

The maximum value is reported in IRS_IDR4.VPE_ID_BITS.

LPI_IST_VALID, bit [128]

LPI_IST_ADDR points to a valid IST

LPI_IST_VALID Meaning

0b0 LPI_IST_ADDR is not valid. All accesses to LPI
configuration and state for the VM are dropped.

0b1 LPI_IST_ADDR is valid and points to a valid IST.

LPI_IST_L2SZ, bits [130:129]

Level 2 IST size when a 2-level IST structure is used.

LPI_IST_L2SZ Meaning

0b00 A level 2 IST is 4KB.

0b01 A level 2 IST is 16KB.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

628

Chapter 11. Data structures
11.2. IRS Data Structures

LPI_IST_L2SZ Meaning

0b10 A level 2 IST is 64KB.

Values not defined above are reserved.

IRS_IDR2.IST_L2SZ reports the supported values.

If LPI_ID_BITS <= (10 - LPI_ISTSZ) + (2 * LPI_IST_L2SZ) and LPI_IST_STRUCTURE is 1, all of the following
are true:

• The IST consists of a single level 1 IST entry and a single level 2 IST.
• The level 2 IST contains (2 ˆ LPI_ID_BITS) entries.
• The IRS is allowed to access the full level 2 IST size as specified by LPI_IST_L2SZ.

Arm recommends that LPI_IST_STRUCTURE is 0 when LPI_ID_BITS <= (10 - LPI_ISTSZ) + (2 *
LPI_IST_L2SZ).

If programming a reserved value or an unsupported value, the IRS behavior is CONSTRAINED UNPREDICTABLE to
any behavior which could be achieved by programming a valid and supported value.

When LPI_IST_STRUCTURE is 0, this field is RES0.

Bits [133:131]

Reserved, RES0.

LPI_IST_ADDR, bits [183:134]

Bits[55:6] of the base physical address of the LPI IST for the VM described by this entry.

When LPI_IST_STRUCTURE is 0, LPI_IST_ADDR points to a linear IST and all of the following are true:

• Bits[N:0] of the resulting address are 0 where N = Max(5, ((LPI_ISTSZ + 2) + LPI_ID_BITS) - 1).

• This means that the level 2 IST entry array is aligned to the size of the array or to a 64-bytes boundary when
its size is smaller than 64 bytes.

When LPI_IST_STRUCTURE is 1, LPI_IST_ADDR points to the level 1 table in a 2-level IST and all of the
following are true:

• Bits[N:0] of the resulting address are 0 where N depends on LPI_IST_L2SZ and LPI_ID_BITS as follows:

N = Max(5, LPI_ID_BITS - ((10 - LPI_ISTSZ) + (2 * LPI_IST_L2SZ)) + 2)

• This means that the level 1 IST is aligned to the size of the level 1 IST entry array or to a 64-byte boundary
when its size is smaller than 64 bytes.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in IRS_IDR0.PA_RANGE.

LPI_ISTSZ, bits [185:184]

The size of each level 2 IST entry in the virtual LPI IST.

Values not defined above are reserved.

If this field is programmed to specify a size smaller than the minimum required size or programmed to a reserved
value, it is treated as having the value corresponding to the minimum required size for all other purposes than a
read of the enty.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

629

Chapter 11. Data structures
11.2. IRS Data Structures

LPI_ISTSZ Meaning

0b00 The size of a level 2 LPI IST entry is 4 bytes.

0b01 The size of a level 2 LPI IST entry is 8 bytes.

0b10 The size of a level 2 LPI IST entry is 16 bytes.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

LPI_IST_STRUCTURE, bit [186]

Structure of the LPI IST pointed to by LPI_IST_ADDR.

LPI_IST_STRUCTURE Meaning

0b0 A linear IST structure is used.

0b1 A 2-level IST structure is used.

Values not defined above are reserved.

When programming a reserved value, the IRS behavior is CONSTRAINED UNPREDICTABLE to any behavior which
could be achieved by programming a valid value.

When IRS_IDR2.IST_LEVELS is 0, this field is treated as 0 for all other purposes than reading back the field.

LPI_ID_BITS, bits [191:187]

The number of LPIs which are supported for this VM.

The IST must contain 2ˆ(LPI_ID_BITS) level 2 IST entries in total.

The minimum value for this field is IRS_IDR2.MIN_LPI_ID_BITS.

If programmed to a value smaller than the minimum, the field is treated as having the minimum value for all other
purposes than reading back the field.

The maximum value for this field is IRS_IDR2.ID_BITS.

If this field is programmed to a value larger than the maximum, it is treated as having the maximum value for all
other purposes than reading back the field. The maximum value is reported in IRS_IDR2.ID_BITS.

SPI_IST_VALID, bit [192]

Whether SPI_IST_ADDR points to a valid IST.

SPI_IST_VALID Meaning

0b0 SPI_IST_ADDR is not valid. All accesses to SPI configuration
and state for the VM are dropped.

0b1 SPI_IST_ADDR is valid and points to a valid IST.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

630

Chapter 11. Data structures
11.2. IRS Data Structures

SPI_IST_L2SZ, bits [194:193]

Level 2 IST size when a 2-level SPI IST structure is used.

SPI_IST_L2SZ Meaning

0b00 A level 2 IST is 4KB.

0b01 A level 2 IST is 16KB.

0b10 A level 2 IST is 64KB.

Values not defined above are reserved.

IRS_IDR2.IST_L2SZ reports the supported values.

If SPI_ID_BITS <= ((10 - SPI_ISTSZ) + (2 * SPI_IST_L2SZ)) and SPI_IST_STRUCTURE is 1, all of the
following are true:

• The IST consists of a single level 1 IST entry and a single level 2 IST.
• The level 2 IST contains (2 ˆ SPI_ID_BITS) entries.
• The IRS is allowed to access the full level 2 IST size as specified by SPI_IST_L2SZ.

Arm recommends that SPI_IST_STRUCTURE is 0 when SPI_ID_BITS <= (10 - SPI_ISTSZ) + (2 *
SPI_IST_L2SZ).

If programming a reserved value or an unsupported value, the IRS behavior is CONSTRAINED UNPREDICTABLE to
any behavior which could be achieved by programming a valid and supported value.

When SPI_IST_STRUCTURE is 0, this field is RES0.

Bits [197:195]

Reserved, RES0.

SPI_IST_ADDR, bits [247:198]

Bits[55:6] of the base physical address of the SPI IST for the VM described by this entry.

When SPI_IST_STRUCTURE is 0, SPI_IST_ADDR points to a linear IST and all of the following are true:

• Bits[N:0] of the resulting address are 0 where N = Max(5, ((SPI_ISTSZ + 2) + SPI_ID_BITS) - 1).

• This means that the level 2 IST entry array is aligned to the size of the array or to a 64-byte boundary when
its size is smaller than 64 bytes.

When SPI_IST_STRUCTURE is 1, SPI_IST_ADDR points to the level 1 table in a 2-level IST and all of the
following are true:

• Bits[N:0] of the resulting address are 0 where N depends on the SPI_IST_L2SZ and SPI_ID_BITS field as
follows:

N = Max(5, SPI_ID_BITS - ((10 - SPI_ISTSZ) + (2 * SPI_IST_L2SZ)) + 2)

• This means that the level 1 IST is aligned to the size of the level 1 IST entry array or to a 64-byte boundary
when its size is smaller than 64 bytes.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in IRS_IDR0.PA_RANGE.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

631

Chapter 11. Data structures
11.2. IRS Data Structures

SPI_ISTSZ, bits [249:248]

The size of each level 2 IST entry in the virtual SPI IST.

Values not defined above are reserved.

If this field is programmed to specify a size smaller than the minimum required size or programmed to a reserved
value, it is treated as having the value corresponding to the minimum required size for all other purposes than a
read of the enty.

SPI_ISTSZ Meaning

0b00 The size of a level 2 SPI IST entry is 4 bytes.

0b01 The size of a level 2 SPI IST entry is 8 bytes.

0b10 The size of a level 2 SPI IST entry is 16 bytes.

The reset behavior of this field is:

• On a GIC reset, this field resets to an UNKNOWN value.

SPI_IST_STRUCTURE, bit [250]

Structure of the SPI IST pointed to by SPI_IST_ADDR.

SPI_IST_STRUCTURE Meaning

0b0 A linear IST structure is used.

0b1 A 2-level IST structure is used.

Values not defined above are reserved.

When programming a reserved value, the IRS behavior is CONSTRAINED UNPREDICTABLE to any behavior which
could be achieved by programming a valid value.

When IRS_IDR2.IST_LEVELS is 0, this field is treated as 0 for all other purposes than reading back the field.

SPI_ID_BITS, bits [255:251]

The number of SPIs which are supported for this VM.

The SPI IST must contain 2ˆ(SPI_ID_BITS) level 2 IST entries in total.

The minimum value for this field is 0, which is equivalent to a minimum of 1 SPI in the VM.

If the VM has no SPIs, SPI_IST_VALID is 0.

If this field is programmed to a value larger than the maximum, it is treated as having the maximum value for all
other purposes than reading back the field. The maximum value is reported in IRS_IDR2.ID_BITS.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

632

Chapter 11. Data structures
11.2. IRS Data Structures

11.2.3 L1_ISTE, Level 1 interrupt state table entry

The L1_ISTE characteristics are:

Attributes

L1_ISTE is a 8-byte structure.

Field descriptions
The L1_ISTE bit assignments are:

RES0

63 56

L2_ADDR

55 32

L2_ADDR

31 12

RES0

11 1 0

VALID

VALID, bit [0]

Whether the entry is valid.

VALID Meaning

0b0 This entry is invalid. All INTIDs covered by this entry are
unreachable.

0b1 This entry is valid and L2_ADDR points to a level 2 IST.

Bits [11:1]

Reserved, RES0.

L2_ADDR, bits [55:12]

Bits[55:12] of the address of the start of the array of level 2 IST entries.

Bits[N:0] of the resulting address are 0 where N = 11 + (2 * L2SZ)

This means that the level 2 ISTE array is aligned to the size of a level 2 IST.

The level 2 array is accessed using the same PAS as the level 1 ISTE.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in IRS_IDR0.PA_RANGE.

Bits [63:56]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

633

Chapter 11. Data structures
11.2. IRS Data Structures

11.2.4 L2_ISTE, Level 2 interrupt state table entry

The L2_ISTE characteristics are:

Purpose

This data structure shows the 4 lowest address bytes of a single level 2 ISTE.

The size of a complete level 2 ISTE can be 4 bytes, 8 bytes, or 16 bytes.

If the size of a level 2 ISTE is more than 4 bytes, the higher address bytes are RES0.

See 4.7 The interrupt state table (IST) for more information.

Attributes

L2_ISTE is a 4-byte structure.

Field descriptions
The L2_ISTE bit assignments are:

IAFFID

31 16

Priority

15 11

HWU

10 9

RES0

8 5 4 3

HM

2 1 0

IRM
Enable

Pending
Active

Pending, bit [0]

Interrupt Pending state

Pending Meaning

0b0 The interrupt is not Pending.

0b1 The interrupt is Pending.

Active, bit [1]

Interrupt Active state

Active Meaning

0b0 The interrupt is not Active.

0b1 The interrupt is Active.

HM, bit [2]

Handling mode of the interrupt.

HM Meaning

0b0 Edge: The interrupt becomes Pending when the interrupt is
acknowledged.

0b1 Level: The interrupt Pending state is unmodified when the
interrupts is acknowledged.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

634

Chapter 11. Data structures
11.2. IRS Data Structures

Enable, bit [3]

Interrupt Enabled setting

Enable Meaning

0b0 The interrupt is Disabled.

0b1 The interrupt is Enabled.

IRM, bit [4]

Interrupt Routing mode.

IRM Meaning

0b0 The interrupt Routing mode is Targeted.

0b1 The interrupt Routing mode is 1ofN.

This field is RES0, if any of the following are true:

• IRS_IDR0.ONE_N is 0.

• The entry is part of a virtual IST and IRS_IDR0.VIRT_ONE_N is 0.

Bits [8:5]

Reserved, RES0.

HWU, bits [10:9]

Reserved for hardware use.

This field should be zero when an IST becomes valid and is otherwise IMPLEMENTATION DEFINED.

Priority, bits [15:11]

The Priority value of the interrupt.

Bits [4:N] of the priority value are implemented, where N = (4 - IRS_IDR1.PRI_BITS). Unimplemented bits are
RES0.

This means that when fewer than 5 bits of priority is implemented, Priority[14 - IRS_IDR1.PRI_BITS:11] are
RES0.

IAFFID, bits [31:16]

Interrupt Affinity ID.

When this entry is part of a physical IST, this field specifies a PE.

When this entry is part of a virtual IST, this field specifies a VPE.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

635

Chapter 11. Data structures
11.2. IRS Data Structures

11.2.5 VPETE, VPE table entry

The VPETE characteristics are:

Attributes

VPETE is a 8-byte structure.

Field descriptions
The VPETE bit assignments are:

RES0

63 56

VPED_ADDR

55 32

VPED_ADDR

31 3

RES0

2 1 0

VALID

VALID, bit [0]

Entry is valid

VALID Meaning

0b0 This entry describes an invalid VPE.

0b1 This entry describes a valid VPE.

Bits [2:1]

Reserved, RES0.

VPED_ADDR, bits [55:3]

Bits[55:3] of the base address of the VPE Descriptor for the VPE described by this entry if used.

The VPE Descriptor address is aligned to its size as follows:

• Bits[N:0] of the resulting address are 0 where N = IRS_IDR4.VPED_SZ - 1.

In implementations that support fewer than 56 bits of physical address, any unimplemented upper bits are RES0.
The number of implemented address bits is reported in IRS_IDR0.PA_RANGE.

Bits [63:56]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

636

Chapter 11. Data structures
11.2. IRS Data Structures

11.2.6 VM_DESC, VM descriptor

The VM_DESC characteristics are:

Purpose

The size, format, and content of this structure is IMPLEMENTATION DEFINED.

This shows an example size of 8-byte.

Attributes

VM_DESC is a 8-byte structure.

Field descriptions
The VM_DESC bit assignments are:

IMPDEF

63 32

IMPDEF

31 0

IMPDEF, bits [63:0]

IMPLEMENTATION DEFINED

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

637

Chapter 11. Data structures
11.2. IRS Data Structures

11.2.7 VPE_DESC, VPE descriptor

The VPE_DESC characteristics are:

Purpose

The size, format, and content of this structure is IMPLEMENTATION DEFINED.

This shows an example size of 32-byte.

Attributes

VPE_DESC is a 32-byte structure.

Field descriptions
The VPE_DESC bit assignments are:

IMPDEF

255 224

IMPDEF

223 192

IMPDEF

191 160

IMPDEF

159 128

IMPDEF

127 96

IMPDEF

95 64

IMPDEF

63 32

IMPDEF

31 0

IMPDEF, bits [255:0]

IMPLEMENTATION DEFINED

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

638

Part A
GICv5 Stream Protocol interface

Chapter A1
GICv5 Stream Protocol overview

ITGPMY The GICv5 Stream Protocol is one approach to connecting an IRS and a CPU interface. The GICv5 Stream
Protocol supports independent development of an IRS and a PE. Arm recommends that a GICv5 implementation
uses the GICv5 Stream Protocol.

IVPFYV The GICv5 Stream Protocol is based on the GIC Stream Protocol defined by GICv3[3].

DKNBQZ An end-point means either a CPU interface or an interrupt source.

IWYMBT The GICv5 Stream Protocol supports the connection between an IRS and one or more end-points.

DNXTBL The connection between an IRS and a CPU interface is referred to as an Interrupt Handling channel.

DSBHHG The connection between an IRS and an interrupt source is referred to as an Interrupt Signaling channel.

IFSTMD GICv5 Stream Protocol uses a transport layer formed of a pair of AMBA AXI5-Stream Protocol links:

• From the IRS to one or more end-points.
• From one or more end-points to the IRS.

See AMBA® AXI Protocol Specification[7] for information about the AMBA AXI5-Stream Protocol.

DWBVHL AXI Stream connection refers to the transport layer connection between an IRS and one or more end-points.

DDCXRX A command sent by the IRS to an end-point is defined as a Downstream command.

DPTTTR A command sent by an end-point to the IRS is defined as an Upstream command.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

640

Chapter A2
AMBA AXI5-Stream Transport Layer

IVSYKR The GICv5 Stream Protocol is based on the following unidirectional AXI5-Stream connections:

• A downstream AXI5-Stream Interface containing connections from an IRS to one or more end-points.
• An upstream AXI5-Stream Interface containing connections from one or more end-points to an IRS.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

641

Chapter A2. AMBA AXI5-Stream Transport Layer

IRS

CPU interface CPU interface CPU interface CPU interface

PE PE PE PE

Upstream ICC
AXI5-Stream

Downstream IRS
AXI5-Stream

Figure A2.1: GICv5 Stream Protocol Interface

A GICv5 Stream Protocol connection connects a combination of end-point types:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

642

Chapter A2. AMBA AXI5-Stream Transport Layer

Figure A2.2: GICv5 Stream Protocol Interface

An IRS might have multiple GICv5 Stream Protocol connections to different groups of PEs, for example to connect
to multiple clusters.

Cluster

IRS

Cluster Cluster

Figure A2.3: IRS with multiple GICv5 Stream Interfaces

RXRVGD An interconnect between an IRS and a CPU interface must ensure that the stream packet sequence is transferred
over the stream protocol interface in the same order in which it was created.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

643

Chapter A2. AMBA AXI5-Stream Transport Layer
A2.1. Signals

A2.1 Signals

RJSSRX The interface requires a global clock, ACLK, and a reset signal, ARESETn.

IVPLGV For the GICv5 Stream Protocol, each stream interface is identified by a prefix to the AXI Stream signal names:

• Downstream signals from an IRS to the CPU interface are prefixed with the letters IRS.
• Upstream signals from the CPU interface to an IRS are prefixed with the letters ICC.

RGQLTR The following table illustrates the GICv5 Stream Protocol interface signals from the IRS to the downstream
end-point:

Signal Description

IRSTVALID When set to 1, this signal indicates that the Requester is driving a valid transfer.

IRSTREADY When set to 1, this signal indicates that the Completer can accept a transfer in the
current cycle.

IRSTDATA[BN:0] The interface data path.

IRSTLAST When set to 1, this signal indicates the final transfer of a command.

IRSTID This signal identifies the channel the transfer is associated with.

IRSTDEST[N:0] This signal identifies the target CPU interface to provide routing information for the
stream.

IRSTWAKEUP Indicates if there is activity associated with the AXI5-Stream interface.

The following table illustrates the GICv5 Stream Protocol interface signals from the end-point to the upstream IRS:

Signal Description

ICCTVALID When set to 1, this signal indicates that the Requester is driving a valid transfer.

ICCTREADY When set to 1, this signal indicates that the Completer can accept a transfer in the
current cycle.

ICCTDATA[BN:0] The interface data path.

ICCTLAST When set to 1, this signal indicates the final transfer of a command.

ICCTID[N:0] This signal identifies the originating CPU interface, to provide routing information for
the stream.

ICCTDEST This signal identifies the channel the transfer is associated with.

ICCTWAKEUP Indicates if there is activity associated with the AXI5-Stream interface.

Where:

• BN is the number associated with the most significant bit on a datapath that is required to be an integral
number of bytes wide.

• N is the value log2(M) rounded up to the nearest integer, where M is the number of PEs supported by the
interface plus 1.

ISRVVS In the GICv5 Stream Protocol, all commands have a length which is a multiple of 16 bits.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

644

Chapter A2. AMBA AXI5-Stream Transport Layer
A2.1. Signals

IDWDQB The xTKEEP and xTSTRB signals are defined as optional in AMBA® AXI-Stream Protocol Specification[13].

If the AXI5-Stream interfaces used for a GICv5 Stream Protocol link have data path that is 16-bit or smaller, Arm
recommends that xTKEEP is not implemented. Otherwise, Arm recommends that xTKEEP is implemented.

If the xTKEEP signal is implemented, it is asserted for bytes required for the command and deasserted for all the
other bytes. If the xTKEEP signal is not implemented, any bytes not required to transmit a command are set to
0b00.

Arm recommends that the xTSTRB signal is not implemented. If xTSTRB is implemented, it is asserted for all
bytes for which xTKEEP is asserted and deasserted for all the other bytes.

RZZDQV The xTLAST signal is asserted to indicate the last transfer for a command.

A sender may assert xTLAST before all bytes of a command have been transferred. Any untransferred bytes in the
command are treated as having the value 0b00 by the receiver.

A sender may assert xTLAST late, making additional transfers not needed for the command. The receiver ignores
any bytes not needed to represent the command.

IQDLHQ If parity checking is required, Arm recommends implementing the support for parity in AXI Stream defined in
AMBA® AXI-Stream Protocol Specification[13].

ITNVVV For further information about the signals used by the GICv5 Stream Protocol interface, and for details about
handshaking, see AMBA® AXI-Stream Protocol Specification[13].

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

645

Chapter A2. AMBA AXI5-Stream Transport Layer
A2.2. Channel identification

A2.2 Channel identification

INMPSG The AXI Stream connection can connect one IRS to multiple end-points. A connection between the IRS and an
end-point is referred to as a channel. An Interrupt Handling channel connects an IRS to a CPU interface. An
Interrupt Signaling channel connects an IRS to an interrupt source.

IPDQSW The xTID and xTDEST signals are used to route packets and identify the type of channel.

RBRZBR For downstream commands, IRSTID indicates the channel type:

0: Interrupt Handling channel IRSTDEST indicates the target CPU interface. Values are allocated contiguously
from 0, in order of ascending affinity.

1: Interrupt Signaling channel IRSTDEST indicates the target interrupt source.

RRBSPN For upstream commands, ICCTDEST indicates the channel type:

0: Interrupt Handling channel. ICCTID indicates the originating CPU interface.
1: Interrupt Signaling channel. ICCTID indicates the originating interrupt source.

RTCSCP The order and encoding of end-points is the same for IRSTDEST and IDDTID.

RJCRRQ The values used to identify CPU interfaces are allocated contiguously from 0, in order of ascending affinity.

RWZJVS The values used to identify interrupt sources is IMPLEMENTATION DEFINED.

IZJTKX Arm recommends that the values used to identify interrupt sources are allocated contiguously from 0.

RNDDWL Transfers on the same AXI5-Stream Interface for different commands are not interleaved. Once transmission of a
command is started subsequent transfers continue the same command, with the same values of xTID and xTDEST,
until xTLAST is asserted.

IRQBRS The restriction on interleaving transfers does not prevent upstream and downstream commands being sent in
parallel.

IDMDNC An example system might have two CPU interfaces and an interrupt source sharing an AXI Stream connection, as
shown in the diagram below:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

646

Chapter A2. AMBA AXI5-Stream Transport Layer
A2.2. Channel identification

Figure A2.4: GICv5 Stream Protocol Interface

Downstream commands:

IRSTID IRSTDEST Channel type Target

0 0 Interrupt Handling CPU interface 0

0 1 Interrupt Handling CPU interface 1

1 0 Interrupt Signaling Interrupt source 0

Upstream commands:

ICCTDEST ICCTID Channel type Source

0 0 Interrupt Handling CPU interface 0

0 1 Interrupt Handling CPU interface 1

1 0 Interrupt Signaling Interrupt source 0

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

647

Chapter A2. AMBA AXI5-Stream Transport Layer
A2.3. Link status

A2.3 Link status

DWDBCG When the AXI Stream connection is described as online, data can be transferred across the upstream and
downstream AXI Stream links. When a AXI Stream connection is described as offline, no data can be transferred
across the AXI Stream links.

RSMLNR When one or more of the channels that share the AXI Stream connection is online the AXI Stream connection is
online.

RDGDFT When none of the channels that share the AXI Stream connection is online, it is IMPLEMENTATION DEFINED
whether the AXI Stream connection is online or offline.

RNBCWM How the AXI Stream connection transitions from online to offline, or offline to online, is IMPLEMENTATION
DEFINED.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

648

Chapter A3
Common behaviors

IQHRMH This section defines behaviors common to the Interrupt Handling and Interrupt Signaling channels.

DPWLWC Some commands require an acknowledgement from the receiver. A command that requires an acknowledgement is
defined as outstanding until the acknowledgement is received.

DTYKBT A command that requires acknowledgement is described as complete once the acknowledgement is received. All
other commands are described as complete once received by the recipient.

RNQQBH If multiple transfers are required to transmit a command, the receiver does not acknowledge the command until all
of the command has been received.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

649

Chapter A4
Interrupt Handling channel

IHTHMK The Interrupt Handling channel defines the connection between one CPU interface and one IRS, it includes the
following capabilities:

• Forwarding candidate HPPIs to the CPU interface.
• Activating and deactivating interrupts as they are handled.
• Managing the current resident VPE.
• Managing interrupt configuration and state.

ILYNNC The rules in this section only apply to the Interrupt Handling channel.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

650

Chapter A4. Interrupt Handling channel
A4.1. Command summary

A4.1 Command summary

ILHGVT The upstream commands that a CPU interface can send to the IRS are:

ID Command Description

0x0 UpstreamControl Communicates control information from the CPU interface to the IRS.

0x1 - -

0x2 Activate Activates a previously sent interrupt.

0x3 Release Releases a previously sent interrupt.

0x4 DownstreamControl Ack Acknowledges a DownstreamControl command.

0x5 - -

0x6 Deactivate Deactivates an interrupt.

0x7 IMPLEMENTATION DEFINED Reserved for IMPLEMENTATION DEFINED functionality.

0x8 SetEnabled Sets the individual Enabled value of an interrupt.

0x9 SetTarget Sets an LPI or SPI’s target PE.

0xA SetPriority Sets an interrupt’s priority.

0xB SetHandling Sets an interrupt’s Handling mode.

0xC RequestConfig Requests an interrupt’s configuration and state

0xD Sync Requests confirmation that the effects of previous commands are globally observable.

0xE SetPending Sets an LPI or SPI’s Pending state.

0xF SetResident Sets the current resident VPE.

IPYPQZ The downstream commands that an IRS can send to the CPU interface are:

ID Command Description

0x0 UpstreamControl Ack Acknowledges an UpstreamControl command.

0x1 Forward Sets an interrupt as pending on the CPU interface.

0x2 Activate Ack Acknowledges an Activate command.

0x3 Recall Recalls a previously sent pending interrupt.

0x4 DownstreamControl Communicates control information from the IRS to the CPU interface.

0x5 WakeRequest Requests the channel is brought online.

0x6 Deactivate Ack Acknowledges a Deactivate command.

0x7 IMPLEMENTATION DEFINED Reserved for IMPLEMENTATION DEFINED functionality.

0x8 Set Ack Acknowledges a SetEnabled, SetPending, SetPriority, SetTarget, or SetHandling command.

0x9 - -

0xA - -

0xB - -

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

651

Chapter A4. Interrupt Handling channel
A4.1. Command summary

ID Command Description

0xC RequestConfig Ack Acknowledges a RequestConfig command and returns the requested data.

0xD Sync Ack Acknowledges a Sync command, indicating that the effect of previous commands are

globally observable.

0xE - -

0xF SetResident Ack Acknowledges a SetResident command.

RLDZYS ID 0x7 in upstream and downstream is reserved for IMPLEMENTATION DEFINED functionality.

When supported, IMPLEMENTATION DEFINED commands do not impact the functionality of other commands. If
not supported, IMPLEMENTATION DEFINED commands are ignored.

Arm strongly recommends that IMPLEMENTATION DEFINED commands are not used unless it can be guaranteed
that both the sender and receiver agree on the usage.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

652

Chapter A4. Interrupt Handling channel
A4.2. Outstanding commands

A4.2 Outstanding commands

RDGPBP Commands which require acknowledgement are acknowledged in finite time, apart from Forward commands.

IYYGKH The following commands require acknowledgement:

Command Direction Acknowledged by

Activate Upstream Activate Ack or Forward with ActivateAck set to 1.

Deactivate Upstream Deactivate Ack

DownstreamControl Downstream DowstreamControl Ack.

RequestConfig Upstream RequestConfig Ack

Forward Downstream Activate or Release.

SetResident, with Valid set to 0.

UpstreamControl with Identifier set to 0b0001 (Quiesce)

SetEnabled Upstream Set Ack

SetPending Upstream Set Ack

SetHandling Upstream Set Ack

SetPriority Upstream Set Ack

SetResident Upstream SetResident Ack

SetTarget Upstream Set Ack

Sync Upstream Sync Ack

UpstreamControl Upstream UpstreamControl Ack

All other commands do not require acknowledgement.

ICWTZR For commands that require acknowledgement, the architecture places limits on the number of outstanding
commands that are permitted.

IYYPPQ An UpstreamControl command with Identifier set to 0b0000 (Reset) initiates a reset of the channel. Resetting the
channel returns pending interrupts to the IRS and cancels outstanding commands. Acknowledges to commands
issued before the reset started might still be received during the reset process.

RYDBHS For each Interrupt Handling channel, the IRS is permitted to have one DownstreamControl command outstanding.

IKGXBV The WakeRequest command does not have an acknowledge, meaning that is considered complete after being sent
rather than requiring an explicit acknowledge. WakeRequests are implicitly acknowledged by the CPU interface
sending UpstreamControl with Identifier set to 0b0000 (Reset) to bring the channel online.

IMJDMH Arm recommends that once an IRS has issued a WakeRequest command it does not send further wake requests
until the next time the channel is offline.

RPSRJH For each Interrupt Handling channel, the CPU interface is permitted to have the following numbers of outstanding
commands:

• One Activate command.
• One RequestConfig command.
• One SetResident command.
• One UpstreamControl command.
• One Sync command.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

653

Chapter A4. Interrupt Handling channel
A4.2. Outstanding commands

• One Deactivate command.
• In total, one of the following commands:

– SetEnabled.
– SetHandling.
– SetPending.
– SetPriority.
– SetTarget.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

654

Chapter A4. Interrupt Handling channel
A4.3. Connection management

A4.3 Connection management

DGRHNS When an Interrupt Handling channel is described as online, upstream and downstream commands can be sent
between the IRS and CPU interface. When an Interrupt Handling channel is described as offline, the only commands
that can be sent are those to bring the channel online.

RGYWDK When an Interrupt Handling channel is offline:

• The IRS sends no commands other than WakeRequest.
• The CPU interface sends no commands other than UpstreamControl with Identifier set to 0b0000 (Reset).

RWZVTW If an Interrupt Handling channel is offline, the IRS may send a WakeRequest command to request the channel to
be brought online.

Whether an IRS sends wake requests over GICv5 Stream is IMPLEMENTATION DEFINED and an IRS might use
other IMPLEMENTATION DEFINED mechanisms as well as or instead of GICv5 Stream.

ITXLVK Arm expects an IRS to only send a wake request if there is a candidate HPPI for the PE.

RZPMWQ The IRS does not send WakeRequest commands if the Interrupt Handling channel is online.

ITSRMX A WakeRequest is implicitly acknowledged by an UpstreamControl command with Identifier set to 0b0000

(Reset).

RBTJBS To bring an Interrupt Handling channel online, or reset an online channel:

• The CPU interface sends an UpstreamControl command with Identifier set to 0b0000 (Reset).
• The IRS responds with a DownstreamControl command with Identifier set to 0b0001 (Flush).
• The CPU interface acknowledges the DownstreamControl command, with Flush set to 1.
• The IRS acknowledges the UpstreamControl command.

Once the UpstreamControl command is acknowledged, the Interrupt Handling channel is online.

RRNZYL When an UpstreamControl command with Identifier set to 0b0000 (Reset) is acknowledged:

• There are no outstanding upstream or downstream commands.
• There are no pending physical or virtual interrupts from the IRS pending on the CPU interface.
• There is no resident VPE.
• There are no 1ofN selection hints set.

RMSHYJ Between sending an UpstreamControl command with Identifier set to 0b0000 (Reset) and the command being
acknowledged, the CPU interface sends no commands other than to acknowledge a DownstreamControl with
Identifier set to 0b0001 (Flush).

Between receiving an UpstreamControl command with Identifier set to 0b0000 (Reset) and sending the
acknowledge, the IRS sends no other commands than DownstreamControl with Identifier set to 0b0001 (Flush).

IPQTNY If a reset request is received part way through a previous incomplete reset sequence, it is possible that operations
are seen out of order or repeated.

RDLBTV If the IRS receives a DownstreamControl Acknowledge with Flush set to 1 before it has sent the DownstreamControl
with Identifier set to 0b0001 (Flush) due the most recent UpstreamControl command with Identifier set to 0b0000
(Reset), it is IMPLEMENTATION DEFINED whether the IRS sends DownstreamControl. If the DownstreamControl
command with Identifier set to 0b0001 (Flush) is sent, the IRS treats the command as already acknowledged.

If the CPU interface receives a DownstreamControl with Identifier set to 0b0001 (Flush) after it has sent
DownstreamControl Acknowledge with Flush sent to 1, the command is ignored and the DownstreamControl is
treated as already acknowledged.

IGSQPK GICv5 uses IAFFIDs to identify the different connected PEs. The IRS informs the CPU interface of its IAFFID as
part of bringing the Interrupt Handling Channel online.

Some systems might require an IMPLEMENTATION DEFINED sequence before the correct IAFFIDs are known for
the CPU interfaces. If the Interrupt Handling Channel is brought online before this sequence is completed the

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

655

Chapter A4. Interrupt Handling channel
A4.3. Connection management

IRS can re-communicate the correct IAFFID using DownstreamControl command with Identifier set to 0b0010

(IAFFID).

In the PE, the IAFFID is reported in ICC_IAFFIDR_EL1.

ICDBHF If a system requires an IMPLEMENTATION DEFINED sequence to initialise the correct IAFFIDs, Arm recommends
that this occurs no more than once between GIC resets.

RGYHSP The CPU interface does not cache the IAFFID value across resets of the Interrupt Handling Channel.

ISYLKT Under normal operation, an UpstreamControl command with Identifier set to 0b0000 (Reset) is sent only to bring
the connection between the CPU interface and IRS online. In which case there are no other outstanding commands,
outstanding pending interrupts or resident VPE.

However, the CPU interface may send an UpstreamControl command with Identifier set to 0b0000 when the
Interrupt Handling channel is already online. Sending the command resets the connection, returning all pending
interrupts and cancelling outstanding commands.

When an online connection is being reset, it is possible that the CPU interface receives downstream commands
between sending the UpstreamControl and seeing the acknowledgement. The CPU interface does not respond to
these commands and the IRS does not expect to receive responses.

RHXGXY To take an Interrupt Handling channel offline:

• The CPU interface sends an UpstreamControl command with Identifier set to 0b0001 (Quiesce).
– The CPU interface sends no further commands, other than acknowledgements to downstream commands,

until UpstreamControl Ack is received.
• The IRS completes any outstanding requests from the CPU interface, then sends an UpstreamControl Ack.

Once the UpstreamControl command is acknowledged, the Interrupt Handling channel is offline.

IQDJXY There is a single Interrupt Handling channel between the CPU interface and the IRS, shared by all implemented
Interrupt Domains. Therefore, the UpstreamControl commands are independent of Interrupt Domain.

RYZFJG When the Interrupt Handling channel is offline, the IRS and CPU interface treat all previously forwarded physical
or virtual interrupts having been recalled.

IQNSGW Taking the Interrupt Handling channel offline acts as an implicit Release for any pending physical or virtual
interrupts of any Interrupt Domain, including Forwards received after the Quiesce is sent. If there is an
outstanding acknowledge for an interrupt, the CPU interface must send the Activate command before sending the
UpstreamControl command with Identifier set to 0b0001 (Quiesce).

IGWCSK The UpstreamControl command provides a mechanism for the CPU interface to provide hints to the 1ofN selection
algorithm in the IRS. The algorithm for 1ofN selection is IMPLEMENTATION DEFINED and might ignore any hints
provided by the CPU interface. Whether a CPU interface sends 1ofN hints is IMPLEMENTATION DEFINED.

RFMGVS When an Interrupt Handling channel is online, the CPU interface can set hints for 1ofN target selection.

The CPU interface sends an UpstreamControl command with:

• Identifier set to 0b0010 to set 1ofN hints.
• Identifier set to 0b0011 to clear 1ofN hints.

The Data field in the UpstreamControl command specifies which hints are being set or cleared. The state of a 1ofN
hint not specified in Data is unaffected by set or clear operations.

Unsupported or unknown hints are ignored by the IRS.

IMLPDY The CPU interface is permitted to clear hints that it has not previously set.

IYCCYG Each hint defines which Interrupt Domain, or Domains, it applies to.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

656

Chapter A4. Interrupt Handling channel
A4.4. Managing the resident VPE

A4.4 Managing the resident VPE

IXNGZK When an Interrupt Handling channel transitions from offline to online, there is no resident VPE.

RTPKML To make a VPE resident, the CPU interface sends a SetResident command with Valid set to 1. The VPE being
made resident is identified by the following fields:

• Domain - the Physical Interrupt Domain the VPE is associated with.
• VM - the virtual machine the VPE is associated with.
• VPE - the VPE within the specified virtual machine.

The IRS acknowledges the SetResident command with a SetResident Ack command with Fault set to indicate
whether specified VPE was made resident.

The IRS does not generate a SetResident Ack until one of the following is true:

• The specified VPE was made resident and one of the following is true:
– The IRS has forwarded the first virtual interrupt for the VPE.
– The IRS has determined that there is no virtual interrupt to forward.

• The IRS has determined that it is unable to make the specified VPE resident.

Once the SetResident Ack command with Fault set to 0 is sent, the specified VPE is resident.

IHSHXS An IRS might be unable to make the requested VPE resident, for example because the VPE is invalid or the VPE is
already resident on a different CPU interface.

IVSJLW There might be no virtual interrupt to forward because there is no candidate HPPI for the VPE.

RHLJNT To clear the resident VPE, the CPU interface sends a SetResident command with Valid set to 0. When the IRS
acknowledges the SetResident command by sending a SetResident Ack, there is no resident VPE.

When the IRS acknowledges the SetResident command by sending a SetResident Ack, the IRS and CPU interface
treat all previously forwarded virtual interrupts for the VPE as having been recalled.

IQTCTP Clearing the resident VPE acts as an implicit Release for any outstanding pending virtual interrupts, returning the
interrupts to the IRS.

If there is any outstanding Activate for a virtual interrupt, the CPU interface must send the Activate command
before sending SetResident.

ILDFMM The CPU interface might send a SetResident command with Valid set to 0 while earlier virtual commands remain
outstanding. The IRS is not required to delay sending SetResident Ack until it has acknowledged those earlier
virtual commands. However, the IRS must process commands with the context that was valid at the time the
command was received.

RVCZPC The CPU interface does not send a SetResident command with Valid set to 1 when there is a resident VPE.

RRZRYM Between sending SetResident and receiving SetResident Ack, the CPU interface sends no commands with Virtual
set to 1 other than SetPending, and commands that acknowledge downstream commands.

A4.4.1 Interrupt Handling Channel behaviors when there is a resident VPE

RMGZZN All downstream and upstream commands with Virtual set to 1, other than SetPending, are for the resident VPE.
The VM targeted by SetPending is specified as part of the command’s payload.

RPYWKM If the IRS receives a command with Virtual set to 1 where Domain does not correspond to the IRS’s record of
the resident VPE, the behavior depends on the type of the command as follows:

• RequestConfig Ack commands return F as 1 with zeros for all configuration fields.
• SetResident commands with Valid set to 0 clear the resident VPE, and DB is treated as being 0.
• All other commands are acknowledged but otherwise have no effect.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

657

Chapter A4. Interrupt Handling channel
A4.4. Managing the resident VPE

RQMVYG If the CPU interface receives a command with Virtual set to 1 and where Domain does not correspond to the
current value of SCR_EL3.{NSE,NS}, the behavior depends on the type of the command as follows:

• Forward command: The command replaces any previously received virtual interrupts, but the new interrupt
is not considered when determining the virtual HPPI.

– If the Forward command results in an implicit Recall, the CPU interface sets Domain in the Release or
Activate command to the Interrupt Domain of the interrupt that is being Recalled.

• Recall command: Any resulting Activate or Release command is issued with Domain set to the Interrupt
Domain of the interrupt that is being Recalled.

A4.4.2 Interrupt Handling Channel behaviors when there is no resident VPE

RJRPVW If there is no resident VPE:

• The IRS:
– Does not issue Forward commands with Virtual set to 1, except as part of the sequence to make a

VPE resident.
– Acknowledges RequestConfig commands that have Virtual set to 1 with RequestConfig Ack

commands that have F set to 1.
– Acknowledges, but otherwise ignores, all other upstream commands with Virtual set to 1.

• The CPU interface:
– Does not issue upstream commands with Virtual set to 1, other than SetResident and SetPending.
– Downstream Forward commands with Virtual set to 1 are not considered when determining the virtual

HPPI until a VPE is resident.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

658

Chapter A4. Interrupt Handling channel
A4.5. Forwarding, recalling, and releasing interrupts

A4.5 Forwarding, recalling, and releasing interrupts

IGLBSF The IRS forwards a candidate HPPI for an Interrupt Domain, or for the resident VPE, using a Forward command.
An interrupt can be retrieved from the CPU interface using a Recall command, or by sending another Forward
command for the same Interrupt Domain.

For each Physical Interrupt Domain, and for the resident VPE, the IRS presents at most one candidate HPPI at
a time. If the selected candidate HPPI changes, the IRS sends a replacement Forward command, which acts an
implicit Recall if there is an outstanding Forward for the same Interrupt Domain.

A CPU interface might issue an Activate instead of a Release for the previous pending interrupt.

The protocol does not require that the new Forward is for an interrupt with higher priority than the outstanding
Forward it replaces. A lower priority interrupt might replace a higher priority interrupt. For example, if an LPI is
being re-targeted while it is pending, it must be retrieved from the old target CPU interface before being presented
to the new target CPU interface. If there are other pending interrupts for the old target, one of these might now be
presented to the CPU interface and this interrupt could be lower priority than the interrupt being re-targeted.

ITZBHV There is no limit on the number of Forward commands that can be outstanding.

RKNCCF For a given Interrupt Domain, there can never be multiple outstanding Forward commands for the same INTID.

ICLNKP If the IRS needs to re-issue a pending interrupt with new properties, for example a different priority value, it must
first fully retrieve the previous pending interrupt.

RGGHVV When issuing a Forward command, the IRS sets Returnable based on the routing mode of the pending interrupt
being forwarded:

• Targeted: Returnable is set to 0.
• 1ofN: It is IMPLEMENTATION DEFINED whether Returnable is set to 0 or 1.

– Arm recommends that an implementation does not set Returnable to 1 unless there are other valid
targets for the interrupt.

RHWRFH Forward commands are acknowledged by either an Activate command or Release command. For a given Interrupt
Domain, or for the resident VPE, Forward commands are acknowledged in order.

A single Release command can acknowledge multiple Forward commands. The Release command acknowledges
the INTID specified in the command, and all earlier unacknowledged Forward commands for the same Interrupt
Domain or resident VPE.

IHJMSR For example, the CPU interface will acknowledge all the Forward commands for physical interrupts for the
Non-secure Domain in the order it received them. But Forward commands for different Domains might be
acknowledged out of order with respect to each other.

RMYXCZ For edge-triggered interrupts, receiving an ActivateAck command from the IRS in response to an Activate command
guarantees that an edge generated by an interrupt source as a direct or indirect result of an instruction executed on
the PE after observing the ActivateAck will not be merged into the acknowledged instance of the interrupt.

RXSDST The CPU interface issues Release commands in response to:

• A Recall command.
• A Forward that has been replaced by a subsequent Forward for the same Interrupt Domain.
• The most recent Forward for an Interrupt Domain had Returnable set to 1 and the CPU interface has for

IMPLEMENTATION DEFINED reasons decided to return the interrupt.

RMPTHB For a given Interrupt Domain, or for the resident VPE, a Recall command applies to the most recent Forward
command.

RPKSKS If a Recall command is received when there is no outstanding Forward command, the command is ignored.

RGMQMJ An IRS is able to accept an Activate or Release command for any outstanding Forward.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

659

Chapter A4. Interrupt Handling channel
A4.5. Forwarding, recalling, and releasing interrupts

ITJKMB The GICv5 Stream Protocol has no way for an IRS to signal that a Release or Activate has failed. Therefore, an
IRS only forwards an interrupt to a CPU interface if it can accept either an Activate or Release for that interrupt.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

660

Chapter A4. Interrupt Handling channel
A4.6. INTID configuration

A4.6 INTID configuration

RDHHRZ For any of the following the commands, when the IRS acknowledges the command, the IRS has observed the
command and the effects of the command will be globally observable in finite time:

• Deactivate
• SetEnabled
• SetHandling
• SetPending
• SetPriority
• SetTarget

RDTMNP The CPU interface issues an upstream Sync command to synchronize the effects of earlier commands.

The IRS responds with a Sync Ack once all the following are true:

• Any Activate, Deactivate, Disable, SetEnabled, SetPending, SetPriority, or SetTarget command received
before the Sync has been acknowledged.

• The effects of any Activate, Deactivate, Disable, SetEnabled, SetHandling, SetPending, SetPriority, or
SetTarget command received before the Sync are globally observable.

RRXYSV Between sending Sync and receiving Sync Ack, the CPU interface sends no commands other than to acknowledge
downstream commands.

IPLQBY The CPU interface might send an UpstreamControl command with Identifier set to Reset between sending a
Sync and receiving the Sync Ack.

Arm expects resetting an online channel to be rare and be due to the PE resetting. If an online channel is reset, it
is possible that some stale downstream commands are received from the IRS. The CPU interface ignores such
commands.

IMDVSS The CPU interface can request the current configuration and state of an INTID by sending a RequestConfig
command. The IRS returns the requested INTID’s configuration when acknowledging the command with
RequestConfig Ack.

RDBJFG Between sending RequestConfig and receiving RequestConfig Ack, the CPU interface sends no commands other
than to acknowledge downstream commands.

IGSGBS The CPU interface might send an UpstreamControl command with Identifier set to Reset between sending a
RequestConfig and receiving the RequestConfig Ack.

Arm expects resetting an online channel to be rare and be due to the PE resetting. If an online channel is reset, it
is possible that some stale downstream commands are received from the IRS. The CPU interface ignores such
commands.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

661

Chapter A4. Interrupt Handling channel
A4.7. IRS and CPU interface capabilities

A4.7 IRS and CPU interface capabilities

IMNVFZ The GICv5 Stream interface supports independent development of an IRS and a PE containing a CPU interface.
This could lead to mismatches between the capabilities of the IRS and the connected PEs.

RCQTBC The CPU interface and IRS connected by an Interrupt Handling channel implement the same set of Interrupt
Domains. Neither the CPU interface nor IRS generate any command with the Domain field set to an unimplemented
Interrupt Domain.

IMTKNY Support for virtualization is reported in the IRS by IRS_IDR0.VIRT and in the PE by ID_AA64PFR0_EL1.EL2.

ITGHLW In GICv5, either both the IRS and CPU interface support virtualization or neither support virtualization.

IPDCJG GICv5 supports up to 5 bits of interrupts priority. The number of supported priority bits is reported by the IRS in
IRS_IDR1.PRI_BITS and by the CPU interface in ICC_IDR0_EL1.PRI_BITS.

In GICv5 Stream, if the component receiving a command implements fewer than 5 bits of priority, the
unimplemented least significant priority bits in the command are ignored and treated as being 0.

If the CPU interface and IRS implement different number of priority bits, Arm recommends that software restricts
its usage to only those bits supported by both components.

IRJJYX GICv5 supports up to 24 bits of INTID.ID namespace for each interrupt type The number of supported INTID.ID
bits is reported by the IRS in IRS_IDR2.ID_bits and by the CPU interface in ICC_IDR0_EL1.ID_Bits. When
fewer than 24 bits of identifier bits are supported, the unimplemented bits are the most significant bits.

Arm recommends that all components in a GICv5 system implement the same number of INTID identifier bits.
If different components support different number of INTID.ID bits, Arm recommends that software restricts its
usage to only those bits supported by all components.

RYGCKH If the IRS receives a command with INTID.ID beyond the implemented range, the command is acknowledged but
otherwise ignored.

RLQZNQ If the CPU interface receives a command with INTID.ID beyond the implemented range, the behavior depends on
the type of command as follows:

• Forward command: The command is treated as an implicit Recall of any outstanding Forward for the specified
Interrupt Domain or resident VPE, but is otherwise ignored.

• Recall command: The command is ignored.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

662

Chapter A5
Interrupt Signaling channel

ITJQNR Interrupt Signaling channels allows interrupt sources to be connected to an IRS, and are intended as an alternative
to using dedicated interrupt signals or MSIs.

IHRNDT The rules in this section only apply to the Interrupt Signaling channel.

IGSNZT How interrupts delivered by an Interrupt Signaling channel map to SPIs or IWB inputs is IMPLEMENTATION
SPECIFIC.

IQBKQL Each Interrupt Source connected via an Interrupt Signaling channel can have one or more distinct interrupts.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

663

Chapter A5. Interrupt Signaling channel
A5.1. Command summary

A5.1 Command summary

IWSFCN The upstream commands that the Interrupt Source can send to the IRS are:

ID Command Description

0x0 Reset Resets the channel and deasserts all interrupts.

0x1 INT Communicates the current state of an interrupt.

0x2 Resample Ack Acknowledges a Resample command.

0x3 Quiesce Requests the channel is taken offline.

0x4 Flush Ack Acknowledges a Flush command.

0x7 IMPLEMENTATION DEFINED Reserved for IMPLEMENTATION DEFINED functionality.

All other IDs are reserved.

IYMHFW The downstream commands that an IRS can send to the Interrupt Source are:

ID Command Description

0x0 Reset Ack Acknowledges a Reset command.

0x1 - -

0x2 Resample Requests current state of interrupt or interrupt levels.

0x3 Quiesce Ack Acknowledges a Quiesce command.

0x4 Flush Flushes commands from the IRS as part of a reset sequence.

0x7 IMPLEMENTATION DEFINED Reserved for IMPLEMENTATION DEFINED functionality.

All other IDs are reserved.

RDNTTB ID 0x7 in upstream and downstream is reserved for IMPLEMENTATION DEFINED functionality.

When supported, IMPLEMENTATION DEFINED commands do not impact the functionality of other commands. If
not supported, IMPLEMENTATION DEFINED commands are ignored.

Arm strongly recommends that IMPLEMENTATION DEFINED commands are not used unless it can be guaranteed
that both the sender and receiver agree on the usage.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

664

Chapter A5. Interrupt Signaling channel
A5.2. Outstanding commands

A5.2 Outstanding commands

IQBJBL The following commands require acknowledgement:

Command Direction Acknowledged by

Reset Upstream Reset Ack

Resample Downstream Resample Ack or Reset

Quiesce Upstream Quiesce Ack

Flush Downstream Flush Ack

All other commands do not require acknowledgement.

RFFYPH Commands which require acknowledgement are acknowledged in finite time.

IBBGBS For commands that require acknowledgement, the architecture places limits on the number of outstanding
commands that are permitted.

RSWNBP For each Interrupt Signaling channel, the IRS can have:

• Up to one Resample command outstanding.
• Up to one Flush command outstanding.

RHNKHF For each Interrupt Signaling channel, the CPU interface can have:

• Up to one Quiesce command outstanding.

IQNLWZ See A5.4 Connection management for more information about outstanding Reset commands.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

665

Chapter A5. Interrupt Signaling channel
A5.3. Signaling interrupts to the IRS

A5.3 Signaling interrupts to the IRS

RNVLNT An Interrupt Source can support up to 256 interrupts, numbered 0 to 255.

RGYFBQ An Interrupt Source sends an INT command to indicate the state of an interrupt:

• INT.ID specifies the interrupt whose state is being communicated.
• INT.Edge and INT.Level indicate the current state of the interrupt.

Edge Level Meaning Usage

0 0 The interrupt is de-asserted. Used to indicate a level-sensitive interrupt has become

de-asserted.

0 1 The interrupt is asserted. Used to respond to Resample commands.

1 0 The interrupt was asserted and became de-asserted. Used for edge-triggered interrupts to indicate a pulse.

1 1 The interrupt is asserted and remains asserted. Used to indicate a level-sensitive interrupt has become asserted.

ICDSPZ INT.Edge is used to identify positive edges, it is not used to indicate negative edges.

RDBMYY When an interrupt changes state, the Interrupt Source sends an INT command in finite time.

IBMDPL When the state of an interrupt changes multiple times before an INT command can be sent, and the interrupt is
level-sensitive, it is permissable for the Interrupt Source to only present the final state of the interrupt.

IMPJMH Arm recommends that an Interrupt Source does not send INT commands unless the interrupt has changed state or
it has received a Resample command.

RTVKMG It is IMPLEMENTATION DEFINED which values of INT.ID that a CPU interface may send.

RTLDXR The IRS can request the current state of an interrupt or of all interrupts by issuing a Resample command.

On receiving a Resample command:

• If Resample.IDV is 0:
– The Interrupt Source sends an INT command for any interrupt source that is currently asserted, then

sends a Resample Acknowledge command.
– Any interrupt, for which the Interrupt Source does not send an INT command, between the Resample

and Resample Acknowledge, is treated by the IRS as being de-asserted.
• If Resample.IDV is 1:

– If the interrupt identified by Resample.ID is invalid, the Interrupt Source sends a Resample
Acknowledge command.

– If the interrupt identified by Resample.ID is valid and asserted, the Interrupt Source sends an INT
command, then sends a Resample Acknowledge command.

– If the interrupt identified by Resample.ID is valid and not asserted, the Interrupt Source sends a
Resample Acknowledge command.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

666

Chapter A5. Interrupt Signaling channel
A5.4. Connection management

A5.4 Connection management

RXSJTH The Interrupt Source sending a Reset command sets all interrupts to de-asserted and acknowledges any outstanding
downstream commands.

RVRGRT To bring an Interrupt Signaling channel online, or reset an online channel:

• The Interrupt Source sends a Reset command.
• The IRS responds with a Flush command.
• The Interrupt Source acknowledges the Flush command.
• The IRS acknowledges the Reset command.

Once the Reset command is acknowledged, the Interrupt Handling channel is online.

RFWSZJ When a Reset command is acknowledged:

• There are no outstanding upstream or downstream commands.
• All interrupts are treated as de-asserted.

RCSVKH Between sending a Reset command and the command being acknowledged, the CPU interface sends no commands
other than to acknowledge a Flush command.

Between receiving Reset command and sending the acknowledge, the IRS sends no other commands than Flush.

RTMFQN The IRS generates a Flush command at most once per channel reset. The Interrupt Source generates a Flush
Acknowledge command at most once per channel reset.

ILFQPR If multiple Reset commands are issued in quick succession, the Interrupt Source might not be able to determine
whether a received Flush is due to the most recent Reset or the previous Reset. To avoid the Interrupt Source
sending more Flush Acknowledge commands than there are Flush commands, the Interrupt Source is restricted to
sending Flush Acknowledge once per-Reset.

RZNKNG If the IRS receives Flush Acknowledge before it has sent Flush in the channel reset flow, it is IMPLEMENTATION
DEFINED whether the IRS sends a Flush command. If the Flush command is sent after receiving a Flush
Acknowledge, the IRS treats the command as already acknowledged.

If the Interrupt source receives a Flush command after it has sent a Flush Acknowledge, the Flush command is
ignored and treated as acknowledged.

RGDBXW To take an Interrupt Signaling channel offline:

• The Interrupt Source sends a Quiesce command.
– The Interrupt Source sends no further commands, other than acknowledgements to downstream

commands, until Quiesce Ack is received.
• The IRS completes any outstanding commands and then sends Quiesce Ack.

– Once the IRS has received an upstream Quiesce command it does not send further Resample commands.

Once the IRS responds with Quiesce Acknowledge, the channel is offline.

IWMGGK It is possible that the Interrupt Source receives a downstream Resample command after the upstream Quiesce
command is sent. The Interrupt Source is required to send Resample Ack before the IRS can respond with Quiesce
Ack.

Taking an Interrupt Source channel offline implicitly deasserts all the interrupts. Therefore, if there is an outstanding
Resample when Quiesce is issued, Arm recommends that the Interrupt Source sends Resample Ack without sending
any INT commands, which indicates that all interrupts are deasserted. It is, however, permitted for the Interrupt
Source to send INT commands and then Resample Ack.

RYWLGB If an Interrupt Signaling channel is offline, all of the following are true:

• The IRS sends no commands.
• The Interrupt Source sends no commands, other than Reset to bring the channel online.
• All interrupts are treated as de-asserted.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

667

Chapter A6
Alphabetical list of commands

This section contains the definition of each command for the GICv5 Stream Protocol.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

668

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1 Interrupt Handling channel

This section contains the definition of each command for the Interrupt Handling channel for the GICv5 Stream
Protocol.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

669

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.1 Activate, Activate command (CPUIF -> IRS)

The Activate characteristics are:

Attributes

Activate is a 2-byte structure.

Field descriptions
The Activate bit assignments are:

RES0

15 8 7 6 5 4

CMD

3 0

Domain Virtual
RES0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0010 Activate

Virtual, bit [4]

Whether the operation is on a physical or virtual interrupt.

Virtual Meaning

0b0 Physical interrupt.

0b1 Virtual interrupt.

Bit [5]

Reserved, RES0.

Domain, bits [7:6]

The Domain the operation affects.

Domain Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

Bits [15:8]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

670

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.2 ActivateAck, Activate Acknowledge command (IRS -> CPUIF)

The ActivateAck characteristics are:

Attributes

ActivateAck is a 2-byte structure.

Field descriptions
The ActivateAck bit assignments are:

RES0

15 4

CMD

3 0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0010 Activate Ack

Bits [15:4]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

671

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.3 Deactivate, Deactivate interrupt command (CPUIF -> IRS)

The Deactivate characteristics are:

Attributes

Deactivate is a 6-byte structure.

Field descriptions
The Deactivate bit assignments are:

RES0

47 40

ID

39 32

ID

31 16

RES0

15 10 9 8

TYPE

7 5 4

CMD

3 0

Domain Virtual

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0110 Deactivate

Virtual, bit [4]

Whether the operation is on a physical or virtual interrupt.

Virtual Meaning

0b0 Physical interrupt.

0b1 Virtual interrupt.

TYPE, bits [7:5]

The type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Domain, bits [9:8]

The Domain the operation affects.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

672

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

Domain Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

Bits [15:10]

Reserved, RES0.

ID, bits [39:16]

The ID of the interrupt.

Bits [47:40]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

673

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.4 DeactivateAck, Deactivate interrupt Acknowledge command (IRS -> CPUIF)

The DeactivateAck characteristics are:

Attributes

DeactivateAck is a 2-byte structure.

Field descriptions
The DeactivateAck bit assignments are:

RES0

15 4

CMD

3 0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0110 Deactivate Ack

Bits [15:4]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

674

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.5 DownstreamControl, Downstream Control (IRS -> CPUIF)

The DownstreamControl characteristics are:

Attributes

DownstreamControl is a 4-byte structure.

Field descriptions
The DownstreamControl bit assignments are:

IAFFID

31 16

RES0

15 8 7 4

CMD

3 0

Identifier

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0100 DownstreamControl

Identifier, bits [7:4]

Specifies the type of Downstream Control operation.

Identifier Meaning

0b0001 Flush

0b0010 IAFFID

Bits [15:8]

Reserved, RES0.

IAFFID, bits [31:16]

The PE interrupt affinity.

This field is RES0 when Identifier is not 0b0010 (IAFFID).

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

675

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.6 DownstreamControlAck, Downstream Control Acknowledge command (CPUIF -> IRS)

The DownstreamControlAck characteristics are:

Attributes

DownstreamControlAck is a 2-byte structure.

Field descriptions
The DownstreamControlAck bit assignments are:

RES0

15 5 4

CMD

3 0

Flush

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0100 DownstreamControl Ack

Flush, bit [4]

Whether the operation being acknowledged is a Flush.

Flush Meaning

0b0 Not acknowleding a Flush.

0b1 Acknowleding a Flush.

Bits [15:5]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

676

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.7 Forward, Forward command (IRS -> CPUIF)

The Forward characteristics are:

Attributes

Forward is a 6-byte structure.

Field descriptions
The Forward bit assignments are:

47

RES0

46 40

ID

39 32

Returnable

ID

31 16

Priority

15 11 10 9 8

TYPE

7 5 4

CMD

3 0

ActivateAck Virtual
Domain

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0001 Forward

Virtual, bit [4]

Whether the operation is on a physical or virtual interrupt.

Virtual Meaning

0b0 Physical interrupt.

0b1 Virtual interrupt.

TYPE, bits [7:5]

The type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Domain, bits [9:8]

The Domain the operation affects.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

677

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

Domain Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

ActivateAck, bit [10]

Whether the Forward also Acknowledges a previous Activate command.

ActivateAck Meaning

0b0 The Forward does not acknowledge any previous Activate.

0b1 The Forward acknowledges a previous Activate.

When the Forward command acknowledges a previous Activate, it applies to an Activate for the same Domain and
setting of Virtual.

Priority, bits [15:11]

The priority of the interrupt.

Lower numeric values are higher priority, meaning that 0b00000 is the highest supported priority and 0b11111 is
the lowest priority.

The CPU interface treats priority bits it does not implement as RES0.

The IRS sets priority bits it does not implement to 0b0.

ID, bits [39:16]

The ID of the interrupt.

Bits [46:40]

Reserved, RES0.

Returnable, bit [47]

Indicates whether the CPU interface can choose to proactively return the interrupt.

Returnable Meaning

0b0 Interrupt is not returnable.

0b1 Interrupt is returnable.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

678

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.8 Recall, Recall command (IRS -> CPUIF)

The Recall characteristics are:

Attributes

Recall is a 2-byte structure.

Field descriptions
The Recall bit assignments are:

RES0

15 8 7 6 5 4

CMD

3 0

Domain Virtual
RES0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0011 Recall

Virtual, bit [4]

Whether the operation is on a physical or virtual interrupt.

Virtual Meaning

0b0 Physical interrupt.

0b1 Virtual interrupt.

Bit [5]

Reserved, RES0.

Domain, bits [7:6]

The Domain the operation affects.

Domain Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

Bits [15:8]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

679

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.9 Release, Release command (CPUIF -> IRS)

The Release characteristics are:

Attributes

Release is a 6-byte structure.

Field descriptions
The Release bit assignments are:

RES0

47 40

ID

39 32

ID

31 16

RES0

15 10 9 8

TYPE

7 5 4

CMD

3 0

Domain Virtual

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0011 Release

Virtual, bit [4]

Whether the operation is on a physical or virtual interrupt.

Virtual Meaning

0b0 Physical interrupt.

0b1 Virtual interrupt.

TYPE, bits [7:5]

The type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Domain, bits [9:8]

The Domain the operation affects.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

680

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

Domain Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

Bits [15:10]

Reserved, RES0.

ID, bits [39:16]

The ID of the interrupt.

Bits [47:40]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

681

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.10 RequestConfig, Request Interrupt Configuration command (CPUIF -> IRS)

The RequestConfig characteristics are:

Attributes

RequestConfig is a 6-byte structure.

Field descriptions
The RequestConfig bit assignments are:

RES0

47 40

ID

39 32

ID

31 16

RES0

15 10 9 8

TYPE

7 5 4

CMD

3 0

Domain Virtual

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b1100 RequestConfig

Virtual, bit [4]

Whether the operation is on a physical or virtual interrupt.

Virtual Meaning

0b0 Physical interrupt.

0b1 Virtual interrupt.

TYPE, bits [7:5]

The type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Domain, bits [9:8]

The Domain the operation affects.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

682

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

Domain Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

Bits [15:10]

Reserved, RES0.

ID, bits [39:16]

The ID of the interrupt.

Bits [47:40]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

683

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.11 RequestConfigAck, Request Interrupt Configuration Acknowledge command (IRS ->
CPUIF)

The RequestConfigAck characteristics are:

Attributes

RequestConfigAck is a 4-byte structure.

Field descriptions
The RequestConfigAck bit assignments are:

IAFFID

31 16

Priority

15 11 10 9

HM

8 7 6 5 4

CMD

3 0

Pending
IRM
Enable

RES0
Active

Fault

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b1100 RequestConfigAck

Bit [4]

Reserved, RES0.

Active, bit [5]

Whether the interrupt is Active.

Active Meaning

0b0 Inactive

0b1 Active

Fault, bit [6]

Whether the IRS was able to retrieve the requested data.

Fault Meaning

0b0 Success

0b1 Fault

When this field is set to 1 it indicates the requested INTID was unreachable, the returned configuration is
UNKNOWN.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

684

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

Enable, bit [7]

Whether the interrupt is individually enabled.

Enable Meaning

0b0 Disabled

0b1 Enabled

HM, bit [8]

Whether the interrupt is Level or Edge.

HM Meaning

0b0 Edge

0b1 Level

IRM, bit [9]

Interrupt routing mode

IRM Meaning

0b0 Interrupt Routing mode is Targeted.

0b1 Interrupt Routing mode is 1ofN.

Pending, bit [10]

Whether the interrupt is pending.

Pending Meaning

0b0 Not pending.

0b1 Pending.

Priority, bits [15:11]

The priority of the interrupt.

IAFFID, bits [31:16]

The interrupt Affinity value.

When IRM is 1, this field is IMPLEMENTATION SPECIFIC.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

685

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.12 SetAck, Set interrupt configuration acknowledge command (IRS -> CPUIF)

The SetAck characteristics are:

Attributes

SetAck is a 2-byte structure.

Field descriptions
The SetAck bit assignments are:

RES0

15 4

CMD

3 0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b1000 Set Ack

Bits [15:4]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

686

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.13 SetEnabled, Set interrupt Enabled command (CPUIF -> IRS)

The SetEnabled characteristics are:

Attributes

SetEnabled is a 6-byte structure.

Field descriptions
The SetEnabled bit assignments are:

RES0

47 40

ID

39 32

ID

31 16

RES0

15 11

EN

10 9 8

TYPE

7 5 4

CMD

3 0

Domain Virtual

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b1000 SetEnabled

Virtual, bit [4]

Whether the operation is on a physical or virtual interrupt.

Virtual Meaning

0b0 Physical interrupt.

0b1 Virtual interrupt.

TYPE, bits [7:5]

The type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Domain, bits [9:8]

The Domain the operation affects.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

687

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

Domain Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

EN, bit [10]

Whether the interrupt is Enabled.

EN Meaning

0b0 Disabled

0b1 Enabled

Bits [15:11]

Reserved, RES0.

ID, bits [39:16]

The ID of the interrupt.

Bits [47:40]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

688

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.14 SetHandling, Set Interrupt Handling Mode command (CPUIF -> IRS)

The SetHandling characteristics are:

Attributes

SetHandling is a 6-byte structure.

Field descriptions
The SetHandling bit assignments are:

RES0

47 40

ID

39 32

ID

31 16

RES0

15 11

HM

10 9 8

TYPE

7 5 4

CMD

3 0

Domain Virtual

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b1011 SetHandling

Virtual, bit [4]

Whether the operation is on a physical or virtual interrupt.

Virtual Meaning

0b0 Physical interrupt.

0b1 Virtual interrupt.

TYPE, bits [7:5]

The type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Domain, bits [9:8]

The Domain the operation affects.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

689

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

Domain Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

HM, bit [10]

Interrupt Handling mode.

HM Meaning

0b0 Edge

0b1 Level

Bits [15:11]

Reserved, RES0.

ID, bits [39:16]

The ID of the interrupt.

Bits [47:40]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

690

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.15 SetPending, Set interrupt Pending command (CPUIF -> IRS)

The SetPending characteristics are:

Attributes

SetPending is a 8-byte structure.

Field descriptions
The SetPending bit assignments are:

VM

63 48

RES0

47 40

ID

39 32

ID

31 16

RES0

15 11 10 9 8

TYPE

7 5 4

CMD

3 0

Pending Virtual
Domain

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b1110 SetPending

Virtual, bit [4]

Whether the operation is on a physical or virtual interrupt.

Virtual Meaning

0b0 Physical interrupt.

0b1 Virtual interrupt.

TYPE, bits [7:5]

The type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Domain, bits [9:8]

The Domain the operation affects.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

691

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

Domain Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

Pending, bit [10]

Whether the interrupt is Pending.

Pending Meaning

0b0 Generate CLEAR event.

0b1 Generate SET event.

Bits [15:11]

Reserved, RES0.

ID, bits [39:16]

The ID of the interrupt.

Bits [47:40]

Reserved, RES0.

VM, bits [63:48]

The Virtual Machine identifier. This field is RES0 when Virtual is 0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

692

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.16 SetPriority, Set Interrupt Priority command (CPUIF -> IRS)

The SetPriority characteristics are:

Attributes

SetPriority is a 6-byte structure.

Field descriptions
The SetPriority bit assignments are:

RES0

47 40

ID

39 32

ID

31 16

Priority

15 11 10 9 8

TYPE

7 5 4

CMD

3 0

RES0 Virtual
Domain

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b1010 SetPriority

Virtual, bit [4]

Whether the operation is on a physical or virtual interrupt.

Virtual Meaning

0b0 Physical interrupt.

0b1 Virtual interrupt.

TYPE, bits [7:5]

The type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Domain, bits [9:8]

The Domain the operation affects.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

693

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

Domain Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

Bit [10]

Reserved, RES0.

Priority, bits [15:11]

The priority of the interrupt.

The CPU interface sets priority bits it does not implement to 0b0

The IRS treats priority bits it does not implement as 0b0.

ID, bits [39:16]

The ID of the interrupt.

Bits [47:40]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

694

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.17 SetResident, Set Resident command (CPUIF -> IRS)

The SetResident characteristics are:

Attributes

SetResident is a 6-byte structure.

Field descriptions
The SetResident bit assignments are:

VM

47 32

DBPM

31 27

DB

26

RES0

25 24

VPE

23 9 8 7 6 5 4

CMD

3 0

Valid
Domain

Virtual
RES0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b1111 SetResident

Virtual, bit [4]

Whether the operation is physical or virtual.

Virtual Meaning

0b1 Virtual interrupt.

Bit [5]

Reserved, RES0.

Domain, bits [7:6]

The Interrupt Domain of the VPE being made resident or non-resident.

Domain Meaning

0b00 Secure

0b01 Non-secure

0b11 Realm

Valid, bit [8]

Whether a VPE is resident or not.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

695

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

Valid Meaning

0b0 The currently resident VPE is being cleared.

0b1 The VPE indicated by the Domain and VPE fields is being
made resident.

VPE, bits [23:9]

The VPE identifier. This field is RES0 when Valid is 0.

Bits [25:24]

Reserved, RES0.

DB, bit [26]

Doorbell Request.

DB Meaning

0b0 No doorbell requested

0b1 Doorbell requested

This field is RES0 when Valid is 1.

DBPM, bits [31:27]

Doorbell Priority Mask.

This field is RES0 when DB is 0.

VM, bits [47:32]

The Virtual Machine identifier. This field is RES0 when Valid is 0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

696

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.18 SetResidentAck, Set Resident acknowledge command (IRS -> CPUIF)

The SetResidentAck characteristics are:

Attributes

SetResidentAck is a 2-byte structure.

Field descriptions
The SetResidentAck bit assignments are:

RES0

15 7 6

RES0

5 4

CMD

3 0

Fault

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b1111 SetResident Ack

Bits [5:4]

Reserved, RES0.

Fault, bit [6]

Whether the requested VPE was made resident.

Fault Meaning

0b0 Requested VPE was made resident.

0b1 Requested VPE was not made resident.

When acknowledging a SetResident with Valid set to 0, this field is RES0.

Bits [15:7]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

697

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.19 SetTarget, Set Interrupt Target command (CPUIF -> IRS)

The SetTarget characteristics are:

Attributes

SetTarget is a 8-byte structure.

Field descriptions
The SetTarget bit assignments are:

IAFFID

63 48

RES0

47 40

ID

39 32

ID

31 16

RES0

15 11 10 9 8

TYPE

7 5 4

CMD

3 0

IRM Virtual
Domain

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b1001 SetTarget

Virtual, bit [4]

Whether the operation is on a physical or virtual interrupt.

Virtual Meaning

0b0 Physical interrupt.

0b1 Virtual interrupt.

TYPE, bits [7:5]

The type of the interrupt.

TYPE Meaning

0b010 LPI

0b011 SPI

Values not defined above are reserved.

Domain, bits [9:8]

The Domain the operation affects.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

698

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

Domain Meaning

0b00 Secure

0b01 Non-secure

0b10 EL3

0b11 Realm

IRM, bit [10]

Interrupt routing mode

IRM Meaning

0b0 The interrupt Routing mode is Targeted.

0b1 The interrupt Routing mode is 1ofN.

Bits [15:11]

Reserved, RES0.

ID, bits [39:16]

The ID of the interrupt.

Bits [47:40]

Reserved, RES0.

IAFFID, bits [63:48]

Target PE.

If IRM is 0, this field indicates the PE interrupt affinity of the target PE.

If IRM is 1, this field provides an IMPLEMENTATION DEFINED hint to 1ofN selection algorithm. A value of 0
means that no hint is provided.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

699

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.20 Sync, synchronizes previously sent configuration changes (CPUIF -> IRS)

The Sync characteristics are:

Attributes

Sync is a 2-byte structure.

Field descriptions
The Sync bit assignments are:

RES0

15 4

CMD

3 0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b1101 Sync

Bits [15:4]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

700

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.21 SyncAck, synchronizes previously sent configuration changes (IRS -> CPUIF)

The SyncAck characteristics are:

Attributes

SyncAck is a 2-byte structure.

Field descriptions
The SyncAck bit assignments are:

RES0

15 4

CMD

3 0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b1101 Sync Ack

Bits [15:4]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

701

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.22 UpstreamControl, Upstream Control (CPUIF -> IRS)

The UpstreamControl characteristics are:

Attributes

UpstreamControl is a 2-byte structure.

Field descriptions
The UpstreamControl bit assignments are:

Data

15 8 7 4

CMD

3 0

Identifier

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0000 UpstreamControl

Identifier, bits [7:4]

Specifies the type of Upstream Control operation.

Identifier Meaning

0b0000 Reset

0b0001 Quiesce

0b0010 Set 1ofN hints, Data specifies which hints are being set.

0b0011 Clear 1ofN hints, Data specifies which hints are being cleared.

Data, bits [15:8]

Data associated with the Upstream Control operation.

When Identifier is 0b0010 or 0b00011, Data indicates which 1ofN hints are being set or cleared.

Data Meaning

0bxxxxxxx1 Selecting this PE is likely to cause exit from a low power state.
Applies to all Domains.

Values not defined above are reserved.

For all other values of Identifier, this field is RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

702

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.23 UpstreamControlAck, Upstream Control Acknowledge command (IRS -> CPUIF)

The UpstreamControlAck characteristics are:

Attributes

UpstreamControlAck is a 4-byte structure.

Field descriptions
The UpstreamControlAck bit assignments are:

IAFFID

31 16 15

RES0

14 4

CMD

3 0

Reset

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0000 UpstreamControl Ack

Bits [14:4]

Reserved, RES0.

Reset, bit [15]

Whether a reset request is being acknowledged.

Reset Meaning

0b0 Not acknowledging a reset request.

0b1 Acknowledging a reset request.

IAFFID, bits [31:16]

The PE interrupt affinity.

This field is RES0 when acknowledging an UpstreamControl with an Identifier that is not 0b0000 (Reset).

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

703

Chapter A6. Alphabetical list of commands
A6.1. Interrupt Handling channel

A6.1.24 WakeRequest, Wake request (IRS -> CPUIF)

The WakeRequest characteristics are:

Attributes

WakeRequest is a 2-byte structure.

Field descriptions
The WakeRequest bit assignments are:

RES0

15 4

CMD

3 0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0101 WakeRequest

Bits [15:4]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

704

Chapter A6. Alphabetical list of commands
A6.2. Interrupt Signaling channel

A6.2 Interrupt Signaling channel

This section contains the definition of each command for the Interrupt Signaling channel for the GICv5 Stream
Protocol.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

705

Chapter A6. Alphabetical list of commands
A6.2. Interrupt Signaling channel

A6.2.1 INT, Interrupt command (Interrupt Source -> IRS)

The INT characteristics are:

Attributes

INT is a 2-byte structure.

Field descriptions
The INT bit assignments are:

ID

15 8

RES0

7 6 5 4

CMD

3 0

Edge Level

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0001 INT

Level, bit [4]

Level Meaning

0b0 De-asserted.

0b1 Asserted.

Edge, bit [5]

Edge Meaning

0b0 Falling-edge, or no edge.

0b1 Positive-edge.

Bits [7:6]

Reserved, RES0.

ID, bits [15:8]

The ID of the interrupt.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

706

Chapter A6. Alphabetical list of commands
A6.2. Interrupt Signaling channel

A6.2.2 Flush, Flush command (IRS -> Interrupt Source)

The Flush characteristics are:

Attributes

Flush is a 2-byte structure.

Field descriptions
The Flush bit assignments are:

RES0

15 4

CMD

3 0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0100 Flush

Bits [15:4]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

707

Chapter A6. Alphabetical list of commands
A6.2. Interrupt Signaling channel

A6.2.3 FlushAck, Flush acknowledge command (Interrupt Source -> IRS)

The FlushAck characteristics are:

Attributes

FlushAck is a 2-byte structure.

Field descriptions
The FlushAck bit assignments are:

RES0

15 4

CMD

3 0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0100 Flush Ack

Bits [15:4]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

708

Chapter A6. Alphabetical list of commands
A6.2. Interrupt Signaling channel

A6.2.4 Quiesce, Quiesce command (Interrupt Source -> IRS)

The Quiesce characteristics are:

Attributes

Quiesce is a 2-byte structure.

Field descriptions
The Quiesce bit assignments are:

RES0

15 4

CMD

3 0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0011 Quiesce

Bits [15:4]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

709

Chapter A6. Alphabetical list of commands
A6.2. Interrupt Signaling channel

A6.2.5 QuiesceAck, Quiesce acknowledge command (IRS -> Interrupt Source)

The QuiesceAck characteristics are:

Attributes

QuiesceAck is a 2-byte structure.

Field descriptions
The QuiesceAck bit assignments are:

RES0

15 4

CMD

3 0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0011 Quiesce Ack

Bits [15:4]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

710

Chapter A6. Alphabetical list of commands
A6.2. Interrupt Signaling channel

A6.2.6 Resample, Resample request command (IRS -> Interrupt Source)

The Resample characteristics are:

Attributes

Resample is a 2-byte structure.

Field descriptions
The Resample bit assignments are:

ID

15 8

RES0

7 5 4

CMD

3 0

IDV

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0010 Resample

IDV, bit [4]

IDV Meaning

0b0 Resample request for all asserted interrupts.

0b1 Resample request for the interrupt identified by ID field.

Bits [7:5]

Reserved, RES0.

ID, bits [15:8]

The ID of the interrupt. This field is RES0 when IDV is 0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

711

Chapter A6. Alphabetical list of commands
A6.2. Interrupt Signaling channel

A6.2.7 ResampleAck, Resample request acknowledge command (Interrupt Source -> IRS)

The ResampleAck characteristics are:

Attributes

ResampleAck is a 2-byte structure.

Field descriptions
The ResampleAck bit assignments are:

RES0

15 4

CMD

3 0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0010 Resample Ack

Bits [15:4]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

712

Chapter A6. Alphabetical list of commands
A6.2. Interrupt Signaling channel

A6.2.8 Reset, Reset command (Interrupt Source -> IRS)

The Reset characteristics are:

Attributes

Reset is a 2-byte structure.

Field descriptions
The Reset bit assignments are:

RES0

15 4

CMD

3 0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0000 Reset

Bits [15:4]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

713

Chapter A6. Alphabetical list of commands
A6.2. Interrupt Signaling channel

A6.2.9 ResetAck, Reset acknowledge command (IRS -> Interrupt Source)

The ResetAck characteristics are:

Attributes

ResetAck is a 2-byte structure.

Field descriptions
The ResetAck bit assignments are:

RES0

15 4

CMD

3 0

CMD, bits [3:0]

Indicates the command type.

CMD Meaning

0b0000 Reset Ack

Bits [15:4]

Reserved, RES0.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

714

Chapter A7
Example sequences

This section gives examples of typical sequences.

The flows given in this section are for illustration purposes only.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

715

Chapter A7. Example sequences
A7.1. Bringing the Interrupt Handling channel online and taking it offline

A7.1 Bringing the Interrupt Handling channel online and taking it offline

If the Interrupt Handling channel between the CPU interface and IRS is offline, the first command that is sent is an
UpstreamControl command. A two-phase reset process is used, as illustrated below:

IRS CPUIF PE

UpstreamControl(Reset)

The CPUIF sends no further commands
other than acknowledges until the
UpstreamControl is acknowledged.

DownstreamControl(Flush)

DownstreamControlAck(Flush)

UpstreamControlAck(Reset,IAFFID=X)

An IAFFID is used to identify the CPUIF.

The IRS communicates the IAFFID value
as part of bringing the channel online.

An IMPDEF sequence might be needed on
the IRS before the correct IAFFIDs are
known. In which case the IRS might need
to re-communicate the IAFFID after the
channel is brought online.

Arm recommends that any such sequence is
performed before any generic software
is run on the PEs.

DownstreamControl(IAFFID=Y)

DownstreamControlAck()

The Interrupt Handling channel is taken offline by the CPU interface sending an UpstreamControl command
with Identifier set to Quiesce. On receipt of the UpstreamControl command the IRS completes all outstanding
commands, before sending a UpstreamControlAck. The IRS treats all outstanding Forward commands as being
implicitly returned by the link that is taken offline. Once the UpstreamControlAck is received by the PE the
Interrupt Handling channel is offline.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

716

Chapter A7. Example sequences
A7.1. Bringing the Interrupt Handling channel online and taking it offline

IRS CPUIF PE

Forward(Domain=NS, Virtual=0, INTID=A)

IRQ or FIQ asserted

The mechanism which causes the link to be
taken offline is IMPDEF.
Arm expects it to be initiated automatically
as part of the PE's power management
implementation.

IRQ or FIQ de-asserted

UpstreamControl(Indentifier=Quiesce)

The CPUIF sends no further commands,
other than responses, until the
UpstreamControl() is acknowledged.

Any outstanding Forwards are treated as
being implicitly released back to the IRS.

On receipt of an UpstreamControl() command
with Indentifier = Quiesce the IRS
completes outstanding operations.

UpstreamControlAck()

There may be cases where the Interrupt Handling channel is classed as online but needs to be reset. This can be
achieved by the CPU interface sending an UpstreamControl command with Identifier set to Reset. Sending the
UpstreamControl command with Identifier set to Reset returns any pending interrupts to the IRS and cancels
outstanding commands. This process is illustrated below:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

717

Chapter A7. Example sequences
A7.1. Bringing the Interrupt Handling channel online and taking it offline

IRS CPUIF PE

Forward(Domain=NS, Virtual=0, INTID=A)

IRQ or FIQ asserted

UpstreamControl(Reset)

The CPUIF sends no further commands,
until the UpstreamControl is
acknowledged.

Any outstanding Forwards are treated as
being implicitly released back to the IRS
and any outstanding upstream commands are
treated as cancelled.

As pending interrupts are considered
returned to the IRS, the interrupt
signals to the PE are de-asserted.

IRQ or FIQ de-asserted

On receipt of a reset request, the
IRS treats all interrupts as
returned and all outstanding
commands as not needing
acknowledgement.

A DownstreamControl command is sent
as part of the two phase reset
sequence.

DownstreamControl(Flush)

DownstreamControlAck(Flush)

UpstreamControlAck(Reset,IAFFID=X)

At this point the channel between
IRS and CPU interface is reset with
no outstanding commands or interrupts.

The CPU interface could now continue
operating or send further commands to
take the channel offline.

The CPU interface might need to restart the reset process part way through. To do this, the CPU interface sends a
new Reset request.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

718

Chapter A7. Example sequences
A7.1. Bringing the Interrupt Handling channel online and taking it offline

IRS CPUIF PE

UpstreamControl(Reset)

The CPUIF initiates a reset.

DownstreamControl(Flush)

It is possible that the CPUIF needs to
restart the reset sequence. It can do
this by issuing a new Reset request.

UpstreamControl(Reset)

Triggering a new reset causes the
IRS to send a fresh DownstreamControl
command.

DownstreamControl(Flush)

DownstreamControlAck(Flush)

UpstreamControlAck(Reset,IAFFID=X)

Arm recommends that resetting an online connection is only used for recovery and not for normal operation.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

719

Chapter A7. Example sequences
A7.1. Bringing the Interrupt Handling channel online and taking it offline

If the Interrupt Handling channel is offline, the IRS can request that it is brought online by sending a wake request:

IRS CPUIF PE

If there is candidate HPPI for a PE whose
Interrupt Handling channel is offline the IRS
can send a wake request.

WakeRequest()

The WakeRequest() is a request for the
PE to wakeup. Whether the PE is woken is a power
management policy decision for the platform.

The WakeRequest() has no acknowledge from the
CPUIF, however the UpstreamControl(Reset) can
be thought of as an implicit acknowledge.

UpstreamControl(Reset)

DownstreamControl(Flush)

DownstreamControlAck(Flush)

UpstreamControlAck(Reset,IAFFID=X)

Arm expects that the IRS will only request the
CPUIF to wakeup if there is candidate HPPI available
for one or more domains. Therefore, the IRS is likely
to send a Forward once the link is online.

Forward(Domain=NS, Virtual=0, INTID=A)

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

720

Chapter A7. Example sequences
A7.2. Simple interrupt life-cycle

A7.2 Simple interrupt life-cycle

The diagram below shows a physical interrupt being presented to a PE by an IRS:

IRS CPUIF PE

Forward(Domain=NS, Virtual=0, INTID=A)

IRQ or FIQ asserted

Execute GICR CDIA

Return INTID A and de-assert IRQ or FIQ

Activate(Domain=NS, Virtual=0)

Return ActivateAck()

A GSB ACK after the execution of
GICR CDIA can complete once the
Activate is acknowledged by the IRS.

Deactivate INTID A by executing "GIC CDDI"

Deactivate(Domain=NS, Virtual=0, INTID=A)

Return DeactivateAck()

The effect of acknowledging an interrupt is not guaranteed to have been observed by the IRS until after a GSB ACK

or GSB SYS instruction has completed. With GICv5 Stream, a PE can determine the activation has been observed
by waiting for an ActivateAck() before completing the barrier.

With edge-triggered interrupts, until the acknowledging of an instance of an interrupt is visible to the IRS, further
edges from the interrupt source might continued to be merged.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

721

Chapter A7. Example sequences
A7.3. Replacing the candidate HPPI for an Interrupt Domain, or resident VPE

A7.3 Replacing the candidate HPPI for an Interrupt Domain, or resident VPE

The IRS forwards the candidate HPPI for a given Interrupt Domain, or resident VPE, to the CPU interface. The
chosen candidate HPPI might change, for example due to another interrupt becoming pending or a change to
interrupt configuration. In this case, the IRS can replace the candidate HPPI for the Interrupt Domain, or resident
VPE, by sending another Forward. The CPU interface is required to either release or activate the replaced interrupt
in finite time.

IRS CPUIF PE

Forward(Domain=NS, Virtual=0, INTID=A)

IRQ or FIQ asserted

The IRS changes its selection of the
candidate HPPI for the NS domain

Forward(Domain=NS, Virtual=0, INTID=B)

The CPUIF must either Activate or
Release the previous Forward in finite
time.

Depending on the timing, the read of
GICR CDIA could return INTID A or B.

In this example, INTID B is returned.

Execute GICR CDIA

INTID B and de-assert IRQ or FIQ

Forward commands are always acknowleged
in order. Therefore, the CPUIF
can not issue an Activate (or Release)
for INTID B before it has Activated
(or Released) INTID A.

Release(Domain=NS, Virtual=0, INTID=A)

The Activate is implicitly for INTID B
because Forward commands are acknowledged
in order.

Activate(Domain=NS, Virtual=0)

ActivateAck(Domain=NS, Virtual=0)

It is possible that the IRS again changes the candidate HPPI before the CPU interface has responded in finite time.
The IRS can send further Forward commands, each replacing the previous. The CPU interface can return multiple
pending interrupts for a given Interrupt Domain, or VPE, with a single Release command. The Release command
releases the specified INTID, and all earlier outstanding Forward commands for that Interrupt Domain, or VPE.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

722

Chapter A7. Example sequences
A7.3. Replacing the candidate HPPI for an Interrupt Domain, or resident VPE

IRS CPUIF PE

Forward(Domain=NS, Virtual=0, INTID=A)

IRQ or FIQ asserted

The IRS changes its selection of the
candidate HPPI for the NS domain

Forward(Domain=NS, Virtual=0, INTID=B)

The IRS changes its selection of the
candidate HPPI for the NS domain, again

Forward(Domain=NS, Virtual=0, INTID=C)

The CPUIF can return multiple pending interrupts
for a given Interrupt Domain, or resident VPE,
with a single Release. The Release returns
the specified INTID, and all older outstanding
pending interrupts.

This Release return INTIDs A and B.

Release(Domain=NS, Virtual=0, INTID=B)

For a given Interrupt Domain, or the resident VPE, Forward commands are always acknowledged in the order they
are received. In the above example, the CPU interface cannot issue an Activate for INTID C before INTIDs A and
B are released.

In some cases the candidate HPPI might change due to GIC instructions executed on the PE that the interrupt has
been forwarded to. In these cases the CPU interface communicates the change in configuration to the IRS and the
IRS is responsible for recalling the interrupt if required. The CPU interface does not proactively issue a Release.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

723

Chapter A7. Example sequences
A7.3. Replacing the candidate HPPI for an Interrupt Domain, or resident VPE

IRS CPUIF PE

Forward(Domain=NS, Virtual=0, INTID=A)

IRQ or FIQ asserted

Software changes the configuration
of INTID A which means it is no
longer a candidate for the HPPI.

Execute GIC CDDIS INTID A

SetEnabled(Domain=NS, Virtual=0, INTID=A, EN=0)

Acknowledging SetEnabled() only indicates
that the IRS has observed the command, not that
any resulting Interrupt Write Effects are Ordered-before
Interrupt Read Effects to the same Interrupt Location.

SetAck()

The change to the INTID A's configuration and
any resulting change in candidate HPPI must
happen within finite time.

In this case, the change of configuration means
INTID A can no longer be the candidate HPPI.

Recall(Domain=NS, Virtual=0, INTID=A)

De-assert IRQ

Release(Domain=NS, Virtual=0, INTID=A)

In the above example, the IRS acknowledges the SetEnabled command before the Interrupt Write effect of clearing
the INTID Enable is visible. Acknowledging a SetEnabled, SetPending, SetPriority or SetTarget indicates that
the IRS has observed the command and that the effects of the command will become visible in finite time. To
guarantee that the effects of previous operations are complete, software must issue a GSB SYS barrier which results
in a Sync command being sent to the IRS.

Another execution where the IRS sends the SetAck after the Interrupt Write effects are globally visible is also
possible and permitted by the architecture.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

724

Chapter A7. Example sequences
A7.4. Making a VPE resident

A7.4 Making a VPE resident

To set the resident VPE, the CPU interface sends a SetResident() command. The IRS responds with a
SetResidentAck() to show that it has completed the operation. This is illustrated here:

IRS CPUIF PE

Write to ICH_CONTEXTR_EL2 making VPE 0 of VM 0 resident

SetResident(Valid=1, Domain=NS, VM=0, PE=0)

If there is one or more enabled and pending
interrupts for the VPE, the IRS will send the
first Forward() before sending the acknowledge.

Return SetResidentAck(F=0)

VPE 0 of VM 0 is now resident, any
subsequent virtual commands are
associated with this VPE.

A GSB after the write to
ICH_CONTEXTR_EL2 can now complete

Some time later:

Forward(Domain=NS, Virtual=1, INTID=A)

Commands with Virtual=1 implicitly
use the current resident VPE.
However, the protocol includes the
Domain in later packets to ensure
that software error cannot allow one
Security state to affect the state of
another.

Assert vIRQ

Execute GICR CDIA

Return INTID A and de-assert vIRQ

Activate(Domain=NS, Virtual=1)

Forward commands are always responded to in
order, therefore which INTID is being
activated is implicit.

Return ActivateAck(Domain=NS, Virtual=1)

Deactivate INTID A by executing GIC CDDI

Deactivate(Domain=NS, Virtual=1, INTID=A)

Return DeactivateAck(Domain=NS, Virtual=1)

Software can also configure the GIC so that there is no resident VPE, as illustrated here:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

725

Chapter A7. Example sequences
A7.4. Making a VPE resident

IRS CPUIF PE

Write to ICH_CONTEXTR_EL2 making VPE 0 of VM 0 resident

SetResident(Valid=1, Domain=RL, VM=0, PE=0)

Forward(Domain=NS, Virtual=1, INTID=A)

Assert vIRQ

SetResidentAck(F=0)

VPE 0 of VM 0 is now resident

Write to ICH_CONTEXTR_EL2 to make no VPE resident

SetResident(Valid=0)

De-assert vIRQ

Sending SetResident(Valid=0) acts as an
implicit release any outstanding pending
virtual interrupts.

The IRS does not acknowledge the SetResident()
until all outstanding commands for that
context have completed.

SetResidentAck()

No virtual context is now resident. The IRS
cannot forward any virtual interrupts to the
CPU interface.

Note: SetResidentAck() only returns the
parameter F when a VPE is being made resident,
not when a VPE is made non-resident.

To change the resident VPE, the current resident VPE must first be made non-resident:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

726

Chapter A7. Example sequences
A7.4. Making a VPE resident

IRS CPUIF PE

Write to ICH_CONTEXTR_EL2 making VPE 0 of VM 0 resident

SetResident(Valid=1, Domain=NS, VM=0, PE=0)

Forward(Domain=NS, Virtual=1, INTID=A)

Assert vIRQ

SetResidentAck(F=0)

VPE 0 of VM 0 is now resident

Write to ICH_CONTEXTR_EL2 to make no VPE resident

SetResident(valid=0)

De-assert vIRQ

Sending SetResident(Valid=0) acts as an
implicit release any outstanding pending
virtual interrupts.

SetResidentAck()

No virtual context is now resident. The IRS
cannot forward any virtual interrupts to the
CPU interface.

Write to ICH_CONTEXTR_EL2 making VPE 1 of VM 1 resident

SetResident(Valid=1, Domain=NS, VM=1, PE=1)

Forward(Domain=NS, Virtual=1, INTID=B)

Assert vIRQ

SetResidentAck(F=0)

VPE 1 of VM 1 is now resident

If the CPU interface attempts to make an invalid VPE resident, the IRS acknowledges the command indicating that
operation failed:

IRS CPUIF PE

Write to ICH_CONTEXT_EL2 making VPE 0 of VM 0 resident

SetResident(Valid=1, Domain=NS, VM=0, VPE=0)

If the VPE specified by SetResident() is
invalid, the IRS acknowledges the command
with a return value indicating the operation
failed.

Return SetResidentAck(F=1)

ICH_CONTEXT_EL2.F set to 1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

727

Chapter A7. Example sequences
A7.5. Interrupt configuration

A7.5 Interrupt configuration

The flow for updating the configuration of an LPI or SPI is illustrated below:

IRS CPUIF PE

GIC CDPRI, x0

SetPriority(...)

The IRS acknowledging SetPriority
guarantees the change will take
place in finite time, but it
might not yet be globally
observable.

SetAck()

GIC CDAFF, x1

SetTarget(...)

The IRS acknowledging SetTarget
guarantees the change will take
place in finite time, but it
might not yet be globally
observable.

SetAck()

GSB SYS

Sync()

The IRS acknowledging Sync
guarantees the previous
changes to Priority and
Target are now globally
observerable.

SyncAck()

GSB completes

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

728

Chapter A7. Example sequences
A7.6. Sending IPIs

A7.6 Sending IPIs

The flow for generating a physical IPI is illustrated here:

IRS CPUIF PE

Issue GIC CDPEND, Xt

SetPending(Domain=NS, Virtual=0, INTID=A, Pending=1)

SetAck()

Once SetPendingAck() is returned,
a GSB after the GIC CDPEND, Xt
can complete.

Acknowledging SetPending does not
guarantee that the interrupt has yet been
forwarded to the target PE.

The highest priority pending interrupt
for that target PE will be presented in
finite time.

For virtual IPIs, the VPE is taken from the previous SetResident() command, as illustrated here:

IRS CPUIF PE

Write to ICH_CONTEXR_EL2 making VPE 0 of VM 0 resident

SetResident(Valid=1, Domain=NS, VM=0, PE=0)

Forward(Domain=NS, Virtual=1, INTID=A)

Assert vIRQ

SetResidentAck()

New virtual context is now resident,
any subsequent virtual commands are
associated with the new context.

Issue GIC CDPEND, Xt

SetPending(Domain=NS, Virtual=1, INTID=A, Pending=1)

SetAck()

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

729

Chapter A7. Example sequences
A7.7. 1 of N interrupts

A7.7 1 of N interrupts

The following flow demonstrates how the Returnable argument to a Forward command can be used for 1ofN
interrupts:

IRS CPUIF

When forwarding a 1ofN interrupt, the
IRS can choose to mark the interrupt
as returnable.

Forward(Domain=NS, Virtual=0, INTID=A, Returnable=1)

For non-returnable interrupts, the
CPUIF only issues a Release in
response to a Recall or replacing Set.

For returnable interrupts, the
CPUIF can choose to proactively
issue a Release.

For example, the CPUIF might release
the pending interrupt if it is
blocked by the Priority Mask or
Running Priority.

Proactively issuing the Release
allows the IRS to choose a different
target PE.

Release(Domain=NS, Virtual=0, INTID=A)

If a returnable interrupt is
returned, the IRS must find a
new target.

It is possible that the IRS
might decide to re-send the
interrupt to same target, for
example because no better
target is available. In this
case, the IRS should set
Returnable to 0 to avoid the
interrupt being returned again.

Forward(Domain=NS, Virtual=0, INTID=A, Returnable=0)

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

730

Part B
Litmus tests

Chapter B1
Interrupt ordering litmus tests

This section gives examples of the use of GIC instructions with and without the use of the GIC specific barrier
instructions introduced in this document.

The aim of these tests is to help programmers, hardware design engineers, and validation engineers understand the
need for the different kinds of barriers and inherent ordering guarantees.

See also:

• 2.12 Interrupt ordering model and synchronization requirements

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

732

Chapter B1. Interrupt ordering litmus tests
B1.1. Interrupt litmus test assumptions

B1.1 Interrupt litmus test assumptions

The litmus tests make the following assumptions related to GIC instructions, configuration of the GICv5 CPU
interface, and interrupt state and configuration:

• We assume all interrupts are initialized with the following values:

[INTID(x)]=(pending:0, enabled:1, priority:1, target:P0, routing_mode:targeted,

↪→ handling_mode:edge)

• We assume no asynchronous events take place, including no interrupts become pending without explicit
actions taken by one of the processes in the litmus test.

• We assume that ICC_PCR_EL1 and ICC_HAPR_EL1 are both set at the idle priority.

• We assume all GICv5 CPU interface and IRS controls are set to enable delivery of interrupts to PEs included
in the litmus test.

• We assume that SCTLR_ELx.NMI is 1.

• We assume interrupt exceptions are masked using PSTATE including interrupts with Superpriority.

• We assume all INTIDs referenced from the litmus tests are reachable from the PEs.

• We assume all PEs are executing in the same Interrupt Domain.

• Interrupts are delivered in finite time.

• Some litmus tests rely on a peripheral with the following properties:

– The peripheral generates interrupt events to INTID(A) as a result of writing 1 to an MMIO register on
the device.

– A mapping to the interrupt generating MMIO register is annotated with //PERIP in the test.

– The register initially has the value 0 when read back.

– The register preserves the values written to it.

– The peripheral generates a single edge event when there is a write to its MMIO register.

– The interrupt is made Pending in finite time after the write to the peripheral’s MMIO register.

• The WAIT(<instr>; <cond>) construct executes the instruction in a loop enough times that either <cond>
is true, or any number of finite time periods have completed.

– For example, a WAIT(GICR Xt, CDIA; Xt=(valid:1)) will eventually acknowledge an interrupt if
all of the following are true:

* The interrupt is Pending or becomes Pending in finite time.
* The interrupt is Inactive, targeted to the PE, and of sufficient Priority to be acknowledged.

See the documentation of the hertools7 toolsuite (https://diy.inria.fr/) for more information about the syntax and
use of litmus tests.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

733

Chapter B1. Interrupt ordering litmus tests
B1.2. Atomicity of interrupt updates by GIC system instructions

B1.2 Atomicity of interrupt updates by GIC system instructions

B1.2.1 Notes

A GIC system instruction generates a Successful Read-Modify-Write pair of INTID Effects to update an interrupt.
The purpose of this section is to show that the Successful Read-Modify-Write pair is required to be atomic.

B1.2.2 Litmus test

Arch64 gic.pri+gic.en
{
[INTID(A)]=(priority:0,enabled:0);
0:X1=(intid:A, priority:1);
1:X1=(intid:A);

}
P0 | P1 ;
GIC CDPRI, X1 | GIC CDEN, X1 ;

exists(INTID(A)=(priority:0,enabled:1) \/ INTID(A)=(priority:1,enabled:0))

kinds: gic.pre+gic.en Forbid

B1.2.2.1 Explanation
On P0, the GIC CDPRI,X1 system instruction updates the priority of the interrupt INTID(A):

• Generates an Interrupt Read Effect E1 to INTID(A).

• Modifies the priority field of the value read.

• Generates an Interrupt Write Effect E2 to INTID(A).

E1 and E2 are a Successful Read-Modify-Write pair of Interrupt Effects and have to be atomic.

On P1, the GIC CDEN, X1 system instruction enables the interrupt INTID(A):

• Generates an Interrupt Read Effect E3 to INTID(A).

• Modifies the enabled field of the value read.

• Generates an Interrupt Write Effect E4 to INTID(A).

E3 and E4 are a Successful Read-Modify-Write pair of Interrupt Effects and have to be atomic.

Therefore, an execution where E1 is Coherence-before E4, E4 is Coherence-before E2 and as a result INTID(A)
has the final value (priority:1, enabled:0) is architecturally forbidden. Also, an execution where E3 is
Coherence-before E2 and E2 is Coherence-before E4 and as a result INTID(A) has the final value (priority:0,
↪→ enabled:1) is architecturally forbidden.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

734

Chapter B1. Interrupt ordering litmus tests
B1.3. Multiple updates of the same Interrupt Location

B1.3 Multiple updates of the same Interrupt Location

B1.3.1 Notes

The purpose of this test is to show that multiple upadtes to the same Interrupt Location by GIC system instructions
with commands other than DI are observed in program order.

B1.3.2 Litmus test with two configuration updates

AArch64 coWW-gic
{
[INTID(A)]=(priority:0);
0:X1=(intid:A, priority:1);
0:X2=(intid:A, priority:2);

}
P0 ;
GIC CDPRI, X1 ;
GIC CDPRI, X2 ;

exists(INTID(A)=(priority:0) \/ INTID(A)=(priority:1))

kinds: coWW-gic Forbid

B1.3.2.1 Explanation
On P0:

• The first GIC CDPRI,X1 generates an Explicit Interrupt Write Effect to INTID(A) E1 that updates its
priority.

• The second GIC CDPRI,X1 generates an Explicit Interrupt Write Effect to INTID(A) E2 that updates its
priority.

E1 and E2 are a Successful Read-Modify-Write pair of Interrupt Effects and are required to be atomic.

Therefore, an execution where E1 is Coherence-before E4, E4 is Coherence-before E2 and as a result INTID(A)
has the final value (priority:1, enabled:0) is architecturally forbidden. Also, an execution where E3 is
Coherence-before E2 and E2 is Coherence-before E4 and as a result INTID(A) has the final value (priority:0,
↪→ enabled:1) is architecturally forbidden.

B1.3.3 Litmus test with an interrupt disable and an interrupt deactivate

AArch64 coWR-gic+dis-di+rcfg
{
[INTID(A)]=(enabled:1, active:1);
0:X1=(intid:A);
1:X1=(intid:A);

}
P0 | P1 ;
GIC CDDIS,X1 | GIC CDRCFG, X1 ;
GIC CDDI,X1 | ISB ;

| MRS X3, ICC_ICSR_EL1 ;
exists(1:X3=(active:0,enabled:1))

kinds: coWR-gic+dis-di+rcfg Allowed

B1.3.3.1 Explanation
On P0:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

735

Chapter B1. Interrupt ordering litmus tests
B1.3. Multiple updates of the same Interrupt Location

• GIC CDDIS,X1 generates an Explicit Interrupt Write Effect to INTID(A) E1 and an Explicit Interrupt Write
Effect to INTID(A) E2.

• GIC CDDI,X1 generates an Implicit Interrupt Read Effect to INTID(A) E3 and an Implicit Interrupt Write
Effect to INTID(A) E4.

On P1:

• GIC CDRCFG,X1 generates an Explicit Interrupt Read Effect to INTID(A) E5.

In the execution that satisfies the postcondition, E5 Reads-from E4 and E4 is Coherence-before E1. This is
architecturally allowed.

B1.3.4 Litmus test with an interrupt deactivate and an interrupt disable

AArch64 coWR-gic+dis-di+rcfg
{
[INTID(A)]=(enabled:1, active:1);
0:X1=(intid:A);
1:X1=(intid:A);

}
P0 | P1 ;
GIC CDDI,X1 | GIC CDRCFG, X1 ;
GIC CDDIS,X1 | ISB ;

| MRS X3, ICC_ICSR_EL1 ;
exists(1:X3=(active:1,enabled:0))

kinds: coWR-gic+di-dis+rcfg Allowed

B1.3.4.1 Explanation
On P0:

• GIC CDDI,X1 generates an Implicit Interrupt Write Effect to INTID(A) E1 and an Implicit Interrupt Write
Effect to INTID(A) E2.

• GIC CDDIS,X1 generates an Explicit Interrupt Read Effect to INTID(A) E3 and an Explicit Interrupt Write
Effect to INTID(A) E4.

On P1:

• GIC CDRCFG,X1 generates an Explicit Interrupt Read Effect to INTID(A) E5.

In the execution that satisfies the postcondition, E5 Reads-from E4 and E4 is Coherence-before E1. This is
architecturally allowed.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

736

Chapter B1. Interrupt ordering litmus tests
B1.4. Reading back interrupt writes on a single PE

B1.4 Reading back interrupt writes on a single PE

B1.4.1 Notes

The purpose of these tests is to show that writing the configuration of an interrupt or acknowledging an interrupt
and reading back the configuration on the same PE guarantees that the written values are observed without the use
of explicit synchronization.

B1.4.2 Litmus test with a configuration update

AArch64 coWR-gic+en-rcfg
{
[INTID(A)]=(enabled:0, affinity:P0);
0:X1=(intid:A);

}
P0 ;
GIC CDEN, X1 ;
GIC CDRCFG, X1 ;
ISB ;
MRS X3, ICC_ICSR_EL1 ;

exists(0:X3=(affinity:P0,enabled:0))

kinds: coWR-gic+en-rcfg Forbid

B1.4.2.1 Explanation
On P0:

• GIC CDEN, X1 generates an Explicit Interrupt Write Effect to INTID(A) E1.

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E2.

In the execution that satisfies the postcondition, E2 Coherence-before E1. This violates the architectural
requirements of the Coherence-before relation and as a result, this execution is architecturally forbidden.

B1.4.3 Litmus test with deactivate

AArch64 coWR-gic+di-rcfg
{
[INTID(A)]=(active:1);
0:X1=(intid:A);

}
P0 ;
GIC CDDI, X1 ;
GIC CDRCFG, X1 ;
ISB ;
MRS X2, ICC_ICSR_EL1 ;

exists(0:X2=(active:1))

kinds: coWR-gic+di-rcfg Forbid

B1.4.3.1 Explanation
On P0:

• GIC CDDI, X1 generates an Implicit Interrupt Write Effect to INTID(A) E1.

• GIC CDRCFG, X1 generates an Interrupt Read Effect to INTID(A) E2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

737

Chapter B1. Interrupt ordering litmus tests
B1.4. Reading back interrupt writes on a single PE

In the execution that satisfies the postcondition, E2 Coherence-before E1. This violates the architectural
requirements of the Coherence-before relation and as a result, this execution is architecturally forbidden.

B1.4.4 Litmus test with acknowledgement

AArch64 coWR-gic+ia-rcfg
{
[INTID(A)]=(enabled:1, pending:1, affinity:P0);
0:X1=(intid:A);

}
P0 ;
GICR X2, CDIA ;
GIC CDRCFG, X1 ;
ISB ;
MRS X3, ICC_ICSR_EL1 ;

exists(0:X2=(valid:1) /\ 0:X3=(pending:1))

kinds: coWR-gic+ia-rcfg Forbid

B1.4.4.1 Explanation
On P0:

• GIC X2, CDIA generates an Implicit Interrupt Write Effect to INTID(A) E1.

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E2.

In the execution that satisfies the postcondition, E2 is Coherence-before E1. This violates the architectural
requirements of the Coherence-beforerelation and as a result, this execution is architecturally forbidden.

B1.4.5 Litmus test with two configuration updates

AArch64 coWWR-gic+aff-en-rcfg
{
[INTID(A)]=(enabled:0, affinity:P0);
0:X0=(intid:A, affinity:P1);
0:X1=(intid:A);

}
P0 ;
GIC CDAFF, X0 ;
GIC CDEN, X1 ;
GIC CDRCFG, X1 ;
ISB ;
MRS X3, ICC_ICSR_EL1 ;

exists(0:X3=(affinity:P0,enabled:0) \/
0:X3=(affinity:P1,enabled:0) \/
0:X3=(affinity:P0,enabled:1))

kinds: coWWR-gic+aff-en-rcfg Forbid

B1.4.5.1 Explanation
On P0:

• GIC CDAFF, X0 generates an Explicit Interrupt Write Effect to INTID(A) E1.

• GIC CDEN, X1 generates an Explicit Interrupt Read Effect to INTID(A) E2 and an Explicit Interrupt Write
Effect to INTID(A) E3.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

738

Chapter B1. Interrupt ordering litmus tests
B1.4. Reading back interrupt writes on a single PE

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E4.

In the executions that satisfy the postcondition, any of the following applies:

• E4 is Coherence-before E1. This violates the architectural requirements of the Coherence-before relation and
as a result, this execution is architecturally forbidden.

• E2 is Coherence-before E1 and E4~ Reads-from E3. This violates the architectural requirements of the
Coherence-before relation and as a result, this execution is architecturally forbidden.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

739

Chapter B1. Interrupt ordering litmus tests
B1.5. Reading interrupt configurations and subsequent updates

B1.5 Reading interrupt configurations and subsequent updates

B1.5.1 Notes

The purpose of these tests is to show that when reading the configuration of an interrupt and then updating the
configuration of that same interrupt, the value read is not affected by the updates.

B1.5.2 Litmus test with update to priority

AArch64 coRW-gic+rcfg-pri
{
[INTID(A)]=(priority:0);
0:X0=(intid:A);
0:X1=(intid:A, priority:1);

}
P0 ;
GIC CDRCFG, X0 ;
GIC CDPRI, X1 ;
ISB ;
MRS X3, ICC_ICSR_EL1 ;

exists(0:X3=(priority:1))

kinds: coRW-gic+rcfg-pri Forbid

B1.5.2.1 Explanation
On P0:

• GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect to INTID(A) E1.

• GIC CDPRI, X1 generates an Explicit Interrupt Write Effect to INTID(A) E2.

It is architecturally required the Interrupt Read Effect generated by an GIC system instruction with the RCFG

command E1 does not Read-from the Interrupt Write effect E2.

Note that the ISB and MRS X3, ICC_ICSR_EL1 sequence can be placed before the GIC CDPRI, X1 instruction
without changing the outcome of the test.

B1.5.3 Litmus test with deactivate

AArch64 coRW-gic+rcfg-di
{
[INTID(A)]=(active:1);
0:X0=(intid:A);
0:X1=(intid:A);

}
P0 ;
GIC CDRCFG, X0 ;
GIC CDDI, X1 ;
ISB ;
MRS X3, ICC_ICSR_EL1 ;

exists(0:X3=(active:0))

kinds: coRW-gic+rcfg-di Forbid

B1.5.3.1 Explanation
On P0:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

740

Chapter B1. Interrupt ordering litmus tests
B1.5. Reading interrupt configurations and subsequent updates

• GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect to INTID(A) E1.

• GIC CDDI, X1 generates an Implicit Interrupt Write Effect to INTID(A) E2.

It is architecturally required the Interrupt Read Effect generated by an GIC system instruction with the RCFG

command E1 does not Read-from the Interrupt Write effect E2.

Note that the ISB and MRS X3, ICC_ICSR_EL1 sequence can be placed before the GIC CDDI, X1 instruction
without changing the outcome of the test.

B1.5.4 Litmus test with acknowledge

AArch64 coRW-gic+rcfg-ia
{
[INTID(A)]=(priority:1,pending:1);
0:X0=(intid:A);

}
P0 ;
GIC CDRCFG, X0 ;
GICR X1,CDIA ;
ISB ;
MRS X3, ICC_ICSR_EL1 ;

exists(0:X3=(priority:1,pending:0,active:1))

kinds: coRW-gic+rcfg-ia Forbid

B1.5.4.1 Explanation
On P0:

• GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect to INTID(A) E1.

• GICR X1,CDIA generates an Implicit Interrupt Write Effect to INTID(A) E2.

It is architecturally required the Interrupt Read Effect generated by an GIC system instruction with the RCFG

command E1 does not Read-from the Interrupt Write effect E2.

Note that the ISB and MRS X3, ICC_ICSR_EL1 sequence can be placed before the GICR X1,CDIA instruction
without changing the outcome of the test.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

741

Chapter B1. Interrupt ordering litmus tests
B1.6. Configuration and acknowledgement

B1.6 Configuration and acknowledgement

B1.6.1 Notes

The purpose of this test is to show that disabling an interrupt is only required to be observed by an acknowledge
when using explicit synchronization.

Illustrates a common principle of interrupt acknowledgement not being guaranteed to observe a preceding write in
program order without either using explicit synchronization or observing the write through an explicit read.

See also:

• B1.11 IPI and acknowledgement
• B1.33 Reading interrupt configuration and exception status

B1.6.2 Litmus test using disable without explicit synchronization

AArch64 coWR-gic.dis.ack
{
[INTID(A)]=(enabled:1, pending:1);
0:X1=(intid:A);

}
P0 ;
GIC CDDIS, X1 ;
GICR X0, CDIA ;

exists(0:X0=(valid:1, intid:A))

kinds: coWR-gic.dis.ack Allow

B1.6.2.1 Explanation
In the execution that satisfies the postcondition, on P0:

• GIC CDDIS, X1 generates an Explicit Interrupt Write Effect to INTID(A) E1.

• GICR X0, CDIA generates an Implicit Interrupt Read Effect to INTID(A) E2.

In the execution that satisfies the postcondition, E2 is Coherence-before E1. This is permitted by the architecture.

B1.6.3 Litmus test using disable with explicit synchronization

AArch64 coWR-gic.dis.ack+gsb.sys
{
[INTID(A)]=(enabled:1, pending:1);
0:X1=(intid:A);

}
P0 ;
GIC CDDIS, X1 ;
GSB SYS ;
GICR X0, CDIA ;

exists(0:X0=(valid:1, intid:A))

kinds: coWR-gic.dis.ack+gsb.sys Forbid

B1.6.3.1 Explanation
In the execution that satisfies the postcondition, on P0:

• GIC CDDIS, X1 generates an Explicit Interrupt Write Effect to INTID(A) E1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

742

Chapter B1. Interrupt ordering litmus tests
B1.6. Configuration and acknowledgement

• GSB SYS generates a GSB.SYS Effect E2.

• GICR X0, CDIA generates an Implicit Interrupt Read Effect to INTID(A) E3.

Therefore, E1 is GSB-Ordered-before E3. As per the postcondition, E3 is Coherence-before E1. Consequently, this
execution creates a cycle in the Ordered-before relation and as a result, violates the External visibility requirement.

B1.6.4 Litmus test with deactivate

AArch64 coWW-gic+di-ia+rcfg
{
[INTID(A)]=(pending:1,enabled:1,affinity:P0);
0:X0=(intid:A);
1:X0=(intid:A);

}
P0 | P1 ;
GIC CDDI,X0 | GIC CDRCFG,X0 ;
GICR X1,CDIA | ISB ;

| MRS X2,ICC_ICSR_EL1 ;
exists(0:X1=(valid:1,intid:A) /\ 1:X2=(pending:0,active:0,enabled:1))

kinds: coWW-gic+di-ia+rcfg

B1.6.4.1 Explanation
In the execution that satisfies the postcondition, on P0:

• GIC CDDI, X0 generates an Implicit Interrupt Write Effect to INTID(A) E1 and an Implicit Interrupt Write
Effect to INTID(A) E2.

• GICR X1, CDIA generates an Implicit Interrupt Read Effect to INTID(A) E3 and an Implicit Interrupt Write
Effect to INTID(A) E4.

• GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect to INTID(A) E5.

In the execution that satisfies the postcondition, E4 is Coherence-before E2 and E5 Reads-from E2. This means that
E2 is Coherence-before E3 and that violates the architectural requirements of the Coherence-before relation. As a
result, this execution is architecturally forbidden.

B1.6.5 Litmus test using priority without explicit synchronization

AArch64 coWR-gic+pcr-isb-pri-ia
{
[INTID(A)]=(enabled:1, pending:1, priority:1);
0:X1=(intid:A, priority:2);

}
P0 ;
MOV X0, #1 ;
MSR ICC_PCR_EL1, X0 ;
ISB ;
GIC CDPRI, X1 ;
GICR X0, CDIA ;

exists(0:X0=(valid:1, intid:A))

kinds: coWR-gic+pcr-isb-pri-ia Allow
~~~

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

743



Chapter B1. Interrupt ordering litmus tests
B1.6. Configuration and acknowledgement

B1.6.5.1 Explanation
In the execution that satisfies the postcondition, on P0:

• MSR ICC_PCR_EL1, X0 generates a Direct System Register Write Effect to ICC_PCR_EL1 E1.

• ISB generates a Instruction Fetch Barrier Effect E2.

• GIC CDPRI, X1 generates an Explicit Interrupt Write Effect to INTID(A) E3.

• GICR X0, CDIA generates an Implicit Interrupt Read Effect to INTID(A) E4 and an Indirect System
Register Read Effect to ICC_PCR_EL1 E5.

E1 is IFB-Ordered-before E5 and, consequently, E5 Reads-from-register E1. This means that GICR X0, CDIA

↪→ cannot acknowledge any interrupt with priority lower than 1. As per the postcondition, GICR X0, CDIA

acknowledges interrupt INTID(A) and since the priority of INTID(A) cannot have been lower than 1, E4 is
Coherence-before E3. This is an architecturally allowed execution.

B1.6.6 Litmus test using priority with explicit synchronization.

AArch64 coWR-gic+pcr-isb-pri-gsb.sys-ia
{
[INTID(A)]=(enabled:1, pending:1, priority:1);
0:X1=(intid:A, priority:2);

}
P0 ;
MOV X0, #1 ;
MSR ICC_PCR_EL1, X0 ;
ISB ;
GIC CDPRI, X1 ;
GSB SYS ;
GICR X0, CDIA ;

exists(0:X0=(valid:1, intid:A))

kinds: coWR-gic+pcr-isb-pri-gsb.sys-ia Forbid

B1.6.6.1 Explanation
In the execution that satisfies the postcondition, on P0:

• MSR ICC_PCR_EL1, X0 generates a Direct System Register Write Effect to ICC_PCR_EL1 E1.

• ISB generates a Instruction Fetch Barrier Effect E2.

• GIC CDPRI, X1 generates an Explicit Interrupt Write Effect to INTID(A) E3.

• GSB SYS generates a GSB.SYS Effect E4.

• GICR X0, CDIA generates an Implicit Interrupt Read Effect to INTID(A) E5 and an Indirect System
Register Read Effect to ICC_PCR_EL1 E6.

E1 is IFB-Ordered-before E6 and, consequently, E6 Reads-from-register E1. This means that GICR X0, CDIA

↪→ cannot acknowledge any interrupt with priority lower than 1. As per the postcondition, GICR X0, CDIA

acknowledges interrupt INTID(A) and since the priority of INTID(A) cannot have been lower than 1, E5 is
Coherence-before E3. At the same time, E3 is GSB-Ordered-before E5. This creates a cycle in the Ordered-before
relation which violates the External visibility requirement.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

744



Chapter B1. Interrupt ordering litmus tests
B1.7. Acknowledge followed by interrupt changes

B1.7 Acknowledge followed by interrupt changes

B1.7.1 Notes

The update to an interrupt caused by an interrupt acknowledge is required to be ordered with respect to a deactivate
but not with any other configuration update.

B1.7.2 Litmus test with deactivate

AArch64 ack-deactivate
{
[INTID(A)]=(enabled:1,affinity:P0,pending:1,active:0);
0:X0=(intid:A);

}
P0 ;
GICR X1, CDIA ;
GIC CDDI, X0 ;
GIC CDRCFG, X0 ;
ISB ;
MRS X2, ICC_ICSR_EL1 ;

exists(0:X1=(valid:1) /\ 0:X2=(pending:0, active:1))

kinds: ack-deactivate Forbid

B1.7.2.1 Explanation
In the execution that satisfies the postcondition, on P0:

• GICR X1, CDIA generates an Implicit Interrupt Read Effect to INTID(A) E1. As per the postcondition,
the GICR system instruction acknowledges INTID(A) and, as a result, generates an Implicit Interrupt Write
Effect E2 to INTID(A) that resets its pending state to 0 and sets its active state to 1.

• GIC CDDI, X0 generates an Implicit Interrupt Write Effect to INTID(A) E3.

• GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect to INTID(A) E4.

As per the postcondition, the Explicit Interrupt Read Effect E4 observes that INTID(A) is active, and as a result,
E4 Reads-from E2. This means that either:

• E4 is Coherence-before relation E3 which violates the architectural requirements of the Coherence-before
relation, or

• E3 is Coherence-before relation E2 and concequently E1 Reads-from E3 which violates the architectural
requirements of the Reads-from relation.

B1.7.3 Litmus test with make pending

AArch64 edge-merging.ipi
{
[INTID(A)]=(enabled:1, pending:1, affinity:P0);
0:X0=(intid:A, pending:1); 0:X1=(intid:A);

}
P0 ;
GICR X2, CDIA ;
GIC CDPEND, X0 ;
GIC CDRCFG, X1 ;
ISB ;
MRS X3, ICC_ICSR_EL1 ;

exists(0:X2=(valid:1, intid:A) /\

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

745



Chapter B1. Interrupt ordering litmus tests
B1.7. Acknowledge followed by interrupt changes

0:X3=(pending:0, active:1))

kinds: edge-merging.ipi Forbid

B1.7.3.1 Explanation
On P0:

• GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E1 and an Implicit Interrupt Write
Effect to INTID(A) E2 that resets the pending state to 0 and sets the active state to 1.

• GIC CDPEND,X0 generates an Explicit Interrupt Read Effect to INTID(A) E3 and an Explicit Interrupt Write
Effect to INTID(A) E4 that sets the pending state to 1.

• GIC CDRCFG,X1 generates an Explicit Interrupt Read Effect E5 to INTID(A).

In the execution that satisfies the postcondition, E5 Reads-from E2, and any of the following applies:

• E4 is Coherence-before E2. This violates the requirements of the Coherence-before and, as a result, is
architecturally forbidden.

• E2 is Coherence-before E4 and, consequently, E5 is Coherence-before E4. This violates the requirements of
the Coherence-before and, as a result, is architecturally forbidden.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

746



Chapter B1. Interrupt ordering litmus tests
B1.8. Multiple updates with interleaved read

B1.8 Multiple updates with interleaved read

B1.8.1 Notes

The purpose of this test is to show that a write, followed by a read, followed by a write to the same interrupt
location must result in the read observing the first write and not the second write.

B1.8.2 Litmus test

AArch64 coWRW-gic
{
[INTID(A)]=(priority:0);
0:X0=(intid:A);
0:X1=(intid:A, priority:1);
0:X2=(intid:A, priority:2);

}
P0 ;
GIC CDPRI, X1 ;
GIC CDRCFG, X0 ;
GIC CDPRI, X2 ;
ISB ;
MRS X3, ICC_ICSR_EL1 ;

exists(0:X3=(priority:2) \/
0:X3=(priority:0))

kinds: coWRW-gic Forbid

B1.8.2.1 Explanation
On P0:

• The first GIC CDPRI, X1 generates an Explicit Interrupt Write Effect E1.

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect E2.

• The second GIC CDPRI, X2 generates an Explicit Interrupt Write Effect E3.

It is architecturally required that:

• The Interrupt Read Effect generated by an GIC system instruction with the RCFG command E2 is
Coherence-after the Interrupt Write effect E1.

• The Interrupt Read Effect generated by an GIC system instruction with the RCFG command E1 does not
Read-from the Interrupt Write effect E3.

Note that the ISB and MRS X3, ICC_ICSR_EL1 sequence can be placed before the second GIC CDPRI, X2

instruction without changing the outcome of the test.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

747



Chapter B1. Interrupt ordering litmus tests
B1.9. Configuration write and IRQ unmask in PSTATE

B1.9 Configuration write and IRQ unmask in PSTATE

B1.9.1 Notes

The purpose of these tests is to show the required synchronization of to ensure that after disabling an pending
interrupt there cannot be a IRQ exception when possible.

B1.9.2 Litmus test

AArch64 gic.cddis-gsb.sys-mrs.isr_el1
{
[INTID(A)]=(enabled:1, pending:1);
0:X1=(intid:A);

}
P0 ;
GIC CDDIS, X1 ;
GSB SYS ;
MRS X0, ISR_EL1 ;

exists(0:X0=(I=1))

kinds: gic.cddis-gsb.sys-mrs.isr_el1 Forbid

B1.9.2.1 Explanation
For the execution that validates the postcondition:

• GIC CDDIS,X1 generates an Interrupt Write Effect E1 to Interrupt Location INTID(A).

• GSB SYS generates a GSB.SYS Effect E2.

• MRS X0, ISR_EL1 generates a Direct System Register Read to ISR_EL1 E3.

In the execution that satisfies the postcondition, E3 indicates that INTID(A) is still the HPPI. However because of
E2 INTID(A) is disabled and cannot be the HPPI. As a result, this execution is architecturally forbidden.

B1.9.3 Litmus test with initially masked IRQs

AArch64 coWex+gic.cddis-gsb.sys-clr.i
{
[INTID(A)]=(enabled:1, pending:1);
0:X1=(intid:A);

}
P0 ;
GIC CDDIS, X1 ;
GSB SYS ;
DAIFClr PSTATE.I ;

exists(async(P0, IRQ))

kinds: coWex+gic.cddis-gsb.sys-clr.i Forbid

B1.9.3.1 Explanation
For the execution that validates the postcondition:

• GIC CDDIS,X1 generates an Interrupt Write Effect E1 to Interrupt Location INTID(A).

• GSB SYS generates a GSB.SYS Effect E2.

• DAIFClr PSTATE.I generates a Direct System Register Write to PSTATE E3.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

748



Chapter B1. Interrupt ordering litmus tests
B1.9. Configuration write and IRQ unmask in PSTATE

In the execution that satisfies the postcondition, INTID(A) has become a pending IRQ. This execution is
architectural forbidden as the GSB.SYS is required to have made the E1 observable before the IRQ was unmasked.

B1.9.4 Litmus test with disable of a PPI

AArch64 ppi-disable-isb-clr.i
{
0:[ppi(27)]=(enabled:1,pending:1,active:0);

}
P0
MOV X0, #0 ;
MSR ICC_PPI_ENABLER, X0 ;
ISB ;
DAIFClr PSTATE.I ;

exists(async(P0, IRQ)) Forbid

B1.9.4.1 Explanation
The ISB guarantees completion of the MSR instructions and the effects of disabling the PPI which can no longer
be the HPPI. As a result, this execution is architecturally forbidden.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

749



Chapter B1. Interrupt ordering litmus tests
B1.10. Configuration write and exception status on a single PE

B1.10 Configuration write and exception status on a single PE

B1.10.1 Notes

The purpose of this test is to show that an interrupt exception as a result of enabling a pending interrupt is not
required to be observed even when explicit synchronization is used.

B1.10.2 Litmus test without wait for IRQ exception to be signaled

AArch64 coWR+gic.cden-gsb.sys-isb-isr
{
[INTID(A)]=(enabled:0, pending:1);
0:X1=(intid:A);

}
P0 ;
GIC CDEN, X1 ;
GSB SYS ;
ISB ;
MRS X0, ISR_EL1 ;

exists(0:X0=(I=0))

kinds: coWR+gic.cden-gsb.sys-isb-isr Allow

B1.10.2.1 Explanation
On P0:

• GIC CDEN, X1 generates an Explicit Interrupt Write Effect to INTID(A) E1.

• GSB SYS generates a GSB.SYS Effect E2.

• ISB generates a Instruction Fetch Barrier Effect E3.

• MRS X0, ISR_EL1 generates a Direct System Register Read Effect to ISR_EL1 E4.

E1 is IFB-Ordered-before E1. As a result, INTID(A) is already a candidate HPPI when P0 generates E4. However,
the architecture does not guarrantee that INTID(A) will be presented as the HPPI immediately. And as a result, the
execution where reading ISR_EL1 indicatates there is no IRQ pending is architecturally allowed.

B1.10.3 Litmus test with wait for IRQ exception to be signaled

AArch64 coWR+gic.cden-gsb.sys-isb-isr+wait
{
[INTID(A)]=(enabled:0, pending:1);
0:X1=(intid:A);

}
P0 ;

GIC CDEN, X1 ;
GSB SYS ;
ISB ;

WAIT (MRS X0, ISR_EL1; X0=(I=1)) ;

exists(0:X0=(I=0))

kinds: coWR+gic.cden-gsb.sys-isb-isr+wait Forbid

B1.10.3.1 Explanation
On P0:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

750



Chapter B1. Interrupt ordering litmus tests
B1.10. Configuration write and exception status on a single PE

• GIC CDEN, X1 generates an Explicit Interrupt Write Effect to INTID(A) E1.

• GSB SYS generates a GSB.SYS Effect E2.

• ISB generates a Instruction Fetch Barrier Effect E3.

• The execution of MRS X0, ISR_EL1 in a loop generates a Direct System Register Read Effect to ISR_EL1
E4, E5, . . . , En.

E1 is IFB-Ordered-before E1. As a result, INTID(A) is already a candidate HPPI when P0 generates E4. The
architecture does not guarrantee that INTID(A) will be presented as the HPPI immediately. However, in finite time
the GIC will presented INTID(A) as the HPPI, as a result, En where n is a finite number reads that the I field of
ISR_EL1 is set to 1 and an IRQ is pending.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

751



Chapter B1. Interrupt ordering litmus tests
B1.11. IPI and acknowledgement

B1.11 IPI and acknowledgement

B1.11.1 Notes

The purpose of these tests is to show that sending an IPI is only required to be observed by an acknowledge when
using explicit synchronization.

Illustrates a common principle of interrupt acknowledgement not being guaranteed to observe a preceding write in
program order without either using explicit synchronization or observing the write through an explicit read.

See also:

• B1.6 Configuration and acknowledgement

B1.11.2 Litmus test without explicit synchronization

AArch64 coWR-gic.ipi.ack
{
[INTID(A)]=(enabled:1, pending:1, affinity:P0);
0:X0=(intid:A, pending:1); 0:X1=(intid:A);

}
P0 ;
GIC CDPEND, X0 ;
GICR X2, CDIA ;
GIC CDRCFG, X1 ;
ISB ;
MRS X3, ICC_ICSR_EL1 ;

exists(0:X2=(valid:1) /\ 0:X3=(pending:1, active:1))

kinds: coWR-gic.ipi.ack Allow

B1.11.2.1 Explanation
On P0:

• GIC CDPEND, X0 generates an Explicit Interrupt Read Effect to INTID(A) E1 and an Explicit Interrupt
Write Effect to INTID(A) E2 that sets the pending state to 1.

• GICR X2, CDIA generates an Implicit Interrupt Read Effect to INTID(A) E4 and an Implicit Interrupt Write
Effect to INTID(A) E5 that resets the pending state to 0 and sets the active state to 1.

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E6.

In the execution that satisfies the postcondition, GICR X2, CDIA acknowledges INTID(A) and consecuently,
either:

• E6 Reads-from the initial value of INTID(A) and therefore E6 is Coherence-before E2. This violates
architectural requirements of the Coherence-before relation.

• E6 Reads-from E2. This means that either:

– E2 is Coherence-before E5 and E6 is Coherence-before E5. This violates architectural requirements of
the Coherence-before relation.

– E5 is Coherence-before E2. This execution is architecturally allowed.

B1.11.3 Litmus test with explicit synchronization

AArch64 coWR-gic.ipi.ack+gsb.sys
{
[INTID(A)]=(enabled:1, pending:1, affinity:P0);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

752



Chapter B1. Interrupt ordering litmus tests
B1.11. IPI and acknowledgement

0:X0=(intid:A, pending:1); 0:X1=(intid:A);
}
P0 ;
GIC CDPEND, X0 ;
GSB SYS ;
GICR X2, CDIA ;
GIC CDRCFG, X1 ;
ISB ;
MRS X3, ICC_ICSR_EL1 ;

exists(0:X2=(valid:1) /\ 0:X3=(pending:1))

kinds: coWR-gic.ipi.ack+gsb.sys Forbid

B1.11.3.1 Explanation
On P0:

• GIC CDPEND, X0 generates an Explicit Interrupt Read Effect to INTID(A) E1 and an Explicit Interrupt
Write Effect to INTID(A) E2 that sets the pending state to 1.

• GSB SYS generates a GSB.SYS Effect E3.

• GICR X2, CDIA generates an Implicit Interrupt Read Effect to INTID(A) E4 and an Implicit Interrupt Write
Effect to INTID(A) E5 that resets the pending state to 0 and sets the active state to 1.

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E6.

In the execution that satisfies the postcondition, GICR X2, CDIA acknowledges INTID(A) and consecuently,
either:

• E6 Reads-from the initial value of INTID(A) and therefore E6 is Coherence-before E2. This violates
architectural requirements of the Coherence-before relation.

• E6 Reads-from E2. This means that either:

– E2 is Coherence-before E5 and E6 is Coherence-before E5. This violates architectural requirements of
the Coherence-before relation.

– E5 is Coherence-before E2 which would mean that E1 Reads-from E5 and as a result E5 is
GIC-Observed-by E1. At the same time, E1 is GSB-ordered-before E5. This creates a cycle in the
Ordered-before relation and, as a result, the execution violates the External visibility requirement.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

753



Chapter B1. Interrupt ordering litmus tests
B1.12. Observing multiple writes on a different PE

B1.12 Observing multiple writes on a different PE

B1.12.1 Notes

The purpose of this test is to show that the external observations of updates to the same interrupt location cannot
contradict the Coherence order.

B1.12.2 Litmus test

AArch64 coWW-gic+R
{
[INTID(A)]=(enabled:0, affinity:P0);
0:X1=(intid:A, affinity:P1);
0:X2=(intid:A);
1:X1=(intid:A);

}
P0 | P1 ;
GIC CDAFF, X1 | GIC CDRCFG, X1 ;
GIC CDEN, X2 | ISB ;

| MRS X0, ICC_ICSR_EL1 ;

exists(1:X0=(affinity:P0, enabled:1))

kinds: coWW-gic+R Forbid

B1.12.2.1 Explanation
On P0:

• GIC CDAFF, X1 generates an Explicit Interrupt Write Effect to INTID(A) E1.

• GIC CDEN, X2 generates an Explicit Interrupt Read Effect to INTID(A) E2 and an Explicit Interrupt Write
Effect to INTID(A) E3.

On P1:

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E4.

For the execution that satisfies the post-condition, E4 Reads-from E3 and E2 is Coherence-before E1. This violates
the architectural requirement of the Reads-from relation.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

754



Chapter B1. Interrupt ordering litmus tests
B1.13. Read of the configuration of an interrupt

B1.13 Read of the configuration of an interrupt

B1.13.1 Notes

The purpose of this section if to demonstrate the ordering properties of the Indirect System Register Write to
ICC_ICSR_EL1 generated by the execution of a GIC system instruction with the RCFG command.

B1.13.2 Litmus test without ISB

AArch64 gic.rcfg-mrs.icc_icsr_el1
{
[INTID(A)]=(priority:5);
0:X0=(intid:A);

}
P0 ;
GIC CDRCFG, X0 ;
MRS X1, ICC_ICSR_EL1 ;

exists(1:X1!=(priority:5))

kinds: gic.rcfg-mrs.icc_icsr_el1 Allow

B1.13.2.1 Explanation
On P0:

• GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect E1 and an Indirect System Register Write
Effect E2.

• MRS X1, ICC_ICSR_EL1 generates a Direct System Register Read Effect to ICC_ICSR_EL1 E3 and a
Register Write Effect to X1 E4.

In the execution that satisfies the postcondition, E1 Reads-from the initial configuration of INTID(A) and
consequently E3 is Coherence-before E1. This is architecturally allowed.

B1.13.3 Litmus test with ISB

AArch64 gic.rcfg-isb-mrs.icc_icsr_el1
{
[INTID(A)]=(priority:5);
0:X0=(intid:A);

}
P0 ;
GIC CDRCFG, X0 ;
ISB ;
MRS X1, ICC_ICSR_EL1 ;

exists(1:X1!=(priority:5))

kinds: gic.rcfg-isb-mrs.icc_icsr_el1 Forbid

B1.13.3.1 Explanation
On P0:

• GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect E1 and an Indirect System Register Write
Effect E2.

• ISB generates an Instruction Fetch Barrier Effect E2 which is a Context Synchronization Event.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

755



Chapter B1. Interrupt ordering litmus tests
B1.13. Read of the configuration of an interrupt

• MRS X1, ICC_ICSR_EL1 generates a Direct System Register Read Effect to ICC_ICSR_EL1 E3 and a
Register Write Effect to X1 E4.

In the execution that satisfies the postcondition, E1 Reads-from the initial configuration of INTID(A) and
consequently E3 is Coherence-before E1. This is architecturally forbidden. E3 is required to Read-from E1 because
E2 is a Context Synchronization Event.

See also Arm® Architecture Reference Manual, for A-profile architecture[1] Table D24-1 Synchronization
requirements’ for more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

756



Chapter B1. Interrupt ordering litmus tests
B1.14. Multiple reads of the same config

B1.14 Multiple reads of the same config

B1.14.1 Notes

The purpose of this test is to show that if a read has observed a write to the same location, a second read must also
have observed the same write.

The first litmus test uses an ISB after both GIC CDRCFG, X0 instructions to ensure that the implicit writes to
ICC_ICSR_EL1 are observed by each MRS instruction after the ISB. The subsequent litmus tests illustrate the
impact of omitting one or both ISBs.

B1.14.2 Litmus test with ISBs

AArch64 coRR-gic+cdpri+cfg-isb-cfg-isb
{
[INTID(A)]=(priority:0);
0:X1=(intid:A, priority:1);
1:X0=(intid:A);

}
P0 | P1 ;
GIC CDPRI, X1 | GIC CDRCFG, X0 ;

| ISB ;
| MRS X1, ICC_ICSR_EL1 ;
| GIC CDRCFG, X0 ;
| ISB ;
| MRS X2, ICC_ICSR_EL1 ;

exists(1:X1=(priority:1) /\ 1:X2=(priority:0))

kinds: coRR-gic+cdpri+cfg-isb-cfg-isb Forbid

B1.14.2.1 Explanation
On P0:

• GIC CDPRI, X1 generates an Explicit Interrupt Write Effect E1.

On P1:

• The first GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect E2 and an Indirect System Register
Write Effect to ICC_ICSR_EL1 E3.

• The first ISB generates an IFB Effect E4.

• MSR C1, ICC_ICSR_EL1 generates a Direct System Register Read Effect E~5.

• The second GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect E6 and an Indirect System Register
Write Effect to ICC_ICSR_EL1 E7.

• The second ISB generates an IFB Effect E8.

• MSR C1, ICC_ICSR_EL1 generates a Direct System Register Read Effect E~9.

• The first GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect E10 and an Indirect Write to System
Register ICC_ICSR_EL1 E11.

In the execution that satisfies the postcondition, E2 Reads-from E1 and as a result E2, E1 is Observer-by E2 and one
of the following applies:

E3 is Coherence-before E1 and as a result, E2 is GIC-Hazard-Ordered-before E1. This creates a cycle in the
Ordered-before relation which violates the External visibility requirement.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

757



Chapter B1. Interrupt ordering litmus tests
B1.15. GIC coherence order

B1.15 GIC coherence order

B1.15.1 Notes

The purpose of this test is to show that due to the total order on writes to an interrupt location, two reads of the
same location by two separate observers must observe the same order on the writes.

B1.15.2 Litmus test

AArch64 IRIW-loc+gic.cdpri
{
[INTID(A)]=(priority:0);
0:X1=(intid:A, priority:1);
1:X1=(intid:A, priority:2);
2:X0=(intid:A);
3:X0=(intid:A);

}
P0 | P1 | P2 | P3 ;
GIC CDPRI, X1 | GIC CDPRI, X1 | GIC CDRCFG, X0 | GIC CDRCFG, X0 ;

| | ISB | ISB ;
| | MRS X1, ICC_ICSR_EL1 | MRS X1, ICC_ICSR_EL1 ;
| | GIC CDRCFG, X0 | GIC CDRCFG, X0 ;
| | ISB | ISB ;
| | MRS X2, ICC_ICSR_EL1 | MRS X2, ICC_ICSR_EL1 ;

exists((2:X1=(priority:1) /\ 2:X2=(priority:2) /\
3:X1=(priority:2) /\ 3:X2=(priority:1))

kinds: IRIW-loc+gic.cdpri Forbid

B1.15.2.1 Explanation
In the execution that satisfies the postcondition:

• On P0, GIC CDPRI, X1 generates an Explicit Interrupt Write Effect to INTID(A) E1 that sets its priority to
1.

• On P1, GIC CDPRI, X1 generates an Explicit Interrupt Write Effect to INTID(A) E2 that sets its priority to
2.

• On P2:

– The first GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect to INTID(A) E3 that reads the
priority as 1.

– The second GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect to INTID(A) E4 that reads
the priority as 2.

• On P3:

– The first GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect to INTID(A) E5 that reads the
priority as 2.

– The second GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect to INTID(A) E6 that reads
the priority as 1.

Any of the following applies:

• E1 is Coherence-before E2. In which case E6 is Coherence-before E2 and consecuently E5 is
GIC-hazard-ordered-before E2. At the same time, E5 [Reads-from](#def:cpuif:ordering_model:rf] E2 and
as a result E2 is [GIC-observed-by](#def:cpuif:ordering_model:GIC-obs] E5. This creates a cycle in the
Ordered-before relation and, as a result, the execution violates the External visibility requirement.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

758



Chapter B1. Interrupt ordering litmus tests
B1.15. GIC coherence order

• E2 is Coherence-before E1. In which case E4 is Coherence-before E1 and consecuently E3 is
GIC-hazard-ordered-before E1. At the same time, E3 [Reads-from](#def:cpuif:ordering_model:rf] E1 and
as a result E1 is [GIC-observed-by](#def:cpuif:ordering_model:GIC-obs] E3. This creates a cycle in the
Ordered-before relation and, as a result, the execution violates the External visibility requirement.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

759



Chapter B1. Interrupt ordering litmus tests
B1.16. Independent reads of independent writes

B1.16 Independent reads of independent writes

B1.16.1 Notes

The purpose of this test is to show that writes which can be observed by any observer must be observable by all
observers.

In other words, the test shows that the interrupt ordering model has other multicopy atomicity.

B1.16.2 Litmus test

AArch64 IRIW-2loc+gic.cdpri
{
[INTID(A)]=(priority:0);
[INTID(B)]=(priority:0);
0:X1=(intid:A, priority:1);
1:X1=(intid:B, priority:1);
2:X0=(intid:A); 2:X1=(intid:B);
3:X0=(intid:A); 3:X1=(intid:B);

}
P0 | P1 | P2 | P3 ;
GIC CDPRI, X1 | GIC CDPRI, X1 | GIC CDRCFG, X0 | GIC CDRCFG, X1 ;

| | ISB | ISB ;
| | MRS X2, ICC_ICSR_EL1 | MRS X2, ICC_ICSR_EL1 ;
| | GSB SYS | GSB SYS ;
| | GIC CDRCFG, X1 | GIC CDRCFG, X0 ;
| | ISB | ISB ;
| | MRS X3, ICC_ICSR_EL1 | MRS X3, ICC_ICSR_EL1 ;

exists(2:X2=(priority:1) /\ 2:X3=(priority:0) /\
3:X2=(priority:1) /\ 3:X3=(priority:0))

kinds: IRIW-2loc+gic.cdpri Forbid

B1.16.2.1 Explanation
In the execution that satisfies the postcondition:

• On P0, GIC CDPRI, X1 generates an Explicit Interrupt Write Effect to INTID(A) E1.

• On P1, GIC CDPRI, X1 generates an Explicit Interrupt Write Effect to INTID(B) E2.

• On P2:

– GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect to INTID(A) E3.

– GSB SYS generates a GSB SYS Effect E4.

– GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(B) E5.

• On P3:

– GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(B) E6.

– GSB SYS generates a GSB SYS Effect E7.

– GIC CDRCFG, X0 generates an Explicit Interrupt Read Effect to INTID(A) E8.

E1 is GIC-observed-by E3 as E3 Reads-from E1. E3 is GSB-ordered-before E5. E5 is GIC-observed-by E2 as E5
is Coherence-before E2. E2 is GIC-observed-by E6 as E6 Reads-from E2. E6 is GSB-ordered-before E8. E8 is
GIC-observed-by E1 as E8 is Coherence-before E1. As a result, this execution creates a cycle in the Ordered-before
relation and violates the External visibility requirement.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

760



Chapter B1. Interrupt ordering litmus tests
B1.17. Message passing via flag in memory

B1.17 Message passing via flag in memory

B1.17.1 Notes

The purpose of this test is to show the required barrier use when using a flag in memory to inform a different PE
that an interrupt configuration has been updated.

B1.17.2 Litmus test

AArch64 MP+gsb.sys+dsb.ld
{
[INTID(A)]=(affinity:P0);
0:X1=x;
0:X2=(intid:A, affinity:P1);
0:X3=(intid:A);
1:X1=x;
1:X2=(intid:A);

}
P0 | P1 ;
GIC CDAFF, X2 | LDR X0, [X1] ;
GSB SYS | DSB LD ;
MOV X0, #1 | GIC CDRCFG, X2 ;
STR X0, [X1] | ISB ;

| MRS X3, ICC_ICSR_EL1 ;

exists(1:X0=1 /\ 1:X3=(affinity:P0))

kinds: MP+gsb.sys+dsb.ld Forbid

B1.17.2.1 Explanation
In the execution that satisfies the postcondition:

• On P0:

– GIC CDAFF, X2 generates an Explicit Interrupt Write Effect to INTID(A) E1 that sets its affinity to
P1.

– GSB SYS generates a GSB SYS Effect E2.

– STR X0,[X1] generates an Explicit Write Memory Effect to x E3.

• On P1:

– LDR X0,[X1] generates an Explicit Memory Read Effect to x E4.

– DSB LD generates a DSB LD Effect E5.

– GIC RCFG, X2 generates an Explicit Interrupt Effect E6.

In this execution:

• E4 Reads-from-memory E3 and as a result E3 is Explicit-observed-by E4.

• E4 is DSB-ordered-before E6.

• E6 is Coherence-before E1.

• E1 is GSB-ordered-before E4.

This creates a cycle in the Ordered-before relation and, as a result, the execution violates the External visibility
requirement.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

761



Chapter B1. Interrupt ordering litmus tests
B1.18. Message passing via interrupt priority configuration

B1.18 Message passing via interrupt priority configuration

B1.18.1 Notes

The purpose of this test is to show that writes to an interrupt configuration can be ordered with respect to an update
of the interrupt Pending state such that observing the interrupt as Pending guarantees that the writes to the interrupt
configuration are observed.

B1.18.2 Litmus test

AArch64 MP-pri+gsb.sys+ack
{
[INTID(A)]=(enabled:1,affinity:P1,priority:1,pending:0);
[PTE(x)]=(oa:PA(x),attrs:(device-nGRE)); // PERIP
0:X1=x;
0:X2=(intid:A, priority:5);
1:X1=(intid:A);

}
P0 | P1 ;
GIC CDPRI, X2 | GICR X0, CDIA ;
GSB SYS | GIC CDRCFG, X1 ;
STR X0, [X1] | ISB ;

| MRS X1, ICC_ICSR_EL1 ;

exists(1:X0=(valid:1, intid:A) /\
1:X1=(enabled:1,affinity:P1,priority:1,active:1))

kinds: MP-pri+gsb.sys+ack Forbid

B1.18.2.1 Explanation
In the execution that satisfies the postcondition:

• On P0:

– GIC CDPRI, X2 generates an Explicit Interrupt Write Effect to INTID(A) E1 that sets its priority to 5.

– GSB SYS generates a GSB SYS Effect E2.

– STR X0,[X1] generates an Explicit Write Memory Effect to x. When the Explicit Write Effect to
Location x reaches its endpoint, the Peripheral device signals an interrupt event to the IRI which
generates an Interrupt Read Effect E3 to INTID(A) and an Interrupt Write Effect to INTID(A) E4 which
sets the pending state to 1.

• On P1:

– GICR X0,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E5 and an Implicit Interrupt
Write Effect to INTID(A) E6 that resets the pending state to 0 and sets the active state to 1.

– GIC CDRCFG, X2 generates an Explicit Interrupt Read Effect E7.

In this execution:

• E7 Reads-from E6 and as a result E6 and E5 are Coherence-before E1.

• E1 is GSB-ordered-before E4.

• E5 Reads-from E4 and as a result, E4 is GIC-observed-by E5

This creates a cycle in the Ordered-before relation and, as a result, the execution violates the External visibility
requirement.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

762



Chapter B1. Interrupt ordering litmus tests
B1.19. Message passing with an LPI and a device read

B1.19 Message passing with an LPI and a device read

B1.19.1 Notes

The purpose of this test is to show that if a write to a peripheral has the side effect of making an interrupt pending,
then observing that pending state on a different PE means that the write to the peripheral can also be observed.

B1.19.2 Litmus test

AArch64 MP-fLPI+imp+gsb.ack
{
[INTID(A)]=(enabled:1,affinity:P1,priority:1,pending:0);
[PTE(x)]=(oa:PA(x),attrs:(device-nGRE)); // PERIP
0:X3=x;
1:X1=x;

}
P0 | P1 ;
MOV W2, #1 | GICR X0, CDIA ;
STR W2, [X3] | GSB ACK ;

| LDR W2, [X1] ;

exists(1:X0=(valid:1, intid:A) /\ 1:X2=0);

kinds: MP-fLPI+imp+gsb.ack Forbid

B1.19.2.1 Explanation
In the execution that satisfies the postcondition:

• On P0:

– STR W2,[X3] generates an Explicit Write Memory Effect to x E1. When the Explicit Write Effect
to Location x reaches its endpoint, the Peripheral device signals an interrupt event to the IRI which
generates Interrupt Read Effect E2 to INTID(A) and an Interrupt Write Effect to INTID(A) E3 which
sets the pending state to 1.

• On P1:

– GICR X0,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E4 and an Implicit Interrupt
Write Effect to INTID(A) E5 that resets the pending state to 0 and sets the active state to 1.

– GSB SYS generates a GSB SYS Effect E6.

– LDR W2,[X1] generates an Explicit Memory Read Effect E7.

In this execution:

• E4 Reads-from E3 and as a result E3 is GIC-observed-by E4

• E4 is GSB-ordered-before E7.

• E7 is Coherence-before E1 and as a result E7 is Explicit-observed-by E1.

• E1 is Ordered-before E3.

This creates a cycle in the Ordered-before relation and, as a result, the execution violates the External visibility
requirement.

B1.19.3 Litmus test with address dependency

The GSB ACK can be omitted in favor of creating an address dependency on the result of the acknowledge.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

763



Chapter B1. Interrupt ordering litmus tests
B1.19. Message passing with an LPI and a device read

This may provide performance benefits in some cases, however, an address dependency cannot always be used a
replacement for the GSB ACK. For example, a store following LDR X2, [X1, X5] without any dependency on
previous instructions can be re-ordered before the GICR X0, CDIA and the effects of the store can be observed
before the effects of the GICR X0, CDIA on another PE.

AArch64 MP-fLPI+imp+addrpt
{
[INTID(A)]=(enabled:1,affinity:P1,priority:1,pending:0);
[PTE(x)]=(oa:PA(x),attrs:(device-nGRE)); // PERIP
0:X1=x;
1:X1=x;

}
P0 | P1 ;
MOV W2, #1 | GICR X0, CDIA ;
STR W2, [X1] | EOR X5, X0, X0 ;

| LDR W2, [X1, X5] ;

exists(1:X0=(valid:1, intid:A) /\ 1:X2=0);

kinds: MP-fLPI+imp+addrpt Forbid

B1.19.3.1 Explanation
In the execution that satisfies the postcondition:

• On P0:

– STR W2,[X1] generates an Explicit Write Memory Effect to x E1. When the Explicit Write Effect
to Location x reaches its endpoint, the Peripheral device signals an interrupt event to the IRI which
generates an Interrupt Read Effect E2 to INTID(A) and an Interrupt Write Effect to INTID(A) E3 which
sets the pending state to 1.

• On P1:

– GICR X0,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E4 and an Implicit Interrupt
Write Effect to INTID(A) E5 that resets the pending state to 0 and sets the active state to 1.

– LDR W2,[X1, X5] generates an Explicit Memory Read Effect E7.

In this execution:

• E4 Reads-from E3 and as a result E3 is GIC-observed-by E4

• There is an address dependency from E4 to E7 and, as a result, E4 is Dependency-ordered-before E7.

• E7 is Coherence-before E1 and as a result E7 is Explicit-observed-by E1.

• E1 is Ordered-before E3.

This creates a cycle in the Ordered-before relation and, as a result, the execution violates the External visibility
requirement.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

764



Chapter B1. Interrupt ordering litmus tests
B1.20. Message passing with an LPI and a GSB

B1.20 Message passing with an LPI and a GSB

B1.20.1 Notes

The purpose of this test is to show that when a write to memory is ordered before a write which has the side effect
of making an interrupt pending, then observing the interrupt being pending through acknowledgment on a different
PE guarantees that the write is also observed.

If the peripheral generating an interrupt exists in the shared address space of P0 and P1, a the DSB ST on P0 can
be relaxed to a DMB ST, but because the test makes no such assumptions, we must use a DSB ST.

B1.20.2 Litmus test

AArch64 MP-fSPI+dsb.st+gsb.ack
{
[INTID(A)]=(enabled:1,affinity:P1,priority:1,pending:0);
[PTE(y)]=(oa:PA(y),attrs:(device-nGRE)); // PERIP
0:X1=x; 0:X3=y;
1:X1=x;

}
P0 | P1 ;
MOV W0, #1 | GICR X0, CDIA ;
STR W0, [X1] | GSB ACK ;
DSB ST | LDR X2, [X1] ;
MOV W2, #1 | ;
STR W2, [X3] | ;

exists(1:X0=(valid:1, intid:A) /\ 1:X2=0);

kinds: MP-fSPI+dsb.st+gsb.ack Forbid

B1.20.2.1 Explanation
In the execution that satisfies the postcondition:

• On P0:

– STR W0,[X1] generates an Explicit Memory Write Effect to INTID(A) E1.

– DSB ST generates a DSB ST Effect E2.

– STR W2,[X3] generates an Explicit Write Memory Effect to x. When the Explicit Write Effect to
Location x reaches its endpoint, the Peripheral device signals an interrupt event to the IRI which
generates an Interrupt Read Effect E3 to INTID(A) and an Interrupt Write Effect to INTID(A) E4 which
sets the pending state to 1.

• On P1:

– GICR X0,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E5 and an Implicit Interrupt
Write Effect to INTID(A) E6 that resets the pending state to 0 and sets the active state to 1.

– GSB ACK generates a GSB ACK Effect E7.

– LDR X2,[X1] generates an Explicit Memory Read Effect E8.

In this execution:

• E5 Reads-from E4 and, as a result, E4 is GIC-observed-by E5.

• E5 is GSB-ordered-before E8.

• E8 is Coherence-before E1 and, as a result, E8 is Explicit-observed-by E1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

765



Chapter B1. Interrupt ordering litmus tests
B1.20. Message passing with an LPI and a GSB

• E1 is DSB-ordered-before E4.

This creates a cycle in the Ordered-before relation and, as a result, the execution violates the External visibility
requirement.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

766



Chapter B1. Interrupt ordering litmus tests
B1.21. Message passing with an IPI and a GSB

B1.21 Message passing with an IPI and a GSB

B1.21.1 Notes

The purpose of this test is to show that a write to memory ordered before sending an IPI guarantees that the memory
write is observed when the IPI is observed on another PE.

This is illustrating a commonly used pattern for cross-CPU communication by software.

B1.21.2 Litmus test

AArch64 MP-fIPI+dsb.st+gsb.ack
{
[INTID(A)]=(enabled:1, pending:0, affinity:P1);
0:X1=x; 0:X2=(intid:A, pending:1);
1:X1=x;

}
P0 | P1 ;
MOV W0, #1 | GICR X0, CDIA ;
STR W0, [X1] | GSB ACK ;
DSB ST | LDR W2, [X1] ;
GIC CDPEND, X2 | ;

exists(1:X0=(valid:1, intid:A) /\ 1:X2=0)

kinds: MP-fIPI+dsb.st+gsb.ack Forbid

B1.21.2.1 Explanation
In the execution that satisfies the postcondition:

• On P0:

– STR W0,[X1] generates an Explicit Memory Write Effect to INTID(A) E1.

– DSB ST generates a DSB ST Effect E2.

– GIC CDPEND, X2 generates an Explicit Interrupt Read Effect E3 to INTID(A) and an Explicit Interrupt
Write Effect to INTID(A) E4 which sets the pending state to 1.

• On P1:

– GICR X0,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E5 and an Implicit Interrupt
Write Effect to INTID(A) E6 that resets the pending state to 0 and sets the active state to 1.

– GSB ACK generates a GSB ACK Effect E7.

– LDR X2,[X1] generates an Explicit Memory Read Effect E8.

In this execution:

• E5 Reads-from E4 and, as a result, E4 is GIC-observed-by E5.

• E5 is GSB-ordered-before E8.

• E8 is Coherence-before E1 and, as a result, E8 is Explicit-observed-by E1.

• E1 is DSB-ordered-before E4.

This creates a cycle in the Ordered-before relation and, as a result, the execution violates the External visibility
requirement.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

767



Chapter B1. Interrupt ordering litmus tests
B1.22. Message passing using deactivate

B1.22 Message passing using deactivate

B1.22.1 Notes

The purpose of these tests is to show that without explicit synchronization, or a combination of explicit
synchronization and an address dependency, there is no ordering between writing to memory and deactivating an
interrupt, or between reading interrupt configuration and reading from memory.

This test illustrates part of a real-world example in the following way. P0 illustrates the end of an interrupt
handler sequence, which performs memory accesses as part of the handler logic and then finishes the handler by
deactivating the interrupt. P1 reads the interrupt configuration and state and determines that the interrupt is no
longer actively being handled, and therefore P1 expects to observe all memory accesses performed as part of the
handler on P0.

B1.22.2 Litmus test with explicit synchronization

AArch64 MP-fDI+W-dsb-W+R-gsb-R
{
[INTID(A)]=(active:1);
0:X0=x; 0:X1=(intid:A);
1:X0=x; 1:X1=(intid:A);

}
P0 | P1 ;
MOV X3, #1 | GIC CDRCFG, X1 ;
STR X3, [X0] | ISB ;
DSB ST | MRS X2, ICC_ICSR_EL1 ;
GIC CDDI, X1 | GSB SYS ;

| LDR X3, [X0] ;

exists(1:X2=(active:0) /\ 1:X3=0)

kinds: MP-fDI+W-dsb-W+R-gsb-R Forbid

B1.22.2.1 Explanation
In the execution that satisfies the postcondition:

• On P0:

– STR X3,[X0] generates an Explicit Memory Write Effect to INTID(A) E1.

– DSB ST generates a DSB ST Effect E2.

– GIC CDDI, X1 generates an Implict Interrupt Read Effect E3 to INTID(A) and an Implicit Interrupt
Write Effect to INTID(A) E4 which resets the active state to 0.

• On P1:

– GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E5.

– GSB SYS generates a GSB ACK Effect E6.

– LDR X3,[X0] generates an Explicit Memory Read Effect E7.

In this execution:

• E5 Reads-from E4 and, as a result, E4 is GIC-observed-by E5.

• E5 is GSB-ordered-before E7.

• E7 is Coherence-before E1 and, as a result, E7 is Explicit-observed-by E1.

• E1 is DSB-ordered-before E4.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

768



Chapter B1. Interrupt ordering litmus tests
B1.22. Message passing using deactivate

This creates a cycle in the Ordered-before relation and, as a result, the execution violates the External visibility
requirement.

B1.22.3 Litmus test with address dependency

AArch64 MP-fDI+W-dsb-W+R-addrpt-R
{
[INTID(A)]=(active:1);
0:X0=x; 0:X1=(intid:A);
1:X0=x; 1:X1=(intid:A);

}
P0 | P1 ;
MOV X3, #1 | GIC CDRCFG, X1 ;
STR X3, [X0] | ISB ;
DSB ST | MRS X2, ICC_ICSR_EL1 ;
GIC CDDI, X1 | EOR X5, X2, X2 ;

| LDR X3, [X0, X5] ;

exists(1:X2=(active:0) /\ 1:X3=0)

kinds: MP-fDI+W-dsb-W+R-addrpt-R Forbid

B1.22.3.1 Explanation
In the execution that satisfies the postcondition:

• On P0:

– STR X3,[X0] generates an Explicit Memory Write Effect to INTID(A) E1.

– DSB ST generates a DSB ST Effect E2.

– GIC CDDI, X1 generates an Implict Interrupt Read Effect E3 to INTID(A) and an Implicit Interrupt
Write Effect to INTID(A) E4 which resets the active state to 0.

• On P1:

– GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E5.

– LDR X3,[X0,X5] generates an Explicit Memory Read Effect E7.

In this execution:

• E5 Reads-from E4 and, as a result, E4 is GIC-observed-by E5.

• There is an address dependency from E5 to E7 and, as a result, E5 is Dependency-ordered-before E7.

• E7 is Coherence-before E1 and, as a result, E7 is Explicit-observed-by E1.

• E1 is DSB-ordered-before E4.

This creates a cycle in the Ordered-before relation and, as a result, the execution violates the External visibility
requirement.

B1.22.4 Litmus test with control dependency

AArch64 MP-fDI+W-dsb-W+R-ctrlisb-R
{
[INTID(A)]=(active:1);
0:X0=x; 0:X1=(intid:A);
1:X0=x; 1:X1=(intid:A); 1:X5=(active:1);

}
P0 | P1 ;
MOV X3, #1 | GIC CDRCFG, X1 ;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

769



Chapter B1. Interrupt ordering litmus tests
B1.22. Message passing using deactivate

STR X3, [X0] | ISB ;
DSB ST | MRS X2, ICC_ICSR_EL1 ;
GIC CDDI, X1 | TST X2, X5 ;

| B.NE L0 ;
| ISB ;
| LDR X3, [X0] ;
| L0: ;
| NOP ;

exists(1:X2=(active:0) /\ 1:X3=0)

kinds: MP-fDI+W-dsb-W+R-ctrlisb-R Forbid

B1.22.4.1 Explanation
In the execution that satisfies the postcondition:

• On P0:

– STR X3,[X0] generates an Explicit Memory Write Effect to INTID(A) E1.

– DSB ST generates a DSB ST Effect E2.

– GIC CDDI, X1 generates an Implict Interrupt Read Effect E3 to INTID(A) and an Implicit Interrupt
Write Effect to INTID(A) E4 which resets the active state to 0.

• On P1:

– GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E5.

– ISB (the second instance) generates an Instruction Fetch Barrier Effect E6.

– LDR X3,[X0] generates an Explicit Memory Read Effect E7.

In this execution:

• E5 Reads-from E4 and, as a result, E4 is GIC-observed-by E5.

• There is a control dependency from E5 to E6 and as a result, because E6 is an Instruction Fetch Barrier Effect,
E5 is IFB-ordered-before E7.

• E7 is Coherence-before E1 and, as a result, E7 is Explicit-observed-by E1.

• E1 is DSB-ordered-before E4.

This creates a cycle in the Ordered-before relation and, as a result, the execution violates the External visibility
requirement.

B1.22.5 Litmus test without explicit synchronization

AArch64 MP-fDI+RR
{
[INTID(A)]=(active:1);
0:X0=x; 0:X1=(intid:A);
1:X0=x; 1:X1=(intid:A);

}
P0 | P1 ;
MOV X3, #1 | GIC CDRCFG, X1 ;
STR X3, [X0] | ISB ;
GIC CDDI, X1 | MRS X2, ICC_ICSR_EL1 ;

| LDR X3, [X0] ;

exists(1:X2=(active:0) /\ 1:X3=0)

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

770



Chapter B1. Interrupt ordering litmus tests
B1.22. Message passing using deactivate

kinds: MP-fDI+RR Allow

B1.22.5.1 Explanation
In the execution that satisfies the postcondition:

• On P0:

– STR X3,[X0] generates an Explicit Memory Write Effect to INTID(A) E1.

– GIC CDDI, X1 generates an Implict Interrupt Read Effect E3 to INTID(A) and an Implicit Interrupt
Write Effect to INTID(A) E4 which resets the active state to 0.

• On P1:

– GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E5.

– LDR X3,[X0] generates an Explicit Memory Read Effect E7.

In this execution:

• E5 Reads-from E4 and, as a result, E4 is GIC-observed-by E5.

• E7 is Coherence-before E1 and, as a result, E7 is Explicit-observed-by E1.

This means that there is no cycle in the Ordered-before relation and, as a result, this execution satisfies the External
visibility requirement. This execution is architecturally allowed.

B1.22.6 Litmus test with a DSB but without a GSB

AArch64 MP-fDI+W-dsb-W+RR
{
[INTID(A)]=(active:1);
0:X0=x; 0:X1=(intid:A);
1:X0=x; 1:X1=(intid:A);

}
P0 | P1 ;
MOV X3, #1 | GIC CDRCFG, X1 ;
STR X3, [X0] | ISB ;
DSB ST | MRS X2, ICC_ICSR_EL1 ;
GIC CDDI, X1 | ;

| LDR X3, [X0] ;

exists(1:X2=(active:0) /\ 1:X3=0)

kinds: MP-fDI+W-dsb-W+RR Allow

B1.22.6.1 Explanation
In the execution that satisfies the postcondition:

• On P0:

– STR X3,[X0] generates an Explicit Memory Write Effect to INTID(A) E1.

– DSB ST generates a DSB ST Effect E2.

– GIC CDDI, X1 generates an Implict Interrupt Read Effect E3 to INTID(A) and an Implicit Interrupt
Write Effect to INTID(A) E4 which resets the active state to 0.

• On P1:

– GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E5.

– LDR X3,[X0] generates an Explicit Memory Read Effect E7.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

771



Chapter B1. Interrupt ordering litmus tests
B1.22. Message passing using deactivate

In this execution:

• E5 Reads-from E4 and, as a result, E4 is GIC-observed-by E5.

• E7 is Coherence-before E1 and, as a result, E7 is Explicit-observed-by E1.

• E1 is DSB-ordered-before E4.

This means that there is no cycle in the Ordered-before relation and, as a result, this execution satisfies the External
visibility requirement. This execution is architecturally allowed.

B1.22.7 Litmus test without a DSB but with a GSB

AArch64 MP-fDI+WW+R-gsb-R
{
[INTID(A)]=(active:1);
0:X0=x; 0:X1=(intid:A);
1:X0=x; 1:X1=(intid:A);

}
P0 | P1 ;
MOV X3, #1 | GIC CDRCFG, X1 ;
STR X3, [X0] | ISB ;
GIC CDDI, X1 | MRS X2, ICC_ICSR_EL1 ;

| GSB SYS ;
| LDR X3, [X0] ;

exists(1:X2=(active:0) /\ 1:X3=0)

kinds: MP-fDI+WW+R-gsb-R Allow

B1.22.7.1 Explanation
In the execution that satisfies the postcondition:

• On P0:

– STR X3,[X0] generates an Explicit Memory Write Effect to INTID(A) E1.

– GIC CDDI, X1 generates an Implict Interrupt Read Effect E3 to INTID(A) and an Implicit Interrupt
Write Effect to INTID(A) E4 which resets the active state to 0.

• On P1:

– GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E5.

– GSB SYS generates a GSB SYS Effect E6.

– LDR X3,[X0] generates an Explicit Memory Read Effect E7.

In this execution:

• E5 Reads-from E4 and, as a result, E4 is GIC-observed-by E5.

• E5 is GSB-ordered-before E7.

• E7 is Coherence-before E1 and, as a result, E7 is Explicit-observed-by E1.

This means that there is no cycle in the Ordered-before relation and, as a result, this execution satisfies the External
visibility requirement. This execution is architecturally allowed.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

772



Chapter B1. Interrupt ordering litmus tests
B1.23. IPI edge merging and message passing

B1.23 IPI edge merging and message passing

B1.23.1 Notes

The purpose of this test is to show that it is possible to inform a different PE that a GIC operation has completed
by using a GSB SYS and a flag.

B1.23.2 Litmus test

AArch64 edge-merging.ipi.MP
{
[INTID(A)]=(enabled:1, pending:1, affinity:P1);
0:X0=(intid:A, pending:1);
0:X1=x;
1:X1=x;
1:X3=(intid:A);

}
P0 | P1 ;
GIC CDPEND, X0 | LDR W0, [X1] ;
GSB SYS | DSB LD ;
MOV X2, #1 | GICR X2, CDIA ;
STR W2, [X1] | GIC CDRCFG, X3 ;

| ISB ;
| MRS X4, ICC_ICSR_EL1 ;

exists(1:X0=1 /\ 1:X2=(valid:1, intid:A) /\
1:X4=(pending:1, active:1, affinity:P1))

kinds: edge-merging.ipi.MP Forbid

B1.23.2.1 Explanation
In the execution that satisfies the postcondition:

• On P0:

– GIC CDPEND,X0 generates an Explicit Interrupt Read Effect to INTID(A) E1 and an Explicit Interrupt
Write Effect to INTID(A) E2 that sets the pending state to 1.

– GSB SYS generates a GSB ACK Effect E3.

– STR W2,[X1] generates an Explicit Memory Write Effect E4.

• On P1:

– LDR W0,[X1] generates an Explicit Memory Read Effect to INTID(A) E5.

– DSB LD generates a DSB LD Effect E6.

– GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E7 and an Implicit Interrupt
Write Effect to INTID(A) E8 that resets the pending state to 0 and sets the active state to 1.

– GIC CDRCFG,X1 generates an Explicit Interrupt Read Effect E9 to INTID(A).

In the execution that satisfies the postcondition:

• E9 Reads-from E2 and, as a result, E7 is Coherence-before E2 and E7 is GIC-observed-by E2.

• E2 GSB-ordered-before E4

• E5 Reads-from-memory E4 and, as a result, E4 is Explicit-observed-by E5.

• E5 is DSB-ordered-before E7.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

773



Chapter B1. Interrupt ordering litmus tests
B1.23. IPI edge merging and message passing

This creates a cycle in the Ordered-before relation and, as a result, the execution violates the External visibility
requirement.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

774



Chapter B1. Interrupt ordering litmus tests
B1.24. Device edge merging with GSB ACK

B1.24 Device edge merging with GSB ACK

B1.24.1 Notes

The purpose of this test is to show that two separate instances of an LPI being Pending are not allowed to be
merged across an acknowledgement.

The LPI is initially Pending, it is then successfully acknowledged by GICR X1, CDIA which writes Pending = 0.

The STR has an implicit effect of writing Pending = 1, which happens in finite time, and the GIC will forward the
Pending interrupt in finite time so that the second GICR X2, CDIA will return valid == 1 if not merged with the
first instance.

Note that this test does not depend on the interrupt becoming Pending or being forwarded to the PE as a direct
result of the write to the peripheral. The test relies solely on the finite time guarantees which are covered by the
WAIT construct.

See also:

• B1.1 Interrupt litmus test assumptions

B1.24.2 Litmus test

AArch64 edge-merging.LPI+gsb.ack
{
[INTID(A)]=(enabled:1,pending:1,affinity:P0);
[PTE(x)]=(oa:PA(x),attrs:(device-nGnRnE)); // PERIP
0:X0=x;

}
P0

GICR X1, CDIA ;
GSB ACK ;
MOV X3, #1 ;
STR X3, [X0] ; trigger intid A via device
GIC CDDI, X1 ;

WAIT(GICR X2, CDIA; X2=(valid:1)) ;

exists(0:X1=(valid:1) /\ 0:X2=(valid:0))

kinds: edge-merging.LPI+gsb.ack Forbid

B1.24.2.1 Explanation
In the execution that satisfies the postcondition, on P0:

• GICR X1, CDIA generates an Implicit Interrupt Write Effect to INTID(A) E1 and an Implicit Interrupt
Write Effect to INTID(A) E2 which resets the pending state to 0 and sets the active state to 1.

• GSB ACK generates a GSB ACK Effect E3.

• STR X3, [X0] generates an Explicit Write Effect E4 to Location x. When the Explicit Write Effect to
Location x reaches its endpoint, the Peripheral device signals an interrupt event to the IRI which generates
Interrupt Read Effect E4 to INTID(A) and an Interrupt Write Effect to INTID(A) E5 which sets the pending
state to 1.

• GIC CDDI, X1 generates Implicit Interrupt Write Effect to INTID(A) E6 and an Implicit Interrupt Write
Effect to INTID(A) E7 which resets the pending state to 0.

• The repeated execution of GICR X2,CDIA generates Implicit Interrupt Read Effects E8, E9, . . . , En where n
is a finite number.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

775



Chapter B1. Interrupt ordering litmus tests
B1.24. Device edge merging with GSB ACK

All Interupt Write Effects are required to complete in finite time and consequently, Interrupt Write Effects E2, E5
and E7 are Coherence-before En. In the execution that satisfies the postcondition, no interrupt is acknowledged and
therefore INTID(A) does not become the HPPI. As a result one of the following has to be true:

• E5 is Coherence-before E2 and consequently, E1 Reads-from E~5 and E5 is GIC-observed-by E1. E1 is
GSB-ordered-before E5. As a result, this execution violates the external visibility requirement as it creates a
cycle in the Ordered-before relation.

• E7 is Coherence-before E2 and consequently, E1 Reads-from E~7 and E7 is GIC-observed-by E1. E1 is
GSB-ordered-before E7. As a result, this execution violates the external visibility requirement as it creates a
cycle in the Ordered-before relation.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

776



Chapter B1. Interrupt ordering litmus tests
B1.25. Configuration read and interrupt acknowledge

B1.25 Configuration read and interrupt acknowledge

B1.25.1 Notes

The purpose of these tests is to show that if an interrupt is disabled, and that disable is observed by a configuration
read, then the interrupt cannot be acknowledged after observing the disable.

We show both a single-threaded and multi-threaded version of the test.

Illustrates a common principle of an interrupt acknowledge observing side effects of a write if that write can be
observed via an explicit read.

B1.25.2 Single-threaded litmus test

AArch64 coRR.ack
{
[INTID(A)]=(enabled:1,affinity:P0,pending:1);
0:X1=(intid:A);

}
P0 ;
GIC CDDIS, X1 ;
GIC CDRCFG, X1 ;
ISB ;
MRS X2, ICC_ICSR_EL1 ;
GICR X0, CDIA ;

exists(0:X0=(valid:1, intid:A))

kinds: coRR.ack Forbid

B1.25.2.1 Explanation
On P0:

• GIC CDDIS,X1 generates an Explicit Interrupt Write Effect to INTID(A) E1 and an Explicit Interrupt Write
Effect to INTID(A) E2 which sets the enabled state to 0

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E3.

• GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E4 and an Implicit Interrupt Write
Effect to INTID(A) E5.

In the execution that satisfies the postcondition:

• E4 Reads-from the initial value of INTID(A) and, as a result, due to the atomicity requirement for successful
pairs of Read Interrupt and Write Interrupt Effects, E5 is Coherence-before E2.

• Any of the following applies:

– E3 Reads-from the initial state of INTID and, as a result, E3 is Coherence-before E2. This violates the
requirements of the Coherence-before relation. As a result, this execution is architecturally forbidden.

– E3 Reads-from E5. This violates the Reads-from relation. As a result, this execution is architecturally
forbidden.

B1.25.3 Multi-threaded litmus test

AArch64 coRR.ack+dis+Rack
{
[INTID(A)]=(enabled:1,affinity:P1,pending:1);
0:X1=(intid:A);
1:X1=(intid:A);

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

777



Chapter B1. Interrupt ordering litmus tests
B1.25. Configuration read and interrupt acknowledge

}
P0 | P1 ;
GIC CDDIS, X1 | GIC CDRCFG, X1 ;

| ISB ;
| MRS X2, ICC_ICSR_EL1 ;
| GICR X0, CDIA ;

exists(1:X2=(enabled:0, affinity:P1, pending:1) /\
1:X0=(valid:1, intid:A))

kinds: coRR.ack+dis+Rack Forbid

B1.25.3.1 Explanation
• GIC CDDIS,X1 generates an Explicit Interrupt Write Effect to INTID(A) E1 and an Explicit Interrupt Write

Effect to INTID(A) E2 which sets the enabled state to 0

On P1:

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E3.

• GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E4 and an Implicit Interrupt Write
Effect to INTID(A) E5.

In the execution that satisfies the postcondition:

• E3 is in program order before E4.

• E3 and E4 are to the same Interrupt Location INTID(A).

• E4 Reads-from the initial state of INTID(A) and as a result E4 is Coherence-before E~2. This means that E3
is GIC-Hazard-Ordered-before E2

• E3 Reads-from E2 and as a result, E2 is GIC-Observed-by E3.

This creates a cycle in the Ordered-before relation and as a result, the execution violates the External visibility
requirement.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

778



Chapter B1. Interrupt ordering litmus tests
B1.26. Atomicity of interrupt acknowledge

B1.26 Atomicity of interrupt acknowledge

B1.26.1 Notes

The purpose of this test is to show that the two interrupt write effects of acknowledging an interrupt are atomic
with respect to any read effect to the interrupt.

B1.26.2 Litmus test

AArch64 atomic-gic.ack
{
[INTID(A)]=(enabled:1,affinity:P0,active:0,pending:1,handling_mode:edge);
1:X0=(intid:A)

}
P0 | P1 ;
GICR X0, CDIA | GIC CDRCFG, X0 ;

| ISB ;
| MRS X1, ICC_ICSR_EL1 ;

exists(1:X1=(pending:1, active:1) \/
1:X1=(pending:0, active:0))

kinds: atomic-gic.ack Forbid

B1.26.2.1 Explanation
On P0:

• GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E1 and an Implicit Interrupt Write
Effect to INTID(A) E2 and atomically sets the pending state to 0 and the active state to 1.

On P1:

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E3.

In the execution that satisfies the postcondition, E3 reads that either the pending state is 1 and the active state is
1, or the pending state is 0 and the active state is 0. Both postconditions violate the atomicity requirement of
E2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

779



Chapter B1. Interrupt ordering litmus tests
B1.27. Atomicity of interrupt disable and acknowledge

B1.27 Atomicity of interrupt disable and acknowledge

B1.27.1 Notes

This test demonstrates the interaction between disabling (clearing Enabled) and acknowledging an INTID from
different PEs.

Illustrates a common principle of interrupt acknowledgement observing side effects of a write if that write can be
observed via an explicit read.

B1.27.2 Litmus test

AArch64 atomic.ack.dis.gic+W+R
{
[INTID(A)]=(enabled:1,affinity:P0,pending:1,active:0);
1:X1=(intid:A); 2:X1=(intid:A);

}
P0 | P1 | P2 ;
GICR X2, CDIA | GIC CDDIS, X1 | GIC CDRCFG, X1 ;

| | ISB ;
| | MRS X2, ICC_ICSR_EL1 ;

exists(0:X2=(valid:1,intid:A) /\
2:X2=(enabled:0, pending:1, active:0))

kinds: atomic.ack.dis.gic+W+R Forbid

B1.27.2.1 Explanation
On P0:

• GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E1 and an Implicit Interrupt Write
Effect to INTID(A) E2 and atomically sets the pending state to 0 and the active state to 1.

On P1:

• GIC CDDIS,X1 generates an Explicit Interrupt Read Effect to INTID(A) E3 and an Explicit Interrupt Write
Effect to INTID(A) E4 and atomically sets the enabled state to 0.

On P2:

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E5.

In the execution that satisfies the postcondition, E5 Reads-from E4 and E4 is GIC-observed-by E5. The postcondition
also requires that E3 Reads-from the initial state of INTID(A). At the same time, E1 Reads-from the initial state
of INTID(A). This violates the atomicity requirement for successful pairs of Read Interrupt and Write Interrupt
Effects which should apply for the pairs of E3, E~4 and E1, E2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

780



Chapter B1. Interrupt ordering litmus tests
B1.28. Interrupt handler completion

B1.28 Interrupt handler completion

B1.28.1 Notes

The purpose of this test is to show that when an interrupt can be acknowledged on a PE, then disabling the interrupt
on a different PE followed by reading back the interrupt configuration and state, exactly one of the following is
true:

• The interrupt is observed as Active and P0 has acknowledged the interrupt.
• The interrupt is not observed as Active and P0 will not acknowledge the interrupt.

This illustrates a concept that operating systems would rely on, which is that if they’ve disabled the interrupt and
observe an interrupt is not active, then that interrupt cannot be taken and become active without the interrupt being
enabled again.

B1.28.2 Litmus test

AArch64 atomic.ack.gic-ib+W-R-si-R
{
[INTID(A)]=(enabled:1,affinity:P0,pending:1,active:0);
1:X1=(intid:A);

}
P0 | P1 ;
GICR X2, CDIA | GIC CDDIS, X1 ;

| GIC CDRCFG, X1 ;
| ISB ;
| MRS X2, ICC_ICSR_EL1 ;

exists(0:X2=(valid:1, intid:A) /\
1:X2=(enabled:0, affinity:P0, pending:1, active:0))

kinds: atomic.ack.gic-ib+W-R-si-R Forbid

B1.28.2.1 Explanation
On P0:

• GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E1 and an Implicit Interrupt Write
Effect to INTID(A) E2 and atomically sets the pending state to 0 and the active state to 1.

On P1:

• GIC CDDIS,X1 generates an Explicit Interrupt Read Effect to INTID(A) E3 and an Explicit Interrupt Write
Effect to INTID(A) E4 and atomically sets the enabled state to 0.

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect to INTID(A) E5.

In the execution that satisfies the postcondition:

• E1 Reads-from the initial value of INTID(A) and, as a result, E1 is Coherence-before E4.

• E-5~ Reads-from E3.

• E5 is Coherence-before E2 and, as a result, E4 is also Coherence-before E~2.

This execution violates the atomicity requirement for the successful pair of Read Interrupt Effect E1 and Write
Interrupt Effect E2, as E1 is Coherence-before E4 and E4 is Coherence-before E2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

781



Chapter B1. Interrupt ordering litmus tests
B1.29. Configuration update while disabled

B1.29 Configuration update while disabled

B1.29.1 Notes

The purpose of this test is to show that if multiple writes occur to the same interrupt while the interrupt is disabled,
the interrupt will not be acknowledged and observe a partially updated interrupt.

B1.29.2 Litmus test

AArch64 coWWW-gic.dis-en+ack+ack
{
[INTID(A)]=(enabled:1, affinity:P1, active:0, pending:1, priority:5);
0:X0=(intid:A);
0:X1=(intid:A, priority:4);
0:X2=(intid:A, affinity:P2);

1:X1=(intid:A);
}
P0 | P1 | P2 ;
GIC CDDIS, X0 | GICR X2, CDIA | GICR X2, CDIA ;
GIC CDPRI, X1 | ISB | ISB ;
GIC CDAFF, X2 | MRS X0, ICC_HAPR_EL1 | MRS X0, ICC_HAPR_EL1 ;
GIC CDEN, X0 | | ;

exists((1:X2=(valid:1, intid:A) /\ 1:X0=(priority:4)) \/
(2:X2=(valid:1, intid:A) /\ 2:X0=(priority:5)))

kinds: coWWW-gic.dis-en+ack+ack Forbid

B1.29.2.1 Explanation
On P0:

• GIC CDDIS,X0 generates an Explicit Interrupt Read Effect to INTID(A) E1 and an Explicit Interrupt Write
Effect to INTID(A) E2 and sets its enabled state to 0.

• GIC CDPRI,X1 generates an Explicit Interrupt Read Effect to INTID(A) E3 and an Explicit Interrupt Write
Effect to INTID(A) E4 and sets its priotity to 4.

• GIC CDAFF,X2 generates an Explicit Interrupt Read Effect to INTID(A) E5 and an Explicit Interrupt Write
Effect to INTID(A) E6 and sets its affininity to P2.

• GIC CDEN,X0 generates an Explicit Interrupt Read Effect to INTID(A) E7 and an Explicit Interrupt Write
Effect to INTID(A) E8 and sets its enabled state to 1.

On P1:

• GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E9.

On P2:

• GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E10.

In the execution that satisfies the postcondition, any of the following applies:

• E4 is Coherence-before E2, E2 is Coherence-before E6 and E~8. E9 Reads-from E4. In this execution, E3 is
Coherence-before E2 which violates the requirements of the Coherence-before relation.

• E2 is Coherence-before E4, E4 is Coherence-before E8, E8 is Coherence-before E6. E9 Reads-from E8. In this
execution, E7 is Coherence-before E6 which violates the requirements of the Coherence-before relation.

• E6 is Coherence-before E2, E2 is Coherence-before E4 and E~8. E10 Reads-from E6. In this execution, E5 is
Coherence-before E2 which violates the requirements of the Coherence-before relation.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

782



Chapter B1. Interrupt ordering litmus tests
B1.29. Configuration update while disabled

• E2 is Coherence-before E6, E6 is Coherence-before E8, E8 is Coherence-before E4. E10 Reads-from E8. In
this execution, E7 is Coherence-before E4 which violates the requirements of the Coherence-before relation.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

783



Chapter B1. Interrupt ordering litmus tests
B1.30. Atomicity of interrupt acknowledge and retarget

B1.30 Atomicity of interrupt acknowledge and retarget

B1.30.1 Notes

The purpose of this test is to show that even though an interrupt can be acknowledged and subsequently made
pending, it cannot be acknowledged a second time without a deactivate of the interrupt taking place.

B1.30.2 Litmus test

AArch64 co.ack-gic+WP+ack+ack
{
[INTID(A)]=(enabled:1,affinity:P1,pending:1,active:0);
0:X0=(intid:A, pending:1);
0:X1=(intid:A, affinity:P2);

}
P0 | P1 | P2 ;
GIC CDAFF, X1 | GICR X2, CDIA | GICR X2, CDIA ;
GIC CDPEND, X0 | | ;

exists(1:X2=(valid:1,intid:A) /\ 2:X2=(valid:1,intid:A))

kinds: co.ack-gic+WP+ack+ack Forbid

B1.30.2.1 Explanation
On P0:

• GIC CDAFF,X1 generates an Explicit Interrupt Read Effect to INTID(A) E1 and an Explicit Interrupt Write
Effect to INTID(A) E2 that sets its affinity to P2.

• GIC CDPEND,X0 generates an Explicit Interrupt Read Effect to INTID(A) E3 and an Explicit Interrupt Write
Effect to INTID(A) E4 that set its pending state to 1.

On P1:

• GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E5 and an Implicit Interrupt Read
Effect to INTID(A) E6 thats resets its pending state to 0 and its active state to 1.

On P3:

• GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E7 and an Implicit Interrupt Read
Effect to INTID(A) E8 thats resets its pending state to 0 and its active state to 1.

In one of the possible executions that satisfies the postcondition:

• E5 Reads-from the initial state of INTID(A) and as result E5 is Coherence-before E2.

• E7 Reads-from E2.

• E2 is Coherence-before E6.

This execution violates the atomicity requirement for the successful pair of Read Interrupt Effect E5 and Write
Interrupt Effect E6, as E5 is Coherence-before E2 and E2 is Coherence-before E6.

There are other executions that satisfy the postcondition all of which violate the atomicity requirement for a
successful pair of Read Interrupt and Write Interrupt Effects.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

784



Chapter B1. Interrupt ordering litmus tests
B1.31. 1ofN interrupt acknowledge

B1.31 1ofN interrupt acknowledge

B1.31.1 Notes

The purpose of this test is to show that a 1ofN interrupt can only be acknowledged on a single PE.

B1.31.2 Litmus test

AArch64 co.ack.1ofN-gic
{
[INTID(A)]=(enabled:1,affinity:1ofN,pending:1,active:0);

}
P0 | P1 ;
GICR X2, CDIA | GICR X2, CDIA ;

exists(0:X2=(valid:1,intid:A) /\ 1:X2=(valid:1,intid:A))

kinds: co.ack.1ofN-gic Forbid

B1.31.2.1 Explanation
• GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E1 and an Implicit Interrupt Read

Effect to INTID(A) E2 thats resets its pending state to 0 and its active state to 1.

On P3:

• GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E3 and an Implicit Interrupt Read
Effect to INTID(A) E4 thats resets its pending state to 0 and its active state to 1.

In one of the execution that satisfies the postcondition:

• E1 Reads-from the initial state of INTID(A) and as result E1 and E2 are Coherence-before E4.

• E3 Reads-from the initial state of INTID(A) and as result E3 and E4 are Coherence-before E2.

This execution violates the atomicity requirement for the successful pair of Read Interrupt Effect E1 and Write
Interrupt Effect E2, as E1 is Coherence-before E4 and E4 is Coherence-before E2.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

785



Chapter B1. Interrupt ordering litmus tests
B1.32. Retargeting interrupts without synchronization

B1.32 Retargeting interrupts without synchronization

B1.32.1 Notes

The purpose of this test is to show that due to the total order on writes to the same interrupt location, a write to
change an interrupt’s Affinity followed by a write to make the interrupt Pending, results in an interrupt not being
taken on the old PE.

B1.32.2 Litmus test

AArch64 coWW.ack-gic+WP+ack
{
[INTID(A)]=(enabled:1,affinity:P1,pending:0,active:0);
0:X0=(intid:A, pending:1); 0:X1=(intid:A, affinity:P0);
1:X0=x; 1:X1=(intid:A);

}
P0 | P1 ;
GIC CDAFF, X1 | GICR X2, CDIA ;
GIC CDPEND, X0 | ;

exists(1:X2=(valid:1,intid:A))

kinds: coWW.ack-gic+WP+ack Forbid

B1.32.2.1 Explanation
On P0:

• GIC CDAFF,X1 generates an Explicit Interrupt Read Effect to INTID(A) E1 and an Explicit Interrupt Write
Effect to INTID(A) E2 that sets its affinity to P0.

• GIC CDPEND,X0 generates an Explicit Interrupt Read Effect to INTID(A) E3 and an Explicit Interrupt Write
Effect to INTID(A) E4 that set its pending state to 0.

On P1:

• GICR X2,CDIA generates an Implicit Interrupt Read Effect to INTID(A) E5.

In the execution that satisfies the postcondition:

• E5 Reads-from E4.

• E4 is Coherence-before E2 and, as a result, E3 is also Coherence-before E~2. This violates the requirements
of the Coherence-before relation and, as a result, this is an architecturally forbidden execution.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

786



Chapter B1. Interrupt ordering litmus tests
B1.33. Reading interrupt configuration and exception status

B1.33 Reading interrupt configuration and exception status

B1.33.1 Notes

The purpose of these tests is to show the interaction between observing a change to an interrupt configuration and
observing a corresponding change in the interrupt exception pending status.

See also:

• B1.6 Configuration and acknowledgement

B1.33.2 Litmus test with ISB before reading IRQ pending status

AArch64 coRex-gic+dis+RisbR
{
[INTID(A)]=(enabled:1, pending:1, affinity:P1);
0:X1=(intid:A);
1:X1=(intid:A);

}
P0 | P1 ;
GIC CDDIS, X1 | GIC CDRCFG, X1 ;

| ISB ;
| MRS X2, ICC_ICSR_EL1 ;
| MRS X0, ISR_EL1 ;

exists(1:X2=(enabled:0) /\ 1:X0=(I:1))

kinds: coRex-gic+dis+RisbR Forbid

B1.33.2.1 Explanation
For the execution that validates the postcondition:

On P0:

• GIC CDDIS,X1 generates an Explicit Interrupt Write Effect E1 to INTID(A).

On P1:

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect E2 to INTID(A).

• ISB generates an Instruction Fetch Barrier Effect E3.

• MRS X0, ISR_EL1 generates a Direct System Register Read Effect to ISR_EL1 E4.

In the execution that satisfies the postcondition, E2 Reads-from E1. But E4 indicates that INTID(A) is still
the HPPI. However because of E3 INTID(A) is disabled and cannot be the HPPI. As a result, this execution is
architecturally forbidden.

B1.33.3 Litmus test with ISB after reading IRQ pending status

AArch64 coRex-gic+dis+RR
{
[INTID(A)]=(enabled:1, pending:1, affinity:P1);
0:X1=(intid:A);
1:X1=(intid:A);

}
P0 | P1 ;
GIC CDDIS, X1 | GIC CDRCFG, X1 ;

| MRS X0, ISR_EL1 ;
| ISB ;
| MRS X2, ICC_ICSR_EL1 ;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

787



Chapter B1. Interrupt ordering litmus tests
B1.33. Reading interrupt configuration and exception status

exists(1:X2=(enabled:0) /\ 1:X0=(I:1))

kinds: coRex-gic+dis+RR Allow

B1.33.3.1 Explanation
For the execution that validates the postcondition:

On P0:

• GIC CDDIS,X1 generates an Explicit Interrupt Write Effect E1 to INTID(A).

On P1:

• GIC CDRCFG, X1 generates an Explicit Interrupt Read Effect E2 to INTID(A).

• MRS X0, ISR_EL1 generates a Direct System Register Read Effect to ISR_EL1 E4.

In the execution that satisfies the postcondition, E2 Reads-from E1. But E4 indicates that INTID(A) is still the
HPPI. This execution is architecturally allowed.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

788



Chapter B1. Interrupt ordering litmus tests
B1.34. Reading interrupt configuration and IRQ unmask in PSTATE

B1.34 Reading interrupt configuration and IRQ unmask in PSTATE

B1.34.1 Notes

The purpose of these tests is to show the interaction between observing a change to an interrupt configuration and
observing the corresponding interrupt exception.

See also:

• B1.9 Configuration write and IRQ unmask in PSTATE

B1.34.2 Explanation

The interrupt read effect R1 of GIC CDRCFG, X1 on P1 may or may not observe the interrupt write effect W2 of
GIC CDDIS, X1 on P0, but if it does, it means that the interrupt has been recalled from P1 on completion of W2.

If R1 from GIC CDRCFG, X1 observes W2 from GIC CDDIS, X1, then effects of W2 on the execution context
(whether an IRQ exception is pending) must be observed by the instructions following the ISB. This means that
when DAIFClr PSTATE.I is executed, the IRQ interrupt exception will not be taken.

B1.34.3 Litmus test with ISB before unmasking IRQ in PSTATE

AArch64 coRR+gic.cddis+gic.cdrcfg-isb-clr.i
{
[INTID(A)]=(enabled:1, pending:1, affinity:P1);
0:X1=(intid:A);
1:X1=(intid:A);

}
P0 | P1 ;
GIC CDDIS, X1 | GIC CDRCFG, X1 ;

| ISB ;
| MRS X2, ICC_ICSR_EL1 ;
| DAIFClr PSTATE.I ;

exists(1:X2=(enabled:0) /\ async(P1, IRQ)

kinds: coRR+gic.cddis+gic.cdrcfg-isb-clr.i Forbid

B1.34.4 Litmus test with ISB after unmasking IRQ in PSTATE

AArch64 coRR+gic.cddis+gic.cdrcfg-clr.i-isb
{
[INTID(A)]=(enabled:1, pending:1, affinity:P1);
0:X1=(intid:A);
1:X1=(intid:A);

}
P0 | P1 ;
GIC CDDIS, X1 | GIC CDRCFG, X1 ;

| DAIFClr PSTATE.I ;
| ISB ;
| MRS X2, ICC_ICSR_EL1 ;

exists(1:X2=(enabled:0) /\ async(P1, IRQ)

kinds: coRR+gic.cddis+gic.cdrcfg-clr.i-isb Allow

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

789



Chapter B1. Interrupt ordering litmus tests
B1.35. PPI activate and system register read

B1.35 PPI activate and system register read

B1.35.1 Notes

The PPI active state is stored in system registers.

These tests show that an ISB is required to guarantee the updates to the system registers from acknowledge
interrupts are visible to a system register read.

Illustrates a common principle that any instruction with effects to state held in system registers, including GICR
and GIC instructions affecting PPI state, can be observed following an ISB.

B1.35.2 Litmus test without ISB

AArch64 coWmrs.ack
{
0:[ppi(0)]=(enabled:1,pending:1,active:0);

}
P0
GICR X0, CDIA ;
MRS X1, ICC_PPI_SACTIVER0_EL1 ;

exists(0:X0=(valid:1, initd:ppi0) /\ 0:X1=0)

kinds: coWmrs.ack Allow

B1.35.2.1 Explanation
On P0:

• GICR X0,CDIA acknowleges ppi(0) and as a result generates an Indirect System Register Write Effect to
ICC_PPI_SACTIVER0_EL1 E1.

• MRS X1, ICC_PPI_SACTIVER0_EL1 generates a Direct System Register Read Effect to
ICC_PPI_SACTIVER0_EL1 E2.

As per the postcondition, E2 is Coherence-before E1 which is architecturally allowed. See ‘Table D24-1
Synchronization requirements’ in the Architecture Reference Manual for A-profile [1] for more information.

B1.35.3 Litmus test with GSB

AArch64 coWmrs.ack+gsb
{
0:[ppi(0)]=(enabled:1,pending:1,active:0);

}
P0
GICR X0, CDIA ;
GSB ACK ;
MRS X1, ICC_PPI_SACTIVER0_EL1 ;

exists(0:X0=(valid:1, initd:ppi0) /\ 0:X1=0)

kinds: coWmrs.ack+gsb Allow

B1.35.3.1 Explanation
On P0:

• GICR X0,CDIA acknowleges ppi(0) and as a result generates an Indirect System Register Write Effect to
ICC_PPI_SACTIVER0_EL1 E1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

790



Chapter B1. Interrupt ordering litmus tests
B1.35. PPI activate and system register read

• GSB ACK generates a GSB ACK Effect E2.

• MRS X1, ICC_PPI_SACTIVER0_EL1 generates a Direct System Register Read Effect to
ICC_PPI_SACTIVER0_EL1 E3.

As per the postcondition, E3 is Coherence-before E1 which is architecturally allowed. See ‘Table D24-1
Synchronization requirements’ in the Architecture Reference Manual for A-profile [1] for more information.

B1.35.4 Litmus test with ISB

AArch64 coWmrs.ack+isb
{
0:[ppi(0)]=(enabled:1,pending:1,active:0);

}
P0
GICR X0, CDIA ;
ISB ;
MRS X1, ICC_PPI_SACTIVER0_EL1 ;

exists(0:X0=(valid:1, initd:ppi0) /\ 0:X1=0)

kinds: coWmrs.ack+isb Forbid

B1.35.4.1 Explanation
On P0:

• GICR X0,CDIA acknowleges ppi(0) and as a result generates an Indirect System Register Write Effect to
ICC_PPI_SACTIVER0_EL1 E1.

• ISB generates an Instruction Fetch Barrier Effect E2 which is a Context Synchronization Event.

• MRS X1, ICC_PPI_SACTIVER0_EL1 generates a Direct System Register Read Effect to
ICC_PPI_SACTIVER0_EL1 E3.

As per the postcondition, E3 is Coherence-before E1. This violates the requirements of the Coherence-before
definition. As a result this execution is architecturally forbidden.

See also ‘Table D24-1 Synchronization requirements’ in the Architecture Reference Manual for A-profile [1] for
more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

791



Chapter B1. Interrupt ordering litmus tests
B1.36. PPI disable and acknowledge

B1.36 PPI disable and acknowledge

B1.36.1 Notes

The PPI configuration is stored in system registers.

The purpose of the test is to show that the effects of updates to the execution context are completed by the ISB,
including which PPIs can be the HPPI.

Illustrates a common principle that any instruction with effects to state held in system registers, including GICR
and GIC instructions affecting PPI state, can be observed following an ISB.

B1.36.2 Litmus test with ISB

AArch64 comsrR.ack+isb
{
0:[ppi(0)]=(enabled:1,pending:1,active:0);
0:X1=(ppi0:1);

}
P0
MSR ICC_PPI_CENABLER0_EL1, X1 ;
ISB ;
GICR X0, CDIA ;

exists(0:X0=(valid:1, initd:ppi0))

kinds: comsrR.ack+isb Forbid

B1.36.2.1 Explanation
On P0:

• MSR ICC_PPI_CENABLER0_EL1, X1 generates a Direct System Register Write Effect to
ICC_PPI_CENABLER0_EL1 E1 and disables ppi(0).

• ISB generates an Instruction Fetch Barrier Effect E2 which is a Context Synchronization Event.

• GICR X0,CDIA acknowleges ppi(0) and as a result generates an Indirect System Register Read Effect to
ICC_PPI_CENABLER0_EL1 E3.

As per the postcondition, E3 is Coherence-before E1 as E3 finds ppi(0) still enabled. This violates the requirements
of the Coherence-before definition. As a result this execution is architecturally forbidden.

See also ‘Table D24-1 Synchronization requirements’ in the Architecture Reference Manual for A-profile [1] for
more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

792



Chapter B1. Interrupt ordering litmus tests
B1.37. PPI acknowledgement

B1.37 PPI acknowledgement

B1.37.1 Notes

The PPI active state is stored in system registers.

The purpose of the test is to show that a GICR instruction that acknowledges a PPI generates an Indirect System
Register Write to ICC_PPI_SPEND<n>_EL1.

B1.37.2 Litmus test

AArch64 coWR-ppi+ia-isb-mrs.sprendr1
{
0:[ppi(64)]=(enabled:1,pending:1,active:0); // Edge-triggered IMPDEF PPI 64
0:X1=1;

}
P0
GICR X0, CDIA ;
ISB ;
MRS ICC_PPI_SPENDR1_EL1, X2 ;

exists(0:X2=1)

kinds: coWR-ppi+ia-isb-mrs.sprendr1 Forbid

B1.37.2.1 Explanation
In the execution that satisfies the postcondition, on P0:

• GICR X1, CDIA acknowledges ppi(64) and generates an Indirect System Register Write to
ICC_PPI_SPEND1_EL1 E1 and sets Pend0 to 0.

• ISB generates an Instruction Fetch Barrier Effect E2 which is a Context Synchronization Event.

• MRS ICC_PPI_SPEND1_EL1, X2 generates a Direct System Register Read to ICC_PPI_SPEND1_EL1 E3.

As per the postcondition, E3 is Coherence-before E1. This violates the requirements of the Coherence-before
definition. As a result this execution is architecturally forbidden. See ‘Table D24-1 Synchronization requirements’
in the Architecture Reference Manual for A-profile [1] for more information.

B1.37.3 Litmus test

AArch64 edge-merging.ppi
{
0:[ppi(64)]=(enabled:1,pending:1,active:0); // Edge-triggered IMPDEF PPI 64
0:X1=1;

}
P0
GICR X0, CDIA ;
MSR ICC_PPI_SPENDR1_EL1, X1 ;
MRS ICC_PPI_SPENDR1_EL1, X2 ;

exists(0:X2=0)

kinds: edge-merging.ppi Forbid

B1.37.3.1 Explanation
In the execution that satisfies the postcondition, on P0:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

793



Chapter B1. Interrupt ordering litmus tests
B1.37. PPI acknowledgement

• GICR X1, CDIA acknowledges ppi(64) and generates an Indirect System Register Write to
ICC_PPI_SPEND1_EL1 E1 and sets Pend0 to 0.

• MSR ICC_PPI_SPEND1_EL1, X1 generates a Direct System Register Write to ICC_PPI_SPEND1_EL1 E2
and sets Pend0 to 1.

• MRS ICC_PPI_SPEND1_EL1, X2 generates a Direct System Register Read to ICC_PPI_SPEND1_EL1 E3.

As per the postcondition, E3 Reads-from E1. This is architecturally forbidden as E1 and E2 are ordered without the
need of synchronization, and E3 has to Read-from E2 as both are Direct System Register Effects.

See also Arm® Architecture Reference Manual, for A-profile architecture[1] Table D24-1 Synchronization
requirements’ for more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

794



Chapter B1. Interrupt ordering litmus tests
B1.38. Write after changing resident VM

B1.38 Write after changing resident VM

B1.38.1 Notes

The purpose of this test is to show that an ISB is required to change the resident VM on a PE so that interrupt write
effects are made to the expected interrupts.

Illustrates a common principle that any instruction with effects to state held in system registers, including GICR
and GIC instructions affecting PPI state, can be observed following an ISB.

B1.38.2 Litmus test

AArch64 vmW-gic+R
{
[VM0:INTID(A)]=(enabled:0);
[VM1:INTID(A)]=(enabled:0);
0:ICH_CONTEXTR_EL2=(VM1, VPE0, VALID);
0:X0=(intid:A); 0:X1=(VM0, VPE0, VALID);
1:ICH_CONTEXTR_EL2=(VM1, VPE1, VALID);
1:X0=(intid:A);

}
P0 | P1 ;
MSR ICH_CONTEXTR_EL2, XZR | GIC VDRCFG, X0 ;
MSR ICH_CONTEXTR_EL2, X1 | ISB ;
ISB | MRS X2, ICC_ICSR_EL1 ;
GIC VDEN, X0 | ;

exists(1:X2=(enabled:1))

kinds: vmW-gic+R Forbid

B1.38.2.1 Explanation
On P0:

• MSR ICH_CONTEXTR_EL2, XZR generates a Direct System Register Write Effect to ICH_CONTEXTR_EL2
E1 and ensures that there is no resident VPE.

• MSR ICH_CONTEXTR_EL2, X1 generates a Direct System Register Write Effect to ICH_CONTEXTR_EL2
E2 and makes VPE 0 of VM 0 resident.

• ISB generates an Instruction Fetch Barrier Effect E3 which is a Context Synchronization Event.

• GIC VDEN, X0 generates an Indirect System Register Read to ICH_CONTEXTR_EL2 E4 and an Explicit
Interrupt Write Effect to INTID(A) E5 enabling INTID(A).

On P1:

• GIC VDRCFG, X0 generates an Indirect System Register Read to ICH_CONTEXTR_EL2 E6 and an Explicit
Interrupt Read Effect to INTID(A) E7.

As per the postcondition, E7 reads that INTID(A) is enabled which could only have happened if E7 Reads-from
E5. This in turn means that E5 was to VM1:INTID(A) and as a result, E4 Reads-from the initial value of
ICH_CONTEXTR_EL2 and E4 is Coherence-before E2. This violates the requirements of the Coherence-before
definition and this execution is architecturally forbidden.

See ‘Table D24-1 Synchronization requirements’ in the Architecture Reference Manual for A-profile [1] for more
information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

795



Chapter B1. Interrupt ordering litmus tests
B1.39. Write before changing resident VM

B1.39 Write before changing resident VM

B1.39.1 Notes

The purpose of this test is to show that an ISB is not needed to ensure that interrupt write effects are made to the
resident VM when an instruction to change the resident VM occurs in program order after the instruction causing
the interrupt write effect.

B1.39.2 Litmus test

AArch64 Wvm-gic+R
{
[VM0:INTID(A)]=(enabled:0);
[VM1:INTID(A)]=(enabled:0);
0:ICH_CONTEXTR_EL2=(VM0, VPE0);
0:X0=(intid:A); 0:X1=(VM1, VPE0);
1:ICH_CONTEXTR_EL2=(VM1, VPE0);
1:X0=(intid:A);

}
P0 | P1 ;
GIC VDEN, X0 | GIC VDRCFG, X0 ;
MSR ICH_CONTEXTR_EL2, XZR | ISB ;
MSR ICH_CONTEXTR_EL2, X1 | MRS X2, ICC_ICSR_EL1 ;

exists(1:X2=(enabled:1))

kinds: Wvm-gic+R Forbid

B1.39.2.1 Explanation
On P0:

• GIC VDEN, X0 generates an Indirect System Register Read to ICH_CONTEXTR_EL2 E1 and an Explicit
Interrupt Write Effect to INTID(A) E2 enabling INTID(A).

• MSR ICH_CONTEXTR_EL2, XZR generates a Direct System Register Write Effect to ICH_CONTEXTR_EL2
E3 and ensures that there is no resident VPE.

• MSR ICH_CONTEXTR_EL2, X1 generates a Direct System Register Write Effect to ICH_CONTEXTR_EL2
E4 and makes VPE 0 of VM 0 resident.

On P1:

• GIC VDRCFG, X0 generates an Indirect System Register Read to ICH_CONTEXTR_EL2 E5 and an Explicit
Interrupt Read Effect to INTID(A) E6.

As per the postcondition, E6 reads that INTID(A) is enabled which could only have happened if E6 Reads-from
E2. This in turn means that E2 was to VM1:INTID(A) and as a result, E1 Reads-from E4. This violates the
requirements of the Reads-from definition and this execution is architecturally forbidden.

See ‘Table D24-1 Synchronization requirements’ in the Architecture Reference Manual for A-profile [1] for more
information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

796



Chapter B1. Interrupt ordering litmus tests
B1.40. Completion of GIC and GICR instructions in finite time

B1.40 Completion of GIC and GICR instructions in finite time

B1.40.1 Notes

The purpose of this test is to show that writes to Interrupt Locations are required to become visible to observers in
finite time.

B1.40.2 Litmus test with a priority update observed by a configuration read

AArch64 gic.pri+gic.rcfg-wait
{
[INTID(A)]=(priority:0);
0:X1=(intid:A, priority:1);
1:X0=(intid:A); 1:X2=(priority:1);

}
P0 | P1 ;
GIC CDPRI, X1 |L0: ;

| GIC CDRCFG, X0 ;
| ISB ;
| MRS X1, ICC_ICSR_EL1 ;
| CMP X1, X2 ;
| B.NE L0 ;

existsN(1:X1=(priority:1))

kinds: gic.pri+gic.rcfg-wait Require

B1.40.2.1 Explanation
On P0:

• GIC CDPRI,X1 generates an Explicit Interrupt Write Effect E1 to INTID(A).

On P1:

• GIC CDRCFG, X0 generates Explicit Interrupt Read Effects E2, E3, . . . En to INTID(A).

It is architecturally required that there is a finite number n for which En Reads-from E1.

B1.40.3 Litmus test with an interrupt acknowledge observed by a configuration read

AArch64 gic.ia+gic.rcfg-wait
{
[INTID(A)]=(enabled:1, pending:1, active:0, priority:1, affinity:P0);
1:X0=gicarg:(intid:A);
1:X2=(enabled:1, pending:0, active:1, priority:1, affinity:P0);

}
P0 | P1 ;
GICR X1,CDIA |L0: ;

| GIC CDRCFG, X0 ;
| ISB ;
| MRS X1, ICC_ICSR_EL1 ;
| CMP X1, X2 ;
| B.NE L0 ;

existsN(0:X1=(valid:1, intid:A) /\ 1:X1=(priority:1))

kinds: gic.ia+gic.rcfg-wait Require

B1.40.3.1 Explanation
On P0:

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

797



Chapter B1. Interrupt ordering litmus tests
B1.40. Completion of GIC and GICR instructions in finite time

• GICR X1,CDIA generates an Implicit Interrupt Write Effect E1 to INTID(A).

On P1:

• GIC CDRCFG, X0 generates Explicit Interrupt Read Effects E2, E3, . . . En to INTID(A).

It is architecturally required that there is a finite number n for which En Reads-from E1.

B1.40.4 Litmus test with an interrupt becoming pending and then acknowledged

AArch64 gic.pend1+gic.ia-wait
{
[INTID(A)]=(enabled:1, pending:0, active:0, priority:1, affinity:P1);
0:X0=(intid:A,pending:1);
1:X2=(valid:1,intid:A);

}
P0 | P1 ;
GIC CDPEND,X0 |L0: ;

| GICR X1,CDIA ;
| CMP X1, X2 ;
| B.NE L0 ;

existsN(1:X1=(valid:1,intid:A))

kinds: gic.pend1+gic.ia-wait Require

B1.40.4.1 Explanation
On P0:

• GIC CDPEND,X0 generates an Explicit Interrupt Write Effect E1 to INTID(A).

On P1:

• GICR X1,CDIA generates Implicit Interrupt Read Effects E2, E3, . . . En to INTID(A).

It is architecturally required that there is a finite number n for which En Reads-from E1.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

798



Chapter B2
Effects of disabling a PPI source on the PPI Pending state

B2.0.1 Notes

The purpose of this test is to show that updates to a PPI Pending state can not be synchronized by any instruction.

B2.0.2 Litmus test with disable of the timer state

AArch64 timer-disable-isb-ppi-read
{
0:[ppi(27)]=(enabled:1,pending:1,active:0);

}
P0
MRS X0, CNTV_CTL_EL0 ;
MOV X1, #0 ;
MSR CNTV_CTL_EL0, X1 ;
ISB ;
MRS X2, ICC_PPI_SPENDR0 ;

exists(0:X0=(ISTATUS=1,IMASK=0,ENABLE=1) /\ 0:X2=0x00020000)

kinds: timer-disable-isb-ppi-read Allow

B2.0.2.1 Explanation
Updates from a PPI source to the PPI Pending state is an autonomous asynchronous event. Even though the PPI
Pending state can be observed by reading the ICC_PPI_SPENDCR0 System register, the update to the PPI Pending
state is not an indirect System register write to ICC_PPI_SPENDRR0 caused by the direct System register write to
CNTV_CTL_EL0. Instead, the write to CNTV_CTL_EL0 is observed by the autonomous asynchronous event that
causes the EL1 Virtual Timer to evaluate its state and update the Pending state of the PPI.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

799



Part C
Model



Chapter C1
Operational model

IQZJCC The following code is an operational model of the GIC, written in Arm Specification Language (ASL). This section
is is at Alpha quality. Alpha quality means that most major features of the specification are described in this
release, but some features and details might be missing.

See also:

• Arm Specification Language Reference Manual [14].

// exceptions.asl
//
// This is the pseudocode implementing the exceptions signaling logic.

INTID GetHPPI(bits(2) domain)
return DOMAIN_HPPIS[UInt(domain)].intid;

boolean HasHPPI(bits(2) domain)
return DOMAIN_HPPIS[UInt(domain)].valid;

boolean DomainEnabled(bits(2) domain)
if domain == DOM_EL3 then

return ICC_CR0_EL3.EN == '1';
else

return BankedICC_CR0_EL1(domain).EN == '1';

bits(2) PhysicalIRQTarget()
route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR_EL2.TGE == '1' || HCR_EL2.IMO == '1'));

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

801



Chapter C1. Operational model

if PSTATE.EL == EL2 || route_to_el2 then
assert PSTATE.EL != EL3;
return EL2;

else
assert PSTATE.EL IN {EL0, EL1};
return EL1;

boolean NMIEnabled()
if PhysicalIRQTarget() == EL2 then

return SCTLR_EL2.NMI == '1';
if PhysicalIRQTarget() == EL1 then

return SCTLR_EL1.NMI == '1';
return FALSE;

integer GetRunningPriority(bits(2) domain)
return 31; // Should return the running priority based on the value in the

↪→banked ICC_APR_EL1 or ICC_APR_EL3

integer GetPriorityMask(bits(2) domain)
case domain of

when DOM_EL3 return UInt(ICC_PCR_EL3.Priority);
when DOM_S return UInt(ICC_PCR_EL1[0].Priority);
when DOM_NS return UInt(ICC_PCR_EL1[1].Priority);
when DOM_RL return UInt(ICC_PCR_EL1[2].Priority);

boolean HPPIAvailable(bits(2) domain)
if !DomainEnabled(domain) then

return FALSE;

hppi = GetHPPI(domain);
hppi_priority = UInt(hppi.Priority);
running_priority = GetRunningPriority(domain);
priority_mask = GetPriorityMask(domain);

return hppi_priority < running_priority && hppi_priority <= priority_mask;

bits(2) PreemptiveDomain()
return ICC_CR0_EL3.PID;

boolean PreemptiveHPPIAvailable(bits(2) domain)
if domain == DOM_EL3 then

return FALSE; // 0b10 in ICC_CR0_EL3.PID encodes no preemptive domain

if PreemptiveDomain() != domain then
return FALSE;

return HPPIAvailable(domain) && UInt(GetHPPI(domain).Priority) < UInt(
↪→BankedICC_CR0_EL1(domain).IPPT);

// GICSignalException()
// ====================
// Signal CPU interrupt exception based on HPPI availability in the Interrupt
// Domains.

GICPhysicalExceptions()
if CurrentDomain() == DOM_EL3 then

if HPPIAvailable(DOM_EL3) ||
HPPIAvailable(DOM_S) ||
HPPIAvailable(DOM_NS) ||

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

802



Chapter C1. Operational model

HPPIAvailable(DOM_RL) then
FIQ();

else // Non-EL3 Domain
if HPPIAvailable(EL3) || PreemptiveHPPIAvailable(PreemptiveDomain()) then

FIQ();
elsif HPPIAvailable(CurrentDomain()) then

IRQ();

return;

// gic_shared_functions.asl

sysreg_ICC_CR0_EL1 BankedICC_CR0_EL1(bits(2) domain)
case domain of

when DOM_EL3 assert FALSE;
when DOM_S return ICC_CR0_EL1[0];
when DOM_NS return ICC_CR0_EL1[1];
when DOM_RL return ICC_CR0_EL1[2];

bits(2) CurrentDomain()
if PSTATE.EL == EL3 then

return DOM_EL3;
else

bits(2) state_bits;
if HaveRME() then

state_bits = SCR_EL3.<NSE,NS>;
else

state_bits = '0' : SCR_EL3.NS;

case state_bits of
when '00' return DOM_S;
when '01' return DOM_NS;
when '10' Unreachable();
when '11' return DOM_RL;

// HavePreemptiveDomain()
// =============================
// Returns TRUE when the Domain selected by ICC_CR0_EL3 is implemented, FALSE

↪→otherwise

// MostPrivilegedSecurityState()
// =============================
// Returns the most privileged Security state

SecurityState MostPrivilegedSecurityState()
// We can always ask SecurityStateAtEL with 'EL3' to get the right answer even

↪→if EL3 is not implemented
return SecurityStateAtEL(EL3)

// IsAccessMPPAS()
// ================
// Returns TRUE when an access is made with the Most Privileged PAS

boolean IsAccessMPPAS();
mpss = MostPrivilegedSecurityState()

case mpss of
when SS_Root return IsAccessRoot();
when SS_Secure return IsAccessSecure();

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

803



Chapter C1. Operational model

when SS_NonSecure return IsAccessNonSecure();
when SS_Realm Unreachable();

// IsAccessIWBMPPAS()
// ================
// Returns TRUE when an access is made with the Most Privileged PAS of the IWB

boolean IsAccessIWBMPPAS();
iwb_mppas = IWBMPPAS()

case iwb_mppas of
when PAS_Root return IsAccessRoot();
when PAS_Secure return IsAccessSecure();
when PAS_NonSecure return IsAccessNonSecure();
otherwise Unreachable();

bits(2) IWBMPPAS()
domains = IWB_IDR0.INT_DOMS
case domains of

when '0001' return PAS_Secure;
when '0010' return PAS_NonSecure;
when '0111' return PAS_Secure;
when '1110' return PAS_Root;
when '1111' return PAS_Root;
otherwise Unreachable();

// IsWireAccessible()
// ================
// Returns TRUE when a wire can be configured on an IWB for a given access PAS

boolean IsWireAccessible(bits(11) n, bits(5) x)
// IWB MPPAS can access state of all wires
if IsAccessIWBMPPAS() then

return TRUE;

reg_index = (n * 2) + (x / 16);
wire_index = x MOD 16;
wire_domain = IWB_WDOMAINR[reg_index].WDOM[wire_index];

if IsAccessRoot() then
// If PAS is Root and it is not the IWB MPPAS, then either EL3 Domain is
// not supported or it is associated with the Secure PAS.
return FALSE;

if IsAccessSecure() then
// Wire cannot be accessed if Secure Interrupt Domain is not implemented.
if IWB_IDR0.INT_DOMS[0] == 0 then

return FALSE;
if wire_domain == DOM_S then

return TRUE;

if IsAccessRealm() then
// Wire cannot be accessed if Realm Interrupt Domain is not implemented.
if IWB_IDR0.INT_DOMS[3] == 0 then

return FALSE;
if wire_domain == DOM_RL then

return TRUE;

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

804



Chapter C1. Operational model

if IsAccessNonSecure() then
// Wire cannot be accessed if Non-secure Interrupt Domain is not

↪→implemented.
if IWB_IDR0.INT_DOMS[1] == 0 then

return FALSE;
if wire_domain == DOM_NS then

return TRUE;

Unreachable();

// IsWireDomainRO()
// ================
// Returns TRUE if the Interrupt Domain assignment of an IWB input wire is fixed

boolean IsWireDomainRO(bits(16) wire_idx)
return IMPLEMENTATION_DEFINED "Whether the Interrupt Domain assignment of a

↪→wire is fixed.";

// IsWireConfigRO()
// ================
// Returns TRUE if the Trigger mode of an IWB input wire is read-only

boolean IsWireConfigRO(bits(16) wire_idx)
return IMPLEMENTATION_DEFINED "Whether an IWB input wire Trigger mode is read-

↪→only";

// IsPPIAssignedToCurrentDomain()
// ================
// Returns TRUE when a physial PPI is assigned to the Current Physical Interrupt

↪→Domain

boolean IsPPIAssignedToCurrentDomain(bits(7) PPI_ID)
n = PPI_ID DIV 32;
x = PPI_ID MOD 32;

if !HaveEL(EL3) then
return TRUE;

return ICC_PPI_DOMAINR_EL3[n]<x + 1:x> == CurrentDomain();

// IsSPIAssignedToDomain()
// ================
// Returns TRUE if the SPI is assigned to the specified domain.
// This would be correctly modeled by accessing the internal SPI Domain assignment

↪→state that is exposed via IRS_SPI_DOMAINR.

boolean IsSPIDVISupported(bits(29) spi_id, bits(2) domain);

// IsSPIDVISupported()
// ================
// Returns TRUE if the SPI supports being assigned to a VM.
// Arm strongly recommends that an SPI that can be driven by a signal external to

↪→the IRS supports assignment to a VM.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

805



Chapter C1. Operational model

boolean IsSPIDVISupported(bits(29) spi_id)
return IMPLEMENTATION_DEFINED "Whether the SPI can be assigned to a VM.";

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

806



Glossary

Glossary

Abort

Any situation where the memory system returns an error response to a memory access by the GIC. Examples of
error responses could include GPF faults returned by an SMMU[5] or DECERR in AMBA AXI[7] systems.

Accepted

An event has been Accepted by a GICv5 system component when it has sent a reply to the sender of the event. See
3.2 Communication between GIC system components for more information.

Application PE

A PE used by the operating system or hypervisor to execute user application or kernel threads.

ASL

Arm Specification Language
Language used to express pseudocode implementations. Formal language definition can be found in the Arm®

Specification Language Reference Manual[14].

Candidate HPPI

An interrupt identified among a subset of all interrupts as a candidate for the HPPI. See 2.7 Interrupt Prioritization
for more information.

Doorbell PPI

A PPI used to signal to an Interrupt Domain that there is an interrupt pending for another Interrupt Domain. See
2.9.6 Doorbell PPIs for more information.

Downstream

An interrupt signal flows downstream from the interrupt source through the ITS, IRS, and is presented to PEs.

Where two components are involved, upstream is the component farthest away from the PE, and downstream is the
component closest to the PE.

This also applies to the GICv5 Stream protocol where downstream packets flow from the IRS to the PE, and
upstream packets flow from the PE to the IRS.

GPC

Granule Protection Check. The process of checking whether an access to a Location is permitted by the Granule
Protection Table. This term is also used to refer to an MMU-attached or SMMU-attached Granular PAS filter that
implements the Granule Protection Check. See Arm® Architecture Reference Manual, for A-profile architecture[1]
for more information.

HPPI

Highest Priority Pending Interrupt. See 2.7 Interrupt Prioritization for more information.

IPI

Inter-processor Interrupt. See 2.5 Inter-Processor Interrupts for more information.

IRI

Interrupt Routing Infrastructure. See Chapter 1 Introduction and Chapter 3 GICv5 system architecture for more
information.

IRS

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

807



Glossary

Interrupt Routing Service. See Chapter 4 Interrupt routing service (IRS) for more information.

ITS

Interrupt Translation Service. See Chapter 5 Interrupt translation service (ITS) for more information.

IWB

Interrupt Wire Bridge. See Chapter 6 Interrupt Wire Bridge (IWB) for more information.

LPI

Logical Peripheral Interrupt. See 2.4 Interrupt types and identifiers for more information.

MPPAS

Most Privileged PAS. See 3.1 Interrupt Domains for more information.

MPSS

Most Privileged Security State. See 3.1 Interrupt Domains for more information.

NMI

Non-maskable Interrupt. See 2.9 The physical CPU interface for more information.

PAS

Physical Address Space. See Arm® Architecture Reference Manual, for A-profile architecture[1] for more
information.

PPI

PE-Private Peripheral Interrupt. See 2.4 Interrupt types and identifiers for more information.

Processed

An interrupt event has been processed by an IRS when the interrupt effects of an interrupt event can be observed
by PEs. See 4.5 IRS synchronization requests for more information.

RAS

Reliability, Availability, and Serviceability. See Arm® Architecture Reference Manual, for A-profile architecture[1]
and Arm® Reliability, Availability, and Serviceability (RAS) System Architecture for A-profile architecture[15] for
more information.

Reachable

An INTID is reachable from a PE if the PE can access the configuration and state of the interrupt. See 2.6 GIC
System instructions and 4.6 Interrupt configuration and state for more information.

Running priority

The highest active priority on an Interrupt Domain. See 2.8 Interrupt handling for more information.

SGI

Software Generated Interrupt. A dedicated interrupt type for IPIs in GIC version 3 and version 4. See Arm®

Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4[3] for more
information.

SPI

Shared Peripheral Interrupt. See 2.4 Interrupt types and identifiers for more information.

Unreachable

See Reachable.

Upstream

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

808



Glossary

See Downstream

VM

Virtual machine.

VMSA

Virtual Memory System Architecture defined in Arm® Architecture Reference Manual, for A-profile architecture[1].

VPE

Virtual PE.

VPE doorbell

An LPI which is signaled when a non-resident VPE receives an interrupt. See 4.10.7 VPE doorbells for more
information.

Write-One-to-Clear (W1C)

Writes of 0 to the bit are ignored. A write of 1 clears the bit to 0. See Arm® Architecture Reference Manual, for
A-profile architecture[1] for more information.

ARM-AES-0070
00bet0

Copyright © 2022-2025 Arm Limited or its affiliates. All rights reserved.
Non-confidential

809


	Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 5
	Release information
	Non-Confidential Proprietary Notice
	Confidentiality Status
	Product Status
	Web Address


	Contents
	Preface
	Conventions
	Typographical conventions
	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	Rules-based writing
	Content item identifiers
	Content item rendering
	Content item classes
	Declaration
	Rule
	Goal
	Information
	Rationale
	Implementation note
	Software usage


	Additional reading
	Feedback
	Feedback on this book
	Inclusive terminology commitment


	1 Introduction
	2 PE architecture
	2.1 Architecture features and extensions
	2.2 The GICv5 CPU interface
	2.3 Interrupt Domains
	2.4 Interrupt types and identifiers
	2.4.1 PE-Private Peripheral Interrupts (PPIs)
	2.4.2 Logical Peripheral Interrupts (LPIs)
	2.4.3 Shared Peripheral Interrupts (SPIs)

	2.5 Inter-Processor Interrupts
	2.6 GIC System instructions
	2.6.1 LPI and SPI configuration

	2.7 Interrupt Prioritization
	2.8 Interrupt handling
	2.8.1 Interrupt life cycle

	2.9 The physical CPU interface
	2.9.1 Physical PPIs
	2.9.2 Physical priority masking
	2.9.3 Preemptive interrupts
	2.9.4 Physical interrupt signaling
	2.9.5 Physical non-maskable interrupts
	2.9.6 Doorbell PPIs

	2.10 The virtual CPU interface
	2.10.1 Virtual PPIs
	2.10.1.1 Direct injection of virtual PPIs
	2.10.1.2 PPI redirection under nested virtualization

	2.10.2 Virtual priority masking
	2.10.3 Virtual interrupt signaling
	2.10.4 Virtual non-maskable interrupts
	2.10.5 Selecting the resident VPE
	2.10.6 Requesting VPE doorbells
	2.10.7 Legacy virtual CPU interface

	2.11 GIC synchronous exception priorities
	2.12 Interrupt ordering model and synchronization requirements
	2.12.1 GIC and GICR ordering semantics
	2.12.2 GSB instruction semantics
	2.12.3 GIC Ordering Model
	2.12.3.1 GIC Ordering Relations
	2.12.3.2 Adaptations to existing Ordering relations
	2.12.3.3 GIC Observation Relations
	2.12.3.4 Ordering Requirements


	2.13 Effects on the Transactional Memory Extension

	3 GICv5 system architecture
	3.1 Interrupt Domains
	3.2 Communication between GIC system components
	3.3 Coherency considerations for GIC data structures

	4 Interrupt routing service (IRS)
	4.1 Communication between the IRS and the CPU interface
	4.2 Signaling interrupts
	4.3 IRS Domains
	4.4 IRS Configuration
	4.4.1 Enabling and disabling the IRS

	4.5 IRS synchronization requests
	4.6 Interrupt configuration and state
	4.7 The interrupt state table (IST)
	4.7.1 Level 2 IST management
	4.7.2 Initialization of level 2 IST entries
	4.7.3 INTID state and configuration
	4.7.4 IST metadata
	4.7.5 Example IST structures

	4.8 Physical interrupts
	4.8.1 Physical LPIs
	4.8.2 Physical SPIs
	4.8.3 Physical interrupt routing
	4.8.4 Physical interrupt signaling

	4.9 Virtualization data structures
	4.9.1 The VM table
	4.9.1.1 The VM table base address and configuration registers
	4.9.1.2 Level 2 VM table management
	4.9.1.3 VM management
	4.9.1.4 The VM descriptor
	4.9.1.5 Example VM table structures

	4.9.2 The VPE table
	4.9.2.1 The VPE table base address and configuration
	4.9.2.2 VPE management
	4.9.2.3 The VPE descriptor
	4.9.2.4 Example VPE table structures


	4.10 Virtual interrupts
	4.10.1 Virtual LPIs
	4.10.2 Virtual SPIs
	4.10.2.1 Assigning physical SPIs to VMs

	4.10.3 Virtual interrupt routing
	4.10.4 Virtual interrupt signaling
	4.10.5 VPE selection and configuration
	4.10.6 VPE residency
	4.10.7 VPE doorbells
	4.10.8 1ofN doorbells
	4.10.9 Save and restore of virtual interrupts

	4.11 IRS power management
	4.12 IRS memory access rules
	4.13 IRS support for MPAM
	4.14 IRS support for Memory Encryption Contexts
	4.15 IRS support for software error reporting

	5 Interrupt translation service (ITS)
	5.1 ITS Domains
	5.1.1 Supporting Realm interrupts from Non-secure writes

	5.2 Operation
	5.2.1 Enabling and disabling the ITS
	5.2.2 Interrupt event types
	5.2.3 Software generated ITS events
	5.2.4 ITS synchronization requests

	5.3 Translation structures
	5.3.1 The Device Table (DT)
	5.3.2 The Interrupt Translation Table (ITT)

	5.4 ITS cache management
	5.4.1 ITS cache management for EventIDs
	5.4.2 ITS cache management for DeviceIDs

	5.5 ITS memory access rules
	5.6 ITS support for MPAM
	5.7 ITS support for Memory Encryption Contexts
	5.8 ITS support for software error reporting

	6 Interrupt Wire Bridge (IWB)
	6.1 IWB wire control registers
	6.2 IWB support for multiple Interrupt Domains

	7 GIC Performance Monitoring Unit (PMU)
	7.1 CoreSight PMU extensions
	7.2 GIC PMU Overflow interrupt
	7.3 GIC PMU event types
	7.4 Event filtering
	7.5 IRS PMU events
	7.5.1 IRS PMU events filtering

	7.6 ITS PMU events
	7.6.1 ITS PMU events filtering


	8 System instructions
	8.1 System instructions for the Current Interrupt Domain
	8.1.1 GIC CDAFF, Interrupt Set Target in the Current Interrupt Domain
	Field descriptions
	Bits [63:48]
	IAFFID, bits [47:32]
	TYPE, bits [31:29]
	IRM, bit [28]
	Bits [27:24]
	ID, bits [23:0]

	Accessing GIC CDAFF
	GIC CDAFF, <Xt>


	8.1.2 GIC CDDI, Interrupt Deactivate in the Current Interrupt Domain
	Field descriptions
	Bits [63:33]
	Bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC CDDI
	GIC CDDI, <Xt>


	8.1.3 GIC CDDIS, Interrupt Disable in the Current Interrupt Domain
	Field descriptions
	Bits [63:32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC CDDIS
	GIC CDDIS, <Xt>


	8.1.4 GIC CDEN, Interrupt Enable in the Current Interrupt Domain
	Field descriptions
	Bits [63:32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC CDEN
	GIC CDEN, <Xt>


	8.1.5 GIC CDEOI, Priority Drop in the Current Interrupt Domain
	Field descriptions
	Bits [63:0]

	Accessing GIC CDEOI
	GIC CDEOI, <Xt>


	8.1.6 GIC CDHM, Interrupt Handling mode state in the Current Interrupt Domain
	Field descriptions
	Bits [63:33]
	HM, bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC CDHM
	GIC CDHM, <Xt>


	8.1.7 GIC CDPEND, Interrupt Set/Clear Pending state in the Current Interrupt Domain
	Field descriptions
	Bits [63:33]
	PENDING, bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC CDPEND
	GIC CDPEND, <Xt>


	8.1.8 GIC CDPRI, Interrupt Set priority in the Current Interrupt Domain
	Field descriptions
	Bits [63:40]
	PRIORITY, bits [39:35]
	Bits [34:32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC CDPRI
	GIC CDPRI, <Xt>


	8.1.9 GIC CDRCFG, Request Interrupt Configuration in the Current Interrupt Domain
	Field descriptions
	Bits [63:32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC CDRCFG
	GIC CDRCFG, <Xt>


	8.1.10 GICR CDIA, Interrupt Acknowledge in the Current Interrupt Domain
	Field descriptions
	Bits [63:33]
	VALID, bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GICR CDIA
	GICR <Xt>, CDIA


	8.1.11 GICR CDNMIA, Non-maskable Interrupt Acknowledge in the Current Interrupt Domain
	Field descriptions
	Bits [63:33]
	VALID, bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GICR CDNMIA
	GICR <Xt>, CDNMIA



	8.2 System instructions for the Virtual Interrupt Domain
	8.2.1 GIC VDAFF, Interrupt Set Target in the Virtual Interrupt Domain
	Field descriptions
	Bits [63:48]
	IAFFID, bits [47:32]
	TYPE, bits [31:29]
	IRM, bit [28]
	Bits [27:24]
	ID, bits [23:0]

	Accessing GIC VDAFF
	GIC VDAFF, <Xt>


	8.2.2 GIC VDDI, Interrupt Deactivate in the Virtual Interrupt Domain
	Field descriptions
	Bits [63:33]
	Bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC VDDI
	GIC VDDI, <Xt>


	8.2.3 GIC VDDIS, Interrupt Disable in the Virtual Interrupt Domain
	Field descriptions
	Bits [63:32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC VDDIS
	GIC VDDIS, <Xt>


	8.2.4 GIC VDEN, Interrupt Enable in the Virtual Interrupt Domain
	Field descriptions
	Bits [63:32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC VDEN
	GIC VDEN, <Xt>


	8.2.5 GIC VDHM, Interrupt Handling mode in the Virtual Interrupt Domain
	Field descriptions
	Bits [63:33]
	HM, bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC VDHM
	GIC VDHM, <Xt>


	8.2.6 GIC VDPEND, Interrupt Set/Clear Pending state in the Virtual Interrupt Domain
	Field descriptions
	Bits [63:48]
	VM, bits [47:33]
	PENDING, bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC VDPEND
	GIC VDPEND, <Xt>


	8.2.7 GIC VDPRI, Interrupt Set priority in the Virtual Interrupt Domain
	Field descriptions
	Bits [63:40]
	PRIORITY, bits [39:35]
	Bits [34:32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC VDPRI
	GIC VDPRI, <Xt>


	8.2.8 GIC VDRCFG, Request Interrupt Configuration in the Virtual Interrupt Domain
	Field descriptions
	Bits [63:32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC VDRCFG
	GIC VDRCFG, <Xt>



	8.3 System instructions for the Logical Interrupt Domain
	8.3.1 GIC LDAFF, Interrupt Set Target in the Logical Interrupt Domain
	Field descriptions
	Bits [63:48]
	IAFFID, bits [47:32]
	TYPE, bits [31:29]
	IRM, bit [28]
	Bits [27:24]
	ID, bits [23:0]

	Accessing GIC LDAFF
	GIC LDAFF, <Xt>


	8.3.2 GIC LDDI, Interrupt Deactivate in the Logical Interrupt Domain
	Field descriptions
	Bits [63:33]
	Bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC LDDI
	GIC LDDI, <Xt>


	8.3.3 GIC LDDIS, Interrupt Disable in the Logical Interrupt Domain
	Field descriptions
	Bits [63:32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC LDDIS
	GIC LDDIS, <Xt>


	8.3.4 GIC LDEN, Interrupt Enable in the Logical Interrupt Domain
	Field descriptions
	Bits [63:32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC LDEN
	GIC LDEN, <Xt>


	8.3.5 GIC LDHM, Interrupt Handling mode in the Logical Interrupt Domain
	Field descriptions
	Bits [63:33]
	HM, bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC LDHM
	GIC LDHM, <Xt>


	8.3.6 GIC LDPEND, Interrupt Set/Clear Pending state in the Logical Interrupt Domain
	Field descriptions
	Bits [63:33]
	PENDING, bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC LDPEND
	GIC LDPEND, <Xt>


	8.3.7 GIC LDPRI, Interrupt Set priority in the Logical Interrupt Domain
	Field descriptions
	Bits [63:40]
	PRIORITY, bits [39:35]
	Bits [34:32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC LDPRI
	GIC LDPRI, <Xt>


	8.3.8 GIC LDRCFG, Request Interrupt Configuration in the Logical Interrupt Domain
	Field descriptions
	Bits [63:32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing GIC LDRCFG
	GIC LDRCFG, <Xt>



	8.4 GIC synchronization barrier instructions
	8.4.1 GSB SYS, GIC Synchronization Barrier System
	Accessing GSB SYS
	GSB SYS


	8.4.2 GSB ACK, GIC Synchronization Barrier Interrupt Acknowledge
	Accessing GSB ACK
	GSB ACK




	9 System registers
	9.1 Synchronization requirements for GICv5 System registers
	9.2 CPU interface registers
	9.2.1 ICC_APR_EL1, Interrupt Controller Physical Active Priorities Register
	Field descriptions
	Bits [63:32]
	P<x>, bits [x], for x = 31 to 0

	Accessing ICC_APR_EL1
	MRS <Xt>, ICC_APR_EL1
	MSR ICC_APR_EL1, <Xt>


	9.2.2 ICC_APR_EL3, Interrupt Controller Physical Active Priorities Register for EL3
	Field descriptions
	Bits [63:32]
	P<x>, bits [x], for x = 31 to 0

	Accessing ICC_APR_EL3
	MRS <Xt>, ICC_APR_EL3
	MSR ICC_APR_EL3, <Xt>


	9.2.3 ICC_CR0_EL1, Interrupt Controller EL1 Physical Control Register
	Field descriptions
	Bits [63:39]
	PID, bit [38]
	IPPT, bits [37:32]
	Bits [31:1]
	EN, bit [0]

	Accessing ICC_CR0_EL1
	MRS <Xt>, ICC_CR0_EL1
	MSR ICC_CR0_EL1, <Xt>


	9.2.4 ICC_CR0_EL3, Interrupt Controller EL3 Physical Control Register
	Field descriptions
	Bits [63:34]
	PID, bits [33:32]
	Bits [31:1]
	EN, bit [0]

	Accessing ICC_CR0_EL3
	MRS <Xt>, ICC_CR0_EL3
	MSR ICC_CR0_EL3, <Xt>


	9.2.5 ICC_DOMHPPIR_EL3, Interrupt Controller Domain Highest Priority Pending Interrupt Register
	Field descriptions
	Bits [63:4]
	P_HPPI, bit [3]
	RL_HPPI, bit [2]
	S_HPPI, bit [1]
	NS_HPPI, bit [0]

	Accessing ICC_DOMHPPIR_EL3
	MRS <Xt>, ICC_DOMHPPIR_EL3


	9.2.6 ICC_HAPR_EL1, Interrupt Controller Physical Highest Active Priority Register
	Field descriptions
	Bits [63:8]
	PRIORITY, bits [7:0]

	Accessing ICC_HAPR_EL1
	MRS <Xt>, ICC_HAPR_EL1


	9.2.7 ICC_HPPIR_EL1, Interrupt Controller Physical Highest Priority Pending Interrupt Register
	Field descriptions
	Bits [63:33]
	HPPIV, bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing ICC_HPPIR_EL1
	MRS <Xt>, ICC_HPPIR_EL1


	9.2.8 ICC_HPPIR_EL3, Interrupt Controller Physical Highest Priority Pending Interrupt Register
	Field descriptions
	Bits [63:33]
	HPPIV, bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing ICC_HPPIR_EL3
	MRS <Xt>, ICC_HPPIR_EL3


	9.2.9 ICC_IAFFIDR_EL1, Interrupt Controller PE Interrupt Affinity ID Register
	Field descriptions
	Bits [63:16]
	IAFFID, bits [15:0]

	Accessing ICC_IAFFIDR_EL1
	MRS <Xt>, ICC_IAFFIDR_EL1


	9.2.10 ICC_ICSR_EL1, Interrupt Controller Interrupt Configuration and State Register
	Field descriptions
	Bits [63:48]
	IAFFID, bits [47:32]
	Bits [31:16]
	Priority, bits [15:11]
	Bits [10:6]
	HM, bit [5]
	Active, bit [4]
	IRM, bit [3]
	Pending, bit [2]
	Enabled, bit [1]
	F, bit [0]

	Accessing ICC_ICSR_EL1
	MRS <Xt>, ICC_ICSR_EL1
	MSR ICC_ICSR_EL1, <Xt>


	9.2.11 ICC_IDR0_EL1, Interrupt Controller ID Register 0
	Field descriptions
	Bits [63:12]
	GCIE_LEGACY, bits [11:8]
	PRI_BITS, bits [7:4]
	ID_BITS, bits [3:0]

	Accessing ICC_IDR0_EL1
	MRS <Xt>, ICC_IDR0_EL1


	9.2.12 ICC_PCR_EL1, Interrupt Controller Physical Interrupt Priority Control Register
	Field descriptions
	Bits [63:5]
	PRIORITY, bits [4:0]

	Accessing ICC_PCR_EL1
	MRS <Xt>, ICC_PCR_EL1
	MSR ICC_PCR_EL1, <Xt>


	9.2.13 ICC_PCR_EL3, Interrupt Controller Interrupt Priority Control Register for EL3
	Field descriptions
	Bits [63:5]
	PRIORITY, bits [4:0]

	Accessing ICC_PCR_EL3
	MRS <Xt>, ICC_PCR_EL3
	MSR ICC_PCR_EL3, <Xt>


	9.2.14 ID_AA64PFR2_EL1, AArch64 Processor Feature Register 2
	Field descriptions
	Bits [63:36]
	FPMR, bits [35:32]
	Bits [31:20]
	UINJ, bits [19:16]
	GCIE, bits [15:12]
	MTEFAR, bits [11:8]
	MTESTOREONLY, bits [7:4]
	MTEPERM, bits [3:0]

	Accessing ID_AA64PFR2_EL1
	MRS <Xt>, ID_AA64PFR2_EL1



	9.3 Virtual CPU interface registers
	9.3.1 ICV_APR_EL1, Interrupt Controller Virtual Active Priorities Register
	Field descriptions
	Bits [63:32]
	P<x>, bits [x], for x = 31 to 0

	Accessing ICV_APR_EL1
	MRS <Xt>, ICC_APR_EL1
	MSR ICC_APR_EL1, <Xt>


	9.3.2 ICV_CR0_EL1, Interrupt Controller EL1 Virtual Control Register
	Field descriptions
	Bits [63:39]
	Bit [38]
	Bits [37:32]
	Bits [31:1]
	EN, bit [0]

	Accessing ICV_CR0_EL1
	MRS <Xt>, ICC_CR0_EL1
	MSR ICC_CR0_EL1, <Xt>


	9.3.3 ICV_HAPR_EL1, Interrupt Controller Virtual Highest Active Priority Register
	Field descriptions
	Bits [63:8]
	PRIORITY, bits [7:0]

	Accessing ICV_HAPR_EL1
	MRS <Xt>, ICC_HAPR_EL1


	9.3.4 ICV_HPPIR_EL1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register
	Field descriptions
	Bits [63:33]
	HPPIV, bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing ICV_HPPIR_EL1
	MRS <Xt>, ICC_HPPIR_EL1


	9.3.5 ICV_PCR_EL1, Interrupt Controller Virtual Interrupt Priority Control Register
	Field descriptions
	Bits [63:5]
	PRIORITY, bits [4:0]

	Accessing ICV_PCR_EL1
	MRS <Xt>, ICC_PCR_EL1
	MSR ICC_PCR_EL1, <Xt>



	9.4 PPI registers
	9.4.1 ICC_PPI_CACTIVER<n>_EL1, Interrupt Controller Physical PPI Clear Active Registers, n = 0 - 1
	Field descriptions
	ACTIVE<x>, bits [x], for x = 63 to 0

	Accessing ICC_PPI_CACTIVER<n>_EL1
	MRS <Xt>, ICC_PPI_CACTIVER<n>_EL1
	MSR ICC_PPI_CACTIVER<n>_EL1, <Xt>


	9.4.2 ICC_PPI_CPENDR<n>_EL1, Interrupt Controller Physical PPI Clear Pending State Registers, n = 0 - 1
	Field descriptions
	PEND<x>, bits [x], for x = 63 to 0

	Accessing ICC_PPI_CPENDR<n>_EL1
	MRS <Xt>, ICC_PPI_CPENDR<n>_EL1
	MSR ICC_PPI_CPENDR<n>_EL1, <Xt>


	9.4.3 ICC_PPI_DOMAINR<n>_EL3, Interrupt Controller PPI Domain Registers, n = 0 - 3
	Field descriptions
	DOM<x>, bits [2x+1:2x], for x = 31 to 0

	Accessing ICC_PPI_DOMAINR<n>_EL3
	MRS <Xt>, ICC_PPI_DOMAINR<n>_EL3
	MSR ICC_PPI_DOMAINR<n>_EL3, <Xt>


	9.4.4 ICC_PPI_ENABLER<n>_EL1, Interrupt Controller Physical PPI Enable Registers, n = 0 - 1
	Field descriptions
	EN<x>, bits [x], for x = 63 to 0

	Accessing ICC_PPI_ENABLER<n>_EL1
	MRS <Xt>, ICC_PPI_ENABLER<n>_EL1
	MSR ICC_PPI_ENABLER<n>_EL1, <Xt>


	9.4.5 ICC_PPI_HMR<n>_EL1, Interrupt Controller Physical PPI Handling mode Registers, n = 0 - 1
	Field descriptions
	HM<x>, bits [x], for x = 63 to 0

	Accessing ICC_PPI_HMR<n>_EL1
	MRS <Xt>, ICC_PPI_HMR<n>_EL1


	9.4.6 ICC_PPI_PRIORITYR<n>_EL1, Interrupt Controller Physical PPI Priority Registers, n = 0 - 15
	Field descriptions
	Bits [63:61, 55:53, 47:45, 39:37, 31:29, 23:21, 15:13, 7:5]
	PRIORITY<x>, bits [60:56, 52:48, 44:40, 36:32, 28:24, 20:16, 12:8, 4:0], for x = 7 to 0, where each field is 5 bits wide

	Accessing ICC_PPI_PRIORITYR<n>_EL1
	MRS <Xt>, ICC_PPI_PRIORITYR<n>_EL1
	MSR ICC_PPI_PRIORITYR<n>_EL1, <Xt>


	9.4.7 ICC_PPI_SACTIVER<n>_EL1, Interrupt Controller Physical PPI Set Active Registers, n = 0 - 1
	Field descriptions
	ACTIVE<x>, bits [x], for x = 63 to 0

	Accessing ICC_PPI_SACTIVER<n>_EL1
	MRS <Xt>, ICC_PPI_SACTIVER<n>_EL1
	MSR ICC_PPI_SACTIVER<n>_EL1, <Xt>


	9.4.8 ICC_PPI_SPENDR<n>_EL1, Interrupt Controller Physical PPI Set Pending State Registers, n = 0 - 1
	Field descriptions
	PEND<x>, bits [x], for x = 63 to 0

	Accessing ICC_PPI_SPENDR<n>_EL1
	MRS <Xt>, ICC_PPI_SPENDR<n>_EL1
	MSR ICC_PPI_SPENDR<n>_EL1, <Xt>



	9.5 Virtual PPI registers
	9.5.1 ICV_PPI_CACTIVER<n>_EL1, Interrupt Controller Virtual PPI Clear Active Registers, n = 0 - 1
	Field descriptions
	ACTIVE<x>, bits [x], for x = 63 to 0

	Accessing ICV_PPI_CACTIVER<n>_EL1
	MRS <Xt>, ICC_PPI_CACTIVER<n>_EL1
	MSR ICC_PPI_CACTIVER<n>_EL1, <Xt>


	9.5.2 ICV_PPI_CPENDR<n>_EL1, Interrupt Controller Virtual PPI Clear Pending State Registers, n = 0 - 1
	Field descriptions
	PEND<x>, bits [x], for x = 63 to 0

	Accessing ICV_PPI_CPENDR<n>_EL1
	MRS <Xt>, ICC_PPI_CPENDR<n>_EL1
	MSR ICC_PPI_CPENDR<n>_EL1, <Xt>


	9.5.3 ICV_PPI_ENABLER<n>_EL1, Interrupt Controller Virtual PPI Clear Enable Registers, n = 0 - 1
	Field descriptions
	EN<x>, bits [x], for x = 63 to 0

	Accessing ICV_PPI_ENABLER<n>_EL1
	MRS <Xt>, ICC_PPI_ENABLER<n>_EL1
	MSR ICC_PPI_ENABLER<n>_EL1, <Xt>


	9.5.4 ICV_PPI_HMR<n>_EL1, Interrupt Controller Virtual PPI Handling mode Registers, n = 0 - 1
	Field descriptions
	HM<x>, bits [x], for x = 63 to 0

	Accessing ICV_PPI_HMR<n>_EL1
	MRS <Xt>, ICC_PPI_HMR<n>_EL1


	9.5.5 ICV_PPI_PRIORITYR<n>_EL1, Interrupt Controller Virtual PPI Priority Registers, n = 0 - 15
	Field descriptions
	Bits [63:61, 55:53, 47:45, 39:37, 31:29, 23:21, 15:13, 7:5]
	PRIORITY<x>, bits [60:56, 52:48, 44:40, 36:32, 28:24, 20:16, 12:8, 4:0], for x = 7 to 0, where each field is 5 bits wide

	Accessing ICV_PPI_PRIORITYR<n>_EL1
	MRS <Xt>, ICC_PPI_PRIORITYR<n>_EL1
	MSR ICC_PPI_PRIORITYR<n>_EL1, <Xt>


	9.5.6 ICV_PPI_SACTIVER<n>_EL1, Interrupt Controller Virtual PPI Set Active Registers, n = 0 - 1
	Field descriptions
	ACTIVE<x>, bits [x], for x = 63 to 0

	Accessing ICV_PPI_SACTIVER<n>_EL1
	MRS <Xt>, ICC_PPI_SACTIVER<n>_EL1
	MSR ICC_PPI_SACTIVER<n>_EL1, <Xt>


	9.5.7 ICV_PPI_SPENDR<n>_EL1, Interrupt Controller Virtual PPI Set Pending State Registers, n = 0 - 1
	Field descriptions
	PEND<x>, bits [x], for x = 63 to 0

	Accessing ICV_PPI_SPENDR<n>_EL1
	MRS <Xt>, ICC_PPI_SPENDR<n>_EL1
	MSR ICC_PPI_SPENDR<n>_EL1, <Xt>



	9.6 Hypervisor control registers
	9.6.1 ICH_APR_EL2, Interrupt Controller Active Virtual Priorities Register
	Field descriptions
	Bits [63:32]
	P<x>, bits [x], for x = 31 to 0

	Accessing ICH_APR_EL2
	MRS <Xt>, ICH_APR_EL2
	MSR ICH_APR_EL2, <Xt>


	9.6.2 ICH_CONTEXTR_EL2, Interrupt Controller Virtual Context Register
	Field descriptions
	V, bit [63]
	F, bit [62]
	IRICHPPIDIS, bit [61]
	DB, bit [60]
	DBPM, bits [59:55]
	Bits [54:48]
	VPE, bits [47:32]
	Bits [31:16]
	VM, bits [15:0]

	Accessing ICH_CONTEXTR_EL2
	MRS <Xt>, ICH_CONTEXTR_EL2
	MSR ICH_CONTEXTR_EL2, <Xt>


	9.6.3 ICH_HFGITR_EL2, Hypervisor GIC Fine-Grained Instruction Trap Register
	Field descriptions
	Bits [63:11]
	GICRCDNMIA, bit [10]
	GICRCDIA, bit [9]
	GICCDDI, bit [8]
	GICCDEOI, bit [7]
	GICCDHM, bit [6]
	GICCDRCFG, bit [5]
	GICCDPEND, bit [4]
	GICCDAFF, bit [3]
	GICCDPRI, bit [2]
	GICCDDIS, bit [1]
	GICCDEN, bit [0]

	Accessing ICH_HFGITR_EL2
	MRS <Xt>, ICH_HFGITR_EL2
	MSR ICH_HFGITR_EL2, <Xt>


	9.6.4 ICH_HFGRTR_EL2, Hypervisor GIC Fine-Grained Read Trap Register
	Field descriptions
	Bits [63:21]
	ICC_PPI_ACTIVERn_EL1, bit [20]
	ICC_PPI_PRIORITYRn_EL1, bit [19]
	ICC_PPI_PENDRn_EL1, bit [18]
	ICC_PPI_ENABLERn_EL1, bit [17]
	ICC_PPI_HMRn_EL1, bit [16]
	Bits [15:8]
	ICC_IAFFIDR_EL1, bit [7]
	ICC_ICSR_EL1, bit [6]
	ICC_PCR_EL1, bit [5]
	ICC_HPPIR_EL1, bit [4]
	ICC_HAPR_EL1, bit [3]
	ICC_CR0_EL1, bit [2]
	ICC_IDRn_EL1, bit [1]
	ICC_APR_EL1, bit [0]

	Accessing ICH_HFGRTR_EL2
	MRS <Xt>, ICH_HFGRTR_EL2
	MSR ICH_HFGRTR_EL2, <Xt>


	9.6.5 ICH_HFGWTR_EL2, Hypervisor GIC Fine-Grained Write Trap Register
	Field descriptions
	Bits [63:21]
	ICC_PPI_ACTIVERn_EL1, bit [20]
	ICC_PPI_PRIORITYRn_EL1, bit [19]
	ICC_PPI_PENDRn_EL1, bit [18]
	ICC_PPI_ENABLERn_EL1, bit [17]
	Bits [16:7]
	ICC_ICSR_EL1, bit [6]
	ICC_PCR_EL1, bit [5]
	Bits [4:3]
	ICC_CR0_EL1, bit [2]
	Bit [1]
	ICC_APR_EL1, bit [0]

	Accessing ICH_HFGWTR_EL2
	MRS <Xt>, ICH_HFGWTR_EL2
	MSR ICH_HFGWTR_EL2, <Xt>


	9.6.6 ICH_HPPIR_EL2, Interrupt Controller Hypervisor Highest Priority Pending Interrupt Register
	Field descriptions
	Bits [63:33]
	HPPIV, bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing ICH_HPPIR_EL2
	MRS <Xt>, ICH_HPPIR_EL2


	9.6.7 ICH_PPI_ACTIVER<n>_EL2, Interrupt Controller Virtual Interrupt Active Registers, n = 0 - 1
	Field descriptions
	ACTIVE<x>, bits [x], for x = 63 to 0

	Accessing ICH_PPI_ACTIVER<n>_EL2
	MRS <Xt>, ICH_PPI_ACTIVER<n>_EL2
	MSR ICH_PPI_ACTIVER<n>_EL2, <Xt>


	9.6.8 ICH_PPI_DVIR<n>_EL2, Interrupt Controller PPI Direct-inject Virtual Interrupt Registers, n = 0 - 1
	Field descriptions
	DVI<x>, bits [x], for x = 63 to 0

	Accessing ICH_PPI_DVIR<n>_EL2
	MRS <Xt>, ICH_PPI_DVIR<n>_EL2
	MSR ICH_PPI_DVIR<n>_EL2, <Xt>


	9.6.9 ICH_PPI_ENABLER<n>_EL2, Interrupt Controller Virtual Interrupt Enable Registers, n = 0 - 1
	Field descriptions
	EN<x>, bits [x], for x = 63 to 0

	Accessing ICH_PPI_ENABLER<n>_EL2
	MRS <Xt>, ICH_PPI_ENABLER<n>_EL2
	MSR ICH_PPI_ENABLER<n>_EL2, <Xt>


	9.6.10 ICH_PPI_PENDR<n>_EL2, Interrupt Controller Virtual Interrupt Pending State Registers, n = 0 - 1
	Field descriptions
	PEND<x>, bits [x], for x = 63 to 0

	Accessing ICH_PPI_PENDR<n>_EL2
	MRS <Xt>, ICH_PPI_PENDR<n>_EL2
	MSR ICH_PPI_PENDR<n>_EL2, <Xt>


	9.6.11 ICH_PPI_PRIORITYR<n>_EL2, Interrupt Controller Virtual Interrupt Priority Registers, n = 0 - 15
	Field descriptions
	Bits [63:61, 55:53, 47:45, 39:37, 31:29, 23:21, 15:13, 7:5]
	PRIORITY<x>, bits [60:56, 52:48, 44:40, 36:32, 28:24, 20:16, 12:8, 4:0], for x = 7 to 0, where each field is 5 bits wide

	Accessing ICH_PPI_PRIORITYR<n>_EL2
	MRS <Xt>, ICH_PPI_PRIORITYR<n>_EL2
	MSR ICH_PPI_PRIORITYR<n>_EL2, <Xt>


	9.6.12 ICH_VCTLR_EL2, Interrupt Controller Virtual CPU interface Control Register
	Field descriptions
	Bits [63:2]
	V3, bit [1]
	EN, bit [0]

	Accessing ICH_VCTLR_EL2
	MRS <Xt>, ICH_VCTLR_EL2
	MSR ICH_VCTLR_EL2, <Xt>


	9.6.13 ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register
	Field descriptions
	When ICH_VCTLR_EL2.V3 == 0:
	Bits [63:32]
	VPMR, bits [31:27]
	Bits [26:1]
	EN, bit [0]

	When ICH_VCTLR_EL2.V3 == 1:
	Bits [63:32]
	VPMR, bits [31:24]
	VBPR0, bits [23:21]
	VBPR1, bits [20:18]
	Bits [17:10]
	VEOIM, bit [9]
	Bits [8:5]
	VCBPR, bit [4]
	VFIQEn, bit [3]
	VAckCtl, bit [2]
	VENG1, bit [1]
	VENG0, bit [0]


	Accessing ICH_VMCR_EL2
	MRS <Xt>, ICH_VMCR_EL2
	MSR ICH_VMCR_EL2, <Xt>


	9.6.14 Nested virtualization

	9.7 Legacy hypervisor control registers
	9.7.1 ICH_AP0R<n>_EL2, Interrupt Controller Active Virtual Priorities Registers 0, n = 0 - 3
	Field descriptions
	Bits [63:32]
	P<x>, bits [x], for x = 31 to 0

	Accessing ICH_AP0R<n>_EL2
	MRS <Xt>, ICH_AP0R<m>_EL2 ; Where m = 0-3
	MSR ICH_AP0R<m>_EL2, <Xt> ; Where m = 0-3


	9.7.2 ICH_AP1R<n>_EL2, Interrupt Controller Active Virtual Priorities Registers 1, n = 0 - 3
	Field descriptions
	NMI, bit [63]
	Bits [62:32]
	P<x>, bits [x], for x = 31 to 0

	Accessing ICH_AP1R<n>_EL2
	MRS <Xt>, ICH_AP1R<m>_EL2 ; Where m = 0-3
	MSR ICH_AP1R<m>_EL2, <Xt> ; Where m = 0-3


	9.7.3 ICH_EISR_EL2, Interrupt Controller End of Interrupt Status Register
	Field descriptions
	Bits [63:16]
	Status<x>, bits [x], for x = 15 to 0

	Accessing ICH_EISR_EL2
	MRS <Xt>, ICH_EISR_EL2


	9.7.4 ICH_ELRSR_EL2, Interrupt Controller Empty List Register Status Register
	Field descriptions
	Bits [63:16]
	Status<x>, bits [x], for x = 15 to 0

	Accessing ICH_ELRSR_EL2
	MRS <Xt>, ICH_ELRSR_EL2


	9.7.5 ICH_HCR_EL2, Interrupt Controller Hyp Control Register
	Field descriptions
	Bits [63:32]
	EOIcount, bits [31:27]
	Bits [26:16]
	DVIM, bit [15]
	TDIR, bit [14]
	TSEI, bit [13]
	TALL1, bit [12]
	TALL0, bit [11]
	TC, bit [10]
	Bits [9:8]
	VGrp1DIE, bit [7]
	VGrp1EIE, bit [6]
	VGrp0DIE, bit [5]
	VGrp0EIE, bit [4]
	NPIE, bit [3]
	LRENPIE, bit [2]
	UIE, bit [1]
	En, bit [0]

	Accessing ICH_HCR_EL2
	MRS <Xt>, ICH_HCR_EL2
	MSR ICH_HCR_EL2, <Xt>


	9.7.6 ICH_LR<n>_EL2, Interrupt Controller List Registers, n = 0 - 15
	Field descriptions
	State, bits [63:62]
	HW, bit [61]
	Group, bit [60]
	NMI, bit [59]
	Bits [58:56]
	Priority, bits [55:48]
	Bits [47:45]
	pINTID, bits [44:32]
	pINTID, bits [12:0] of bits [44:32]
	pINTID, bits [12:0] of bits [44:32]

	vINTID, bits [31:0]

	Accessing ICH_LR<n>_EL2
	MRS <Xt>, ICH_LR<n>_EL2
	MSR ICH_LR<n>_EL2, <Xt>


	9.7.7 ICH_MISR_EL2, Interrupt Controller Maintenance Interrupt State Register
	Field descriptions
	Bits [63:8]
	VGrp1D, bit [7]
	VGrp1E, bit [6]
	VGrp0D, bit [5]
	VGrp0E, bit [4]
	NP, bit [3]
	LRENP, bit [2]
	U, bit [1]
	EOI, bit [0]

	Accessing ICH_MISR_EL2
	MRS <Xt>, ICH_MISR_EL2


	9.7.8 ICH_VTR_EL2, Interrupt Controller VGIC Type Register
	Field descriptions
	Bits [63:32]
	PRIbits, bits [31:29]
	PREbits, bits [28:26]
	IDbits, bits [25:23]
	SEIS, bit [22]
	A3V, bit [21]
	nV4, bit [20]
	TDS, bit [19]
	DVIM, bit [18]
	Bits [17:5]
	ListRegs, bits [4:0]

	Accessing ICH_VTR_EL2
	MRS <Xt>, ICH_VTR_EL2


	9.7.9 Nested virtualization

	9.8 Legacy virtual CPU interface registers
	9.8.1 AArch64 Legacy virtual CPU interface registers


	10 Registers and memory maps
	10.1 Memory-mapped programmer’s model
	10.2 IRS register frames
	10.2.1 IRS_CONFIG_FRAME, IRS configuration register frame
	10.2.1.1 IRS_AIDR
	Field descriptions
	Bits [31:12]
	Component, bits [11:8]
	ArchMajorRev, bits [7:4]
	ArchMinorRev, bits [3:0]

	Accessing IRS_AIDR
	Accessible at address 0x0044


	10.2.1.2 IRS_CR0
	Field descriptions
	Bits [31:2]
	IDLE, bit [1]
	IRSEN, bit [0]

	Accessing IRS_CR0
	Accessible at address 0x0080


	10.2.1.3 IRS_CR1
	Field descriptions
	Bits [31:16]
	VPED_WA, bit [15]
	VPED_RA, bit [14]
	VMD_WA, bit [13]
	VMD_RA, bit [12]
	VPET_WA, bit [11]
	VPET_RA, bit [10]
	VMT_WA, bit [9]
	VMT_RA, bit [8]
	IST_WA, bit [7]
	IST_RA, bit [6]
	IC, bits [5:4]
	OC, bits [3:2]
	SH, bits [1:0]

	Accessing IRS_CR1
	Accessible at address 0x0084


	10.2.1.4 IRS_IDR0
	Field descriptions
	IRSID, bits [31:16]
	Bits [15:13]
	SWE, bit [12]
	MPAM, bit [11]
	MEC, bit [10]
	SETLPI, bit [9]
	VIRT_ONE_N, bit [8]
	ONE_N, bit [7]
	VIRT, bit [6]
	PA_RANGE, bits [5:2]
	INT_DOM, bits [1:0]

	Accessing IRS_IDR0
	Accessible at address 0x0000


	10.2.1.5 IRS_IDR1
	Field descriptions
	Bits [31:23]
	PRI_BITS, bits [22:20]
	IAFFID_BITS, bits [19:16]
	PE_CNT, bits [15:0]

	Accessing IRS_IDR1
	Accessible at address 0x0004


	10.2.1.6 IRS_IDR2
	Field descriptions
	Bits [31:20]
	ISTMD_SZ, bits [19:15]
	ISTMD, bit [14]
	IST_L2SZ, bits [13:11]
	IST_LEVELS, bit [10]
	MIN_LPI_ID_BITS, bits [9:6]
	LPI, bit [5]
	ID_BITS, bits [4:0]

	Accessing IRS_IDR2
	Accessible at address 0x0008


	10.2.1.7 IRS_IDR3
	Field descriptions
	Bits [31:11]
	VMT_LEVELS, bit [10]
	VM_ID_BITS, bits [9:5]
	VMD_SZ, bits [4:1]
	VMD, bit [0]

	Accessing IRS_IDR3
	Accessible at address 0x000C


	10.2.1.8 IRS_IDR4
	Field descriptions
	Bits [31:10]
	VPE_ID_BITS, bits [9:6]
	VPED_SZ, bits [5:0]

	Accessing IRS_IDR4
	Accessible at address 0x0010


	10.2.1.9 IRS_IDR5
	Field descriptions
	Bits [31:25]
	SPI_RANGE, bits [24:0]

	Accessing IRS_IDR5
	Accessible at address 0x0014


	10.2.1.10 IRS_IDR6
	Field descriptions
	Bits [31:25]
	SPI_IRS_RANGE, bits [24:0]

	Accessing IRS_IDR6
	Accessible at address 0x0018


	10.2.1.11 IRS_IDR7
	Field descriptions
	Bits [31:24]
	SPI_BASE, bits [23:0]

	Accessing IRS_IDR7
	Accessible at address 0x001C


	10.2.1.12 IRS_IIDR
	Field descriptions
	ProductID, bits [31:20]
	Variant, bits [19:16]
	Revision, bits [15:12]
	Implementer, bits [11:0]

	Accessing IRS_IIDR
	Accessible at address 0x0040


	10.2.1.13 IRS_IST_BASER
	Field descriptions
	Bits [63:56]
	ADDR, bits [55:6]
	Bits [5:1]
	VALID, bit [0]

	Accessing IRS_IST_BASER
	Accessible at address 0x0180


	10.2.1.14 IRS_IST_CFGR
	Field descriptions
	Bits [31:17]
	STRUCTURE, bit [16]
	Bits [15:9]
	ISTSZ, bits [8:7]
	L2SZ, bits [6:5]
	LPI_ID_BITS, bits [4:0]

	Accessing IRS_IST_CFGR
	Accessible at address 0x0190


	10.2.1.15 IRS_IST_STATUSR
	Field descriptions
	Bits [31:1]
	IDLE, bit [0]

	Accessing IRS_IST_STATUSR
	Accessible at address 0x0194


	10.2.1.16 IRS_MAP_L2_ISTR
	Field descriptions
	Bits [31:24]
	ID, bits [23:0]

	Accessing IRS_MAP_L2_ISTR
	Accessible at address 0x01C0


	10.2.1.17 IRS_MEC_IDR
	Field descriptions
	Bits [31:4]
	MECIDSIZE, bits [3:0]

	Accessing IRS_MEC_IDR
	Accessible at address 0x0340


	10.2.1.18 IRS_MEC_MECID_R
	Field descriptions
	Bits [31:16]
	MECID, bits [15:0]

	Accessing IRS_MEC_MECID_R
	Accessible at address 0x0344


	10.2.1.19 IRS_MPAM_IDR
	Field descriptions
	Bits [31:25]
	HAS_MPAM_SP, bit [24]
	PMG_MAX, bits [23:16]
	PARTID_MAX, bits [15:0]

	Accessing IRS_MPAM_IDR
	Accessible at address 0x0380


	10.2.1.20 IRS_MPAM_PARTID_R
	Field descriptions
	IDLE, bit [31]
	Bits [30:26]
	MPAM_SP, bits [25:24]
	PMG, bits [23:16]
	PARTID, bits [15:0]

	Accessing IRS_MPAM_PARTID_R
	Accessible at address 0x0384


	10.2.1.21 IRS_PE_CR0
	Field descriptions
	Bits [31:1]
	DPS, bit [0]

	Accessing IRS_PE_CR0
	Accessible at address 0x0148


	10.2.1.22 IRS_PE_SELR
	Field descriptions
	Bits [31:16]
	IAFFID, bits [15:0]

	Accessing IRS_PE_SELR
	Accessible at address 0x0140


	10.2.1.23 IRS_PE_STATUSR
	Field descriptions
	Bits [31:3]
	ONLINE, bit [2]
	V, bit [1]
	IDLE, bit [0]

	Accessing IRS_PE_STATUSR
	Accessible at address 0x0144


	10.2.1.24 IRS_SAVE_VMR
	Field descriptions
	S, bit [63]
	Q, bit [62]
	Bits [61:16]
	VM_ID, bits [15:0]

	Accessing IRS_SAVE_VMR
	Accessible at address 0x0300


	10.2.1.25 IRS_SAVE_VM_STATUSR
	Field descriptions
	Bits [31:2]
	Q, bit [1]
	IDLE, bit [0]

	Accessing IRS_SAVE_VM_STATUSR
	Accessible at address 0x0308


	10.2.1.26 IRS_SPI_CFGR
	Field descriptions
	Bits [31:1]
	TM, bit [0]

	Accessing IRS_SPI_CFGR
	Accessible at address 0x0114


	10.2.1.27 IRS_SPI_DOMAINR
	Field descriptions
	Bits [31:2]
	DOMAIN, bits [1:0]

	Accessing IRS_SPI_DOMAINR
	Accessible at address 0x010C


	10.2.1.28 IRS_SPI_RESAMPLER
	Field descriptions
	Bits [31:24]
	SPI_ID, bits [23:0]

	Accessing IRS_SPI_RESAMPLER
	Accessible at address 0x0110


	10.2.1.29 IRS_SPI_SELR
	Field descriptions
	Bits [31:24]
	ID, bits [23:0]

	Accessing IRS_SPI_SELR
	Accessible at address 0x0108


	10.2.1.30 IRS_SPI_STATUSR
	Field descriptions
	Bits [31:2]
	V, bit [1]
	IDLE, bit [0]

	Accessing IRS_SPI_STATUSR
	Accessible at address 0x0118


	10.2.1.31 IRS_SPI_VMR
	Field descriptions
	VIRT, bit [63]
	Bits [62:16]
	VM_ID, bits [15:0]

	Accessing IRS_SPI_VMR
	Accessible at address 0x0100


	10.2.1.32 IRS_SWERR_STATUSR
	Field descriptions
	Bits [63:32]
	IMP_EC, bits [31:24]
	EC, bits [23:16]
	Bits [15:4]
	OF, bit [3]
	S1V, bit [2]
	S0V, bit [1]
	V, bit [0]

	Accessing IRS_SWERR_STATUSR
	Accessible at address 0x03C0


	10.2.1.33 IRS_SWERR_SYNDROMER0
	Field descriptions
	VIRTUAL, bit [63]
	TYPE, bits [62:60]
	Bits [59:56]
	ID, bits [55:32]
	Bits [31:16]
	VM_ID, bits [15:0]

	Accessing IRS_SWERR_SYNDROMER0
	Accessible at address 0x03C8


	10.2.1.34 IRS_SWERR_SYNDROMER1
	Field descriptions
	Bits [63:56]
	ADDR, bits [55:3]
	Bits [2:0]

	Accessing IRS_SWERR_SYNDROMER1
	Accessible at address 0x03D0


	10.2.1.35 IRS_SYNCR
	Field descriptions
	SYNC, bit [31]
	Bits [30:0]

	Accessing IRS_SYNCR
	Accessible at address 0x00C0


	10.2.1.36 IRS_SYNC_STATUSR
	Field descriptions
	Bits [31:1]
	IDLE, bit [0]

	Accessing IRS_SYNC_STATUSR
	Accessible at address 0x00C4


	10.2.1.37 IRS_VM_DBR
	Field descriptions
	EN, bit [63]
	Bits [62:16]
	VPE_ID, bits [15:0]

	Accessing IRS_VM_DBR
	Accessible at address 0x0280


	10.2.1.38 IRS_VM_SELR
	Field descriptions
	Bits [31:16]
	VM_ID, bits [15:0]

	Accessing IRS_VM_SELR
	Accessible at address 0x0288


	10.2.1.39 IRS_VM_STATUSR
	Field descriptions
	Bits [31:2]
	V, bit [1]
	IDLE, bit [0]

	Accessing IRS_VM_STATUSR
	Accessible at address 0x028C


	10.2.1.40 IRS_VMAP_L2_VISTR
	Field descriptions
	M, bit [63]
	Bits [62:48]
	VM_ID, bits [47:32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing IRS_VMAP_L2_VISTR
	Accessible at address 0x02D8


	10.2.1.41 IRS_VMAP_L2_VMTR
	Field descriptions
	M, bit [63]
	Bits [62:16]
	VM_ID, bits [15:0]

	Accessing IRS_VMAP_L2_VMTR
	Accessible at address 0x02C0


	10.2.1.42 IRS_VMAP_VISTR
	Field descriptions
	M, bit [63]
	U, bit [62]
	Bits [61:48]
	VM_ID, bits [47:32]
	TYPE, bits [31:29]
	Bits [28:0]

	Accessing IRS_VMAP_VISTR
	Accessible at address 0x02D0


	10.2.1.43 IRS_VMAP_VMR
	Field descriptions
	M, bit [63]
	U, bit [62]
	Bits [61:16]
	VM_ID, bits [15:0]

	Accessing IRS_VMAP_VMR
	Accessible at address 0x02C8


	10.2.1.44 IRS_VMAP_VPER
	Field descriptions
	M, bit [63]
	Bits [62:48]
	VM_ID, bits [47:32]
	Bits [31:16]
	VPE_ID, bits [15:0]

	Accessing IRS_VMAP_VPER
	Accessible at address 0x02E0


	10.2.1.45 IRS_VMT_BASER
	Field descriptions
	Bits [63:56]
	ADDR, bits [55:3]
	Bits [2:1]
	VALID, bit [0]

	Accessing IRS_VMT_BASER
	Accessible at address 0x0200


	10.2.1.46 IRS_VMT_CFGR
	Field descriptions
	Bits [31:17]
	STRUCTURE, bit [16]
	Bits [15:5]
	VM_ID_BITS, bits [4:0]

	Accessing IRS_VMT_CFGR
	Accessible at address 0x0210


	10.2.1.47 IRS_VMT_STATUSR
	Field descriptions
	Bits [31:1]
	IDLE, bit [0]

	Accessing IRS_VMT_STATUSR
	Accessible at address 0x0214


	10.2.1.48 IRS_VPE_CR0
	Field descriptions
	Bits [31:1]
	DPS, bit [0]

	Accessing IRS_VPE_CR0
	Accessible at address 0x0258


	10.2.1.49 IRS_VPE_DBR
	Field descriptions
	DBV, bit [63]
	REQ_DB, bit [62]
	Bits [61:37]
	DBPM, bits [36:32]
	Bits [31:24]
	INTID, bits [23:0]

	Accessing IRS_VPE_DBR
	Accessible at address 0x0248


	10.2.1.50 IRS_VPE_HPPIR
	Field descriptions
	Bits [63:33]
	HPPIV, bit [32]
	TYPE, bits [31:29]
	Bits [28:24]
	ID, bits [23:0]

	Accessing IRS_VPE_HPPIR
	Accessible at address 0x0250


	10.2.1.51 IRS_VPE_SELR
	Field descriptions
	S, bit [63]
	Bits [62:48]
	VPE_ID, bits [47:32]
	Bits [31:16]
	VM_ID, bits [15:0]

	Accessing IRS_VPE_SELR
	Accessible at address 0x0240


	10.2.1.52 IRS_VPE_STATUSR
	Field descriptions
	Bits [31:2]
	V, bit [1]
	IDLE, bit [0]

	Accessing IRS_VPE_STATUSR
	Accessible at address 0x025C



	10.2.2 IRS_SETLPI_FRAME, IRS SETLPI register frame
	10.2.2.1 IRS_SETLPIR
	Field descriptions
	Bits [31:24]
	ID, bits [23:0]

	Accessing IRS_SETLPIR
	Accessible at address 0x0000




	10.3 ITS register frames
	10.3.1 ITS_CONFIG_FRAME, ITS configuration register frame
	10.3.1.1 ITS_AIDR
	Field descriptions
	Bits [31:12]
	Component, bits [11:8]
	ArchMajorRev, bits [7:4]
	ArchMinorRev, bits [3:0]

	Accessing ITS_AIDR
	Accessible at address 0x0044


	10.3.1.2 ITS_CR0
	Field descriptions
	Bits [31:2]
	IDLE, bit [1]
	ITSEN, bit [0]

	Accessing ITS_CR0
	Accessible at address 0x0080


	10.3.1.3 ITS_CR1
	Field descriptions
	Bits [31:8]
	ITT_RA, bit [7]
	DT_RA, bit [6]
	IC, bits [5:4]
	OC, bits [3:2]
	SH, bits [1:0]

	Accessing ITS_CR1
	Accessible at address 0x0084


	10.3.1.4 ITS_DIDR
	Field descriptions
	Bits [63:32]
	DEVICE_ID, bits [31:0]

	Accessing ITS_DIDR
	Accessible at address 0x0100


	10.3.1.5 ITS_DT_BASER
	Field descriptions
	Bits [63:56]
	ADDR, bits [55:3]
	Bits [2:0]

	Accessing ITS_DT_BASER
	Accessible at address 0x00C0


	10.3.1.6 ITS_DT_CFGR
	Field descriptions
	Bits [31:17]
	STRUCTURE, bit [16]
	Bits [15:8]
	L2SZ, bits [7:6]
	DEVICEID_BITS, bits [5:0]

	Accessing ITS_DT_CFGR
	Accessible at address 0x00D0


	10.3.1.7 ITS_EIDR
	Field descriptions
	Bits [31:16]
	EVENT_ID, bits [15:0]

	Accessing ITS_EIDR
	Accessible at address 0x0108


	10.3.1.8 ITS_GEN_EVENTR
	Field descriptions
	R, bit [31]
	Bits [30:2]
	TARGET_DOMAIN, bits [1:0]

	Accessing ITS_GEN_EVENTR
	Accessible at address 0x018C


	10.3.1.9 ITS_GEN_EVENT_STATUSR
	Field descriptions
	Bits [31:1]
	IDLE, bit [0]

	Accessing ITS_GEN_EVENT_STATUSR
	Accessible at address 0x0190


	10.3.1.10 ITS_GEN_EVENT_EIDR
	Field descriptions
	Bits [31:16]
	EVENT_ID, bits [15:0]

	Accessing ITS_GEN_EVENT_EIDR
	Accessible at address 0x0188


	10.3.1.11 ITS_GEN_EVENT_DIDR
	Field descriptions
	Bits [63:32]
	DEVICE_ID, bits [31:0]

	Accessing ITS_GEN_EVENT_DIDR
	Accessible at address 0x0180


	10.3.1.12 ITS_IDR0
	Field descriptions
	ITSID, bits [31:16]
	Bits [15:9]
	SWE, bit [8]
	MPAM, bit [7]
	MEC, bit [6]
	PA_RANGE, bits [5:2]
	INT_DOM, bits [1:0]

	Accessing ITS_IDR0
	Accessible at address 0x0000


	10.3.1.13 ITS_IDR1
	Field descriptions
	Bits [31:11]
	L2SZ, bits [10:8]
	ITT_LEVELS, bit [7]
	DT_LEVELS, bit [6]
	DEVICEID_BITS, bits [5:0]

	Accessing ITS_IDR1
	Accessible at address 0x0004


	10.3.1.14 ITS_IDR2
	Field descriptions
	Bits [31:7]
	XDMN_EVENTS, bits [6:5]
	EVENTID_BITS, bits [4:0]

	Accessing ITS_IDR2
	Accessible at address 0x0008


	10.3.1.15 ITS_IIDR
	Field descriptions
	ProductID, bits [31:20]
	Variant, bits [19:16]
	Revision, bits [15:12]
	Implementer, bits [11:0]

	Accessing ITS_IIDR
	Accessible at address 0x0040


	10.3.1.16 ITS_INV_DEVICER
	Field descriptions
	I, bit [31]
	Bits [30:6]
	EVENTID_BITS, bits [5:1]
	L1, bit [0]

	Accessing ITS_INV_DEVICER
	Accessible at address 0x0110


	10.3.1.17 ITS_INV_EVENTR
	Field descriptions
	I, bit [31]
	Bits [30:3]
	ITT_L2SZ, bits [2:1]
	L1, bit [0]

	Accessing ITS_INV_EVENTR
	Accessible at address 0x010C


	10.3.1.18 ITS_MEC_IDR
	Field descriptions
	Bits [31:4]
	MECIDSIZE, bits [3:0]

	Accessing ITS_MEC_IDR
	Accessible at address 0x01C0


	10.3.1.19 ITS_MEC_MECID_R
	Field descriptions
	Bits [31:16]
	MECID, bits [15:0]

	Accessing ITS_MEC_MECID_R
	Accessible at address 0x01C4


	10.3.1.20 ITS_MPAM_IDR
	Field descriptions
	Bits [31:25]
	HAS_MPAM_SP, bit [24]
	PMG_MAX, bits [23:16]
	PARTID_MAX, bits [15:0]

	Accessing ITS_MPAM_IDR
	Accessible at address 0x0200


	10.3.1.21 ITS_MPAM_PARTID_R
	Field descriptions
	IDLE, bit [31]
	Bits [30:26]
	MPAM_SP, bits [25:24]
	PMG, bits [23:16]
	PARTID, bits [15:0]

	Accessing ITS_MPAM_PARTID_R
	Accessible at address 0x0204


	10.3.1.22 ITS_READ_EVENTR
	Field descriptions
	R, bit [31]
	Bits [30:0]

	Accessing ITS_READ_EVENTR
	Accessible at address 0x0114


	10.3.1.23 ITS_READ_EVENT_DATAR
	Field descriptions
	VIRT, bit [63]
	Bits [62:48]
	VM_ID, bits [47:32]
	VALID, bit [31]
	Bits [30:24]
	LPI_ID, bits [23:0]

	Accessing ITS_READ_EVENT_DATAR
	Accessible at address 0x0118


	10.3.1.24 ITS_STATUSR
	Field descriptions
	Bits [31:1]
	IDLE, bit [0]

	Accessing ITS_STATUSR
	Accessible at address 0x0120


	10.3.1.25 ITS_SWERR_STATUSR
	Field descriptions
	Bits [63:32]
	IMP_EC, bits [31:24]
	EC, bits [23:16]
	Bits [15:4]
	OF, bit [3]
	S1V, bit [2]
	S0V, bit [1]
	V, bit [0]

	Accessing ITS_SWERR_STATUSR
	Accessible at address 0x0240


	10.3.1.26 ITS_SWERR_SYNDROMER0
	Field descriptions
	DEVICE_ID, bits [63:32]
	Bits [31:16]
	EVENT_ID, bits [15:0]

	Accessing ITS_SWERR_SYNDROMER0
	Accessible at address 0x0248


	10.3.1.27 ITS_SWERR_SYNDROMER1
	Field descriptions
	Bits [63:56]
	ADDR, bits [55:3]
	Bits [2:0]

	Accessing ITS_SWERR_SYNDROMER1
	Accessible at address 0x0250


	10.3.1.28 ITS_SYNCR
	Field descriptions
	SYNC, bit [63]
	Bits [62:33]
	SYNCALL, bit [32]
	DEVICE_ID, bits [31:0]

	Accessing ITS_SYNCR
	Accessible at address 0x0140


	10.3.1.29 ITS_SYNC_STATUSR
	Field descriptions
	Bits [31:1]
	IDLE, bit [0]

	Accessing ITS_SYNC_STATUSR
	Accessible at address 0x0148



	10.3.2 ITS_TRANSLATE_FRAME, ITS translate register frame
	10.3.2.1 ITS_TRANSLATER
	Field descriptions
	Bits [31:16]
	EVENT_ID, bits [15:0]

	Accessing ITS_TRANSLATER
	Accessible at address 0x0000


	10.3.2.2 ITS_RL_TRANSLATER
	Field descriptions
	Bits [31:16]
	EVENT_ID, bits [15:0]

	Accessing ITS_RL_TRANSLATER
	Accessible at address 0x0008




	10.4 IWB register frames
	10.4.1 IWB_CONFIG_FRAME, IWB configuration registers frame
	10.4.1.1 IWB_AIDR
	Field descriptions
	Bits [31:12]
	Component, bits [11:8]
	ArchMajorRev, bits [7:4]
	ArchMinorRev, bits [3:0]

	Accessing IWB_AIDR
	Accessible at address 0x0044


	10.4.1.2 IWB_IDR0
	Field descriptions
	Bits [31:15]
	INT_DOMS, bits [14:11]
	IW_RANGE, bits [10:0]

	Accessing IWB_IDR0
	Accessible at address 0x0000


	10.4.1.3 IWB_IIDR
	Field descriptions
	ProductID, bits [31:20]
	Variant, bits [19:16]
	Revision, bits [15:12]
	Implementer, bits [11:0]

	Accessing IWB_IIDR
	Accessible at address 0x0040


	10.4.1.4 IWB_CR0
	Field descriptions
	Bits [31:2]
	IDLE, bit [1]
	IWBEN, bit [0]

	Accessing IWB_CR0
	Accessible at address 0x0080


	10.4.1.5 IWB_WDOMAIN_STATUSR
	Field descriptions
	Bits [31:1]
	IDLE, bit [0]

	Accessing IWB_WDOMAIN_STATUSR
	Accessible at address 0x00C4


	10.4.1.6 IWB_WDOMAINR<n>, n = 0 - 4095
	Field descriptions
	WDOM<x>, bits [2x+1:2x], for x = 15 to 0

	Accessing IWB_WDOMAINR<n>
	Accessible at address 0x6000 + (4 * n)


	10.4.1.7 IWB_WENABLE_STATUSR
	Field descriptions
	Bits [31:1]
	IDLE, bit [0]

	Accessing IWB_WENABLE_STATUSR
	Accessible at address 0x00C0


	10.4.1.8 IWB_WENABLER<n>, n = 0 - 2047
	Field descriptions
	WEN<x>, bits [x], for x = 31 to 0

	Accessing IWB_WENABLER<n>
	Accessible at address 0x2000 + (4 * n)


	10.4.1.9 IWB_WRESAMPLER
	Field descriptions
	Bits [31:16]
	IWI, bits [15:0]

	Accessing IWB_WRESAMPLER
	Accessible at address 0x00C8


	10.4.1.10 IWB_WTMR<n>, n = 0 - 2047
	Field descriptions
	TM<x>, bits [x], for x = 31 to 0

	Accessing IWB_WTMR<n>
	Accessible at address 0x4000 + (4 * n)




	10.5 GIC PMU register frame
	10.5.1 GIC_PMU_FRAME, GIC PMU register frame
	10.5.1.1 GIC_PMEVFILT2R<n>, n = 0 - 63
	Field descriptions
	When GIC_PMEVTYPER<n>.PMEVTYPE IN {0b01x}:
	When GIC_PMEVTYPER<n>.PMEVTYPE IN {0b00x}:

	Accessing GIC_PMEVFILT2R<n>
	Accessible at address 0x800 + (8 * n)


	10.5.1.2 GIC_PMEVFILTR<n>, n = 0 - 63
	Field descriptions
	When GIC_PMEVTYPER<n>.PMEVTYPE IN {0b01x}:
	When GIC_PMEVTYPER<n>.PMEVTYPE IN {0b00x}:

	Accessing GIC_PMEVFILTR<n>
	Accessible at address 0xA00 + (8 * n)


	10.5.1.3 GIC_PMEVTYPER<n>, n = 0 - 63
	Field descriptions
	Bits [63:32]
	V, bit [31]
	FS, bit [30]
	FSPAN, bit [29]
	RL, bit [28]
	EL3, bit [27]
	NS, bit [26]
	S, bit [25]
	Bits [24:16]
	PMEVTYPE, bits [15:12]
	PMEVTID, bits [11:0]

	Accessing GIC_PMEVTYPER<n>
	Accessible at address 0x400 + (8 * n)


	10.5.1.4 GIC_PMIDR0
	Field descriptions
	Bits [31:7]
	DOM_RL, bit [6]
	DOM_EL3, bit [5]
	DOM_NS, bit [4]
	DOM_S, bit [3]
	OACE, bit [2]
	ITS_PMU, bit [1]
	IRS_PMU, bit [0]

	Accessing GIC_PMIDR0
	Accessible at address 0xD80




	10.6 Identification registers

	11 Data structures
	11.1 ITS Data Structures
	11.1.1 L1_DTE, Level 1 device table entry
	Field descriptions
	VALID, bit [0]
	Bits [2:1]
	L2_ADDR, bits [55:3]
	Bits [59:56]
	SPAN, bits [63:60]


	11.1.2 L2_DTE, Level 2 device table entry
	Field descriptions
	VALID, bit [0]
	ITT_L2SZ, bits [2:1]
	ITT_ADDR, bits [55:3]
	Bit [56]
	DSWE, bit [57]
	ITT_STRUCTURE, bit [58]
	EVENTID_BITS, bits [63:59]


	11.1.3 L1_ITTE, Level 1 interrupt translation table entry
	Field descriptions
	VALID, bit [0]
	Bits [2:1]
	L2_ADDR, bits [55:3]
	Bits [59:56]
	SPAN, bits [63:60]


	11.1.4 L2_ITTE, Level 2 interrupt translation table entry
	Field descriptions
	LPI_ID, bits [23:0]
	Bits [27:24]
	DAC, bits [29:28]
	VIRTUAL, bit [30]
	VALID, bit [31]
	VM_ID, bits [47:32]
	Bits [63:48]



	11.2 IRS Data Structures
	11.2.1 L1_VMTE, Level 1 VM table entry
	Field descriptions
	VALID, bit [0]
	Bits [11:1]
	L2_ADDR, bits [55:12]
	Bits [63:56]


	11.2.2 L2_VMTE, Level 2 VM table entry
	Field descriptions
	VALID, bit [0]
	Bits [2:1]
	VMD_ADDR, bits [55:3]
	Bits [63:56]
	Bits [66:64]
	VPET_ADDR, bits [119:67]
	Bits [122:120]
	VPE_ID_BITS, bits [127:123]
	LPI_IST_VALID, bit [128]
	LPI_IST_L2SZ, bits [130:129]
	Bits [133:131]
	LPI_IST_ADDR, bits [183:134]
	LPI_ISTSZ, bits [185:184]
	LPI_IST_STRUCTURE, bit [186]
	LPI_ID_BITS, bits [191:187]
	SPI_IST_VALID, bit [192]
	SPI_IST_L2SZ, bits [194:193]
	Bits [197:195]
	SPI_IST_ADDR, bits [247:198]
	SPI_ISTSZ, bits [249:248]
	SPI_IST_STRUCTURE, bit [250]
	SPI_ID_BITS, bits [255:251]


	11.2.3 L1_ISTE, Level 1 interrupt state table entry
	Field descriptions
	VALID, bit [0]
	Bits [11:1]
	L2_ADDR, bits [55:12]
	Bits [63:56]


	11.2.4 L2_ISTE, Level 2 interrupt state table entry
	Field descriptions
	Pending, bit [0]
	Active, bit [1]
	HM, bit [2]
	Enable, bit [3]
	IRM, bit [4]
	Bits [8:5]
	HWU, bits [10:9]
	Priority, bits [15:11]
	IAFFID, bits [31:16]


	11.2.5 VPETE, VPE table entry
	Field descriptions
	VALID, bit [0]
	Bits [2:1]
	VPED_ADDR, bits [55:3]
	Bits [63:56]


	11.2.6 VM_DESC, VM descriptor
	Field descriptions
	IMPDEF, bits [63:0]


	11.2.7 VPE_DESC, VPE descriptor
	Field descriptions
	IMPDEF, bits [255:0]




	A GICv5 Stream Protocol interface
	A1 GICv5 Stream Protocol overview
	A2 AMBA AXI5-Stream Transport Layer
	A2.1 Signals
	A2.2 Channel identification
	A2.3 Link status

	A3 Common behaviors
	A4 Interrupt Handling channel
	A4.1 Command summary
	A4.2 Outstanding commands
	A4.3 Connection management
	A4.4 Managing the resident VPE
	A4.4.1 Interrupt Handling Channel behaviors when there is a resident VPE
	A4.4.2 Interrupt Handling Channel behaviors when there is no resident VPE

	A4.5 Forwarding, recalling, and releasing interrupts
	A4.6 INTID configuration
	A4.7 IRS and CPU interface capabilities

	A5 Interrupt Signaling channel
	A5.1 Command summary
	A5.2 Outstanding commands
	A5.3 Signaling interrupts to the IRS
	A5.4 Connection management

	A6 Alphabetical list of commands
	A6.1 Interrupt Handling channel
	A6.1.1 Activate, Activate command (CPUIF -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Virtual, bit [4]
	Bit [5]
	Domain, bits [7:6]
	Bits [15:8]


	A6.1.2 ActivateAck, Activate Acknowledge command (IRS -> CPUIF)
	Field descriptions
	CMD, bits [3:0]
	Bits [15:4]


	A6.1.3 Deactivate, Deactivate interrupt command (CPUIF -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Virtual, bit [4]
	TYPE, bits [7:5]
	Domain, bits [9:8]
	Bits [15:10]
	ID, bits [39:16]
	Bits [47:40]


	A6.1.4 DeactivateAck, Deactivate interrupt Acknowledge command (IRS -> CPUIF)
	Field descriptions
	CMD, bits [3:0]
	Bits [15:4]


	A6.1.5 DownstreamControl, Downstream Control (IRS -> CPUIF)
	Field descriptions
	CMD, bits [3:0]
	Identifier, bits [7:4]
	Bits [15:8]
	IAFFID, bits [31:16]


	A6.1.6 DownstreamControlAck, Downstream Control Acknowledge command (CPUIF -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Flush, bit [4]
	Bits [15:5]


	A6.1.7 Forward, Forward command (IRS -> CPUIF)
	Field descriptions
	CMD, bits [3:0]
	Virtual, bit [4]
	TYPE, bits [7:5]
	Domain, bits [9:8]
	ActivateAck, bit [10]
	Priority, bits [15:11]
	ID, bits [39:16]
	Bits [46:40]
	Returnable, bit [47]


	A6.1.8 Recall, Recall command (IRS -> CPUIF)
	Field descriptions
	CMD, bits [3:0]
	Virtual, bit [4]
	Bit [5]
	Domain, bits [7:6]
	Bits [15:8]


	A6.1.9 Release, Release command (CPUIF -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Virtual, bit [4]
	TYPE, bits [7:5]
	Domain, bits [9:8]
	Bits [15:10]
	ID, bits [39:16]
	Bits [47:40]


	A6.1.10 RequestConfig, Request Interrupt Configuration command (CPUIF -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Virtual, bit [4]
	TYPE, bits [7:5]
	Domain, bits [9:8]
	Bits [15:10]
	ID, bits [39:16]
	Bits [47:40]


	A6.1.11 RequestConfigAck, Request Interrupt Configuration Acknowledge command (IRS -> CPUIF)
	Field descriptions
	CMD, bits [3:0]
	Bit [4]
	Active, bit [5]
	Fault, bit [6]
	Enable, bit [7]
	HM, bit [8]
	IRM, bit [9]
	Pending, bit [10]
	Priority, bits [15:11]
	IAFFID, bits [31:16]


	A6.1.12 SetAck, Set interrupt configuration acknowledge command (IRS -> CPUIF)
	Field descriptions
	CMD, bits [3:0]
	Bits [15:4]


	A6.1.13 SetEnabled, Set interrupt Enabled command (CPUIF -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Virtual, bit [4]
	TYPE, bits [7:5]
	Domain, bits [9:8]
	EN, bit [10]
	Bits [15:11]
	ID, bits [39:16]
	Bits [47:40]


	A6.1.14 SetHandling, Set Interrupt Handling Mode command (CPUIF -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Virtual, bit [4]
	TYPE, bits [7:5]
	Domain, bits [9:8]
	HM, bit [10]
	Bits [15:11]
	ID, bits [39:16]
	Bits [47:40]


	A6.1.15 SetPending, Set interrupt Pending command (CPUIF -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Virtual, bit [4]
	TYPE, bits [7:5]
	Domain, bits [9:8]
	Pending, bit [10]
	Bits [15:11]
	ID, bits [39:16]
	Bits [47:40]
	VM, bits [63:48]


	A6.1.16 SetPriority, Set Interrupt Priority command (CPUIF -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Virtual, bit [4]
	TYPE, bits [7:5]
	Domain, bits [9:8]
	Bit [10]
	Priority, bits [15:11]
	ID, bits [39:16]
	Bits [47:40]


	A6.1.17 SetResident, Set Resident command (CPUIF -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Virtual, bit [4]
	Bit [5]
	Domain, bits [7:6]
	Valid, bit [8]
	VPE, bits [23:9]
	Bits [25:24]
	DB, bit [26]
	DBPM, bits [31:27]
	VM, bits [47:32]


	A6.1.18 SetResidentAck, Set Resident acknowledge command (IRS -> CPUIF)
	Field descriptions
	CMD, bits [3:0]
	Bits [5:4]
	Fault, bit [6]
	Bits [15:7]


	A6.1.19 SetTarget, Set Interrupt Target command (CPUIF -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Virtual, bit [4]
	TYPE, bits [7:5]
	Domain, bits [9:8]
	IRM, bit [10]
	Bits [15:11]
	ID, bits [39:16]
	Bits [47:40]
	IAFFID, bits [63:48]


	A6.1.20 Sync, synchronizes previously sent configuration changes (CPUIF -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Bits [15:4]


	A6.1.21 SyncAck, synchronizes previously sent configuration changes (IRS -> CPUIF)
	Field descriptions
	CMD, bits [3:0]
	Bits [15:4]


	A6.1.22 UpstreamControl, Upstream Control (CPUIF -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Identifier, bits [7:4]
	Data, bits [15:8]


	A6.1.23 UpstreamControlAck, Upstream Control Acknowledge command (IRS -> CPUIF)
	Field descriptions
	CMD, bits [3:0]
	Bits [14:4]
	Reset, bit [15]
	IAFFID, bits [31:16]


	A6.1.24 WakeRequest, Wake request (IRS -> CPUIF)
	Field descriptions
	CMD, bits [3:0]
	Bits [15:4]



	A6.2 Interrupt Signaling channel
	A6.2.1 INT, Interrupt command (Interrupt Source -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Level, bit [4]
	Edge, bit [5]
	Bits [7:6]
	ID, bits [15:8]


	A6.2.2 Flush, Flush command (IRS -> Interrupt Source)
	Field descriptions
	CMD, bits [3:0]
	Bits [15:4]


	A6.2.3 FlushAck, Flush acknowledge command (Interrupt Source -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Bits [15:4]


	A6.2.4 Quiesce, Quiesce command (Interrupt Source -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Bits [15:4]


	A6.2.5 QuiesceAck, Quiesce acknowledge command (IRS -> Interrupt Source)
	Field descriptions
	CMD, bits [3:0]
	Bits [15:4]


	A6.2.6 Resample, Resample request command (IRS -> Interrupt Source)
	Field descriptions
	CMD, bits [3:0]
	IDV, bit [4]
	Bits [7:5]
	ID, bits [15:8]


	A6.2.7 ResampleAck, Resample request acknowledge command (Interrupt Source -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Bits [15:4]


	A6.2.8 Reset, Reset command (Interrupt Source -> IRS)
	Field descriptions
	CMD, bits [3:0]
	Bits [15:4]


	A6.2.9 ResetAck, Reset acknowledge command (IRS -> Interrupt Source)
	Field descriptions
	CMD, bits [3:0]
	Bits [15:4]




	A7 Example sequences
	A7.1 Bringing the Interrupt Handling channel online and taking it offline
	A7.2 Simple interrupt life-cycle
	A7.3 Replacing the candidate HPPI for an Interrupt Domain, or resident VPE
	A7.4 Making a VPE resident
	A7.5 Interrupt configuration
	A7.6 Sending IPIs
	A7.7 1 of N interrupts


	B Litmus tests
	B1 Interrupt ordering litmus tests
	B1.1 Interrupt litmus test assumptions
	B1.2 Atomicity of interrupt updates by GIC system instructions
	B1.2.1 Notes
	B1.2.2 Litmus test
	B1.2.2.1 Explanation


	B1.3 Multiple updates of the same Interrupt Location
	B1.3.1 Notes
	B1.3.2 Litmus test with two configuration updates
	B1.3.2.1 Explanation

	B1.3.3 Litmus test with an interrupt disable and an interrupt deactivate
	B1.3.3.1 Explanation

	B1.3.4 Litmus test with an interrupt deactivate and an interrupt disable
	B1.3.4.1 Explanation


	B1.4 Reading back interrupt writes on a single PE
	B1.4.1 Notes
	B1.4.2 Litmus test with a configuration update
	B1.4.2.1 Explanation

	B1.4.3 Litmus test with deactivate
	B1.4.3.1 Explanation

	B1.4.4 Litmus test with acknowledgement
	B1.4.4.1 Explanation

	B1.4.5 Litmus test with two configuration updates
	B1.4.5.1 Explanation


	B1.5 Reading interrupt configurations and subsequent updates
	B1.5.1 Notes
	B1.5.2 Litmus test with update to priority
	B1.5.2.1 Explanation

	B1.5.3 Litmus test with deactivate
	B1.5.3.1 Explanation

	B1.5.4 Litmus test with acknowledge
	B1.5.4.1 Explanation


	B1.6 Configuration and acknowledgement
	B1.6.1 Notes
	B1.6.2 Litmus test using disable without explicit synchronization
	B1.6.2.1 Explanation

	B1.6.3 Litmus test using disable with explicit synchronization
	B1.6.3.1 Explanation

	B1.6.4 Litmus test with deactivate
	B1.6.4.1 Explanation

	B1.6.5 Litmus test using priority without explicit synchronization
	B1.6.5.1 Explanation

	B1.6.6 Litmus test using priority with explicit synchronization.
	B1.6.6.1 Explanation


	B1.7 Acknowledge followed by interrupt changes
	B1.7.1 Notes
	B1.7.2 Litmus test with deactivate
	B1.7.2.1 Explanation

	B1.7.3 Litmus test with make pending
	B1.7.3.1 Explanation


	B1.8 Multiple updates with interleaved read
	B1.8.1 Notes
	B1.8.2 Litmus test
	B1.8.2.1 Explanation


	B1.9 Configuration write and IRQ unmask in PSTATE
	B1.9.1 Notes
	B1.9.2 Litmus test
	B1.9.2.1 Explanation

	B1.9.3 Litmus test with initially masked IRQs
	B1.9.3.1 Explanation

	B1.9.4 Litmus test with disable of a PPI
	B1.9.4.1 Explanation


	B1.10 Configuration write and exception status on a single PE
	B1.10.1 Notes
	B1.10.2 Litmus test without wait for IRQ exception to be signaled
	B1.10.2.1 Explanation

	B1.10.3 Litmus test with wait for IRQ exception to be signaled
	B1.10.3.1 Explanation


	B1.11 IPI and acknowledgement
	B1.11.1 Notes
	B1.11.2 Litmus test without explicit synchronization
	B1.11.2.1 Explanation

	B1.11.3 Litmus test with explicit synchronization
	B1.11.3.1 Explanation


	B1.12 Observing multiple writes on a different PE
	B1.12.1 Notes
	B1.12.2 Litmus test
	B1.12.2.1 Explanation


	B1.13 Read of the configuration of an interrupt
	B1.13.1 Notes
	B1.13.2 Litmus test without ISB
	B1.13.2.1 Explanation

	B1.13.3 Litmus test with ISB
	B1.13.3.1 Explanation


	B1.14 Multiple reads of the same config
	B1.14.1 Notes
	B1.14.2 Litmus test with ISBs
	B1.14.2.1 Explanation


	B1.15 GIC coherence order
	B1.15.1 Notes
	B1.15.2 Litmus test
	B1.15.2.1 Explanation


	B1.16 Independent reads of independent writes
	B1.16.1 Notes
	B1.16.2 Litmus test
	B1.16.2.1 Explanation


	B1.17 Message passing via flag in memory
	B1.17.1 Notes
	B1.17.2 Litmus test
	B1.17.2.1 Explanation


	B1.18 Message passing via interrupt priority configuration
	B1.18.1 Notes
	B1.18.2 Litmus test
	B1.18.2.1 Explanation


	B1.19 Message passing with an LPI and a device read
	B1.19.1 Notes
	B1.19.2 Litmus test
	B1.19.2.1 Explanation

	B1.19.3 Litmus test with address dependency
	B1.19.3.1 Explanation


	B1.20 Message passing with an LPI and a GSB
	B1.20.1 Notes
	B1.20.2 Litmus test
	B1.20.2.1 Explanation


	B1.21 Message passing with an IPI and a GSB
	B1.21.1 Notes
	B1.21.2 Litmus test
	B1.21.2.1 Explanation


	B1.22 Message passing using deactivate
	B1.22.1 Notes
	B1.22.2 Litmus test with explicit synchronization
	B1.22.2.1 Explanation

	B1.22.3 Litmus test with address dependency
	B1.22.3.1 Explanation

	B1.22.4 Litmus test with control dependency
	B1.22.4.1 Explanation

	B1.22.5 Litmus test without explicit synchronization
	B1.22.5.1 Explanation

	B1.22.6 Litmus test with a DSB but without a GSB
	B1.22.6.1 Explanation

	B1.22.7 Litmus test without a DSB but with a GSB
	B1.22.7.1 Explanation


	B1.23 IPI edge merging and message passing
	B1.23.1 Notes
	B1.23.2 Litmus test
	B1.23.2.1 Explanation


	B1.24 Device edge merging with GSB ACK
	B1.24.1 Notes
	B1.24.2 Litmus test
	B1.24.2.1 Explanation


	B1.25 Configuration read and interrupt acknowledge
	B1.25.1 Notes
	B1.25.2 Single-threaded litmus test
	B1.25.2.1 Explanation

	B1.25.3 Multi-threaded litmus test
	B1.25.3.1 Explanation


	B1.26 Atomicity of interrupt acknowledge
	B1.26.1 Notes
	B1.26.2 Litmus test
	B1.26.2.1 Explanation


	B1.27 Atomicity of interrupt disable and acknowledge
	B1.27.1 Notes
	B1.27.2 Litmus test
	B1.27.2.1 Explanation


	B1.28 Interrupt handler completion
	B1.28.1 Notes
	B1.28.2 Litmus test
	B1.28.2.1 Explanation


	B1.29 Configuration update while disabled
	B1.29.1 Notes
	B1.29.2 Litmus test
	B1.29.2.1 Explanation


	B1.30 Atomicity of interrupt acknowledge and retarget
	B1.30.1 Notes
	B1.30.2 Litmus test
	B1.30.2.1 Explanation


	B1.31 1ofN interrupt acknowledge
	B1.31.1 Notes
	B1.31.2 Litmus test
	B1.31.2.1 Explanation


	B1.32 Retargeting interrupts without synchronization
	B1.32.1 Notes
	B1.32.2 Litmus test
	B1.32.2.1 Explanation


	B1.33 Reading interrupt configuration and exception status
	B1.33.1 Notes
	B1.33.2 Litmus test with ISB before reading IRQ pending status
	B1.33.2.1 Explanation

	B1.33.3 Litmus test with ISB after reading IRQ pending status
	B1.33.3.1 Explanation


	B1.34 Reading interrupt configuration and IRQ unmask in PSTATE
	B1.34.1 Notes
	B1.34.2 Explanation
	B1.34.3 Litmus test with ISB before unmasking IRQ in PSTATE
	B1.34.4 Litmus test with ISB after unmasking IRQ in PSTATE

	B1.35 PPI activate and system register read
	B1.35.1 Notes
	B1.35.2 Litmus test without ISB
	B1.35.2.1 Explanation

	B1.35.3 Litmus test with GSB
	B1.35.3.1 Explanation

	B1.35.4 Litmus test with ISB
	B1.35.4.1 Explanation


	B1.36 PPI disable and acknowledge
	B1.36.1 Notes
	B1.36.2 Litmus test with ISB
	B1.36.2.1 Explanation


	B1.37 PPI acknowledgement
	B1.37.1 Notes
	B1.37.2 Litmus test
	B1.37.2.1 Explanation

	B1.37.3 Litmus test
	B1.37.3.1 Explanation


	B1.38 Write after changing resident VM
	B1.38.1 Notes
	B1.38.2 Litmus test
	B1.38.2.1 Explanation


	B1.39 Write before changing resident VM
	B1.39.1 Notes
	B1.39.2 Litmus test
	B1.39.2.1 Explanation


	B1.40 Completion of GIC and GICR instructions in finite time
	B1.40.1 Notes
	B1.40.2 Litmus test with a priority update observed by a configuration read
	B1.40.2.1 Explanation

	B1.40.3 Litmus test with an interrupt acknowledge observed by a configuration read
	B1.40.3.1 Explanation

	B1.40.4 Litmus test with an interrupt becoming pending and then acknowledged
	B1.40.4.1 Explanation



	B2 Effects of disabling a PPI source on the PPI Pending state
	B2.0.1 Notes
	B2.0.2 Litmus test with disable of the timer state
	B2.0.2.1 Explanation



	C Model
	C1 Operational model

	Glossary

