ARM' Generic Interrupt Controller
Architecture Specification

GIC architecture version 3.0 and version 4.0

Beta

ARM

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
ARM IHI 0069A (ID060315)

ARM Generic Interrupt Controller Architecture Specification
GIC architecture version 3.0 and version 4.0

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this document.

Change History

Date Issue Confidentiality Change

June 2015 A Non-confidential First release of GICv3 and GICv4

Some of the information in this specification was previously published in ARM® Generic Interrupt Controller, Architecture
version 2.0, Architecture Specification.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM Limited (“ARM”). No license,
express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers
is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of
these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. You must follow the ARM trademark usage guidelines http://www.arm.com/about/trademark-usage-guidelines.php.

Copyright © 2008, 2011, 2015 ARM Limited or its affiliates. All rights reserved.
ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20327

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status
The information in this document is for a Beta product, that is a product under development.
Web Address

http://www.arm.com

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Non-Confidential - Beta

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Non-Confidential - Beta

ARM IHI 0069A
ID060315

Contents

ARM Generic Interrupt Controller Architecture
Specification GIC architecture version 3.0 and

version 4.0

Chapter 1

Chapter 2

Chapter 3

Chapter 4

2.1
2.2

31
3.2
3.3

4.1
4.2

Preface

About this SpeCifiCationcoooiiiiiiii e X
Using this SpPecifiCationccoiiiiiii e Xi
(070] 01771 0111] o [T PSPPI Xii
PN [o 1 Te] g F= 1N (== To [10 o PRSPPI Xiii
FEEADACK ...ttt e e e et e e e e et a e e e nnneeaaeanns Xiv
Introduction

About the Generic Interrupt Controller (GIC)cocoviiiiiiiie e 1-16
BT 0011 To] (oo |V USRS 1-19
Supported configurations and compatibilitycccceeiiiiiiiieni 1-23

GIC Partitioning
The GIC logical COMPONENLScccueiiiiiieiiiie e ee et eee e ee e e eeeeeenees 2-30
Interrupt bypass SUPPOIToeeeeeeeeieieee e 2-35

Distribution and Routing of Interrupts

The Distributor and Redistributorsueiiieiiiiiiiccceee e 3-38
INT DS ettt ettt e et e e e e e e e e e e e e e e e ee e e e e b rrararrraraeaaaes 3-39
AFFINIEY FOUTING .ot 3-43

Physical Interrupt Handling and Prioritization
INEEITUPL IIFECYCIE .o e 4-46
Locality-specific Peripheral interrupts ... 4-52

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Non-Confidential - Beta

4.3 Private Peripheral INterruptsoooiiiiiiii e 4-53
4.4 Software Generated INtEIrTUPLSooooiiiiiiiiice e 4-54
4.5 Shared Peripheral INterruptsooiiiiiiii e 4-55
4.6 INEEITUPE GrOUPING ...eeeiiieiie e e e 4-57
4.7 Enabling the distribution of interruptsccccooiiiiiii e 4-61
4.8 Interrupt PrioritiZatioNcc.eeiiiiiiiee e 4-63
Chapter 5 Virtual Interrupt Handling and Prioritization
51 About GIC support for virtualizationccccceiiiiiiiiiiiie e 5-76
5.2 OPEration OVEIVIEWoiiiiiiiiiiii ettt 5-77
53 Configuration and control of VIMSccooiiiiiiiiie e 5-81
5.4 Virtual LPI SUPPOIT ... e e e e e e e e e e e e e e e 5-84
5.5 PSEUAOCOTE ... e 5-86
Chapter 6 Locality-specific Peripheral Interrupts and the ITS
6.1 [O PSP R U PP PP UPPTRPPRRRPN 6-90
6.2 LT LS USSR 6-96
6.3 ITS COMMEANGAS ...ttt e e e nnnee s 6-103
6.4 Common ITS pseudocode FUNCLONScoociiiiiiiiiiii e 6-131
6.5 ITS command error ENCOAINGSceoueieeiiieeeiiieeiieesteeeeeeee e e e seee e e eeeeesneeeenneeens 6-137
6.6 ITS POWEr MANAGEMENLceiiiieiiiie e eeee et ee e see e e e e e e e enaeeeenneeeenneas 6-140
Chapter 7 Power Management
7.1 PoWer managementoooiiiiiiii s 7-142
Chapter 8 Programmers’ Model
8.1 About the programmers’ MOdelooiiiiiiiii e 8-144
8.2 AArch64 System register descriptionscoooeiiiiirriir e 8-168
8.3 AArch64 System register descriptions of the virtual registersccccoceciieeen. 8-223
8.4 AArch64 virtualization control System registerscccccvviiiiiiinie e 8-256
8.5 AArch32 System register descriptionscocoeiiiiiiinii i 8-282
8.6 AArch32 System register descriptions of the virtual registersccccoeeeiinen. 8-344
8.7 AArch32 virtualization control System registerscccococviviiiiiice i 8-378
8.8 The GIC Distributor register Mapccoooeeeiiieiiee e 8-406
8.9 The GIC Distributor register descriptionsccocccveviiriiie e 8-408
8.10 The GIC Redistributor register Mmapccoccveriiiiiiiee e 8-463
8.11 The GIC Redistributor register descriptionsccooceiiriiiiiiii e 8-466
8.12 The GIC CPU interface register Mmapcccocvieiiieiiiieeiie e 8-523
8.13 The GIC CPU interface register descriptionscccccveiieviiiniieeere e 8-524
8.14 The GIC virtual CPU interface register mapccccovoeeeiiieenee e 8-561
8.15 The GIC virtual CPU interface register descriptionsccccevvieniiienieencieenne 8-563
8.16 The GIC virtual interface control register mapccccvceeiiiiiiieie e 8-594
8.17 The GIC virtual interface control register descriptionscccccoeeiiiiiiiccineen. 8-595
8.18 The ITS regiSter MaPc.eeiiiiee e e 8-617
8.19 The ITS register descriptionseoiiiiiiii e 8-618
8.20 PSEUAOCOAE ... e s 8-638
Chapter 9 System Error Reporting
9.1 About System Error reportingooceeviieiiiiiiiicce e 9-656
Chapter 10 Legacy Operation and Asymmetric Configurations
10.1 Legacy support of interrupts and asymmetric configurationsc.cccecceenee. 10-658
10.2 The asymmetric configurationccocoeeeiieiiie e 10-660
10.3 Support for legacy operation of VMScccoiiiiiiiiiiiiiiceeeeee e 10-661
Appendix A Pseudocode Definition
A1 AbOUt ARM PSEUAOCOAE ...ttt ettt e e e e e e st ee e e e enees A-664
A2 Data tYPES e A-665
vi Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta

ID060315

Appendix B

Appendix C

A3
A4
A5
A.6
A7

B.1
B.2
B.3
B.4

C.A1

EXPrESSIONS ...ttt A-669

Operators and built-in fUNCLONSoooiiiiiiiiiii e A-671
Statements and program StruCtUreocceiiiiieiiie e A-676
Pseudocode terminolOgyooouieeiiiiiiiee e A-680
Miscellaneous helper procedures and support functionsccccceoieiiiinennen. A-681

GIC Stream Protocol Interface

OVEIVIEW ..ttt e ettt e e e ettt e e e e sttt e e e eestaeeeeesantsseeeesesnnsaeeeeesnsaeeeas B-690
Signals and the GIC Stream Protocolc.cccceiiiiiiiniineee e B-691
The GIC Stream ProtocCol ... e B-694
Alphabetic list of command and response packet formatscccccceeeeennnee... B-698
PCI

PCIE SUPPOI ...ttt e et e e e e et e e e e e e e e e e e e eaabeeeeeeeanres C-716
Glossary

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Non-Confidential - Beta

vii

viii Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

Preface

This preface introduces the ARM® Generic Interrupt ControllerArchitecture Specification. It contains the following
sections:

About this specification on page X.
Using this specification on page Xi.
Conventions on page Xii.
Additional reading on page xiii.
Feedback on page xiv.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Non-Confidential - Beta

Preface
About this specification

About this specification

This specification describes the ARM Generic Interrupt Controller (GIC) architecture. It defines version 3.0
(GICv3) and version 4.0 (GICv4) of the GIC architecture.

Throughout this document, references to the GIC or a GIC refer to a device that implements this GIC architecture.
Unless the context makes it clear that a reference is to an IMPLEMENTATION DEFINED feature of the device, these
references describe the requirements of this specification.

Intended audience

This specification is written for users who want to design, implement, or program the GIC in a range of
ARM-compliant implementations from simple uniprocessor implementations to complex multiprocessor systems.
It does not assume familiarity with previous version of the GIC.

The specification assumes that users have some experience of ARM products, and are familiar with the terminology
that describes the ARMvS architecture. See the ARM™ Architecture Reference Manual, ARMVS, for ARMvS-A
architecture profile for more information.

X Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

Preface
Using this specification

Using this specification

This specification is organized into the following chapters:

Chapter 1 Introduction

Read this for an overview of the GIC, and information about the terminology used in this document.

Chapter 2 GIC Partitioning
Read this for an overview of the GIC partitioning and information about the GIC logical
components.

Chapter 3 Distribution and Routing of Interrupts

Read this for information about how the GIC uses affinity routing to distribute interrupts.

Chapter 4 Physical Interrupt Handling and Prioritization
Read this for information about how the GIC handles physical interrupts.

Chapter 5 Virtual Interrupt Handling and Prioritization

Read this for information about how the GIC handles virtual interrupts.

Chapter 6 Locality-specific Peripheral Interrupts and the ITS
Read this for a description of Locality-specific Peripheral Interrupts (LPIs) and use of the Interrupt
Translation Service (ITS).

Chapter 7 Power Management

Read this for information about GIC power management.

Chapter 8 Programmers’ Model
Read this for a description of the GIC register interfaces, and all GIC registers.

Chapter 9 System Error Reporting

Read this for information about GIC support for error reporting.
Chapter 10 Legacy Operation and Asymmetric Configurations

Read this for information about GIC support for legacy operation and asymmetric configurations.
Appendix A Pseudocode Definition

This appendix provides a definition of the pseudocode that is used in this specification.

Appendix B GIC Stream Protocol Interface

This appendix describes the AXI4-Stream protocol standard message-based interface that the GIC
Stream Protocol Interface uses.

Appendix C PCI
This appendix describes PCle support.
Glossary Read this for definitions of some of the terms used in this specification.
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. Xi

Non-Confidential - Beta

Preface

Conventions

Conventions

The following sections describe conventions that this book can use:

. Typographic conventions.
. Signals.

. Numbers.

. Pseudocode descriptions.

Typographic conventions

Signals

Numbers

The typographical conventions are:

italic Introduces special terminology, and denotes citations.
bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALS

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text Indicates a link. This can be:
. A URL, for example http://infocenter.arm.com.

. A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, About the Generic Interrupt Controller (GIC) on page 1-16.

. A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example, Banked register or GICC_CTLR.

In general this specification does not define processor signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

. HIGH for active-HIGH signals
. LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers are normally written in decimal. Binary numbers are preceded by b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This specification uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font, and follows the conventions described in the ARM® Architecture
Reference Manual, ARMVS, for ARMvS-A architecture profile and the ARM® Architecture Reference Manual,
ARMv7-A and ARMv7-R edition.

Xii

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

Additional reading

Preface
Additional reading

This section lists relevant publications from ARM and third parties.

See the Infocenter, http://infocenter.arm.com for access to ARM documentation.

ARM publications

Other publications

AMBA® 4 AXI4-Stream Protocol Specification (ARM IHI 0051).

ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).

ARM® Architecture Reference Manual, ARMVS, for ARMvS-A architecture profile (ARM DDI 0487).
ARM® Generic Interrupt Controller, Architecture version 2.0, Architecture Specification (ARM IHI 0048).
ARM® CoreSight™ Architecture Specification v2.0 (ARM IHI 0029).

ARM® Debug Interface Architecture Specification ADIVS.0 to ADIv5.2 (ARM IHI 0031).

ARM* Server Base System Architecture (SBSA) (ARM-DEN-0029).

ARM® System Memory Management Unit Architecture Specification, SMMU architecture version 2.0 (ARM
THI 0062).

The following books are referred to in this manual, or provide more information:

JEDEC Solid State Technology Association, Standard Manufactures Identification Code, JEP106.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. xiii
Non-Confidential - Beta

Preface
Feedback

Feedback

ARM welcomes feedback on its documentation.

Feedback on this manual

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Provide:

. The title.

. The number, ARM IHI 0069A.

. The page numbers to which your comments apply.
. A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Xiv Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

Chapter 1
Introduction

This chapter provides an introduction to the GIC architecture. It provides an overview of the GIC architecture, and
of the features that are new to the architecture. It also provides definitions of the terminology that is used throughout
this document. It contains the following sections:

. About the Generic Interrupt Controller (GIC) on page 1-16.
. Terminology on page 1-19.
. Supported configurations and compatibility on page 1-23.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 1-15
ID060315 Non-Confidential - Beta

1 Introduction

1.1 About the Generic Interrupt Controller (GIC)

1.1 About the Generic Interrupt Controller (GIC)

The GICv3 architecture is designed to operate with ARMvS-A and ARMv8-R compliant processing elements, PEs.

The Generic Interrupt Controller (GIC) architecture defines:
. The architectural requirements for handling all interrupt sources for any PE connected to a GIC.

. A common interrupt controller programming interface applicable to uniprocessor or multiprocessor systems.

The GIC is an architected resource that supports and manages interrupts. It provides:
. Registers for managing interrupt sources, interrupt behavior, and the routing of interrupts to one or more PEs.

. Support for:
— The ARMVS architecture.
— Locality-specific Peripheral Interrupts (LPIs).
— Private Peripheral Interrupts (PPIs).
— Software Generated Interrupts (SGIs).
— Shared Peripheral Interrupts (SPIs).
— Interrupt masking and prioritization.
— Uniprocessor and multiprocessor systems.
— Wakeup events in power management environments.

For each PE, the GIC architecture describes how IRQ and FIQ interrupts can be generated from different types of
interrupts within the system. The ARMv8-A Exception model then describes how the PE handles these IRQ and
FIQ interrupts.

Interrupt handling also depends on other aspects of the ARMv8 architecture, such as the Security state, and, for
Non-secure interrupts, support for virtualization. The ARM architecture provides two Security states, each with an
associated physical memory address space:

. Secure state.

. Non-secure state.

The GIC architecture supports the routing and handling of interrupts that are associated with both Security states.
See Interrupt grouping and security on page 4-58 for more information.

The GIC architecture supports the ARMv8-A model for handling virtual interrupts that are associated with a virtual
machine, VM. ARMvS8-A supports virtualization in Non-secure state only. A virtualized system has:

. A hypervisor that must include a component executing at EL2, which is responsible for switching between
VMs.

. Several VMs executing at Non-secure EL1.

. Applications executing at Non-secure ELO on a VM.

For more information about the ARMv8 architecture, see ARM® Architecture Reference Manual, ARMVS, for
ARMNVS-A architecture profile. For more information about VMs, see About GIC support for virtualization on
page 5-76.

This specification defines version 3.0 (GICv3) and version 4.0 (GICv4) of the GIC architecture. Version 2.0
(GICv2) is only described in terms of the GICv3 optional support for legacy operation, see GICv3 with legacy
operation on page 1-26. For detailed information about the GICv2 architecture, see the ARM® Generic Interrupt
Controller, Architecture version 2.0, Architecture Specification.

Note
Because GICv4 is an extension of GICv3, all references to GICv3 in this manual apply equally to GICv4.

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

1 Introduction
1.1 About the Generic Interrupt Controller (GIC)

111 Changes to the GIC architecture from GICv2

GIC scalability

The GICv2 architecture only supports a maximum of eight PEs, and so has features that do not scale
to a large system. GICv3 addresses this by changing the mechanism by which interrupts are routed,
called affinity routing, and by introducing a new component to the interrupt distribution, called a
Redistributor. See Chapter 2 GIC Partitioning for more information.

Affinity routing for a Security state is enabled by setting GICD CTLR.ARE S or
GICD_CTLR.ARE NSto 1.
Interrupt grouping

Interrupt grouping is the mechanism that is used by GICv3 to align interrupt handling with the

ARMvS8 Exception model:

. Group 0 physical interrupts are expected to be handled at the highest implemented Exception
level.

. Secure Group 1 physical interrupts are expected to be handled at Secure EL1.

. Non-secure Group 1 physical interrupts are excepted to be handled at Non-secure EL2 in

systems using virtualization, or at Non-secure EL1 in systems not using virtualization.

These interrupt groups can be mapped onto the ARMvS8 FIQ and IRQ signals as described in
Interrupt grouping on page 4-57, using configuration bits from the ARMv8 architecture and
configuration bits within the GICv3 architecture.

In GICv3, interrupt grouping supports:

. Configuring each interrupt as Group 0, Secure Group 1, or Non-secure Group 1.

. Signaling Group 0 physical interrupts to the target PE using the FIQ exception request.

. Signaling Group 1 physical interrupts to the target PE in a manner that allows them to be
handled using the IRQ handler in their own Security state. The exact handling of Group 1
interrupts depends on the current Exception level and Security state, as described in
Chapter 4 Physical Interrupt Handling and Prioritization.

. A unified scheme for handling the priority of Group 0 and Group 1 interrupts.

Interrupt Translation Service (ITS)

The Interrupt Translation Service, ITS, provides functionality that allows software to control how
interrupts that are forwarded to the ITS are translated into:

. Physical interrupts, in GICv3 and GICv4.

. Virtual interrupts, in GICv4 only.

The ITS also allows software to determine the target Redistributor for a translated interrupt.
Software can control the ITS through a command interface and associated table-based structures in
memory. The outputs of the Interrupt Translation Service (ITS) are always LPIs, which are a form
of message-based interrupt. See The ITS on page 6-96.

Locality-specific Peripheral Interrupts (LPIs)
LPIs are a new class of interrupt that significantly extends the interrupt ID space that the GIC can
handle. LPIs are optional, and, if implemented, can be generated and supported by an Interrupt
Translation Service, ITS. See LPIs on page 6-90.

Software Generated Interrupts (SGIs)

With the ability of GICv3 to support large-scale systems, the context of an SGI is modified and no
longer includes the identity of the source PE. See Software Generated Interrupts on page 4-54.

Note

The original SGI format is only available in GIC implementations that support legacy operation.

Shared Peripheral Interrupts (SPIs)

A new set of registers in the Distributor are added to support the setting and clearing of
message-based SPIs. See Shared Peripheral Interrupts on page 4-55.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 1-17
ID060315 Non-Confidential - Beta

1 Introduction

1.1 About the Generic Interrupt Controller (GIC)

System register interface

This interface uses System register instructions in an ARMv8-A or ARMv8-R PE to provide a
closely-coupled interface for the CPU interface registers. This interface is used for registers that are
associated directly with interrupt handling and priority masking to minimize access latency. For
virtualization, the registers that are accessed in this manner include both the registers that are
accessed by a VM interrupt handler, and the registers that forward virtual interrupts from a
hypervisor to a VM. All other registers are memory-mapped.

For AArch64 state, access to the System register interface is enabled by the following settings:
. ICC SRE ELI.SRE==1.

. ICC_SRE EL2.SRE == 1.

. ICC_SRE EL3.SRE==1.

For AArch32 state, access to the System register interface is enabled by the following settings:
. ICC SRE.SRE==1.

. ICC_HSRE.SRE == 1.

. ICC_MSRE.SRE == 1.

Other behavior, which is backwards compatible with GICv2, is described in Chapter 10 Legacy
Operation and Asymmetric Configurations.

Note

In a GIC that supports legacy operation, memory-mapped access is available for all architected GIC
registers.

Unless indicated otherwise, this manual describes the GICv3 architecture in a system with affinity routing, System
register access, and two Security states, enabled. This means that:

« GICD CTLR.ARE NS==1.
« GICD CTLR.ARE S==1.
« GICD CTLR.DS==0.

For operation in AArch64 state:

. ICC_SRE _ELI1.SRE == 1, for both the Secure and the Non-secure copy of this register.
. ICC SRE EL2.SRE==1.

. ICC SRE EL3.SRE==1.

For operation in AArch32 state:
« ICC_SRE.SRE==1.

. ICC HSRE.SRE ==1.

. ICC_MSRE.SRE == 1.

From GICv3 onwards, legacy operation with the ARE and SRE control bits set to 0 is deprecated. See Chapter 10
Legacy Operation and Asymmetric Configurations for more information about legacy operation.

Changes specific to GICv4

GICv4 adds support for the direct injection of virtual interrupts to a VM, without involving the hypervisor. Direct
injections are only supported by systems that implement at least one ITS that translates interrupts into LPIs.

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

1 Introduction
1.2 Terminology

1.2 Terminology

The architecture descriptions in this manual use the same terminology that is used for the ARMv8 architecture. For
more information about this terminology, see the introduction to Part A of the ARM® Architecture Reference
Manual, ARMvS, for ARMvS-A architecture profile.

In addition, the AArch64 System register names are used where appropriate, in preference to listing both the
AArch32 and AArch64 System register names. The ELx suffix on the AArch64 register name indicates the lowest
Exception level from which the register can be accessed. The individual AArch64 System register descriptions
contain a reference to the AArch32 System register that provides the same functionality.

The following sections define the architectural terms used in this manual:
. Interrupt types.

. Interrupt states on page 1-20.

. Models for handling interrupts on page 1-20.

. Additional terms on page 1-21.

1.21 Interrupt types

A device that implements the GIC architecture can control peripheral interrupts. Peripheral interrupts are typically
asserted by a physical signal to the GIC. The GIC architecture defines the following types of peripheral interrupt:

Locality-specific Peripheral Interrupt (LPI)
An LPI is a targeted peripheral interrupt that is routed to a specific PE within the affinity hierarchy:

. LPIs are always Non-secure Group 1 interrupts, in a system where two Security states are
enabled.

. LPIs have edge-triggered behavior.

. LPIs can be routed using an ITS.

. LPIs do not have an active state, and therefore do not require explicit deactivation.

. LPIs are always message-based interrupts.

See LPIs on page 6-90 for more information.

Private Peripheral Interrupt (PPI)

This is a peripheral interrupt that targets a single, specific PE, and different PEs can use the same
interrupt number to indicate different events:

. PPIs can be Group 0 interrupts, Secure Group 1 interrupts, or Non-secure Group 1 interrupts.
. PPIs can support either edge-triggered or level-sensitive behavior.
. PPIs are never routed using an ITS.
. PPIs have an active state and therefore require explicit deactivation.
Note

Commonly, it is expected that PPIs are used by different instances of the same interrupt source on
each PE, thereby allowing a common interrupt number to be used for PE specific events, such as the
interrupts from a private timer.

Shared Peripheral Interrupt (SPI)

This is a peripheral interrupt that the Distributor can route to a specified PE that can handle the
interrupt, or to a PE that is one of a group of PEs in the system that has been configured to accept
this type of interrupt:

. SPIs can be Group 0 interrupts, Secure Group 1 interrupts, or Non-secure Group 1 interrupts.
. SPIs can support either edge-triggered or level-sensitive behavior.

. SPIs are never routed using an ITS.

. SPIs have an active state and therefore require explicit deactivation.

See Shared Peripheral Interrupts on page 4-55 for more information. For more information about
the Distributor, see Chapter 2 GIC Partitioning.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 1-19
ID060315 Non-Confidential - Beta

1 Introduction
1.2 Terminology

Software Generated Interrupt (SGI)

SGIs are typically used for inter-processor communication, and are generated by a write to an SGI
register in the GIC:

. SGIs can be Group 0 interrupts, Secure Group 1 interrupts, or Non-secure Group 1 interrupts.
. SGIs have edge-triggered behavior.

. SGIs are never routed using an ITS.

. SGIs have an active state and therefore require explicit deactivation.

See Software Generated Interrupts on page 4-54 for more information.

An interrupt that is edge-triggered has the following property:

. It is asserted on detection of a rising edge of an interrupt signal and then, regardless of the state of the signal,
remains asserted until the interrupt is acknowledged by software.

For information about edge-triggered message-based interrupts, see Message-based interrupt.

An interrupt that is level-sensitive has the following properties:

. It is asserted whenever the interrupt signal level is active, and deasserted whenever the level is not active.
. It is explicitly deasserted by software.
1.2.2 Interrupt states

The following states apply at each interface between the GIC and a connected PE:

Inactive

Pending

Active

An interrupt that is not active or pending.

An interrupt that is recognized as asserted in hardware, or generated by software, and is
waiting to be handled by the target PE.

An interrupt that has been acknowledged by a PE and is being handled, so that another
assertion of the same interrupt is not presented as an interrupt to a PE, until the initial
interrupt is no longer active.

LPIs do not have an active state, and transition to the inactive state on being acknowledged
by a PE.

Active and pending An interrupt that is active from one assertion of the interrupt, and is pending from a

subsequent assertion.

LPIs do not have an active and pending state, and transition to the inactive state on being
acknowledged by a PE.

The GIC maintains state for each supported interrupt. The state machine defines the possible transitions between
interrupt states, and, for each interrupt type, the conditions that cause a transition. See Interrupt handling state
machine on page 4-50 for more information.

1.2.3 Models for handling interrupts

In a multiprocessor implementation, the following models exist for handling interrupts:

Targeted distribution model

This model applies to all PPIs and to all LPIs. It also applies to:

. SPIs during non-legacy operation, if GICD IROUTER<n>.Interrupt Routing Mode is
cleared to 0.

. During legacy operation, when GICD_CTLR.ARE_* == 0, if only one bit in the appropriate
GICD_ITARGETSR<n> field is set to 1.

A target PE that has been specified by software receives the interrupt.

1-20

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

1 Introduction
1.2 Terminology

Targeted list model

This model applies to SGIs only. Multiple PEs receive the interrupt independently. When a PE
acknowledges the interrupt, the interrupt pending state is cleared only for that PE. The interrupt
remains pending for each PE independently until it has been acknowledged by the PE.

1 of N model
This model applies to SPIs only. The interrupt is targeted at a specified set of PEs, and is taken on
only one PE in that set. The PE that takes the interrupt is selected in an IMPLEMENTATION DEFINED
manner. The architecture applies restrictions on which PEs can be selected, see Enabling the
distribution of interrupts on page 4-61.

Note

. The ARM GIC architecture guarantees that a 1 of N interrupt is presented to only one PE
listed in the target PE set.

. A 1 of N interrupt might be presented to a PE where the interrupt is not the highest priority
interrupt, or where the interrupt is masked by ICC_PMR_EL1 or within the PE. See Interrupt
lifecycle on page 4-46.

For SPIs during legacy operation, this model applies when more than one target PE is specified in
the target registers.

The hardware implements a mechanism to determine which PE activates the interrupt, if more than
one PE can handle the interrupt.

1.2.4 Additional terms

The following additional terms are used throughout this manual:

Idle priority
In GICv3, the idle priority, 0xFF, is the running priority read from ICC_RPR_EL1 on the CPU
interface when no interrupts are active on that interface. During legacy operation, the idle priority,
as read from GICC_RPR, is IMPLEMENTATION DEFINED, as in GICv2.

Interrupt Identifier (INTID)
The number space that uniquely identifies an interrupt with an associated event and its source. The
interrupt is then routed to one or more PEs for handling. PPI and SGI interrupt numbers are local to
each PE. SPIs and LPIs have global interrupt numbers for the physical domain. See /NTIDs on
page 3-39 for more information.

Interrupt Routing Infrastructure (IRI)
The Distributor, Redistributor and, optionally, the ITS. See The GIC logical components on
page 2-30 for more information.

Message-based interrupt

A message-based interrupt is an interrupt that is asserted because of a memory write access to an
assigned address. Physical interrupts can be converted to message-based interrupts. Message-based
interrupts can support either level-sensitive or edge-triggered behavior, although LPIs are always
edge-triggered.

GICv3 supports two mechanisms for message-based interrupts:

. A mechanism for communicating an SPI, where the assigned address is held in the
Distributor. In this case the message-based interrupt can be either level-sensitive or
edge-triggered.

. A mechanism for communicating an LPI, where the assigned address is held in an ITS, if an
ITS is implemented, or in the Redistributor.

ARM recommends the use of LPIs to provide support for MST and MSI-X capabilities in systems
that support PCle. See Chapter 6 Locality-specific Peripheral Interrupts and the ITS for more
information. GICv3 also includes architected support for signaling SPIs using message-based
interrupts, see Shared Peripheral Interrupts on page 4-55.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 1-21
ID060315 Non-Confidential - Beta

1 Introduction
1.2 Terminology

Physical interrupt
An interrupt that targets a physical PE is a physical interrupt. It is signaled to the PE by the physical
CPU interface to which the PE is connected.

Running priority
At any given time, the running priority of a CPU interface is either:

. The group priority of the active interrupt, for which there has not been a priority drop on that
interface.
. If there is no active interrupt for which there has not been a priority drop on the interface, the

running priority is the idle priority 0xFF.

Sufficient priority
The GIC CPU interface compares the priority of an enabled, pending interrupt with all of the
following, to determine whether the interrupt has sufficient priority:
. The Priority Mask Register, [CC_PMR _ELI.

. The preemption settings for the interface, as indicated by ICC_BPRO _EL1 and
ICC_BPRI_ELI.

. The current running priority, as indicated by ICC_RPR_EL1 for the CPU interface.

If the interrupt has sufficient priority it is signaled to the connected PE.

Virtual interrupt
An interrupt that targets a VM is a virtual interrupt. It is signaled by the associated virtual CPU
interface. See Chapter 5 Virtual Interrupt Handling and Prioritization for more information.

Maintenance interrupt

A physical interrupt that signals key events associated with interrupt handling on a VM to allow the
hypervisor to track those events. These events are processed by the hypervisor, and include enabling
and disabling a particular group of interrupts. See Maintenance interrupts on page 5-83 for more
information.

1-22 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

1 Introduction
1.3 Supported configurations and compatibility

1.3 Supported configurations and compatibility

In ARMv8-A, EL2 and EL3 are optional, and a PE can support one, both, or neither of these Exception levels.
However:

. A PE requires EL3 to support both Secure and Non-secure state.
. A PE requires EL2 to support virtualization.

. If EL3 is not implemented, there is only a single Security state. This Security state is either Secure state or
Non-secure state.

GICv3 supports interrupt handling for all of these configurations, and for execution in both AArch32 state and
AArch64 state, in accordance with the interprocessing rules described in ARM® Architecture Reference Manual,
ARMVS, for ARMVS-A architecture profile.

1.3.1 Affinity routing configuration

The GICv3 architecture supports affinity routing. It provides optional support for:

. An asymmetric configuration, where affinity routing is enabled for Non-secure state and disabled for Secure
state. This provides support for a Secure legacy environment.

. A legacy-only environment where affinity routing is disabled for both Secure state and Non-secure state.

1.3.2 System register configuration

When affinity routing is enabled for execution in both Security states, the GIC must be configured to use System
register access to handle physical interrupts. The architecture does not support having affinity routing enabled for a
Security state, and not having System register access configured for that Security state. Configuring the GIC this
way results in UNPREDICTABLE behavior. When affinity routing is enabled for execution in Non-secure state, the
GIC architecture optionally supports legacy operation for virtual interrupts, that is legacy interrupt handling at
Non-secure EL1 under the control of a hypervisor executing at EL2.

1.3.3 GIC control and configuration

Many of the GIC registers are available in different forms, to permit effective interrupt handling:

. For two Security states.
. For different interrupt groups.
. Using System register access for GICv3 or memory-mapped access for legacy operation.

When System register access is enabled, control and configuration of the GIC architecture is handled by architected
System registers and the associated accesses that define the GIC programmers’ model. See Chapter 8 Programmers’
Model for more information.

Some registers are always memory-mapped, while others use System register access in GICv3, and
memory-mapped access for legacy operations.

Table 1-1 shows the registers that are always memory-mapped.

Table 1-1 Memory-mapped registers

Prefix in short register name Registers

GICD Distributor registers
GICR Redistributor registers?
GITS ITS registers

a. There is one copy of each of the Redistributor registers per PE.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 1-23
Non-Confidential - Beta

1 Introduction
1.3 Supported configurations and compatibility

Table 1-2 shows the registers that are memory-mapped for legacy operations, but are replaced by System register
access in GICv3 when System register access is enabled.

Table 1-2 Memory-mapped registers for legacy operation

Prefix in short register name Registers
GICC Physical CPU interface registers
GICV Virtual CPU interface registers
GICH Virtual interface control registers
Note
. An operating system executing at Non-secure EL1 uses either the GICC_* or the GICV_* registers to control

interrupts, and is unaware of the difference.

The GICR_* and GITS_* registers are introduced in GICv3.

Table 1-3 shows the registers that GICv3 supports when System register access is enabled.

Table 1-3 System registers

Prefix in short register name System registers accessed

ICH Virtual interrupt control registers
ICC Physical CPU interface registers
ICV Virtual CPU interface registers

The ARMVS support for virtualization and the Exception level at which a PE is operating determine whether the
physical CPU interface registers or the virtual CPU interface registers are accessed.

For more information about register names and the factors that affect which register to use, see GIC System register
access on page 8-150.

1.3.4 References to the ARMvS8 architectural state

Table 1-4 shows the ARMv8 architectural state that is used with or affects the operation of the GIC.

Table 1-4 ARMv8 architectural state affecting GIC operation

AArch64 AArch32
Purpose
State Field State Field
PSTATE=? A PSTATE®? A SError interrupt mask bit (AArch64 state)
Asynchronous Abort mask bit (AArch32 state)
I 1 IRQ mask bit
F F FIQ mask bit
- - DFSR STATUS/FS Fault status
- ExT External abort type
1-24 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

1 Introduction
1.3 Supported configurations and compatibility

Table 1-4 ARMv8 architectural state affecting GIC operation (continued)

AArch64 AArch32
Purpose
State Field State Field
ESR ELx EC HSR EC Exception class
IL IL Instruction length for synchronous exceptions
ISS ISS Instruction Specific Syndrome
HCR_EL2 AMO HCR AMO SError interrupt routing (AArch64 state)
Asynchronous External Abort interrupt routing
(AArch32 state)
IMO MO Physical IRQ routing
FMO FMO Physical FIQ routing
RW RESO Execution state control for lower Exception levels
(AArch64 state)
VSE VA Virtual SError Abort exception (AArch64 state)
Virtual Asynchronous Abort exception (AArch32
state)
VI VI Virtual IRQ interrupt
VF VF Virtual FIQ interrupt
HSTR EL2 T<n> HSTR T<n> Hypervisor system traps
I I IRQ pending
F F FIQ pending
ID_AA64PFRO_EL1 GIC - - System register GIC interface support
ID PFR1 EL1 GIC ID_PFRI1 GIC System register GIC CPU interface support
ISR EL1 A ISR A SError pending (AArch64 state)
External Abort pending (AArch32 state)
MPIDR _EL1 Aff3 MPIDR - Affinity level 3
Aff2 Aff2 Affinity level 2
Affl Affl Affinity level 1
Aff0 Aff0 Affinity level 0
SCR _EL3 RW SCR RESO Execution state control for lower Exception levels
(AArch64 state only)
EA EA SError interrupt routing (AArch64 state)
External Abort interrupt routing (AArch32 state)
FIQ FIQ Physical FIQ routing
IRQ IRQ Physical IRQ routing
NS NS Non-secure bit
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 1-25
ID060315 Non-Confidential - Beta

1 Introduction
1.3 Supported configurations and compatibility

a. Process state, PSTATE, is an abstraction of the process state information. For more information, see ARM® Architecture Reference Manual,
ARMVS, for ARMvS-A architecture profile.

For more information about these registers and fields, see ARM® Architecture Reference Manual, ARMVS, for
ARMVS-A architecture profile.
1.3.5 GICv3 with no legacy operation

In an implementation that does not support legacy operation, affinity routing and System register access are
permanently enabled. This means that the associated control bits are RAO/WI. Table 1-5 shows the register fields
that are affected by this.

Table 1-5 Control bits for affinity routing and System register access

AArch64 registers AArch32 registers Memory-mapped registers
ICC _SRE ELI.SRE2 ICC_SRE.SRE? -
ICC_SRE EL2.SRE ICC_HSRE.SRE -
ICC_SRE EL3.SRE ICC_MSRE.SRE -

- - GICD CTLR.ARE S

- - GICD_CTLR.ARE_NS

a. There is a Secure copy and a Non-secure copy of this register.

1.3.6 GICv3 with legacy operation

Legacy operation is a form of limited backwards compatibility with GICv2 that is provided to allow systems using
GICv3 to run code using GICv2, provided that this code meets the restrictions described in this section. Legacy
operation is optional in GICv3. See Legacy support of interrupts and asymmetric configurations on page 10-658.

In a GICv3 implementation that supports legacy operation, a maximum of eight PEs, whose individual support for
a memory-mapped register interface is IMPLEMENTATION DEFINED, are available as physical or virtual interrupt
targets within a given VM. It is IMPLEMENTATION DEFINED:

. Whether legacy operation applies to execution in both Security states, or to execution in Secure state only.
. Whether legacy operation is available only in the virtual CPU interface when executing in Non-secure EL1.

In GICv3, the following restrictions apply to legacy operation:

. The GICv2 feature GICC_CTLR.AckCtl was deprecated in GICv2 and is not supported in GICv3.
Correspondingly, even in legacy mode, the behavior is as if the GICC_CTLR.AckCtl bit described in GICv2
is RAZ/WI.

Note

In a GICv3 implementation that supports legacy operation, a VM is permitted to control Non-secure
interrupts when GICV_CTLR.AckCtl set to 1. However, ARM deprecates the use of GICV_CTLR.AckCtl.

. The GICv2 configuration lockdown feature and the associated CFGSDISABLE input signal are not
supported. GICD TYPER.LPIS must be cleared to 0.

. A hypervisor executing at EL2 can control virtual interrupts only for the PE on which the EL2 software is
executing, and cannot control virtual interrupts on other PEs

For legacy operation, an asymmetric configuration is supported where:

. Affinity routing and System register access are enabled in Non-secure state and at EL3.
. Affinity routing and System register access are disabled at Secure EL1.
1-26 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

1 Introduction
1.3 Supported configurations and compatibility

This allows a secure operating system, running at Secure EL1, to use legacy functionality, provided that it does not
configure Non-secure interrupts.

In GICv2 software executing in Secure state could use GICC_AIAR, GICC_AEOIR, GICC AHPPIR, and
GICC_ABPR to manage interrupts in Non-secure state. There is no equivalent functionality in asymmetric
configurations.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 1-27
Non-Confidential - Beta

1 Introduction
1.3 Supported configurations and compatibility

1-28 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

Chapter 2
GIC Partitioning

This chapter describes the GIC logical partitioning. It contains the following sections:
. The GIC logical components on page 2-30.
. Interrupt bypass support on page 2-35.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 2-29
ID060315 Non-Confidential - Beta

2 GIC Partitioning
2.1 The GIC logical components

21 The GIC logical components

The GICv3 architecture consists of a set of logical components:

. A Distributor.

. A Redistributor for each PE that is supported.

. 0-16 Interrupt Translation Service components (ITS), to support the optional translation of events into LPIs.
. A CPU interface for each PE that is supported.

The Distributor, Redistributor and ITS are collectively known as an IRI.

Figure 2-1 shows the IRI.

wptRoutng]

I_Interrupt Routing
| Infrastructure (IRI)

| Distributor ITs? |

PE PE
x.y.0.0 x.y.0.1
Cluster CO

. Redistributor® D CPU interface®

a. The inclusion of an ITS is optional, and there might be more than
one ITS in a GIC.

b. There is one Redistributor per PE.

c. There is one CPU interface per PE.

Figure 2-1 Interrupt Routing Infrastructure

The CPU interface handles physical interrupts at all implemented Exception levels:
. Interrupts that are translated into LPIs are optionally routed via the ITS to the Redistributor and the CPU

interface.

. PPIs are routed directly from the source to the local Redistributor.

. SPIs are routed from the source through the Distributor to the target Redistributor and the associated CPU
interface.

. SGIs are generated by software through the CPU interface and Redistributor. They are then routed through
the Distributor to one or more target Redistributors and the associated CPU interfaces.

In GICv3, the ITS is an optional component and translates events into physical LPIs. The architecture also supports
direct LPIs that do not require the use of an ITS. Where LPIs are supported, it is IMPLEMENTATION DEFINED whether
either:

. Direct LPIs are supported by accessing the registers in the Redistributors.
. LPI support is provided by the ITS.

An implementation must only support one of these methods.

In GICv4, the inclusion of at least one ITS is mandatory to provide support for the direct injection of virtual LPIs.

2-30

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Non-Confidential - Beta

ARM IHI 0069A
ID060315

2 GIC Partitioning
2.1 The GIC logical components

Figure 2-2 shows the GIC partitioning in an implementation that includes an ITS.

Message-based interrupts
Wired-based interrupts

I TR TR S B !

Distributor ITS®

SPIs ——»

LPIs

PPIs ——»

TSGIsb TSGIsb TSGIS"

1

PE PE PE
x.y.0.0 x.y.0.1 x.y.0.2 x.y.n.0 x.y.n.1
Cluster CO Cluster Cn
. Redistributor D CPU interface
|:| Distributor D Interrupt Translation Service

a. The inclusion of an ITS is optional, and there might be more than one
ITS ina GIC.
b. SGls are generated by a PE and routed through the Distributor.

Figure 2-2 GIC logical partitioning with an ITS
The mechanism for communication between the ITS and the Redistributors is IMPLEMENTATION DEFINED.

Figure 2-3 on page 2-32 shows the GIC partitioning in an implementation that does not include an ITS and that
supports direct LPIs.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 2-31
Non-Confidential - Beta

2 GIC Partitioning
2.1 The GIC logical components

Message-based interrupts
Wired-based interrupts

I TR SR SRS S

Distributor

SPlIs ——»

LPIs

PPIs ——»

TSGISa TSGISa TSGIS*‘ TSGISa

—

PE PE PE PE PE
x.y.0.0 x.y.0.1 x.y.0.2 x.y.n.0 x.y.n.1
Cluster CO Cluster Cn
. Redistributor D CPU interface

|:| Distributor

a. SGls are generated by a PE and routed through the Distributor.

Figure 2-3 GIC logical partitioning without an ITS
The following list describes the components that are depicted in Figure 2-2 on page 2-31 in more detail:
Distributor The Distributor performs interrupt prioritization and distribution of SPIs and SGIs to the
Redistributors and CPU interfaces that are connected to the PEs in the system.

GICD_CTLR provides global settings for:

. Enabling affinity routing.

. Disabling security.

. Enabling Secure and Non-secure Group 1 interrupts.
. Enabling Group 0 interrupts.

For SPIs, the Distributor provides a programming interface for:
. Enabling or disabling SPIs.
. Setting the priority level of each SPL

. Routing information for each SPI.

. Setting each SPI to be level-sensitive or edge-triggered.
. Generating message-based SPIs.

. Assigning each SPI to an interrupt group.

. Controlling the pending and active state of SPIs.
For SGIs, the Redistributor provides a programming interface.
The Distributor registers are identified by the GICD _ prefix.

See Chapter 3 Distribution and Routing of Interrupts for more information.

2-32 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

2 GIC Partitioning
2.1 The GIC logical components

Note

When handling physical interrupts during legacy operation, the Distributor controls the
configuration information for PPIs and SGIs. See Chapter 10 Legacy Operation and
Asymmetric Configurations.

Interrupt translation service, ITS
The ITS is an OPTIONAL hardware mechanism in the GICv3 architecture that routes LPIs to
the appropriate Redistributor. Software uses a command queue to configure an ITS. Table
structures in memory that are associated with an ITS translate an EventID associated with a
device into a pending INTID for a PE.

The ITS is not OPTIONAL in GICv4, and all GICv4 implementations must include at least
one ITS.

See The ITS on page 6-96 for more information.

Redistributor A Redistributor is the part of the IRI that is connected to the CPU interface of the PE. The
Redistributor holds the control, prioritization, and pending information for all physical LPIs
using data structures that are held in memory. Two registers in the Redistributor point to
these data structures:

. GICR_PROPBASER.
. GICR_PENDBASER.
In GICv4, the Redistributor also includes registers to handle LPIs that are forwarded by an

ITS to a Redistributor and directly to a VM, without involving the hypervisor. This is
referred to as a direct injection of virtual interrupts into a VM.

In GICv4, the Redistributors collectively host the control, prioritization, and pending
information for all virtual LPIs using data structures that are held in memory. Two registers
in the Redistributor point to these data structures:

. GICR_VPROPBASER.

. GICR_VPENDBASER.

In an implementation that supports LPIs but does not include an ITS, the GICR_* registers
contain a simple memory-mapped interface to signal and control physical LPIs.
Redistributors provide a programming interface for:

. Identifying, controlling, and configuring supported features to enable interrupts and
interrupt routing of the implementation.

. Enabling or disabling SGIs and PPIs.

. Setting the priority level of SGIs and PPIs.

. Setting each PPI to be level-sensitive or edge-triggered.
. Assigning each SGI and PPI to an interrupt group.

. Controlling the pending state of SGIs and PPIs.

. Controlling the active state of SGIs and PPIs.

. Power management support for the connected PE.

. Where LPIs are supported, base address control for the data structures in memory that
support the associated interrupt properties and their pending status.

. Where GICv4 is supported, base address control for the data structures in memory
that support the associated virtual interrupt properties and their pending status.
The Redistributor registers are identified by the GICR _ prefix.

See Affinity routing on page 3-43 and The Distributor and Redistributors on page 3-38 for
more information about the Redistributor.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 2-33
ID060315 Non-Confidential - Beta

2 GIC Partitioning

2.1 The GIC logical components

CPU interface

The GIC architecture supports a CPU interface that provides a register interface to a PE in
the system. Each CPU interface provides a programming interface for:

. General control and configuration to enable interrupt handling in accordance with the
Security state and legacy support requirements of the implementation.

. Acknowledging an interrupt.

. Performing a priority drop.

. Deactivation of an interrupt.

. Setting an interrupt priority mask for the PE.

. Defining the preemption policy for the PE.

. Determining the highest priority pending interrupt for the PE.

The CPU interface has several components:

. A component that allows a supervisory level of software to control the handling of
physical interrupts. The registers that are associated with this are identified by the
ICC_ prefix.

. A component that allows a supervisory level of software to control the handling of
virtual interrupts. The registers that are associated with this are identified by the
ICV_ prefix.

. A component that allows a hypervisor to control the set of pending interrupts. The
registers that are associated with this are identified by the ICH_ prefix.

Note

The System registers in the CPU interface are associated with software that is handling
interrupts in the physical domain, or with execution at Non-secure EL1 as part ofa VM. The
configuration of HCR_EL2 determines whether the accesses are to the physical resources
or the virtual resources.

The System registers accessible at EL2 that are used for controlling the list of active,
pending, and active and pending, virtual interrupts for a PE are identified by the ICH_
prefix.

For more information on handling physical interrupts, see Chapter 4 Physical Interrupt
Handling and Prioritization.

For more information on handling virtual interrupts, see Chapter 5 Virtual Interrupt
Handling and Prioritization.

2-34

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

2 GIC Partitioning
2.2 Interrupt bypass support

2.2 Interrupt bypass support

In all GIC implementations, a CPU interface optionally includes interrupt signal bypass, so that, when the signaling
of an interrupt by the interface is disabled, a legacy interrupt signal is passed to the interrupt request input on the
PE, bypassing the GIC functionality.

It is IMPLEMENTATION DEFINED whether bypass is supported.

The controls to determine whether GICv3 FIQ and IRQ outputs or the bypass signals are used differ depending on
whether System register access is enabled.

When System register access is enabled, bypass disable is controlled at the highest implemented Exception level
using two bits in ICC_SRE ELI1, ICC_SRE EL2, or ICC_SRE EL3, as appropriate:

. For FIQ bypass, this is the DFB bit.
. For IRQ bypass, this is the DIB bit.

This bypass mechanism is used when System register access is enabled. For information about bypass support
during legacy operation, see Legacy operation and bypass support on page 10-659.

The interrupt groups that are supported by the GIC are allocated to FIQs and IRQs, as described in Interrupt
grouping on page 4-57. Interrupt groups must be disabled at the CPU interface when bypass is enabled, otherwise
the behavior of the GICv3 implementation is UNPREDICTABLE. This means that:

. ICC IGRPENO_ELI1.Enable must have the value 0 when ICC_SRE ELx.DFB ==0.
. ICC_IGRPEN1 EL1.Enable must have the value 0 when ICC_SRE ELx.DIB == 0.

For more information about enabling interrupts, see Enabling the distribution of interrupts on page 4-61.

For information about the behavior when System register access is not enabled, see Chapter 10 Legacy Operation
and Asymmetric Configurations.

For FIQs, the following pseudocode determines the source for interrupt signaling to a PE.

if ICC_SRE_EL3.SRE == 1 then
if ICC_SRE_EL3.DFB == @ then
if ICC_SRE_EL1.SRE Secure == 1 then
BypassFIQsource
else
use legacy bypass support
else
use GICv3 FIQ output
else
use legacy bypass support

For IRQs, the following pseudocode determines the source for interrupt signaling to a PE.

if ICC_SRE_EL3.SRE == 1 then
if ICC_SRE_EL3.DIB == @ then
if ICC_SRE_EL1.SRE Secure == 1 then
BypassIRQsource
else
use legacy bypass support
else
use GICv3 IRQ output
else
use legacy bypass support

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 2-35
ID060315 Non-Confidential - Beta

2 GIC Partitioning
2.2 Interrupt bypass support

2-36 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

Chapter 3
Distribution and Routing of Interrupts

This chapter describes the distribution and routing of interrupts to a target PE using affinity routing, and the
assignment of interrupt IDs. It contains the following sections:

. The Distributor and Redistributors on page 3-38.
. INTIDs on page 3-39.
. Affinity routing on page 3-43.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 3-37
ID060315 Non-Confidential - Beta

3 Distribution and Routing of Interrupts
3.1 The Distributor and Redistributors

3.1 The Distributor and Redistributors

The Distributor provides the routing configuration for SPIs, and holds all the associated routing and priority
information.

The Redistributor provides the configuration settings for PPIs.

A Redistributor always presents the pending interrupt with the highest priority to the CPU interface in finite time.
For more information about interrupt prioritization, see Interrupt prioritization on page 4-63.

The highest priority interrupt might change because:

. The previous highest priority interrupt has been acknowledged.

. The previous highest priority interrupt has been preempted.

. The previous highest priority interrupt is removed and no longer valid.
. The group interrupt enable has been modified.

. The PE is no longer a participating PE. See Participating nodes on page 3-44.

3-38 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

3 Distribution and Routing of Interrupts
3.2 INTIDs

ID060315

Non-Confidential - Beta

3.2 INTIDs
Interrupts are identified using /D numbers (INTIDs). The range of INTIDs supported by GICv3 is IMPLEMENTATION
DEFINED, according to the following rules:
. For the number of ID bits supported in the Distributor and Redistributor:
— If LPIs are not supported, the ID space in the Distributor is limited to 10 bits. This is the same as in
carlier versions of the GIC architecture.
— If LPIs are supported, the INTID field is IMPLEMENTATION DEFINED in the range of 14-24 bits, as
described in the register description for GICD_TYPER.
Note
A Redistributor can be configured through GICR_ PROPBASER to use fewer bits than specified by
GICD_TYPER.
. For the number of ID bits supported in the ITS:
— If LPIs are supported, the INTID field is IMPLEMENTATION DEFINED in the range of 14-24 bits.
— The size of the INTID field is defined by GITS TYPER.IDbits.
The ITS must be programmed so that interrupts that are forwarded to a Redistributor are in the range of
interrupts that are supported by that Redistributor, otherwise the behavior is UNPREDICTABLE.
. For the number of ID bits supported in the CPU interface:
— The GICv3 CPU interface supports either a 16-bit or a 24-bit INTID field, the choice being
IMPLEMENTATION DEFINED. The number of physical interrupt identifier bits that are supported is
indicated by ICC_CTLR_ELI1.IDbits and ICC_CTLR_EL3.IDbits.
The valid ID space is governed by the implemented size in the CPU interface and the Distributor. It is a
programming error to forward an INTID that is greater than the supported size to a CPU interface.
Unused INTID bits are RAZ. This means that any affected bit field is zero-extended.
Table 3-1 shows how the INTID space is partitioned by interrupt type.
Table 3-1 INTIDs
INTID Interrupt type Details Notes
ID0 - ID15 SGI These interrupts are local to a CPU interface. IDs 0-1023 are compatible with
earlier versions of the GIC
ID16 — ID31 PPI architecture
ID32 -1ID1019 SPI Shared peripheral interrupts that the Distributor can
route to either a specific PE, or to any one of the PEs in
the system that is a participating node, see
Participating nodes on page 3-44.
1D1020 — ID1023 Special interrupt Interrupt IDs that are reserved for special purposes, as
number Special INTIDs on page 3-40 describes.
1D1024 — ID8191 - Reserved -
ID8192 — LPI Peripheral hardware interrupts that are routed to a -
IMPLEMENTATION specific PE.
DEFINED
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 3-39

3 Distribution and Routing of Interrupts

3.2 INTIDs
Table 3-2 shows the ARM recommended PPI INTID assignments.
Table 3-2 ARM recommended INTIDs for PPIs
INTID PPI
30 Non-secure physical timer interrupt
29 Secure physical interrupt timer
27 Virtual timer interrupt
26 Hypervisor timer interrupt
25 Virtual CPU Interface Maintenance interrupt
24 Cross Trigger Interface interrupt
23 Performance Monitor Counter Overflow interrupt
22 Debug Communications Channel interrupt

The GICv4 architecture provides a unique ID space for each VM by supporting a vPEID in addition to the INTID

space. See About GIC support for virtualization on page 5-76 for more information about VMs and The ITS on

page 6-96 for more information about vPEIDs.

ARM strongly recommends that implemented interrupts are grouped to use the lowest INTID numbers and as small

arange of INTIDs as possible. This reduces the size of the associated tables in memory that must be implemented,

and that discovery routines must check.
3.21 Special INTIDs

The list of the INTIDs that the GIC architecture reserves for special purposes is as follows:

1020 The GIC returns this value in response to a read of ICC_IARO _EL1 or ICC_HPPIRO EL1 at EL3,
to indicate that the interrupt being acknowledged is one which is expected to be handled at Secure
ELI. This INTID is only returned when the PE is executing at EL3 using AArch64 state, or when
the PE is executing in AArch32 state in Monitor mode.

For information about the relation of this value to ICC_CTLR EL3.RM and legacy operation, see
Legacy support of interrupts and asymmetric configurations on page 10-658.

1021 The GIC returns this value in response to a read of ICC_IARO_EL1 or ICC_HPPIRO EL1 at EL3,
to indicate that the interrupt being acknowledged is one which is expected to be handled at
Non-secure EL1 or EL2. This INTID is only returned when the PE is executing at EL3 using
AArch64 state, or when the PE is executing in AArch32 state in Monitor mode.

For information about the relation of this value to ICC_CTLR EL3.RM and legacy operation, see
Legacy support of interrupts and asymmetric configurations on page 10-658.

1022 This value applies to legacy operation only. For more information, see Use of the special INTID
1022 on page 10-658.

1023 This value is returned in response to an interrupt acknowledge, if there is no pending interrupt with
sufficient priority for it to be signaled to the PE, or if the highest priority pending interrupt is not
appropriate for the:

. Current Security state.
. Interrupt group that is associated with the System register.
Note

These INTIDs do not require an end of interrupt or deactivation.

3-40 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

3 Distribution and Routing of Interrupts
3.2 INTIDs

For more information about the use of special INTIDs, see the descriptions for the following registers:
. ICC TARO ELI.

. ICC IAR1 _ELI.

. ICC_HPPIRO ELI.

. ICC_HPPIR1_ELI.

3.2.2 Valid interrupt ID check pseudocode

The following pseudocode describes how the GIC checks whether an INTID for a physical interrupt is valid:

// InterruptldentifierValid()
//

boolean InterruptIdentifierValid(bits(64) data, boolean TpiAllowed)

// First check whether any out of range bits are set
integer N = CPUInterfaceIDSize();

if !IsZero(data<63:N>) then
if GenerateLocalSError() then
// Reporting of locally generated SEIs is supported
IMPLEMENTATION_DEFINED “SError INVALID_INTERRUPT_IDENTIFIER”;

intID = data<INTID_SIZE-1:0>;

if !TpiAllowed && IsLPI(intID) then // LPIs are not supported
if GeneratelLocalSError() then
// Reporting of Tocally generated SEIs is supported
IMPLEMENTATION_DEFINED “SError INVALID_INTERRUPT_IDENTIFIER”;
return FALSE;

// Now check for special identifiers
if IsSpecial(intID) then
return FALSE; // It is a special ID

// A11 the checks pass so the identifier is valid
return TRUE;

The following pseudocode describes how the GIC checks whether an INTID for a virtual interrupt is valid:

// VirtualIdentifierValid()
//

boolean VirtualldentifierValid(bits(64) data, boolean TpiAllowed)

// First check whether any out of range bits are set
integer N = VIDBits();

if !IsZero(data<63:N>) then
if ICH_VTR_EL2.SEIS == ‘1’ then
// Reporting of locally generated SEIs is supported
IMPLEMENTATION_DEFINED “SError INVALID_INTERRUPT_IDENTIFIER”;
UNPREDICTABLE;

intID = data<INTID_SIZE-1:0>;

if !TpiAllowed && IsLPI(intID) then // LPIs are not supported
if ICH_VTR_EL2.SEIS == ‘1’ then
// Reporting of Tocally generated SEIs is supported
IMPLEMENTATION_DEFINED “SError INVALID_INTERRUPT_IDENTIFIER”;
UNPREDICTABLE;

// Now check for special identifiers
if IsSpecial(intID) then
return FALSE; // It is a special ID

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 3-41
Non-Confidential - Beta

3 Distribution and Routing of Interrupts
3.2 INTIDs

// A1l the checks pass so the identifier is valid
return TRUE;

The following pseudocode describes CPU interface ID size function.

// CPUInterfaceIDSize()
//
// Returns the number of Interrupt ID bits implemented at the CPU interface. This value is an
// IMPLEMENTATION DEFINED choice of 16 or 24 and is discoverable from ICC_CTLR_EL1/EL3.IDbits

integer CPUInterfaceIDSize()
return integer IMPLEMENTATION_DEFINED “CPU interface INTID size 16 or 32”;

3-42 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

3 Distribution and Routing of Interrupts
3.3 Affinity routing

3.3 Affinity routing

Affinity routing is a hierarchical address-based scheme to identify specific PE nodes for interrupt routing.

For a PE, the affinity value is defined in MPIDR_EL1 for AArch64 state, and in MPIDR for AArch32 state:

. Affinity routing is a 32-bit value that is composed of four 8-bit affinity fields. These fields are the nodes a,
b, c,and d.

. GICv3 using AArch64 state can support:
— A four level routing hierarchy, a.b.c.d.
— A three level routing hierarchy, 0.b.c.d.
. GICv3 using AArch32 state only supports three affinity levels.
. ICC_CTLR EL3.A3V,ICC CTLR_EL1.A3V, and GICD TYPER.A3V indicate whether four levels or
three levels of affinity are implemented.
Note

An implementation that requires four levels of affinity must only support AArch64 state.

The enumeration notation for specifying nodes in an affinity hierarchy is of the following form, where Affx is
Affinity level x:

Aff3.Aff2.Aff1.ATFO

Affinity routing for a Security state is enabled in the Distributor, using the Affinity Routing Enable (ARE) bits.
Affinity routing is enabled:

. For Secure interrupts, if GICD_CTLR.ARE Siis set to 1.
. For Non-secure interrupts, if the GICD_CTLR.ARE_NS bit is set to 1.

GICD_CTLR.ARE S and GICD_CTLR.ARE_NS are RAO/WI if affinity routing is permanently enabled.

For the handling of physical interrupts when affinity routing is enabled, System register access must also be enabled,
see GIC System register access on page 8-150. For the other cases, see Chapter 10 Legacy Operation and
Asymmetric Configurations.

3.31 Routing SPIs and SGls by PE affinity

SPIs are routed using an affinity address and the routing mode information that is held in GICD_IROUTER<n>.
SGIs are routed using the affinity address and routing mode information that is written by software when it generates
the SGI.

SGIs are generated using the following registers:
. ICC_SGIOR_ELI.

. ICC SGIIR ELI.

. ICC_ASGIIR_ELI.

ARM strongly recommends that only values in the range 0-15 are used at affinity level 0 to align with the SGI target
list capability. See Software Generated Interrupts on page 4-54.

SPIs and SGIs are routed using different registers:

. SPIs are routed using GICD_IROUTER<n>.Interrupt Routing Mode:

— If GICD_IROUTER<n>.Interrupt Routing Mode is cleared to 0, SPIs are routed to a single PE
specified by a.b.c.d.

— If GICD_IROUTER<n>.Interrupt Routing Mode is set to 1, SPIs are routed to any PE defined as a
participating node. For more information about participating nodes, see Participating nodes on
page 3-44.

. SGls are routed using ICC_SGIOR_ELI1.IRM, and ICC_SGI1R_ELI1.IRM:

— Ifthe IRM bit is set to 1, SGIs are routed to all participating PEs in the system, excluding the
originating PE. For information about participating nodes, see Participating nodes on page 3-44.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 3-43
Non-Confidential - Beta

3 Distribution and Routing of Interrupts

3.3 Affinity routing

3.3.2

3.3.3

— Ifthe IRM bit is cleared to 0, SGIs are routed to a group of PEs below Redistributor a.b.c, specified
by a.b.c.targetlist. The target list provides a bitfield encoding for affinity level 0 values of 0-15.

Participating nodes

An enabled SPI configured to use the 1 of N distribution model can target a PE when:
. GICR_WAKER.ProcessorSleep == 0 and GICD CTLR.EINWF == 1.

. The interrupt group of the interrupt is enabled on the PE.
. GICR_TYPER.DPGS == 1, and, for the interrupt group of the interrupt, GICR_CTLR.{DPG1S, DPGINS,
DPGO} == 0.

For more information about whether a PE can be selected as the target when the 1 of N distribution model is used,
see GICR _CTLR, Redistributor Control Register on page 8-469.

For more information about enabling interrupts and interrupt groups, see Enabling the distribution of interrupts on
page 4-61.

Changing affinity routing enables

This manual describes the GICv3 architecture in a system with affinity routing enabled. This means that:
. GICD _CTLR.ARE NS ==1.
« GICD CTLR.ARE S==1.

If the value of GICD_CTLR.ARE NS or GICD CTLR.ARE S is changed from 1 to 0, the result is
UNPREDICTABLE.

If the value of GICD_CTLR.ARE S is changed from 0 to 1, the result is UNPREDICTABLE except when all of the
following apply:

. GICD_CTLR. EnableGrp0 == 0.

. GICD_CTLR.EnableGrplS == 0.

« GICD CTLR.EnableGrpINS == 0.

If the value of GICD_CTLR.ARE NS is changed from 0 to 1, the result is UNPREDICTABLE except when
GICD CTLR.EnableGrpINS == 0.

3-44

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

Chapter 4
Physical Interrupt Handling and Prioritization

This chapter describes the fundamental aspects of GIC interrupt handling and prioritization. It contains the

following sections:

Interrupt lifecycle on page 4-46.

Locality-specific Peripheral interrupts on page 4-52.
Private Peripheral Interrupts on page 4-53.
Software Generated Interrupts on page 4-54.

Shared Peripheral Interrupts on page 4-55.
Interrupt grouping on page 4-57.

Enabling the distribution of interrupts on page 4-61.

Interrupt prioritization on page 4-63.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Non-Confidential - Beta

4-45

4 Physical Interrupt Handling and Prioritization

4.1 Interrupt lifecycle

4.1 Interrupt lifecycle

GIC interrupt handling is based on the GIC interrupt lifecycle, a series of high-level processes that apply to any
interrupt using the GIC architecture. The interrupt lifecycle provides a basis for describing the detailed steps of the
interrupt handling process. The GIC also maintains a state machine that controls interrupt state transitions during
the lifecycle.

Figure 4-1 shows the GIC interrupt lifecycle for physical interrupts.

Priority

drop [[The PE ends the
interrupt
-

A device generates an
interrupt

The CPU interface
delivers interrupt to the
PE

The PE acknowledges
the interrupt

a. This step does not apply to LPIs.

Figure 4-1 Physical interrupt lifecycle

The interrupt lifecycle in Figure 4-1 is as follows:

1.

2.

Generate interrupt. An interrupt is generated either by the peripheral or by software.

Distribute. The IRI performs interrupt grouping, interrupt prioritization, and controls the forwarding of
interrupts to the CPU interfaces.

Deliver. A physical CPU interface delivers interrupts to the corresponding PE.

Activate. When software running on a PE acknowledges an interrupt, the GIC sets the highest active priority
to that of the activated interrupt, and for SPIs, SGIs, and PPIs the interrupt becomes active.

Priority drop. Software running on the PE signals to the GIC that the highest priority interrupt has been
handled to the point where the priority can be dropped to the priority that the interrupt had before being
handled. This is the point where the end of interrupt is indicated by the interrupt handler. The end of the
interrupt can be configured to also perform deactivation of the interrupt.

Deactivation. Deactivation clears the active state of the interrupt, and thereby allows the interrupt, when it is
pending, to be taken again. Deactivation is not required for LPIs. Deactivation can be configured to occur at
the same time as the priority drop, or it can be configured to occur later as the result of an explicit interrupt
deactivation operation. This latter approach allows for software architectures where there is an advantage to
separating interrupt handling into initial handling and scheduled handling.

411 Physical CPU interface
A CPU interface provides an interface to a PE that is connected to the GIC. Each CPU interface is connected to a
single PE.

4-46

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization
4.1 Interrupt lifecycle

A CPU interface receives pending interrupts prioritized by the IRI, and determines whether the interrupt is enabled
and has sufficient priority to be signaled to the PE. At any time, the connected PE can determine the:

. INTID of its highest priority pending interrupt, by reading ICC_HPPIRO EL1 or ICC_HPPIR1 EL1.
. Priority of the highest priority active interrupt, by reading ICC_RPR_EL1.
Note

The priority of the highest priority active interrupt for which there has not been a priority drop is also known
as the running priority.

When an LPI is acknowledged, the pending state for the interrupt changes to not pending in the Redistributor. The
Redistributor does not maintain an active state for LPIs.

When the PE acknowledges an SGI, a PPI, or an SPI at the CPU interface, the Distributor changes the status of the
interrupt to active if:

. It is an edge-triggered interrupt, and another edge has not been detected since the interrupt was
acknowledged.
. It is a level-sensitive interrupt, and the level has been deasserted since the interrupt was acknowledged.

When the PE acknowledges an SGI, a PPI, or an SPI at the CPU interface, the Distributor changes the status of the
interrupt to active and pending if:

. It is an edge-triggered interrupt, and another edge has been detected since the interrupt was acknowledged.
. It is a level-sensitive interrupt, and the level has not been deasserted since the interrupt was acknowledged.

When the PE acknowledges an SGI, a PPI, or an SPI at the CPU interface, the CPU interface can signal another
interrupt to the PE, to preempt interrupts that are active on the PE. If there is no pending interrupt with sufficient
priority to be signaled to the PE, the interface deasserts the interrupt request signal to the PE.

The following stages of the interrupt lifecycle are described in the remainder of this section:
. Activation.

. Priority drop on page 4-48.

. Deactivation on page 4-49.

The priority drop and deactivation can be performed as a single operation or can be split, as defined by
ICC CTLR_EL1.EOImode an d ICC_CTLR EL3.EOImode EL3.

Activation

The interrupt handler reads ICC_IARO_EL1 for Group 0 interrupts, and ICC_IAR1 EL1 for Group 1 interrupts, in
the corresponding CPU interface to acknowledge the interrupt. This read returns either:

. The INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be
signaled to the PE. This is the normal response to an interrupt acknowledge.

. Under certain conditions, an INTID that indicates a special interrupt number, see /NTIDs on page 3-39.

Whether a read of ICC_IARO_EL1 and ICC_IAR1 ELI returns a valid INTID depends on:

. Which of the two registers is accessed.
. The Security state of the PE.
. Whether there is a pending interrupt of sufficient priority to be signaled to the PE, and if so, whether:

— The highest priority pending interrupt is a Secure Group lor a Non-secure Group 1 interrupt.
— Interrupt signaling is enabled for that interrupt group.

. The Exception level at which the PE is executing.

All interrupts, when acknowledged, modify the Active Priorities Registers. See System register access to the Active
Priorities registers on page 4-67.

In certain circumstances, the value of SCR_EL3.NS affects the value returned when a PE acknowledges an
interrupt. That is, when the PE is executing at EL3, a Secure read of ICC_IARO_EL1 returns a special interrupt
number that indicates the required Security state transition for the highest priority pending interrupt. Otherwise, the
INTID is returned.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-47
Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization

4.1 Interrupt lifecycle

For SGIs in a multiprocessor implementation, the GIC uses the targeted list model, where the acknowledgement of
an interrupt by one PE has no effect on the state of the interrupt on other CPU interfaces. When a PE acknowledges
the interrupt, the pending state of the interrupt is cleared only for that PE. The interrupt remains pending for the
other PEs.

Priority drop

After an interrupt has been acknowledged, a valid write to ICC_EOIRO_ELT1 for Group 0 interrupts, or a valid write
to ICC_EOIR1_ELI for Group 1 interrupts, results in a priority drop.

A valid write to ICC_EOIRO0_EL1 or ICC_EOIR1_EL1 to perform a priority drop is required for each
acknowledged interrupt, even for LPIs which do not have an active state. A priority drop must be performed by the
same PE that activated the interrupt.

Note
A valid write is a write that is:
. Not UNPREDICTABLE.

. Not ignored.
. Not writing an INTID that is either unsupported or within the range 1020-1023.

For each CPU interface, the GIC architecture requires the order of the valid writes to ICC_EOIR0_EL1 and
ICC_EOIR1_ELI1 to be the exact reverse of the order of the reads from ICC_IARO EL1 and ICC_IAR1_EL1, as
shown in Figure 4-2.

Read order

ICC_IARO_EL1| 1

ICC_IAR1_EL1| 2
ICC_IARO_EL1| 3

ICC_IARO_EL1| 4
Write order

4 |ICC_EOIRO_EL1
3 |IcC_EOIRO_EL1
2 |IcC_EOIR1_EL1

1 [ICC_EOIR0O_EL1

Figure 4-2 Read and write order

On a priority drop, the running priority is reduced from the priority of the interrupt indicated by the write to
ICC _EOIRO _EL1 or ICC_EOIR1_EL1 to either:

. The priority of the highest-priority active interrupt for which there has been no write to ICC_EOIR0 EL1 or
ICC_EOIR1 _ELI.

. The idle priority, 0xFF, if there is no active interrupt.

Note

For compatibility with possible extensions to the GIC architecture specification, software must preserve the entire
register value read from ICC_IARO EL1 and ICC_IAR1_EL1 when it acknowledges the interrupt, and use that
entire value for the corresponding write to ICC_EOIRO_EL1 and ICC_EOIR1 EL1 by the same PE.

When GICD _CTLR.DS == 0:
. A write to ICC_EOIRO_EL1 performs a priority drop for Group 0 interrupts.

. A write to ICC_EOIR1_EL1 performs a priority drop for Non-secure Group 1 interrupts, if the PE is
operating in Non-secure state or at EL3.

4-48

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

4 Physical Interrupt Handling and Prioritization
4.1 Interrupt lifecycle

. When operating in Secure state, a write to [CC_EOIR1_EL1 performs a priority drop for Secure Group 1
interrupts.

When GICD CTLR.DS ==1:
. A write to ICC_EOIRO_EL1 performs a priority drop for Group 0 interrupts.
. A write to ICC_EOIR1_EL1 performs a priority drop for Group 1 interrupts.

Deactivation
PPIs, SGIs, and SPIs have an active state in the IRI and must be deactivated.
SGIs and PPIs must be deactivated by the PE that activated the interrupt. SPIs can be deactivated by a different PE.

Interrupt deactivation is required to change the state of an interrupt either:
. From active and pending to pending.

. From active to inactive.

Depending on the Exception level and Security state, [CC_CTLR EL1.EOImode and
ICC_CTLR_EL3.EOImode EL3 in the appropriate CPU Interface Control Register determine whether priority
drop and interrupt deactivation happen together or separately:

. The priority drop and interrupt deactivation happen together when ICC_CTLR_EL1.EOImode or
ICC _CTLR EL3.EOImode EL3 in the CPU interface is 0, and the PE writes to [CC_EOIR0_EL1 or
ICC _EOIR1 _ELL. In this case a write to [CC_DIR_EL1 is not required.

. The priority drop and interrupt deactivation are separated when ICC_CTLR_EL1.EOImode or
ICC _CTLR EL3.EOImode EL3 in the CPU interface is 1, and the PE writes to ICC_EOIR0 EL1 or
ICC _EOIR1 ELI. In this case:

— The priority drop happens when the PE writes to [CC_EOIR0_EL1 or ICC_EOIR1 ELI.

— Interrupt deactivation happens later, when the PE writes to ICC_DIR_EL1. A valid write to
ICC _DIR _ELI1 results in interrupt deactivation for a Group 0 or a Group 1 interrupt.

There are no ordering requirements for writes to ICC_DIR_EL1. If software writes to ICC_DIR EL1 when the
following conditions are true, the results are UNPREDICTABLE:
. The appropriate EOIMode bit is cleared to O.

. The ICC_CTLR_EL1.EOImode or ICC_CTLR _EL3.EOIMode EL3 is set to 1 and there has not been a
corresponding write to I[CC_EOIRO_EL1 or ICC_EOIR1 ELI.

When ICC_CTLR _EL1.EOImode or ICC_CTLR EL3.EOIMode EL3 == 1 but the interrupt is not active in the
Distributor, writes to ICC_DIR_EL1 must be ignored. If supported, an implementation might generate a system
eITOr.

Table 4-1 shows how a write to [CC_EOIR0_EL1 or ICC_EOIR1_EL1 affects deactivation.

Table 4-1 Effect of writing to ICC_EOIR0_EL1 or ICC_EOIR1_EL1

Access ICC_CTLR_EL1.EOImode or Identified Effect
ICC_CTLR_EL3.EOImode_EL3 interrupt

ICC_EOIR1_EL1 0 Group 0 Access ignored

ICC EOIRO EL1 0 Group 0 Interrupt deactivated

ICC_EOIRI_EL1 0 Group 1 Interrupt deactivated

ICC EOIRO ELI 0 Group 1 Access ignored

- 1 - Interrupt remains active
When GICD_CTLR.DS == 0, access to certain registers is restricted. See Interrupt grouping and security on
page 4-58.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-49

ID060315

Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization

4.1 Interrupt lifecycle

The following pseudocode determines whether EOImode is set for the current Exception level and Security state:

// EOImodeSet()

boolean EQImodeSet()

if HaveEL(EL3) then
// EL3 is implemented so return the value appropriate to the EL and security state
if PSTATE.EL == EL3 && ICC_SRE_EL3.SRE == ‘1’ then
// In EL3 and EL3 1is AArch64 or EL3 is AArch32 and in Monitor mode
EOImode = ICC_CTLR_EL3.EOImode_EL3;

elsif IsSecure() then
EOImode = ICC_CTLR_EL3.EOImode_EL1S;

else // Non-secure
EOImode = ICC_CTLR_EL3.EOImode_ELINS;
else
// No EL3 so return the value from ICC_CTLR_EL1
EOImode = ICC_CTLR_EL1.EOImode;

return EOImode == ‘1’;

Effect of Security states on writes to ICC_DIR_EL1

The effect of a write to ICC_DIR_EL1 depends on whether the GIC supports one or two Security states:

. If the GIC supports two Security states, a valid:

— Secure write to ICC_DIR_EL1 deactivates the specified interrupt, regardless of whether that interrupt
is a Group 0 or a Group 1 interrupt.

— Non-secure write to ICC_DIR_EL1 deactivates the specified interrupt only if that interrupt is a
Non-secure Group 1 interrupt.

. If the GIC supports only a single Security state, a valid write to ICC_DIR_EL1 deactivates the specified
interrupt, regardless of whether that interrupt is a Group 0 or Group 1 interrupt.

Table 4-2 shows the behavior of valid writes to ICC_DIR ELI. In an implementation that supports only a single
Security state, valid writes have the behavior shown for Secure writes to ICC_DIR_EL1.

Table 4-2 Behavior of writes to ICC_DIR_ELA1

Security state of writes to ICC_DIR_EL1 Interrupt group Effect

Non-secure Non-secure Group 1 Interrupt is deactivated.
Non-secure Group 0 or Secure Group 1 Write is ignored.
Secure X Interrupt is deactivated.

41.2 Interrupt handling state machine

The GIC maintains a state machine for each supported interrupt. The possible states of an interrupt are:

. Inactive.
. Pending.
. Active.

. Active and pending.

PPIs, SGIs, and SPIs can have an active and pending state. Interrupts that are active and pending are never signaled
to a connected PE.

4-50

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

4 Physical Interrupt Handling and Prioritization
4.1 Interrupt lifecycle

LPIs have a pending state that is held in memory associated with a Redistributor, and therefore a PE. This also
applies to directly injected virtual LPIs, see Virtual LPI support on page 5-84.

Note

There is no active or active and pending state for LPIs.

Figure 4-3 shows an instance of the interrupt handling state machine, and the possible state transitions.

Active and
pending®

A1

E2
Pending A2 B2

B1 C

E1

a. Not applicable for LPlIs.
Figure 4-3 Interrupt handling state machine

Note

LPIs do not have an active state in the Redistributor, but do require an active priority in the CPU interface. See
Chapter 6 Locality-specific Peripheral Interrupts and the ITS for more information.

When interrupt forwarding by the Distributor and interrupt signaling by the CPU interface are enabled, the
conditions that cause each of the state transitions are as follows:
Transition Al or A2, add pending state
This transition occurs when the interrupt becomes pending, either as a result of the peripheral
generating the interrupt or as result of software generating the interrupt.
Transition B1 or B2, remove pending state

This transition occurs when the interrupt has been deasserted by the peripheral, if the interrupt is a
level-sensitive interrupt, or when software has changed the pending state.

For LPIs, it also occurs on acknowledgement of the interrupt.

Transition C, pending to active

This transition occurs on acknowledgement of the interrupt by the PE for edge-triggered SPIs, SGIs,
and PPIs.

For SPIs, SGIs, and PPIs, this transition occurs when software reads an INTID value from
ICC_TARO_EL1 or ICC_IARI ELI.

Transition D, pending to active and pending
This transition occurs on acknowledgement of the interrupt by the PE for level-sensitive SPIs, SGIs,
and PPIs.

Transition E1 or E2, remove active state

This transition occurs when software deactivates an interrupt for SPIs, SGIs, and PPIs.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-51
Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization
4.2 Locality-specific Peripheral interrupts

4.2 Locality-specific Peripheral interrupts

LPIs are targeted peripheral interrupts that are routed to a specific PE within the affinity hierarchy. In a system where
two Security states are enabled, LPIs are always Non-secure Group 1 interrupts. LPIs only support edge-triggered
behavior. For more information about LPIs, see LPIs on page 6-90.

4-52 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

4 Physical Interrupt Handling and Prioritization
4.3 Private Peripheral Interrupts

4.3 Private Peripheral Interrupts

PPIs are interrupts that target a single, specific PE, and different PEs can use the same INTID to indicate different
events. PPIs can be Group 0 interrupts, Secure Group 1 interrupts, or Non-secure Group 1 interrupts. They can
support either edge-triggered or level-sensitive behavior.

Note

Commonly, ARM expects that PPIs are used by different instances of the same interrupt source on each PE, thereby
allowing a common INTID to be used for PE specific events, such as the interrupts from a private timer.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-53
Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization
4.4 Software Generated Interrupts

4.4 Software Generated Interrupts

SGIs are typically used for inter-processor communication, and are generated by a write to an SGI register in the
GIC. SGIs can be either Group 0 or Group 1 interrupts, and they can support only edge-triggered behavior.

The registers associated with the generation of SGIs are part of the CPU interface:
. A PE generates a Group 1 SGI by writing to ICC_SGIIR_EL1 or ICC_ASGIIR ELI.
. A PE generates a Group 0 SGI by writing to ICC_SGIOR _ELI.

. Routing information is supplied as the bitfield value in the write to the register that generated the SGI. The
SGI can be routed to:

— The group of PEs specified by a.b.c.targetlist. This can include the originating PE.
— All participating PEs in the system, excluding the originating PE.
See Routing SPIs and SGIs by PE affinity on page 3-43 for more information.

ICC_SGIIR_ELTI allows software executing in a Secure state to generate Secure Group 1 SGIs on a target PE that
is executing in Secure state.

ICC_SGIIR_EL1 allows software executing in a Non-secure state to generate Non-secure Group 1 SGIs on a target
PE that is executing in Non-secure state.

ICC_ASGIIR ELI allows software executing in a Secure state to generate Non-secure Group 1 SGIs.

ICC_ASGIIR_ELI1 allows software executing in a Non-secure state to generate Secure Group 1 SGIs, if permitted
by the settings of GICR_NSACR in the Redistributor corresponding to the target PE.

ICC _SGIOR _EL1 allows software executing in Secure state, and software executing in Non-secure state, if
permitted by the settings of GICR_NSACR in the Redistributor corresponding to the target PE, to generate Secure
Group 0 SGIs for each target PE.

4-54 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

4 Physical Interrupt Handling and Prioritization
4.5 Shared Peripheral Interrupts

4.5 Shared Peripheral Interrupts

SPIs are peripheral interrupts that the Distributor can route to a specified PE that can handle the interrupt, or to a PE
that is one of a group of PEs in the system that has been configured to accept this type of interrupt. SPIs can be either
Group 0 or Group 1 interrupts, and they can support either edge-triggered or level-sensitive behavior.

SPIs can be either wired-based or message-based interrupts.

Support for message-based SPIs is optional, and can be discovered through GICD TYPER.MBIS. Message-based
SPIs can be:

. Generated by a write to GICD_SETSPI NSR and GICD SETSPI SR
. Cleared by a write to GICD_CLRSPI_NSR and GICD CLRSPI SR.

The effect of a write to these registers depends on whether the targeted SPI is configured to be an edge-triggered

or a level-sensitive interrupt:

. For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI SR sets the interrupt
pending. The interrupt is no longer pending when it is activated, or when it is cleared by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

. For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI SR sets the interrupt
pending. It remains pending until it is deasserted by a write to GICD_CLRSPI_NSR or GICD_CLRSPI_SR.
If the interrupt is activated between the time it is asserted by a write to GICD_SETSPI NSR or
GICD_SETSPI SR and the time it is deactivated by a write to GICD_CLRSPI NSR or GICD_CLRSPI SR,
then the interrupt becomes active and pending.

It is IMPLEMENTATION DEFINED for a level-sensitive interrupt whether a write to GICD ICPENDR<n> has
any effect on an interrupt that has been set pending by a write to GICD_SETSPI NSR or GICD_SETSPI SR,
or whether a write to GICD_CLRSPI NSR or GICD_CLRSPI_SR has any effect on an interrupt that has
been set pending by a write GICD ISPENDR<n>.

. Changing the configuration of an interrupt from level-sensitive to edge-triggered, or from edge-triggered to
level-sensitive, when there is a pending interrupt, leaves the interrupt in an UNKNOWN state.

Figure 4-4 on page 4-56 shows how message-based interrupt requests can trigger SPIs.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-55
Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization
4.5 Shared Peripheral Interrupts

Wire-based SPls

b

bl

Message- Distributor
based SPIs
—> GICD_SETSPI_SR registers GICD_SETSPI_NSR registers
GICD_CLRSPI_SR registers GICD_CLRSPI_NSR registers
PE PE PE PE PE
x.y.0.0 x.y.0.1 x.y.0.2 x.y.n.0 x.y.n.1
Cluster CO Cluster Cn
. Redistributor D CPU interface
Figure 4-4 Triggering SPIs
4-56 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM |HI 0069A

Non-Confidential - Beta

ID060315

4 Physical Interrupt Handling and Prioritization
4.6 Interrupt grouping

4.6 Interrupt grouping

GICv3 uses interrupt grouping as a mechanism to align interrupt handling with the ARMv8 Exception model and
Security model.

In a system with two Security states, an interrupt is configured as one of the following:
. A Group 0 physical interrupt:
— ARM expects these interrupts to be handled at EL3.
. A Secure Group 1 physical interrupt:
— ARM expects these interrupts to be handled at Secure EL1.
. A Non-secure Group 1 physical interrupt:

— ARM expects these interrupts to be handled at Non-secure EL2 in systems using virtualization, or at
Non-secure EL1 in systems not using virtualization

In a system with one Security state, or where specific PEs only operate in one Security state, an interrupt is
configured to be either:

. Group 0.
. Group 1.

At the System level, GICD_CTLR.DS indicates if the GIC is configured with one or two Security states. For more
information about Security, see Interrupt grouping and security on page 4-58.

These interrupt groups are mapped onto the ARMv8 FIQ and IRQ exceptions, see Interrupt assignment to IRQ and
FIQ signals on page 4-59.

GICD_IGROUPR<n> and GICD_IGRPMODR<n> configure the interrupt group for SPIs. n is greater than zero.
GICR_IGROUPRO and GICR_IGRPMODRO configure the interrupt group for SGIs and PPIs.

Note

. It is IMPLEMENTATION DEFINED whether the bits associated with implemented SPIs, PPIs, or SGIs are
programmable or have a fixed value. See the individual register descriptions for details.

. When GICD _CTLR.DS == 0, LPIs are always Non-secure Group 1 interrupts. When GICD CTLR.DS ==
1, LPIs are always Group 1 interrupts.

System registers control and configure Group 0 and Group 1 interrupts:

. For Group 0 interrupts, software uses:
— ICC IARO _EL1 to read a Group 0 INTID on an interrupt acknowledge.
— ICC _EOIRO _ELI to write a Group 0 interrupt completion.

— ICC _BPRO _ELI1 to configure the binary point for Group 0 prioritization.
This register is also used for Group 1 prioritization when ICC_CTLR EL1.CBPR ==1.

— ICC _HPPIRO_ELT1 to read the highest Group 0 interrupt that is currently pending.
— ICC _IGRPENO_EL1 to enable Group 0 interrupts at the CPU interface.

. For Group 1 interrupts, software uses:
— ICC _IARI _ELI to read a Group 1 INTID on an interrupt acknowledge.
— ICC_EOIR1_EL1 to write a Group 1 interrupt completion.
— ICC _BPRI1_ELI to configure the binary point for Group 1 prioritization for the current Security state.
— ICC_HPPIR1 EL1 to read the highest Group 1 interrupt that is currently pending.
— ICC _IGRPENI _ELI to enable Group 1 interrupts for the target Security state of the interrupt.

In a system with two Security states, Group 0 interrupts are always Secure. For more information about grouping
and Security, see Interrupt grouping and security on page 4-58.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-57
ID060315 Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization

4.6 Interrupt grouping

4.6.1 Interrupt grouping and security

The ARM architecture provides two Security states, each with an associated physical memory address space:
. Secure state.
. Non-secure state.

A software hierarchy of user and privileged code can execute in either state, and software executing in Non-secure
state can only access Secure state through a system call to the Secure monitor. The GIC architecture supports the
routing and handling of interrupts associated with both Security states.

GICD_CTLR.DS indicates whether a GIC is configured to support the ARMv8-A Security model. This
configuration affects:

. Register access, see GIC System register access on page 8-150.
. The interrupt groups that are supported.

When GICD_CTLR.DS == 0:
. The GIC supports two Security states, Secure state and Non-secure state.
. The GIC supports three interrupt groups:

— Group 0.

— Secure Group 1.

— Non-secure Group 1.
. Both the Security state and GICR_NSACR determine whether an SGI can be generated.
. The Security state is checked during:

— Configuration of an interrupt.

— Acknowledgement of an interrupt.

— Priority drop.

— Deactivation.

When GICD CTLR.DS == 1:

. The GIC supports only a single Security state. This can be either Secure state or Non-secure state.
. The GIC supports two interrupt groups:
— Group 0.
— Group 1.
. SGIs can be generated regardless of the settings in GICR_NSACR.
. The Security state is not checked during:

— Configuration of an interrupt.
— Acknowledgement of an interrupt.
— Priority drop.

— Deactivation.

In a multiprocessor system, one or more PEs within the system might support accesses to resources that are available
only in Secure state, or accesses to resources that are available only in Non-secure state. It is a programming error
if software configures:

. A Group 0 or Secure Groupl1 interrupt to be forwarded to a PE that only supports Non-secure state.
. A Non-secure Group! interrupt to be forwarded to a PE that only supports Secure state.

There is a dedicated register for the priority grouping for each interrupt group, ICC_BPRO_EL1 for Group 0

interrupts and ICC_BPR1_EL1 for Group linterrupts. However, it is possible to configure a common Binary Point

Register for both groups using:

. ICC_CTLR_ELI.CBPR.

. ICC_CTLR_EL3.CBPR_ELINS and ICC_CTLR_EL3.CBPR_ELIS for an independent common Binary
Point Register configuration of Non-secure Group 1 and Secure Group 1 interrupts.

For information about interrupt grouping and legacy operation, see Chapter 10 Legacy Operation and Asymmetric
Configurations.

4-58

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

4 Physical Interrupt Handling and Prioritization
4.6 Interrupt grouping

4.6.2 Interrupt assignment to IRQ and FIQ signals

A Group 0 physical interrupt, when it is the highest priority pending interrupt and has sufficient priority, is always
signaled as an FIQ.

A Group 1 physical interrupt, when it is the highest priority pending interrupt and has sufficient priority, is signaled
as an FIQ if either of the following conditions is true, otherwise it is signaled as an IRQ:

. It is an interrupt for the other Security state, that is, the Security state in which the PE is not executing.
. The PE is executing at EL3.

Table 4-3 summarizes the signaling of interrupts when EL3 is using AArch64 state.

Table 4-3 Interrupt signals for two Security states when EL3 is using AArch64 state

Current Exception level Group 0 interrupts Group 1 interrupts
Secure Non-secure

Secure EL1or ELO FIQ IRQ FIQ

Non-secure EL1 or ELO FIQ FIQ IRQ

Non-secure EL2 FIQ FIQ IRQ

Secure EL3 FIQ FIQ FIQ

Table 4-4 summarizes the signaling of interrupts when EL3 is using AArch632 state.

Table 4-4 Interrupt signals for two Security states when EL3 is using AArch32 state

Current Exception level Group 0 interrupts Group 1 interrupts
Secure Non-secure
Secure ELO FIQ IRQ FIQ
Non-secure EL1 or ELO FIQ FIQ IRQ
Non-secure EL2 FIQ FIQ IRQ
EL3 FIQ IRQ FIQ
4.6.3 Interrupt routing and System register access

When executing in AArch64 state, interrupt routing to an Exception level is controlled by the following bits:
. SCR_EL3.FIQ, SCR_EL3.NS, and HCR_EL2.FMO control FIQs.
. SCR_EL3.IRQ, SCR_EL3.NS, and HCR_EL2.IMO control IRQs.

This routing also controls the Exception level from which the EL1 CPU interface System registers that control and
acknowledge interrupts are accessible. This applies to:

« ICC_IARO ELI1,ICC EOIR0 EL1,ICC_HPPIRO ELI,ICC BPRO ELI, ICC_APOR<n> ELI and
ICC_IGRPENO ELI. These are the registers that are associated with Group 0 interrupts.

« ICC_IARI EL1,ICC EOIRI ELI,ICC_HPPIRI ELI,ICC BPR1 ELI, ICC APIR<n> ELI and
ICC_IGRPENI1 ELI. These are the registers that are associated with Group 1 interrupts.

. ICC_SGIOR_ELI1, ICC_SGIIR_EL1,ICC_ASGIIR ELI1,ICC_CTLR ELI,ICC DIR_ELI,
ICC_PMR _ELI, and ICC_RPR_ELI. These are the Common registers.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-59
Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization
4.6 Interrupt grouping

When (SCR_EL3.NS =1 &&(HCR_EL2.FMO ==1 || HCR_EL2.IMO == 1)), accesses at EL1 are virtual
accesses. Virtual accesses to [CC_SGIOR_EL1, ICC_SGIIR EL1,and ICC_ASGIIR EL1 always generate a Trap
exception that is taken to EL2.

4-60 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

4 Physical Interrupt Handling and Prioritization
4.7 Enabling the distribution of interrupts

4.7 Enabling the distribution of interrupts

The following control bits enable and disable the distribution of interrupts:
. GICD_CTLR.EnableGrplS.

« GICD CTLR.EnableGrpINS.

. GICD_CTLR.EnableGrp0.

The following control bits enable and disable the distribution of interrupt groups at the CPU interface:
. ICC IGRPENO_EL1.Enable for Group 0 interrupts.
. ICC IGRPEN1 EL1.Enable for Group 1 interrupts.

Note

There is a Secure and a Non-secure copy of this register.

. ICC_IGRPEN1 EL3.{EnableGrpl1S, EnableGrpINS}.

Physical LPIs are enabled by a write to GICR_CTLR.EnableLPIs.

4.71 Enabling individual interrupts

PPIs
Individual PPIs can be enabled and disabled by writing to GICD ISENABLER<n> and
GICD_ICENABLER<n>. n=0 for PPIs, if legacy operation for physical interrupts is supported and
configured. PPIs can also be enabled and disabled by writing to GICR_ISENABLERO and
GICR_ICENABLERO when affinity routing is enabled.

SPIs
Individual SPIs can be enabled and disabled by writing to GICD ISENABLER<n> and
GICD_ICENABLER<n>. n >0 for SPIs.

SGIs
Individual SGIs can be enabled and disabled by writing to GICD_ISENABLER<n> and
GICD_ICENABLER<n>. n=0 for SGIs, if legacy operation for physical interrupts is supported and
configured. SGIs can also be enabled and disabled by writing to GICR_ISENABLERO and
GICR_ICENABLERO when affinity routing is enabled.

Note

Whether SGIs are permanently enabled, or can be enabled and disabled by writes to
GICR_ISENABLERO and GICR_ICENABLERO, is IMPLEMENTATION DEFINED.

LPIs
Individual LPIs can be enabled by setting the enable bits programmed in the LPI Configuration
table. For more information about enabling LPIs using the LPI Configuration tables, see LP/
Configuration tables on page 6-93.

4.7.2 Interaction of group and individual interrupt enables

The GICD_* and GICR_* registers determine, at any moment in time, the highest priority pending interrupt that the

hardware is aware of for each target PE. This interrupt is presented to the CPU interface of a PE to evaluate whether

it is to be signaled to the PE. The enabling of the interrupts affects this evaluation as follows:

. A pending interrupt that is individually disabled in the GICD_* or GICR_* registers is not one which is
considered in the determination of the highest priority pending interrupt, and so cannot be signaled to the PE.

. A pending interrupt that is individually enabled in the GICD_* registers, but is a member of a group that is
disabled in GICD_CTLR, is not one that is considered in the determination of the highest priority pending
interrupt, and so cannot be signaled to the PE.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-61
Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization
4.7 Enabling the distribution of interrupts

. A pending 1 of N interrupt that is individually enabled in the GICD_* registers and is a member of a group
that is enabled in GICD_CTLR, but is a member of a group that is disabled in GICC_CTLR for a PE, cannot
be selected for that PE. Such an interrupt is not considered in the determination of the highest priority pending
interrupt and so cannot be signaled to the PE.

. For a pending direct interrupt that is individually enabled in the GICD_* registers and is a member of a group
that is enabled in GICD_CTLR, but is a member of a group that is disabled in GICC_CTLR, it is
IMPLEMENTATION DEFINED whether or not the interrupt is considered in the determination of the highest
priority pending interrupt. If it is determined to be the highest priority pending interrupt, the interrupt is not
signaled to the PE, but will mask a lower priority pending interrupt that is a member of a group that is enabled
in GICC_CTLR.

4.7.3 Effect of disabling interrupts

Disabling an interrupt by writing to the appropriate GICD_ICENABLER<n> or to GICR_ICENABLERO, or by
writing to the LPI Configuration tables, does not prevent that interrupt from changing state, for example from
becoming pending. When GICR CTLR.EnableLPIs == 0, LPIs are never set pending.

If GICD_CTLR.EnableGrp0, GICD_ CTLR.EnableGrplS, and GICD CTLR.EnableGrpINS are all cleared to 0, it
is IMPLEMENTATION DEFINED whether:

. An edge-triggered interrupt signal moves the interrupt to the pending state.

. SGIs can be set pending by writing to GICD_SGIR, ICC_SGIOR _EL1, ICC_SGIIR_EL1, or
ICC_ASGIIR_ELI.

4-62 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization

4.8 Interrupt prioritization

This section describes interrupt prioritization in the GIC architecture. Prioritization describes the:
. Configuration and control of interrupt priority.

. Order of execution of pending interrupts.

. Determination of when interrupts are visible to a target PE, including:

— Interrupt priority masking.
— Priority grouping.
— Preemption of an active interrupt.

Software configures interrupt prioritization in the GIC by assigning a priority value to each interrupt source. Priority
values are an 8-bit unsigned binary number. A GIC implementation that supports two Security states must
implement a minimum of 32 and a maximum of 256 levels of physical priority. A GIC implementation that supports
only a single Security state must implement a minimum of 16 and a maximum of 256 levels of physical priority. If
the GIC implements fewer than 256 priority levels, the low-order bits of the priority fields are RAZ/WI. This means
that the number of implemented priority field bits is IMPLEMENTATION DEFINED, in the range 4-8. Table 4-5 shows
the relation between the priority field bits and the number of priority levels supported by an implementation.

Table 4-5 Effect of not implementing some priority field bits

Implemented priority bits Possible priority field values Number of priority levels
[7:0] 0x00-0xFF (0-255), all values 256

[7:1] 0x00-0xFE, (0-254), even values only 128

[7:2] 0x00-0xFC (0-252), in steps of 4 64

[7:3] 0x00-0xF8 (0-248), in steps of 8 32

[7:4] 0x00-0xF0 (0-240), in steps of 16 16

In the GIC prioritization scheme, lower numbers have higher priority. This means that the lower the assigned
priority value, the higher the priority of the interrupt. Priority field value 0 always indicates the highest possible
interrupt priority, and the lowest priority value depends on the number of implemented priority levels.

The GICD IPRIORITYR<n> registers hold the priority value for each supported SPI. An implementation might
reserve an SPI for a particular purpose and assign a fixed priority to that interrupt, meaning the priority value for
that interrupt is read-only. For other SPIs the GICD IPRIORITYR<n> registers can be written by software to set
the interrupt priorities. It is IMPLEMENTATION DEFINED whether a write to GICD_IPRIORITYR<n> changes the
priority of any active SPI.

In a multiprocessor implementation, the GICR_IPRIORITYR<n> registers define the interrupt priority of each SGI
and PPI INTID independently for each target PE. The order in which the CPU interface serializes these SGIs is
implementation specific.

LPI Configuration tables and LPI pending tables in memory store LPI priority information and pending status, see
LPI Configuration tables on page 6-93 and LPI Pending tables on page 6-95.

The GIC security model provides Secure and Non-secure accesses to the interrupt priority settings.The Non-secure
accesses can configure interrupts only in the lower priority half of the supported priority values. Therefore, if the
GIC implements 32 priority values, Non-secure accesses see only 16 priority values. See Software accesses of
interrupt priority on page 4-70 for more information.

To determine the number of priority bits implemented for SPIs, software can write 0xFF to a writable
GICD_IPRIORITYR<n> priority field and read back the value stored.

To determine the number of priority bits implemented for SGIs and PPIs, software can write 0xFF to the
GICR_IPRIORITYR<n> priority fields, and read back the value stored.

The GIC architecture does not require all PEs in the system to use the same number of priority bits to control
interrupt priority.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-63
Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization

4.8.1

In a multiprocessor implementation, [ICC_CTLR_EL1.PRIbits and ICC_CTLR_EL3.PRIbits indicate the number
of priority bits implemented, independently for each target PE.

Note

ARM recommends that implementations support the same number of priority bits for each PE.

For information about the priority range supported for virtual interrupts, see Chapter 5 Virtual Interrupt Handling
and Prioritization.

Note
ARM recommends that, before checking the priority range in this way:
. For a peripheral interrupt, software first disables the interrupt.
. For an SGI, software first checks that the interrupt is inactive.

If, on a particular CPU interface, multiple pending interrupts have the same priority, and have sufficient priority for
the interface to signal them to the PE, it is implementation-specific how the interface selects which interrupt to
signal.

The remainder of this section describes:

. Non-secure accesses to register fields for Secure interrupt priorities.

. Priority grouping on page 4-65.

. System register access to the Active Priorities registers on page 4-67.
. Preemption on page 4-69.

. Priority masking on page 4-70.

. Software accesses of interrupt priority on page 4-70.

. Changing the priority of enabled PPIs, SGIs, and SPIs on page 4-73.

Non-secure accesses to register fields for Secure interrupt priorities

A GIC that supports two Security states supports the use of:
. Group 0 interrupts as Secure interrupts.

. Secure Group 1 interrupts.

. Non-secure Group 1 interrupts.

In order to support the ARMvS8 Security model the register fields associated with Secure interrupts are RAZ/WI for
Non-secure accesses. In addition, the following rules apply:

For Non-secure access to a priority field in GICx_IPRIORITYR<n>:
If the priority field corresponds to a Non-secure Group 1 interrupt in Software accesses of interrupt
priority on page 4-70:
. For SPIs, the priority field is determined by GICD IPRIORITYR<n>.
. For PPIs and SGIs, the priority field is determined by GICR_IPRIORITYR<n>.

For Non-secure access to ICC_PMR_EL1 and ICC_RPR_EL1:
. If the current priority mask value is in the range of 0x00-0x7F:
— Arread access returns the value 0x00.
— The GIC ignores a write access to [CC_PMR_ELI.
. If the current priority mask value is in the range of 0x80-0xFF:
— A read access returns the Non-secure read of the current value.

— A write access to ICC_PMR_EL1 succeeds, based on the Non-secure read of the
priority mask value written to the register.

Note

This means a Non-secure write cannot set a priority mask value in the range of 9x00-0x7F.

4-64

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization

The register descriptions for the following registers provide pseudocode that describes accesses to the registers in a
GIC that supports two Security states:

« GICD_IPRIORITYR<n>.
« GICR_IPRIORITYR<n>.
« ICC PMR ELI.
« ICC RPR ELI.

4.8.2 Priority grouping

Priority grouping uses the following Binary Point Registers:
. ICC BPRO_ELI1 for Group 0 interrupts. This register is available in all GIC implementations.

. A Non-secure copy of ICC_BPR1_ELI for Non-secure Group 1 interrupts. If an implementation supports
two Security states, there is a Secure and a Non-secure copy of this register. If an implementation supports
only one Security state, there is only one copy of this register

. A Secure copy of ICC_BPR1_EL1 for Secure Group 1 interrupts. This register is available only in a GIC
implementation that supports two Security states.

The Binary Point Registers split a priority value into two fields, the group priority and the subpriority. When
determining preemption, all interrupts with the same group priority are considered to have the same priority,
regardless of the subpriority.

Where multiple pending interrupts have the same group priority, the GIC uses the subpriority field to resolve the
priority within a group. Where two or more pending interrupts in a group have the same subpriority, how the GIC
selects between the interrupts is implementation-specific.

The GIC uses the group priority field to determine whether a pending interrupt has sufficient priority to preempt
execution on a PE, as follows:

. The value of the group priority field for the interrupt must be lower than the value of the running priority of
the PE. The running priority is the group priority of the highest priority active interrupt that has not received
a priority drop on that PE.

. The value of the priority for the interrupt must be lower than the value of its priority mask.
ICC_BPRO _EL1 determines the priority grouping of Group 0 interrupts:

. When ICC_CTLR EL3.CBPR _ELI1S is set to 1, ICC_BPRO_ELI also determines the priority grouping of
Secure Group 1 interrupts.

. When ICC_CTLR_EL3.CBPR_ELINS issetto 1, ICC_BPRO EL1 also determines the priority grouping of
Non-secure Group 1 interrupts

ICC_BPR1_EL1 determines the priority of Group 1 interrupts:

. When ICC_CTLR _EL3.CBPR _ELIS is cleared to 0, the Secure copy of ICC_BPR1 EL1 determines the
priority grouping of Secure Group 1 interrupts.

. When ICC_CTLR _EL3.CBPR_ELINS is cleared to 0, the Non-secure copy of ICC_BPR1_EL1 determines
the priority grouping of Non-secure Group 1 interrupts.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-65
Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization

Table 4-6 shows the priority grouping for Group 1 interrupts when ICC_CTLR _EL3.CBPR_ELI1S or
ICC _CTLR EL3.CBPR_ELINS is cleared to 0.

Table 4-6 Priority grouping for Group 1 interrupts when CBPR is cleared to 0

| iority field [7:
Value of Binary point field nterrupt priority field [7:0]

In ICC_BPR1_EL1 Group priority field Subpriority field Field with binary point2

ob - - -
1 [7:1]¢ [0] 2ggegeeg.s
2 [7:2]¢ [1:0] 2eggee s
3 [7:3]¢ [2:0] 2gggg.sss
4 [7:4]¢c [3:0] £222g.558S
5 [7:5]¢ [4:0] ggg.5SSSS
6 [7:6]¢ [5:0] gg.5558S8
7 [7]¢ [6:0] 2.555SSSS

a. Group labeling aligns with that shown in Figure 4-8 on page 4-72.
b. Not supported.
c. IfaNon-secure write sets the priority value field for a Non-secure interrupt then bit[7] == 1.

Table 4-7 shows the priority grouping for Group 0 interrupts, or for Group 1 interrupts when
ICC_CTLR_EL3.CBPR_ELIS or ICC_CTLR_EL3.CBPR_ELINS is set to 1.

Table 4-7 Priority grouping for Group 1 interrupts when CBPR == 1, or for Group 0 interrupts

Binary point value Interrupt priority field [7:0]

ICC_BPRO_EL1 Group priority field Subpriority field Field with binary point
0 [7:1]2 [0] £888888.5
1 [7:2]2 [1:0] 2eggee.ss
2 [7:3]2 [2:0] ggggeg.sss
3 [7:4]2 [3:0] gggg.5SSS
4 [7:5]2 [4:0] 22g.558sS
5 [7:6]2 [5:0] gg.5555SS
6 [7]2 [6:0] £.55SSSSS
7 No preemption [7:0] .SSSSSSSS

a. Ifa Non-secure write sets the priority value field for a Non-secure interrupt then bit[7] == 1.

The minimum binary point value supported depends on the IMPLEMENTATION DEFINED number of priority bits, and
is in the range 0 - 3. The number of priority bits implemented is indicated by ICC_CTLR EL1.PRIBits and
ICC_CTLR EL3.PRIBits.

4-66 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization

In a GIC that supports two Security states, when:

. ICC CTLR EL3.CBPR ELIS==1:
— Writes to ICC_BPR1_ELI at Secure EL1 modify ICC_BPRO ELI.
— Reads from ICC_BPR1 ELI at Secure EL1 return the value of ICC_BPRO ELI.

. ICC_CTLR EL3.CBPR ELINS ==1:
— Non-secure writes to [CC_BPR1_EL1 modify ICC_BPRO ELI.
— Non-secure reads from ICC_BPR1 ELI return the value of ICC_BPRO_ELI.

Note

. When an interrupt is using ICC_BPR1_ELI, the effective binary point value is that stored in the register,
minus one, as shown in Table 4-6 on page 4-66. This means that software with no awareness of the effects of
interrupt grouping and where two Security states are supported, sees the same priority grouping mechanism,
regardless of whether it is running on a PE that is in Secure state or in Non-secure state.

. Priority grouping always operates on the full priority, which is the value that would be visible to a Secure
read. This is different from the value that is visible to a Non-secure read of the priority value corresponding
to a Non-secure interrupt. See Figure 4-8 on page 4-72 and Figure 4-9 on page 4-72.

Pseudocode
The following pseudocode indicates the group priority of the interrupt.

// GroupBits()
// Returns the priority group field for the minimum BPR value for the group

bits(8) GroupBits(bits(8) priority, IntGroup group)
bit cbpr_GINS = if HaveEL(EL3) then ICC_CTLR_EL3.CBPR_ELINS else ICC_CTLR_EL1.CBPR;
bit cbpr_G1S = if HaveEL(EL3) then ICC_CTLR_EL3.CBPR_EL1S else ‘Q’;

if (group == IntGroup_GO ||
(group == IntGroup_GINS && cbpr_GINS == ‘1’) ||
(group == IntGroup_GlS && cbpr_G1S == ‘1’)) then
bpr = UInt(ICC_BPRO_EL1.BinaryPoint);

elsif group == IntGroup_G1S then
bpr = UInt(ICC_BPR1_EL1S.BinaryPoint);

else
bpr = UInt(ICC_BPRI_ELINS.BinaryPoint);

mask = Ones(bpr):Zeros(8 - bpr);

return priority AND mask;

4.8.3 System register access to the Active Priorities registers

Physical Group 0 and Group 1 interrupts access different Active Priorities registers, depending on the interrupt
group.

For Group 0 interrupts, these registers are ICC_APOR<n> ELI1, where n = 0-3:

. If 32 or fewer priority levels are implemented, accesses to ICC_APOR<n> EL1, where n = 1-3, generate an
Undefined Instruction exception.

. If more than 32 and fewer than 65 priority levels are implemented, accesses to [ICC_APOR<n> EL1, where
n = 2-3, generates an Undefined Instruction exception.

For Group 1 interrupts, these registers are ICC_API1R<n> ELI1, where n= 0-3:

. If 32 or fewer priority levels are implemented, accesses to ICC_AP1R<n> ELI1, where n = 1-3, generate an
Undefined Instruction exception.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-67
ID060315 Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization

. If more than 32 and fewer than 65 priority levels are implemented, accesses to ICC_AP1R<n> EL1, where
n = 2-3, generates an Undefined Instruction exception.

The content of ICC_APOR<n> EL1, Secure ICC_AP1R<n> EL1, and Non-secure ICC_API1R<n> EL1 is
IMPLEMENTATION DEFINED. However, the value 0x00000000 must be consistent with no priorities being active.

Writing any value other than the last read value, or 0x00000000, to these registers can cause:
. Interrupts that would otherwise preempt execution to not preempt execution.

. Interrupts that otherwise would not preempt execution to preempt execution.

Writing any value to Non-secure [ICC_AP1R<n> EL1 cannot prevent the correct prioritization and the forwarding
of interrupts of higher priority than those in the Non-secure priority range, meaning that this does not create a
security hole.

Writes to these registers in any order other than the following can result in UNPREDICTABLE behavior:
L. ICC_APOR<n> ELI.

2. Secure ICC_AP1R<n> ELI.

3. Non-secure [CC_AP1R<n> ELI.

Note

An ISB is not required between each write to ICC_APOR<n> EL1, Secure ICC_AP1R<n> ELI, and Non-secure
ICC_APIR<n> ELI.

Table 4-8 shows an implementation of ICC_APOR<n> EL1.

Table 4-8 Group 0 Active Priorities Register implementation

Minimum value of: Maximum number of:
Secure Non-secure G:izl:ilz Preemption ICC_APORn implementation
ICC_BPRO_EL1 ICC_BPR1_EL1 Eits Y levels
4 4 16 ICC_APOR<n> ELI1[15:0], wheren=0
3 5 32 ICC_APOR<n> EL1[31:16], wheren=0
2 6 64 ICC_APOR<n> ELI1, where n=0-1
1 7 128 ICC_APOR<n> ELI1, where n=0-3

Table 4-9 shows an implementation of ICC_APIR<n> ELI

Table 4-9 Group 1 Active Priorities Register implementation

Minimum value of: Maximum number of:
. ICC_AP1Rn implementation
Secure Non-secure G;zl:i? Preemption - 'mp :
ICC_BPRO_EL1 ICC_BPR1_EL1 gits y levels
4 4 16 ICC_AP1R<n> ELI1[15:0], wheren=0
3 5 32 ICC_APIR<n> ELI1[31:16], wheren=0
2 6 64 ICC_API1R<n> ELI1, where n=0-1
1 7 128 ICC_AP1R<n> ELI1, where n=0-3
4-68 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization

Pseudocode
The following pseudocode indicates the highest active group priority.

// GetHighestActiveGroup()
/!
// Returns a value indicating the interrupt group of the highest active priority from three
// registers. Returns IntGroup_None if no active priorities.

// Note: having more than one group active at the same priority is UNPREDICTABLE.

IntGroup GetHighestActiveGroup(bits(128) ap@, bits(128) aplns, bits(128) apls)

The following pseudocode indicates the highest active priority.

// GetHighestActivePriority()
/!
// Returns the priority of the highest active priority from three registers, expressed as a 7-bit
// unsigned binary number. Returns OxFF if no bits are active.

bits(8) GetHighestActivePriority(bits(128) ap@, bits(128) aplns, bits(128) apls)

48.4 Preemption

A CPU interface supports signaling of higher priority pending interrupts to a target PE before an active interrupt

completes. A pending interrupt is only signaled if both:

. Its priority is higher than the priority mask for that CPU interface. See Priority masking on page 4-70.

. Its group priority is higher than that of the running priority on the CPU interface. See Priority grouping on
page 4-65 for more information.

Preemption occurs at the time when the PE takes the new interrupt, and starts handling the new interrupt instead of
the previously active interrupt or the currently running process. When this occurs, the initial active interrupt is said
to have been preempted.

Note
The value of the I or F bit in the Process State, PSTATE, and the Exception level and the interrupt routing controls
in software and hardware, determine whether the PE responds to the signaled interrupt by taking the interrupt. For
more information, see ARM® Architecture Reference Manual, ARMvS, for ARMvS-A architecture profile.

For more information about enabling interrupts, see Enabling the distribution of interrupts on page 4-61.

Preemption level control
ICC BPRO_EL1 determines whether a Group 0 interrupt is signaled to the PE for possible preemption. In addition:

. When ICC_CTLR _EL3.CBPR _ELINS==1,1CC BPRO_EL1 also determines whether a Non-secure Group
1 interrupt is signaled to the PE for possible preemption.

. When ICC_CTLR _EL3.CBPR EL1S==1,ICC_BPRO_EL1 also determines whether a Secure Group 1
interrupt is signaled to the PE for possible preemption.

ICC BPR1 _EL1 determines whether a Group 1 interrupt is signaled to the PE for possible preemption. The
Non-secure copy of this register is used for Non-secure Group 1 interrupts. The Secure copy is used for Secure
Group 1 interrupts.

When ICC_CTLR EL3.CBPR _ELINS issetto 1:

. EL3 can write to ICC_BPR1 ELI1(NS).
When EL3 is using AArch64 state, accesses to [CC_BPR1_EL1(NS) from EL3 are not affected by
ICC_CTLR_EL3.CBPR_ELINS.
When EL3 is using AArch32 state, accesses to [CC_BPR1_EL1(NS) from Monitor mode are not affected by
ICC_CTLR_EL3.CBPR_ELINS.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-69
Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization

. Non-secure writes to ICC_BPR1_EL1 at EL1 or EL2 are ignored.
. Non-secure reads of [CC_BPR1_ELI at EL1 or EL2 return the value of ICC_BPRO_EL1 +1, saturating at 7.

When ICC_CTLR EL3.CBPR EL1Sissetto 1:
. Secure reads of ICC_BPR1_EL1 return the value of ICC_BPRO EL1.
. Secure writes to [CC_BPR1_EL1 update ICC_BPRO_ELI.

4.8.5 Priority masking
The Priority Mask Register for a CPU interface, ICC_PMR_ELI, defines a priority threshold for the target PE. The
GIC only signals pending interrupts that have a higher priority than this priority threshold to the target PE. A value
of zero, the register reset value, masks all interrupts from being signaled to the associated PE. The GIC does not use
priority grouping when comparing the priority of a pending interrupt with the priority threshold.
The GIC always masks an interrupt that has the lowest supported priority. This priority is sometimes referred to as
the idle priority
Note
Writing 0xFF to ICC_PMR_EL1 always sets it to the lowest supported priority. Table 4-5 on page 4-63 shows how
the lowest supported priority varies with the number of implemented priority bits.
If the GIC provides support for two Security states, [ICC_PMR_ELI is RAZ/WI to Non-secure accesses, if bit[7]
== (). During normal operation, software executing in Non-secure state does not access ICC_PMR EL1when it is
programmed with such a value.
For information that relates to different GIC configurations, see Non-secure accesses to register fields for Secure
interrupt priorities on page 4-64.
4.8.6 Software accesses of interrupt priority
This section describes Secure and Non-secure reads of interrupt priority, and the relationship between them. It also
describes writes to the priority value fields.
Note
This section applies to any GIC implementation that supports two Security states.
When a PE reads the priority value of a Non-secure Group 1 interrupt, the GIC returns either the Secure or the
Non-secure read of that value, depending on whether the access is Secure or Non-secure.
The GIC implements a minimum of 32 and a maximum of 256 priority levels. This means it implements 5-8 bits of
the 8-bit priority value fields in the appropriate GICR_IPRIORITYR<n>and GICD IPRIORITYR<n> register. All
of the implemented priority bits can be accessed by a Secure access, and unimplemented low-order bits of the
priority fields are RAZ/WI. Figure 4-5 shows the Secure read of a priority value field for an interrupt. The priority
value stored in the Distributor is equivalent to the Secure read.
76543210
HIG|F|[E|D|C|B|A
Figure 4-5 Secure read of the priority field for any interrupt
In this view:
. Bits H-D are the bits that the GIC must implement, corresponding to 32 priority levels.
. Bits C-A are the bits the GIC might implement. They are RAZ/WI if not implemented.
. The GIC must implement bits H-A to provide the maximum 256 priority levels.
4-70 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization

For Non-secure accesses, the GIC supports half the priority levels it supports for Secure accesses, which means a
minimum of 16 priority levels. Figure 4-6 shows the Non-secure view of a priority value field for a Non-secure
Group 1 interrupt.

Figure 4-6 Non-secure read of the priority field for a Non-secure Group 1 interrupt

In this read:

. Bits G-D are the bits that the GIC must implement, corresponding to 16 priority levels.

. Bits C-A are the bits the GIC might implement, that are RAZ/WI if not implemented.

. The GIC must implement bits G-A to provide the maximum 128 priority levels.

. Bit [0] is RAZ/WL

The Non-secure read of a priority value does not show how the value is stored in the registers in the Distributor. For
Non-secure writes to a priority field of a Non-secure Group 1 interrupt, before storing the value:

. The value is right-shifted by one bit.

. Bit [7] of the value is set to 1.

This translation means the priority value for the Non-secure Group 1 interrupt is in the bottom half of the priority
range.

A Secure read of the priority value for an interrupt returns the value stored in the Distributor. Figure 4-7 shows this
Secure read of the priority value field for a Non-secure Group 1 interrupt that has had its priority value field set by
a Non-secure access, or has had a priority value with bit[7] == 1 set by a Secure access:

Figure 4-7 Secure read of the priority field for a Non-secure Group 1 interrupt

A Secure write to the priority value field for a Non-secure Group 1 interrupt can set bit [7] to 0. If a Secure write
sets bit[7] to 0:

. A Non-secure read returns the value GFEDCBAO.

. A Non-secure write can change the value of the field, but only to a value that has bit [7] set to 1 for the Secure
read of the field.

Note
. This behavior of Non-secure accesses applies only to the priority value fields in GICR_IPRIORITYR<n>
and GICD_IPRIORITYR<n>, as appropriate:
— If'the Priority field in ICC_PMR_ELI holds a value with bit [7] == 0, then the field is RAZ/WTI for
Non-secure accesses.
— If'the Priority field in ICC_RPR_EL1 holds a value with bit [7] == 0, then the field is RAZ for
Non-secure reads.

. ARM does not recommend setting bit[7] to 0 for a Non-secure Group 1 interrupt in this way because it places
the interrupt in the wrong half of the priority range for maintenance by non-secure code.

Figure 4-8 on page 4-72 shows the relationship between the reads of the priority value fields for Non-secure Group
1 interrupts.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-71
Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization

Secure access H{G|F|E[D|C|B|A| Matches Secure view

Non-secure access G|F|(E|D|C|B|A]| 0| Translation of Secure view

Secure access H|G|F|E|D|C|B|A| Matches Secure view

Figure 4-8 Relationship between Secure and Non-secure reads of interrupt priority fields

Figure 4-9 shows how software reads of the interrupt priorities from Secure and Non-secure accesses relate to the
priority values held in the Distributor, and to the interrupt values that are visible to Secure and Non-secure accesses.
Figure 4-9 applies to a GIC that implements the maximum range of priority values.

Software view from Priority values Software view from
Non-secure accesses in Distributor Secure accesses
Highest 0x00 0x00 ST 0x00
priority '\ A

Priority range for
Group 0 and Secure
Group 1 interrupts

Incr.ea.sir;g 0x7F D Increasing
priority 0x80 priority

Priority range for
Non-secure Group
1 interrupts®

Lowest
priority OxFE <« | OxF OXFF
a. All priority values are even (bit [0] == 0) in the software view of Non-secure
accesses.

b. Ranges recommended by ARM.

Figure 4-9 Software reads of the priorities of Group 1 and Group 0 interrupts

Table 4-10 on page 4-73 shows how the number of priority value bits implemented by the GIC affects the Secure
and Non-secure reads of the priority of a Non-secure Group 1 interrupt.

Note

Software executing in Non-secure state has no visibility of the priority settings of Group 0 interrupts, or where
applicable, of Secure Group 1 interrupts.

4-72

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization

Table 4-10 Effect of not implementing some priority field bits, two Security states

Implemented priority bits, as
seen by a Secure read

Possible priority field values, for a Non-secure Group 1 interrupt

Secure read Non-secure read
[7:0] OXxFF-0x00 (255-0), all values OXFE-0x00 (254-0), even values only
[7:1] 0XFE-0x00 (254-0), even values only ~ 0xFC-0x00 (252-0), in steps of 4
[7:2] 0xFC-0x00 (252-0), in steps of 4 0xF8-0x00 (248-0), in steps of 8
[7:3] 0xF8-0x00 (248-0), in steps of 8 0xF0-0x00 (240-0), in steps of 16

This model for the presentation of priority values ensures software written to operate with an implementation of this
GIC architecture functions as intended regardless of whether the GIC provides support for two Security states.
However, programmers must ensure that software assigns appropriate priority levels to the Group 0 and Group 1
interrupts.

Note
To control priority values, ARM strongly recommends that:
. For a Group 0 interrupt, software sets bit[7] of the priority value field to 0.
. Ifusing a Secure write to set the priority of a Non-secure Group 1 interrupt, software sets bit[7] of the priority

value field to 1.

This ensures that all Group 0 and, if applicable, Secure Group 1 interrupts have higher priorities than all Non-secure
Group 1 interrupts. However, a system might have requirements that cannot be met with this scheme.

Table 4-11 shows an example priority allocation scheme that ensures:
. Some Group 0 interrupts have higher priority than any other interrupts.
. Some Secure Group 1 interrupts have higher priority than any Non-secure Group 1 interrupt.

Table 4-11 Example priority allocation

Interrupt security configuration = GICR_IPRIORITYR<n>[7:6]

Group 0 0b00
Secure Group 1 0b01
Non-secure Group 1 0b10
0b11
. Software might not be aware that the GIC supports two Security states, and therefore might not know whether

it is making Secure or Non-secure accesses to GIC registers. However, for any implemented interrupt,
software can write 0xFF to the corresponding GICR _IPRIORITYR<n> priority value field, and then read
back the value stored in the field to determine the supported interrupt priority range. ARM recommends that,
before checking the priority range in this way:

— For a peripheral interrupt, software first disables the interrupt.

— For an SGI, software first checks that the interrupt is inactive.

4.8.7 Changing the priority of enabled PPIs, SGls, and SPIs

If software writes to the GICD_IPRIORITYR<n> or GICR_IPRIORITYR<n> register of an enabled interrupt while
the interrupt is pending, it is IMPLEMENTATION DEFINED whether the GIC uses the old value or the new value. The
GIC ensures that no interrupt is handled more than once, and that no interrupt is lost.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 4-73
Non-Confidential - Beta

4 Physical Interrupt Handling and Prioritization
4.8 Interrupt prioritization

4-74 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

Chapter 5
Virtual Interrupt Handling and Prioritization

This chapter describes the fundamental aspects of GIC virtual interrupt handling and prioritization:
About GIC support for virtualization on page 5-76.

. Operation overview on page 5-77.

. Configuration and control of VMs on page 5-81.

. Virtual LPI support on page 5-84.

. Pseudocode on page 5-86.

ARM IHI 0069A

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
ID060315

5-75
Non-Confidential - Beta

5 Virtual Interrupt Handling and Prioritization
5.1 About GIC support for virtualization

5.1 About GIC support for virtualization
An operating system that is executing at EL1 under the control of a hypervisor executing at EL2 is sometimes
referred as a virtual machine (VM). A VM can support multiprocessing, which means that multiple virtual PEs
(VPEs), that are scheduled by the hypervisor are executing on one or more physical PEs. When a vPE is executing
on a PE, that vPE of the VM is referred to as being scheduled on the physical PE. In ARMvS8, when EL2 is
implemented and enabled, the GIC CPU interface provides mechanisms to minimize the hypervisor overhead of
routing interrupts to a VM. For more information about vPEs, see Operation overview on page 5-77.
For more information about EL2 and virtual interrupts, see ARM™ Architecture Reference Manual, ARMVS, for
ARMVS-A architecture profile.

Note
The GIC does not provide additional mechanisms for the virtualization of the GICD_*, GICR_*, and GITS *
registers. To virtualize VM accesses to these registers, the hypervisor must set stage 2 data aborts to those memory
locations so that the hypervisor can emulate these effects. For more information about stage 2 data aborts, see ARM®
Architecture Reference Manual, ARMVS, for ARMvS-A architecture profile.
When a GIC provides support for virtualization, the VM operates in an environment that has the following features:
. The vPE can be configured to receive virtual Group 0 interrupts.
. The vPE can be configured to receive virtual Group 1 interrupts.
. Virtual Group 0 interrupts are signaled using the virtual FIQ signal to Non-secure EL1.
. Virtual Group 1 interrupts are signaled using the virtual IRQ signal to Non-secure EL1.
. Virtual interrupts can be handled by the vPE as if they were physical interrupts.
Note

This applies when affinity routing and System register access are enabled. For information about support for virtual
interrupts in legacy operation, see Support for legacy operation of VMs on page 10-661.
EL2 controls the generation of virtual interrupts for a VM. This allows software executing at EL2 to:
. Generate virtual Group 0 and Group 1 interrupts for the vPE.
. Save and restore the interrupt state of the vPE.
. Control the prioritization of the virtual interrupts.
. Change the VPE that is scheduled.
GICv4 introduces the ability to present virtual LPIs from an ITS directly to a vPE, without hypervisor intervention.
Handling virtual interrupts in legacy operation requires a GICV_* memory-mapped interface. See Support for
legacy operation of VMs on page 10-661 for more information.

5-76 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

5 Virtual Interrupt Handling and Prioritization
5.2 Operation overview

5.2 Operation overview

GICv3 supports the ARMVS-A virtualization functionality. A hypervisor executing at EL2 uses the ICH_* System
register interface to configure and control a virtual PE (VPE) executing at Non-secure EL1. For information about
the VM control interface, see Configuration and control of VMs on page 5-81. A vPE uses the ICC_* EL1 System
register interface to communicate with the GIC. The configuration of HCR_EL2.{IMO, FMO} determines whether
the virtual or the physical interface registers are accessed.

Note

This chapter describes the handling of virtual interrupts in the context of the AArch64 execution state with System
register access enabled. The individual AArch64 System register descriptions that are cross-referenced in this
chapter contain a reference to the AArch32 System register that provides the same functionality. For information
about VMs in legacy operation, see Support for legacy operation of VMs on page 10-661.

Software executing at EL3 or EL2 configures the PE to route physical interrupts to EL2. The interrupt can be:

. An interrupt targeting a vPE. The hypervisor sets the corresponding virtual INTID to the pending state on the
target VPE and includes the information about the associated physical INTID. When the vPE is not scheduled
on a PE, the hypervisor might choose to reschedule the vPE. Otherwise the interrupt is left pending on the
vPE for scheduling by the hypervisor at a later time.

. An interrupt targeting the hypervisor. This interrupt might:
— Have been generated by the system.

— Beamaintenance interrupt associated with a scheduled VM. See Maintenance interrupts on page 5-83
for more details.

— In GICv4, be a doorbell interrupt from an ITS. In GICv4, a virtual interrupt can be presented to a vPE
without hypervisor involvement. A doorbell interrupt must be generated when a virtual interrupt is
made pending for a vPE but the vPE is not scheduled on a PE.

The hypervisor handles physical interrupts according to the rules described in Chapter 4 Physical Interrupt
Handling and Prioritization before they are virtualized. For information about the handling of physical interrupts
and their virtualization during legacy operation, see Chapter 10 Legacy Operation and Asymmetric Configurations.

The GIC virtualization support includes a list of virtual interrupts for a vPE that is stored in hardware List registers,
see Usage model for the List registers on page 5-79. Each entry in the list corresponds to either a pending or an
active interrupt, and the entry describes the virtual interrupt number, the interrupt group, the interrupt state, and the
virtual priority of the interrupt. A virtual interrupt described in the list entry can be configured to be associated with
a physical SPI or PPI.

The GIC implementation selects the highest priority pending virtual interrupt from the list of interrupts held in the
List registers and, if it is of sufficient virtual priority compared to the active virtual interrupts and virtual priority
mask, presents it as either a virtual FIQ or a virtual IRQ, depending on the group of the interrupt. The virtual CPU
interface controls apply to the virtual interrupt in the same way as the physical interrupt controls apply to the
physical interrupt. Therefore, using the virtual CPU interface controls, software executing on the vPE can:

. Set the virtual priority mask.

. Control how the virtual priority is split between the group priority and the subpriority.
. Acknowledge a virtual interrupt.

. Perform a priority drop on the virtual interrupt.

. Deactivate the virtual interrupt.

The virtual CPU interface supports both EOImodes, so that a virtual EOI can perform a priority drop alone, or a
combined priority drop and deactivation.

When a virtual interrupt is acknowledged, then the state of the virtual interrupt changes from pending to active in
the corresponding List register entry.

When a virtual interrupt is deactivated, then the state of the virtual interrupt changes from active to inactive, or from
active and pending to pending, in the corresponding List register entry. If the virtual interrupt is associated with a
physical interrupt, then the associated physical interrupt is deactivated.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 5-77
Non-Confidential - Beta

5 Virtual Interrupt Handling and Prioritization
5.2 Operation overview

Virtual interrupts taken to Non-secure EL1 are handled in a similar manner to physical interrupts that are handled
in a system with a single Security state, that is where GICD_CTLR.DS is set to 1:

. Group 0 interrupts are signalled using the virtual FIQ signal.

. Group 1 interrupts are signalled using the virtual IRQ signal.
. Group 0 and Group 1 interrupts share an interrupt prioritization and preemption scheme. A minimum of 32
and a maximum of 256 priority levels are supported, as determined by the values in ICH_VTR_EL2.
Note

The priority value is not subject to the shift used for Non-secure physical interrupts. While virtualization
supports up to 8 bits of priority, a minimum of 5 and a maximum of 8 bits must be implemented.

Note

For information about the rules governing exception entry on an ARMv8-A PE, see ARM" Architecture Reference
Manual, ARMvS, for ARMvS-A architecture profile.

Accesses at Non-secure EL1 to Group 0 registers are virtual when HCR_EL2.FMO == 1.

Virtual accesses to the following Group 0 ICC_* registers access the ICV_* equivalents:
. Accesses to ICC_APOR<n> EL1 access ICV_APOR<n> ELI.

. Accesses to ICC_BPRO_EL1 access ICV_BPRO ELI.

. Accesses to [CC_EOIRO_EL1 access ICV_EOIRO ELI.

. Accesses to [CC_HPPIRO_EL1 access ICV_HPPIRO EL1.

. Accesses to ICC_IARO_EL1 access ICV_IARO_EL1.

. Accesses to ICC_IGRPENO_EL1 access ICV_IGRPENO ELI.

Accesses at Non-secure EL1 to Group 1 registers are virtual when HCR_EL2.IMO == 1.

Virtual accesses to the following Group 1 ICC_* registers access the ICV_* equivalents:
. Accesses to ICC_AP1R<n> ELI1 access ICV_AP1R<n> ELI.

. Accesses to ICC_BPR1 EL1 access ICV_BPR1 ELI.

. Accesses to [CC_EOIR1_EL1 access ICV_EOIR1 ELI.

. Accesses to [CC_HPPIR1 _EL1 access ICV_HPPIR1 ELI.

. Accesses to ICC_IAR1 EL1 access ICV_IAR1 ELI1.

. Accesses to ICC_IGRPEN1 EL1 access ICV_IGRPENI ELI.

Accesses at Non-secure EL1 to the common registers are virtual when either HCR_EL2.IMO == 1 or
HCR_EL2.FMO == 1, or both.

Virtual accesses to the following Common ICC_* registers access the ICV_* equivalents:
. Accesses to ICC_RPR_ELI access ICV_RPR ELI.

. Accesses to ICC_CTLR _ELI access ICV_CTLR ELI.

. Accesses to ICC_DIR EL1 access ICV_DIR _ELI.

. Accesses to [ICC_PMR _EL1 access ICV_PMR _ELI.

A virtual write to ICC_SGIOR EL1, ICC_SGIIR EL1, or ICC_ASGIIR ELI traps to EL2.

Software executing at EL2 can access some ICV_* register state using ICH VMCR _EL2 and ICH VTR EL2 as
follows:

. ICV_PMR _ELI1 . Priority aliases ICH VMCR EL2.VPMR.

. ICV_BPRO_EL1.BinaryPoint aliases ICH_VMCR_EL2.VBPRO.
. ICV_BPRI1_EL1.BinaryPoint aliases ICH_VMCR_EL2.VBPRI.
. ICV_CTLR ELI1.EOImode aliases ICH VMCR_EL2.VEOIM.

. ICV_CTLR_EL1.CBPR aliases ICH_VMCR_EL2.VCBPR.

. ICV_IGRPENO_ELlaliases ICH_VMCR_EL2.VENGO.

. ICV_IGRPENI1_ELI. aliases ICH_VMCR_EL2.VENGI.

. ICV_CTLR_ELI1.PRIbits aliases ICH_VTR_EL2.PRIbits.

5-78

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

5 Virtual Interrupt Handling and Prioritization
5.2 Operation overview

« ICV_CTLR_EL1.IDbits aliases ICH_VTR_EL2.IDbits.
« ICV_CTLR _ELI.SEIS aliases ICH_VTR_EL2.SEIS.
« ICV_CTLR ELI1.A3V aliases ICH VTR _EL2.A3V.

5.21 Usage model for the List registers

A fundamental function of an interrupt controller is to develop list of pending interrupts in priority order for each
PE, and then to present the highest priority interrupt to the PE if the interrupt is of sufficient priority. For physical
interrupts, this task is performed entirely in hardware by the GIC. However, in order to reduce the cost in hardware,
the GIC handles virtual interrupts using both hardware and software.

For each physical interrupt received that is targeting a vPE, the hypervisor adds that interrupt to a prioritized list of
pending virtual interrupts that is presented to the vPE. The GIC hardware also provides a set of List registers,

ICH _LR<n> EL2, that holds an IMPLEMENTATION DEFINED number of the top entries in the prioritized list for the
currently running vPE. Typically, there are at most only a few pending virtual interrupts for that vPE. The interrupts
in the List register are then handled by the vPE in hardware, providing the same behavior for the VM as is seen by
a non-virtualized operating system handling physical interrupts.

However, the total number of interrupts that are pending, active and pending, or active, can exceed the number of
List registers available. In this case, the hypervisor can save one or more active interrupt entries to memory, and
later restore them to the List registers based on their priority. In this way, the List registers act as a cache for the list
of pending, active, or active and pending interrupts that is controlled by software, for a vPE.

The List registers provide maintenance interrupts for:

. The purpose of signalling when there are no pending interrupts in the List registers to allow the hypervisor
to load more pending interrupts to the List registers.

. The purpose of signalling when the List registers are empty or nearly empty to allow the hypervisor to refill
the List registers with entries from the list in memory.

. The purpose of signalling when an EOI has been received for an entry that is not in the List registers, which
can occur if an active interrupt is held in memory.

. The enabling and disabling of virtual interrupt groups, which might result in a requirement to change the
content of the List registers.

For more details on maintenance interrupts, see Maintenance interrupts on page 5-83.

Note

Although the List registers might include only active interrupts, with the hypervisor maintaining any pending
interrupts in memory, a pending interrupt cannot be signalled to the vPE until the hypervisor adds it to the List
registers. Therefore, to minimize interrupt latency and ensure the efficient operation of the vPE, ARM strongly
recommends that the List registers contain at least one pending interrupt, if a List register is available for this
interrupt.

The List registers form part of the context of the vPE. When there is switch from one vPE running on a PE to another
VPE, the hypervisor switches the List registers accordingly.

The number of List registers is IMPLEMENTATION DEFINED, and can be discovered by reading ICH HCR_EL2
The following pseudocode indicates the number of List registers that are implemented.

// NumListRegs()

// The number of implemented List Registers. This value is IMPLEMENTATION DEFINED.

integer NumListRegs()
return integer IMPLEMENTATION_DEFINED “Number of List registers”;

5.2.2 List register usage resulting in UNPREDICTABLE behavior
The following cases are considered software programming errors and result in UNPREDICTABLE behavior:

. Having two or more interrupts with the same pINTID in the List registers for a single virtual CPU interface.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 5-79
ID060315 Non-Confidential - Beta

5 Virtual Interrupt Handling and Prioritization
5.2 Operation overview

. Having a List register entry with ICH_LR<n> EL2.HW= 1, which is associated with a physical interrupt, in
active state or in pending state in the List registers if the Distributor does not have the corresponding physical
interrupt in either the active state or the active and pending state.

. IfICC_CTLR _EL1.EOImode or ICC_CTLR_ EL3.EOImode EL3 is 0, then either:

— Havingan active interrupt in the List registers with a priority that is not set in the corresponding Active
Priorities Register.
— Having two interrupts in the List registers in the active state with the same preemption priority.

5-80 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

5 Virtual Interrupt Handling and Prioritization
5.3 Configuration and control of VMs

5.3 Configuration and control of VMs

The virtual GIC works by holding a prioritized list of pending virtual interrupts for each PE. In GICv3 this list is
compiled in software and a number of the top entries are held in List registers in hardware. For LPIs, this list can be
compiled using tables for each vPE. These tables are controlled by the GICR_* registers.

A hypervisor uses a System register interface that is accessible at EL2 to switch context and to control multiple
VMs. The context held in the ICH_* System registers is the context for the scheduled vPE. A vPE is scheduled
when:

« ICH HCR EL2.En==1.
. HCR_EL2.FMO == 1, when virtualizing Group 0 interrupts.
. HCR_EL2.IMO == 1, when virtualizing Group 1 interrupts.

When a vPE is scheduled, the ICH_* EL2 registers affect software executing at Non-secure EL1.

The ICH * EL2 registers control and maintain a vPE as follows:
. ICH_HCR _EL2 is used for the top level configuration and control of virtual interrupts.

. Information about the implementation, such as the size of the supported virtual INTIDs and the number of
levels of prioritization is read from ICH_VTR EL2.

. A hypervisor can monitor and provide context for ICC_CTLR EL1 using ICH VMCR_EL2.

. A set of List registers, I[CH_LR<n> EL2, are used by the hypervisor to forward a queue of pending interrupts
to the PE, see Usage model for the List registers on page 5-79. The status of free locations in
ICH_LR<n> EL2 is held in ICH_ELRSR_EL2.

. The end of interrupt status for the List registers is held in ICH_EISR EL2.
. The VM maintenance interrupt status is held in ICH_MISR_EL2.
. The active priority status is held in:

— ICH_APOR<n> EL2, where n = 0-3.

— ICH_API1R<n> EL2, where n = 0-3.

5.3.1 Association of virtual interrupts with physical interrupts

A virtual interrupt can become pending in response to a physical interrupt, where, for example, the physical interrupt
is being used by a peripheral that is owned by a particular VM, or it can be generated for other reasons by the
hypervisor where there is no a corresponding physical interrupt. This second case can be used, for example, when
the hypervisor emulates a virtual peripheral.

To support these two models, for SPIs and PPIs, the GIC List registers provide a mechanism to configure a virtual
interrupt be associated with a physical interrupt. The physical interrupt and the virtual interrupt do not necessarily
have the same INTID.

Usage model for associating a virtual interrupt with a physical interrupt

A virtual interrupts can be associated with a physical interrupt as follows:

1. The hypervisor configures ICC_CTLR_EL1.EOImode == 1, in this model.

2. On taking a physical PPI or a physical SPI that is targeting a vPE, the interrupt is taken to the hypervisor, and
is acknowledged by hypervisor. The makes the physical interrupt active.

3. The hypervisor inserts a virtual interrupt to the list of pending interrupts for the targeted vPE. The hypervisor
performs an EOI when it wants to do a priority drop for that interrupt. The hypervisor does not deactivate the
interrupt.

4. When this virtual interrupt has a sufficiently high priority in the list of pending interrupts for that vPE, and
that vPE is scheduled on the PE, the hypervisor writes this pending virtual interrupt into a List register, and
ICH _LR<n> EL2.HW is set to 1 to indicate that the virtual interrupt is associated with a physical interrupt.
The INTID of the associated physical interrupt is held in the same List register.

5. When the vPE is running, it will take the pending virtual interrupt, and acknowledge it in the same way as it
would acknowledge a physical interrupt, using the virtual CPU interface. When the interrupt handler running
on the vPE has completed its task, and the virtual interrupt is to be deactivated, then the hardware deactivates

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 5-81
Non-Confidential - Beta

5 Virtual Interrupt Handling and Prioritization
5.3 Configuration and control of VMs

5.3.2

both the virtual interrupt and the associated physical interrupt. The virtual interrupt might be deactivated as
the result of either an end of interrupt, if ICH_ VMCR_EL2.VEOIM== 0, or as the result of a separate
deactivation if [CH VMCR _EL2.VEOIM == 1.

The Active Priorities registers

The active priority is held separately for virtual Group 0 and Group 1 interrupts, using ICH APOR<n> EL2 and
ICH _APIR<n> EL2, where n=0-3. The Active Priorities Registers have a bit for each priority group implemented
by the implementation. In GICv3, virtualization supports up to 8 bits of priority. However, as a result of interrupt
grouping, bit[0] cannot be used for preemption. This means that a maximum of 128 active priority bits are required
to maintain context. The number of registers implemented is dependent on the number of group priority bits
supported, as shown in Table 5-1.

Table 5-1 Group bit count in the hypervisor Active Priorities Registers

Number of

Bits Register .
registers

5 ICH _APOR<n> EL2 n=0
ICH_API1R<n> EL2

6 ICH APOR<n> EL2 n=0-1
ICH_APIR<n> EL2

7 ICH_APOR<n> EL2 n=0-3
ICH_APIR<n> EL2

Ifabitissetto 1 in one of the ICH APOR<n> EL2 registers, the equivalent bit in the ICH_AP1R<n> EL2 register
must be zero when executing in Non-secure EL1 or Non-secure ELO, otherwise the behavior of the GIC is
UNPREDICTABLE.

Ifabitissetto 1 in one of the ICH AP1R<n> EL2 registers, the equivalent bit in the ICH_APOR<n> EL2 register
must be zero when executing in Non-secure EL1 or Non-secure EL0, otherwise the behavior of the GIC is
UNPREDICTABLE.

ICH_APOR<n> EL2 provide a list of up to 128 bits where there is a bit for each implemented preemptable priority.
If a bit is 1, this indicates that there is a Group 0 interrupt in that priority group which has been acknowledged but
has not had a priority drop. If a bit is 0, this indicates that there is no Group 0 interrupt active at that priority, or that
all active Group 0 interrupts within that priority group have undergone a priority drop.

Note

Writing to the Link registers does not have an effect on the Active Priorities Registers.

ICH_AP1R<n> EL2 provide a list of up to 128 bits where there is a bit for each implemented preemptable priority.
If a bit is 1, this indicates that there is a Group 1 interrupt in that priority group which has been acknowledged but
has not had a priority drop. If a bit is 0, this indicates that there is no Group 1 interrupt active at that priority or that
all active Group linterrupts within that priority group have undergone a priority drop.

Writing any value other than the last read value of the register, or 0x00000000, to these registers can cause:
. Virtual interrupts that would otherwise preempt execution to not preempt execution.

. Virtual interrupts that otherwise would not preempt execution to preempt execution at Non-secure EL1 or
ELO.

Note
ARM does not expect these registers to be read and written by software for any purpose other than:
. Saving and restoring state, as part of software power management.
. Context switching between vPEs on the same PE.

5-82

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

5 Virtual Interrupt Handling and Prioritization
5.3 Configuration and control of VMs

Writes to these registers in any order other than the following can cause virtual interrupt prioritization to
malfunction:

1. ICH_APOR<n> EL2.
2. ICH APIR<n> EL2.

Note
An ISB is not required between the write to ICH_APOR<n> EL2 and the write to ICH_AP1R<n> EL2.

5.3.3 Maintenance interrupts

Maintenance interrupts can signal key events in the operation of a GIC that implements virtualization. These events
are processed by the hypervisor.

Note
. Maintenance interrupts are generated only when the global enable bit for the virtual CPU interface,
ICH HCR EL2.En,issetto 1.
. ARM strongly recommends that maintenance interrupts are configured to use INTID 25. For more

information, see Server Base System Architecture (SBSA).

Maintenance interrupts are level-sensitive interrupts. Configuration bits in ICH_HCR_EL2 can be set to 1 to enable
the generation of maintenance interrupts when:

. Group 0 virtual interrupts are enabled.

. Group 1 virtual interrupts are enabled.

. Group 0 virtual interrupts are disabled.

. Group 1 virtual interrupts are disabled.

. There are no pending interrupts in the List registers.

. At least one EOI request occurs with no valid List register entry for the corresponding interrupt.

. There are no valid entries, or there is only one valid entry, in the List registers. This is an underflow condition.
. At least one List register entry has received an EOI request.

See ICH MISR _EL2, Interrupt Controller Maintenance Interrupt State Register on page 8-274 for more
information about the control and status reporting of maintenance interrupts.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 5-83
Non-Confidential - Beta

5 Virtual Interrupt Handling and Prioritization

5.4 Virtual LPI support

5.4

5.4.1

5.4.2

Virtual LPI support

In GICv3 LPIs can be presented to a virtualized system by the hypervisor, which must be using the System registers.
A virtual LPI is generated when the hypervisor writes a VINTID corresponding to the LPI range, that is a vVINTID
that is greater than 8191, to a List register. Because an LPI does not have an active state, it is not possible to associate
a virtual LPI with a physical interrupt.

GICv4 provides support for the direct injection of virtual LPIs, vLPls, in the LPI INTID range. With the direct
injection of VLPIs, the GICR_* registers use structures in memory for each vPE to hold LPI configuration and
pending information for vLPIs in the same way that it uses structures in memory to hold LPI configuration and
pending information for physical LPIs. However, the virtual structures are different from the physical structures,
with the vLPI tables for the current vPE scheduled on a PE by GICR._ VPENDBASER and GICR_ VPROPBASER
in the Redistributor associated with that PE, For more information about the physical LPI tables, see LP/
Configuration tables on page 6-93 and LPI Pending tables on page 6-95.

The Redistributor associated with the PE on which the vPE is scheduled determines the highest priority pending
vLPI, and forwards this to the virtual CPU interface of the vPE. This vLPI and the interrupts in the List register are
then prioritized together to determine the highest priority pending virtual interrupt for the vPE.

For information about virtual LPIs and the Virtual CPU tables, see The vPE table on page 6-100.

Direct injection of virtual interrupts

The ITS maps an EventID and a DevicelD to an INTID associated with a PE, see The ITS on page 6-96 for more
information. GICv4 introduces the ability to generate a virtual LPI without involving the hypervisor. In this case an
ITS maps the EventID for the interrupt translation using the following mechanism:

. The ITS interruption translation table entry for a vLPI is configured with:
— A control flag that indicates the EventID is associated with a virtual LPI.

— A vPEID to index into the ITS vPE table. For more information about vPEID and the vPE table, see
The vPE table on page 6-100. The vPE table provides:

L. The base address of the GICR_* registers in the format defined by GITS TYPER.PTA.
2. The base address of the virtual LPI Pending table associated with the target VM.
— A virtual INTID, vINTID, that indicates which vLPI becomes pending.

— A physical INTID, pINTID, that can be used as a doorbell interrupt to the hypervisor if the vPE is not
scheduled on a PE. The value 1023 is used where a doorbell interrupt is not required, otherwise an
INTID in the physical LPI range must be provided.

For more information about:
. Physical LPIs, see LPIs on page 6-90.
. The ITS and format of an Interrupt Translation Table (ITT), see The ITS on page 6-96.

. The commands used to control the handling of virtual LPIs associated with an ITS, see Table 6-6 on
page 6-103 and the following commands:

— VINVALL on page 6-120.
— VMAPI on page 6-121.
— VMAPP on page 6-123.
— VMAPTI on page 6-124.
— VMOVI on page 6-126.
— VMOVP on page 6-128.
— VSYNC on page 6-129.

Doorbell interrupts

When an interrupt that targets a vVPE becomes pending, it might target a vPE that is not currently scheduled on a PE.
Where those interrupts are presented as physical interrupts, the hypervisor can schedule in the vPE as a result of that
interrupt. In this case the hypervisor can make the scheduling decisions for the vPE based on the full set of pending
virtual interrupts for the vPE.

5-84

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

5 Virtual Interrupt Handling and Prioritization
5.4 Virtual LPI support

The equivalent capability is provided in the case of direct injections of vLPIs by the provision of Doorbell LPIs.

For a vLPI, the ITS can configure a physical LPI that is sent to a PE when the vLPI becomes pending and the vPE
is not scheduled on that PE. This physical LPI is a Doorbell LPI.

The GIC hardware determines whether the vPE is scheduled on a PE when:
. GICR_VPENDBASER.Valid == 1.

. GICR_VPENDBASER.Physical Address holds the same value was defined in the VPT addr field in the
VMAPP command for the vPE that is the target of the vLPI.

If, at the time that a VPE is descheduled from a PE, there is one or more vLPIs pending for the PE,
GICR_VPENDBASER Physical Address is set to 1. This can be used by the hypervisor to make scheduling
decisions.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 5-85
Non-Confidential - Beta

5 Virtual Interrupt Handling and Prioritization
5.5 Pseudocode

5.5 Pseudocode
The following pseudocode indicates the number of virtual active priority bits.

// ActiveVirtualPRIBits()
//

integer ActiveVirtualPRIBits()
if VirtualPRIBits() == 8 then
return 128;
else
return 2A(VirtualPREBits() - 1);

The following pseudocode indicates the highest active group virtual priority.

// GetHighestActiveVGroup()
//

// Returns a value indicating the interrupt group of the highest priority
// bit set from three registers. Returns None if no bits are set.

IntGroup GetHighestActiveVGroup(bits(128) avp@, bits(128) avpl)
for rval = 0 to ActiveVirtualPRIBits() - 1
if avpO<rval> != ‘@’ then
return IntGroup_GO;
elsif avpl<rval> != ‘@’ then
return IntGroup_GINS;

return IntGroup_None;

The following pseudocode indicates the highest active virtual priority.

// GetHighestActiveVPriority()

/!
// Returns the index of the highest priority bit set from three registers.

// Returns OxFF if no bits are set.

bits(8) GetHighestActiveVPriority(bits(128) avp@, bits(128) avpl)
for rval = 0 to ActiveVirtualPRIBits() - 1
if avpO<rval> != ‘@’ || avpl<rval> != ‘@’ then
return rval<7:0>;

return Ones();
The following pseudocode indicates whether any bits are set in the supplied Active Priorities registers.

// VPriorityBitsSet()
// Returns TRUE if any bit is set in the supplied registers, FALSE otherwise

boolean VPriorityBitsSet(bits(128) avp@, bits(128) avpl)
for i = 0 to ActiveVirtualPRIBits() - 1
if avpl<i> != ‘@’ || avpl<i> != ‘@’ then
return TRUE;

return FALSE;
The following pseudocode clears the highest priority bit in the supplied virtual Active Priorities registers.
// VPriorityDrop()
// Clears the highest priority bit set in the supplied registers.
VPriorityDrop[bits(128) &avp@, bits(128) &avpl] = bit v
assert IsZero(v);
for i = @ to ActiveVirtualPRIBits() - 1

if avp@<i> != v then
avpo<i> = v;

5-86 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

5 Virtual Interrupt Handling and Prioritization
5.5 Pseudocode

return;

elsif avpl<i> != v then
avpl<i> = v;
return;

return;
The following pseudocode determines which active bits are set.
// FindActiveVirtualInterrupt()

//

// Find a matching List register. Returns -1 if there is no match.

integer FindActiveVirtualInterrupt(bits(INTID_SIZE) vID)

for i = @ to NumListRegs() - 1
if (!(ICH_LR_EL2[i].State IN {IntState_Active, IntState_ActivePending}) &&
ICH_LR_EL2[i].VirtualID<INTID_SIZE-1:0> == vID) then
return 1i;

return -1;
The following pseudocode indicates the virtual group priority based on the minimum Binary Point register.
// VPriorityGroup()
// Returns the priority group field for the minimum BPR value

bits(8) VPriorityGroup(bits(8) priority, integer group)
integer vpre_bits = VirtualPREBits();
mask = Ones(vpre_bits):Zeros(8 - vpre_bits);
return (priority AND mask);

The following pseudocode indicates the virtual group priority based on the appropriate Binary Point register.
// VGroupBits()
// Returns the priority group field for the minimum BPR value for the group

bits(8) VGroupBits(bits(8) priority, bit group)
bpr = UInt(ICH_VMCR_EL2.VBPR1);

if group == ‘0’ || ICH_VMCR_EL2.VCBPR == ‘1’ then
bpr = UInt(ICH_VMCR_EL2.VBPRO);

mask = Ones(bpr):Zeros(8 - bpr);
return (priority AND mask);

The following pseudocode indicates the number of virtual ID bits.

// VIDBits()
7

integer VIDBits()
id_bits = ICH_VTR_EL2.IDbits;
case id_bits of
when ‘000’ return 16;
when ‘001’ return 24;
otherwise Unreachable();

The following pseudocode indicates the number of virtual preemption bits.

// VirtualPREBits()
/] =====mmmmmmm==

integer VirtualPREBits()
return UInt(ICH_VTR_EL2.PREbits) + 1;

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 5-87
Non-Confidential - Beta

5 Virtual Interrupt Handling and Prioritization

5.5 Pseudocode
The following pseudocode indicates the number of virtual priority bits.
// VirtualPRIBits()
integer VirtualPRIBits()
return UInt(ICH_VTR_EL2.PRIbits) + 1;
5-88 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

Chapter 6
Locality-specific Peripheral Interrupts and the ITS

This chapter describes Locality-specific Peripheral Interrupts (LPIs) and the Interrupt Translation Service (ITS). It
contains the following sections:

. LPIs on page 6-90.

. The ITS on page 6-96.

. ITS commands on page 6-103.

. Common ITS pseudocode functions on page 6-131.

. ITS command error encodings on page 6-137.
. ITS power management on page 6-140.
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-89

ID060315 Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.1 LPIs

6.1

LPIs

Locality-specific Peripheral Interrupts (LPIs) are edge-triggered message-based interrupts that can use an Interrupt
Translation Service (ITS), if it is implemented, to route an interrupt to a specific Redistributor and connected PE.
GICv3 provides two types of support for LPIs. LPIs can be supported either:

. Using the ITS to translate an EventID from a device into an LPI INTID. For more information about
EventIDs, see The ITS on page 6-96.

. By forwarding an LPI INTID directly to the Redistributors, using GICR_SETLPIR.

An implementation must support only one of these methods.

Note

The following registers are mandatory in an implementation that supports LPIs but does not include an ITS. The
function of the registers is IMPLEMENTATION DEFINED in implementations that do include an ITS:

. GICR_SETLPIR
. GICR_CLRLPIR.
. GICR_INVLPIR.
. GICR_INVALLR.
. GICR_SYNCR.

These registers control physical LPIs in a system that does not include an ITS.

In an implementation that includes LPIs, at least 8192 LPIs are supported. For this reason, the configuration of each
interrupt, and the pending information for each interrupt, is held in tables in memory, rather than in registers, and
the tables are pointed to by registers held in the Redistributors.

Note

. ARM expects that an implementation will cache parts of the tables in the Redistributors to reduce latency and
memory traffic. The form of these caches is IMPLEMENTATION DEFINED.

. The address for the LPI tables are in the Non-secure physical address space.

Figure 6-1 on page 6-91 shows the generation of LPIs in an implementation that includes at least one ITS.

6-90

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS

6.1LPIs

Message-based interrupts

oo

ITs

GITS_TRANSLATER

LPIs

Distributor
PE PE PE PE PE
x.y.0.0 x.y.0.1 x.y.0.2 x.y.n.0 x.y.n.1
Cluster CO Cluster Cn

. Redistributor

D CPU interface

a. There might be zero, one, or more than one ITS in a GIC, up to a maximum of 16.

Note

In Figure 6-1, the ITS channel to the Redistributors is IMPLEMENTATION DEFINED.

Figure 6-1 Triggering LPIs in an implementation with an ITS

Figure 6-2 on page 6-92 shows the generation of LPIs in an implementation without an ITS.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.

Non-Confidential - Beta

6-91

6 Locality-specific Peripheral Interrupts and the ITS

6.1LPIs
Message-based interrupts
Distributor
LPIs
PE PE PE PE PE
x.y.0.0 x.y.0.1 x.y.0.2 x.y.n.0 x.y.n.1
Cluster CO Cluster Cn
- Redistributor I:l CPU interface
a. There might be zero, one, or more than one ITS in a GIC.
Figure 6-2 Triggering LPIs in an implementation without an ITS
When GICD_CTLR.DS == 0:
. LPIs are only supported when affinity routing is enabled for Non-secure state.
. LPIs are always Non-secure Group 1 interrupts.
When GICD_CTLR.DS == 1:
. LPIs are only supported when affinity routing is enabled.
. LPIs are always Group 1 interrupts.
There is a single global physical LPI space so that LPIs can be moved between all Redistributors. Software programs
the size of the single global physical LPI space using GICR_PROPBASER.IDbits.
Note

The size of the physical LPI space is limited to the maximum size that an implementation supports, which is defined
in GICD_TYPER.IDbits.
For a given Redistributor, LPI configuration and state are maintained in two tables in memory, described in the
following sections:
. LPI Configuration tables on page 6-93.
. LPI Pending tables on page 6-95.

6-92 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.1 LPIs

If a Redistributor supports physical LPIs, it has:

. LPI priority and enable bits programmed in the single LPI Configuration table. The address of the LPI
Configuration table is defined by GICR_PROPBASER. If GICR_PROPBASER is updated when
GICR_CTLR.EnableLPIs == 1, the effects are UNPREDICTABLE. See LPI Configuration tables for more
information.

. Memory-backed storage for LPI pending bits in an LPI Pending table. This table is specific to a particular
Redistributor. The address of the LPI Pending table is defined by GICR_PENDBASER. If
GICR_PENDBASER is updated when GICR_CTLR.EnableLPIs == 1, the effects are UNPREDICTABLE.

GICR_PROPBASER.IDBIits sets the size of the ID space, and thereby the number of entries in the LPI
Configuration table and the corresponding LPI Pending table.

Physical LPIs are enabled by a write to GICR_CTLR.EnableLPIs.

Note

When LPIs are disabled at the Redistributor interface, that is when GICR_CTLR.EnableLPIs == 0, LPIs cannot
become pending. An attempt to make an LPI pending in this situation has no effect, and the LPI is lost. This differs
from disabling SGIs, PPIs, and SPIs, which prevents only the signaling of the interrupt to the CPU interface.

GICv4 introduces equivalent tables for handling virtual LPIs, GICR_VPROPBASER and GICR_VPENDBASER.

In GICv4, virtual LPIs are enabled by a write to GICR_VPENDBASER.Valid.

6.1.1 LPI INTIDs

In both GICv3 and GICv4 software must obey the following rules when mapping physical LPIs.

The behavior of the GIC is UNPREDICTABLE if software:

. Maps multiple EventID/DevicelD combinations to the same physical LPI INTID.

. Assigns doorbell interrupts with the same physical LPI INTID to different physical PEs. This applies to
GICv4 only.

. Maps an EventID/DevicelD combination and a doorbell interrupt to the same physical LPI INTID, unless
they target the same physical PE, other than during transition. This applies to GICv4 only.

6.1.2 LPI Configuration tables

LPI configuration is global. Whether there are multiple copies of an LPI Configuration table that is pointed at by
different Redistributors is IMPLEMENTATION DEFINED.

It is IMPLEMENTATION DEFINED whether GICR_PROPBASER can be set to different values on different
Redistributors. GICR_TYPER.CommonLPIAffindicates which Redistributors must have GICR_PROPBASER set
to the same value whenever GICR_CTLR.EnableLPIs == 1.

An implementation can treat all copies of GICR_PROPBASER that are required to have the same value as accessing
common state.

Setting different values in different copies of GICR_PROPBASER on Redistributors that are required to use a
common LPI Configuration table when GICR_CTLR.EnableLPIs == 1 leads to UNPREDICTABLE behavior.

If GICR_PROPBASER is programmed to different values on different Redistributors, it is IMPLEMENTATION
DEFINED which copy or copies of GICR PROPBASER are used when the GIC reads the LPI Configuration tables.
However, the copy or copies that are used must correspond to a Redistributor on which GICR_CTLR.EnableLPIs

To avoid UNPREDICTABLE behavior, software must ensure that all copies of the LPI Configuration tables are
identical, and all changes are globally observable, whenever:

. GICR_CTLR.EnableLPlIs is written from 0 to 1 on any Redistributor.

. GICR_INVLPIR and GICR_INVALLR are written on any Redistributor with GICR_CTLR.EnableLPIs ==
1, if direct LPIs are supported.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-93
Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.1LPIs
. The INV and INVALL command is executed by an ITS, in an implementation that includes at least one ITS.
An LPI Configuration table in memory stores entries containing configuration information for each LPI, where:
. GICR _PROPBASER specifies a 4KB aligned physical address. This is the LPI Configuration table base
address.
. For any LPI N, the location of the table entry is defined by (base address + (N — 8192)).
To change the configuration of an interrupt, software writes to the LPI Configuration tables and then issues the INV
or INVALL command. In implementations that do not include an ITS, software writes to GICR_INVALLR or
GICR_INVLPIR.
The LPI Configuration table contains an 8-bit entry for each LPI. Figure 6-3 shows the LPI Configuration table
entry format.
7 210
Priority
RES1-
Enable
Figure 6-3 LPI Configuration table entry
Table 6-1 shows the LPI Configuration table entry bit assignments.
Table 6-1 LPI Configuration table entry bit assignments
Bits Name Function
[7:2] Priority The priority of the LPI. These are the most significant bits of the LPI priority. Bits[1:0] of
the priority are 0.
When GICD CTLR.DS == 0, this value is shifted in accordance with the security and
priority rules specified in Software accesses of interrupt priority on page 4-70. This means
that LPI priorities are always in the lower half of the priority range. The priority value range
is 128-254.
In implementations that support a single Security state, the value in this field is not shifted.
This means that LPI priorities use the full LPI priority value range of 0-252, in increments
of 4.
See Interrupt prioritization on page 4-63 for more information about interrupt priorities.
[1] - RESI.
[0] Enable LPI enable. This bit controls whether the LPI is enabled:
0 The LPI is not enabled.
1 The LPI is enabled.
Caching
A Redistributor can cache the information from the LPI Configuration tables pointed to by GICR_ PROPBASER,
when GICR_CTLR.EnableLPI == 1, subject to all of the following rules:
. Whether or not one or more caches are present is IMPLEMENTATION DEFINED. Where at least one cache is
present, the structure and size is IMPLEMENTATION DEFINED.
. An LPI Configuration table entry might be allocated into the cache at any time.
. A cached LPI Configuration table entry is not guaranteed to remain in the cache.
. A cached LPI Configuration table entry is not guaranteed to remain incoherent with memory.
. A change to the LPI configuration is not guaranteed to be visible until an appropriate invalidation operation
has completed:
— If one or more ITS are implemented, invalidation is performed using the INV or INVALL command.
6-94 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.1 LPIs

— Ifnot ITS is implemented, invalidation is performed by writing to GICR_INVALLR or
GICR_INVLPIR.

6.1.3 LPI Pending tables

Software configures the LPI Pending tables, using the implemented range of valid LPI INTIDs, by writing to
GICR _PENDBASER. This register provides the base address of the LPI Pending table for physical LPIs.

Each Redistributor maintains entries in a separate LPI Pending table that indicates the pending state of each LPI
when GICR_CTLR.EnableLPIs == 1 in the Redistributor:

0 The LPI is not pending.
1 The LPI is pending.
For a given LPI:

. The corresponding byte in the LPI Pending table is (base address + (N / 8)).
. The bit position in the byte is (N MOD 8).

The first 1KB of the LPI Pending table is IMPLEMENTATION DEFINED.
During normal operation, the LPI Pending table is maintained solely by the Redistributor.

The memory for the LPI Pending tables must be zeroed, and visible to the Redistributors, before configuring the
base address in one of the GICR_ PENDBASER and, in GICv4, GICR_VPENDBASER, registers, or else the effect
iS UNPREDICTABLE.

An LPI Pending table that contains only zeros, including in the first 1KB, indicates that there are no pending LPIs.

For physical LPIs, when GICR_CTLR.EnableLPIs is changed to 1, the Redistributor must read the pending status
of the physical LPIs from the physical LPI Pending table.

Note

If GICR_PENDBASER.PTZ == 1, software guarantees that the LPI Pending table contains only zeros, including in
the first 1KB. In this case hardware might not read the entire table.

For virtual LPIs, when GICR_CTLR.EnableLPIs ==1, and GICR_ VPENDBASER.Valid is changed to 1, the
Redistributor must read the pending status of the virtual LPIs from the virtual LPI Pending table.

Note

IF GICR_VPENDBASER.IDAI == 1, the software guarantees that the LPI Pending table was written out by the
same GIC implementation, meaning that hardware can rely on the first 1 KB of the table and might not read the entire
table.

6.1.4 Virtual LPI Configuration tables and virtual Pending tables

GICv4 uses the same concept of memory tables to hold the configuration and pending information for virtual LPIs.
The format of these tables is the same as for physical LPIs, but the virtual LPI Configuration table is provided by
GICR_VPROPBASER and the virtual LPI Pending table is provided by GICR_ VPENDBASER, see Virtual LPI

support on page 5-84.

Virtual LPI Pending tables can be moved between implementations by setting GICR_ VPENDBASER.IDAI to 1 on
a new implementation.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-95
ID060315 Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.2 The ITS
6.2 The ITS
The ITS translates an input EventID from a device, identified by its DevicelD, and determines:
1. The corresponding INTID for this input.
2. The target Redistributor and, through this, the target PE for that INTID.
For GICv3, the ITS performs this function for events that are translated into physical LPIs. LPIs can be forwarded
to a Redistributor either by an ITS or by a direct write to GICR_SETLPIR. An implementation must support only
one of these methods.
For GICv4, the ITS also performs this function for interrupts that are directly injected as virtual LPIs.
The flow of the ITS translation is as follows:
1. The DevicelD selects a Device table entry (DTE) in the Device table that describes which Interrupt
Translation Table (ITT) to use.
2. The EventID selects an Interrupt Translation Entry (ITE) in the ITT that describes:
. For physical interrupts:
— The output physical INTID.
— The Interrupt Collection Number, ICID.
. For virtual interrupts, in GICv4:
— The output virtual INTID.
— The vPEID.
— A doorbell to use if the VPE is not scheduled.
3. For physical interrupts, the ICID selects a Collection table entry in the Collection Table (CT) that describes
the target Redistributor, and therefore the target PE, to which the interrupt is routed.
4. For virtual interrupts, in GICv4, the vPEID selects a vPE table entry that describes the Redistributor that is
currently hosting the target vPE to which the interrupt is routed.
The tables used in the translation process are described in more detail in the following sections:
. The Device table on page 6-98.
. The Interrupt Translation Table on page 6-98.
. The Collection table on page 6-99.
. The vPE table on page 6-100.
Figure 6-4 on page 6-97 shows how these tables are used in the translation process.
6-96 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

Interrupt
Source

6 Locality-specific Peripheral Interrupts and the ITS
6.2 The ITS

Device
Table
Wl
oY
N
Redistributor A ‘I
VvPE Table | |
(GICv4 only) [Virtual
| Pending Table I
O
% 2 /
/O v q? Q o
Q
\ &
Interrupt A
Translation
Table
<,
C N
%, 2 —
00/7 Redistributor B ‘I
0. {
\ Collection |k] |
Table | P Pending Table |
INTID (direct LPI support) »
p (pport} 3

Figure 6-4 ITS tables

These tables are created and maintained using the ITS commands described in /7S commands on page 6-103. The
layout of the tables and the format of the table entries are IMPLEMENTATION DEFINED. Therefore, direct access is not
supported, and the tables must be configured using the ITS commands. The memory for the ITS tables must be
zeroed, and visible to the ITS, before configuring the base address in one of GITS BASER<n>.

Note
AILITS tables are in the Non-secure physical address space.

Many of the tables held in memory can be configured to be either flat tables or to have a two level structure. For
tables with a two level structure, the format of the first level is defined by the architecture, see GITS BASER<n>,
and the format of the second level is IMPLEMENTATION DEFINED.

The location and size of the different tables are described by GITS BASER<n>, which is a group of eight 64-bit
registers that provide details about the ITS data structure.

An ITS has no effect on SGIs, SPIs, or PPIs.

6.2.1 Interrupt Collections

In GICv3, the ITS considers all physical LPIs to be members of collections. The data associated with a collection
is either held in the ITS or in external memory:

. The number of collections supported by an ITS, where the data associated with a collection is held in the ITS,
is discoverable from GITS TYPER.HCC.

. When the ITS supports holding this data in external memory, the number of collections supported in memory
can be calculated using the following formula:
(number of pages * page size) / entry size.

The relevant values for this formula are indicated in GITS BASER<n>.Size, GITS BASER<n>.PageSize,
and GITS BASER<n>.EntrySize.

The architecture supports a maximum of 216 collections, but an implementation can limit this further, see
IMPLEMENTATION DEFINED sizes in ITS command parameters on page 6-105.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-97
Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.2 The ITS

6.2.2

6.2.3

When GITS_TYPER.HCC!=0:
. Collections with identifiers in the range {0... GITS TYPER.HCC-1} are held in the ITS.

. Collections with identifiers in the range greater than that indicated in GITS TYPER.HCC are held in external
memory, if this is supported.

When GITS TYPER.HCC == 0:

. The ITS must support collections in external memory, and all collections are held in external memory, but
might be cached by an implementation.

The Device table

The Device table provides a table of Device table entries (DTEs). Each DTE describes a mapping between a
DevicelD and an Interrupt Translation Table (ITT) base address that points to the memory that the ITS can use to
store the translations for the EventID. The ITS issues the ITT to store the translations for every EventID for the
specified DevicelD. The DevicelD is a unique identifier assigned to each device that can create a range of EventIDs.
For example, ARM expects that the 16-bit Requester ID from a PCle Root Complex is presented to an ITS as a
DevicelD.

The 32-bit DevicelD provides the index value for the table.

Table 6-2 shows an example of the number of bits that might be assigned to each DTE.

Table 6-2 DTE entries

Number of bits Assignment Notes

1 Valid Boolean

40 ITT Address Base physical address

5 ITT Range Log2 (number of EventIDs supported by the ITT minus one)

The Interrupt Translation Table

An Interrupt Translation Table (ITT) is specific to each device that can create numbered events. Each entry in an
ITT is referred to as an Interrupt Translation Entries (ITEs).

In GICv3, ITEs are only defined for physical interrupts

In GICv4, ITEs are defined for physical interrupts and for virtual interrupts, and provide a distinction between:
. An entry for a physical LPI and the use of an ICT for routing information.
. An entry for a virtual LPI and the use of a vPE table.

An ITT must be assigned a contiguous physical address space that has been zeroed, starting at ITT Address. The
size is 2 (DTE.ITT Range + 1)* GITS TYPER.ITT Size.

For a one-level table, the allocated memory must be zeroed before mapping the device. For a two-level table, the
level-one tables must be allocated and initialized, and the level-two tables must be allocated and zeroed, see
GITS_BASER<n>.

ARM expects that devices are mapped to ITTs in such a way that each interrupt request from a particular device
maps to a unique ITE. In addition, software must ensure that either:

. Each device maps to a dedicated section of memory. This means that no more than one device can be mapped
to a particular section in memory.

. When multiple devices share a section of memory, each ITE within that section is associated with one device
only, and all ITS commands that affect an ITE are performed using the associated device.

Note

. For simplification, ARM recommends that each device is mapped to a dedicated section in memory.

6-98

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.2 The ITS

. ITS accesses to an ITT use the same shareability and cacheability attributes as specified for the Device table.

For physical interrupts, each ITE describes the mapping between the input EventID and:
. The output physical INTID (pINTID) that is sent to the target PE.

. The ICID that identifies an entry in the Collection table, that determines the target PE for the LPI. For more
information about the Collection table, see The Collection table.

For virtual interrupts, each ITE describes the mapping of the EventID as outlined in the preceding list, and:
. The output virtual INTID (VINTID) that is sent to the target vPE.

. The virtual PE number (VPEID) that identifies an entry in the vPE table to determine the current host
Redistributor. For more information about the vPE table, see The vPE table on page 6-100.
. A physical LPI that is sent to a physical PE if a virtual interrupt is translated when the target vPE is not

currently scheduled on a physical PE.
The EventID provides the index value for the table.

Table 6-3 shows an example of the number of bits that might be stored in an ITE.

Table 6-3 ITE entries

Number of bits Assignment Notes

1 Valid Boolean

1 Interrupt_Type Boolean, indicates whether the interrupt is physical or virtual

Size of the LPI Interrupt Number pINTID or vINTID depending on the interrupt type

number space?

Size of the LPI Interrupt Number In GICv4 pINTID is used as a doorbell. In GICv3, and in

number space? HypervisorID GICv4 when a doorbell is not required, the programmed value
is 1023.

16 ICID Interrupt Collection ID, for physical interrupts only.

16 vPEID vPE ID, for virtual interrupt only

a. For information about the size of the LPI number space, see /NT/Ds on page 3-39

6.2.4 The Collection table

The Collection table (CT) provides a table of Collection table entries (CTEs). For physical LPIs only, each CTE
describes a mapping between:

. The ICID generated by the ITT.
. The address of the target Redistributor in the format defined by GITS TYPER.PTA.

There is a single CT for each ITS, which can be held in registers or in memory, or in a combination of the two. See
GITS BASER<n>.Type and GITS TYPER.HCC for more information.

The TablelD provides the index value for the table. It is derived from ICID.

Table 6-4 shows an example of the number of bits that might be assigned to each CT.

Table 6-4 CT entries

Number of bits Assignment Notes
1 Valid Boolean
32 RDbase The GIC supports two formats for RDbase, see RDbase
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-99

ID060315 Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.2 The ITS

6.2.5

6.2.6

The vPE table

The vPE table consists of VPE table entries that provide a mapping from the vPEID generated by the ITS to:
. The target Redistributor, in the format defined by GITS TYPER.PTA.
. The base address of the virtual LPI Pending table associated with the target vPE.
An area of memory defined by GITS BASER<n> holds the VPE table and indicates the size of each entry in the
table.
The vPE table describes all the vPEs associated with an ITS. Table 6-5 shows an example of the number of bits that
an implementation might store in a vPE table.
The 16-bit vPEID provides the index value for the table.
Table 6-5 vPE table entries
N_umberof Assignment Notes
bits
1 Valid Boolean
32 RDbase The GIC supports two formats for RDbase, the RDbase.
32 VPT addr VPT addr locates the LPI Pending table when the VM is not
resident in the Redistributor. It is used as the address in
GICR_VPENDBASER when the vPE is scheduled in the
GICR_* registers associated with RDbase.
5 Size The size of the VINTID range supported (minus one).

Control and configuration of the ITS

An ITS is controlled and configured using a memory-mapped interface where:
. The version can be read from GITS IIDR and from GITS PIDR2.

. GITS_TYPER specifies the features that are supported by an ITS.

. GITS_CTLR controls the operation of an ITS.

. GITS_TRANSLATER receives EventID information. It is IMPLEMENTATION DEFINED how the DevicelD is
supplied. See /TS commands on page 6-103 for more details.

. GITS_BASER<n> registers provide information about the type, size and access attributes for the architected
ITS memory structures.

. GITS_CBASER, GITS _CREADR, and GITS CWRITER store address information for the ITS command
queue interface.

There is an enable bit for each ITS, GITS CTLR.Enabled. ARM recommends that the GIC is pre-configured with
the ITS disabled.

The format of the private ITS tables is IMPLEMENTATION DEFINED. For single level tables, that is where
GITS_BASER<n>.Indirect == 0, behavior is UNPREDICTABLE if memory that is used for the ITS tables does not
contain zeros when it is allocated for use by the ITS. For two -level tables, that is where GITS BASER<n>.Indirect
== 1, behavior is UNPREDICTABLE if memory that is used for the second-level tables does not contain zeros when it
is allocated for use by the ITS.

Note

As part of restoring the ITS following powerdown, memory that has been written by the ITS and that is pointed to
by GITS BASER<n> is allowed to contain nonzero values. The details of power management of the ITS are
IMPLEMENTATION DEFINED, see /7S power management on page 6-140.

6-100

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.2 The ITS

6.2.7 The ITS command interface

Figure 6-5 shows how the ITS provides the base address and the size that are used by the command queue.

ITS

GITS_BASER
Base address and size of
command queue

A

GITS_CREADR
Command 1 < Next command to be
processed by the ITS
Command 2
Command 3

GITS_CWRITER
Next empty location

Figure 6-5 The ITS command queue
GITS _CBASER, GITS CREADR, and GITS CWRITER define the ITS command queue.

. GITS_CBASER uses the following fields:
— Valid. This field indicates the allocation of memory for the command queue.
— Cacheability. This field indicates the cacheability attributes of accesses to the command queue.
— Shareability. This field indicates the shareability attributes of accesses to the command queue.

— Physical address. This field provides the base physical address of the memory containing the
command queue.

— Size. This field indicates the number of 4KB pages of physical memory for the command queue.
. GITS_CREADR specifies the base address offset from which an ITS reads the next command to execute.

. GITS_CWRITER specifies the base address offset of the next free entry to which software writes the next
command.

The size of an ITS command queue entry is 32 bytes. This means that there is support for 128 entries in each 4KB
page.

In the command queue:

. The base address is always aligned to 64KB.

. Size is expressed as a multiple of 4KB.

. The address at which the queue wraps is always aligned to 4KB, and is (base address + (Size * 4KB)).

Note

All addresses are Non-secure physical addresses.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-101
Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.2 The ITS

6.2.8

When the first command is complete, the ITS starts to process the next command. The read pointer,
GITS_CREADR, advances as the ITS processes commands. If GITS CREADR reaches the top of the memory
specified in GITS CBASER then the pointer wraps back to the base address specified in GITS CBASER.
GITS_CWRITER is controlled by software.

The command queue is empty when GITS CWRITER and GITS CREADR specify the same base address offset
value.

The command queue is full when GITS CWRITER points to an address 32 bytes behind GITS CREADR in the
buffer.

The INT ITS command generates an interrupt on execution, and this can generate an interrupt on completion of a
particular sequence of commands, see /7S commands on page 6-103.

Ordering of translations with the output to ITS commands

Each command queue entry appears to be executed atomically so that a translation request either sees the state of
the ITS before a command or the state of the ITS after the command.

A translation request initiated after a SYNC or VSYNC command has completed is translated using an ITS state
that is consistent with the state after the command is performed.

In the absence of a SYNC or VSYNCcommand the ordering of ITS commands and translation requests is not
defined by the architecture.

6-102

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6.3 ITS commands

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

Table 6-6 provides a summary of all ITS commands.

Table 6-6 ITS commands

Command Command arguments

Description

CLEAR

DeviceID, EventID

Translates the event defined by EventID and DevicelID into an ICID and
pINTID, and instruct the appropriate Redistributor to remove the pending
state.

DISCARD

INT

INV

DeviceID, EventID

DeviceID, EventID

DeviceID, EventID

Translates the event defined by EventID and DevicelID and instructs the
appropriate Redistributor to remove the pending state of the interrupt. It
also ensures that any caching in the Redistributors associated with a
specific EventID is consistent with the configuration held in memory.

Translates the event defined by EventID and DevicelD into an ICID and
pINTID, and instruct the appropriate Redistributor to set the interrupt
pending.

Specifies that the ITS must ensure that any caching in the Redistributors
associated with the specified EventID is consistent with the
configuration tables held in memory.

INVALL

ICID

Specifies that the ITS must ensure any caching associated with the
interrupt collection defined by ICID is consistent with the configuration
tables held in memory for all Redistributors.

MAPC

ICID, RDbase

Maps the Collection table entry defined by ICID to the target
Redistributor, defined by RDbase.

MAPD

DeviceID, ITT_addr, Size

Maps the Device table entry associated with DeviceID to its associated
ITT, defined by ITT_addr and Size.

MAPI

MAPTI2

MOVALL

MOVI

DeviceID, EventID, ICID

DeviceID, EventID, pINTID, ICID

RDbasel, RDbase2

DeviceID, EventID, ICID

Maps the event defined by EventID and DevicelD into an ITT entry with
ICID and pINTID = EventID.
Note
. pINTID >0x2000 for a valid LPI INTID.
. This is equivalent to MAPTI DeviceID, EventID, EventID, ICID

Maps the event defined by EventID and DevicelD to its associated ITE,
defined by ICID and pINTID in the ITT associated with DeviceID.

Note
pINTID >0x2000 for a valid LPI INTID.

Instructs the Redistributor specified by RDbasel to move all of its
interrupts to the Redistributor specified RDbase2.

Updates the ICID field in the ITT entry for the event defined by DeviceID
and EventID. It also translates the event defined by EventID and DeviceID
into an ICID and pINTID, and instructs the appropriate Redistributor to
move the pending state, if it is set, of the interrupt to the Redistributor
defined by the new ICID, and to update the ITE associated with the event
to use the new ICID.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.

6-103

Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

Table 6-6 ITS commands (continued)

Command Command arguments Description

SYNC RDbase Ensures all outstanding ITS operations associated with physical
interrupts for the Redistributor specified by RDbase are globally observed
before any further ITS commands are executed. Following the execution
of'a SYNC the effects of all previous commands must apply to
subsequent writes to GITS TRANSLATER. See Ordering of
translations with the output to ITS commands on page 6-102 for more

information.
VINVALLD vPEID Ensures any cached Redistributor information associated with vPEID is
consistent with the associated LPI Configuration tables held in memory.
VMAPIP DeviceID, EventID, Dbell_pINTID, Maps the event defined by DeviceID and EventID into an ITT entry with
VPEID VPEID, VINTID=EventID, and Dbe11_PINTID, a doorbell provision.
Note

. vINTID >0x2000 for a valid LPI INTID.

. This is equivalent to VMAPTI DeviceID, EventID,EventID, pINTID,
VPEID

. Dbe11_pINTID must be either 1023 or Dbel1_pINTID >0x2000 for a
valid LPI INTID.

VMAPPb VPEID, RDbase, VPT_addr, VPT_size Maps the vPE table entry defined by vPEID to the target RDbase, including
an associated virtual LPI Pending table (VPT_addr, VPT_size).

VMAPTIbe DeviceID, EventID, vINTID, Maps the event defined by DeviceID and EventID into an ITT entry with
Dbel1_pINTID, VvPEID VPEID and vINTID, and Dbe11_pINTID, a doorbell provision.
Note

. VINTID >0x2000 for a valid LPI INTID.

. Dbe11_pINTID must be either 1023 or Dbe11_pINTID >0x2000 for a
valid LPI INTID.

VMOVIb DeviceID, EventID, vPEID Updates the vPEID field in the ITT entry for the event defined by DeviceID
and EventID.Translate the event defined by EventID and DeviceID into a
VPEID and pINTID, and instruct the appropriate Redistributor to move the
pending state, if it is set, of the interrupt to the Redistributor defined by
the new vPEID, and update the ITE associated with the event to use the

new VPEID.
VMOVP?b VPEID, RDbase, SequenceNumber, Updates the vPE table entry defined by vPEID to the target Redistributor
ITSList specified by RDbase. Software must use SequenceNumber and ITSList to
synchronize the execution of VMOVP commands across more than one
ITS.
VSYNCP vPEID Ensures all outstanding ITS operations for the vPEID specified are

globally observed before any further ITS commands are executed.
Following the execution of a VSYNC the effects of all previous
commands must apply to subsequent writes to GITS TRANSLATER.

a. This command was previously called MAPVI.
b. This command exists in GICv4 only.
c. This command was previously called VMAPVL.

The number of bits of EventID and DeviceID that an implementation supports are discoverable from GITS TYPER.
Unimplemented bits are RESO.

6-104 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

Note
. The INTID of an LPI is in the range of 8192 - maximum number. The maximum number is IMPLEMENTATION
DEFINED. See INTIDs on page 3-39.
. The following argument names have been changed from those used in preliminary information associated

with this GIC specification:

Device has been changed to DevicelD.

ID has been changed to EventID.

pID has been changed to pINTID.

vID has been changed to vINTID.

pCID has been changed to ICID.

target address has been changed to RDbase.
VCPU has been changed to vPE.

. The format of the collection target address, RDbase, is indicated by GITS TYPER.PTA.

6.3.1 IMPLEMENTATION DEFINED sizes in ITS command parameters

Some ITS commands include the following types of parameter that have an IMPLEMENTATION DEFINED size:

DevicelDs

EventID

ICID

pINTID

RDbase

vINTID

vPEID

The maximum number of Device identifiers supported by the associated Device table is determined
by the number of bits available, as specified by GITS TYPER.Devbits.

EventID is limited by the maximum MAPD Size field, which is limited by GITS TYPER.IDbits.

The number of collections supported is IMPLEMENTATION DEFINED:

. For implementations that do not support collection tables in external memory,
GITS TYPER.HCC indicates the number of collections.
. For implementations that do support collection tables in external memory, the number of

supported collections is limited by the size of the allocated collection table:
— The total number of collections supported is calculated as follows:
GITS TYPER.HCC + (Size of collection table / Entry size)

When GITS TYPER.CIL == 1, the maximum number of collections is limited by
GITS_TYPER.CIDbits.

pINTID is limited by GICR_ PROPBASER.IDbits, which is limited by GICD TYPER.IDbits. This
also applies to Dbe11_pINTID.

RDbase is associated with a Redistributor and is specified in one of two formats:
. The base physical address of the appropriate Redistributor when GITS TYPER.PTA == 1.
Note

Addresses can be up to 48 bits in size and must be 64KB aligned. The RDbase field consists
of bits[47:16] of the address.

. A PE number, as indicated in GICR_TYPER.Processor Number when GITS TYPER.PTA

VINTID can be limited by GICR_VPROPBASER.IDbits, which is limited by
GICD_TYPER.IDbits.

vPEID is limited by the size of the VPE table.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-105
Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.3 ITS commands

6.3.2

Command errors

If an ITS detects an error in the data provided to a command, it must do all of the following:
. Ignore the command, performing no actions that alter interrupt handling.

. Increment GITS CREADR, wrapping if necessary, to point to the next command.

. Generate an SError interrupt if GITS TYPER.SEIS is set to 1.

. Continue processing commands if the command queue is not empty.

See ITS command error encodings on page 6-137 for more information.

6.3.3
This command translates the event defined by EventID and DeviceID into an ICID and pINTID, and instructs the
appropriate Redistributor to remove the pending state.
Figure 6-6 shows the format of the CLEAR command.
63 32 31 87 0 DW
DevicelD RESO 0x04 0
RESO EventID 1
RESO 2
RESO 3
Figure 6-6 CLEAR command format
In Figure 6-6:
. EventID identifies the interrupt, associated with a device, for which the pending state is to be cleared.
. DeviceID specifies the requesting device.
. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.
The command and its arguments are:
CLEAR DeviceID, EventID
A command error occurs if any of the following apply:
. DeviceID exceeds the maximum value supported by the ITS.
. The device specified by DevicelD is not mapped to an Interrupt Translation Table, using MAPD.
. EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when the
MAPD command is issued.
. The EventID for the device is not mapped to a collection, using MAPI or MAPTI.
. The EventID for the device is mapped to a collection that has not been mapped to an RDbase using MAPC.
In this case, the ITS must take the actions described in Command errors.
The following pseudocode describes the operation of the CLEAR command:
// ITS.CLEAR
[/ ——
ITS.CLEAR(ITSCommand cmd)
if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_DEVICE_OOR”;
IncrementReadPointer();
return;
dte = ReadDeviceTable(UInt(cmd.DevicelD));
if !dte.Valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_UNMAPPED_DEVICE”;
IncrementReadPointer();
return;
6-106 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

if IdOutOfRange(cmd.EventID, dte.ITT_size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_ID_OOR”;
IncrementReadPointer();
return;

InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

if lite.vValid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_UNMAPPED_INTERRUPT”;
IncrementReadPointer();
return;

success = ClearPendingState(ite);

if !success then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError CLEAR_ITE_INVALID”;
IncrementReadPointer();
return;

IncrementReadPointer();
return;

6.3.4 DISCARD

This command translates the event defined by EventID and DeviceID and instructs the appropriate Redistributor to
remove the pending state of the interrupt. It also ensures that any caching in the Redistributors associated with a
specific EventID is consistent with the configuration held in memory.

Figure 6-7 shows the format of the DISCARD command.

63 32 31 8 7 0 DW
DevicelD RESO OXOF 0

RESO EventID 1

RESO 2

RESO 3

Figure 6-7 DISCARD command format

In Figure 6-7:

. EventID identifies the interrupt, associated with a device, that is to be discarded.

. DeviceID specifies the requesting device.

. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:
DISCARD DeviceID, EventID

A command error occurs if any of the following apply:
. DeviceID exceeds the maximum value supported by the ITS.
. The device specified by DevicelID is not mapped to an ITT, using MAPD.

. EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when the
MAPD command is issued.

. The EventID for the device is not mapped to a collection, using MAPI or MAPTI.
. The EventID for the device is mapped to a collection that has not been mapped to an RDbase using MAPC.

In this case, the ITS must take the actions described in Command errors on page 6-106.
The following pseudocode describes the operation of the DISCARD command:

// ITS.DISCARD

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-107
Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.3 ITS commands
ITS.DISCARD(ITSCommand cmd)
if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_DEVICE_OOR”;
IncrementReadPointer();
return;
DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DeviceID));
if ldte.valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_UNMAPPED_DEVICE";
IncrementReadPointer();
return;
if IdOutOfRange(cmd.EventID, dte.ITT_size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_ID_OOR”;
IncrementReadPointer();
return;
InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));
if ite.valid then
success = ClearPendingState(ite);
if Isuccess then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_ITE_INVALID”;
IncrementReadPointer();
return;
else
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError DISCARD_UNMAPPED_INTERRUPT”;
IncrementReadPointer();
return;
ite.Valid = FALSE;
WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);
IncrementReadPointer();
return;
6.3.5 INT
This command translates the event defined by EventID and DeviceID into an ICID and pINTID, and instructs the
appropriate Redistributor to set the interrupt pending.
Figure 6-8 shows the format of the INT command.
63 32 31 8 7 0 DW
DevicelD RESO 0x03 0
RESO EventID 1
RESO 2
RESO 3
Figure 6-8 INT command format
In Figure 6-8:
. EventID identifies an interrupt source associated with a device. The ITS then translates this into an LPI
INTID.
. DeviceID specifies the requesting device.
. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.
The command and its arguments are:
INT DeviceID, EventID
A command error occurs if any of the following apply:
. DeviceID exceeds the maximum value supported by the ITS.
6-108 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

. The device specified by DevicelID is not mapped to an ITT, using MAPD.

. EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when the
MAPD command is issued.

. EventID is not mapped to a collection, using MAPI or MAPTI.
. The EventID for the device is mapped to a collection that has not been mapped to an RDbase using MAPC.

In this case, the ITS must take the actions described in Command errors on page 6-106.
The following pseudocode describes the operation of the INT command:

// ITS.INT

ITS.INT(ITSCommand cmd)
if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INT_DEVICE_OOR”;
IncrementReadPointer();
return;

DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DevicelD));

if !dte.valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INT_UNMAPPED_DEVICE”;
IncrementReadPointer();
return;

if IdOutOfRange(cmd.EventID, dte.ITT_size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INT_ID_OOR”;
IncrementReadPointer();
return;

InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

if lite.Valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INT_UNMAPPED_INTERRUPT”;
IncrementReadPointer();
return;

boolean success = SetPendingState(ite);

if !success then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INT_ITE_INVALID”;
IncrementReadPointer();
return;

IncrementReadPointer();
return;

6.3.6 INV
This command specifies that the ITS must ensure that any caching in the Redistributors associated with the specified
EventID is consistent with the configuration tables held in memory.
Note
The INV command performs the same function regardless of whether the interrupt is mapped as a physical interrupt
or a virtual interrupt.
Figure 6-9 on page 6-110 shows the format of the INV command.
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-109

ID060315 Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.3 ITS commands

63 32 31 8 7 0 DW
DevicelD RESO 0x0C 0
RESO EventlD
RESO 2
RESO 3

Figure 6-9 INV command format

In Figure 6-9:

EventID identifies an interrupt source associated with a device. The ITS then translates this into an LPI
INTID.

DevicelID specifies the requesting device.
DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

INV DeviceID, EventID

A command error occurs if any of the following apply:

DeviceID exceeds the maximum value supported by the ITS.
The device specified by DevicelD is not mapped to an ITT, using MAPD.

EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when the
MAPD command is issued.

EventID is not mapped to a collection, using MAPI or MAPTI.

The EventID for the device corresponds to a physical LPI and is mapped to a collection that has not been
mapped to an RDbase using MAPC.

The EventID for the device corresponds to a virtual LPI associated with a vPE that has not been mapped to a
Redistributor using VMAPP.

In this case, the ITS must take the actions described in Command errors on page 6-106.

The following pseudocode describes the operation of the INV command:

// ITS.INV

//

ITS.INV(ITSCommand cmd)

if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INV_DEVICE_OOR”;
IncrementReadPointer();
return;

DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DevicelID));

if !dte.vValid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INV_UNMAPPED_DEVICE”;
IncrementReadPointer();
return;

if IdOutOfRange(cmd.EventID, dte.ITT_size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INV_ID_OOR”;
IncrementReadPointer();
return;

InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

if !ite.vValid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INV_UNMAPPED_INTERRUPT”;
IncrementReadPointer();

return;

invalidateByITE(ite);

6-110

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

IncrementReadPointer();
return;

6.3.7 INVALL

This command specifies that the ITS must ensure any caching associated with the interrupt collection defined by
ICID is consistent with the configuration tables held in memory for all Redistributors.

Figure 6-10 shows the format of the INVALL command.

63 16 15 8 7 0 Dw
RESO 0x0D 0
RESO 1
RESO ICID 2
RESO 3

Figure 6-10 INVALL command format

In Figure 6-10:
. ICID specifies the interrupt collection.
. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:
INVALL ICID

A command error occurs if any of the following apply:
. The collection specified by ICID exceeds the maximum number supported by the ITS.
. The collection specified by ICID has not been mapped to an RDbase using MAPC.

In this case, the ITS must take the actions described in Command errors on page 6-106.
The following pseudocode describes the operation of the INVALL command:

// ITS.INVALL

ITS.INVALL(ITSCommand cmd)
if (CollectionOutOfRange(cmd.ICID)) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INVALL_COLLECTION_OOR”;
IncrementReadPointer();
return;

CollectionTableEntry cte = ReadCollectionTable(UInt(cmd.ICID));

if Icte.Valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError INVALL_UNMAPPED_COLLECTION”;
IncrementReadPointer();
return;

// This invalidates any caches containing the configuration data for all interrupts in the
// collection. Over invalidation is permitted.
InvalidateCollectionCaches(UInt(cmd.ICID));

IncrementReadPointer();
return;

6.3.8 MAPC
This command maps the Collection table entry defined by ICID to the target Redistributor, defined by RDbase.
Figure 6-11 on page 6-112 shows the format of the MAPC command.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-111

ID060315 Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.3 ITS commands

63 62 4847 16 15 8 7 0 DwW
RESO 0x09

RESO
\Y RESO RDbase ICID
RESO

[OSH IS B o]

Figure 6-11 MAPC command format

In Figure 6-11:
. V specifies whether RDbase is valid for the collection.

. RDbase specifies the target Redistributor to which interrupts in the collection are forwarded. See
IMPLEMENTATION DEFINED sizes in ITS command parameters on page 6-105.

. ICID specifies the interrupt collection that is to be mapped.

. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

IfGITS TYPER.PTA ==1 and a physical address is specified, the target addresses must be 64KB aligned, meaning
that only bits[47:16] are required. See IMPLEMENTATION DEFINED sizes in ITS command parameters on

page 6-105 for more information. In addition, when V is cleared to 0, this field must be written as zero, but hardware
might ignore the value.

The command and its arguments are:
MAPC ICID, RDbase,V

When Vis 1:

. Behavior is UNPREDICTABLE if there are interrupts that are mapped to the specified collection and the
collection is currently mapped to a Redistributor, unless MAPC is followed by MOVALL to move the pending state
for the collection from the old target Redistributor to the new target Redistributor . MOVALL might be issued by
a different ITS.

. Behavior is UNPREDICTABLE if RDbase does not specifiy a valid Redistributor.

When Vis 0:

. MAPC removes the mapping of the specified interrupt collection. Interrupts for that are mapped to this
collection are silently discarded.

. Behavior is UNPREDICTABLE if there are interrupts that are mapped to the specified collection.

A command error occurs if the following applies:
. The collection specified by ICID exceeds the maximum number supported by the ITS.

In this case, the ITS must take the actions described in Command errors on page 6-106.

Note

When software uses a MAPC command to move a collection from targeting Redistributor A to targeting Redistributor
B, it must issue a SYNC command to Redistributor A before issuing the accompanying MOVALL command. Otherwise,
interrupts from the collection might still be taken by the PE associated with Redistributor A.

The following pseudocode describes the operation of the MAPC command:

// ITS.MAPC

ITS.MAPC(ITSCommand cmd)
if CollectionOutOfRange(cmd.ICID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPC_COLLECTION_OOR”;
IncrementReadPointer();
return;

CollectionTableEntry cte;

6-112

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6.3.9 MAPD

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

cte.Valid = cmd.V == ‘1’;
cte.RDbase = cmd.RDbase;

WriteCollectionTable(UInt(cmd.ICID), cte);

IncrementReadPointer();
return;

This command maps the Device table entry associated with DevicelID to its associated ITT, defined by ITT_addr and
Size.

Software might issue a MAPD command to remap a device that is already mapped, in which case an ITS must
invalidate all cached data for the device.

Figure 6-12 shows the format of the MAPD command.

6362 4847 32 31 87 54 0 DW
DevicelD RESO 0x08 0
RESO | Size| 1
Vv RESO ITT addr | RESO 2
RESO 3

Figure 6-12 MAPD command format

In Figure 6-12:
. DevicelID specifies the device that uses the ITT.

Note

For more information about mapping devices to ITTs, see The Interrupt Translation Table on page 6-98.

. V specifies whether the ITT_addr and Size fields are valid.
. ITT_addr specifies bits[47:8] of the physical address of the ITT.

. Size is a 5-bit number that specifies the supported number of bits for the device, minus one. The size field
enables range checking of EventID for translation requests for this DevicelD.

. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.
If DeviceID is mapped to an ITT that contains valid mappings, behavior is UNPREDICTABLE.

The command and its arguments are:

MAPD DevicelID, ITT_addr, Size,V

The format of the ITT entries is IMPLEMENTATION DEFINED. A typical example entry size of 8 bytes permits
allocation of identifiers to devices in multiples of 32 interrupts.

When Vis 1:

. MAPD associates a DeviceID with a 256 byte aligned address of an ITT.

When V is 0:

. ITT Address and Size are ignored. The successful execution of this command removes the mapping of a
DeviceID to an ITT address.

. MAPD removes the mapping of the specified DevicelID. and interrupt requests from that device are discarded. A
subsequent translation for the DeviceID does not generate and LPI or VLPI until DeviceID has been mapped
to the ITT again.

A command error occurs if any of the following apply:
. DeviceID exceeds the maximum number of devices supported by an ITS.
. Size exceeds the maximum value permitted by the settings of GITS TYPER.IDbits, when V is set to 1.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-113
Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.3 ITS commands
In this case, the ITS must take the actions described in Command errors on page 6-106.
Note
. Software might issue a MAPD command to re-map a device that has already been mapped and the ITS must
invalidate all cached data for that device.
. ITS accesses to an ITT use the same shareability and cacheability attributes that are specified for the Device
table, see The Device table on page 6-98.
The following pseudocode describes the operation of the MAPD command:
// ITS.MAPD
/] ========
ITS.MAPD(ITSCommand cmd)
if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPD_DEVICE_OOR”;
IncrementReadPointer();
return;
if SizeOutOfRange(cmd.Size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPD_ITTSIZE_OOR”;
IncrementReadPointer();
return;
// If a device is Re-mapped software must perform the following actions
// to ensure the LPI configuration is up to date:
// 1. Ensure that the device is quiescent and that all interrupts have
// been handled.
// 2. Remap the device with the new (empty) ITT
//
DeviceTableEntry dte;
dte.valid =cmd.V == ‘1";
dte.ITT_base = cmd.ITT_addr:’ 00000000 ;
dte.ITT_size = cmd.Size;
WriteDeviceTable(UInt(cmd.DeviceID), dte);
IncrementReadPointer();
return;
6.3.10 MAPI
This command maps the event defined by EventID and DeviceID into an ITT entry with ICID and pINTID = EventID.
Note
. pINTID >0x2000 for a valid LPI INTID.
. This is equivalent to MAPTI DeviceID, EventID, EventID, ICID
Figure 6-13 shows the format of the MAPI command.
63 32 31 1615 87 0 DW
DevicelD RESO 0x0B 0
RESO EventlD 1
RESO ICID 2
RESO 3
Figure 6-13 MAPI command format
6-114 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A

Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

In Figure 6-13 on page 6-114:

. EventID identifies the interrupt, associated with a device, that is to be mapped.
. DevicelD specifies the requesting device.
. ICID specifies the interrupt collection that includes the specified interrupt.

. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.
If there is an existing mapping for the EventID-DeviceID combination, behavior is UNPREDICTABLE.
The command and its arguments are:

MAPI DeviceID, EventID, ICID

A command error occurs if any of the following apply:
. DeviceID exceeds the maximum value supported by the ITS.

. The device specified by DeviceID is not mapped to an ITT, using MAPD.

. ICID exceeds the maximum number of interrupt collections supported by an ITS. For more information, see
The Collection table on page 6-99.
. The EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when

the MAPD command is issued.
. EventID does not specify a valid LPI identifier. See /NT/Ds on page 3-39.

In this case, the ITS must take the actions described in Command errors on page 6-106.
The following pseudocode describes the operation of the MAPI command:

// ITS.MAPI

ITS.MAPI(ITSCommand cmd)
if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPI_DEVICE_OOR”;
IncrementReadPointer();
return;

if CollectionOutOfRange(cmd.ICID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPI_COLLECTION_OOR”;
IncrementReadPointer();
return;

DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DevicelID));

if !dte.valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPI_UNMAPPED_DEVICE”;
IncrementReadPointer();
return;

if IdOutOfRange(cmd.EventID, dte.ITT_size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPI_ID_OOR”;
IncrementReadPointer();
return;

if LPIOutOfRange(cmd.EventID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPI_ID_OOR”;
IncrementReadPointer();
return;

InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

ite.Valid = TRUE;

ite.Type = physical_interrupt;

ite.OutputID = cmd.EventID;

ite.Doorbel1ID = ZeroExtend(INTID_SPURIOUS); // Don’t generate a doorbell
ite.ICID = cmd. ICID;

WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-115
ID060315 Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.3 ITS commands

6.3.11 MAPTI

IncrementReadPointer();
return;

This command maps the event defined by EventID and DevicelD to its associated ITE, defined by ICID and pINTID in
the ITT associated with DeviceID.

Figure 6-14 shows the format of the MAPTI command.

63 32 31 1615 87 0 DW
DevicelD RESO 0x0A 0

pINTID EventID 1

RESO ICID 2

RESO 3

Figure 6-14 MAPTI command format
In Figure 6-14:

. EventID identifies the interrupt, associated with a device, that is to be mapped.

. pINTID is the INTID of the physical interrupt that is presented to software.

. DeviceID specifies the requesting device.

. ICID specifies the interrupt collection that includes the specified physical interrupt.

. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

If there is an existing mapping for the EventID-DeviceID combination, behavior is UNPREDICTABLE.
The command and its arguments are:
MAPTI DeviceID, EventID, pINTID, ICID

A command error occurs if any of the following apply:

. DeviceID exceeds the maximum value supported by the ITS.

. The device specified by DevicelID is not mapped to an ITT using MAPD.

. The number of collections exceeds the maximum number of collections supported by the ITS. For more
information, see The Collection table on page 6-99.

. The EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when
the MAPD command is issued.

. pINTID does not specify a valid LPI INTID. For information about the LPI INTID range, see /NT/Ds on
page 3-39.

In this case, the ITS must take the actions described in Command errors on page 6-106.
The following pseudocode describes the operation of the MAPTI command:

// ITS.MAPTI

ITS.MAPTI(ITSCommand cmd)
if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPTI_DEVICE_OOR”;
IncrementReadPointer();
return;

if CollectionOutOfRange(cmd.ICID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPTI_COLLECTION_OOR™;
IncrementReadPointer();
return;

DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DeviceID));

6-116

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

if !dte.valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPTI_UNMAPPED_DEVICE”;
IncrementReadPointer();
return;

if IdOutOfRange(cmd.EventID, dte.ITT_size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPTI_ID_OOR”;
IncrementReadPointer();
return;

if LPIOutOfRange(cmd.pINTID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MAPTI_PHYSICALID_OOR”;
IncrementReadPointer();
return;

InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

ite.Valid = TRUE;

ite.Type = physical_interrupt;

ite.OutputID = cmd.pINTID;

ite.Doorbel1ID = ZeroExtend(INTID_SPURIOUS); // Don’t generate a doorbell
ite.ICID = cmd.ICID;

WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);

IncrementReadPointer();
return;

6.3.12 MOVALL

This command instructs the Redistributor specified by RDbasel to move all of its interrupts to the Redistributor
specified by RDbase2.

Note

Both the mapping of interrupts to collections and the mapping of collections to Redistributors are normally
unaffected by this command. Software must ensure that any interrupts that might be affected by this command target
the Redistributor specified by RDbase2, otherwise system behavior is UNPREDICTABLE. In particular, an
implementation might choose to remap all affected collections to RDbase2.

Figure 6-15 shows the format of the MOVALL command.

63 48 47 32 31 1615 87 0 DW
RESO OxO0E 0
RESO 1
RESO Rdbase 1 RESO 2
RESO Rdbase 2 RESO 3

Figure 6-15 MOVALL command format

In Figure 6-15:

. RDbasel specifies the Redistributor with which the interrupts are currently associated. See
IMPLEMENTATION DEFINED sizes in ITS command parameters on page 6-105.

. RDbase2 specifies the Redistributor to which the interrupts are to be moved. See IMPLEMENTATION
DEFINED sizes in ITS command parameters on page 6-105.

. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.
The command and its arguments are:
MOVALL RDbasel, RDbase2

Behavior is UNPREDICABLE if RDbasel and RDbase2 do not specify a valid Redistributor. The format of these fields is
specified by GITS TYPER.PTA.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-117
Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

6.3.13

MOVI

The following pseudocode describes the operation of the MOVALL command:

// ITS.MOVALL

ITS.MOVALL(ITSCommand cmd)
rdl = cmd.RDlbase;
rd2 = cmd.RD2base;

if rdl != rd2 then
MoveAlTPendingState(rdl, rd2);

IncrementReadPointer();
return;

This command updates the ICID field in the ITT entry for the event defined by DeviceID and EventID. It also translates
the event defined by EventID and DevicelD into an ICID and pINTID, and instructs the appropriate Redistributor to
move the pending state, if it is set, of the interrupt to the Redistributor defined by the new ICID, and to update the
ITE associated with the event to use the new ICID.

Figure 6-16 shows the format of the MOVI command.

63 32 31 1615 87 0 DW
DevicelD RESO 0x01

RESO EventID
RESO ICID
RESO

wlN]|—~|O

Figure 6-16 MOVI command format

In Figure 6-16:

. EventID identifies the interrupt, associated with a device, that is to be redirected.

. DeviceID specifies the requesting device.

. ICID specifies the new interrupt collection that is to include the specified physical interrupt.
. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:
MOVI DeviceID, EventID, ICID

A command error occurs if any of the following apply:

. DeviceID exceeds the maximum value supported by the ITS.

. The device specified by DevicelID is not mapped to an ITT, using MAPD.

. ICID exceeds the maximum number of interrupt collections supported by an ITS.
. ICID is not mapped to an RDbase using MAPC.

. EventID is not mapped to a collection, using MAPI or MAPTI.

. EventID corresponds to a virtual LPI.

In this case, the ITS must take the actions described in Command errors on page 6-106.

Note

If, after using MOVI to move an interrupt from collection A to collection B, software moves the same interrupt again
from collection B to collection C, a SYNC command must be used before the second MOVI for the Redistributor
associated with collection A to ensure correct behavior.

The following pseudocode describes the operation of the MOVI command:

// ITS.MOVI

6-118

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

ITS.MOVI(ITSCommand cmd)
if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_DEVICE_OOR”;
IncrementReadPointer();
return;

if CollectionOutOfRange(cmd.ICID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_COLLECTION_OOR”;
IncrementReadPointer();
return;

DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DevicelD));

if !dte.valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_UNMAPPED_DEVICE”;
IncrementReadPointer();
return;

if IdOutOfRange(cmd.EventID, dte.ITT_size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_ID_OOR”;
IncrementReadPointer();
return;

InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

if lite.Valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_UNMAPPED_INTERRUPT”;
IncrementReadPointer();
return;

if ite.Type == virtual_interrupt then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_ID_IS_VIRTUAL”;
IncrementReadPointer();
return;

CollectionTableEntry ctel = ReadCollectionTable(UInt(ite.ICID));

if !ctel.vValid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_UNMAPPED_COLLECTION”;
IncrementReadPointer();
return;

CollectionTableEntry cte2 = ReadCollectionTable(UInt(cmd.ICID));

if !cte2.Valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError MOVI_UNMAPPED_COLLECTION”;
IncrementReadPointer();
return;

bits(32) rdl = ctel.RDbase;
bits(32) rd2 = cte2.RDbase;

if rdl != rd2 then
// Move the move the pending state to rd2 if set taking care of any races where the
// interrupt has been forwarded to the processor
MovePendingState(rdl, rd2, ite.OutputID);

ite.ICID = cmd.ICID;

WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);

IncrementReadPointer();
return;

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-119
ID060315 Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.3 ITS commands

6.3.14 SYNC

This command ensures all outstanding ITS operations associated with physical interrupts for the Redistributor
specified by RDbase are globally observed before any further ITS commands are executed. Following the execution
of'a SYNC, the effects of all previous commands must apply to subsequent writes to GITS TRANSLATER.

Figure 6-17 shows the format of the SYNC command.

63 48 47 32 31 1615 87 0_DW
RESO 0x05 0
RESO 1
RESO RDbase RESO 2
RESO 3

Figure 6-17 SYNC command format

In Figure 6-17:

. RDbase specifies the physical address of the target Redistributor. The format of the target address is
determined by GITS TYPER.PTA. See IMPLEMENTATION DEFINED sizes in ITS command parameters
on page 6-105 for more information.

. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:
SYNC RDbase
The following pseudocode describes the operation of the SYNC command:

// ITS.SYNC

ITS.SYNC(ITSCommand cmd)
// Wait for external effects of any physical comamnds to be observable by all redistributors
// and ensure the internal effects of any previous commands affect any subsequent interrupt
// requests or commands
WaitForCompletion(cmd.RDbase);

IncrementReadPointer();

6.3.15 VINVALL

This command ensures that any cached Redistributor information associated with vPEID is consistent with the
associated LPI Configuration tables held in memory.

This command is provided only in GICv4.

Figure 6-18 shows the format of the VINVALL command.

63 48 47 32 31 87 0 DW
RESO 0x2D 0
RESO VvPEID RESO 1
RESO 2
RESO 3

Figure 6-18 VINVALL command format

In Figure 6-18:
. vPEID specifies the VPE.
. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

6-120

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6.3.16 VMAPI

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

VINVALL vPEID

A command error occurs if any of the following apply:
. VPEID exceeds the maximum number supported by the ITS, as defined by GITS BASER<n>.
. The PE specified by vPEID is not mapped to a Redistributor using VMAPP.

In this case, the ITS must take the actions described in Command errors on page 6-106.
The following pseudocode describes the operation of the VINVALL command:

// ITS.VINVALL

ITS.VINVALL(ITSCommand cmd)
if VCPUOutOfRange(cmd.VCPUID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VINVALL_VCPU_OOR”;
IncrementReadPointer();
return;

VCPUTableEntry vte = ReadVCPUTable(UInt(cmd.VCPUID));

if lvte.Valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VINVALL_VCPU_INVALID”;
IncrementReadPointer();
return;

InvalidateVCPUCaches (UInt(cmd.VCPUID));

IncrementReadPointer();
return;

This command maps the event defined by DeviceID and EventID into an ITT entry with vPEID, vINTID=EventID, and
Dbe11_PINTID, a doorbell provision.

Note
. VINTID >0x2000 for a valid LPI INTID.
. This is equivalent to VMAPTI DeviceID, EventID,EventID, pINTID, vPEID.
. Dbe11_pINTID must be either 1023 or Dbel1_pINTID >0x2000 for a valid LPI INTID.

This command is provided only in GICv4.

Figure 6-19 shows the format of the VMAPI command.

63 48 47 32 31 87 0 DW
DevicelD RESO 0x2B 0

RESO vPEID EventlD 1
Dbell_pINTID RESO 2

RESO 3

Figure 6-19 VMAPI command format

In Figure 6-19:

. EventID identifies the interrupt, associated with a device, that is to be presented to the VM.
. DeviceID specifies the requesting device.

. vPEID specifies the VPE.

. Dbe11_pINTID specifies the ID that is presented to the hypervisor if the VPE is not scheduled.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-121
Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

Note

If Dbe11_pINTID indicates a spurious interrupt, then no physical interrupt is generated.

. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.
If there is an existing mapping for the EventID-DeviceID combination, behavior is UNPREDICTABLE.
The command and its arguments are:

VMAPI DeviceID, EventID, Dbell_pINTID, vPEID

A command error occurs if any of the following apply:

. DeviceID exceeds the maximum value supported by the ITS.

. VPEID exceeds the maximum number supported by the ITS, as defined by GITS BASER<n>.
. The device specified by DeviceID is not mapped to an ITT, using MAPD.

. EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when the

MAPD command is issued.

. EventID does not specify a valid LPI INTID. For information about valid LPI INTIDs, see INTIDs on

page 3-39.

. Dbe11_pINTID does not specify a valid doorbell INTID, where a valid INTID is either:
— 1023.
— Within the supported range for LPIs.

In this case, the ITS must take the actions described in Command errors on page 6-106.
The following pseudocode describes the operation of the VMAPI command:

// ITS.VMAPI

ITS.VMAPI(ITSCommand cmd)
if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPI_DEVICE_OOR”;
IncrementReadPointer();
return;

if VCPUOutOfRange(cmd.VCPUID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPI_VCPU_OOR”;
IncrementReadPointer();
return;

DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DevicelD));

if !dte.vValid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPI_UNMAPPED_DEVICE”;
IncrementReadPointer();
return;

if IdOutOfRange(cmd.EventID, dte.ITT_size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPI_ID_OOR";
IncrementReadPointer();
return;

if LPIOutOfRange(cmd.EventID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPI_ID_OOR";
IncrementReadPointer();
return;

if LPIOutOfRange(cmd.Dbel1_pINTID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPI_PHYSICALID_OOR”;
IncrementReadPointer();
return;

InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta

ID060315

6.3.17 VMAPP

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

ite.Valid = TRUE;

ite.Type = virtual_interrupt;
ite.OutputID = cmd.EventID;
ite.Doorbel1ID = cmd.Dbel1_pINTID;
ite.VCPUID = cmd.VCPUID;

WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);

IncrementReadPointer();
return;

This command maps the VPE table entry defined by vPEID to the target RDbase, including an associated virtual LPI
Pending table (VPT_addr, VPT_size).

Figure 6-20 shows the format of the VMAPP command.

6362 4847 32 31 16 15 87 54 0 DW
RESO 0x29 0
RESO vPEID RESO 1
v RESO RDbase RESO 2
RESO VPT_addr RESO Pl 3

Figure 6-20 VMAPP command format

In Figure 6-20:
. vPEID specifies the VPE.
. V specifies whether the RDbase and VPT_addr are valid for the vPE.

. RDbase specifies the target Redistributor that owns the vPE and to which the ITS directs commands for that
PE. See IMPLEMENTATION DEFINED sizes in ITS command parameters on page 6-105.

. VPT_addr specifies bits [47:16] of the physical address of the virtual LPI Pending table for the vPE.
Note

The target addresses must be 64KB aligned, meaning that only bits[47:16] are required. Bits[15:0] of the
physical address are 0.

. VPT_size specifies the number of VINTID bits that the vPE supports, minus one.
. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

VMAPP VvPEID, RDbase, VPT_addr, VPT_size,V

When V is 0:

. VMAPP removes the mapping for the specified vPE. Interrupts that are mapped to this vPE are discarded.
When Vis 1:

. Behavior is UNPREDICTABLE if RDbase does not specifiy a valid Redistributor.

A command error occurs if any of the following apply:
. VPEID exceeds the maximum number supported by the ITS, as defined by GITS BASER<n>.
. Size exceeds the maximum value permitted by the settings of GITS TYPER.IDbits.

In this case, the ITS must take the actions described in Command errors on page 6-106.
The following pseudocode describes the operation of the VMAPP command:

// ITS.VMAPP

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-123
Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.3 ITS commands
ITS.VMAPP(ITSCommand cmd)
if VCPUOutOfRange(cmd.VCPUID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPP_VCPU_OOR”;
IncrementReadPointer();
return;
if SizeOutOfRange(cmd.VPT_size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPP_VPTSIZE_OOR”;
IncrementReadPointer();
return;
VCPUTableEntry vte;
vte.Valid =cand.V == ‘1’;
vte.RDbase = cmd.RDbase;
vte.VPT_base = cmd.VPT_addr:Zeros(16);
vte.VPT_size = cmd.VPT_size;
WriteVCPUTable(UInt(cmd.VCPUID), vte);
IncrementReadPointer();
return;
6.3.18 VMAPTI
This command maps the event defined by DeviceID and EventID into an ITT entry with vPEID and VINTID, and
Dbe11_pINTID, a doorbell provision.
Note
. VINTID >0x2000 for a valid LPI INTID.
. Dbe11_pINTID must be either 1023 or Dbel1_pINTID >0x2000 for a valid LPI INTID.
This command is provided only in GICv4.
Figure 6-21 shows the format of the VMAPTI command.
63 4847 32 31 16 15 8 7 0 DW
DevicelD RESO O0x2A 0
RESO vPEID EventID 1
Dbell_pINTID VINTID 2
RESO 3
Figure 6-21 VMAPTI command format
In Figure 6-21:
. vPEID specifies the VPE.
. DevicelID specifies a device owned by the VPE.
. VINTID specifies the INTID presented to the vPE that controls the device that DeviceID specifies.
. Dbe11_pINTID specifies the pINTID that is presented to the PE if the vPE is not scheduled.
Note
If Dbe11_pINTID is 1023 then no physical interrupt is generated.
. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.
If there is an existing mapping for the EventID-DeviceID combination, behavior is UNPREDICTABLE.
The command and its arguments are:
VMAPTI DevicelID, EventID, vINTID, Dbell_pINTID, vPEID
6-124 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

A command error occurs if any of the following apply:

. DeviceID exceeds the maximum value supported by the ITS.

. VPEID exceeds the maximum number supported by the ITS, as defined by GITS BASER<n>.
. The device specified by DeviceID is not mapped to an ITT, using MAPD.

. The EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when
the MAPD command is issued.

. VINTID does not specify a valid LPI INTID, see /NTIDs on page 3-39.

. Dbe11_pINTID does not specity a valid doorbell INTID, where a valid INTID is either:
— 1023.
— Within the supported range for LPIs.

In this case, the ITS must take the actions described in Command errors on page 6-106.
The following pseudocode describes the operation of the VMAPTI command:

// ITS.VMAPTI

ITS.VMAPTI(ITSCommand cmd)
if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPTI_DEVICE_OOR”;
IncrementReadPointer();
return;

if VCPUOutOfRange(cmd.VCPUID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPTI_VCPU_OOR”;
IncrementReadPointer();
return;

DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DevicelID));

if !dte.vValid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPTI_UNMAPPED_DEVICE";
IncrementReadPointer();
return;

if IdOutOfRange(cmd.EventID, dte.ITT_size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPTI_ID_OOR”;
IncrementReadPointer();
return;

if LPIOutOfRange(cmd.vINTID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPTI_VIRTUALID_OOR”;
IncrementReadPointer();
return;

if LPIOutOfRange(cmd.pINTID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMAPTI_PHYSICALID_OOR”;
IncrementReadPointer();
return;

InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

ite.Valid = TRUE;
ite.Type = virtual_interrupt;
ite.OutputID = cmd.vINTID;

ite.Doorbel1ID = cmd.Dbel1_pINTID;
ite.VCPUID = cmd.VCPUID;

WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);

IncrementReadPointer();
return;

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-125
ID060315 Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.3 ITS commands
6.3.19 VMOVI
This command updates the vPEID field in the ITT entry for the event defined by DeviceID and EventID. It also
translates the event defined by EventID and DeviceID into a vPEID and pINTID, and instructs the appropriate
Redistributor to move the pendingness of the interrupt to the Redistributor defined by the new vPEID, and update the
ITE associated with the event to use the new vPEID.
This command is provided only in GICv4.
Figure 6-22 shows the format of the VMOVI command.
63 4847 32 31 8 7 10 DW
DevicelD RESO 0x21 0
RESO vPEID EventID 1
Dbell_pINTID RESO D 2
RESO 3
Figure 6-22 VMOVI command format
In Figure 6-22:
. vPEID specifies the VPE.
. EventID identifies the interrupt, associated with a device and already mapped by the ITS, that is to be moved
to a new target specified by vPEID.
. D specifies whether the Dbe11_pINTID field is valid.
. DevicelID specifies the device that generates the interrupt.
. Dbe11_pINTID specifies the ID that is presented to the hypervisor if the VPE is not scheduled.
Note
If Dbe11_pINTID is 1023 then no physical interrupt is generated.
. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.
The command and its arguments are:
VMOVI DeviceID, EventID, vPEID, [Dbell_pINTID]
A command error occurs if any of the following apply:
. DeviceID exceeds the maximum value supported by the ITS.
. VPEID exceeds the maximum number supported by the ITS, as defined by GITS BASER<n>.
. The device specified by DevicelID is not mapped to an ITT, using MAPD.
. The EventID exceeds the maximum value allowed by the ITT. This value is specified by the Size field when
the MAPD command is issued.
. The vPE is not mapped to a Redistributor, using VMAPP.
. EventID corresponds to a physical LPL.
. If D is 1 and pINTID does not specify a valid doorbell INTID, where a valid INTID is either:
— 1023.
— Within the supported range for LPIs.
In this case, the ITS must take the actions described in Command errors on page 6-106.
Note
If, after using VMOVI to move an interrupt from vPE A to vPE B, software moves the same interrupt again, a VSYNC
command must be issued to VPE A between the moves to ensure correct behavior.
The following pseudocode describes the operation of the VMOVI command:
// ITS.VMOVI
[/ ——
6-126 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

ITS.VMOVI(ITSCommand cmd)

if DeviceOutOfRange(cmd.DeviceID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_DEVICE_OOR”;
IncrementReadPointer();
return;

if VCPUOutOfRange(cmd.VCPUID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_COLLECTION_OOR™;
IncrementReadPointer();
return;

if (amd.V == ‘1’ && LPIOutOfRange(cmd.pINTID) && cmd.pINTID != ‘1023’) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_PHYSICALID_OOR”;
IncrementReadPointer();
Return;

DeviceTableEntry dte = ReadDeviceTable(UInt(cmd.DevicelD));

if !dte.valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_UNMAPPED_DEVICE”;
IncrementReadPointer();
return;

if IdOutOfRange(cmd.EventID, dte.ITT_size) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_ID_OOR”;
IncrementReadPointer();
return;

InterruptTableEntry ite = ReadTranslationTable(dte.ITT_base, UInt(cmd.EventID));

if lite.Valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_UNMAPPED_INTERRUPT”;
IncrementReadPointer();
return;

if ite.Type == physical_interrupt then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_ID_IS_PHYSICAL";
IncrementReadPointer();
return;

VCPUTableEntry vtel = ReadVCPUTable(UInt(ite.VCPUID));
VCPUTableEntry vte2 = ReadVCPUTable(UInt(cmd.VCPUID));

if !vtel.vValid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_ITEVCPU_INVALID”;
IncrementReadPointer();
return;

if !vte2.Valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVI_CMDVCPU_INVALID”;
IncrementReadPointer();
return;

bits(32) rdl = vtel.RDbase;
Address vptl = vtel.VPT_base;
bits(32) rd2 = vte2.RDbase;
Address vpt2 = vte2.VPT_base;

ite.VCPUID = cmd.VCPUID;
if ecmd.V == ‘1’ then
ite.Doorbel1ID = cmd.pINTID;

WriteTranslationTable(dte.ITT_base, UInt(cmd.EventID), ite);

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-127
ID060315 Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.3 ITS commands

6.3.20

// From this point new interrupts sent to the new VCPU move the pending state to rd2 if set taking
care of any races where the interrupt

// has been forwarded to the processor

MoveVirtualPendingState(rdl, vptl, vpt2, ite.OutputID);

IncrementReadPointer();
return;

The pseudocode for setting the pending state of an interrupt using VMOVI is as follows:

boolean SetPendingState(InterruptTableEntry ite);

The pseudocode for clearing the pending state of an interrupt using VMOV is as follows:

boolean ClearPendingState(InterruptTableEntry ite);

This command updates the vPE table entry defined by vPEID to the target RDbase. Software must use SequenceNumber
and ITSList to synchronize the execution of VMOVP commands across more than one ITS.

This command is provided only in GICv4.

Software must ensure that this command is not executed with a vPEID that is scheduled on the target Redistributor,
otherwise system behavior is UNPREDICTABLE.

Figure 6-23 shows the format of the VYMOVP command.

63 48 47 32 31 16 15 87 0 DW
RESO Sequence Number RESO 0x22 0
RESO vPEID RESO ITSList 1
RESO RDbase RESO 2
RESO 3

Figure 6-23 VMOVP command format

In Figure 6-23:
. vPEID specifies the VPE.

. RDbase specifies the Redistributor to which interrupts are forwarded. See IMPLEMENTATION DEFINED
sizes in ITS command parameters on page 6-105.

. Sequence Number specifies the identity of the synchronization point that every ITS included in ITS List uses.
For more information, see Use of the sequence number field on page 6-129.

. ITSList specifies the ITS instances that are included in the synchronization operation, where:
— Eachbitin ITS List identifies an ITS where bit[n] corresponds to ITS n.
— AnITS is included if the corresponding bit is set to 1.

. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:
VMOVP, VvPEID, RDbase, SequenceNumber, ITSList

A command error occurs if any of the following apply:
. If the PE specified by vPEID is not mapped to a Redistributor, using VMAPP.
. VPEID exceeds the maximum number supported by the ITS, as defined by GITS BASER<n>.

In this case, the ITS must take the actions described in Command errors on page 6-106.
The following pseudocode describes the operation of the VMOVP command:

// ITS.VMOVP

6-128

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6.3.21 VSYNC

6 Locality-specific Peripheral Interrupts and the ITS
6.3 ITS commands

ITS.VMOVP(ITSCommand cmd)
if VCPUOutOfRange(cmd.VCPUID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVP_VCPU_OOR”;
IncrementReadPointer();
return;

VCPUTableEntry vte = ReadVCPUTable(UInt(cmd.VCPUID));

if lvte.Valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VMOVP_VCPU_INVALID”;
IncrementReadPointer();
return;

vte.RDbase = cmd.RDbase;

WriteVCPUTable(UInt(cmd.VCPUID), vte);

IncrementReadPointer();

return;

Use of the sequence number field

Where more than one ITS controls interrupts for the same vPE, moving this vPE must be co-ordinated between the
different ITSs. This is controlled by software, as follows:

. The VMOVP command must be issued for each ITS that controls interrupts for the vPE that is being moved.
Each of these commands must have a common sequence number. That sequence number cannot be used for
other VYMOVP commands until all commands that previously used that sequence number have been processed
by all ITSs.

. The VMOVP command issued for each ITS contains a list of all the ITSs that are affected by moving the vPE.
This is the ITS List.

. Each ITS must have the sequence numbers presented to it in the same order in that they are presented to the
other ITSs.

Not following this approach results in UNPREDICTABLE behavior.

This command ensures all outstanding ITS operations for the vPEID specified are globally observed before any
further ITS commands are executed. Following the execution of a VSYNC the effects of all previous commands
must apply to subsequent writes to GITS TRANSLATER.

This command is provided only in GICv4.

Figure 6-24 shows the format of the VSYNC command.

63 48 47 32 31 87 0 DW
RESO 0x25 0
RESO VPEID RESO 1
RESO 2
RESO 3

Figure 6-24 VSYNC command format

In Figure 6-24:
. vPEID specifies the VPE for which commands must be synchronized.
. DW is the doubleword offset within a 32 byte, or four doubleword, ITS command packet.

The command and its arguments are:

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-129
Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.3 ITS commands
VSYNC vPEID
A command error occurs if any of the following apply:
. If the PE specified by vPEID is not mapped to a Redistributor, using VMAPP.
. VPEID exceeds the maximum number supported by the ITS, as defined by GITS BASER<n>.
In this case, the ITS must take the actions described in Command errors on page 6-106.
The following pseudocode describes the operation of the VSYNC command:
// ITS.VSYNC
/] =========
ITS.VSYNC(ITSCommand cmd)
if VCPUOutOfRange(cmd.VCPUID) then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VSYNC_VCPU_OOR”;
IncrementReadPointer();
return;
VCPUTableEntry vte = ReadVCPUTable(UInt(cmd.VCPUID));
if lvte.Valid then
if GITS_TYPER.SEIS == ‘1’ then IMPLEMENTATION_DEFINED “SError VSYNC_VCPU_INVALID”;
IncrementReadPointer();
return;
bits(32) rd_base = vte.RDbase;
// Wait for the external effects of any virtual commands to be observable by all redistributors
// and ensure the internal effects of any previous commands affect any subsequent interrupt
// requests or commands
WaitForVirtualCompletion(rd_base);
IncrementReadPointer();
return;
6-130 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions

6.4 Common ITS pseudocode functions

Note

Some variable names used the pseudocode differ from those used in the body text. For a list of the affected variables,
see Pseudocode terminology on page A-680.

The following pseudocode invalidates any associated caching for the LPI configuration in the Redistributor for the
specified translation.

// InvalidateByITE

boolean InvalidateByITE(InterruptTableEntry ite)
if ite.Type == physical_interrupt then
CollectionTableEntry cte = ReadCollectionTable(UInt(ite.ICID));

if Icte.Valid then
return FALSE;

InvalidateInterruptCaches(ite.ICID, ite.OutputID);
else
VCPUTableEntry vte = ReadVCPUTable(UInt(ite.VCPUID));

if lvte.Valid then
return FALSE;

InvalidateVirtualInterruptCaches(ite.VCPUID, ite.OutputID);

return TRUE;

The following pseudocode describes moving a pending interrupt.

// MovePendingState()

MovePendingState(bits(32) rdl, bits(32) rd2, bits(32) ID)
if IsPending(GICR_PENDBASER[rd1l], ID) then
// The interrupt is pending in the source redistributor

// Make sure the interrupt is released or taken by the processor for
// example by sending a clear and waiting for the response
EnsureInterruptNotPendingOnProcessor(rdl, ID);

if IsPending(GICR_PENDBASER[rdl], ID) then
// The CPU released the interrupt and it is still pending
// Note: the following must be done without any possibility of the
// source redistributor re-forwarding the interrupt to the processor
ClearPendingStatelLocal (GICR_PENDBASER[rd1], ID);
SetPendingStatelLocal(GICR_PENDBASER[rd2], ID);

The following pseudocode describes moving a pending virtual interrupt.

// MoveVirtualPendingState()
/!

MoveVirtualPendingState(bits(32) rd_base, Address vptl, Address vpt2, bits(32) ID)
if IsPending(vptl, ID) then
// The iinterrupt is pending in the source redistributor

// Make sure the interrupt is released or taken by the processor for example by sending a
// VClear and waiting for the response
EnsureVirtualInterruptNotPendingOnProcessor(rd_base, vptl, ID);

if IsPending(vptl, ID) then
// The CPU released the interrupt and it is still pending

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-131
ID060315 Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions

// Note: the following must be done without any possibility of the source redistributor
// re-forwarding the interrupt to the processor
(ClearPendingStateLocal(vptl, ID);
SetPendingStatelocal(vpt2, ID);
return;

6.4.1 ITS helper functions

This subsection describes the ITS helper functions. The functions are indicated by the hierarchical path names, for
example shared/gic/its/its_helper:

. shared/gic/its/its_helper/Address on page 6-133.

. shared/gic/its/its_helper/ClearPendingState on page 6-133.

. shared/gic/its/its_helper/ClearPendingStateLocal on page 6-133.

. shared/gic/its/its_helper/CollectionOutOfRange on page 6-133.

. shared/gic/its/its_helper/CollectionTableEntry on page 6-133.

. shared/gic/its/its_helper/DeviceOutOfRange on page 6-133.

. shared/gic/its/its_helper/DeviceTableEntry on page 6-133.

. shared/gic/its/its_helper/EndOfCommand on page 6-133.

. shared/gic/its/its_helper/EnsurelnterruptNotPendingOnProcessor on page 6-133.
. shared/gic/its/its_helper/EnsureVirtuallnterruptNotPendingOnProcessor on page 6-133.
. shared/gic/its/its_helper/IdOutOfRange on page 6-133.

. shared/gic/its/its_helper/IncrementReadPointer on page 6-133.

. shared/gic/its/its_helper/InterruptTableEntry on page 6-134.

. shared/gic/its/its_helper/InterruptType on page 6-134.

. shared/gic/its/its_helper/InterruptType on page 6-134.

. shared/gic/its/its_helper/InvalidateInterruptCaches on page 6-134.

. shared/gic/its/its _helper/InvalidatelnterruptConfigurationCaches on page 6-134.
. shared/gic/its/its_helper/InvalidateVCPUCaches on page 6-134.

. shared/gic/its/its_helper/InvalidateVirtual ConfigurationCaches on page 6-134.
. shared/gic/its/its_helper/InvalidateVirtuallnterruptCaches on page 6-134.

. shared/gic/its/its_helper/IsPending on page 6-134.

. shared/gic/its/its_helper/IsPending on page 6-134.

. shared/gic/its/its_helper/LPIOutOfRange on page 6-134.

. shared/gic/its/its_helper/MoveAllPendingState on page 6-134.

. shared/gic/its/its_helper/ReadCollectionTable on page 6-134.

. shared/gic/its/its_helper/ReadDeviceTuble on page 6-135.

. shared/gic/its/its_helper/ReadTranslationTable on page 6-135.

. shared/gic/its/its_helper/ReadVCPUTable on page 6-135.

. shared/gic/its/its_helper/RetargetVirtuallnterrupt on page 6-135.

. shared/gic/its/its_helper/SetPendingState on page 6-135.

. shared/gic/its/its_helper/SetPendingStateLocal on page 6-135.

. shared/gic/its/its_helper/SizeOutOfRange on page 6-135.

. shared/gic/its/its_helper/VCPUOutOfRange on page 6-135.

. shared/gic/its/its_helper/VCPUTableEntry on page 6-135.

. shared/gic/its/its_helper/WaitForCompletion on page 6-135.

. shared/gic/its/its_helper/WaitForVirtual Completion on page 6-135.

. shared/gic/its/its_helper/WriteCollectionTable on page 6-135.

. shared/gic/its/its_helper/WriteDeviceTable on page 6-135.

. shared/gic/its/its_helper/WriteTranslationTable on page 6-136.

. shared/gic/its/its_helper/WriteVCPUTable on page 6-136.

6-132 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS

shared/giclits/its_helper/Address

type Address = bits(48);

shared/giclits/its_helper/ClearPendingState

boolean ClearPendingState(InterruptTableEntry ite);

shared/giclits/its_helper/ClearPendingStateLocal
ClearPendingStateLocal(PBType PendBase, bits(32) interruptID);

ClearPendingStateLocal(Address base, bits(32) interruptID);

shared/giclits/its_helper/CollectionOutOfRange

booTlean CollectionOutOfRange(bits(16) collection);

shared/giclits/its_helper/CollectionTableEntry
type CollectionTableEntry is (

boolean Valid,
bits(32) RDbase

shared/giclits/its_helper/DeviceOutOfRange

booTlean DeviceOutOfRange(bits(32) device);

shared/giclits/its_helper/DeviceTableEntry
type DeviceTableEntry is (
boolean Valid,

Address ITT_base,
bits(5) ITT_size

shared/giclits/its_helper/EndOfCommand

EndOfCommand();

6.4 Common ITS pseudocode functions

shared/giclits/its_helper/EnsurelnterruptNotPendingOnProcessor

EnsureInterruptNotPendingOnProcessor(bits(32) rdl, bits(32) ID);

shared/giclits/its_helper/EnsureVirtuallnterruptNotPendingOnProcessor

EnsureVirtualInterruptNotPendingOnProcessor(bits(32) rdl, Address vpt, bits(32) ID);

shared/giclits/its_helper/ldOutOfRange

boolean IdOutOfRange(bits(32) ID, bits(5) ITT_size);

shared/giclits/its_helper/IncrementReadPointer

IncrementReadPointer();

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-133

Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions

shared/giclits/its_helper/InterruptTableEntry
type InterruptTableEntry is (

boolean Valid,

InterruptType Type,

bits(32) OutputlID,

bits(32) DoorbellID,

bits(16) ICID,

bits(16) VCPUID

shared/giclits/its_helper/InterruptType

enumeration InterruptType { virtual_interrupt, physical_interrupt };

shared/giclits/its_helper/InvalidateCollectionCaches

InvalidateCollectionCaches(integer collection);

shared/giclits/its_helper/InvalidatelnterruptCaches

InvalidateInterruptCaches(bits(16) collection, bits(32) interruptID);

shared/giclits/its_helper/InvalidatelnterruptConfigurationCaches

InvalidateInterruptConfigurationCaches(bits(32) ID, integer collection);

shared/giclits/its_helper/InvalidateVCPUCaches

InvalidateVCPUCaches(integer vcpu_id);

shared/giclits/its_helper/InvalidateVirtualConfigurationCaches

InvalidateVirtualConfigurationCaches(bits(32) ID, bits(16) VCPU);

shared/gic/its/its_helper/InvalidateVirtuallnterruptCaches

InvalidateVirtualInterruptCaches(bits(16) vcpu_id, bits(32) interruptID);

shared/giclits/its_helper/lsPending

boolean IsPending(PBType PendBase, bits(32) interruptID);

shared/giclits/its_helper/lsPending

boolean IsPending(Address base, bits(32) interruptID);

shared/giclits/its_helper/LPIOutOfRange

boolean LPIOutOfRange(bits(32) ID);

shared/giclits/its_helper/MoveAllPendingState

MoveAlTPendingState(bits(32) rdl, bits(32) rd2);

shared/giclits/its_helper/ReadCollectionTable

CollectionTableEntry ReadCollectionTable(integer index);

6-134 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions

shared/gic/its/its_helper/ReadDeviceTable

DeviceTableEntry ReadDeviceTable(integer index);

shared/giclits/its_helper/ReadTranslationTable

InterruptTableEntry ReadTranslationTable(Address base, integer index);

shared/giclits/its_helper/ReadVCPUTable

VCPUTableEntry ReadVCPUTable(integer index);

shared/giclits/its_helper/RetargetVirtualinterrupt

RetargetVirtualInterrupt(integer device, bits(32) ID, integer vcpu);

shared/giclits/its_helper/SetPendingState

booTlean SetPendingState(InterruptTableEntry ite);

shared/giclits/its_helper/SetPendingStateLocal
SetPendingStatelocal(PBType PendBase, bits(32) interruptID);

SetPendingStatelocal(Address base, bits(32) interruptID);

shared/giclits/its_helper/SizeOutOfRange

boolean SizeOutOfRange(bits(5) ITT_size);

shared/gic/its/its_helper/VCPUOutOfRange

booTean VCPUOutOfRange(bits(16) vcpu);

shared/giclits/its_helper/VCPUTableEntry
type VCPUTableEntry is (

boolean Valid,

bits(32) RDbase,

Address VPT_base,
bits(5) VPT_size

shared/giclits/its_helper/WaitForCompletion

WaitForCompletion(bits(32) RDbase);

shared/giclits/its_helper/WaitForVirtualCompletion

WaitForVirtualCompletion(bits(32) RDbase);

shared/giclits/its_helper/WriteCollectionTable

WriteCollectionTable(integer index, CollectionTableEntry cte);

shared/giclits/its_helper/WriteDeviceTable

WriteDeviceTable(integer index, DeviceTableEntry dte);

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.

Non-Confidential - Beta

6-135

6 Locality-specific Peripheral Interrupts and the ITS
6.4 Common ITS pseudocode functions

shared/giclits/its_helper/WriteTranslationTable

WriteTranslationTable(Address base, integer index, InterruptTableEntry cte);

shared/giclits/its_helper/WriteVCPUTable

WriteVCPUTable(integer index, VCPUTableEntry vte);

6-136 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

6.5 ITS command error encodings

6 Locality-specific Peripheral Interrupts and the ITS

6.5 ITS command error encodings

When an ITS supports system errors, that is when GITS TYPER.SEIS == 1, ITS command errors can be reported
to software. It is IMPLEMENTATION DEFINED how these errors are recorded and reported.

Table 6-7 shows the ITS command error encodings.

Table 6-7 ITS command error encodings

Encoding Error mnemonic Command Error description

0x01_0801 MAPD_DEVICE_OOR MAPD Out of range

0x01_0802 MAPD_ITTSIZE_OOR

0x01_0903 MAPC_COLLECTION_OOR MAPC Out of range

0x01_0B0o1 MAPI_DEVICE_OOR MAPI

0x01_0B03 MAPI_COLLECTION_OOR

0x01_0B04 MAPI_UNMAPPED_DEVICE Unmapped device

0x01_0B05 MAPI_ID_OOR Out of range

0x01_0A01 MAPTI_DEVICE_OOR MAPTI

0x01_0A03 MAPTI_COLLECTION_OOR

0x01_0A04 MAPTI_UNMAPPED_DEVICE Unmapped device

0x01_0A05 MAPTI_ID_OOR Out of range

0x01_0A06 MAPTI_PHYSICALID_OOR

0x01_0101 MOVI_DEVICE_OOR MOVI

0x01_0103 MOVI_COLLECTION_OOR

0x01_0104 MOVI_UNMAPPED_DEVICE Unmapped device

0x01_0105 MOVI_ID_OOR Out of range

0x01_0107 MOVI_UNMAPPED_INTERRUPT Unmapped interrupt

0x01_0108 MOVI_ID_IS_VIRTUAL VINTID specified

0x01_0109 MOVI_UNMAPPED_COLLECTION Unmapped interrupt collection

0x01_0F01 DISCARD_DEVICE_OOR DISCARD Out of range

0x01_0F04 DISCARD_UNMAPPED_DEVICE Unmapped device

0x01_0F05 DISCARD_ID_OOR Out of range

0x01_0F0Q7 DISCARD_UNMAPPED_INTERRUPT Unmapped interrupt

0x01_0F10 DISCARD_ITE_INVALID Invalid translation table entry
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-137

ID060315

Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.5 ITS command error encodings

Table 6-7 ITS command error encodings (continued)

Encoding Error mnemonic Command Error description
0x01_0C01 INV_DEVICE_OOR INV Out of range

0x01_0C04 INV_UNMAPPED_DEVICE Unmapped device

0x01_0C05 INV_ID_OOR Out of range

0x01_0C07 INV_UNMAPPED_INTERRUPT Unmapped interrupt
0x01_0C10 INV_ITE_INVALID Invalid translation table entry
0x01_0D03 INVALL_COLLECTION_OOR INVALL Out of range

0x01_0D09 INVALL_UNMAPPED_COLLECTION Unmapped interrupt collection
0x01_0301 INT_DEVICE_OOR INT Out of range

0x01_0304 INT_UNMAPPED_DEVICE Unmapped device

0x01_0305 INT_ID_OOR Out of range

0x01_0307 INT_UNMAPPED_INTERRUPT Unmapped interrupt
0x01_0310 INT_ITE_INVALID Invalid translation table entry
0x01_0501 CLEAR_DEVICE_OOR CLEAR Out of range

0x01_0504 CLEAR_UNMAPPED_DEVICE Unmapped device

0x01_0505 CLEAR_ID_OOR Out of range

0x01_0507 CLEAR_UNMAPPED_INTERRUPT Unmapped interrupt
0x01_0510 CLEAR_ITE_INVALID Invalid translation table entry
0x01_2911 VMAPP_VCPU_OOR VMAPP Out of range

0x01_2912 VMAPP_VPTSIZE_OOR

0x01_2b01 VMAPI_DEVICE_OOR VMAPI Out of range

0x01_2b11 VMAPI_VCPU_OOR

0x01_2b04 VMAPI_UNMAPPED_DEVICE Unmapped device

0x01_2b05 VMAPI_ID_OOR Out of range

0x01_2b06 VMAPI_PHYSICALID_OOR

0x01_2a01 VMAPTI_DEVICE_OOR VMAPTI

0x01_2all VMAPTI_VCPU_OOR

0x01_2a04 VMAPTI_UNMAPPED_DEVICE Unmapped device

0x01_2a05 VMAPTI_ID_OOR Out of range

0x01_2al3 VMAPTI_VIRTUALID_OOR

0x01_2a06 VMAPTI_PHYSICALID_OOR

0x01_2d11 VINVALL_VCPU_OOR VINVALL

0x01_2d14 VINVALL_VCPU_INVALID Invalid vPE specified

6-138

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.

Non-Confidential - Beta

ARM IHI 0069A
ID060315

6 Locality-specific Peripheral Interrupts and the ITS
6.5 ITS command error encodings

Table 6-7 ITS command error encodings (continued)

Encoding Error mnemonic Command Error description
0x01_2511 VSYNC_VCPU_OOR VSYNC Out of range
0x01_2514 VSYNC_VCPU_INVALID Invalid vPE specified
0x01_2211 VMOVP_VCPU_OOR VMOVP Out of range
0x01_2214 VMOVP_VCPU_INVALID Invalid vPE specified
0x01_2101 VMOVI_DEVICE_OOR VMOVI Out of range

0x01_2103 VMOVI_COLLECTION_OOR

0x01_2104 VMOVI_UNMAPPED_DEVICE Unmapped device

0x01_2105 VMOVI_ID_OOR Out of range

0x01_2106 VMOVI_PHYSICALID_OOR

0x01_2107 VMOVI_UNMAPPED_INTERRUPT Unmapped interrupt
0x01_2115 VMOVI_ID_IS_PHYSICAL pINTID specified
0x01_2116 VMOVI_ITEVCPU_INVALID Invalid translation table entry
0x01_2117 VMOVI_CMDVCPU_INVALID Invalid vPE specified
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 6-139

ID060315 Non-Confidential - Beta

6 Locality-specific Peripheral Interrupts and the ITS

6.6 ITS power management

6.6 ITS power management
This subsection describes the software sequences for enabling and disabling an ITS. It contain the following
sections:
. Enabling an ITS.
. Disabling an ITS.
6.6.1 Enabling an ITS
On power up, an ITS is reset to the quiescent state where GITS_CTLR.Quiescent == 1 and GITS_CTLR.Enable ==
0. To enable an ITS, software must:
1. Ensure any memory structures required to support the device, interrupt translation, interrupt collection, or
virtual CPU tables are initialized or restored.
2. Ensure that the command queue has been provisioned.
3. Set GITS CTLR.Enable to 1.
4 Configure the ITS as required using the appropriate ITS commands. For more information about the ITS
commands, see /7S commands on page 6-103.
5. Wait for GITS CTLR.Quiescent == 0.
6.6.2 Disabling an ITS
To disable an ITS, software must:
1. Ensure that all interrupts that target the ITS being powered down are either redirected or disabled.
2. Disable the ITS by clearing GITS CTLR.Enable to 0. The disabled ITS completes all outstanding operations
and then sets GITS CTLR.Quiescent to 1.
3. Ensure the ITS is quiescent by polling until GITS CTLR.Quiescent == 1.
When GITS CTLR.Enable == 0, write accesses to GITS TRANSLATER are ignored. When
GITS_CTLR.Quiescent == 1, all operations have completed and memory backed state is committed. The ITS can
then be powered down to an IMPLEMENTATION DEFINED state.
6-140 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

Chapter 7
Power Management

This chapter describes power management. It contains the following section:

. Power management on page 7-142.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 7-141
ID060315 Non-Confidential - Beta

7 Power Management

7.1 Power management

71 Power

management

In an implementation compliant with the GICv3 architecture, the CPU interface and the PE must be in the same
power domain, but this does not have to be the same power domain as that within which the associated Redistributor
is located. This means that it is possible to have a situation where the PE and its CPU interface are powered down,
and the Redistributor, Distributor, and ITS, are powered up. In this situation, the GIC architecture supports the use
of interrupts targeted at the PE to signal a powerup event to the PE and CPU interface.

GICv3 provides power management to control this situation, because the architecture is designed to allow the
Redistributors designed by one organization to be used with PEs and CPU interfaces that have been designed by a
different organization.

All other aspects of power management for the GIC are IMPLEMENTATION DEFINED.

Before powering down the CPU interface and the PE when the Redistributor is powered up, software must put the
interface between the CPU interface and the Redistributor into the quiescent state or the system will become
UNPREDICTABLE. The transition to the quiescent state is initiated by setting GICR_WAKER.ProcessorSleep to 1.
When the interface is quiescent, GICR_WAKER.ChildrenAsleep is also set to 1.

GICR_WAKER.ProcessorSleep == 1 has the following effects:

. The Redistributor does not forward any interrupts for the PE to the CPU interface. If there is a pending
interrupt for the PE that would otherwise be forwarded to the PE, a hardware signal, WakeRequest, is
asserted to indicate that the PE is to have its power restored. In a GICv4 implementation, this applies to virtual
LPIs in addition to any other interrupts.

. The Distributor does not select this PE as a candidate for selection for a 1 of N interrupt, unless
GICD_CTLR.EINWF == 1, and the PE has been selected by an IMPLEMENTATION DEFINED mechanism.

When the interface between the Redistributor and the CPU interface is in a quiescent state, the following
architectural state of the CPU interface can be saved as part of saving the state within the power domain of the CPU
interface and the PE:

. The CPU interface state related to physical interrupts of the connected PE.

. The CPU interface state related to virtual interrupts that is part of the vPE that is scheduled on the associated
PE.

Setting GICR_ WAKER.ProcessorSleep to 1 when the physical group enables in the CPU interface are set to 1
results in UNPREDICTABLE behavior.

When GICR_WAKER.ProcessorSleep == 1 or GICR_ WAKER.ChildrenAsleep == 1 then a write to any GICC_*,
GICV_*, GICH_*, ICC_*, or ICH_* registers, other than those in the following list, is UNPREDICTABLE:

« ICC SRE ELI.
« ICC SRE EL2.
« ICC_SRE EL3.

7-142

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

Chapter 8

Programmers’ Model

This chapter provides information about the GIC register interfaces and describes all of the GIC registers. It contains
the following sections:

About the programmers’ model on page §-144.
AArch64 System register descriptions on page 8-168.

AArch64 System register descriptions of the virtual registers on page 8-223.

AArch64 virtualization control System registers on page 8-256.
AArch32 System register descriptions on page 8-282.

AArch32 System register descriptions of the virtual registers on page 8-344.

AArch32 virtualization control System registers on page 8-378.

The GIC Distributor register map on page 8-406.

The GIC Distributor register descriptions on page 8-408.

The GIC Redistributor register map on page 8-463.

The GIC Redistributor register descriptions on page 8-466.

The GIC CPU interface register map on page 8-523.

The GIC CPU interface register descriptions on page 8-524.

The GIC virtual CPU interface register map on page 8-561.

The GIC virtual CPU interface register descriptions on page 8-563.
The GIC virtual interface control register map on page 8-594.

The GIC virtual interface control register descriptions on page 8-595.
The ITS register map on page 8-617.

The ITS register descriptions on page 8-618.

Pseudocode on page 8-638.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Non-Confidential - Beta

8-143

8 Programmers’ Model
8.1 About the programmers’ model

8.1

8.1.1

About the programmers’ model

The GIC is partitioned into several logical components, as defined in Chapter 2 GIC Partitioning, and each
component supports one or more programming interfaces. Software uses these programming interfaces to access
the programmers’ model and control the GIC. The interfaces are either memory-mapped or support System register
accesses as follows:

The Distributor, Redistributor, and ITS programming interfaces are always memory-mapped.

The CPU interfaces for physical and virtual interrupt handling, and the virtual machine control interface used
by the hypervisor use:

— System register interfaces for the operation of GICv3 and GICvA4.
— Memory-mapped interfaces for legacy operation.

Note

Support for legacy operation is optional. Implementations are allowed to support legacy operation for
virtual interrupts only, meaning that the GICV_* registers are the only memory-mapped CPU interface
registers that are provided. In these implementations, GICC_* registers and GICH_* registers are not
provided. GICC_* and GICH_* registers are only required to support legacy operation by physical
interrupts.

When accessing a System register, the register content accessed depends on:

The Exception level at which the PE is executing.
Whether the access is Secure or Non-secure.

For a Non-secure access at EL1, whether the Exception level is configured by HCR_EL2 when executing in
AArch64 state, or by HCR when executing in AArch32 state, to handle virtual or physical interrupts.

GIC register names

All of the GIC registers have names that provide a short mnemonic for the function of the register:

Memory-mapped registers are prefixed by one of the following:

— GICC, to indicate a CPU interface register.

— GICD, to indicate a Distributor register.

— GICH, to indicate a virtual interface control register, typically accessed by a hypervisor.
— GICR, to indicate a Redistributor register.

— GICV, to indicate a virtual CPU interface register.

— GITS, to indicate an ITS register.

System registers are prefixed by:

— ICC, to indicate a physical GIC CPU interface System register.
— ICV, to indicate a virtual GIC CPU interface System register.
— ICH, to indicate a virtual interface control System register.

The remaining letters are a mnemonic for the register, for example the GIC Distributor Control Register is
called GICD_CTLR.

Figure 8-1 on page 8-145 shows the interfaces that the programmer can use for the different logical components
when affinity routing and System register access are enabled for all Exception levels.

8-144

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.1 About the programmers’ model

GITS_*

GICD_*

.

PE PE
vPE® Hypervisor| vPE® Hypervisor|
A A
r 3 4
\ 4 v v v
licc_ » ICH_* icc_* »| IcH_*

a. AvPE is a virtual PE

] Redistributor [_] CPU interface [| vCPU interface [_] ITS

|:| Distributor |:| Virtual interface control

Figure 8-1 Register interfaces without legacy support (GICv3 only)

A System register might be accessible from different Exception levels. In AArch64 state, a register suftix defines
the lowest Exception level from which the register is accessible. That is, any access to ICC_* ELx must be from

Exception level ELx or higher.

8.1.2 Relation between System registers and memory-mapped registers

The GIC architecture permits, but does not require, that the same registers can be shared between memory-mapped
registers and the equivalent System registers. This means that if the memory-mapped registers have been accessed
while ICC_SRE_ELx.SRE == 0, the System registers might be modified. Therefore, ARM recommends that
software only relies on the reset values of the System registers if there has been no use of the GIC functionality while
the memory-mapped registers are in use, otherwise ARM recommends that the values are treated as UNKNOWN.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-145
ID060315 Non-Confidential - Beta

8 Programmers’ Model

8.1 About the programmers’ model

Table 8-1 shows the registers that are shared between the memory-mapped registers and the System registers.

Table 8-1 Relation between System registers and memory-mapped registers

System registersa

AArch64

AArch32

Memory-mapped CPU
interface registers

Memory-mapped virtual CPU
interface registers

ICC_APOR<n> ELI

ICC_APIR<n> ELI

ICC_APOR<n>

ICC_API1R<n>

GICC_APR<n>,
GICC_NSAPR<n>

GICV_APR<n>

ICC_BPRO_EL1 ICC_BPRO GICC_BPR, GICC_ABPRb* GICV_BPR
ICC_BPRI1_ELI ICC_BPRI GICV_ABPR
ICC_CTLR_ELI ICC_CTLR GICC_CTLR GICV_CTLR
ICC_CTLR_EL3 ICC_MCTLR

ICC_DIR ELI ICC_DIR GICC DIR GICV_DIR
ICC_EOIR0 EL1 ICC_EOIR0 GICC_EOIR, GICC_AEOIR GICV_EOIR
ICC_EOIR1_ELI ICC_EOIRI GICV_AEOIR
ICC_HPPIRO_ELI ICC_HPPIRO GICC_HPPIR, GICC_AHPPIR GICV_HPPIR
ICC_HPPIR1 ELI ICC_HPPIR1 GICV_AHPPIR
ICC_IARO ELI ICC_IARO GICC IAR, GICC AIARd4 GICV_IAR
ICC_IARI ELI ICC_IARO GICV_AIAR
ICC_IGRPENO EL1 ICC_IGRPENO GICC CTLR GICV_CTLR
ICC_ IGRPEN1 ELI ICC_IGRPENI

ICC IGRPEN1 EL3 ICC_MGRPENI

ICC_PMR_ELI ICC_PMR GICC_PMR GICV_PMR
ICC_RPR ELI ICC_RPR GICC RPR GICV_RPR

ICH _APOR<n> EL2

ICH_APOR<n> EL2

ICH_APOR<n>

ICH_APOR<n>

GICH_APR<n>

ICH_EISR_EL2 ICH_EISR GICH_EISR -
ICH ELRSR_EL2 ICH ELRSR GICH_ELRSR -
ICH_HCR_EL2 ICH_HCR GICH_HCR -
ICH LR<n> EL2 ICH LR<n> GICH LR<n> -
ICH LRC<n> .
ICH_MISR_EL2 ICH_MISR GICH_MISR -
ICH_VMCR_EL2 ICH_VMCR GICH_VMCR -
ICH VTR _EL2 ICH_VTR GICH_VTR -
8-146 Copyright © 2008, 2011, 2015 ARM Limited. Al rights reserved. ARM IHI 0069A

Non-Confidential - Beta

ID060315

8 Programmers’ Model
8.1 About the programmers’ model

a. There are also System registers prefixed with ICV, rather than ICC, and these are the virtual GIC CPU interface System registers, see
AArch64 System register descriptions of the virtual registers on page 8-223 and AArch32 System register descriptions of the virtual registers

on page 8-344.

b. This register is an alias of the Non-secure copy of GICC_BPR.
c. IfICC _CTLR_EL3.CBPR_ELINS is 1, Secure accesses to this register access (and might modify) ICC_BPRO_ELI.
d. In GIC implementations that support two Security states, this register is an alias of the Non-secure view of GICC_IAR.

8.1.3 GIC memory-mapped register access

Access to the following registers must be supported:

Single copy atomic 32-bit accesses to:

— ANl GICC_*, GICV_* and GICH_* registers, where implemented.
— ANl GITS_* registers.

— ANl GICD_* registers.

— ANl GICR_* registers.

For the GITS *, GICD_* and GICR_* registers, the upper 32 bits and the lower 32 bits can be accessed
independently, unless the register requires a 64 bit access.

Single copy atomic 64-bit accesses to:
— All 64-bit GITS_* registers.
— All 64-bit GICD_* registers.
— All 64-bit GICR_* registers.

Byte accesses to:

— GICD_IPRIORITYR<n>.
— GICD _ITARGETSR<n>.
— GICD_SPENDSGIR<n>.
— GICD_CPENDSGIR<n>.

ARM does not expect the following registers to be accessed directly by software, but single-copy atomic 16-bit and
32-bit accesses to these registers must be supported:

GITS_TRANSLATER.
GICD_SETSPI_NSR.
GICD_CLRSPI_NSR.
GICD_SETSPI_SR.
GICD_CLRSPI_SR.

All other accesses to these registers result in UNPREDICTABLE behavior.

The following accesses are not supported:

Byte access to registers other than those specifically listed in this section.

Unaligned word accesses. These accesses are not word single-copy atomic.

Unaligned doubleword accesses. These accesses are not doubleword single-copy atomic.
Word accesses for registers marked as requiring a 64-bit access.

Doubleword accesses, other than those specifically listed in this section.

Quadword or higher.

Exclusive accesses.

For each of these access types, it is UNPREDICTABLE whether:

The access generates an external abort or not.
The defined side-effects of a read occur or not. A read returns UNKNOWN data.
A write is ignored or sets the accessed register or registers to UNKNOWN values.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-147
Non-Confidential - Beta

8 Programmers’ Model
8.1 About the programmers’ model

For memory-mapped accesses by a PE that complies with the ARM architecture, the single-copy atomicity rules for
the instruction, the type of instruction, and the type of memory accessed, determine the size of the access made by
the instruction. Example 8-1 shows this.

Example 8-1 Access sizes for memory-mapped accesses

Two Load Doubleword instructions made to consecutive doubleword-aligned locations generate a pair of
single-copy atomic doubleword reads. However, if the accesses are made to Normal memory or Device-GRE
memory they might appear as a single quadword access that is not supported by the peripheral.

ARMVS does not require the size of each element accessed by a multi-register load or store instruction to be
identifiable by the memory system beyond the PE. Any memory-mapped access to a GIC is defined to be beyond
the PE.

Software must use a Device-nGRE or stronger memory-type, and use only single register load and store instructions,
to create memory accesses that are supported by the peripheral.

Reads and writes of the memory-mapped registers complete in the order in which they arrive at the GIC. For access
to different register locations, software must create this order by:

. Marking the memory as Device-nGnRnE or Device-nGnRE.
. Using the appropriate memory barriers.

Software must be able to guarantee completion of a write, for example by:
. Marking the memory as Device-nGnRnE and executing a DSB barrier, if the system supports this property.
. Reading back the value written.

For more information on endianness, memory ordering, and barrier instructions, see ARM™ Architecture Reference
Manual, ARMvS, for ARMvS-A architecture profile.

The access type definitions for the memory-mapped register interface are:

RW Read and write.
RO Read only. Writes are ignored.
WO Write only. Reads return an UNKNOWN value.

8.1.4 Access to memory-mapped registers when System register access is enabled
Because memory-mapped accesses and System register accesses might not access the same state, and are not
guaranteed to be synchronized when System registers access is enabled for a particular Exception level and Security
state, ARM recommends that the System registers be used instead of the memory-mapped registers that provide the
same functionality.
In implementations that include the GICC_* registers, and where the Secure copy of ICC_SRE EL1.SRE is
programmable, the following state must be shared between System register access and memory-mapped access to
ensure the correct operation of preemption:
. GICC_PMR and ICC_PMR_EL1 or ICC_PMR must access the same state.
. GICC_APR<n>and ICC_APOR<n> EL1 must access the same state.
. GICC_NSAPR<n>and ICC_AP1R<n> ELI(NS) must access the same state.
. GICC_CTLR.CBPR and ICC_CTLR_EL3(NS).CBPR must access the same state.
. Secure accesses to GICC_BPR and ICC_BPRO_EL1 must access the same state when GICC_CTLR.CBPR
. Secure accesses to GICC_ABPR and ICC_BPR1_EL1 must access the same state when GICC_CTLR.CBPR

Note
. Software must follow the rules specified in GIC System register access on page 8-150 when changing the
setting of the SRE fields.
8-148 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.1 About the programmers’ model

. Relation between System registers and memory-mapped registers on page 8-145 specifies the relationship
between memory-mapped registers and System registers. State can only be shared between registers that
perform the same function, and the registers listed in Table 8-1 on page 8-146 might share state.

When changing from a state where the registers are required to access the same state to a state where the registers
are not required to access the same state, or when changing from a state where the registers are not required to access
the same state to a state where the registers are required to access the same state, the content of the registers becomes
UNKNOWN.

Note

The priority bits implemented for memory-mapped and System register state must be the same, as must the
minimum value of the Binary Point Register for Group 0 interrupts for both Secure and Non-secure views.

Accesses to the GICC_* registers might be affected by whether System register access is enabled or not, depending

on the implementation:

. If the Secure copy of ICC_SRE EL1.SRE == 1, then the GICC * registers might not be accessible or might
be RAZ/WI.

Note

When EL3 is configured to use AArch32 state, Secure EL1 is not accessible but software must still set the
Secure copy of ICC_SRE.SRE to 1, to enable support for Secure Group 1 interrupts, otherwise the system is
UNPREDICTABLE.

. IfICC_SRE EL2.SRE ==1, then the GICH_* registers might not be accessible or might be RAZ/WI.

. If the Non-secure copy of ICC_SRE EL1.SRE == 1, then the GICV_* registers might not be accessible or
might be RAZ/WI.

Note

In implementations where the Non-secure copy of ICC_SRE EL1.SRE is programmable, that is, it is not RAO/WI,
the GICV_* register interface must still be provided.

An implementation might be able to detect accesses to memory-mapped registers that must not be accessed because
an SRE bit is 1, and report them in an IMPLEMENTATION DEFINED manner.

8.1.5 Execution state

The ARMVS8-A architecture has two Execution states:
. AArch64 state.
. AArch32 state.

To see the mapping between the AArch64 System registers and the AArch32 System registers, see:
. Table 8-3 on page 8-152.
. Table 8-4 on page 8-153.

8.1.6 Observability of the effects of accesses to the GIC registers

The PE and CPU interface logic must ensure that:
. Writes to ICC_PMR_EL1 are self-synchronizing.

Note

This ensures that no interrupts with a priority lower than the priority value in ICC_PMR_EL1 are taken after
a write to [ICC_PMR_ELI is architecturally executed.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-149
Non-Confidential - Beta

8 Programmers’ Model

8.1 About the programmers’ model

8.1.7

Reads of ICC_IARO_EL1 and ICC_IAR1 ELI are self-synchronizing when interrupts are masked by the PE,
that is when PSTATE.F == 1, for reads of ICC_IARO EL1, and when PSTATE.I == 1 ,for reads of
ICC_TARI_ELI.

Note

This ensures that the effect of activating an interrupt on the signaling of an interrupt exception is observed
when aread of ICC_IARO_EL1and ICC _IAR1 ELI is architecturally executed. This means that no spurious
interrupt exception occurs if interrupts are unmasked by an instruction immediately following the read.

Instructions that change the current Exception level from EL3 to a lower Exception level, for example the
ERET instruction, must be synchronized with any corresponding change in the allocation of interrupts as FIQs
and IRQs, so that no spurious FIQ is taken after the architectural execution of the instruction, see Interrupt
assignment to IRQ and FIQ signals on page 4-59.

Architectural execution of a DSB instruction guarantees that
— The last value written to [CC_PMR_EL1 or GICC_PMR is observed by the associated Redistributor.

— The last value written to ICC_SGIOR _EL1 or ICC_SGII1R _ELI is observed by the associated
Redistributor.

— The last value written to ICC_ASGI1R _EL1 is observed by the associated Redistributor.

— The last value written to ICC_IGRPENO_EL1, ICC IGRPENI1 ELI, ICC IGRPEN1 EL3 or
GICC_CTLR.{EnableGrp0, EnableGrp1}is observed by the associated Redistributor.

— The last value written to [CH_VMCR_EL2.{VENGO, VENG1}, or GICV_CTLR.{EnableGrp0,
EnableGrpl} is observed by the associated Redistributor.

— The last SPI INTID read from ICC IARO EL1, ICC IAR1 ELI1, GICC IAR or GICC AIAR is
observed by the Distributor and by accesses from any PE to the Distributor.

— The last SPI, PPI or LPI INTID read from ICC TARO ELI1,ICC IAR1 ELI, GICC IAR or
GICC_AIAR is observed by the associated Redistributor and by accesses from the PE to the associated
Redistributor.

— The last Deactivate command for an SPI generated by a write to ICC_EOIR0_EL1,ICC_EOIR1 ELI,
GICC_AEOIR, GICC_EOIR, ICC_DIR ELI or GICC DIR is observed by the Distributor and by
accesses from any PE to the Distributor.

— The last Deactivate command for an SGI or PPI generated by a write to ICC_EOIR0_EL1,
ICC_EOIRI_EL1, GICC_AEOIR, GICC_EOIR, ICC_DIR_ELI1 or GICC_DIR is observed by the
Redistributor and by accesses from any PE to the Redistributor.

GIC System register access

The GIC System register interface is managed by Exception level, using the following AArch64 System registers:

ICC_SRE EL3, if EL3 is implemented.
ICC SRE EL2, if EL2 is implemented.
ICC_SRE ELI.

8-150

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.1 About the programmers’ model

Table 8-2 shows the permitted ICC_SRE ELx.SRE settings.

Table 8-2 Permitted ICC_SRE_ELx.SRE settings

ICC_SRE_EL1(S)

ICC_SRE_EL1(NS) ICC_SRE_EL2 ICC_SRE_EL3 Notes

0 0 0 0 Legacy, see Chapter 10 Legacy
Operation and Asymmetric
Configurations
0 0 0 1 Supported only when EL3 is using
AArch64
0 0 1 1 Supported only when EL3 is using
AArch64 and virtual interrupts are
enabled
0 1 1 1 Supported only when EL3 is using
AArch64
1 0 1 1 Supported only when virtual interrupts
are enabled
1 1 1 1 Fully supported System register access
All combinations of ICC_SRE ELx.SRE settings not listed in Table 8-2 result in UNPREDICTABLE behavior.
All settings other than ICC_SRE_ELx.SRE == 1 are deprecated.
Note
. When HCR_EL2 is configured so that virtualization at EL1 is enabled, it is IMPLEMENTATION DEFINED
whether a Non-secure access to [CC_SRE _EL1.SRE or ICC_SRE.SRE is programmable to support a legacy
VM.
. ARM expects that when ICC_SRE _EL3.SRE == 1 and ICC_SRE_ELI(S).SRE == 0, then
ICC_ CTLR EL3.RM==1.
The following changes to ICC_SRE_ELux result in UNPREDICTABLE behavior:
. Changing the value of ICC_SRE EL3.SRE from 1 to 0.
. Changing the value of ICC_SRE EL2.SRE from 1 to 0.
. Changing the value of ICC_SRE_ELI1(S).SRE from 1 to 0.
Note
ICC _SRE _EL1(NS) can be changed from 1 to 0 to allow different VMs to have different ICC_SRE EL1 values.
Each ICC_SRE_ELx register listed in this section provides:
. An SRE bit to enable the ICC_* System register interface at that Exception level. For EL2 and EL3, the SRE
bit also enables access to all ICH_* registers.
. DIB and DFB bits to support interrupt bypass for the Exception level hierarchy. For more information about
bypass, see Interrupt bypass support on page 2-35.
In addition:
. ICC_SRE EL3. Enable controls EL1 access to ICC_SRE _EL1, and EL2 access to ICC_SRE_EL1 and
ICC_SRE EL2.
. ICC_SRE _EL2.Enable controls Non-secure EL1 accesses to ICC_SRE_EL1 if EL3 is not present or
ICC_SRE EL3.Enableis 1.
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-151

ID060315

Non-Confidential - Beta

8 Programmers’ Model
8.1 About the programmers’ model

Note

The ICC_SRE_ELx register associated with the highest implemented Exception level is always accessible to allow
software executing at that Exception level to configure the System register at different Exception levels.

The System register interface can be used for execution in both AArch32 state and AArch64 state.

For AArch32 state, accesses to GIC registers that are visible in the System register interface use the following

instructions:
. The MRC instruction for 32-bit read accesses.
. The MCR instruction for32-bit write accesses.

. The MCRR instruction for 64-bit write accesses to ICC_SGIOR EL1, ICC_SGI1IR EL1 and
ICC_ASGIIR_ELI.

See the ARM® Architecture Reference Manual, ARMVS, for ARMvS-A architecture profile for information about the
form of the MRC, MCR, and MCRR instructions.

System registers support 32-bit or 64-bit accesses. See the individual register description for the associated access
size.

The access type definitions for the System register interface are:

RW Read and write.

RO Read only. Writes result in an UNDEFINED exception.

WO Write only. Reads result in an UNDEFINED exception.
Note

For more information about UNDEFINED exceptions, see ARM® Architecture Reference Manual, ARMVS, for
ARMNVS-A architecture profile.

Table 8-3 shows the AArch64 and AArch32 register mappings for System register accesses by the GIC CPU
interface.

Table 8-3 System register accesses for GIC CPU interface registers

Name of System register accessed

AArch64 AArch32
ICC TARO ELI12 ICC_IARO
ICC IAR1_EL12 ICC_IARI
ICC_EOIR0 ELl2 ICC_EOIRO
ICC_EOIR1_EL1a ICC_EOIR1
ICC_HPPIRO ELI2 ICC_HPPIRO
ICC HPPIR1 ELI12 ICC _HPPIR1
ICC_BPRO ELla ICC_BPRO
ICC_BPRI ELIla ICC BPRI
ICC DIR EL12 ICC _DIR
ICC PMR EL1 ICC PMR
ICC RPR ELL1 ICC RPR

ICC_APOR<n> ELla

ICC_APOR<n>

8-152

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Non-Confidential - Beta

ARM IHI 0069A
ID060315

8 Programmers’ Model

8.1 About the programmers’ model

Table 8-3 System register accesses for GIC CPU interface registers (continued)

Name of System register accessed

AArch64 AArch32
ICC_APIR<n> ELI12 ICC_APIR<n>
ICC_CTLR_ELI ICC_CTLR
ICC_CTLR_EL3 ICC_ MCTLR
ICC_IGRPENO ELI ICC_IGRPENO

ICC_IGRPEN1 EL1

ICC_IGRPEN1

ICC IGRPENI1 EL3

ICC_MGRPENI1

ICC_SGIIR ELLI ICC_SGIIR
ICC_ASGIIR ELLI ICC_ASGIIR
ICC_SGIOR_EL1 ICC_SGIOR
ICC_SRE_ELI ICC_SRE
ICC_SRE_EL2 ICC_HSRE
ICC_SRE_EL3 ICC_MSRE

a. In addition to ICC_SRE_EL*.SRE,
ICC_SRE.SRE, ICC_HSRE.SRE, and
ICC_MSRE.SRE, SCR_EL3 and
HCR_EL2 control accessibility to these
registers.

The GIC virtual interface control registers are accessible when ICC_SRE EL2.SRE is 1.

Table 8-4 shows the AArch64 and AArch32 System register mappings for the GIC virtual interface control
registers.

Table 8-4 System register mappings for GIC virtual interface control registers

Name of System register accessed

AArch64 AArch32
ICH HCR EL2 ICH _HCR
ICH VTR _EL2 ICH VTR
ICH_MISR_EL2 ICH_MISR
ICH_EISR EL2 ICH_EISR
ICH ELRSR EL2 ICH ELRSR

ICH_APOR<n> EL2a

ICH_APOR<n>2

ICH APIR<n> EL22

ICH_APIR<n>

ARM IHI 0069A

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Non-Confidential - Beta

8-153

8 Programmers’ Model
8.1 About the programmers’ model

Table 8-4 System register mappings for GIC virtual interface control registers (continued)

Name of System register accessed

AArch64 AArch32

ICH LR<n> EL2[63:32]> ICH_LRC<n>b

ICH_LR<n> EL2[31:0]b ICH_LR<n>b

ICH VMCR_EL2 ICH_VMCR

a. n=0-3
b. n=0-15.

AArch64 System register access instruction encodings

Table 8-5 shows the format of the A64 MSR and MRS instructions to access the physical and virtual CPU interface.

Table 8-5 Mapping of MSR and MRS to physical and virtual CPU interface registers, AArch64 state

System register Access opc0 CRn opcl CRm opc2
ICC_APOR<n> EL12 RW 3 cl2 0 c8 4-7
ICC_AP1R<n> ELI? RW 3 cl2 0 c9 0-3
ICC_ASGIIR EL1 WO 3 cl2 0 cll 6
ICC_BPRO_ELI RW 3 cl2 0 c8 3
ICC_BPR1_ELI1b RW 3 cl2 0 cl2 3
ICC_CTLR_EL1b RW 3 cl2 0 cl2 4
ICC_CTLR EL3 RW 3 cl2 6 cl2 4
ICC DIR ELI WO 3 cl2 0 cll 1
ICC _EOIRO EL1 WO 3 cl2 0 c8 1
ICC _EOIR1 _EL1 WO 3 cl2 0 cl2 1
ICC_HPPIRO ELI1 RO 3 cl2 0 c8 2
ICC_HPPIR1_ELI RO 3 cl2 0 cl2 2
ICC_IARO EL1 RO 3 cl2 0 c8 0
ICC IARI1 ELI1 RO 3 cl2 0 cl2 0
ICC _IGRPENO EL1 RW 3 cl2 0 cl2 6
ICC _IGRPEN1_EL1b RW 3 cl2 0 cl2 7
ICC_IGRPEN1_EL3 RW 3 cl2 6 cl2 7
ICC PMR _EL1 RW 3 c4 0 6 0
ICC_RPR ELI1 RO 3 cl2 0 cll 3
ICC _SGIOR _EL1 WO 3 cl2 0 cll 7
ICC SGIIR ELI1 WO 3 cl12 0 cll 5
8-154 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.1 About the programmers’ model

Table 8-5 Mapping of MSR and MRS to physical and virtual CPU interface registers, AArch64 state

System register Access opc0 CRn opcl CRm opc2
ICC_SRE_ELLI RW 3 cl2 0 cl2 5
ICC_SRE_EL2 RW 3 cl2 4 9 5
ICC_SRE EL3 RW 3 cl2 6 cl2 5

a. n=0-3.

b. There is a Secure copy and a Non-secure copy of this register.

Table 8-6 shows the format of the A64 MSR and MRS instructions that access the virtual interface control registers.

Table 8-6 Mapping of MSR and MRS to virtual interface control registers, AArch64 state

System register Access opc0 CRn opc1t CRm opc2

ICH APOR<n> EL2 RW 3 cl2 4 c8 0-3
ICH_AP1R<n> EL2 RW 3 cl2 4 c9 0-3
ICH_HCR_EL2 RW 3 cl2 4 cll 0
ICH_VTR_EL2 RO 3 cl2 4 cll 1
ICH_MISR EL2 RO 3 cl2 4 cll 2
ICH EISR EL2 RO 3 cl2 4 cll 3
ICH ELRSR EL2 RO 3 cl2 4 cll 5
ICH_VMCR_EL2 RW 3 cl2 4 cll 7
ICH LR<n> EL22 RwW 3 cl2 4 cl2,c13 0-7
a. n=0-15

For more information about the A64 instructions, see the ARM" Architecture Reference Manual, ARMVS, for
ARMVS-A architecture profile.
AArch32 System register access instruction encodings

Table 8-7 shows the format of the A32 and T32 MCR and MRC instructions that access the physical and virtual CPU
interface.

Table 8-7 Mapping of MCR and MRC to physical and virtual CPU interface registers, AArch32

state
System register Access CRn opcl CRm opc2 Notes
ICC_APOR<n> RW cl2 0 c8 4-7 -
ICC_APIR<n>2 RW cl2 0 c9 0-3 -
ICC_ASGIIR WO - 1 cl2 - Accessed using the MCRR
and MRRC instructions
ICC_BPRO RW cl2 0 c8 3 -
ICC_BPRI1? RW cl2 0 cl2 3 -
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-155

ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.1 About the programmers’ model

Table 8-7 Mapping of MCR and MRC to physical and virtual CPU interface registers, AArch32 state

(continued)

System register Access CRn opc1 CRm opc2 Notes

ICC_CTLR2 RW cl2 0 cl2 4 -

ICC_DIR WO cl2 0 cll 1 -

ICC_EOIRO WO cl2 0 c8 1 -

ICC_EOIR1 WO cl2 0 cl2 1 -

ICC_HPPIRO RO cl2 0 c8 2 -

ICC_HPPIRI RO cl2 0 cl2 2 -

ICC_HSRE RW cl2 4 c9 5 -

ICC_IARO RO cl2 0 c8 0 -

ICC _IARI RO cl2 0 cl2 0 -

ICC _IGRPENO RwW cl2 0 cl2 6 -

ICC_IGRPEN]12 RW cl2 0 cl2 7 -

ICC_MCTLR RW cl2 6 cl2 4 -

ICC_MGRPENI RW cl2 6 cl2 7 -

ICC_MSRE RwW cl2 6 cl2 5 -

ICC_PMR RW c4 0 c6 0 -

ICC_RPR RO cl2 0 cll 3 -

ICC_SGIOR WO - 2 cl2 - Accessed using the MCRR

and MRRC instructions
ICC_SGIIR WO - 0 cl2 - Accessed using the MCRR
and MRRC instructions

ICC _SRE RW cl2 0 cl2 5 -

a. There is a Secure copy and a Non-secure copy of this register.

Table 8-8 shows the format of the A32 and T32 MCR and MRC instructions that access the virutal interface control

registers.

Table 8-8 Mapping of MCR and MRC to virtual interface control registers, AArch32 state

System register Access CRn opc1 CRm opc2
ICH_APOR<n>2 RwW cl2 4 c8 0-3
ICH API1R<n>a RW cl2 4 c9 0-3
ICH_HCR RwW cl2 4 cll 0

ICH VTR RO cl2 4 cll 1
ICH_MISR RO cl2 4 cll 2
ICH_EISR RO cl2 4 cll 3

8-156 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta

ID060315

8 Programmers’ Model
8.1 About the programmers’ model

Table 8-8 Mapping of MCR and MRC to virtual interface control registers, AArch32 state

System register Access CRn opc1 CRm opc2

ICH_ELRSR RO cl2 4 cll 5
ICH_VMCR RW cl2 4 cll 7
ICH_LR<n>2 RW cl2 4 cl2,c13 0-7
ICH_LRC<n>b RW cl2 4 cl4,cl5 0-7
a. n=0-3.
b. n=0-15

For more information about the T32 and A32 instructions, see the ARM® Architecture Reference Manual, ARMvS,
for ARMVS-A architecture profile.

Implementations with fixed System register enables

GICv3 implementations that are not required to be backwards compatible with GICv2 might have some System

register enable bits that are RAO/WI. GICv3 supports the following options:

. ICC _SRE EL3.SRE might be RAO/WI. This means that software executing at EL3 must always access the
GIC using the System registers, but lower Exception levels might use the memory-mapped registers to access
the GIC.

. ICC_SRE EL2.SRE might be RAO/WIif ICC_SRE EL3.SRE is also RAO/WI. This means that software
executing at EL2 must always access the GIC using the System registers and software executing at
Non-secure EL1 might use the memory-mapped registers to access the GIC.

. The Non-secure copy of ICC_SRE EL1.SRE might be RAO/WI if ICC_SRE EL2.SRE is also RAO/WI.

This means that software executing at Non-secure EL1 must always access the GIC using the System
registers.

. The Secure copy of ICC_SRE_EL1.SRE might be RAO/WIifICC_SRE EL3.SREandICC SRE EL2.SRE
are also RAO/WI. This means that software executing in Secure EL1 must access the GIC using the System
registers.

8.1.8 Access to Common registers

When System register access is enabled for interrupts at Non-secure EL1, Group 0 and Group 1 interrupts are
virtualized separately. This means that a VM operating at EL1 might control both physical interrupts and virtual
interrupts. For example, a VM might be configured to handle:

. Virtual Group 0 interrupts by setting SCR_EL3.NS and HCR_EL2.FMO to 1.

. Physical Group 1 interrupts by setting SCR_EL3.NS to 1, and clearing SCR_EL3.IRQ and HCR_EL2.IMO
to 0.

For most operations, this separate virtualization is achieved by using different registers to handle Group 0 and Group
1 interrupts. However, a number of registers are common to both Group 0 and Group 1 interrupts. These Common
registers are:

« ICC_SGIOR ELI,ICC SGIIR ELI,ICC_ASGIIR ELI.
« ICC_CTLR_ ELI.

« ICC_DIR ELI.

« ICC_PMR ELI.

« ICC_RPR ELI.

The rules governing whether accesses to the Common registers are physical accesses, virtual accesses, or whether
they generate a Trap exception, are as follows:
. When ICH_HCR _EL2.TC == 1, Non-secure accesses at EL1 generate a Trap Exception that is taken to EL2.

. When ICH HCR EL2.TDIR == 1, Non-secure writes at EL1 to ICC_DIR EL1 generate a Trap exception
that is taken to EL2.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-157
Non-Confidential - Beta

8 Programmers’ Model
8.1 About the programmers’ model

. When HCR_EL2.FMO ==1 || HCR_EL2.IMO == 1 Non-secure accesses at EL1 are virtual accesses:

— Accesses to all ICC_* register that are accessible at EL1, other than ICC_SRE_EL1*, access the
equivalent ICV_* registers instead.

— Virtual accesses to ICC_SGIOR_EL1, ICC_SGI1IR_EL1 and ICC_ASGIIR_ELI1 always generate a
Trap exception that is taken to EL2.

Otherwise, the lowest Exception level at which the Common registers can be accessed is the lowest Exception level
that is either:

« Specified by SCR_EL3.FIQ, SCR_EL3.NS, and HCR_EL2.FMO.
« Specified by SCR_EL3.IRQ, SCR_EL3.NS, and HCR_EL2.IMO.

This means that the Common registers can be accessed at:

« ELI, without trapping, when (SCR_EL3.FIQ == 0 || SCR_EL3.IRQ == 0) && (SCR_EL3.NS ==0 |
HCR_EL2.FMO == 0 || HCR_EL2. IMO == 0).

« EL2, without trapping, when (SCR_EL3.FIQ == 0 || SCR_EL3.IRQ == 0) && SCR_EL3.NS == 1.

Note
ARM expects that software configures a GIC so that:

. ICH HCR EL2.TC == 1 when Group 0 and Group 1 are configured asymmetrically and therefore access
different states, for example one group accesses the virtualized state and the other group accesses the physical
state.

. When the configuration is symmetric, ICH HCR EL2.TC == 0 and accesses to ICC_DIR ELI access the
physical state or the virtualized state for both Group 0 and Group 1.

8.1.9 Traps and enables for the ICC_SRE_ELXx registers

The read/write behavior of ICC_SRE ELx.SRE is controlled as follows:

. ICC_SRE _ELI(NS) is controlled by ICC_SRE EL2.{SRE, Enable} and ICC_SRE EL3.{SRE, Enable}:
— IfICC SRE EL2.SRE==00rICC_SRE EL3.SRE==0, then ICC_SRE EL1.SRE(NS)is RAZ/WL
— IfICC SRE EL2.Enable == 0, then accesses to ICC_SRE EL1(NS) are trapped to EL2.
— IfICC SRE EL3.Enable == 0, then accesses to ICC_SRE EL1(NS) are trapped to EL3.

. ICC _SRE _ELI(S) is controlled by ICC_SRE EL3.{SRE, Enable}:
— IfICC_SRE EL3.SRE ==0, then ICC_SRE ELI(S)is RAZ/WL
— IfICC_SRE _EL3.Enable ==0, then accesses to ICC_SRE_ELI1(S) are trapped to EL3.

. ICC_SRE _EL2 is controlled by ICC_SRE_EL3.{SRE, Enable}:
— IfICC_SRE EL3.SRE ==0, then ICC_SRE EL2.SRE is RAZ/WL
— IfICC SRE EL2.SRE == 0, then ICC_SRE EL2.Enable is treated as 1 for all purposes, other than

reading/writing the register.

— IfICC _SRE _EL3.Enable ==0, then accesses to ICC_SRE EL2 trap to EL3.

. IfICC_SRE EL3.SRE == 0, then ICC_SRE EL3.Enable is treated as 1 for all purposes, other than
reading/writing the register.

. In an implementation that includes EL3, if ICC_SRE EL1(S).SRE==1and ICC_SRE EL3.SRE ==1, then
ICC_SRE _EL2.SRE == 0 leads to UNPREDICTABLE behavior.

In the following tables:

X Indicates that the bit can be either O or 1.

- Indicates that this access is not applicable.

[0] RAZ/WI. Reads return 0 and writes are ignored. This bits is treated as 0.

[1] This bit is treated as 1 for all purposes, other than reading/writing the register.

(€)) This bit must be set to 1, otherwise behavior is UNPREDICTABLE.

8-158 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

NS
RW
T(EL2)
T(EL3)

UND

Indicates the value of SCR_EL3.NS.
Indicates that a read/write access is allowed.
Generates a Trap exception that is taken to EL2.

8 Programmers’ Model

8.1 About the programmers’ model

Generates a Trap exception that is taken to EL3. When EL3 is using AArch32, this is replaced by

an Undefined exception that is taken to the current Exception 1

evel.

Generates an Undefined exception or a trap to the current Exception level.

Table 8-9 shows the conditions under which ICC_SRE _EL3 can be accessed.

Table 8-9 ICC_SRE_EL3 access

ICC_SRE_EL3 ICC_SRE_EL2 ICC_SRE_EL1 EL3 EL2 EL1

SRE SRE
SRE Enable SRE Enable NS=0 NS=1 NS=1 NS=0 NS =1
X X X X X RW UND UND UND

Table 8-10 shows the conditions under which ICC_SRE EL2 can be accessed.

Table 8-10 ICC_SRE_EL2 access

ICC_SRE_EL3 ICC_SRE_EL2 ICC_SRE_EL1 EL3 EL2 EL1
SRE SRE

SRE Enable SRE Enable NS=0 NS=1 NS=0 NS=1 NS=1 NS=0 NS=1

0 [1] [0] [1 [0] [0] UND RW RW UND UND

1 0 X X 0 X UND RW T(EL3) UND UND

1 0 (1) X 1 X UND RW T(EL3) UND UND

1 1 X X 0 X UND RW RW UND UND

1 1 1) X 1 X UND RW RW UND UND

Table 8-11 shows the conditions under which ICC_SRE ELI1(S) can be accessed when EL3 is implemented.
Table 8-11 ICC_SRE_EL1(S) access
ICC_SRE_EL3 ICC_SRE_EL2 ICC_SRE_EL1 EL3 EL2 EL1
SRE SRE

SRE Enable SRE Enable NS=0 NS=1 NS=0 NS=1 NS=1 NS=0 NS=1
0 [1] [0] [1] [0] [0] RW N/A N/A RW N/A
1 0 X X X X RW N/A N/A T(EL3) N/A
1 1 X X X X RW N/A N/A RW N/A
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-159
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.1 About the programmers’ model

Table 8-12 shows the conditions under which ICC_SRE_EL1(NS) can be accessed when EL3 is implemented.

Table 8-12 ICC_SRE_EL1(NS) access

ICC_SRE_EL3 ICC_SRE_EL2 ICC_SRE_EL1 EL3 EL2 EL1

SRE SRE
SRE Enable SRE Enable NS=1 NS=0 NS=1 NS=1 NS=0 NS=1
0 [] [0] [1] [0] [0] NA RW RW NA RW
1 0 0 [1] 0 [0] N/A RW T(EL3) N/A T(EL3)
1 1 0 [] 0 [0] NA RW RW NA RW
1 0 (1) 0 1 X N/A RW T(EL3) N/A T(EL2)
1 1) 0 1 x NA RW RW N/A T(EL2)
1 0 (1) 1 1 x NA RW T(EL3) N/A T(EL3)
1 1 (1) 1 1 x NA RW RW NA RW
1 0 1 0 0 X N/A RW T(EL3) N/A T(EL2)
1 1 1 0 0 X N/A RW RW N/A T(EL2)
1 0 1 1 0 X NA RW T(EL3) N/A T(EL3)
1 1 1 1 0 X NA RW RW NA RW

Table 8-13 shows the conditions under which the single copy of ICC_SRE EL1 can be accessed when EL3 is not
implemented.

Table 8-13 ICC_SRE_EL1 access

ICC_SRE_EL2 ICC_SRE_EL1 EL2 EL1
SRE Enable

0 (1] [0] RW RW

0 1 [0] RW RW

1 0 X RW T(EL2)
1 1 X RW RwW

Accesses that are not described in these tables are not possible.

8-160 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.1 About the programmers’ model

8.1.10 Use of control registers for SGI forwarding

Table 8-14 shows the conditions that determine which SGI register is accessed, and whether an SGI is forwarded to
a specified target CPU interface when affinity routing is enabled.

Table 8-14 Forwarding an SGIl to a target PE

Configuration of specified

. . "
Access SGIl register accessed SGl on target PE Signal SGI?

AArch64 AArch32
Secure EL1 ICC SGIIR EL1 ICC_SGIIR Secure Group 0 Yes, provided GICD_CTLR.DS ==
EL3 1

ICC_ASGIIR EL1 ICC_ASGIIR

Secure Group 1 Yes
Non-secure Group 1 No
Secure Group 0 No
Secure Group 1 No
Non-secure Group 1 Yes

Non-secure EL1
EL2

ICC_SGIIR ELI ICC SGIIR

Secure Group 0

Yes, provided either that:

. This is permitted by the
corresponding field in
GICR_NSACR at each
target PE.

« GICD CTLR.DS==1.

Secure Group 1

Yes, if permitted by the
corresponding field in
GICR_NSACR at each target PE

Non-secure Group 1

Yes

ICC_ASGIIR EL1 ICC_ASGIIR

Secure Group 0

Yes, provided either that:

. This is permitted by the
corresponding field in
GICR_NSACR at each
target PE.

« GICD CTLR.DS==1.

Secure Group 1

If permitted by the corresponding
field in GICR_NSACR.

Non-secure Group 1

No

ICC_SGIOR EL1 ICC_SGIOR

Secure Group 0

Yes, provided either that:

. This is permitted by the
corresponding field in
GICR_NSACR at each
target PE.

« GICD CTLR.DS==1.

Group 1

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.

Non-Confidential - Beta

8-161

8 Programmers’ Model
8.1 About the programmers’ model

Note

. When System register access is not enabled for Secure EL1, or when GICD CTLR.DS == 1, the Distributor
treats Secure Group 1 interrupts as Group 0 interrupts. When Table 8-14 on page 8-161 indicates that a
Secure Group 1 interrupt is generated, the Distributor must send a Secure Group 0 interrupt to the CPU
interface.

. Generating SGIs for the other Security state is only supported when affinity routing is enabled for both
Security states.

8.1.11 GIC Security States

When a GIC supports two Security states, the behavior of PE accesses to the GIC registers depends on whether the
access is Secure or Non-secure. Except where this document explicitly indicates otherwise, when accessing GIC

registers:
. A Non-secure read of a register field holding state information for a Secure interrupt returns zero.
. The GIC ignores any Non-secure write to a register field holding state information for a Secure interrupt.

The ARM architecture defines the following register types:

Banked The device implements Secure and Non-secure copies of the register. See Register banking for more
information.
Secure The register is accessible only from a Secure access. The address of a Secure register is RAZ/WI to

any Non-secure access.

Common The register is accessible from both Secure and Non-secure accesses. The access permissions of
some or all fields in the register might depend on whether the access is Secure or Non-secure.

8.1.12 Register banking
Register banking refers to providing multiple copies of a register. The GIC banks registers in the following cases:

. If a GIC supports two Security states, some registers are Banked to provide separate Secure and Non-secure
copies of the registers. The Secure and Non-secure register bit assignments can differ. A Secure access to the
register address accesses the Secure copy of the register, and a Non-secure access accesses the Non-secure
copy.

. If the GIC is implemented as part of a multiprocessor system:

— Some registers are Banked to provide a separate copy for each connected PE. These include the
registers associated with PPIs and SGIs, and GICD NSACR<n>, where n=0, when implemented.

— The GIC implements the CPU interface registers independently for each CPU interface, and each
connected PE accesses the registers for the interface to which it connects.

The following GIC System registers are banked by Security state:
« ICC_APIR<n> ELI.

« ICC BPRI ELI.

. ICC _CTLR ELI.

. ICC_IGRPENI_ELI.

. ICC_SRE_ELL.

Where legacy operation supports physical interrupts, the following GICC_* memory-mapped registers are banked
by Security state:

« GICC CTLR.
- GICC BPR.

8-162 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.1 About the programmers’ model

8.1.13 Identification registers

This architecture specification defines offsets @xFD0-0xFFC in the Distributor register map as a read-only
identification register space. Table 8-15 shows the architecturally-required implementation of the identification
register space for the Distributor register map.

Table 8-15 The GIC identification register space, Distributor register map

Offset Name Type Description

OXFFDO-0XFFE4 - RO IMPLEMENTATION DEFINED registers
OXFFE8 GICD PIDR2 RO Distributor Peripheral ID2 Register
OXFFEC-0XFFFC - RO IMPLEMENTATION DEFINED registers

In addition, the architecture specification also defines offsets 0xFD@ - 0x0FFC in the Redistributor register map as
identification register space, as Table 8-16 shows.

Table 8-16 The GIC identification register space, Redistributor register map

Offset Name Type Description

OxFFDO-OXFFE4 - RO IMPLEMENTATION DEFINED registers
OXFFE8 GICR PIDR2 RO Redistributor Peripheral ID2 Register
OXFFEC-OXFFFC - RO IMPLEMENTATION DEFINED registers

In addition, the architecture specification also defines offsets 0xFDO - 0xOFFC in the ITS register map as identification
register space, as Table 8-17 shows.

Table 8-17 The GIC identification register space, ITS register map

Offset Name Type Description

OXFFDO-OXFEF4 - RO IMPLEMENTATION DEFINED registers
OxFEF8 GITS PIDR2 RO ITS Peripheral ID2 Register
OXFFEC-OXFFFC - RO IMPLEMENTATION DEFINED registers

ARM generic ID registers can be used in the IMPLEMENTATION DEFINED register space.

GICD_PIDR2, Peripheral ID2 Register
The GICD PIDR?2 characteristics are:

Purpose This register provides a four-bit architecturally-defined architecture revision field. The
remaining bits of the register are IMPLEMENTATION DEFINED.

Usage constraints There are no usage constraints. However, ARM strongly recommends that bits[31:8] of the
register are reserved, RAZ.

Configurations This register is available in all configurations of the GIC.
Attributes See the register summary in Table 8-15.

Figure 8-2 on page 8-164 shows the GICD PIDR2 bit assignments.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-163
ID060315 Non-Confidential - Beta

8 Programmers’ Model

8.1 About the programmers’ model

31

8 7 4 3 0

IMPLEMENTATION DEFINED ArchRev

IMPLEMENTATION DEFINED

Figure 8-2 GICD_PIDR2 bit assignments

Table 8-18 shows the GICD_PIDR?2 bit assignments.

Table 8-18 GICD_PIDR2 bit assignments

Bits

Name Function

[31:8]

- IMPLEMENTATION DEFINED. The CoreLink and CoreSight Peripheral ID Registers scheme requires these
bits to be reserved, RESO, and ARM strongly recommends that implementations follow this scheme.

[7:4]

ArchRev Revision field for the GIC architecture. The value of this field depends on the GIC architecture version
that applies to the Distributor or Redistributor:

0x1. GICvl1.
0x2. GICv2.
0x3. GICv3.
0x4. GICv4.
0x5-0xF. Reserved

[3:0]

- IMPLEMENTATION DEFINED.

GICR_PIDR2, Redistributor Peripheral ID2 Register

The GICR_PIDR2 characteristics are:

Purpose

This register provides a four-bit architecturally-defined architecture revision field. The
remaining bits of the register are IMPLEMENTATION DEFINED.

Usage constraints There are no usage constraints. However, ARM strongly recommends that bits[31:8] of the

Configurations

Attributes

register are reserved, RAZ.
This register is available in all configurations of the GIC.

See the register summary in Table 8-16 on page 8-163.

The GICR_PIDR2 bit assignments are the same as those for GICD_PIDR2.

GITS_PIDR2, Redistributor Peripheral ID2 Register

The GITS_PIDR2 characteristics are:

Purpose

This register provides a four-bit architecturally-defined architecture revision field. The
remaining bits of the register are IMPLEMENTATION DEFINED.

Usage constraints There are no usage constraints. However, ARM strongly recommends that bits[31:8] of the

Configurations

Attributes

register are reserved, RAZ.
This register is available in all configurations of the GIC.

See the register summary in Table 8-17 on page 8-163.

The GITS_PIDR?2 bit assignments are the same as those for GICD_PIDR2.

8-164

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.1 About the programmers’ model

The ARM implementation of the GIC identification registers

Note

. The ARM implementation of these registers is consistent with the identification scheme for CoreLink and
CoreSight components. This implementation identifies the device as a GIC that implements this architecture.
It does not identify the designer or manufacturer of the GIC implementation. For information about the
designer and manufacturer of a GIC implementation, see the descriptions for GICD_IIDR and GICC IIDR.

. In other contexts, this identification scheme identifies a component in a system. The GIC use of the scheme
is different. It identifies only that the device is an implementation of a version of the GIC architecture defined
by this specification. Software must read GICD_IIDR and GICC_IIDR to discover, for example, the
implementer and version of the GIC hardware.

All component classes require the implementation of the Component and Peripheral Identification registers, as
described in:

. Component ldentification Registers, CIDR0O-CIDR3.
. Peripheral Identification Registers, PIDR0 - PIDR7.

Component Identification Registers, CIDR0O-CIDR3

Table 8-19 shows the Component Identification Registers.

Table 8-19 Component Identification Registers

Name Offset Bits Field Value Description

CIDR3 OXFFFC [7:0] PRMBL 3 0xB1 Preamble

CIDR2 OXFFF8 [7:0] PRMBL 2 0x05 Preamble

CIDR1 OXFFF4 [7:4] CLASS OxF Component Class
[3:0] PRMBL 1 0x0 Preamble

CIDRO OxFFFO [7:0] PRMBL 0 0x0D Preamble

Peripheral Identification Registers, PIDRO - PIDR7

Table 8-20 shows the Peripheral Identification Registers.

Table 8-20 Peripheral Identification Registers

Name Offset Bits Field Value Description
PIDR7 OXFFDC [7:0] - RESO Reserved
PIDR6 OxFFD8 [7:0] - RESO Reserved
PIDR5 OXFFD4 [7:0] - RESO Reserved
PIDR4 0xFFDO [7:4] SIZE 0x4 64 KB software visible page
[3:0] DES 2 0x4 ARM implementation
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-165

ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.1 About the programmers’ model

Table 8-20 Peripheral Identification Registers (continued)

Name Offset Bits Field Value Description
PIDR2 OXFFES [7:4] ARCHREV IMPDEF * ox1. GICvI.
. 0x2. GICv2.
. 0x3. GICv3.
. 0x4. GICv4.
. 0x5 - OxF. Reserved.
[3] JEDEC ox1 JEP code
[2:0] DES 1 0x3 JEP106 identification code, bits[6:4]
PIDR1 OXFFE4 [7:4] DES 0 0xB JEP106 identification code, bits[3:0]
[3:0] PART 1 0x4 Part number, bits[11:8]
PIDRO OXFFEQ [7:0] PART 0 0x92 Part number, bits[7:0]

A component is uniquely identified by the following fields:

JEP106 continuation code.

JEP106 identification code.

Part Number.
ArchRev.

Customer Modified.
RevAnd.

The meaning of the fields is as follows:

JEP106 continuation code, JEP106 identification code (DES_2, DES 1, DES 0)

These indicate the designer of the component and not the implementer, except where the two are the
same. To obtain a number, or to see the assignment of these codes, contact JEDEC at
http://www.jedec.org.

A JEDEC code takes the following form:

. A sequence of zero or more bytes, all of the value 0x7F.

. A following 8-bit number, that is not 0x7F, and where bit[7] is an odd parity bit.
For example, ARM Limited is assigned the code @x7F 0x7F 0x7F 0x7F 0x3B.

The encoding used in the Peripheral Identification Registers is as follows:

. The continuation code is the number of times @x7F appears before the final number. for
example, for ARM Limited this is 0x4.

. The identification code is bits[6:0] of the final number. For example, for ARM Limited this

is 0x3B.

Part number (PART 1, PART 0)

ArchRev

This is selected by the designer of the component.

In GICV3, this field is ArchRev, see GICD PIDR?2, Peripheral ID2 Register on page 8-163.

Customer Modified (CMOD) Where the component is reusable IP, this value indicates if the customer has
modified the behavior of the component. In most cases this field is zero.

RevAnd (REVAND) The RevAnd field is an incremental value starting at 0x0 for the first design of a component.
This only increases by 1 for both major and minor revisions, and is simply used as a look-up to
establish the exact major and minor revision.

8-166

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.

Non-Confidential - Beta

ARM IHI 0069A
ID060315

8 Programmers’ Model
8.1 About the programmers’ model

4KB Count (SIZE) This is a 4-bit value that indicates the total contiguous size of the memory block used by this
component in powers of 2 from the standard 4KB. If a component only requires a single 4KB then
this must read as log to the base of 2 of the number of 4KB blocks.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-167
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2 AArch64 System register descriptions

This section describes each of the physical AArch64 GIC System registers in register name order. The ICC prefix
indicates a GIC CPU interface System register. Each AArch64 System register description contains a reference to
the AArch32 register that provides the same functionality.

Unless otherwise stated, the bit assignments for the GIC System registers are the same as those for the equivalent
GICC_* and GICV_* memory-mapped registers.

The ICC prefix is used by the System register access mechanism to select the physical or virtual interface System
registers according to the setting of HCR EL2. The equivalent memory-mapped physical registers are described in
The GIC CPU interface register descriptions on page 8-524.The equivalent virtual interface memory-mapped
registers are described in The GIC virtual CPU interface register descriptions on page 8-563.

For information about the System register encoding tables, see the individual register description.

The following access encodings are IMPLEMENTATION DEFINED.

op0 op1 CRn CRm op2
11 0 1100 1101 0
8-168 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.1 ICC_APOR<n>_ELA1, Interrupt Controller Active Priorities Group 0 Registers,n=0-3

The ICC_APOR<n> ELI characteristics are:

Provides information about Group 0 active priorities.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RW RW RW RW RW

The ICC_APOR<n> EL1 registers are only accessible at Non-secure EL1 when A Arch64
HCR _EL2.FMO is set to 0.

Note

When AArch64 HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding used to
access ICC_APOR<n> EL1 results in an access to ICV_APOR<n> ELI.

Writing to these registers with any value other than the last read value of the register (or 0x00000000
when no Group 0 active priorities) might cause the interrupt prioritisation system to malfunction,
causing:

. Interrupts that should pre-empt execution to not pre-empt execution.
. Interrupts that should not pre-empt execution to pre-empt execution.

ICC_APOR1_EL1 is only implemented in implementations that support 6 or more bits of priority.
ICC_APOR2 _EL1 and ICC_APOR3_EL1 are only implemented in implementations that support 7
bits of priority. If an implementation that supports fewer bits of priority attempts to access these
registers, it generates an Undefined Instruction exception.

Writing to the active priority registers in any order other than the following order might cause the
interrupt prioritisation system to malfunction:

. ICC_APOR<n>_ELI.
. Secure ICC_AP1R<n> ELI.
. Non-secure ICC_AP1R<n> ELI.

Traps and Enables

If ICC_SRE _ELI1.SRE==0, EL1 accesses to this register are trapped to EL1.

IfICH_HCR EL2.TALLO==1, Non-secure EL1 accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.FIQ==1, Secure EL1 accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, EL2 accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and HCR_EL2.FMO=0, Non-secure EL1 accesses to this register
are trapped to EL3.

Configurations

AArch64 System register ICC_APOR<n> EL1 is architecturally mapped to AArch32 System
register ICC_ APOR<n>.

ICC_APOR<n>_EL]I is a 32-bit register.

Field descriptions

The ICC_APOR<n>_ EL]1 bit assignments are:

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-169
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.
This field resets to 0.

Accessing the ICC_APOR<n>_ELA1:
To access the ICC_APOR<n> EL1:

MRS <Xt>, ICC_APOR<n>_EL1 ; Read ICC_APOR<n>_EL1 into Xt, where n is in the range 0 to 3
MSR ICC_APOR<n>_EL1, <Xt> ; Write Xt to ICC_APOR<n>_EL1l, where n is in the range 0 to 3

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1000 1:n<1:0>

When AArch64 HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_APOR<n> ELI.

8-170

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.2 ICC_AP1R<n>_ELA1, Interrupt Controller Active Priorities Group 1 Registers,n=0-3
The ICC_AP1R<n> ELI characteristics are:

Purpose
Provides information about Group 1 active priorities.

Provides information about virtual Group 1 active priorities.

Usage constraints

ICC_APIR<n> ELI(S) is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

. . RW . - RW

ICC_API1R<n> ELI1(NS) is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RW - RW RW -

The ICC_AP1R<n> EL1 registers are only accessible at Non-secure EL1 when HCR_EL2.IMO is
set to 0.

Note

When AArch64 HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding used to
access ICC_AP1R<n> EL1 results in an access to ICV_AP1R<n> ELI.

Writing to these registers with any value other than the last read value of the register (or 0x00000000
when no Group 1 active priorities) might cause the interrupt prioritisation system to malfunction,

causing:
. Interrupts that should pre-empt execution to not pre-empt execution.
. Interrupts that should not pre-empt execution to pre-empt execution.

ICC_APIR1 _ELI1 is only implemented in implementations that support 6 or more bits of priority.
ICC_APIR2 EL1 and ICC_APIR3_EL1 are only implemented in implementations that support 7
bits of priority. If an implementation that supports fewer bits of priority attempts to access these
registers, it generates an Undefined Instruction exception.

Writing to the active priority registers in any order other than the following order might cause the
interrupt prioritisation system to malfunction:

. ICC_APOR<n> ELI.
. Secure ICC_AP1R<n> ELI.
. Non-secure ICC_AP1R<n> ELI.

Traps and Enables
IfICC_SRE EL1.SRE==0, EL1 accesses to this register are trapped to EL1.
IfICH HCR_EL2.TALL1==1, Non-secure EL1 accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.IRQ==1, Secure EL1 accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.IRQ==1, EL2 accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.IRQ==1, and HCR_EL2.IMO=0, Non-secure EL1 accesses to this register
are trapped to EL3.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-171
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

Configurations

AArch64 System register ICC_APIR<n> ELI(S) is architecturally mapped to AArch32 System
register [ICC_API1R<n> (S).

AArch64 System register ICC_AP1R<n> EL1(NS) is architecturally mapped to AArch32 System
register [ICC_AP1R<n> (NS).

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural
requirement that the value 0x00000000 is consistent with no interrupts being active.

Attributes
ICC_API1R<n> EL1 is a 32-bit register.

Field descriptions

The ICC_APIR<n> ELI bit assignments are:

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.
This field resets to 0.

Accessing the ICC_AP1R<n>_ELA1:
To access the ICC_API1R<n> EL1:

MRS <Xt>, ICC_AP1R<n>_EL1 ; Read ICC_AP1R<n>_EL1 into Xt, where n is in the range 0 to 3
MSR ICC_AP1R<n>_EL1, <Xt> ; Write Xt to ICC_AP1R<n>_EL1l, where n is in the range 0 to 3

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1001 0:n<1:0>

When AArch64 HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_APIR<n> ELI.

8-172

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.3 ICC_ASGIM1R_ELA1, Interrupt Controller Alias Software Generated Interrupt Group 1 Register
The ICC_ASGIIR_ELI1 characteristics are:

Purpose

Generates Group 1 SGIs for the Security state that is not the current Security state.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- WO WO WO WO wO

This register allows software executing in a Secure state to generate Non-secure Group 1 SGIs. It

will also allow software executing in a Non-secure state to generate Secure Group 1 SGIs, if

permitted by the settings of GICR_NSACR in the Redistributor corresponding to the target PE.
Traps and Enables

If AArch64 HCR_EL2.FMO==1, Non-secure EL1 write accesses to this register are trapped to EL2.

If AArch64 HCR_EL2.IMO==1, Non-secure EL1 write accesses to this register are trapped to EL2.

IfICC_SRE EL1.SRE==0, EL1 write accesses to this register are trapped to EL1.

If ICH HCR_EL2.TC==1, Non-secure EL1 write accesses to this register are trapped to EL2.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure EL1 write accesses to this register
are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, EL2 write accesses to this register are
trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and
HCR_EL2.FMO==0, Non-secure EL1 write accesses to this register are trapped to EL3.
Configurations
AArch64 System register [CC_ASGIIR_EL1 performs the same function as AArch32 System
operation ICC_ASGI1R.
Attributes
ICC_ASGIIR ELI1 is a 64-bit register.

Field descriptions

The ICC_ASGIIR_ELI bit assignments are:

63 N 56 55 5y 48 47 N 41 40 39 N 32 31 9 28 27 N 24 23 5y 16 15 9 0
t¢ t¢ t¢ {¢ {¢ {¢ t¢ {¢

RESO Aff3 RESO Aff2 RESO | INTID Aff1 TargetList

)))) J))) J)
143 143 143 149 49 149 143 49

IRM
Bits [63:56]
Reserved, RESO.
Aff3, bits [55:48]
The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.
If the IRM bit is 1, this field is RESO.
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-173

ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

Bits [47:41]

Reserved, RESO.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts should be distributed to PEs.
Possible values are:

0 Interrupts routed to the PEs specified by Aff3.Aff2. Affl.<target list>.

1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]
The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.
If the IRM bit is 1, this field is RESO.

Bits [31:28]

Reserved, RESO.

INTID, bits [27:24]
The INTID of the SGI.

Aff1, bits [23:16]
The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.
If the IRM bit is 1, this field is RESO.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the
PE within a cluster with an Affinity 0 value equal to the bit number.

If a bitis 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the
Distributor. It is IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system
error.

Note

This restricts a system to sending targeted SGIs to PE with an affinity O number of greater than 16.

If the IRM bit is 1, this field is RESO.

Accessing the ICC_ASGI1R_EL1:
To access the ICC_ASGI1R ELI1:
MSR ICC_ASGIIR_EL1, <Xt> ; Write Xt to ICC_ASGI1R_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1011 110

8-174 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.24 ICC_BPRO_ELA1, Interrupt Controller Binary Point Register 0
The ICC_BPRO EL1 characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines Group 0 interrupt preemption.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RW RW RW RW RW

ICC_BPRO EL1 is only accessible at Non-secure EL1 when AArch64 HCR_EL2.FMO is set to 0.

Note

When AArch64 HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding used to
access ICC_BPRO _ELI results in an access to ICV_BPRO _ELI.

The minimum binary point value is derived from the number of implemented priority bits. The
number of priority bits is IMPLEMENTATION DEFINED, and reported by ICC_CTLR_EL1.PRIbits and
ICC_CTLR_EL3.PRIbits.

An attempt to program the binary point field to a value less than the minimum value sets the field
to the minimum value. On a reset, the binary point field is set to the minimum supported value.
Traps and Enables
IfICC_SRE EL1.SRE==0, EL1 accesses to this register are trapped to EL1.
If ICH HCR_EL2.TALLO==1, Non-secure EL1 accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.FIQ==1, Secure EL1 accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, EL2 accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, and HCR_EL2.FMO=0, Non-secure EL1 accesses to this register
are trapped to EL3.
Configurations
AArch64 System register ICC_BPRO _EL1 is architecturally mapped to AArch32 System register
ICC _BPRO.
Attributes
ICC _BPRO_EL1 is a 32-bit register.

Field descriptions

The ICC_BPRO _EL1 bit assignments are:

31 3 2 0

RESO

I_li BinaryPoint

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-175
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

Bits [31:3]
Reserved, RESO.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field,
that determines interrupt preemption, and a subpriority field. This is done as follows:

Binary point value Group priority field Subpriority field

Field with binary point

0 [7:1] [0] 228828g.8
1 [7:2] [1:0] 88228858
2 [7:3] [2:0] £gggo.Sss
3 [7:4] [3:0] 2ggg.SSss
4 [7:5] [4:0] £288.55SSS
5 [7:6] [5:0] £8.558SSS
6 [7] [6:0] £.558SSSS
7 No preemption [7:0] .S5SSSSSS
Accessing the ICC_BPR0O_EL1:
To access the ICC_BPRO _EL1:
MRS <Xt>, ICC_BPRO_EL1 ; Read ICC_BPRO_EL1 into Xt
MSR ICC_BPRO_EL1, <Xt> ; Write Xt to ICC_BPRO_EL1
Register access is encoded as follows:
op0 op1 CRn CRm op2
11 000 1100 1000 011

When AArch64 HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to

ICV_BPRO ELLI.

8-176

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.

Non-Confidential - Beta

ARM IHI 0069A
ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.5 ICC_BPR1_ELA1, Interrupt Controller Binary Point Register 1

The ICC_BPR1 EL1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines Group 1 interrupt preemption.

Usage constraints

ICC_BPR1 _ELI(S) is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - RW - - RW

ICC_BPR1_ELI1(NS) is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RW - RW RW -

ICC _BPR1 _EL1 is only accessible at Non-secure EL1 when AArch64 HCR_EL2.IMO is set to 0.

Note

When AArch64 HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding used to
access ICC_BPR1 EL1 results in an access to ICV_BPR1 ELI.

The reset value is IMPLEMENTATION DEFINED, but is equal to:
. For the Secure copy of the register, the minimum value of ICC_BPRO EL1.
. For the Non-secure copy of the register, the minimum value of ICC_BPRO_EL1 plus one.

An attempt to program the binary point field to a value less than the reset value sets the field to the
reset value.

Traps and Enables

IfICC_SRE_EL1.SRE==0, EL1 accesses to this register are trapped to EL1.

IfICH HCR EL2.TALL1==1, Non-secure EL1 accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.IRQ==1, Secure EL1 accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.IRQ==1, EL2 accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.IRQ==1, and HCR_EL2.IMO=0, Non-secure EL1 accesses to this register
are trapped to EL3.

Configurations

Attributes

AArch64 System register ICC_BPR1_EL1(S) is architecturally mapped to AArch32 System
register ICC_BPRI1 (S).

AArch64 System register [ICC_BPR1_EL1(NS) is architecturally mapped to AArch32 System
register [ICC_BPR1 (NS).

In GIC implementations supporting two Security states, this register is Banked.

ICC _BPR1 _ELI1 is a 32-bit register.

Field descriptions

The ICC_BPR1_EL1 bit assignments are:

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-177
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

31

RESO

Bits [31:3]

Reserved, RESO.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the
value of this field controls how the 8-bit interrupt priority field is split into a group priority field,
that determines interrupt preemption, and a subpriority field. This is done for the Secure

ICC_BPR1_ELI1.BinaryPoint as follows:

I_li BinaryPoint

Binary point value

Group priority field Subpriority field

Field with binary point

0 [7:1] (0] 2282888 8
1 [7:2] [1:0] 8288Lge.s8
2 [7:3] [2:0] 2geeg.Sss
3 [7:4] [3:0] £822.8SSS
4 [7:5] [4:0] 22g.SSSSS
5 [7:6] [5:0] £g.55SSSS
6 [7] [6:0] £.5588SSS
7 No preemption [7:0] .5SSSSSSS

For the Non-secure ICC_BPR1_EL1.BinaryPoint, the split of the interrupt priority field is as

follows:

Binary point value

Group priority field Subpriority field Field with binary point

0 - - -
1 [7:1] (0] 2282888 8
2 [7:2] [1:0] 8228Lge.s8
3 [7:3] [2:0] 2ggeg.Sss
4 [7:4] [3:0] 2828.8SSS
5 [7:5] [4:0] 22g.SSSSS
6 [7:6] [5:0] £g.588SSS
7 [7] [6:0] £.5588SSS

Writing 0 to this field will instead set this field to its reset value, which is IMPLEMENTATION DEFINED

and non-zero.

8-178

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.

Non-Confidential - Beta

ARM IHI 0069A
ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

If EL3 is implemented and ICC_CTLR_EL3.CBPR_EL1Sis I:
. Writing to this register at Secure EL1 modifies ICC_BPRO_ELI.
. Reading this register at Secure EL1 returns the value of ICC_BPRO_EL1.

If EL3 is implemented and ICC_CTLR_EL3.CBPR_ELINS is 1, Non-secure accesses to this
register at EL1 or EL2 behave as follows, depending on the values of AArch64 HCR _EL2.IMO and
AArch64 SCR_EL3.IRQ:

AArch64 HCR_EL2.IMO AArch64 SCR_EL3.IRQ Behavior

0 0 Non-secure EL1 and EL2 reads return
ICC_BPRO_ELI1 + 1 saturated to 0b111.
Non-secure EL1 and EL2 writes are ignored.

0 1 Non-secure EL1 and EL2 accesses trap to EL3.

1 0 Non-secure EL1 accesses affect virtual
interrupts. Non-secure EL2 reads return
ICC_BPRO_ELI1 + 1 saturated to 0b111.
Non-secure EL2 writes are ignored.

1 1 Non-secure EL1 accesses affect virtual
interrupts. Non-secure EL2 accesses trap to EL3.

If EL3 is not implemented and ICC_CTLR_EL1.CBPR is 1, Non-secure accesses to this register at
EL1 or EL2 behave as follows, depending on the values of AArch64 HCR_EL2.IMO:

AArch64

HCR_EL2 Behavior

.IMO

0 Non-secure EL1 and EL2 reads return ICC_BPRO_ELI + 1 saturated to 0b111. Non-secure EL1
and EL2 writes are ignored.

1 Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPRO_EL1

+ 1 saturated to 0b111. Non-secure EL2 writes are ignored.

Accessing the ICC_BPR1_EL1:
To access the ICC_BPR1 _ELI1:

MRS <Xt>, ICC_BPR1_EL1 ; Read ICC_BPR1_EL1 into Xt
MSR ICC_BPRI_EL1, <Xt> ; Write Xt to ICC_BPR1_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1100 011

When AArch64 HCR _EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_BPR1_ELI.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-179
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.6 ICC_CTLR_ELA1, Interrupt Controller Control Register (EL1)
The ICC_CTLR_EL1 characteristics are:
Purpose
Controls aspects of the behavior of the GIC CPU interface and provides information about the
features implemented.
Usage constraints
ICC_CTLR_ELI(S) is accessible as follows:
ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)
- - RW - - RW
ICC_CTLR_ELI(NS) is accessible as follows:
ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)
- RW - RW RW -
ICC_CTLR_EL1 is only accessible at Non-secure EL1 when AArch64 HCR_EL2.{FMO, IMO} ==
{0, 0}.
Note
When AArch64 HCR_EL2.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding
used to access ICC_CTLR_EL1 results in an access to ICV_CTLR_EL1.
Traps and Enables
IfICC_SRE_EL1.SRE==0, EL1 accesses to this register are trapped to EL1.
IfICH_HCR_EL2.TC==1, Non-secure EL1 accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure EL1 accesses to this register are
trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, EL2 accesses to this register are trapped
to EL3.
If AArch64 SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and
HCR_EL2.FMO==0, Non-secure EL1 accesses to this register are trapped to EL3.
Configurations
AArch64 System register ICC_CTLR_EL1(S) is architecturally mapped to AArch32 System
register ICC_CTLR (S).
AArch64 System register [ICC_CTLR_EL1(NS) is architecturally mapped to AArch32 System
register [ICC_CTLR (NS).
Attributes
ICC_CTLR _ELI1 is a 32-bit register.
Field descriptions
The ICC_CTLR EL1 bit assignments are:
8-180 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

31 16 1514 13 1110 8 76 5 210
RESO IDbits | PRIbits RESO
I— CBPR
EOImode
PMHE
RESO
SEIS
A3V
Bits [31:16]
Reserved, RESO.
A3V, bit [15]
Affinity 3 Valid. Read-only and writes are ignored. Possible values are:
0 The virtual CPU interface logic only supports zero values of Affinity 3 in SGI
generation System registers.
1 The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI generation

System registers.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports local
generation of SEIs:

0 The CPU interface logic does not support local generation of SEIs by the CPU interface.
1 The CPU interface logic supports local generation of SEIs by the CPU interface.
If EL3 is implemented, this bit is an alias of [CC_CTLR EL3.SEIS.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of virtual interrupt identifier bits

supported:
000 16 bits.
001 24 bits.

All other values are reserved.

This field resets to a value that is architecturally UNKNOWN.

PRIbits, bits [10:8]
Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus
one.
An implementation that supports 2 Security states must implement at least 32 levels of physical
priority (5 priority bits).
An implementation that supports only 1 Security state must implement at least 16 levels of physical
priority (4 priority bits).

Note

This field always returns the number of bits implemented, regardless of the Security state of the
access or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers
ICC_BPRO_EL1 and ICC_BPR1_ELI.

If EL3 is implemented, physical accesses return the value from ICC_CTLR EL3.PRIbits.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-181
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

Bit [7]

If EL3 is not implemented, physical accesses return the value from this field.

Reserved, RESO.

PMHE, bit [6]

Bits [5:2]

Priority Mask Hint Enable. Controls whether the priority mask register is used as a hint for interrupt
distribution:

0 Disables use of ICC_PMR_EL1 as a hint for interrupt distribution.
1 Enables use of ICC_PMR_EL1 as a hint for interrupt distribution.

If EL3 is implemented, this bit is an alias of [CC_CTLR EL3.PMHE. Whether this bit can be
written as part of an access to this register depends on the value of GICD CTLR.DS:

. If GICD_CTLR.DS == 0, this bit is read-only.
. If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or
read-write:

. If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.

. If this bit is read/write, it resets to zero.

Reserved, RESO.

EOImode, bit [1]

CBPR, bit [0]

EOI mode for the current Security state. Controls whether a write to an End of Interrupt register also
deactivates the interrupt:

0 ICC_EOIR0O_EL1 and ICC_EOIR1_ELI provide both priority drop and interrupt
deactivation functionality. Accesses to ICC_DIR EL1 are UNPREDICTABLE.
1 ICC_EOIR0O_EL1 and ICC_EOIR1_ELI provide priority drop functionality only.

ICC _DIR _ELI1 provides interrupt deactivation functionality.
The Secure ICC_CTLR_EL1.EOIMode is an alias of ICC_CTLR EL3.EOImode ELI1S.
The Non-secure ICC_CTLR EL1.EOIMode is an alias of ICC_CTLR EL3.EOImode ELINS
This field resets to a value that is architecturally UNKNOWN.

Common Binary Point Register. Controls whether the same register is used for interrupt preemption
of both Group 0 and Group 1 interrupts:

0 ICC_BPRO _ELI determines the preemption group for Group 0 interrupts only.
ICC BPR1 EL1 determines the preemption group for Group 1 interrupts.

1 ICC_BPRO_EL1 determines the preemption group for both Group 0 and Group 1
interrupts.

If EL3 is implemented:

. This bitis an alias of I[CC_CTLR EL3.CBPR_EL1{S,NS} where S or NS corresponds to the
current Security state.

. If GICD_CTLR.DS == 0, this bit is read-only.
. If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, this bit is read/write, and it resets to zero.

Accessing the ICC_CTLR_EL1:

To access the ICC_CTLR_EL1:

MRS <Xt>, ICC_CTLR_EL1 ; Read ICC_CTLR_EL1 into Xt

8-182

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

MSR ICC_CTLR_EL1, <Xt> ; Write Xt to ICC_CTLR_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 000 1100 1100 100

When AArch64 HCR _EL2.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an
access to ICV_CTLR_EL1.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-183
Non-Confidential - Beta

8 Programmers’ Model

8.2 AArch64 System register descriptions

8.2.7 ICC_CTLR_ELS3, Interrupt Controller Control Register (EL3)

The ICC_CTLR_ELS3 characteristics are:

Purpose

Controls aspects of the behavior of the GIC CPU interface and provides information about the
features implemented.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - - RW RW

Traps and Enables

IfICC_SRE EL3.SRE==0, EL3 accesses to this register are trapped to EL3.

Configurations

Attributes

AArch64 System register [CC_CTLR_EL3 can be mapped to AArch32 System register
ICC_MCTLR, but this is not architecturally mandated.

ICC_CTLR _EL3 is a 32-bit register.

Field descriptions

The ICC_CTLR_ELS3 bit assignments are:

31

181716151413 1110 876 543210

RESO IDbits | PRIbits

nDS

RESO

| LL CBPR_EL1S
CBPR_EL1NS

EOImode_EL3

EOImode_EL1S

EOImode_EL1NS

RM
PMHE
RESO
SEIS
A3V
Bits [31:18]
Reserved, RESO.
nDS, bit [17]
Disable Security not supported. Read-only and writes are ignored. Possible values are:
0 The CPU interface logic supports disabling of security.
1 The CPU interface logic does not support disabling of security, and requires that
security is not disabled.
8-184 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

Bit [16]

Reserved, RESO.

A3V, bit [15]
Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

0 The CPU interface logic does not support non-zero values of the Aff3 field in SGI
generation System registers.

1 The CPU interface logic supports non-zero values of the Aff3 field in SGI generation
System registers.
SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports
generation of SEIs:

0 The CPU interface logic does not support generation of SEIs.
1 The CPU interface logic supports generation of SEIs.
IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits

supported:
000 16 bits.
001 24 bits.

All other values are reserved.

This field resets to a value that is architecturally UNKNOWN.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus
one.

An implementation that supports 2 Security states must implement at least 32 levels of physical
priority (5 priority bits).

An implementation that supports only 1 Security state must implement at least 16 levels of physical
priority (4 priority bits).

Note

This field always returns the number of bits implemented, regardless of the value of SCR_EL3.NS
or the value of GICD CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers
ICC_BPRO ELI and ICC_BPRI ELI.
Bit [7]

Reserved, RESO.

PMHE, bit [6]
Priority Mask Hint Enable.
0 Disables use of the priority mask register as a hint for interrupt distribution.
1 Enables use of the priority mask register as a hint for interrupt distribution.
Software must write ICC_PMR_EL1 to 0xFF before clearing this field to 0.

. An implementation might choose to make this field RAO/WI if priority based routing is
always used

. An implementation might choose to make this field RAZ/WTI if priority based routing is never
used

This field resets to 0.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-185
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

RM, bit [5]

Routing Modifier. For legacy operation of EL1 software with GICC_CTLR.FIQen set to 1, this bit
indicates whether interrupts can be acknowledged or observed as the Highest Priority Pending
Interrupt, or whether a special INTID value is returned.

Possible values of this bit are:

0 Secure Group 0 and Non-secure Group 1 interrupts can be acknowledged and observed
as the highest priority interrupt at the Secure Exception level where the interrupt is
taken.

1 When accessed at EL3 in AArch64 state:

. Secure Group 0 interrupts return a special INTID value of 1020. This affects
accesses to ICC_IARO EL1 and ICC_HPPIRO EL1.

. Non-secure Group 1 interrupts return a special INTID value of 1021. This affects
accesses to ICC_IAR1_EL1 and ICC_HPPIR1 ELI.
Note

The Routing Modifier bit is supported in AArch64 only. In systems without EL3 the behavior is as
if the value is 0.

Software must ensure this bit is 0 when the Secure copy of ICC_SRE EL1.SRE is 1, otherwise
system behavior is UNPREDICTABLE.

In Implementations where the secure copy of ICC_SRE_EL1 is RESI, this bit is RESO.

This field resets to a value that is architecturally UNKNOWN.

EOImode_ELINS, bit [4]

EOI mode for interrupts handled at Non-secure EL1 and EL2. Controls whether a write to an End
of Interrupt register also deactivates the interrupt:

0 ICC_EOIRO EL1 and ICC_EOIR1 _ELI provide both priority drop and interrupt
deactivation functionality. Accesses to ICC_DIR EL1 are UNPREDICTABLE.
1 ICC_EOIR0O_EL1 and ICC_EOIR1_ELI provide priority drop functionality only.

ICC _DIR_ELI1 provides interrupt deactivation functionality.

This field resets to a value that is architecturally UNKNOWN.

EOImode_ELIS, bit [3]

EOI mode for interrupts handled at Secure EL1. Controls whether a write to an End of Interrupt
register also deactivates the interrupt:

0 ICC_EOIR0O_EL1 and ICC_EOIR1_ELI provide both priority drop and interrupt
deactivation functionality. Accesses to ICC_DIR EL1 are UNPREDICTABLE.
1 ICC _EOIRO EL1 and ICC_EOIR1_ELI provide priority drop functionality only.

ICC _DIR _ELI1 provides interrupt deactivation functionality.
This field resets to a value that is architecturally UNKNOWN.

EOImode_ELS3, bit [2]

EOI mode for interrupts handled at EL3. Controls whether a write to an End of Interrupt register
also deactivates the interrupt:

0 ICC_EOIR0O_EL1 and ICC_EOIR1_ELI1 provide both priority drop and interrupt
deactivation functionality. Accesses to ICC_DIR EL1 are UNPREDICTABLE.
1 ICC_EOIR0O_EL1 and ICC_EOIR1_ELI provide priority drop functionality only.

ICC DIR_EL1 provides interrupt deactivation functionality.

This field resets to a value that is architecturally UNKNOWN.

8-186 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

CBPR_ELINS, bit [1]

Common Binary Point Register, EL1 Non-secure. Controls whether the same register is used for
interrupt preemption of both Group 0 and Group 1 Non-secure interrupts at EL1:

0 ICC_BPRO_EL1 determines the preemption group for Group 0 interrupts only.
ICC_BPR1_EL1 determines the preemption group for Non-secure Group 1 interrupts.

1 ICC _BPRO _EL1 determines the preemption group for Group 0 interrupts and
Non-secure Group 1 interrupts. Non-secure accesses to GICC_BPR and
ICC BPRI1_EL1 access the state of ICC_BPRO EL1.

This field resets to a value that is architecturally UNKNOWN.

CBPR_ELIS, bit [0]

Common Binary Point Register, EL1 Secure. Controls whether the same register is used for
interrupt preemption of both Group 0 and Group 1 Secure interrupts at EL1:

0 ICC_BPRO_EL1 determines the preemption group for Group 0 interrupts only.
ICC_BPR1 _EL1 determines the preemption group for Secure Group 1 interrupts.

1 ICC_BPRO _ELI determines the preemption group for Group 0 interrupts and Secure
Group 1 interrupts. Secure accesses to [ICC_BPR1_EL1 access the state of
ICC_BPRO_ELI.

This field resets to a value that is architecturally UNKNOWN.

Accessing the ICC_CTLR_EL3:
To access the ICC_CTLR_EL3:

MRS <Xt>, ICC_CTLR_EL3 ; Read ICC_CTLR_EL3 into Xt
MSR ICC_CTLR_EL3, <Xt> ; Write Xt to ICC_CTLR_EL3

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 110 1100 1100 100

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-187
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.8

ICC_DIR_ELA1, Interrupt Controller Deactivate Interrupt Register

The ICC_DIR_EL1 characteristics are:

Purpose

When interrupt priority drop is separated from interrupt deactivation, a write to this register
deactivates the specified interrupt.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- WO WO WO WO wO

The ICC_DIR EL1 register is only accessible at Non-secure EL1 in the following cases:

. When AArch64 HCR_EL2.{FMO, IMO} == {0, 0}.

. When AArch64 HCR_EL2.FMO is set to 0, and the INTID field refers to a Group 0 interrupt.
. When AArch64 HCR_EL2.IMO is set to 0, and the INTID field refers to a Group 1 interrupt.

Note

At Non-secure EL1, the instruction encoding used to access ICC_DIR_EL1 results in an access to
ICV_DIR _ELLI in the following cases:

. When AArch64 HCR_EL2.FMO is set to 1, and the INTID field refers to a Group 0 interrupt.
. When AArch64 HCR_EL2.IMO is set to 1, and the INTID field refers to a Group 1 interrupt.

There are two cases when writing to ICC_DIR_ELI that were unpredictable for a corresponding
GICv2 write to GICC_DIR:

. When EOImode == ‘0’. GICv3 implementations must ignore such writes. In systems
supporting system error generation, an implementation might generate an SEIL

. When EOImode == ‘1’ but no EOI has been issued. The interrupt will be de-activated by the
Distributor however the active priority in the CPU interface for the interrupt will remain set
(because no EOI was issued).

Traps and Enables

IfICC_SRE EL1.SRE==0, EL1 write accesses to this register are trapped to EL1.
If ICH HCR_EL2.TC==1, Non-secure EL1 write accesses to this register are trapped to EL2.
IfICH HCR EL2.TDIR==1, Non-secure EL1 write accesses to this register are trapped to EL2.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure EL1 write accesses to this register
are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, EL2 write accesses to this register are
trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and
HCR_EL2.FMO==0, Non-secure EL1 write accesses to this register are trapped to EL3.

Configurations

Attributes

AArch64 System register ICC_DIR _EL1 performs the same function as AArch32 System operation
ICC_DIR.

ICC_DIR _ELI1 is a 32-bit register.

8-188

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

Field descriptions

The ICC_DIR _EL1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]
Reserved, RESO.

INTID, bits [23:0]
The INTID of the interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RESO.

Accessing the ICC_DIR_EL1:

To access the ICC_DIR EL1:

MSR ICC_DIR_EL1, <Xt> ; Write Xt to ICC_DIR_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1011 001

This encoding results in an access to ICV_DIR _EL1 at Non-secure EL1 in the following cases:
. When AArch64 HCR_EL2.FMO is set to 1, and the INTID field refers to a Group 0 interrupt.

. When AArch64 HCR_EL2.IMO is set to 1, and the INTID field refers to a Group 1 interrupt.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-189
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.9 ICC_EOIRO_ELA1, Interrupt Controller End Of Interrupt Register 0
The ICC_EOIRO_ELI characteristics are:

Purpose
A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified Group 0 interrupt.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- WO WO WO WO wO

ICC_EOIRO_EL1 is only accessible at Non-secure EL1 when AArch64 HCR_EL2.FMO is set to 0.

Note

When AArch64 HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding used to
access ICC_EOIRO _ELI results in an access to ICV_EOIRO ELI.

A write to this register must correspond to the most recent valid read from an Interrupt
Acknowledge Register for which there has not been a priority drop and that this identifier was read
from ICC_TIARO_EL1 while operating in the same security state as that in which the write occurs,
otherwise the system behaviour is UNPREDICTABLE. A valid read is a read that returns a valid
interrupt ID, that is not a special INTID.

Traps and Enables
IfICC_SRE_EL1.SRE==0, EL1 write accesses to this register are trapped to EL1.
IfICH HCR_EL2.TALLO==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.FIQ==1, Secure EL1 write accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, EL2 write accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, and HCR EL2.FMO=0, Non-secure EL1 write accesses to this
register are trapped to EL3.

Configurations
AArch64 System register ICC_EOIRO_EL1 performs the same function as AArch32 System
operation ICC_EOIRO.

Attributes
ICC_EOIRO _ELI1 is a 32-bit register.

Field descriptions

The ICC_EOIRO_EL1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]

Reserved, RESO.

8-190 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

INTID, bits [23:0]
The INTID from the corresponding ICC_TARO ELI access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR EL1.IDbits and ICC_CTLR EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RESO0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register
drops the priority for the interrupt, and also deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only
drops the priority for the interrupt. Software must write to [CC_DIR_EL1 to deactivate the interrupt.

The EOImode bit for the current Exception level and Security state is determined as follows:
. If EL3 is not implemented, the appropriate bit is ICC_CTLR_EL1.EOImode.

. If EL3 is implemented and the software is executing at EL3, the appropriate bit is
ICC_CTLR_EL3.EOImode_EL3.

. IfEL3 is implemented and the software is not executing at EL3, the bit depends on the current
Security state:

— If the software is executing in Secure state, the bit is
ICC CTLR EL3.EOImode ELIS.

— If'the software is executing in Non-secure state, the bit is
ICC_CTLR_EL3.EOImode_ELINS.
Accessing the ICC_EOIRO0_ELA1:
To access the ICC_EOIR0 EL1:
MSR ICC_EOIR@_EL1, <Xt> ; Write Xt to ICC_EOIR@_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1000 001

When AArch64 HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_EOIRO_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-191
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.10 ICC_EOIR1_ELA1, Interrupt Controller End Of Interrupt Register 1
The ICC_EOIR1 ELI characteristics are:

Purpose
A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified Group 1 interrupt.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- WO WO WO WO wO

ICC_EOIR1 ELI is only accessible at Non-secure EL1 when AArch64 HCR_EL2.IMO is set to 0.

Note

When AArch64 HCR _EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding used to
access ICC_EOIR1_ELI results in an access to ICV_EOIR1 ELI.

A write to this register must correspond to the most recent valid read from an Interrupt
Acknowledge Register for which there has not been a priority drop and that this identifier was read
from ICC_IAR1 EL1 while operating in the same security state as that in which the write occurs,
otherwise the system behaviour is UNPREDICTABLE. A valid read is a read that returns a valid
interrupt ID, that is not a special INTID.

Traps and Enables
IfICC_SRE_EL1.SRE==0, EL1 write accesses to this register are trapped to EL1.
IfICH HCR_EL2.TALL1==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.IRQ==1, Secure EL1 write accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.IRQ==1, EL2 write accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.IRQ==1, and HCR_EL2.IMO=0, Non-secure EL1 write accesses to this
register are trapped to EL3.

Configurations
AArch64 System register ICC_EOIR1_EL1 performs the same function as AArch32 System
operation ICC_EOIRI.

Attributes
ICC _EOIRI1_ELI is a 32-bit register.

Field descriptions

The ICC_EOIR1 _EL1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]

Reserved, RESO.

8-192 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

INTID, bits [23:0]
The INTID from the corresponding ICC_TAR1 ELI access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR EL1.IDbits and ICC_CTLR EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RESO0.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register
drops the priority for the interrupt, and also deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only
drops the priority for the interrupt. Software must write to [CC_DIR_EL1 to deactivate the interrupt.

The EOImode bit for the current Exception level and Security state is determined as follows:
. If EL3 is not implemented, the appropriate bit is ICC_CTLR_EL1.EOImode.

. If EL3 is implemented and the software is executing at EL3, the appropriate bit is
ICC_CTLR_EL3.EOImode_EL3.

. IfEL3 is implemented and the software is not executing at EL3, the bit depends on the current
Security state:

— If the software is executing in Secure state, the bit is
ICC CTLR EL3.EOImode ELIS.

— If'the software is executing in Non-secure state, the bit is
ICC_CTLR_EL3.EOImode_ELINS.
Accessing the ICC_EOIR1_ELA1:
To access the ICC_EOIR1_EL1:
MSR ICC_EOIRI_EL1, <Xt> ; Write Xt to ICC_EOIRI_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1100 001

When AArch64 HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_EOIR1_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-193
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.11 ICC_HPPIRO_ELA1, Interrupt Controller Highest Priority Pending Interrupt Register 0
The ICC_HPPIRO EL1 characteristics are:

Purpose

Indicates the highest priority pending Group 0 interrupt on the CPU interface.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RO RO RO RO RO

ICC_HPPIRO EL1 is only accessible at Non-secure EL1 when AArch64 HCR _EL2.FMO is set to
0.

Note

When AArch64 HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding used to
access ICC_HPPIRO EL1 results in an access to ICV_HPPIRO EL1.

Traps and Enables
If ICC_SRE ELI1.SRE==0, EL1 read accesses to this register are trapped to EL1.
IfICH HCR EL2.TALLO==1, Non-secure EL1 read accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.FIQ==1, Secure EL1 read accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, EL2 read accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, and HCR_EL2.FMO=0, Non-secure EL1 read accesses to this
register are trapped to EL3.

Configurations
AArch64 System register ICC_HPPIRO EL1 performs the same function as AArch32 System
operation ICC_HPPIRO.

Attributes
ICC_HPPIRO EL1 is a 32-bit register.

Field descriptions

The ICC_HPPIRO_EL1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]

Reserved, RESO.

INTID, bits [23:0]
The INTID of the highest priority pending interrupt, if that interrupt is observable at the current
Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs
on page 3-40, for more information.

8-194 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RESO.

Accessing the ICC_HPPIR0_EL1:
To access the ICC_HPPIRO EL1:

MRS <Xt>, ICC_HPPIRO_EL1 ; Read ICC_HPPIR@_EL1 into Xt

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1000 010

When AArch64 HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_HPPIRO_ELI1.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-195
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.12 ICC_HPPIR1_ELA1, Interrupt Controller Highest Priority Pending Interrupt Register 1
The ICC_HPPIR1 EL1 characteristics are:

Purpose

Indicates the highest priority pending Group 1 interrupt on the CPU interface.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RO RO RO RO RO

ICC_HPPIR1 EL1 is only accessible at Non-secure EL1 when AArch64 HCR_EL2.IMO is set to 0.

Note

When AArch64 HCR_EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding used to
access ICC_HPPIR1 EL1 results in an access to ICV_HPPIR1 EL1.

Traps and Enables
IfICC_SRE EL1.SRE==0, EL1 read accesses to this register are trapped to EL1.
IfICH HCR EL2.TALL1==1, Non-secure EL1 read accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.IRQ==1, Secure EL1 read accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.IRQ==1, EL2 read accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.IRQ==1, and HCR_EL2.IMO=0, Non-secure EL1 read accesses to this
register are trapped to EL3.

Configurations
AArch64 System register [ICC_HPPIR1_EL1 performs the same function as AArch32 System
operation ICC_HPPIRI1.

Attributes
ICC_HPPIR1_ELLI is a 32-bit register.

Field descriptions

The ICC_HPPIR1 EL1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]

Reserved, RESO.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current
Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs
on page 3-40, for more information.

8-196 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RESO.

Accessing the ICC_HPPIR1_EL1:
To access the ICC_HPPIR1 EL1:

MRS <Xt>, ICC_HPPIR1_EL1 ; Read ICC_HPPIR1_EL1 into Xt

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1100 010

When AArch64 HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_HPPIR1_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-197
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.13 ICC_IARO_ELA1, Interrupt Controller Interrupt Acknowledge Register 0
The ICC_TIARO EL1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled Group 0 interrupt. This read acts as
an acknowledge for the interrupt.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RO RO RO RO RO

ICC IARO ELLI is only accessible at Non-secure EL1 when AArch64 HCR_EL2.FMO is set to 0.

Note

When AArch64 HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding used to
access ICC_TARO_ELI results in an access to ICV_TARO EL1.

Traps and Enables
If ICC_SRE ELI1.SRE==0, EL1 read accesses to this register are trapped to EL1.
IfICH HCR EL2.TALLO==1, Non-secure EL1 read accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.FIQ==1, Secure EL1 read accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, EL2 read accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, and HCR_EL2.FMO=0, Non-secure EL1 read accesses to this
register are trapped to EL3.

Configurations
AArch64 System register ICC_IARO_EL1 performs the same function as AArch32 System
operation ICC_TARO.

Attributes
ICC TARO EL1 is a 32-bit register.

Field descriptions

The ICC_IARO EL1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]

Reserved, RESO.

INTID, bits [23:0]
The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority
for it to be signaled to the PE, and if it can be acknowledged at the current Security state and
Exception level.

8-198 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs
on page 3-40, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RESO.

Accessing the ICC_IARO_EL1:

To access the ICC_IARO_ELI:

MRS <Xt>, ICC_IARQ_EL1 ; Read ICC_IARO_EL1 into Xt

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 000 1100 1000 000

When AArch64 HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_IARO_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-199
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.14 ICC_IAR1_ELA1, Interrupt Controller Interrupt Acknowledge Register 1
The ICC_IAR1 ELI1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled Group 1 interrupt. This read acts as
an acknowledge for the interrupt.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RO RO RO RO RO

ICC IAR1 ELLI is only accessible at Non-secure EL1 when AArch64 HCR _EL2.IMO is set to 0.

Note

When AArch64 HCR _EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding used to
access ICC_TIAR1 _ELI results in an access to ICV_IAR1 EL1.

Traps and Enables
If ICC_SRE ELI1.SRE==0, EL1 read accesses to this register are trapped to EL1.
IfICH HCR EL2.TALL1==1, Non-secure EL1 read accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.IRQ==1, Secure EL1 read accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.IRQ==1, EL2 read accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.IRQ==1, and HCR_EL2.IMO=0, Non-secure EL1 read accesses to this
register are trapped to EL3.

Configurations
AArch64 System register ICC_IAR1_EL1 performs the same function as AArch32 System
operation ICC_TARI.

Attributes
ICC IAR1 EL1 is a 32-bit register.

Field descriptions

The ICC_IAR1 EL1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]

Reserved, RESO.

INTID, bits [23:0]
The INTID of the signaled interrupt.

This is the INTID of the highest priority pending interrupt, if that interrupt is of sufficient priority
for it to be signaled to the PE, and if it can be acknowledged at the current Security state and
Exception level.

8-200 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs
on page 3-40, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR_EL1.IDbits and ICC_CTLR_EL3.IDbits. If only 16 bits are implemented, bits [23:16]
of this register are RESO.

Accessing the ICC_IAR1_EL1:

To access the ICC_IAR1 ELI:

MRS <Xt>, ICC_IAR1_EL1 ; Read ICC_IARI_EL1 into Xt

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 000 1100 1100 000

When AArch64 HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_IARI_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-201
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.15 ICC_IGRPENO_ELA1, Interrupt Controller Interrupt Group 0 Enable register
The ICC_IGRPENO EL1 characteristics are:

Purpose

Controls whether Group 0 interrupts are enabled or not.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RW RW RW RW RW

ICC_IGRPENO EL1 is only accessible at Non-secure EL1 when AArch64 HCR _EL2.FMO is set
to 0.

Note

When AArch64 HCR_EL2.FMO is set to 1, at Non-secure EL1, the instruction encoding used to
access ICC_IGRPENO_EL1 results in an access to ICV_IGRPENO ELI.

Traps and Enables
If ICC_SRE ELI1.SRE==0, EL1 accesses to this register are trapped to EL1.
IfICH _HCR EL2.TALLO==1, Non-secure EL1 accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.FIQ==1, Secure EL1 accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, EL2 accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, and HCR_EL2.FMO=0, Non-secure EL1 accesses to this register
are trapped to EL3.

Configurations
AArch64 System register ICC_IGRPENO_EL1 is architecturally mapped to AArch32 System
register [ICC_IGRPENO.

Attributes
ICC_IGRPENO EL1 is a 32-bit register.

Field descriptions

The ICC_IGRPENO EL1 bit assignments are:

31 10

RESO

I— Enable

Bits [31:1]
Reserved, RESO.
Enable, bit [0]
Enables Group 0 interrupts.
0 Group 0 interrupts are disabled.

8-202 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

1 Group 0 interrupts are enabled.
Virtual accesses to this register update ICH_ VMCR_EL2.VENGO.

If the highest priority pending interrupt for that PE is a Group 0 interrupt using 1 of N targeting, then
the interrupt will be targeted to another PE as a result of the Enable bit changing from 1 to 0.

This field resets to 0.

Accessing the ICC_IGRPENO_ELA1:
To access the ICC_IGRPENO_EL1:

MRS <Xt>, ICC_IGRPEN@_EL1 ; Read ICC_IGRPEN@_EL1 into Xt
MSR ICC_IGRPEN@_EL1, <Xt> ; Write Xt to ICC_ICRPENO_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1100 110

When AArch64 HCR_EL2.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_IGRPENO_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-203
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.16 ICC_IGRPEN1_ELA1, Interrupt Controller Interrupt Group 1 Enable register
The ICC_IGRPENI1_EL1 characteristics are:
Purpose
Controls whether Group 1 interrupts are enabled for the current Security state.
Usage constraints
ICC _IGRPEN1_ELI(S) is accessible as follows:
ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)
- - RW - - RW
ICC_IGRPEN1 ELI1(NS) is accessible as follows:
ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)
- RW - RW RW -
ICC _IGRPEN1 EL1 is only accessible at Non-secure EL1 when AArch64 HCR_EL2.IMO is set
to 0.
Note
When AArch64 HCR _EL2.IMO is set to 1, at Non-secure EL1, the instruction encoding used to
access ICC_IGRPEN1 EL1 results in an access to ICV_IGRPEN1 ELI.
If EL3 is present and this register is accessed at EL3, the copy of this register appropriate to the
current setting of SCR_EL3.NS is accessed.
Traps and Enables
IfICC_SRE _EL1.SRE==0, EL1 accesses to this register are trapped to EL1.
IfICH_HCR_EL2.TALL1==1, Non-secure EL1 accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.IRQ==1, Secure EL1 accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.IRQ==1, EL2 accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.IRQ==1, and HCR_EL2.IMO=0, Non-secure EL1 accesses to this register
are trapped to EL3.
Configurations
AArch64 System register [ICC_IGRPEN1_EL1(S) is architecturally mapped to AArch32 System
register ICC_IGRPENI (S).
AArch64 System register ICC_IGRPEN1_EL1(NS) is architecturally mapped to AArch32 System
register [ICC_IGRPENT1 (NS).
Attributes
ICC_IGRPENI1 _EL1 is a 32-bit register.
Field descriptions
The ICC_IGRPEN1 EL1 bit assignments are:
8-204 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

31 10

RESO

I— Enable

Bits [31:1]

Reserved, RESO.

Enable, bit [0]
Enables Group 1 interrupts for the current Security state.
0 Group 1 interrupts are disabled for the current Security state.
1 Group 1 interrupts are enabled for the current Security state.
Virtual accesses to this register update ICH_ VMCR_EL2.VENG].
If EL3 is present:

. The Secure ICC_IGRPEN1 EL1.Enable bit is a read/write alias of the of
ICC IGRPENI1_EL3.EnableGrp1S bit.

. The Non-secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the of
ICC_IGRPENI_EL3.EnableGrpINS bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N targeting, then
the interrupt will be targeted to another PE as a result of the Enable bit changing from 1 to 0.

This field resets to 0.

Accessing the ICC_IGRPEN1_EL1:
To access the ICC_IGRPEN1 ELI:

MRS <Xt>, ICC_IGRPEN1_EL1 ; Read ICC_IGRPEN1_EL1 into Xt
MSR ICC_IGRPEN1_EL1, <Xt> ; Write Xt to ICC_ICRPENI_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1100 111

When AArch64 HCR_EL2.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_IGRPENI1_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-205
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.17 ICC_IGRPEN1_EL3, Interrupt Controller Interrupt Group 1 Enable register (EL3)
The ICC_IGRPENI1_ELS3 characteristics are:

Purpose

Controls whether Group 1 interrupts are enabled or not.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - - RW RW

Traps and Enables
IfICC_SRE EL3.SRE==0, EL3 accesses to this register are trapped to EL3.

Configurations

AArch64 System register [ICC_IGRPEN1 EL3 can be mapped to AArch32 System register
ICC_MGRPENTI, but this is not architecturally mandated.

Attributes
ICC_IGRPEN1 EL3 is a 32-bit register.

Field descriptions

The ICC_IGRPEN1_EL3 bit assignments are:

31 210

RESO

EnableGrp1S |
EnableGrp1NS

Bits [31:2]
Reserved, RESO.

EnableGrp1S, bit [1]
Enables Group 1 interrupts for the Secure state.
0 Secure Group 1 interrupts are disabled.
1 Secure Group 1 interrupts are enabled.

If EL3 is present, the Secure ICC_IGRPEN1 EL1.Enable bit is a read/write alias of the of
ICC _IGRPEN1_EL3.EnableGrplS bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N targeting, then
the interrupt will be targeted to another PE as a result of the Enable bit changing from 1 to 0.

This field resets to 0.

EnableGrp1NS, bit [0]

Enables Group 1 interrupts for the Non-secure state.

0 Non-secure Group 1 interrupts are disabled.
1 Non-secure Group 1 interrupts are enabled.
8-206 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

If EL3 is present, the Non-secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the of
ICC_IGRPENI_EL3.EnableGrpINS bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N targeting, then
the interrupt will be targeted to another PE as a result of the Enable bit changing from 1 to 0.

This field resets to 0.

Accessing the ICC_IGRPEN1_EL3:
To access the ICC_IGRPEN1 EL3:

MRS <Xt>, ICC_IGRPEN1_EL3 ; Read ICC_IGRPEN1_EL3 into Xt
MSR ICC_IGRPEN1_EL3, <Xt> ; Write Xt to ICC_IGRPENI_EL3

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 110 1100 1100 111

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-207
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.18 ICC_PMR_ELA1, Interrupt Controller Interrupt Priority Mask Register
The ICC_PMR EL1 characteristics are:

Purpose
Provides an interrupt priority filter. Only interrupts with higher priority than the value in this register
are signaled to the PE.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RW RW RW RW RW

ICC_PMR EL1 is only accessible at Non-secure EL1 when AArch64 HCR_EL2.{FMO, IMO} ==
{0, 0}.
Note

When AArch64 HCR_EL2.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding
used to access ICC_PMR EL1 results in an access to ICV_PMR _ELI.

Traps and Enables
IfICC_SRE_EL1.SRE==0, EL1 accesses to this register are trapped to EL1.
IfICH_HCR_EL2.TC==1, Non-secure EL1 accesses to this register are trapped to EL2.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure EL1 accesses to this register are
trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, EL2 accesses to this register are trapped
to EL3.

If AArch64 SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and
HCR_EL2.FMO==0, Non-secure EL1 accesses to this register are trapped to EL3.

Configurations
AArch64 System register ICC_PMR_ELL is architecturally mapped to AArch32 System register
ICC_PMR.

Attributes

ICC_PMR _EL1 is a 32-bit register.

Field descriptions

The ICC_PMR _EL1 bit assignments are:

31 8 7 0

RESO Priority

Bits [31:8]
Reserved, RESO.
Priority, bits [7:0]

The priority mask level for the CPU interface. If the priority of an interrupt is higher than the value
indicated by this field, the interface signals the interrupt to the PE.

8-208 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

The possible priority field values are as follows:

Implemented priority bits Possible priority field values Number of priority levels
[7:0] 0x00-0xFF (0-255), all values 256

[7:1] 0x00-0xFE (0-254), even values only 128

[7:2] 0x00-0xFC (0-252), in steps of 4 64

[7:3] 0x00-0xF8 (0-248), in steps of 8 32

[7:4] 0x00-0xF0 (0-240), in steps of 16 16

Unimplemented priority bits are RAZ/WI.
This field resets to 0.

Accessing the ICC_PMR_EL1:
To access the ICC_PMR_EL1:

MRS <Xt>, ICC_PMR_EL1 ; Read ICC_PMR_EL1 into Xt
MSR ICC_PMR_EL1, <Xt> ; Write Xt to ICC_PMR_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 000 0100 0110 000

When AArch64 HCR _EL2.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an
access to ICV_PMR_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-209
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.19 ICC_RPR_ELA1, Interrupt Controller Running Priority Register
The ICC_RPR_EL1 characteristics are:

Purpose

Indicates the Running priority of the CPU interface.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RO RO RO RO RO

ICC_RPR_EL1 is only accessible at Non-secure EL1 when AArch64 HCR_EL2.{FMO, IMO} ==
{0, 0}.

Note

When AArch64 HCR_EL2.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding
used to access ICC_RPR_EL1 results in an access to ICV_RPR_ELI.

Software cannot determine the number of implemented priority bits from a read of this register.

Traps and Enables
IfICC_SRE EL1.SRE==0, EL1 read accesses to this register are trapped to EL1.
If ICH HCR_EL2.TC==1, Non-secure EL1 read accesses to this register are trapped to EL2.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure EL1 read accesses to this register
are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, EL2 read accesses to this register are
trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and
HCR_EL2.FMO==0, Non-secure EL1 read accesses to this register are trapped to EL3.

Configurations

AArch64 System register [CC_RPR_EL1 performs the same function as AArch32 System
operation ICC_RPR.

Attributes
ICC _RPR ELI is a 32-bit register.

Field descriptions

The ICC_RPR_EL]1 bit assignments are:

31 8 7 0

RESO Priority

Bits [31:8]
Reserved, RESO.
Priority, bits [7:0]

The current running priority on the CPU interface. This is the group priority of the current active
interrupt.

8-210 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

If there are no active interrupts on the CPU interface, or all active interrupts have undergone priority
drop, the value returned is the Idle priority.

Accessing the ICC_RPR_EL1:

To access the ICC_RPR_EL1:

MRS <Xt>, ICC_RPR_EL1 ; Read ICC_RPR_EL1 into Xt

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 000 1100 1011 011

When AArch64 HCR_EL2.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an
access to ICV_RPR _ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-211
Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.20 ICC_SGIOR_ELA1, Interrupt Controller Software Generated Interrupt Group 0 Register
The ICC_SGIOR EL1 characteristics are:

Purpose
Generates Secure Group 0 SGIs, including from the Non-secure state when permitted by
GICR_NSACR.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- WO WO WO WO wO

Traps and Enables
If AArch64 HCR_EL2.FMO==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If AArch64 HCR_EL2.IMO==1, Non-secure EL1 write accesses to this register are trapped to EL2.
IfICC_SRE EL1.SRE==0, EL1 write accesses to this register are trapped to EL1.
If ICH HCR_EL2.TC==1, Non-secure EL1 write accesses to this register are trapped to EL2.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure EL1 write accesses to this register
are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, EL2 write accesses to this register are
trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and
HCR_EL2.FMO==0, Non-secure EL1 write accesses to this register are trapped to EL3.
Configurations
AArch64 System register ICC_SGIOR_EL1 performs the same function as AArch32 System
operation ICC_SGIOR.
Attributes
ICC_SGIOR _EL1 is a 64-bit register.

Field descriptions

The ICC_SGIOR_EL1 bit assignments are:

63 N 56 55 5y 48 47 N 4140 39 N 32 31 9 28 27 N 24 23 5y 16 15 9 0
t¢ t¢ t¢ {¢ {¢ {¢ t¢ {¢

RESO Aff3 RESO Aff2 RESO | INTID Aff1 TargetList

)))) J))) J)
143 143 143 149 49 149 143 49

IRM
Bits [63:56]
Reserved, RESO.
Aff3, bits [55:48]
The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.
If the IRM bit is 1, this field is RESO.
8-212 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

Bits [47:41]

Reserved, RESO.

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts should be distributed to PEs.
Possible values are:

0 Interrupts routed to the PEs specified by Aff3.Aff2. Affl.<target list>.

1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]
The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.
If the IRM bit is 1, this field is RESO.

Bits [31:28]

Reserved, RESO.

INTID, bits [27:24]
The INTID of the SGI.

Aff1, bits [23:16]
The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.
If the IRM bit is 1, this field is RESO.

TargetList, bits [15:0]

Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the
PE within a cluster with an Affinity 0 value equal to the bit number.

If a bitis 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the
Distributor. It is IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system
error.

Note

This restricts a system to sending targeted SGIs to PE with an affinity O number of greater than 16.

If the IRM bit is 1, this field is RESO.

Accessing the ICC_SGIOR_ELA1:
To access the ICC_SGIOR ELI:
MSR ICC_SGIOR_ELL, <Xt> ; Write Xt to ICC_SGI@R_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1011 111

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-213
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.21 ICC_SGI1R_ELA1, Interrupt Controller Software Generated Interrupt Group 1 Register
The ICC_SGI1R _EL1 characteristics are:

Purpose

Generates Group 1 SGIs for the current Security state.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- WO WO WO WO WO

Traps and Enables
If AArch64 HCR_EL2.FMO==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If AArch64 HCR_EL2.IMO==1, Non-secure EL1 write accesses to this register are trapped to EL2.
IfICC_SRE EL1.SRE==0, EL1 write accesses to this register are trapped to EL1.
If ICH HCR_EL2.TC==1, Non-secure EL1 write accesses to this register are trapped to EL2.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure EL1 write accesses to this register
are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, EL2 write accesses to this register are
trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and
HCR_EL2.FMO==0, Non-secure EL1 write accesses to this register are trapped to EL3.
Configurations
AArch64 System register ICC_SGI1R_EL1 performs the same function as AArch32 System
operation ICC_SGI1R.
Attributes
ICC_SGIIR _EL1 is a 64-bit register.

Field descriptions

The ICC_SGI1R_EL1 bit assignments are:

63 ,, 5655 ., 4847 ., 4140 39 9 3231 4y 2827, 2423) 16 15 9 0
t¢ t¢ t¢ {¢ 1¢ {¢ t¢ 1¢

RESO Aff3 RESO Aff2 RESO | INTID Aff1 TargetList

)))) J))) J)
143 143 143 149 49 149 143 49

IRM
Bits [63:56]
Reserved, RESO.
Aff3, bits [55:48]
The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.
If the IRM bit is 1, this field is RESO.
Bits [47:41]
Reserved, RESO.
8-214 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

IRM, bit [40]

Interrupt Routing Mode. Determines how the generated interrupts should be distributed to PEs.
Possible values are:

0 Interrupts routed to the PEs specified by Aff3.Aff2.Affl.<target list>.

1 Interrupts routed to all PEs in the system, excluding "self".

Aff2, bits [39:32]
The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.
If the IRM bit is 1, this field is RESO.

Bits [31:28]
Reserved, RESO.

INTID, bits [27:24]
The INTID of the SGI.

Affl, bits [23:16]
The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.
If the IRM bit is 1, this field is RESO.

TargetList, bits [15:0]
Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the
PE within a cluster with an Affinity 0 value equal to the bit number.

If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the
Distributor. It is IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system
error.

Note
This restricts a system to sending targeted SGIs to PE with an affinity 0 number of greater than 16.

If the IRM bit is 1, this field is RESO.

Accessing the ICC_SGI1R_ELA1:
To access the ICC_SGIIR ELI:
MSR ICC_SGIIR_EL1, <Xt> ; Write Xt to ICC_SGIIR_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1011 101

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-215
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.22 ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)
The ICC_SRE EL1 characteristics are:

Purpose
Controls whether the System register interface or the memory-mapped interface to the GIC CPU
interface is used for ELO and EL1.

Usage constraints
ICC_SRE ELI1(S) is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - RW - - RW

ICC_SRE ELI1(NS) is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3(SCR.NS=0)

- RW - RW RW -

Execution with ICC_SRE_EL1.SRE set to 0 might make some System registers UNKNOWN.

Traps and Enables
IfICC_SRE EL2.Enable==0, Non-secure EL1 accesses to this register are trapped to EL2.
If ICC_SRE EL3.Enable==0, Non-secure EL1 accesses to this register are trapped to EL3.
IfICC_SRE EL3.Enable==0, EL2 accesses to this register are trapped to EL3.

Configurations

AArch64 System register ICC_SRE_ELI1(S) is architecturally mapped to AArch32 System register
ICC_SRE (S).

AArch64 System register [ICC_SRE ELI1(NS) is architecturally mapped to AArch32 System
register ICC_SRE (NS).

Attributes
ICC_SRE EL1 is a 32-bit register.

Field descriptions

The ICC_SRE ELL1 bit assignments are:

31 3210
RESO
I— SRE
DFB
DIB
Bits [31:3]
Reserved, RESO.

8-216 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

DIB, bit [2]

Disable IRQ bypass.
0 IRQ bypass enabled.
1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of
ICC_SRE _EL3.DIB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a
read-write alias of ICC_SRE EL3.DIB.

If EL3 is not implemented or GICD _CTLR.DS == 1, and EL2 is implemented, this field is a
read-only alias of ICC_SRE EL2.DIB.

In systems that do not support IRQ bypass, this field is RAO/WI.
If implemented as an RW bit, this field resets to 0.

DFB, bit [1]

Disable FIQ bypass.
0 FIQ bypass enabled.
1 FIQ bypass disabled.

If EL3 is implemented and GICD CTLR.DS == 0, this field is a read-only alias of
ICC_SRE_EL3.DFB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a
read-write alias of ICC_SRE EL3.DFB.

If EL3 is not implemented or GICD_CTLR.DS == 1, and EL2 is implemented, this field is a
read-only alias of ICC_SRE EL2.DFB.

In systems that do not support FIQ bypass, this field is RAO/WIL.
If implemented as an RW bit, this field resets to 0.

SRE, bit [0]
System Register Enable.

0 The memory-mapped interface must be used. Access at EL1 to any ICC_* System
register other than ICC_SRE EL1 is trapped to EL1.

1 The System register interface for the current Security state is enabled.
Virtual accesses modify ICH VMCR_EL2.VSRE.

If software changes this bit from 1 to 0 in the Secure instance of this register, the results are
UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is
RAO/WI.

If EL3 is implemented and ICC_SRE_EL3.SRE==0 the Secure copy of this bit is RAZ/WI.
If EL2 is implemented and ICC_SRE EL2.SRE==0 the Non-secure copy of this bit is RAZ/WI.
If EL3 is implemented and ICC_SRE_EL3.SRE==0 the Non-secure copy of this bit is RAZ/WI.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit
RAO/WI. The following options are supported:

. The non-secure copy of ICC_SRE EL1.SRE may be RAO/WIifICC_SRE EL2.SREisalso
RAO/WI. This means all non-secure software, including guest operating systems using only
virtual interrupts, must access the GIC using system registers.

. The secure copy of ICC_SRE _EL1.SRE may be RAO/WIif ICC_SRE EL3.SRE and
ICC _SRE EL2.SRE are also RAO/WI. This means that all secure software must access the
GIC using system registers and all non-secure accesses to registers for physical interrupts
must use system registers. Note: a guest operating system using only virtual interrupts might
still use memory-mapped access if the non-secure copy of ICC_SRE EL1.SRE is not
RAO/WI.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-217
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

If implemented as an RW bit, this field resets to 0.

Accessing the ICC_SRE_EL1:
To access the ICC_SRE ELI:

MRS <Xt>, ICC_SRE_EL1 ; Read ICC_SRE_EL1 into Xt
MSR ICC_SRE_EL1, <Xt> ; Write Xt to ICC_SRE_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2
11 000 1100 1100 101
8-218 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta

ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.23 ICC_SRE_ELZ2, Interrupt Controller System Register Enable register (EL2)
The ICC_SRE EL2 characteristics are:

Purpose
Controls whether the System register interface or the memory-mapped interface to the GIC CPU
interface is used for EL2.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - RwW RW -

Execution with ICC_SRE_EL2.SRE set to 0 might make some System registers UNKNOWN.

Traps and Enables
IfICC_SRE EL3.Enable==0, EL2 accesses to this register are trapped to EL3.

Configurations
AArch64 System register ICC_SRE EL2 is architecturally mapped to AArch32 System register
ICC_HSRE.

Attributes

ICC_SRE EL2 is a 32-bit register.

Field descriptions

The ICC_SRE_EL2 bit assignments are:

31 43210
RESO
I— SRE
DFB
DIB
Enable
Bits [31:4]
Reserved, RESO.
Enable, bit [3]
Enable. Enables lower Exception level access to ICC_SRE EL1.
0 Non-secure EL1 accesses to ICC_SRE EL1 trap to EL2.
1 Non-secure EL1 accesses to ICC_SRE EL1 do not trap to EL2.
IfICC_SRE EL2.SRE is RAO/WI, an implementation is permitted to make the Enable bit
RAO/WI.
IfICC_SRE EL2.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value
of the bit.
If implemented as an RW bit, this field resets to 0.
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-219

ID060315 Non-Confidential - Beta

8 Programmers’ Model

8.2 AArch64 System register descriptions

DIB, bit [2]

DFB, bit [1]

SRE, bit [0]

Disable IRQ bypass.
0 IRQ bypass enabled.
1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of
ICC_SRE _EL3.DIB.

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of
ICC_SRE _EL3.DIB.

In systems that do not support IRQ bypass, this bit is RAO/WI.
If implemented as an RW bit, this field resets to 0.

Disable FIQ bypass.
0 FIQ bypass enabled.
1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of
ICC_SRE _EL3.DFB.

If EL3 is implemented and GICD _CTLR.DS is 1, this field is a read-write alias of
ICC_SRE_EL3.DFB.

In systems that do not support FIQ bypass, this bit is RAO/WI.
If implemented as an RW bit, this field resets to 0.

System Register Enable.

0 The memory-mapped interface must be used. Access at EL2 to any ICH_* or ICC_*
register other than ICC_SRE EL1 or ICC_SRE EL2, is trapped to EL2.
1 The System register interface to the ICH_* registers and the EL1 and EL2 ICC_*

registers is enabled for EL2.
If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is
RAO/WI.

If EL3 is implemented and ICC_SRE EL3.SRE==0 this bit is RAZ/WI.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit
RAO/WI, but this is only allowed if ICC_SRE EL3.SRE is also RAO/WL.

If implemented as an RW bit, this field resets to 0.

Accessing the ICC_SRE_EL2:

To access the ICC_SRE EL2:

MRS <Xt>, ICC_SRE_EL2 ; Read ICC_SRE_EL2 into Xt
MSR ICC_SRE_EL2, <Xt> ; Write Xt to ICC_SRE_EL2

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 100 1100 1001 101

8-220

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.2 AArch64 System register descriptions

8.2.24 ICC_SRE_ELS3, Interrupt Controller System Register Enable register (EL3)
The ICC_SRE EL3 characteristics are:

Purpose
Controls whether the System register interface or the memory-mapped interface to the GIC CPU
interface is used for EL3.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - - RW RW

This register is always System register accessible.

Traps and Enables

There are no traps or enables affecting this register.

Configurations

AArch64 System register ICC_SRE_EL3 can be mapped to AArch32 System register [CC_MSRE,
but this is not architecturally mandated.

Attributes
ICC_SRE _ELS3 is a 32-bit register.

Field descriptions

The ICC_SRE_EL3 bit assignments are:

31 4 3210
RESO
|—SRE
DFB
DIB
Enable
Bits [31:4]

Reserved, RESO.

Enable, bit [3]

Enable. Enables lower Exception level access to ICC_SRE EL1 and ICC_SRE EL2.

0 Secure EL1 accesses to Secure ICC_SRE EL1 trap to EL3.
EL2 accesses to Non-secure [CC_SRE EL1 and ICC_SRE EL2 trap to EL3.
Non-secure EL1 accesses to ICC_SRE ELL1 trap to EL3, unless these accesses are
trapped to EL2 as a result of ICC_SRE_ EL3.Enable == 0.

1 Secure EL1 accesses to Secure ICC_SRE EL1 do not trap to EL3.
EL2 accesses to Non-secure [ICC_SRE _EL1 and ICC_SRE_EL2 do not trap to EL3.
Non-secure EL1 accesses to ICC_SRE ELI1 do not trap to EL3.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-221
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.2 AArch64 System register descriptions

IfICC_SRE _EL3.SRE is RAO/WI, an implementation is permitted to make the Enable bit
RAO/WI.

IfICC_SRE _EL3.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value
of the bit.

If implemented as an RW bit, this field resets to 0.

DIB, bit [2]

Disable IRQ bypass.
0 IRQ bypass enabled.
1 IRQ bypass disabled.

In systems that do not support IRQ bypass, this bit is RAO/WI.
If implemented as an RW bit, this field resets to 0.

DFB, bit [1]

Disable FIQ bypass.
0 FIQ bypass enabled.
1 FIQ bypass disabled.

In systems that do not support FIQ bypass, this bit is RAO/WI.
If implemented as an RW bit, this field resets to 0.

SRE, bit [0]

System Register Enable.

0 The memory-mapped interface must be used. Access at EL3 to any ICH_* or ICC_*
register other than ICC_SRE EL1, ICC_SRE EL2, or ICC_SRE ELS3 is trapped to
EL3

1 The System register interface to the ICH_* registers and the EL1, EL2, and EL3 ICC_*

registers is enabled for EL3.
If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is
RAO/WI.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit
RAO/WI.

If implemented as an RW bit, this field resets to 0.

Accessing the ICC_SRE_EL3:
To access the ICC_SRE EL3:

MRS <Xt>, ICC_SRE_EL3 ; Read ICC_SRE_EL3 into Xt
MSR ICC_SRE_EL3, <Xt> ; Write Xt to ICC_SRE_EL3

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 110 1100 1100 101

8-222 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3 AArch64 System register descriptions of the virtual registers

This section describes each of the virtual AArch64 GIC System registers in register name order. The ICV prefix
indicates a virtual GIC CPU interface System register. Each AArch64 System register description contains a
reference to the AArch32 register that provides the same functionality.

Unless otherwise stated, the bit assignments for the GIC System registers are the same as those for the equivalent
GICC_* and GICV_* memory-mapped registers.

The ICV_* registers are only accessible at Non-secure EL1. Whether an access encoding maps to an ICC_* register
or the equivalent ICV_* register is determined by HCR_EL2, see Chapter 5 Virtual Interrupt Handling and
Prioritization. The equivalent virtual interface memory-mapped registers are described in The GIC virtual CPU
interface register descriptions on page 8-563.

For information about the System register encoding tables, see the individual register description.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-223
Non-Confidential - Beta

8 Programmers’ Model

8.3 AArch64 System register descriptions of the virtual registers

8.3.1 ICV_APOR<n>_ELA1, Interrupt Controller Virtual Active Priorities Group 0 Registers,n=0-3

The ICV_APOR<n> EL1 characteristics are:

Purpose

Provides information about virtual Group 0 active priorities.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RW - - - -

The ICV_APOR<n> ELI registers are only accessible at Non-secure EL1 when AArch64
HCR EL2.FMOissetto 1.

Note

When AArch64 HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding used to
access ICV_APOR<n> EL1 results in an access to ICC_APOR<n> EL1.

Writing to these registers with any value other than the last read value of the register (or 0x00000000
when no Group 0 active priorities) might cause the interrupt prioritisation system to malfunction,
causing:

. Interrupts that should pre-empt execution to not pre-empt execution.

. Interrupts that should not pre-empt execution to pre-empt execution.

ICV_APOR1 ELL1 is only implemented in implementations that support 6 or more bits of priority.
ICV_APOR2 EL1 and ICV_APOR3_EL1 are only implemented in implementations that support 7
bits of priority. If an implementation that supports fewer bits of priority attempts to access these
registers, it generates an Undefined Instruction exception.

Writing to the active priority registers in any order other than the following order might cause the
interrupt prioritisation system to malfunction:

- ICV_APOR<n> ELI.
« ICV_APIR<n> ELI.

Traps and Enables

IfICC_SRE _EL1.SRE==0, Non-secure EL1 accesses to this register are trapped to EL1.
If ICH HCR_EL2.TALLO==1, Non-secure EL1 accesses to this register are trapped to EL2.

Configurations

Attributes

AArch64 System register ICV_APOR<n> EL1 is architecturally mapped to AArch32 System
register ICV_APOR<n>.

ICV_APOR<n> ELI is a 32-bit register.

Field descriptions

The ICV_APOR<n> EL1 bit assignments are:

31

IMPLEMENTATION DEFINED

8-224

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.
This field resets to 0.

Accessing the ICV_APOR<n>_EL1:
To access the ICV_APOR<n> EL1 when HCR_EL2.FMO is set to 1, and executing at Non-secure EL1:

MRS <Xt>, ICC_APOR<n>_EL1 ; Read ICV_APOR<n>_EL1 into Xt, where n is in the range @ to 3
MSR ICC_APOR<n>_EL1, <Xt> ; Write Xt to ICV_APOR<n>_EL1l, where n is in the range 0 to 3

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1000 1:n<1:0>

When AArch64 HCR _EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_APOR<n> ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-225
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.2 ICV_AP1R<n>_ELA1, Interrupt Controller Virtual Active Priorities Group 1 Registers,n=0-3

The ICV_AP1R<n> EL1 characteristics are:

Purpose
Provides information about virtual Group 1 active priorities.

Usage constraints
This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)
- RW - - - -
The ICV_AP1R<n> EL1 registers are only accessible at Non-secure EL1 when HCR _EL2.IMO is
set to 0.
Note

When AArch64 HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding used to
access ICV_AP1R<n> EL1 results in an access to ICC_APIR<n> ELI.
Writing to these registers with any value other than the last read value of the register (or 0x00000000
when no Group 1 active priorities) might cause the interrupt prioritisation system to malfunction,
causing:
. Interrupts that should pre-empt execution to not pre-empt execution.
. Interrupts that should not pre-empt execution to pre-empt execution.
ICV_APIR1 ELLI is only implemented in implementations that support 6 or more bits of priority.
ICV_APIR2 EL1 and ICV_APIR3_EL1 are only implemented in implementations that support 7
bits of priority. If an implementation that supports fewer bits of priority attempts to access these
registers, it generates an Undefined Instruction exception.
Writing to the active priority registers in any order other than the following order might cause the
interrupt prioritisation system to malfunction:
. ICV_APOR<n> ELI.
. ICV_APIR<n> ELI.

Traps and Enables
IfICC_SRE _EL1.SRE==0, Non-secure EL1 accesses to this register are trapped to EL1.
If ICH HCR_EL2.TALL1==1, Non-secure EL1 accesses to this register are trapped to EL2.

Configurations
AArch64 System register ICV_AP1R<n> EL1 is architecturally mapped to AArch32 System
register ICV_AP1R<n>.
The contents of these registers are IMPLEMENTATION DEFINED with the one architectural
requirement that the value 9x00000000 is consistent with no interrupts being active.

Attributes
ICV_AP1R<n> ELI1 is a 32-bit register.

Field descriptions

The ICV_AP1R<n> EL1 bit assignments are:

8-226 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

31 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.
This field resets to 0.

Accessing the ICV_AP1R<n>_EL1:
To access the ICV_AP1R<n> EL1 when HCR_EL2.IMO is set to 1, and executing at Non-secure EL1:

MRS <Xt>, ICC_AP1R<n>_EL1 ; Read ICV_AP1R<n>_EL1 into Xt, where n is in the range 0 to 3
MSR ICC_AP1R<n>_EL1, <Xt> ; Write Xt to ICV_AP1R<n>_EL1l, where n is in the range 0 to 3

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1001 0:n<1:0>

When AArch64 HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_APIR<n> ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-227
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.3 ICV_BPRO_ELA1, Interrupt Controller Virtual Binary Point Register 0
The ICV_BPRO_EL1 characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines virtual Group 0 interrupt preemption.
Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RW - - - -

ICV_BPRO_EL1 is only accessible at Non-secure EL1 when AArch64 HCR _EL2.FMO is setto 1.

Note

When AArch64 HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding used to
access ICV_BPRO_EL1 results in an access to ICC_BPRO _EL1.

The minimum binary point value is derived from the number of implemented priority bits. The
number of priority bits is IMPLEMENTATION DEFINED, and reported by ICV_CTLR_EL1.PRIbits.

An attempt to program the binary point field to a value less than the minimum value sets the field

to the minimum value. On a reset, the binary point field is set to the minimum supported value.
Traps and Enables

IfICC_SRE_EL1.SRE==0, Non-secure EL1 accesses to this register are trapped to EL1.

IfICH HCR EL2.TALLO==1, Non-secure EL1 accesses to this register are trapped to EL2.

Configurations
AArch64 System register ICV_BPRO_EL1 is architecturally mapped to AArch32 System register
ICV_BPRO.

Attributes

ICV_BPRO _EL1 is a 32-bit register.

Field descriptions

The ICV_BPRO_EL1 bit assignments are:

31 3 2 0

RESO

I_li BinaryPoint

Bits [31:3]

Reserved, RESO.

8-228 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field,
that determines interrupt preemption, and a subpriority field. This is done as follows:

Binary point value Group priority field Subpriority field Field with binary point

0 [7:1] (0] ggggeees
1 [7:2] [1:0] £8228g.ss
2 [7:3] [2:0] 2ggeg.Sss
3 [7:4] [3:0] £822.8SSS
4 [7:5] [4:0] £88.558SS
5 [7:6] [5:0] £g.55SSSS
6 [7] [6:0] £.5588SSS
7 No preemption [7:0] .SS8SSSSS

Accessing the ICV_BPRO_EL1:
To access the ICV_BPRO_EL1 when HCR_EL2.FMO is set to 1, and executing at Non-secure EL1:

MRS <Xt>, ICC_BPRO_EL1 ; Read ICV_BPRO_EL1 into Xt
MSR ICC_BPRO_EL1, <Xt> ; Write Xt to ICV_BPRO_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1000 011

When AArch64 HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_BPRO_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-229
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.34 ICV_BPR1_ELA1, Interrupt Controller Virtual Binary Point Register 1
The ICV_BPRI1_EL1 characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines virtual Group 1 interrupt preemption.
Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RW - - - -

ICV_BPRI1 ELI is only accessible at Non-secure EL1 when AArch64 HCR_EL2.IMO is set to 1.

Note

When AArch64 HCR _EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding used to
access ICV_BPR1 _EL1 results in an access to ICC_BPR1 ELI.

The reset value is IMPLEMENTATION DEFINED, but is equal to the minimum value of
ICV_BPRO_ELI plus one.

An attempt to program the binary point field to a value less than the reset value sets the field to the
reset value.

Traps and Enables
IfICC_SRE_EL1.SRE==0, Non-secure EL1 accesses to this register are trapped to EL1.
IfICH HCR EL2.TALL1==1, Non-secure EL1 accesses to this register are trapped to EL2.

Configurations

AArch64 System register ICV_BPR1_EL1 is architecturally mapped to AArch32 System register
ICV_BPRI.

Attributes
ICV_BPR1 _EL1 is a 32-bit register.

Field descriptions

The ICV_BPR1_ELI1 bit assignments are:

31 3 2 0

RESO

I_li BinaryPoint

Bits [31:3]

Reserved, RESO.

8-230 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for virtual Group 0 and virtual Group 1
interrupts, the value of this field controls how the 8-bit interrupt priority field is split into a group
priority field, that determines interrupt preemption, and a subpriority field. This is done as follows:

Binary point value Group priority field Subpriority field Field with binary point

0 - - -
1 [7:1] (0] gggeeees
2 [7:2] [1:0] Jefefodifefs
3 [7:3] [2:0] 2geeg.Sss
4 [7:4] [3:0] 2828.8SSS
5 [7:5] [4:0] £88.55SSS
6 [7:6] [5:0] £g.55SSSS
7 [7] [6:0] £.5588SSS

Writing 0 to this field will instead set this field to its reset value, which is IMPLEMENTATION DEFINED
and non-zero.

IfICV_CTLR_EL1.CBPR is set to 1, Non-secure EL1 reads return ICV_BPRO_EL1 + 1 saturated
to @b111. Non-secure EL1 writes are ignored.

Accessing the ICV_BPR1_EL1:

To access the ICV_BPR1_EL1 when HCR_EL2.IMO is set to 1, and executing at Non-secure EL1:

MRS <Xt>, ICC_BPR1_EL1 ; Read ICV_BPR1_EL1 into Xt
MSR ICC_BPR1_EL1, <Xt> ; Write Xt to ICV_BPR1_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1100 011

When AArch64 HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_BPRI1_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-231
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.5 ICV_CTLR_ELA1, Interrupt Controller Virtual Control Register
The ICV_CTLR EL1 characteristics are:

Purpose
Controls aspects of the behavior of the GIC virtual CPU interface and provides information about
the features implemented.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RW - - - -

ICV_CTLR ELl1 is only accessible at Non-secure EL1 when AArch64 HCR_EL2.{FMO, IMO} !=
{0, 0}.
Note

When AArch64 HCR_EL2.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding
used to access ICV_CTLR ELI results in an access to ICC_CTLR_ELI.

Traps and Enables
IfICC_SRE_EL1.SRE==0, Non-secure EL1 accesses to this register are trapped to EL1.
IfICH_HCR_EL2.TC==1, Non-secure EL1 accesses to this register are trapped to EL2.

Configurations
AArch64 System register ICV_CTLR_ELI1 is architecturally mapped to AArch32 System register
ICV_CTLR.

Attributes

ICV_CTLR _EL1 is a 32-bit register.

Field descriptions

The ICV_CTLR ELL1 bit assignments are:

31 16 1514 13 11 10 8 7 210
RESO IDbits | PRIbits RESO
I— CBPR
EOImode
SEIS
A3V
Bits [31:16]
Reserved, RESO.
SEIS, bit [14]
SEI Support. Read-only and writes are ignored. Indicates whether the virtual CPU interface
supports local generation of SEIs:
0 The virtual CPU interface logic does not support local generation of SEIs.
8-232 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

1 The virtual CPU interface logic supports local generation of SEIs.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus
one.

An implementation must implement at least 32 levels of physical priority (5 priority bits).

Note

This field always returns the number of bits implemented.

The division between group priority and subpriority is defined in the binary point registers
ICV_BPRO_ELI and ICV_BPR1 ELI.

Bits [7:2]
Reserved, RESO.

EOImode, bit [1]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the
virtual interrupt:

0 ICV_EOIRO EL1 and ICV_EOIR1_ELI provide both priority drop and interrupt
deactivation functionality. Accesses to ICV_DIR EL1 are UNPREDICTABLE.
1 ICV_EOIRO _EL1 and ICV_EOIR1_EL1 provide priority drop functionality only.

ICV_DIR_EL1 provides interrupt deactivation functionality.
This field resets to a value that is architecturally UNKNOWN.

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption
of both virtual Group 0 and virtual Group 1 interrupts:

0 ICV_BPRO_EL1 determines the preemption group for virtual Group 0 interrupts only.
ICV_BPR1 _ELI determines the preemption group for virtual Group 1 interrupts.

1 ICV_BPRO_EL1 determines the preemption group for both virtual Group 0 and virtual
Group 1 interrupts.

Reads of ICV_BPR1 ELI1 return ICV_BPRO EL1 plus one, saturated to 8b111. Writes
to ICV_BPR1_ELI are ignored.

Accessing the ICV_CTLR_EL1:

To access the ICV_CTLR_EL1 when HCR_EL2.{FMO, IMO} != {0, 0}, and executing at Non-secure EL1:

MRS <Xt>, ICC_CTLR_EL1 ; Read ICV_CTLR_EL1 into Xt
MSR ICC_CTLR_EL1, <Xt> ; Write Xt to ICV_CTLR_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 000 1100 1100 100

When AArch64 HCR_EL2.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an
access to ICC_CTLR_ELI.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-233
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.6 ICV_DIR_ELA1, Interrupt Controller Deactivate Virtual Interrupt Register
The ICV_DIR_ELI characteristics are:

Purpose
When interrupt priority drop is separated from interrupt deactivation, a write to this register
deactivates the specified virtual interrupt.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- WO - - - -

The ICV_DIR_EL1 register is only accessible at Non-secure EL1 in the following cases:
. When AArch64 HCR_EL2.FMO is set to 1, and the INTID field refers to a Group 0 interrupt.
. When AArch64 HCR_EL2.IMO is set to 1, and the INTID field refers to a Group 1 interrupt.

Note

At Non-secure EL1, the instruction encoding used to access ICV_DIR_EL1 results in an access to
ICC_DIR_ELI in the following cases:

. When AArch64 HCR_EL2.{FMO, IMO} == {0, 0}.
. When AArch64 HCR_EL2.FMO is set to 0, and the INTID field refers to a Group 0 interrupt.
. When AArch64 HCR_EL2.IMO is set to 0, and the INTID field refers to a Group 1 interrupt.

Traps and Enables
IfICC_SRE _EL1.SRE==0, Non-secure EL1 write accesses to this register are trapped to EL1.
If ICH HCR_EL2.TC==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If ICH HCR EL2.TDIR==1, Non-secure EL1 write accesses to this register are trapped to EL2.

Configurations

AArch64 System register ICV_DIR_EL1 performs the same function as AArch32 System operation
ICV_DIR.

Attributes
ICV_DIR_EL1 is a 32-bit register.

Field descriptions

The ICV_DIR_ELI1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]
Reserved, RESO.
INTID, bits [23:0]
The INTID of the virtual interrupt to be deactivated.

8-234 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_ELL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RESO.
Accessing the ICV_DIR_EL1:
To access the ICV_DIR_EL1:
MSR ICC_DIR_EL1, <Xt> ; Write Xt to ICV_DIR_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 000 1100 1011 001

This encoding results in an access to ICV_DIR_EL1 at Non-secure EL1 in the following cases:

. When AArch64 HCR_EL2.FMO is set to 1, and the INTID field refers to a Group 0 interrupt.

. When AArch64 HCR_EL2.IMO is set to 1, and the INTID field refers to a Group 1 interrupt.

This encoding results in an access to ICC_DIR ELI at Non-secure EL1 in the following cases:

. When AArch64 HCR_EL2.{FMO, IMO} == {0, 0}.

. When AArch64 HCR_EL2.FMO is set to 1, and the INTID field does not refer to a Group 0 interrupt.

. When AArch64 HCR _EL2.IMO is set to 1, and the INTID field does not refer to a Group 1 interrupt.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-235
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.7 ICV_EOIRO_ELA1, Interrupt Controller Virtual End Of Interrupt Register 0
The ICV_EOIRO EL1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified virtual Group 0 interrupt.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- WO - - - -

ICV_EOIRO EL1 is only accessible at Non-secure EL1 when AArch64 HCR_EL2.FMO is set to 1.

Note

When AArch64 HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding used to
access ICV_EOIRO_EL1 results in an access to ICC_EOIR0 ELI.

A write to this register must correspond to the most recent valid read from an Interrupt
Acknowledge Register and that this identifier was read from ICV_IARO_EL1 while operating in the
same security state as that in which the write occurs, otherwise the system behaviour is
UNPREDICTABLE. A valid read is a read that returns a valid interrupt ID that is not a special INTID.

Traps and Enables
If ICC_SRE _ELI1.SRE==0, Non-secure EL1 write accesses to this register are trapped to EL1.
IfICH HCR EL2.TALLO==1, Non-secure EL1 write accesses to this register are trapped to EL2.

Configurations

AArch64 System register ICV_EOIR0_EL1 performs the same function as AArch32 System
operation ICV_EOIRO.

Attributes
ICV_EOIRO_EL1 is a 32-bit register.

Field descriptions

The ICV_EOIRO _EL1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]

Reserved, RESO.

INTID, bits [23:0]
The INTID from the corresponding ICV_IARO_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR _ELI1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RESO.

Ifthe ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt,
and also deactivates the virtual interrupt.

8-236 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual
interrupt. Software must write to ICV_DIR _ELI to deactivate the virtual interrupt.
Accessing the ICV_EOIR0_EL1:
To access the ICV_EOIRO _EL1 when HCR_EL2.FMO is set to 1, and executing at Non-secure EL1:
MSR ICC_EOIR@_EL1, <Xt> ; Write Xt to ICV_EOIRQ_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 000 1100 1000 001

When AArch64 HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_EOIRO_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-237
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.8 ICV_EOIR1_ELA1, Interrupt Controller Virtual End Of Interrupt Register 1
The ICV_EOIR1 EL1 characteristics are:

Purpose

A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified virtual Group 1 interrupt.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- WO - - - -

ICV_EOIR1 EL1 is only accessible at Non-secure EL1 when AArch64 HCR _EL2.IMOissetto 1.

Note

When AArch64 HCR _EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding used to
access ICV_EOIR1 _EL1 results in an access to ICC_EOIR1 ELI.

A write to this register must correspond to the most recent valid read from an Interrupt
Acknowledge Register and that this identifier was read from ICV_IAR1_EL1 while operating in the
same security state as that in which the write occurs, otherwise the system behaviour is
UNPREDICTABLE. A valid read is a read that returns a valid interrupt ID, that is not a special INTID.

Traps and Enables
If ICC_SRE _ELI1.SRE==0, Non-secure EL1 write accesses to this register are trapped to EL1.
IfICH HCR EL2.TALL1==1, Non-secure EL1 write accesses to this register are trapped to EL2.

Configurations

AArch64 System register ICV_EOIR1_ELI1 performs the same function as AArch32 System
operation ICV_EOIRI.

Attributes
ICV_EOIR1 _ELI is a 32-bit register.

Field descriptions

The ICV_EOIR1_EL1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]

Reserved, RESO.

INTID, bits [23:0]
The INTID from the corresponding ICV_IAR1_EL1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR _ELI1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RESO.

Ifthe ICV_CTLR.EOImode bit is 0, a write to this register drops the priority for the virtual interrupt,
and also deactivates the virtual interrupt.

8-238 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

If the ICV_CTLR.EOImode bit is 1, a write to this register only drops the priority for the virtual
interrupt. Software must write to ICV_DIR _ELI to deactivate the virtual interrupt.
Accessing the ICV_EOIR1_EL1:
To access the ICV_EOIR1_EL1 when HCR_EL2.IMO is set to 1, and executing at Non-secure EL1:
MSR ICC_EOIR1_EL1, <Xt> ; Write Xt to ICV_EOIR1_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 000 1100 1100 001

When AArch64 HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_EOIRI_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-239
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.9 ICV_HPPIRO_ELA1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
The ICV_HPPIRO ELI characteristics are:

Purpose

Indicates the highest priority pending virtual Group 0 interrupt on the virtual CPU interface.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RO - - - -

ICV_HPPIRO ELI is only accessible at Non-secure EL1 when AArch64 HCR_EL2.FMO is set to
1.

Note

When AArch64 HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding used to
access ICV_HPPIRO ELI results in an access to ICC_HPPIRO EL1.

Traps and Enables
If ICC_SRE ELI1.SRE==0, Non-secure EL1 read accesses to this register are trapped to EL1.
IfICH HCR EL2.TALLO==1, Non-secure EL1 read accesses to this register are trapped to EL2.

Configurations

AArch64 System register ICV_HPPIRO EL1 performs the same function as AArch32 System
operation ICV_HPPIRO.

Attributes
ICV_HPPIRO_EL1 is a 32-bit register.

Field descriptions

The ICV_HPPIRO_EL1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]
Reserved, RESO.

INTID, bits [23:0]
The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See special interrupt, for more
information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR ELI1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RESO.

8-240 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

Accessing the ICV_HPPIRO_ELA1:
To access the ICV_HPPIRO_EL1 when HCR_EL2.FMO is set to 1, and executing at Non-secure EL1:
MRS <Xt>, ICC_HPPIR@_EL1 ; Read ICV_HPPIR@_EL1 into Xt

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 000 1100 1000 010

When AArch64 HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_HPPIRO_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-241
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.10 ICV_HPPIR1_ELA1, Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
The ICV_HPPIR1 ELI characteristics are:

Purpose

Indicates the highest priority pending virtual Group 1 interrupt on the virtual CPU interface.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RO - - - -

ICV_HPPIR1 ELI is only accessible at Non-secure EL1 when AArch64 HCR _EL2.IMO is set to
1.

Note

When AArch64 HCR _EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding used to
access ICV_HPPIR1 ELI results in an access to ICC_HPPIR1 EL1.

Traps and Enables
If ICC_SRE ELI1.SRE==0, Non-secure EL1 read accesses to this register are trapped to EL1.
IfICH HCR EL2.TALL1==1, Non-secure EL1 read accesses to this register are trapped to EL2.

Configurations

AArch64 System register ICV_HPPIR1 ELI performs the same function as AArch32 System
operation ICV_HPPIRI.

Attributes
ICV_HPPIR1_ELI1 is a 32-bit register.

Field descriptions

The ICV_HPPIR1 EL1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]
Reserved, RESO.

INTID, bits [23:0]
The INTID of the highest priority pending virtual interrupt.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See special interrupt, for more
information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR ELI1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RESO.

8-242 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

Accessing the ICV_HPPIR1_ELA1:
To access the ICV_HPPIR1_EL1 when HCR_EL2.IMO is set to 1, and executing at Non-secure EL1:
MRS <Xt>, ICC_HPPIR1_EL1 ; Read ICV_HPPIR1_EL1 into Xt

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1100 010

When AArch64 HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_HPPIRI_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-243
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.11 ICV_IARO_ELA1, Interrupt Controller Virtual Interrupt Acknowledge Register 0
The ICV_IARO_EL1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled virtual Group 0 interrupt. This read
acts as an acknowledge for the interrupt.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RO - - - -

ICV_IARO EL1 is only accessible at Non-secure EL1 when AArch64 HCR_EL2.FMO is set to 1.

Note

When AArch64 HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding used to
access ICV_IARO ELI results in an access to ICC_IARO EL1.

Traps and Enables
If ICC_SRE ELI1.SRE==0, Non-secure EL1 read accesses to this register are trapped to EL1.
IfICH HCR EL2.TALLO==1, Non-secure EL1 read accesses to this register are trapped to EL2.

Configurations

AArch64 System register ICV_TARO _EL1 performs the same function as AArch32 System
operation ICV_IARO.

Attributes
ICV_IARO _EL1 is a 32-bit register.

Field descriptions

The ICV_IARO_EL1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]
Reserved, RESO.

INTID, bits [23:0]
The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient
priority for it to be signaled to the PE, and if it can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See special interrupt, for more
information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICV_CTLR_ELL1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RESO.

8-244 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

Accessing the ICV_IARO_EL1:
To access the ICV_IARO_EL1 when HCR_EL2.FMO is set to 1, and executing at Non-secure EL1:
MRS <Xt>, ICC_IARQ_EL1 ; Read ICV_IARO_EL1 into Xt

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 000 1100 1000 000

When AArch64 HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_TARO_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-245
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.12 ICV_IAR1_ELA1, Interrupt Controller Virtual Interrupt Acknowledge Register 1
The ICV_IARI1 _EL1 characteristics are:

Purpose
The PE reads this register to obtain the INTID of the signaled virtual Group 1 interrupt. This read
acts as an acknowledge for the interrupt.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RO - - - -

ICV_IARI1 _EL1 is only accessible at Non-secure EL1 when AArch64 HCR _EL2.IMO is set to 1.

Note

When AArch64 HCR _EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding used to
access ICV_IAR1 ELI results in an access to ICC_IAR1 ELI.

Traps and Enables
If ICC_SRE ELI1.SRE==0, Non-secure EL1 read accesses to this register are trapped to EL1.
IfICH HCR EL2.TALL1==1, Non-secure EL1 read accesses to this register are trapped to EL2.

Configurations

AArch64 System register ICV_IAR1_EL1 performs the same function as AArch32 System
operation ICV_IARI.

Attributes
ICV_IAR1 _EL1 is a 32-bit register.

Field descriptions

The ICV_IAR1 EL1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]
Reserved, RESO.

INTID, bits [23:0]
The INTID of the signaled virtual interrupt.

This is the INTID of the highest priority pending virtual interrupt, if that interrupt is of sufficient
priority for it to be signaled to the PE, and if it can be acknowledged.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See special interrupt, for more
information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR _ELI1.IDbits. If only 16 bits are implemented, bits [23:16] of this register are RESO.

8-246 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

Accessing the ICV_IAR1_EL1:
To access the ICV_IAR1_EL1 when HCR_EL2.IMO is set to 1, and executing at Non-secure EL1:
MRS <Xt>, ICC_IAR1_EL1 ; Read ICV_IARI_EL1 into Xt

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1100 000

When AArch64 HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_TIARI_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-247
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.13 ICV_IGRPENO_ELA1, Interrupt Controller Virtual Interrupt Group 0 Enable register
The ICV_IGRPENO ELI characteristics are:

Purpose

Controls whether virtual Group 0 interrupts are enabled or not.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RW - - - -

ICV_IGRPENO ELL1 is only accessible at Non-secure EL1 when AArch64 HCR _EL2.FMO is set
to 1.

Note

When AArch64 HCR_EL2.FMO is set to 0, at Non-secure EL1, the instruction encoding used to
access ICV_IGRPENO EL1 results in an access to ICC_IGRPENO ELI.

Traps and Enables
If ICC_SRE _ELI1.SRE==0, Non-secure EL1 accesses to this register are trapped to EL1.
IfICH_HCR EL2.TALLO==1, Non-secure EL1 accesses to this register are trapped to EL2.

Configurations

AArch64 System register ICV_IGRPENO_EL1 is architecturally mapped to AArch32 System
register ICV_IGRPENO.

Attributes
ICV_IGRPENO_EL1 is a 32-bit register.

Field descriptions

The ICV_IGRPENO_EL1 bit assignments are:

31 10

RESO

I— Enable

Bits [31:1]

Reserved, RESO.

Enable, bit [0]
Enables virtual Group 0 interrupts.
0 Virtual Group 0 interrupts are disabled.
1 Virtual Group 0 interrupts are enabled.

This field resets to 0.

8-248 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

Accessing the ICV_IGRPENO_ELA1:
To access the ICV_IGRPENO_EL1 when HCR_EL2.FMO is set to 1, and executing at Non-secure EL1:

MRS <Xt>, ICC_IGRPEN@_EL1 ; Read ICV_IGRPEN@_EL1 into Xt
MSR ICC_IGRPEN@_EL1, <Xt> ; Write Xt to ICV_ICRPENO_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1100 110

When AArch64 HCR_EL2.FMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_IGRPENO_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-249
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.14 ICV_IGRPEN1_ELA1, Interrupt Controller Virtual Interrupt Group 1 Enable register
The ICV_IGRPEN1 ELI characteristics are:
Purpose
Controls whether virtual Group 1 interrupts are enabled for the current Security state.
Usage constraints
This register is accessible as follows:
ELO EL1 (NS) EL1 (S) EL2 (NS) EL3 (SCR.NS=1) EL3 (SCR.NS=0)
- RW - - - -
ICV_IGRPENI1_EL1 is only accessible at Non-secure EL1 when AArch64 HCR_EL2.IMO is set
to 1.
Note —
When AArch64 HCR_EL2.IMO is set to 0, at Non-secure EL1, the instruction encoding used to
access ICV_IGRPEN1_EL1 results in an access to ICC_IGRPEN1 _ELI.
Traps and Enables
There are no traps or enables affecting this register.
Configurations
AArch64 System register ICV_IGRPEN1_EL1 is architecturally mapped to AArch32 System
register ICV_IGRPENI.
Attributes
ICV_IGRPENI1_EL1 is a 32-bit register.
Field descriptions
The ICV_IGRPEN1 EL1 bit assignments are:
31 10
RESO
I— Enable
Bits [31:1]
Reserved, RESO.
Enable, bit [0]
Enables virtual Group 1 interrupts.
0 Virtual Group 1 interrupts are disabled.
1 Virtual Group 1 interrupts are enabled.
This field resets to 0.
Accessing the ICV_IGRPEN1_ELA1:
To access the ICV_IGRPEN1_EL1 when HCR_EL2.IMO is set to 1, and executing at Non-secure EL1:
8-250

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

MRS <Xt>, ICC_IGRPEN1_EL1 ; Read ICV_IGRPEN1_EL1 into Xt
MSR ICC_IGRPEN1_EL1, <Xt> ; Write Xt to ICV_ICRPENI_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 110 1100 1100 111

When AArch64 HCR_EL2.IMO is set to 0, execution of this encoding at Non-secure EL1 results in an access to
ICC_IGRPENI_ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-251
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.15 ICV_PMR_ELA1, Interrupt Controller Virtual Interrupt Priority Mask Register
The ICV_PMR_ELI characteristics are:

Purpose
Provides a virtual interrupt priority filter. Only virtual interrupts with higher priority than the value
in this register are signaled to the PE.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RW - - - -

ICV_PMR_ELI1 is only accessible at Non-secure EL1 when AArch64 HCR_EL2.{FMO, IMO} !=
{0, 0}.
Note

When AArch64 HCR_EL2.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding
used to access ICV_PMR_EL1 results in an access to ICC_ PMR _ELI.

Traps and Enables
IfICC_SRE_EL1.SRE==0, Non-secure EL1 accesses to this register are trapped to EL1.
IfICH_HCR_EL2.TC==1, Non-secure EL1 accesses to this register are trapped to EL2.

Configurations
AArch64 System register ICV_PMR_EL1 is architecturally mapped to AArch32 System register
ICV_PMR.

Attributes

ICV_PMR ELl is a 32-bit register.

Field descriptions

The ICV_PMR_EL1 bit assignments are:

31 8 7 0

RESO Priority

Bits [31:8]
Reserved, RESO.
Priority, bits [7:0]

The priority mask level for the virtual CPU interface. If the priority of a virtual interrupt is higher
than the value indicated by this field, the interface signals the virtual interrupt to the PE.

8-252 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

The possible priority field values are as follows:

Implemented priority bits Possible priority field values Number of priority levels
[7:0] 0x00-0xFF (0-255), all values 256

[7:1] 0x00-0xFE (0-254), even values only 128

[7:2] 0x00-0xFC (0-252), in steps of 4 64

[7:3] 0x00-0xF8 (0-248), in steps of 8 32

[7:4] 0x00-0xF0 (0-240), in steps of 16 16

Unimplemented priority bits are RAZ/WI.
This field resets to 0.

Accessing the ICV_PMR_ELA1:
To access the ICV_PMR _EL1 when HCR_EL2.{FMO, IMO} != {0, 0}, and executing at Non-secure EL1:

MRS <Xt>, ICC_PMR_EL1 ; Read ICV_PMR_EL1 into Xt
MSR ICC_PMR_EL1, <Xt> ; Write Xt to ICV_PMR_EL1

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 000 0100 0110 000

When AArch64 HCR_EL2.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an
access to ICC_PMR ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-253
Non-Confidential - Beta

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

8.3.16 ICV_RPR_EL1, Interrupt Controller Virtual Running Priority Register
The ICV_RPR _ELI1 characteristics are:

Purpose

Indicates the Running priority of the virtual CPU interface.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- RO - - - -

ICV_RPR ELl is only accessible at Non-secure EL1 when AArch64 HCR_EL2.{FMO, IMO} !=
{0, 0}.

Note

When AArch64 HCR_EL2.{FMO, IMO} == {0, 0}, at Non-secure EL1, the instruction encoding
used to access ICV_RPR_ELI results in an access to ICC_RPR_EL1.

If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone
priority drop, the value returned is the Idle priority.

Software cannot determine the number of implemented priority bits from a read of this register.

Traps and Enables
IfICC_SRE_EL1.SRE==0, Non-secure EL1 read accesses to this register are trapped to EL1.
IfICH HCR EL2.TC==1, Non-secure EL1 read accesses to this register are trapped to EL2.

Configurations

AArch64 System register ICV_RPR_ELI performs the same function as AArch32 System
operation ICV_RPR.

Attributes
ICV_RPR_EL1 is a 32-bit register.

Field descriptions

The ICV_RPR_ELL1 bit assignments are:

31 8 7 0

RESO Priority

Bits [31:8]
Reserved, RESO.

Priority, bits [7:0]

The current running priority on the virtual CPU interface. This is the group priority of the current
active virtual interrupt.

If there are no active interrupts on the virtual CPU interface, or all active interrupts have undergone
priority drop, the value returned is the Idle priority.

8-254 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.3 AArch64 System register descriptions of the virtual registers

Accessing the ICV_RPR_EL1:
To access the ICV_RPR_EL1 when HCR_EL2.{FMO, IMO} != {0, 0}, and executing at Non-secure EL1:
MRS <Xt>, ICC_RPR_EL1 ; Read ICV_RPR_EL1 into Xt

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 000 1100 1011 011

When AArch64 HCR_EL2.{FMO, IMO} == {0, 0}, execution of this encoding at Non-secure EL1 results in an
access to ICC_RPR _ELI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-255
Non-Confidential - Beta

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

8.4 AArch64 virtualization control System registers

This section describes each of the virtualization control AArch64 GIC System registers in register name order. The
ICH prefix indicates a virtual interface control System register. Each AArch64 System register description contains
a reference to the AArch32 register that provides the same functionality.

Unless otherwise stated, the bit assignments for the GIC System registers are the same as those for the equivalent
GICH_* memory-mapped registers. See The GIC virtual interface control register descriptions on page 8-595.

For information about the System register encoding tables, see the individual register description.

8-256 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

8.4.1 ICH_APOR<n>_EL2, Interrupt Controller Hyp Active Priorities Group 0 Registers,n=0-3
The ICH_APOR<n> EL2 characteristics are:

Purpose

Provides information about Group 0 active priorities for EL2.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - RwW RW RW

ICH _APOR1 EL2 is only implemented in implementations that support 6 or more bits of priority.
ICH _APOR2 EL2 and ICH APOR3 EL2 are only implemented in implementations that support 7
bits of priority. If an implementation that supports fewer bits of priority attempts to access these
registers, it generates an Undefined Instruction exception.

If an implementation supports fewer than 5 bits of priority, then bits [31:2implemented bits] of
ICH_APORO_EL?2 are RAZ/WI, and bits [2implemented bits_]:0] correspond to valid priority levels.

Writing the registers in any order other than ICH_APORn_EL2 followed by ICH_AP1Rn_EL2 can
cause the virtual interrupt priorty system to malfunction.

Traps and Enables
IfICC_SRE _EL2.SRE==0, EL2 accesses to this register are trapped to EL2.

Configurations

AArch64 System register ICH_APOR<n> EL2 is architecturally mapped to AArch32 System
register [CH_APOR<n>.

Attributes
ICH_APOR<n> EL2 is a 32-bit register.

Field descriptions

The ICH_APOR<n> EL2 bit assignments are:

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-257
ID060315 Non-Confidential - Beta

8 Programmers’ Model

8.4 AArch64 virtualization control System registers

313029282726252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

Po|Ps|P7|P6|P5[P4{P3|P2[P1[Po

P31 Q
P30

P29
P28
P27

P13
P14

‘| P10
P11
P12

P26
P25

P15

P24
P23

P22

P21

P20

P19

P18

P17

P16

P<x>, bit [x], for x =0 to 31

Group 0 interrupt active priorities. Possible values of each bit are:

0 There is no Group 0 interrupt active with this priority group, or all active Group 0
interrupts with this priority group have undergone priority-drop.

1 There is a Group 0 interrupt active with this priority group which has not undergone
priority drop.

The correspondence between priority groups and bits depends on the number of bits of priority that
are implemented.

If' 5 bits of priority are implemented (bits [7:3] of priority), then there are 32 priority groups, and the

active state of these priority groups are held in ICH_APORO_EL2 in the bits corresponding to

Priority[7:3].

If 6 bits of priority are implemented (bits [7:2] of priority), then there are 64 priority groups, and:

. The active state of priority groups 0 - 124 are held in ICH_APORO_EL2 in the bits
corresponding to 0:Priority[6:2].

. The active state of priority groups 128 - 252 are held in ICH_APOR1_EL2 in the bits
corresponding to 1:Priority[6:2].

If 7 bits of priority are implemented (bits [7:1] of priority), then there are 128 priority groups, and:

. The active state of priority groups 0 - 62 are held in ICH_APORO EL2 in the bits
corresponding to 00:Priority[5:1].

. The active state of priority groups 64 - 126 are held in ICH_APOR1_EL2 in the bits
corresponding to 01:Priority[5:1].

. The active state of priority groups 128 - 190 are held in ICH_APOR2_EL2 in the bits
corresponding to 10:Priority[5:1].

. The active state of priority groups 192 - 254 are held in ICH_APOR3_EL2 in the bits
corresponding to 11:Priority[5:1].

Note

Having the bit corresponding to a priority set to 1 in both ICH APOR<n> EL2 and
ICH_API1R<n> EL2 might cause the interrupt prioritisation system for virtual interrupts to
malfunction.

8-258

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

When fewer than 8 bits of priority are implemented, the bit corresponding to the lowest possible
implemented priority might not be implemented.

This field resets to 0.

Accessing the ICH_APOR<n>_EL2:
To access the ICH_APOR<n> EL2:

MRS <Xt>, ICH_APQR<n>_EL2 ; Read ICH_APOR<n>_EL2 into Xt, where n is in the range 0 to 3
MSR ICH_APQR<n>_EL2, <Xt> ; Write Xt to ICH_APOR<n>_EL2, where n is in the range 0 to 3

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 100 1100 1000 0:n<1:0>

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-259
Non-Confidential - Beta

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

8.4.2 ICH_AP1R<n>_EL2, Interrupt Controller Hyp Active Priorities Group 1 Registers,n=0-3

The ICH_AP1R<n> EL2 characteristics are:

Purpose
Provides information about Group 1 active priorities for EL2.

Usage constraints
This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)
- - - RW RW RW
ICH _API1R1 EL2 is only implemented in implementations that support 6 or more bits of priority.
ICH AP1R2 EL2 and ICH AP1R3 EL2 are only implemented in implementations that support 7
bits of priority. If an implementation that supports fewer bits of priority attempts to access these
registers, it generates an Undefined Instruction exception.
If an implementation supports fewer than 5 bits of priority, then bits [31:2implemented bits] of
ICH_APIRO_EL2 are RAZ/WI, and bits [2implemented bits_]:0] correspond to valid priority levels.
Note

When fewer than 8 bits of priority are implemented, the priority corresponding to the lowest
possible implemented priority can never be activated, so a corresponding active priority bit might
not be implemented.
Writing the registers in any order other than ICH_APORn_EL2 followed by ICH_AP1Rn EL2 can
cause the virtual interrupt priorty system to malfunction.

Traps and Enables
IfICC _SRE EL2.SRE==0, EL2 accesses to this register are trapped to EL2.

Configurations
AArch64 System register ICH_AP1R<n> EL2 is architecturally mapped to AArch32 System
register [CH_AP1R<n>.

Attributes
ICH_AP1R<n> EL2 is a 32-bit register.

Field descriptions

The ICH_AP1R<n> EL2 bit assignments are:

8-260 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

313029282726252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

Polrs|P7|Ps|P5|P4lP3lP2|P1|Po
P31 Q ‘ | P10
P30 P11
P29 P12
P28 P13
P27 P14
P26 P15
P25
P24
P23
P22
P21
P20
P19
P18
P17
P16
P<x>, bit [x], for x =0 to 31
Group 1 interrupt active priorities. Possible values of each bit are:
0 There is no Group 1 interrupt active with this priority group, or all active Group 1
interrupts with this priority group have undergone priority-drop.
1 There is a Group 1 interrupt active with this priority group which has not undergone
priority drop.
The correspondence between priority groups and bits depends on the number of bits of priority that
are implemented.
If' 5 bits of priority are implemented (bits [7:3] of priority), then there are 32 priority groups, and the
active state of these priority groups are held in ICH_AP1R0_EL2 in the bits corresponding to
Priority[7:3].
If 6 bits of priority are implemented (bits [7:2] of priority), then there are 64 priority groups, and:
. The active state of priority groups 0 - 124 are held in ICH_AP1R0_EL2 in the bits
corresponding to 0:Priority[6:2].
. The active state of priority groups 128 - 252 are held in ICH_APIR1 EL2 in the bits
corresponding to 1:Priority[6:2].
If 7 bits of priority are implemented (bits [7:1] of priority), then there are 128 priority groups, and:
. The active state of priority groups 0 - 62 are held in ICH_APIRO EL2 in the bits
corresponding to 00:Priority[5:1].
. The active state of priority groups 64 - 126 are held in ICH_AP1R1_EL2 in the bits
corresponding to 01:Priority[5:1].
. The active state of priority groups 128 - 190 are held in ICH_AP1R2 EL2 in the bits
corresponding to 10:Priority[5:1].
. The active state of priority groups 192 - 254 are held in ICH_APIR3 EL2 in the bits
corresponding to 11:Priority[5:1].
Note
Having the bit corresponding to a priority set to 1 in both ICH APOR<n> EL2 and
ICH_API1R<n>_ EL2 might cause the interrupt prioritisation system for virtual interrupts to
malfunction.
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-261
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

This field resets to 0.

Accessing the ICH_AP1R<n>_EL2:
To access the ICH_AP1R<n> EL2:

MRS <Xt>, ICH_AP1R<n>_EL2 ; Read ICH_AP1R<n>_EL2 into Xt, where n is in the range 0 to 3
MSR ICH_AP1R<n>_EL2, <Xt> ; Write Xt to ICH_AP1R<n>_EL2, where n is in the range @ to 3

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 100 1100 1001 0:n<1:0>

8-262 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

8.4.3 ICH_EISR_ELZ2, Interrupt Controller End of Interrupt Status Register
The ICH_EISR EL2 characteristics are:

Purpose

Indicates which List registers have outstanding EOI maintenance interrupts.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - RO RO RO

Traps and Enables
IfICC_SRE EL2.SRE==0, EL2 read accesses to this register are trapped to EL2.

Configurations
AArch64 System register [ICH_EISR_EL2 is architecturally mapped to AArch32 System register
ICH_EISR.

Attributes

ICH_EISR _EL2 is a 32-bit register.

Field descriptions

The ICH_EISR_EL2 bit assignments are:

31 16 15 0

RESO Status<n>, bit [n], forn=0to 15

Bits [31:16]
Reserved, RESO.

Status<n>, bit [n], for n = 0 to 15

EOI maintenance interrupt status bit for List register <n>:

0 List register <n>, ICH_LR<n> EL2, does not have an EOI maintenance interrupt.
1 List register <n>, ICH_LR<n> EL2, has an EOI maintenance interrupt that has not
been handled.

For any ICH_LR<n> EL2, the corresponding status bit is set to 1 if all of the following are true:
« ICH_LR<n> EL2.State is 0b00.
« ICH LR<n> EL2.HW is 0.

. ICH_LR<n> EL2.EOI(bit[41])is 1, indicating that when the interrupt corresponding to that
List register is deactivated, a maintenance interrupt is asserted.

Otherwise the status bit takes the value 0.

Accessing the ICH_EISR_EL2:
To access the ICH_EISR _EL2:

MRS <Xt>, ICH_EISR_EL2 ; Read ICH_EISR_EL2 into Xt

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-263
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 100 1100 1011 011

8-264 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

ICH_ELRSR_EL2, Interrupt Controller Empty List Register Status Register

The ICH_ELRSR_EL2 characteristics are:

Purpose

Indicates which List registers contain valid interrupts.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - RO RO RO

Traps and Enables
IfICC_SRE EL2.SRE==0, EL2 read accesses to this register are trapped to EL2.

Configurations
AArch64 System register [ICH_ELRSR_EL2 is architecturally mapped to AArch32 System register
ICH_ELRSR.

Attributes

ICH_ELRSR EL2 is a 32-bit register.

Field descriptions

The ICH_ELRSR_EL2 bit assignments are:

31 16 15 0

RESO Status<n>, bit [n], forn=0to 15

Bits [31:16]

Reserved, RESO.

Status<n>, bit [n], for n = 0 to 15
Status bit for List register <n>, ICH_LR<n> EL2:

0 List register ICH_LR<n> EL2, if implemented, contains a valid interrupt. Using this
List register can result in overwriting a valid interrupt.

1 List register ICH_LR<n> EL2 does not contain a valid interrupt. The List register is
empty and can be used without overwriting a valid interrupt or losing an EOI
maintenance interrupt.

For any List register <n>, the corresponding status bit is set to 1 if [ICH_LR<n> EL2.State is 0b00
and either ICH_LR<n> EL2.HW is 1 or ICH_LR<n> EL2.EOI (bit [41]) is 0.

Otherwise the status bit takes the value 0.

Accessing the ICH_ELRSR_EL2:
To access the ICH_ELRSR _EL2:

MRS <Xt>, ICH_ELRSR_EL2 ; Read ICH_ELRSR_EL2 into Xt

ARM IHI 0069A

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-265
Non-Confidential - Beta

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 100 1100 1011 101

8-266 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

ICH_HCR_EL2, Interrupt Controller Hyp Control Register

The ICH HCR EL2 characteristics are:

Purpose

Controls the environment for Guest operating systems.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - RW RW RW

Traps and Enables
IfICC_SRE EL2.SRE==0, EL2 accesses to this register are trapped to EL2.

Configurations

AArch64 System register ICH HCR_EL2 is architecturally mapped to AArch32 System register
ICH_HCR.

Attributes
ICH_HCR _EL2 is a 32-bit register.

Field descriptions

The ICH_HCR_EL2 bit assignments are:

31 27 26 1514131211109 8 7 6 56 4 3 2 1 0

EOIcount RESO ITC En

L1
I— UIE
LRENPIE

NPIE
VGrpOEIE
VGrpODIE
VGrp1EIE
VGrp1DIE
RESO
TALLO
TALLA1
TSEI
TDIR

EOIcount, bits [31:27]
This field is incremented whenever a successful write to a virtual EOIR or DIR register would have
resulted in a virtual interrupt deactivation. That is:
. A virtual write to EOIR with a valid interrupt identifier that is not in the LPI range (i.e. <
8192) when EOI mode is zero and no List Register was found, or

. A virtual write to DIR with a valid interrupt identifier that is not in the LPI range (i.e. <8192)
when EOI mode is one and no List Register was found

. This allows software to manage more active interrupts than there are implemented List
Registers.
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-267

Non-Confidential - Beta

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

Bits [26:15]

. It is CONSTRAINED UNPREDICTABLE whether a virtual writes to EOIR that does not clear a bit
in the Active Priorities registers (ICH_APORn_EL2/ICH_AP1Rn EL2) increments
EOIcount. Permitted behaviours are:

— increment EOlIcount
— leave EOIcount unchanged

This field resets to 0.

Reserved, RESO.

TDIR, bit [14]

TSEL bit [13]

Trap Non-secure EL1 writes to ICC_DIR _ELI.

0 Non-secure EL1 writes of ICC_DIR _EL1 are not trapped to EL2, unless trapped by
other mechanisms.
1 Non-secure EL1 writes of ICC_DIR _ELI1 are trapped to EL2.

Support for this bit is OPTIONAL, with support indicated by ICH_ VTR EL2.
If the implementation does not support this trap, this bit is RESO.

ARM deprecates not including this trap bit.

Trap all locally generated SEIs. This bit allows the hypervisor to intercept locally generated SEIs
that would otherwise be taken at Non-secure EL1.

0 Locally generated SEIs do not cause a trap to EL2.
1 Locally generated SEIs trap to EL2.
IfICH_VTR_EL2.SEIS is 0, this bit is RESO.

This field resets to 0.

TALLL, bit [12]

Trap all Non-secure EL1 accesses to ICC_* System registers for Group 1 interrupts to EL2.
0 Non-Secure EL1 accesses to ICC_* registers for Group 1 interrupts proceed as normal.
1 Non-secure EL1 accesses to ICC_* registers for Group 1 interrupts trap to EL2.

This field resets to 0.

TALLO, bit [11]

TC, bit [10]

Bits [9:8]

Trap all Non-secure EL1 accesses to ICC_* System registers for Group 0 interrupts to EL2.
0 Non-Secure EL1 accesses to ICC_* registers for Group 0 interrupts proceed as normal.
1 Non-secure EL1 accesses to ICC_* registers for Group 0 interrupts trap to EL2.

This field resets to 0.

Trap all Non-secure EL1 accesses to System registers that are common to Group 0 and Group 1 to
EL2.

0 Non-secure EL1 accesses to common registers proceed as normal.
1 Non-secure EL1 accesses to common registers trap to EL2.

This affects accesses to ICC_SGIOR EL1, ICC_SGIIR ELI1, ICC_ASGIIR ELI1,
ICC_CTLR_ELI1,ICC _DIR_ELI1,ICC_PMR_ELI, and ICC_RPR_ELI.

This field resets to 0.

Reserved, RESO.

8-268

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

VGrplDIE, bit [7]

VM Group 1 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while
signaling of Group 1 interrupts from the virtual CPU interface to the connected vPE is disabled:

0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when ICH_ VMCR_EL2.VENGTI is 0.
This field resets to 0.

VGrplEIE, bit [6]

VM Group 1 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while
signaling of Group 1 interrupts from the virtual CPU interface to the connected vPE is enabled:

0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when ICH_ VMCR_EL2.VENGTI is 1.
This field resets to 0.

VGrpODIE, bit [5]

VM Group 0 Disabled Interrupt Enable. Enables the signaling of a maintenance interrupt while
signaling of Group 0 interrupts from the virtual CPU interface to the connected vPE is disabled:

0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when ICH_ VMCR_EL2.VENGO is 0.
This field resets to 0.

VGrpOEIE, bit [4]

VM Group 0 Enabled Interrupt Enable. Enables the signaling of a maintenance interrupt while
signaling of Group 0 interrupts from the virtual CPU interface to the connected vPE is enabled:

0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled when ICH_ VMCR_EL2.VENGO is 1.
This field resets to 0.

NPIE, bit [3]

No Pending Interrupt Enable. Enables the signaling of a maintenance interrupt while no pending
interrupts are present in the List registers:

0 Maintenance interrupt disabled.

1 Maintenance interrupt signaled while the List registers contain no interrupts in the
pending state.

This field resets to 0.
LRENPIE, bit [2]

List Register Entry Not Present Interrupt Enable. Enables the signaling of a maintenance interrupt
while the virtual CPU interface does not have a corresponding valid List register entry for an EOI

request:
0 Maintenance interrupt disabled.
1 Maintenance interrupt is asserted while the EOIcount field is not 0.

This field resets to 0.

UIE, bit [1]

Underflow Interrupt Enable. Enables the signaling of a maintenance interrupt when the List
registers are empty, or hold only one valid entry:

0 Maintenance interrupt disabled.

1 Maintenance interrupt is asserted if none, or only one, of the List register entries is
marked as a valid interrupt.

This field resets to 0.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-269
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

En, bit [0]
Enable. Global enable bit for the virtual CPU interface:
0 Virtual CPU interface operation disabled.
1 Virtual CPU interface operation enabled.

When this field is set to 0:

. The virtual CPU interface does not signal any maintenance interrupts.

. The virtual CPU interface does not signal any virtual interrupts.

. Aread of ICV_IARO EL1,ICV _IARI ELI1, GICV_IAR or GICV_AIAR returns a spurious
interrupt ID.

This field resets to 0.

Accessing the ICH_HCR_EL2:
To access the ICH_HCR EL2:

MRS <Xt>, ICH_HCR_EL2 ; Read ICH_HCR_EL2 into Xt
MSR ICH_HCR_EL2, <Xt> ; Write Xt to ICH_HCR_EL2

Register access is encoded as follows:

op0 op1 CRn CRm op2

1 100 1100 1011 000

8-270 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8.4.6

63 62 61 60 59

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

ICH_LR<n>_EL2, Interrupt Controller List Registers, n=0-15

The ICH_LR<n> EL2 characteristics are:

Purpose

Provides interrupt context information for the virtual CPU interface.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

RwW RW RW

Traps and Enables
IfICC_SRE EL2.SRE==0, EL2 accesses to this register are trapped to EL2.

Configurations

AArch64 System register [ICH_LR<n> EL2[31:0] is architecturally mapped to AArch32 System
register [CH_LR<n>.

AArch64 System register ICH_LR<n> EL2[63:32] is architecturally mapped to AArch32 System
register ICH LRC<n>.

Attributes
ICH_LR<n> EL2 is a 64-bit register.

Field descriptions

The ICH_LR<n> EL2 bit assignments are:

3 56 55 N 48 47 3 42 41 3 32 31 5 0
t¢ t¢ t¢ t¢ t¢

State

RESO Priority RESO pINTID VINTID

)))))
143 143 143 143 149

HW —I
Group

State, bits [63:62]
The state of the interrupt:

00 Inactive

01 Pending

10 Active

11 Pending and active.

The GIC updates these state bits as virtual interrupts proceed through the interrupt life cycle. Entries
in the inactive state are ignored, except for the purpose of generating virtual maintenance interrupts.
For hardware interrupts, the pending and active state is held in the physical Distributor rather than
the virtual CPU interface. A hypervisor must only use the pending and active state for software
originated interrupts, which are typically associated with virtual devices, or SGIs.

This field resets to 0.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Non-Confidential - Beta

8-271

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

HW, bit [61]

Indicates whether this virtual interrupt maps directly to a hardware interrupt, meaning that it
corresponds to a physical interrupt. Deactivation of the virtual interrupt also causes the deactivation
of the physical interrupt with the ID that the pINTID field indicates.

0 The interrupt is triggered entirely by software. No notification is sent to the Distributor
when the virtual interrupt is deactivated.

1 The interrupt maps directly to a hardware interrupt. A deactivate interrupt request is sent
to the Distributor when the virtual interrupt is deactivated, using the pINTID field from
this register to indicate the physical interrupt ID.

IfICH VMCR _EL2.VEOIM is 0, this request corresponds to a write to
ICC _EOIRO EL1 or ICC_EOIR1 ELI1. Otherwise, it corresponds to a write to
ICC_DIR_ELI.

This field resets to 0.

Group, bit [60]
Indicates the group for this virtual interrupt.

0 This is a Group 0 virtual interrupt. ICH_VMCR_EL2.VFIQEn determines whether it is
signaled as a virtual IRQ or as a virtual FIQ, and ICH_VMCR_EL2.VENGO enables
signaling of this interrupt to the virtual machine.

1 This is a Group 1 virtual interrupt, signaled as a virtual IRQ. ICH_VMCR_EL2.VENG1
enables the signaling of this interrupt to the virtual machine.

IfICH_VMCR _EL2.VCBPRis 0, then ICC_BPR1 ELI determines if a pending Group
1 interrupt has sufficient priority to preempt current execution. Otherwise,
ICC_BPRO_EL1 determines preemption.

This field resets to 0.

Bits [59:56]

Reserved, RESO.

Priority, bits [55:48]
The priority of this interrupt.

It is IMPLEMENTATION DEFINED how many bits of priority are implemented, though at least five bits
must be implemented. Unimplemented bits are RESO and start from bit [48] up to bit [50]. The
number of implemented bits can be discovered from ICH_VTR_EL2.PRIbits.

This field resets to 0.

Bits [47:42]

Reserved, RESO.

pINTID, bits [41:32]
Physical INTID, for hardware interrupts.

When the HW bit is 0 (there is no corresponding physical interrupt), this field has the following
meaning:

Bit [41] EOL If this bit is 1, then when the interrupt identified by VINTID is deactivated, a
maintenance interrupt is asserted.

Bits [40:32]Reserved, RESO.

When the HW bit is 1 (there is a corresponding physical interrupt):

. This field indicates the physical INTID. This field is only required to implement enough bits
to hold a valid value for the implemented INTID size. Any unused higher order bits are RESO.

. If the value of pINTID is 0-15 or 1020-1023, behavior is UNPREDICTABLE. If the value of
pINTID is 16-31, this field applies to the PPI associated with this same physical PE ID as the
virtual CPU interface requesting the deactivation.

8-272 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

A hardware physical identifier is only required in List Registers for interrupts that require
deactivation. This means only 10 bits of Physical INTID are required, regardless of the number
specified by ICC_CTLR EL1.IDbits.

This field resets to 0.
VvINTID, bits [31:0]
Virtual INTID of the interrupt.

Software must ensure there is only a single valid entry for a given vINTID.

It is IMPLEMENTATION DEFINED how many bits are implemented, though at least 16 bits must be
implemented. Unimplemented bits are RESO. The number of implemented bits can be discovered
from ICH VTR _EL2.IDbits.

This field resets to 0.

Accessing the ICH_LR<n>_EL2:
To access the ICH_LR<n> EL2:

MRS <Xt>, ICH_LR<n>_EL2 ; Read ICH_LR<n>_EL2 into Xt, where n is in the range 0 to 15
MSR ICH_LR<n>_EL2, <Xt> ; Write Xt to ICH_LR<n>_EL2, where n is in the range 0 to 15

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 100 1100 110:n<3> n<2:0>

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-273
Non-Confidential - Beta

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

8.4.7 ICH_MISR_ELZ2, Interrupt Controller Maintenance Interrupt State Register
The ICH_MISR_EL2 characteristics are:

Purpose

Indicates which maintenance interrupts are asserted.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - RO RO RO

Traps and Enables

IfICC_SRE EL2.SRE==0, EL2 read accesses to this register are trapped to EL2.

Configurations

AArch64 System register [ICH_MISR_EL2 is architecturally mapped to AArch32 System register

ICH_MISR.

Attributes
ICH_MISR EL2 is a 32-bit register.

Field descriptions

The ICH_MISR_EL2 bit assignments are:

31 876 543210

RESO NP

u

I— EOI
LRENP
VGrpOE

VGrp0OD

VGrp1E

Bits [31:8]
Reserved, RESO.

VGrplD, bit [7]
vPE Group 1 Disabled.
0 VvPE Group 1 Disabled maintenance interrupt not asserted.
1 vPE Group 1 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH HCR EL2.VENGTI is 1 and
ICH_VMCR_EL2.VMGrp1En is 0.

This field resets to 0.
VGrplE, bit [6]
VvPE Group 1 Enabled.

0 vPE Group 1 Enabled maintenance interrupt not asserted.

VGrp1D

8-274 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved.
Non-Confidential - Beta

ARM IHI 0069A
ID060315

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

1 VvPE Group 1 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_ HCR_EL2.VENGT! is 1 and
ICH VMCR_EL2.VMGrplEn s I.

This field resets to 0.

VGrpOD, bit [5]
vPE Group 0 Disabled.
0 VvPE Group 0 Disabled maintenance interrupt not asserted.
1 vPE Group 0 Disabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH HCR _EL2.VENGO is 1 and
ICH_VMCR_EL2.VMGrpOEn is 0.

This field resets to 0.

VGrpOE, bit [4]

VvPE Group 0 Enabled.
0 vPE Group 0 Enabled maintenance interrupt not asserted.
1 vPE Group 0 Enabled maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_ HCR_EL2.VENGO is 1 and
ICH VMCR_EL2.VMGrpOEn is 1.

This field resets to 0.

NP, bit [3]
No Pending.
0 No Pending maintenance interrupt not asserted.
1 No Pending maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.NPIE is 1 and no List register is in
pending state.

This field resets to 0.

LRENP, bit [2]
List Register Entry Not Present.
0 List Register Entry Not Present maintenance interrupt not asserted.
1 List Register Entry Not Present maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_ HCR_EL2.LRENPIE is 1 and
ICH _HCR EL2.EOIcount is non-zero.

This field resets to 0.

U, bit [1]
Underflow.
0 Underflow maintenance interrupt not asserted.
1 Underflow maintenance interrupt asserted.

This maintenance interrupt is asserted when ICH_HCR_EL2.UIE is 1 and zero or one of the List
register entries are marked as a valid interrupt, that is, if the corresponding ICH_LR<n> EL2.State
bits do not equal 0x0.

This field resets to 0.
EOI, bit [0]
End Of Interrupt.

0 End Of Interrupt maintenance interrupt not asserted.

1 End Of Interrupt maintenance interrupt asserted.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-275
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

This maintenance interrupt is asserted when at least one bit in [CH_EISR EL2is 1.

This field resets to 0.

Accessing the ICH_MISR_EL2:
To access the ICH_MISR _EL2:
MRS <Xt>, ICH_MISR_EL2 ; Read ICH_MISR_EL2 into Xt

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 100 1100 1011 010

8-276 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

8.4.8 ICH_VMCR_EL2, Interrupt Controller Virtual Machine Control Register
The ICH_VMCR_EL2 characteristics are:

Purpose

Enables the hypervisor to save and restore the virtual machine view of the GIC state.

Usage constraints

This register is accessible as follows:

ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - RwW RW RW

When EL2 is using System register access, EL1 using either System register or memory-mapped
access must be supported.

Traps and Enables
IfICC_SRE EL2.SRE==0, EL2 accesses to this register are trapped to EL2.

Configurations
AArch64 System register ICH_VMCR_EL2 is architecturally mapped to AArch32 System register
ICH_VMCR.

Attributes

ICH_VMCR_EL2 is a 32-bit register.

Field descriptions

The ICH_VMCR _EL2 bit assignments are:

31 2423 2120 1817 109 8 543210
VPMR VBPRO | VBPR1 RESO RESO

I—VENGO

VENG1

VAckCHl

VFIQENn

VCBPR

VEOIM

VPMR, bits [31:24]

Virtual Priority Mask. The priority mask level for the virtual CPU interface. If the priority of a
pending virtual interrupt is higher than the value indicated by this field, the interface signals the
virtual interrupt to the PE.

This field is an alias of ICV_PMR_EL1.Priority.

VBPRAO, bits [23:21]

Virtual Binary Point Register, Group 0. Defines the point at which the priority value fields split into
two parts, the group priority field and the subpriority field. The group priority field determines
Group 0 interrupt preemption, and also determines Group 1 interrupt preemption if
ICH_VMCR_EL2.VCBPR == 1.

This field is an alias of ICV_BPRO_EL1.BinaryPoint.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-277
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

VBPRI, bits [20:18]

Bits [17:10]

Virtual Binary Point Register, Group 1. Defines the point at which the priority value fields split into
two parts, the group priority field and the subpriority field. The group priority field determines
Group 1 interrupt preemption if ICH VMCR _EL2.VCBPR == 0.

This field is an alias of ICV_BPR1 EL1.BinaryPoint.

Reserved, RESO.

VEOIM, bit [9]

Bits [8:5]

Virtual EOI mode. Controls whether a write to an End of Interrupt register also deactivates the
virtual interrupt:

0 ICV_EOIRO EL1 and ICV_EOIR1_ELI provide both priority drop and interrupt
deactivation functionality. Accesses to ICV_DIR _EL1 are UNPREDICTABLE.
1 ICV_EOIRO_EL1 and ICV_EOIR1 EL1 provide priority drop functionality only.

ICV_DIR_ELI provides interrupt deactivation functionality.
This bit is an alias of ICV_CTLR_EL1.EOImode.

Reserved, RESO.

VCBPR, bit [4]

Virtual Common Binary Point Register. Possible values of this bit are:
0 ICV_BPRO_EL1 determines the preemption group for virtual Group 0 interrupts only.
ICV_BPR1_EL1 determines the preemption group for virtual Group 1 interrupts.

1 ICV_BPRO_EL1 determines the preemption group for both virtual Group 0 and virtual
Group 1 interrupts.
Reads of ICV_BPR1 _ELI1 return ICV_BPRO EL1 plus one, saturated to 0b111. Writes
to ICV_BPR1 ELI are ignored.

This field is an alias of ICV_CTLR_EL1.CBPR.

VFIQER, bit [3]

Virtual FIQ enable. Possible values of this bit are:

0 Group 0 virtual interrupts are presented as virtual IRQs.
1 Group 0 virtual interrupts are presented as virtual FIQs.
This bit is an alias of GICV_CTLR.FIQEn.

In implementations where the Non-secure copy of ICC_SRE EL1.SRE is always one, this bit is
RESI.

VACKCtl, bit [2]

Virtual AckCtl. Possible values of this bit are:

0 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or
GICV_HPPIR returns an INTID of 1022.
1 If the highest priority pending interrupt is Group 1, a read of GICV_IAR or

GICV_HPPIR returns the INTID of the corresponding interrupt.
This bit is an alias of GICV_CTLR.AckCtl.

This field is supported for backwards compatibility with GICv2. ARM deprecates the use of this
field.

In implementations where the Non-secure copy of ICC_SRE EL1.SRE is always one, this bit is
RESO.

8-278

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

VENG1I, bit [1]
Virtual Group | interrupt enable. Possible values of this bit are:
0 Virtual Group 1 interrupts are disabled.
1 Virtual Group 1 interrupts are enabled.
This bit is an alias of ICV_IGRPEN1_EL1.Enable.
VENGHO, bit [0]
Virtual Group 0 interrupt enable. Possible values of this bit are:
0 Virtual Group 0 interrupts are disabled.
1 Virtual Group 0 interrupts are enabled.
This bit is an alias of ICV_IGRPENO EL1.Enable.

Accessing the ICH_VMCR_EL2:
To access the ICH VMCR_EL2:

MRS <Xt>, ICH_VMCR_EL2 ; Read ICH_VMCR_EL2 into Xt
MSR ICH_VWMCR_EL2, <Xt> ; Write Xt to ICH_VMCR_EL2

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 100 1100 1011 111

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-279
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

8.4.9 ICH_VTR_ELZ2, Interrupt Controller VGIC Type Register
The ICH_VTR EL2 characteristics are:
Purpose
Describes the number of implemented virtual priority bits and List registers.
Usage constraints
This register is accessible as follows:
ELO EL1(NS) EL1(S) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)
- - - RO RO RO
Traps and Enables
IfICC_SRE EL2.SRE==0, EL2 read accesses to this register are trapped to EL2.
Configurations
AArch64 System register ICH_VTR_EL2 is architecturally mapped to AArch32 System register
ICH_VTR.
Attributes
ICH_VTR_EL2 is a 32-bit register.
Field descriptions
The ICH_VTR_EL2 bit assignments are:
31 2928 2625 232221201918 5 4 0
PRIbits | PREbits [|Dbits RESO ListRegs
PRIbits, bits [31:29]
Priority bits. The number of virtual priority bits implemented, minus one.
An implementation must implement at least 32 levels of virtual priority (5 priority bits).
This field is an alias of ICV_CTLR_EL1.PRIbits.
PREDbits, bits [28:26]
The number of virtual preemption bits implemented, minus one.
An implementation must implement at least 32 levels of virtual preemption priority (5 preemption
bits).
IDbits, bits [25:23]
The number of virtual interrupt identifier bits supported:
000 16 bits.
001 24 bits.
All other values are reserved.
8-280 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.4 AArch64 virtualization control System registers

This field is an alias of ICV_CTLR_EL1.IDbits.

SEIS, bit [22]
SEI Support. Indicates whether the virtual CPU interface supports generation of SEIs:
0 The virtual CPU interface logic does not support generation of SEIs.
1 The virtual CPU interface logic supports generation of SEIs.
This bit is an alias of ICV_CTLR_EL1.SEIS.

A3V, bit [21]
Affinity 3 Valid. Possible values are:

0 The virtual CPU interface logic only supports zero values of Affinity 3 in SGI
generation System registers.

1 The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI generation
System registers.

This bit is an alias of ICV_CTLR_EL1.A3V.
nV4, bit [20]
GICv4 direct injection of virtual interrupts not supported. Possible values are:
0 The CPU interface logic supports direct injection of virtual interrupts.
1 The CPU interface logic does not support direct injection of virtual interrupts.
TDS, bit [19]
Separate trapping of Non-secure EL1 writes to ICV_DIR_EL1 supported.
0 Implementation does not support ICH_HCR_EL2.TDIR.
1 Implementation supports ICH HCR_EL2.TDIR.
Bits [18:5]
Reserved, RESO.
ListRegs, bits [4:0]

The number of implemented List registers, minus one. For example, a value of 9b@1111 indicates that
the maximum of 16 List registers are implemented.

Accessing the ICH_VTR_EL2:

To access the ICH VTR _EL2:

MRS <Xt>, ICH_VTR_EL2 ; Read ICH_VTR_EL2 into Xt

Register access is encoded as follows:

op0 op1 CRn CRm op2

11 100 1100 1011 001

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-281
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

8.5 AArch32 System register descriptions

This section describes each of the physical AArch32 GIC System registers in register name order. The ICC prefix
indicates a GIC CPU interface System register. Each AArch32 System register description contains a reference to
the AArch64 register that provides the same functionality.

Unless otherwise stated, the bit assignments for the GIC System registers are the same as those for the equivalent
GICC_* and GICV_* memory-mapped registers.

The ICC prefix is used by the System register access mechanism to select the physical or virtual interface System
registers according to the setting of HCR. The equivalent memory-mapped physical registers are described in The
GIC CPU interface register descriptions on page 8-524. The equivalent virtual interface memory-mapped registers
are described in The GIC virtual CPU interface register descriptions on page 8-563.

For information about the System register encoding tables, see the individual register description.

The following access encodings are IMPLEMENTATION DEFINED.

op1 CRn CRm op2
0 1100 1101 0
8-282 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

8.5.1 ICC_APOR<n>, Interrupt Controller Active Priorities Group 0 Registers,n=0 -3
The ICC_APOR<n> characteristics are:

Purpose

Provides information about Group 0 active priorities.

Usage constraints

If EL3 is implemented and is using AArch32, this register is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - RW RwW RW RW

If EL3 is not implemented or EL3 is implemented and is using AArch64, this register is accessible
as follows:

ELO EL1 EL2(NS)

- RW RW

The ICC_APOR<n> registers are only accessible at Non-secure EL1 when AArch32 HCR.FMO is
set to 0.
Note

When AArch32 HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_APOR<n> results in an access to ICV_APOR<n>.

Writing to these registers with any value other than the last read value of the register (or 0x00000000
when no Group 0 active priorities) might cause the interrupt prioritisation system to malfunction,

causing:
. Interrupts that should pre-empt execution to not pre-empt execution.
. Interrupts that should not pre-empt execution to pre-empt execution.

ICC_APOR1 is only implemented in implementations that support 6 or more bits of priority.
ICC_APOR2 and ICC_APOR3 are only implemented in implementations that support 7 bits of
priority. If an implementation that supports fewer bits of priority attempts to access these registers,
it generates an Undefined Instruction exception.

Writing to the active priority registers in any order other than the following order might cause the
interrupt prioritisation system to malfunction:

. ICC_APOR<n>.
. Secure ICC_AP1R<n>.
. Non-secure ICC_AP1R<n>.

Traps and Enables
If AArch32 HSTR.T12==1, Non-secure EL1 accesses to this register are trapped to Hyp mode.
If AArch64 HSTR_EL2.T12==1, Non-secure EL1 accesses to this register are trapped to EL2.
If ICH_HCR.TALLO==1, Non-secure EL1 accesses to this register are trapped to EL2.
IfICH_HCR EL2.TALLO==1, Non-secure EL1 accesses to this register are trapped to EL2.

If AArch64 SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure
EL1 accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, EL2
accesses to this register are trapped to EL3.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-283
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

If AArch64 SCR_EL3.FIQ==1, and HCR.FMO=0, and EL3 is implemented and configured to use
AArch64 and EL2 is implemented and configured to use AArch32, Non-secure EL1 accesses to this
register are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and HCR_EL2.FMO=0, and EL2 is implemented and configured
to use AArch64, Non-secure EL1 accesses to this register are trapped to EL3.

If ICC_SRE.SRE==0, EL1 accesses to this register are UNDEFINED.

If AArch32 SCR_S.FIQ==1, and EL3 is implemented and configured to use AArch32, EL2 and
EL3 modes other than Monitor mode accesses to this register are UNDEFINED.

If AArch32 SCR_S.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use
AArch32, Non-secure EL1 accesses to this register are UNDEFINED.

Configurations
There is one instance of this register that is used in both Secure and Non-secure states.
AArch32 System register [CC_APOR<n> is architecturally mapped to AArch64 System register
ICC_APOR<n> ELI.

Attributes
ICC_APOR<n> is a 32-bit register.

Field descriptions

The ICC_APOR<n> bit assignments are:

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.
This field resets to 0.

Accessing the ICC_APOR<n>:
To access the ICC_APOR<n>:

MRC p15,0,<Rt>,c12,c8,<opc2> ; Read ICC_APOR<n> into Rt, where n is in the range 0 to 3
MCR p15,0,<Rt>,c12,c8,<opc2> ; Write Rt to ICC_APOR<n>, where n is in the range @ to 3

Register access is encoded as follows:

coproc opcl CRn CRm opc2

1111 000 1100 1000 1:n<1:0>

When AArch32 HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_APOR<n>.

8-284

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

8.5.2 ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers,n=0 -3
The ICC_AP1R<n> characteristics are:

Purpose
Provides information about Group 1 active priorities.

Provides information about virtual Group 1 active priorities.

Usage constraints
ICC_AP1R<n>(S) is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - - - RW

ICC_AP1R<n>(NS) is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3(SCR.NS=0)

- - RW RW RW -

The ICC_AP1R<n> registers are only accessible at Non-secure EL1 when HCR.IMO is set to 0.

Note

When AArch32 HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_AP1R<n> results in an access to ICV_AP1R<n>.

Writing to these registers with any value other than the last read value of the register (or 0x00000000
when no Group 1 active priorities) might cause the interrupt prioritisation system to malfunction,

causing:
. Interrupts that should pre-empt execution to not pre-empt execution.
. Interrupts that should not pre-empt execution to pre-empt execution.

ICC_APIR1 is only implemented in implementations that support 6 or more bits of priority.
ICC_APIR2 and ICC_AP1R3 are only implemented in implementations that support 7 bits of
priority. If an implementation that supports fewer bits of priority attempts to access these registers,
it generates an Undefined Instruction exception.

Writing to the active priority registers in any order other than the following order might cause the
interrupt prioritisation system to malfunction:

. ICC_APOR<n>.
. Secure ICC_AP1R<n>.
. Non-secure ICC_APIR<n>.

Traps and Enables
If AArch32 HSTR.T12==1, Non-secure EL1 accesses to this register are trapped to Hyp mode.
If AArch64 HSTR EL2.T12==1, Non-secure EL1 accesses to this register are trapped to EL2.
If ICH_HCR.TALL1==1, Non-secure EL1 accesses to this register are trapped to EL2.
If ICH HCR_EL2.TALL1==1, Non-secure EL1 accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.IRQ==1, Secure EL1 accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.IRQ==1, EL2 accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.IRQ==1, and HCR.IMO=0, Non-secure EL1 accesses to this register are
trapped to EL3.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-285
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

If AArch64 SCR_EL3.IRQ==1, and HCR_EL2.IMO=0, Non-secure EL1 accesses to this register
are trapped to EL3.

If ICC_SRE.SRE==0, EL1 accesses to this register are UNDEFINED.

If AArch32 SCR_S.IRQ==1, EL2 and EL3 modes other than Monitor mode accesses to this register
are UNDEFINED.

If AArch32 SCR_S.IRQ==1, and HCR.IMO==0, Non-secure EL1 accesses to this register are
UNDEFINED.

Configurations

AArch32 System register [CC_AP1R<n>(S) is architecturally mapped to AArch64 System register
ICC_APIR<n>_ELI (S).

AArch32 System register ICC_AP1R<n>(NS) is architecturally mapped to AArch64 System
register [ICC_AP1R<n> EL1 (NS).

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural
requirement that the value 9x00000000 is consistent with no interrupts being active.

Attributes
ICC_API1R<n> is a 32-bit register.

Field descriptions

The ICC_APIR<n> bit assignments are:

31 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.
This field resets to 0.

Accessing the ICC_AP1R<n>:
To access the ICC_APIR<n>:

MRC p15,0,<Rt>,c12,c9,<opc2> ; Read ICC_AP1R<n> into Rt, where n is in the range 0 to 3
MCR p15,0,<Rt>,c12,c9,<opc2> ; Write Rt to ICC_AP1R<n>, where n is in the range @ to 3

Register access is encoded as follows:

coproc opcl CRn CRm opc2

1111 000 1100 1001 0:n<1:0>

When AArch32 HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_APIR<n>.

8-286 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

8.5.3 ICC_ASGI1R, Interrupt Controller Alias Software Generated Interrupt Group 1 Register

The ICC_ASGIIR characteristics are:

Purpose

Generates Group 1 SGIs for the Security state that is not the current Security state.

Usage constraints

If EL3 is implemented and is using AArch32, this register is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - WO WO WO wO

If EL3 is not implemented or EL3 is implemented and is using AArch64, this register is accessible
as follows:

ELO EL1 EL2(NS)

- WO WO

Traps and Enables

If AArch32 HCR.FMO==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If AArch32 HCR.IMO==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If AArch64 HCR_EL2.FMO==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If AArch64 HCR_EL2.IMO==1, Non-secure EL1 write accesses to this register are trapped to EL2.

If AArch32 HSTR.T12==1, Non-secure EL1 write accesses to this register are trapped to Hyp
mode.

If AArch64 HSTR _EL2.T12==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If ICH_HCR.TC==1, Non-secure EL1 write accesses to this register are trapped to EL2.
IfICH_HCR EL2.TC==1, Non-secure EL1 write accesses to this register are trapped to EL2.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure EL1 write accesses to this register
are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, EL2 write accesses to this register are
trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0,
Non-secure EL1 write accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and
HCR_EL2.FMO==0, Non-secure EL1 write accesses to this register are trapped to EL3.

If ICC_SRE.SRE==0, EL1 write accesses to this register are UNDEFINED.

If AArch32 SCR_S.FIQ==1, and SCR.IRQ==1, EL2 and EL3 modes other than Monitor mode
write accesses to this register are UNDEFINED.

Configurations

Attributes

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_ASGIIR performs the same function as AArch64 System operation
ICC_ASGIIR_ELI.

ICC_ASGIIR is a 64-bit register.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-287
Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

Field descriptions

The ICC_ASGIIR bit assignments are:

63 ,, 5655 . 4847 5 414039 , 3231, 2827 .,2423 . 1615 3 0
(%9 (%9 (%9 [£9 [£9 [£9 (%9 [£9
RESO Aff3 RESO Aff2 RESO | INTID Aff1 TargetList
))))))))))))))))
(%9 (%9 (%9 [£9 [£9 [£9 (%9 [£9
IRM
Bits [63:56]
Reserved, RESO.
Aff3, bits [55:48]
The affinity 3 value of the affinity path of the cluster for which SGI interrupts will be generated.
If the IRM bit is 1, this field is RESO.
Bits [47:41]
Reserved, RESO.
IRM, bit [40]
Interrupt Routing Mode. Determines how the generated interrupts should be distributed to PEs.
Possible values are:
0 Interrupts routed to the PEs specified by Aff3.Aff2.Aff1.<target list>.
1 Interrupts routed to all PEs in the system, excluding "self".
Aff2, bits [39:32]
The affinity 2 value of the affinity path of the cluster for which SGI interrupts will be generated.
If the IRM bit is 1, this field is RESO.
Bits [31:28]
Reserved, RESO.
INTID, bits [27:24]
The INTID of the SGI.
Affl, bits [23:16]
The affinity 1 value of the affinity path of the cluster for which SGI interrupts will be generated.
If the IRM bit is 1, this field is RESO.
TargetList, bits [15:0]
Target List. The set of PEs for which SGI interrupts will be generated. Each bit corresponds to the
PE within a cluster with an Affinity 0 value equal to the bit number.
If a bit is 1 and the bit does not correspond to a valid target PE, the bit must be ignored by the
Distributor. It is IMPLEMENTATION DEFINED whether, in such cases, a Distributor can signal a system
error.
Note
This restricts a system to sending targeted SGIs to PE with an affinity 0 number of greater than 16.
If the IRM bit is 1, this field is RESO.
8-288 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

Accessing the ICC_ASGI1R:
To access the ICC_ASGIIR:

MCRR p15,1,<Rt>,<Rt2>,c12 ; Write Rt to ICC_ASGI1R[31:0] and Rt2 to ICC_ASGIIR[63:32]

Register access is encoded as follows:

coproc opcl CRm

1111 0001 1100

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-289
Non-Confidential - Beta

8 Programmers’ Model

8.5 AArch32 System register descriptions

8.54

ICC_BPRO, Interrupt Controller Binary Point Register 0

The ICC_BPRO characteristics are:

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines Group 0 interrupt preemption.

Usage constraints

If EL3 is implemented and is using AArch32, this register is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - RW RwW RW RW

If EL3 is not implemented or EL3 is implemented and is using AArch64, this register is accessible
as follows:

ELO EL1 EL2(NS)

- RW RW

ICC_BPRO is only accessible at Non-secure EL1 when AArch32 HCR.FMO is set to 0.

Note

When AArch32 HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_BPRO results in an access to ICV_BPRO.

The minimum binary point value is derived from the number of implemented priority bits. The
number of priority bits is IMPLEMENTATION DEFINED, and reported by ICC_CTLR.PRIbits and
ICC_MCTLR.PRIbits.

An attempt to program the binary point field to a value less than the minimum value sets the field
to the minimum value. On a reset, the binary point field is set to the minimum supported value.

Traps and Enables

If AArch32 HSTR.T12==1, Non-secure EL1 accesses to this register are trapped to Hyp mode.
If AArch64 HSTR _EL2.T12==1, Non-secure EL1 accesses to this register are trapped to EL2.
If ICH _HCR.TALLO==1, Non-secure EL1 accesses to this register are trapped to EL2.
IfICH_HCR EL2.TALLO==1, Non-secure EL1 accesses to this register are trapped to EL2.

If AArch64 SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure
EL1 accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, EL2
accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and HCR.FMO=0, and EL3 is implemented and configured to use
AArch64 and EL2 is implemented and configured to use AArch32, Non-secure EL1 accesses to this
register are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and HCR_EL2.FMO=0, and EL2 is implemented and configured
to use AArch64, Non-secure EL1 accesses to this register are trapped to EL3.
IfICC_SRE.SRE==0, EL1 accesses to this register are UNDEFINED.

If AArch32 SCR_S.FIQ==1, and EL3 is implemented and configured to use AArch32, EL2 and
EL3 modes other than Monitor mode accesses to this register are UNDEFINED.

If AArch32 SCR_S.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use
AArch32, Non-secure EL1 accesses to this register are UNDEFINED.

8-290

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

Configurations

8 Programmers’ Model
8.5 AArch32 System register descriptions

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_BPRO is architecturally mapped to AArch64 System register

ICC_BPRO ELI.

Attributes
ICC_BPRO is a 32-bit register.

Field descriptions

The ICC_BPRO bit assignments are:

31

RESO

Bits [31:3]
Reserved, RESO.

BinaryPoint, bits [2:0]

I_li BinaryPoint

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field,
that determines interrupt preemption, and a subpriority field. This is done as follows:

Binary point value Group priority field Subpriority field

Field with binary point

0 [7:1] [0] 228828g.8
1 [7:2] [1:0] 22228858
2 [7:3] [2:0] ggggg.Sss
3 [7:4] [3:0] 2ggg.SSss
4 [7:5] [4:0] 288.55SSS
5 [7:6] [5:0] £28.555SSS
6 [7] [6:0] £.558SSSS
7 No preemption [7:0] .85SSSSSS

Accessing the ICC_BPRO:
To access the ICC_BPRO:

MRC p15,0,<Rt>,c12,c8,3 ; Read ICC_BPRO into Rt
MCR p15,0,<Rt>,c12,c8,3 ; Write Rt to ICC_BPRO

Register access is encoded as follows:

coproc opclt CRn CRm opc2
1111 000 1100 1000 011
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-291

ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

When AArch32 HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_BPRO.

8-292 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

8.5.5 ICC_BPRH1, Interrupt Controller Binary Point Register 1
The ICC_BPRI1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and
the subpriority field. The group priority field determines Group 1 interrupt preemption.

Usage constraints

ICC_BPRI(S) is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - - - RW

ICC_BPRI(NS) is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - RW RW RW -

ICC_BPR1 is only accessible at Non-secure EL1 when AArch32 HCR.IMO is set to 0.

Note

When AArch32 HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_BPRI1 results in an access to ICV_BPRI.

The reset value is IMPLEMENTATION DEFINED, but is equal to:
. For the Secure copy of the register, the minimum value of ICC_BPRO.
. For the Non-secure copy of the register, the minimum value of ICC_BPRO plus one.
An attempt to program the binary point field to a value less than the reset value sets the field to the
reset value.
Traps and Enables
If AArch32 HSTR.T12==1, Non-secure EL1 accesses to this register are trapped to Hyp mode.
If AArch64 HSTR _EL2.T12==1, Non-secure EL1 accesses to this register are trapped to EL2.
If ICH_HCR.TALL1==1, Non-secure EL1 accesses to this register are trapped to EL2.
IfICH HCR EL2.TALL1==1, Non-secure EL1 accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.IRQ==1, Secure EL1 accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.IRQ==1, EL2 accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.IRQ==1, and HCR.IMO=0, Non-secure EL1 accesses to this register are
trapped to EL3.

If AArch64 SCR_EL3.IRQ==1, and HCR_EL2.IMO=0, Non-secure EL1 accesses to this register
are trapped to EL3.

If ICC_SRE.SRE==0, EL1 accesses to this register are UNDEFINED.

If AArch32 SCR_S.IRQ==1, EL2 and EL3 modes other than Monitor mode accesses to this register
are UNDEFINED.

If AArch32 SCR_S.IRQ==1, and HCR.IMO==0, Non-secure EL1 accesses to this register are
UNDEFINED.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-293
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

Configurations

AArch32 System register ICC_BPRI1(S) is architecturally mapped to AArch64 System register

ICC_BPR1_ELI (S).

AArch32 System register [ICC_BPRI1(NS) is architecturally mapped to AArch64 System register

ICC_BPR1_ELI (NS).

In GIC implementations supporting two Security states, this register is Banked.

Attributes
ICC_BPR1 is a 32-bit register.

Field descriptions

The ICC_BPRI1 bit assignments are:

31

RESO

Bits [31:3]
Reserved, RESO.

BinaryPoint, bits [2:0]

I_li BinaryPoint

If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the
value of this field controls how the 8-bit interrupt priority field is split into a group priority field,
that determines interrupt preemption, and a subpriority field. This is done as follows:

Binary point value Group priority field Subpriority field Field with binary point

0 - - -
1 [7:1] (0] £8222ges
2 [7:2] [1:0] £8228g.ss
3 [7:3] [2:0] 28geg.Sss
4 [7:4] [3:0] £2828.8SSS
5 [7:5] [4:0] £88.588SS
6 [7:6] [5:0] £g.55SSSS
7 [7] [6:0] £.558SSSS

Writing 0 to this field will instead set this field to its reset value, which is IMPLEMENTATION DEFINED

and non-zero.

If EL3 is implemented and ICC_MCTLR.CBPR ELI1S is 1:

. Writing to this register at Secure EL1, or at EL3 not in Monitor mode, modifies ICC_BPRO.

. Reading this register at Secure EL1, or at EL3 not in Monitor mode, returns the value of
ICC_BPRO.
8-294 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta

ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

If EL3 is implemented and ICC_MCTLR.CBPR_ELINS is 1, Non-secure accesses to this register
at EL1 or EL2 behave as follows, depending on the values of AArch32 HCR.IMO and AArch32
SCR_S.IRQ:

AArch32 AArch32

HCRIMO SCR S.IRQ Behavior

0 0 Non-secure EL1 and EL2 reads return ICC_BPRO + 1 saturated to 0b111.
Non-secure EL1 and EL2 writes are ignored.

0 1 Non-secure EL1 and EL2 accesses trap to EL3.

1 0 Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return

ICC_BPRO + 1 saturated to 0b111. Non-secure EL2 writes are ignored.

1 1 Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 accesses trap
to EL3.

If EL3 is not implemented and ICC_CTLR.CBPR is 1, Non-secure accesses to this register at EL1
or EL2 behave as follows, depending on the values of AArch32 HCR.IMO:

AArch32 Behavior

HCR.IMO

0 Non-secure EL1 and EL2 reads return ICC_BPRO + 1 saturated to @b111. Non-secure EL1 and
EL2 writes are ignored.

1 Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPRO + 1

saturated to 0b111. Non-secure EL2 writes are ignored.

Accessing the ICC_BPR1:
To access the ICC_BPR1:

MRC p15,0,<Rt>,c12,c12,3 ; Read ICC_BPR1 into Rt
MCR p15,0,<Rt>,c12,c12,3 ; Write Rt to ICC_BPR1

Register access is encoded as follows:

coproc opcl CRn CRm opc2

1111 000 1100 1100 011

When AArch32 HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_BPRI.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-295
Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

8.5.6 ICC_CTLR, Interrupt Controller Control Register
The ICC_CTLR characteristics are:

Purpose

Controls aspects of the behavior of the GIC CPU interface and provides information about the
features implemented.

Usage constraints
ICC_CTLR(S) is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - - - RW

ICC_CTLR(NS) is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - RW RW RW -

ICC_CTLR is only accessible at Non-secure EL1 when AArch32 HCR.{FMO, IMO} == {0, 0}.

Note

When AArch32 HCR.{FMO, IMO} != {0, 0}, at Non-secure EL1, the instruction encoding used to
access ICC_CTLR results in an access to ICV_CTLR.

Traps and Enables
If AArch32 HSTR.T12==1, Non-secure EL1 accesses to this register are trapped to Hyp mode.
If AArch64 HSTR _EL2.T12==1, Non-secure EL1 accesses to this register are trapped to EL2.
If ICH_HCR.TC==1, Non-secure EL1 accesses to this register are trapped to EL2.
IfICH HCR EL2.TC==1, Non-secure EL1 accesses to this register are trapped to EL2.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure EL1 accesses to this register are
trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, EL2 accesses to this register are trapped
to EL3.

If AArch64 SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0,
Non-secure EL1 accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and
HCR_EL2.FMO==0, Non-secure EL1 accesses to this register are trapped to EL3.
IfICC_SRE.SRE==0, EL1 accesses to this register are UNDEFINED.

If AArch32 SCR_S.IRQ==1, and SCR.FIQ==1, EL2 and EL3 modes other than Monitor mode
accesses to this register are UNDEFINED.

If AArch32 SCR_S.IRQ==1, SCR.FIQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure EL1
accesses to this register are UNDEFINED.
Configurations

AArch32 System register [ICC_CTLR(S) is architecturally mapped to AArch64 System register
ICC_CTLR_ELI (S).

AArch32 System register ICC_CTLR(NS) is architecturally mapped to AArch64 System register
ICC_CTLR_ELI (NS).

8-296 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

Attributes
ICC_CTLR is a 32-bit register.

Field descriptions

The ICC_CTLR bit assignments are:

31 16151413 1110 8 7 6 5 210
RESO IDbits | PRIbits RESO
I— CBPR
EOImode
PMHE
RESO
SEIS
A3V
Bits [31:16]
Reserved, RESO.
A3V, bit [15]
Affinity 3 Valid. Read-only and writes are ignored. Possible values are:
0 The virtual CPU interface logic only supports zero values of Affinity 3 in SGI
generation System registers.
1 The virtual CPU interface logic supports non-zero values of Affinity 3 in SGI generation

System registers.

SEIS, bit [14]
SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports local
generation of SEIs:

0 The CPU interface logic does not support local generation of SEIs by the CPU interface.
1 The CPU interface logic supports local generation of SEIs by the CPU interface.

If EL3 is implemented and using AArch32, this bit is an alias of ICC_ MCTLR.SEIS.

If EL3 is implemented and using AArch64, this bit is an alias of ICC_CTLR EL3.SEIS.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits

supported:
000 16 bits.
001 24 bits.

All other values are reserved.
If EL3 is implemented and using AArch32, this field is an alias of ICC_MCTLR.IDbits.
If EL3 is implemented and using AArch64, this field is an alias of ICC_CTLR_EL3.IDbits.

This field resets to a value that is architecturally UNKNOWN.

PRIbits, bits [10:8]
Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus
one.

An implementation that supports 2 Security states must implement at least 32 levels of physical
priority (5 priority bits).

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-297
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

Bit [7]

An implementation that supports only 1 Security state must implement at least 16 levels of physical
priority (4 priority bits).
Note

This field always returns the number of bits implemented, regardless of the Security state of the
access or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers
ICC_BPRO and ICC_BPRI.

If EL3 is implemented and using AArch32, physical accesses return the value from
ICC_MCTLR.PRIbits.

If EL3 is implemented and using AArch64, physical accesses return the value from
ICC_CTLR_EL3.PRIbits.

If EL3 is not implemented, physical accesses return the value from this field.

Reserved, RESO.

PMHE, bit [6]

Bits [5:2]

Priority Mask Hint Enable. Controls whether the priority mask register is used as a hint for interrupt
distribution:

0 Disables use of ICC_PMR as a hint for interrupt distribution.

1 Enables use of ICC_PMR as a hint for interrupt distribution.

If EL3 is implemented:

. If EL3 is using AArch32, this bit is an alias of ICC_MCTLR.PMHE.

. If EL3 is using AArch64, this bit is an alias of ICC_CTLR EL3.PMHE.
. If GICD_CTLR.DS == 0, this bit is read-only.

. If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or
read-write:

. If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.

. If this bit is read/write, it resets to zero.

Reserved, RESO.

EOImode, bit [1]

EOI mode for the current Security state. Controls whether a write to an End of Interrupt register also
deactivates the interrupt:

0 ICC_EOIRO and ICC_EOIR1 provide both priority drop and interrupt deactivation
functionality. Accesses to ICC_DIR are UNPREDICTABLE.
1 ICC_EOIRO and ICC_EOIRI1 provide priority drop functionality only. ICC_DIR

provides interrupt deactivation functionality.
If EL3 is implemented:

. If EL3 is using AArch32, this bit is an alias of ICC_ MCTLR.EOImode EL1{S, NS} where
S or NS corresponds to the current Security state.

. If EL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.EOImode ELI1{S, NS}
where S or NS corresponds to the current Security state.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or

read-write:

. If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WL

8-298

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

. If this bit is read/write, it resets to zero.

This field resets to a value that is architecturally UNKNOWN.

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption
of both Group 0 and Group 1 interrupts:

0 ICC_BPRO determines the preemption group for Group 0 interrupts only.
ICC_BPRI1 determines the preemption group for Group 1 interrupts.

1 ICC_BPRO determines the preemption group for both Group 0 and Group 1 interrupts.
If EL3 is implemented:

. If EL3 is using AArch32, this bit is an alias of [CC_ MCTLR.CBPR_EL1{S,NS} where S or
NS corresponds to the current Security state.

. If EL3 is using AArch64, this bit is an alias of ICC_CTLR EL3.CBPR _EL1{S,NS} where
S or NS corresponds to the current Security state.

. If GICD_CTLR.DS == 0, this bit is read-only.
. If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or
read-write:

. If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.

. If this bit is read/write, it resets to zero.

Accessing the ICC_CTLR:
To access the ICC_CTLR:

MRC p15,0,<Rt>,c12,c12,4 ; Read ICC_CTLR into Rt
MCR p15,0,<Rt>,c12,c12,4 ; Write Rt to ICC_CTLR

Register access is encoded as follows:

coproc opc1 CRn CRm opc2

1111 000 1100 1100 100

When AArch32 HCR.{FMO, IMO} != {0, 0}, execution of this encoding at Non-secure EL1 results in an access to
ICV_CTLR.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-299
Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

8.5.7 ICC_DIR, Interrupt Controller Deactivate Interrupt Register
The ICC_DIR characteristics are:

Purpose
When interrupt priority drop is separated from interrupt deactivation, a write to this register
deactivates the specified interrupt.

Usage constraints

If EL3 is implemented and is using AArch32, this register is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - WO WO WO wO

If EL3 is not implemented or EL3 is implemented and is using AArch64, this register is accessible
as follows:

ELO EL1 EL2(NS)

- WO WO

The ICC_DIR register is only accessible at Non-secure EL1 in the following cases:

. When AArch32 HCR.{FMO, IMO} == {0, 0}.

. When AArch32 HCR.FMO is set to 0, and the INTID field refers to a Group 0 interrupt.
. When AArch32 HCR.IMO is set to 0, and the INTID field refers to a Group 1 interrupt.

Note

At Non-secure EL1, the instruction encoding used to access ICC_DIR results in an access to
ICV_DIR in the following cases:

. When AArch32 HCR.FMO is set to 1, and the INTID field refers to a Group 0 interrupt.
. When AArch32 HCR.IMO is set to 1, and the INTID field refers to a Group 1 interrupt.

There are two cases when writing to ICC_DIR_ELI that were unpredictable for a corresponding
GICv2 write to GICC_DIR:

. When EOImode == ‘0’. GICv3 implementations must ignore such writes. In systems
supporting system error generation, an implementation might generate an SEIL

. When EOImode == ‘1’ but no EOI has been issued. The interrupt will be de-activated by the
Distributor however the active priority in the CPU interface for the interrupt will remain set
(because no EOI was issued).

Traps and Enables

If AArch32 HSTR.T12==1, Non-secure EL1 write accesses to this register are trapped to Hyp
mode.

If AArch64 HSTR _EL2.T12==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If ICH_HCR.TC==1, Non-secure EL1 write accesses to this register are trapped to EL2.
IfICH_HCR _EL2.TC==1, Non-secure EL1 write accesses to this register are trapped to EL2.

If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, Secure EL1 write accesses to this register

are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, and SCR_EL3.IRQ==1, EL2 write accesses to this register are
trapped to EL3.

8-300 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

If AArch64 SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR.IMO==0, and HCR.FMO==0,
Non-secure EL1 write accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, SCR_EL3.IRQ==1, HCR_EL2.IMO==0, and
HCR_EL2.FMO==0, Non-secure EL1 write accesses to this register are trapped to EL3.

If ICC_SRE.SRE==0, EL1 write accesses to this register are UNDEFINED.

If AArch32 SCR_S.IRQ==1, and SCR.FIQ==1, EL2 and EL3 modes other than Monitor mode
write accesses to this register are UNDEFINED.

If AArch32 SCR_S.IRQ==1, SCR.FIQ==1, HCR.IMO==0, and HCR.FMO==0, Non-secure EL1
write accesses to this register are UNDEFINED.

Configurations

Attributes

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_DIR performs the same function as AArch64 System operation
ICC_DIR_ELI.

ICC _DIR is a 32-bit register.

Field descriptions

The ICC_DIR bit assignments are:

31

24 23 0

RESO

INTID

Bits [31:24]

Reserved, RESO.

INTID, bits [23:0]

The INTID of the interrupt to be deactivated.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this
register are RESO.

Accessing the ICC_DIR:

To access the ICC_DIR:

MCR p15,0,<Rt>,cl12,c11,1 ; Write Rt to ICC_DIR

Register access is encoded as follows:

coproc opcl CRn CRm opc2

1111 000 1100 1011 001

This encoding results in an access to ICV_DIR at Non-secure EL1 in the following cases:

. When AArch32 HCR.FMO is set to 1, and the INTID field refers to a Group 0 interrupt.

. When AArch32 HCR.IMO is set to 1, and the INTID field refers to a Group 1 interrupt.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-301

Non-Confidential - Beta

8 Programmers’ Model

8.5 AArch32 System register descriptions

8.5.8 ICC_EOIRO, Interrupt Controller End Of Interrupt Register 0

The ICC_EOIRO characteristics are:
A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified Group 0 interrupt.

Usage constraints
If EL3 is implemented and is using AArch32, this register is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)
- - WO WO WO WO
If EL3 is not implemented or EL3 is implemented and is using AArch64, this register is accessible
as follows:
ELO EL1 EL2(NS)
- WO WO
ICC_EOIRO is only accessible at Non-secure EL1 when AArch32 HCR.FMO is set to 0.
Note

When AArch32 HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_EOIRO results in an access to ICV_EOIRO.
A write to this register must correspond to the most recent valid read from an Interrupt
Acknowledge Register. A valid read is a read that returns a valid interrupt ID, that is not a special
INTID.

Traps and Enables
If AArch32 HSTR.T12==1, Non-secure EL1 write accesses to this register are trapped to Hyp
mode.
If AArch64 HSTR _EL2.T12==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If ICH_HCR.TALLO==1, Non-secure EL1 write accesses to this register are trapped to EL2.
IfICH HCR_EL2.TALLO==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure
EL1 write accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, EL2 write
accesses to this register are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, and HCR.FMO=0, and EL3 is implemented and configured to use
AArch64 and EL2 is implemented and configured to use AArch32, Non-secure EL1 write accesses
to this register are trapped to EL3.
If AArch64 SCR_EL3.FIQ==1, and HCR_EL2.FMO=0, and EL2 is implemented and configured
to use AArch64, Non-secure EL1 write accesses to this register are trapped to EL3.
If ICC_SRE.SRE==0, EL1 write accesses to this register are UNDEFINED.
If AArch32 SCR_S.FIQ==1, and EL3 is implemented and configured to use AArch32, EL2 and
EL3 modes other than Monitor mode write accesses to this register are UNDEFINED.
If AArch32 SCR_S.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use
AArch32, Non-secure EL1 write accesses to this register are UNDEFINED.

8-302 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM IHI 0069A

Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

Configurations
There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_EOIRO performs the same function as AArch64 System operation
ICC_EOIRO_ELI.

Attributes
ICC_EOIRO is a 32-bit register.

Field descriptions

The ICC_EOIRO bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]
Reserved, RESO.

INTID, bits [23:0]
The INTID from the corresponding ICC_TARO access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this
register are RESO.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register
drops the priority for the interrupt, and also deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only
drops the priority for the interrupt. Software must write to I[CC_DIR to deactivate the interrupt.

The appropriate EOImode bit varies as follows:
. If EL3 is not implemented, the appropriate bit is ICC_CTLR.EOImode.

. If EL3 is implemented and the software is executing in Monitor mode, the appropriate bit is
ICC_MCTLR.EOImode EL3.

. If EL3 is implemented and the software is not executing in Monitor mode, the bit depends on
the current Security state:

— If the software is executing in Secure state, the bit is ICC_CTLR.EOImode in the
Secure instance of ICC_CTLR. This is an alias of ICC_ MCTLR.EOImode ELI1S.

— Ifthe software is executing in Non-secure state, the bit is [CC_CTLR.EOImode in the
Non-secure instance of [CC_CTLR. This is an alias of
ICC_MCTLR.EOImode_ELINS.

Accessing the ICC_EOIRO:
To access the ICC_EOIRO:

MCR p15,0,<Rt>,c12,c8,1 ; Write Rt to ICC_EOIRO

Register access is encoded as follows:

coproc opc1 CRn CRm opc2

1111 000 1100 1000 001

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-303
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

When AArch32 HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_EOIRO.

8-304 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

8.5.9 ICC_EOIR1, Interrupt Controller End Of Interrupt Register 1
The ICC_EOIRI characteristics are:

Purpose
A PE writes to this register to inform the CPU interface that it has completed the processing of the
specified Group 1 interrupt.

Usage constraints

If EL3 is implemented and is using AArch32, this register is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - WO WO WO WO

If EL3 is not implemented or EL3 is implemented and is using AArch64, this register is accessible
as follows:

ELO EL1 EL2(NS)

- WO WO

ICC_EOIRI1 is only accessible at Non-secure EL1 when AArch32 HCR.IMO is set to 0.

Note

When AArch32 HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_EOIRI1 results in an access to ICV_EOIRI.

A write to this register must correspond to the most recent valid read from an Interrupt
Acknowledge Register. A valid read is a read that returns a valid interrupt ID, that is not a special
INTID.

Traps and Enables

If AArch32 HSTR.T12==1, Non-secure EL1 write accesses to this register are trapped to Hyp
mode.

If AArch64 HSTR _EL2.T12==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If ICH_HCR.TALL1==1, Non-secure EL1 write accesses to this register are trapped to EL2.

IfICH HCR_EL2.TALL1==1, Non-secure EL1 write accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.IRQ==1, Secure EL1 write accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.IRQ==1, EL2 write accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.IRQ==1, and HCR.IMO=0, Non-secure EL1 write accesses to this register
are trapped to EL3.

If AArch64 SCR_EL3.IRQ==1, and HCR_EL2.IMO=0, Non-secure EL1 write accesses to this
register are trapped to EL3.

If ICC_SRE.SRE==0, EL1 write accesses to this register are UNDEFINED.

If AArch32 SCR_S.JIRQ==1, EL2 and EL3 modes other than Monitor mode write accesses to this
register are UNDEFINED.

If AArch32 SCR_S.IRQ==1, and HCR.IMO==0, Non-secure EL1 write accesses to this register are
UNDEFINED.
Configurations

There is one instance of this register that is used in both Secure and Non-secure states.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-305
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

AArch32 System register ICC_EOIR1 performs the same function as AArch64 System operation
ICC_EOIRI_ELI.

Attributes
ICC _EOIRI1 is a 32-bit register.

Field descriptions

The ICC_EOIRI bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]

Reserved, RESO.

INTID, bits [23:0]
The INTID from the corresponding ICC_TAR1 access.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this
register are RESO.

If the EOImode bit for the current Exception level and Security state is 0, a write to this register
drops the priority for the interrupt, and also deactivates the interrupt.

If the EOImode bit for the current Exception level and Security state is 1, a write to this register only
drops the priority for the interrupt. Software must write to I[CC_DIR to deactivate the interrupt.

The appropriate EOImode bit varies as follows:
. If EL3 is not implemented, the appropriate bit is ICC_CTLR.EOImode.

. If EL3 is implemented and the software is executing in Monitor mode, the appropriate bit is
ICC_MCTLR.EOImode EL3.

. If EL3 is implemented and the software is not executing in Monitor mode, the bit depends on
the current Security state:

If the software is executing in Secure state, the bit is [CC_CTLR.EOImode in the
Secure instance of [CC_CTLR. This is an alias of ICC_MCTLR.EOImode ELI1S.

— Ifthe software is executing in Non-secure state, the bit is [CC_CTLR.EOImode in the
Non-secure instance of [CC_CTLR. This is an alias of
ICC_MCTLR.EOImode_ELINS.

Accessing the ICC_EOIR1:
To access the ICC_EOIR1:
MCR p15,0,<Rt>,c12,c12,1 ; Write Rt to ICC_EOIR1

Register access is encoded as follows:

coproc opc1 CRn CRm opc2

1111 000 1100 1100 001

When AArch32 HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_EOIRI.

8-306 Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

8.5.10 ICC_HPPIRO, Interrupt Controller Highest Priority Pending Interrupt Register 0
The ICC_HPPIRO characteristics are:

Purpose

Indicates the highest priority pending Group 0 interrupt on the CPU interface.

Usage constraints

If EL3 is implemented and is using AArch32, this register is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - RO RO RO RO

If EL3 is not implemented or EL3 is implemented and is using AArch64, this register is accessible
as follows:

ELO EL1 EL2(NS)

- RO RO

ICC_HPPIRO is only accessible at Non-secure EL1 when AArch32 HCR.FMO is set to 0.

Note

When AArch32 HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_HPPIRO results in an access to ICV_HPPIRO.

Traps and Enables
If AArch32 HSTR.T12==1, Non-secure EL1 read accesses to this register are trapped to Hyp mode.
If AArch64 HSTR _EL2.T12==1, Non-secure EL1 read accesses to this register are trapped to EL2.
If ICH_HCR.TALLO==1, Non-secure EL1 read accesses to this register are trapped to EL2.
If ICH HCR EL2.TALLO==1, Non-secure EL1 read accesses to this register are trapped to EL2.

If AArch64 SCR _EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, Secure
EL1 read accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and EL3 is implemented and configured to use AArch64, EL2 read
accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and HCR.FMO=0, and EL3 is implemented and configured to use
AArch64 and EL2 is implemented and configured to use AArch32, Non-secure EL1 read accesses
to this register are trapped to EL3.

If AArch64 SCR_EL3.FIQ==1, and HCR_EL2.FMO=0, and EL2 is implemented and configured
to use AArch64, Non-secure EL1 read accesses to this register are trapped to EL3.

If ICC_SRE.SRE==0, EL1 read accesses to this register are UNDEFINED.

If AArch32 SCR_S.FIQ==1, and EL3 is implemented and configured to use AArch32, EL2 and
EL3 modes other than Monitor mode read accesses to this register are UNDEFINED.

If AArch32 SCR_S.FIQ==1, and HCR.FMO==0, and EL2 is implemented and configured to use
AArch32, Non-secure EL1 read accesses to this register are UNDEFINED.

Configurations
There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_HPPIRO performs the same function as AArch64 System operation
ICC_HPPIRO ELI.

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-307
ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

Attributes
ICC_HPPIRO is a 32-bit register.

Field descriptions

The ICC_HPPIRO bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]
Reserved, RESO.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current
Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. These special INTIDs can be one of: 1020, 1021, or 1023. See Special INTIDs
on page 3-40, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this
register are RESO.

Accessing the ICC_HPPIRO:

To access the ICC_HPPIRO:

MRC p15,0,<Rt>,c12,c8,2 ; Read ICC_HPPIRO into Rt

Register access is encoded as follows:

coproc opc1 CRn CRm opc2

1111 000 1100 1000 010

When AArch32 HCR.FMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_HPPIRO.

8-308

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

8.5.11 ICC_HPPIR1, Interrupt Controller Highest Priority Pending Interrupt Register 1

The ICC_HPPIR1 characteristics are:

Purpose

Indicates the highest priority pending Group 1 interrupt on the CPU interface.

Usage constraints

If EL3 is implemented and is using AArch32, this register is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - RO RO RO RO

If EL3 is not implemented or EL3 is implemented and is using AArch64, this register is accessible
as follows:

ELO EL1 EL2(NS)

- RO RO

ICC_HPPIR1 is only accessible at Non-secure EL1 when AArch32 HCR.IMO is set to 0.

Note

When AArch32 HCR.IMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC_HPPIRI1 results in an access to ICV_HPPIRI.

Traps and Enables

If AArch32 HSTR.T12==1, Non-secure EL1 read accesses to this register are trapped to Hyp mode.
If AArch64 HSTR _EL2.T12==1, Non-secure EL1 read accesses to this register are trapped to EL2.
If ICH_HCR.TALL1==1, Non-secure EL1 read accesses to this register are trapped to EL2.

IfICH HCR EL2.TALL1==1, Non-secure EL1 read accesses to this register are trapped to EL2.
If AArch64 SCR_EL3.IRQ==1, Secure EL1 read accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.IRQ==1, EL2 read accesses to this register are trapped to EL3.

If AArch64 SCR_EL3.IRQ==1, and HCR.IMO=0, Non-secure EL1 read accesses to this register
are trapped to EL3.

If AArch64 SCR_EL3.IRQ==1, and HCR_EL2.IMO=0, Non-secure EL1 read accesses to this
register are trapped to EL3.

If ICC_SRE.SRE==0, EL1 read accesses to this register are UNDEFINED.

If AArch32 SCR_S.JIRQ==1, EL2 and EL3 modes other than Monitor mode read accesses to this
register are UNDEFINED.

If AArch32 SCR_S.IRQ==1, and HCR.IMO==0, Non-secure EL1 read accesses to this register are
UNDEFINED.

Configurations

Attributes

There is one instance of this register that is used in both Secure and Non-secure states.

AArch32 System register ICC_HPPIR1 performs the same function as AArch64 System operation
ICC_HPPIRI_ELI.

ICC_HPPIRI1 is a 32-bit register.

ARM IHI 0069A
ID060315

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-309
Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

Field descriptions

The ICC_HPPIR1 bit assignments are:

31 24 23 0

RESO INTID

Bits [31:24]
Reserved, RESO.

INTID, bits [23:0]

The INTID of the highest priority pending interrupt, if that interrupt is observable at the current
Security state and Exception level.

If the highest priority pending interrupt is not observable, this field contains a special INTID to
indicate the reason. This special INTID can take the value 1023 only. See Special INTIDs on
page 3-40, for more information.

This field has either 16 or 24 bits implemented. The number of implemented bits can be found in
ICC_CTLR.IDbits and ICC_MCTLR.IDbits. If only 16 bits are implemented, bits [23:16] of this
register are RESO.

Accessing the ICC_HPPIR1:

To access the ICC_HPPIR1:

MRC p15,0,<Rt>,c12,c12,2 ; Read ICC_HPPIR1 into Rt

Register access is encoded as follows:

coproc opc1 CRn CRm opc2

1111 000 1100 1100 010

When AArch32 HCR.IMO is set to 1, execution of this encoding at Non-secure EL1 results in an access to
ICV_HPPIRI.

8-310

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

8.5.12 ICC_HSRE, Interrupt Controller Hyp System Register Enable register
The ICC_HSRE characteristics are:

Purpose
Controls whether the System register interface or the memory-mapped interface to the GIC CPU
interface is used for EL2.

Usage constraints

If EL3 is implemented and is using AArch32, this register is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - - RwW RW -

If EL3 is not implemented or EL3 is implemented and is using AArch64, this register is accessible
as follows:

ELO EL1 EL2(NS)

- - RW

The GIC architecture permits, but does not require, that registers can be shared between
memory-mapped registers and the equivalent System registers. This means that if the
memory-mapped registers have been accessed while ICC_HSRE.SRE==0, then the System
registers might be modified. Therefore, software must only rely on the reset values of the System
registers if there has been no use of the GIC functionality while the memory-mapped registers are
in use. Otherwise, the System register values must be treated as UNKNOWN.

Traps and Enables
If AArch32 HSTR.T12==1, Non-secure EL1 accesses to this register are trapped to Hyp mode.
If AArch64 HSTR_EL2.T12==1, Non-secure EL1 accesses to this register are trapped to EL2.

If ICC_MSRE.Enable==0, Non-secure EL2 accesses to this register are trapped to EL3.

Configurations

AArch32 System register ICC_HSRE is architecturally mapped to AArch64 System register
ICC_SRE _EL2.

Attributes
ICC_HSRE is a 32-bit register.

Field descriptions

The ICC_HSRE bit assignments are:

31 43210
RESO
I— SRE
DFB
DIB
Enable
ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-311

ID060315 Non-Confidential - Beta

8 Programmers’ Model
8.5 AArch32 System register descriptions

Bits [31:4]

Reserved, RESO.

Enable, bit [3]

DIB, bit [2]

DFB, bit [1]

SRE, bit [0]

Enable. Enables lower Exception level access to ICC_SRE.

0 Non-secure EL1 accesses to ICC_SRE trap to EL2.

1 Non-secure EL1 accesses to ICC_SRE do not trap to EL2.

If ICC_HSRE.SRE is RAO/WI, an implementation is permitted to make the Enable bit RAO/WI.

If ICC_HSRE.SRE is 0, the Enable bit behaves as 1 for all purposes other than reading the value of
the bit.

If implemented as an RW bit, this field resets to 0.

Disable IRQ bypass.
0 IRQ bypass enabled.
1 IRQ bypass disabled.

IfEL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_MSRE.DIB.
If EL3 is implemented and GICD CTLR.DS is 1, this field is a read-write alias of ICC_MSRE.DIB.
In systems that do not support IRQ bypass, this bit is RAO/WI.

If implemented as an RW bit, this field resets to 0.

Disable FIQ bypass.
0 FIQ bypass enabled.
1 FIQ bypass disabled.

IfEL3 is implemented and GICD_CTLR.DS is 0, this field is a read-only alias of ICC_ MSRE.DFB.

If EL3 is implemented and GICD_CTLR.DS is 1, this field is a read-write alias of
ICC_MSRE.DFB.

In systems that do not support FIQ bypass, this bit is RAO/WI.
If implemented as an RW bit, this field resets to 0.

System Register Enable.

0 The memory-mapped interface must be used. Access at EL2 or below to any ICH_*
System register, or any EL1 or EL2 ICC_* register other than ICC_SRE or ICC_HSRE,
results in an Undefined Instruction exception.

1 The System register interface to the ICH_* registers and the EL1 and EL2 ICC_*
registers is enabled for EL2.

If software changes this bit from 1 to 0, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is
RAO/WI.

If implemented as an RW bit, this field resets to 0.

Accessing the ICC_HSRE:

To access the ICC_HSRE:

MRC p15,4,<Rt>,c12,¢9,5 ; Read ICC_HSRE into Rt
MCR p15,4,<Rt>,c12,¢9,5 ; Write Rt to ICC_HSRE

8-312

Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. ARM [HI 0069A
Non-Confidential - Beta ID060315

8 Programmers’ Model
8.5 AArch32 System register descriptions

Register access is encoded as follows:

coproc opc1 CRn CRm opc2

1111 100 1100 1001 101

ARM IHI 0069A Copyright © 2008, 2011, 2015 ARM Limited. All rights reserved. 8-313
ID060315 Non-Confidential - Beta

8 Programmers’ Model

8.5 AArch32 System register descriptions

8.5.13

ICC_IARQO, Interrupt Controller Interrupt Acknowledge Register 0

The ICC_IARO characteristics are:

The PE reads this register to obtain the INTID of the signaled Group 0 interrupt. This read acts as
an acknowledge for the interrupt.

Usage constraints

If EL3 is implemented and is using AArch32, this register is accessible as follows:

ELO(NS) ELO(S) EL1(NS) EL2(NS) EL3(SCR.NS=1) EL3 (SCR.NS=0)

- - RO RO RO RO

If EL3 is not implemented or EL3 is implemented and is using AArch64, this register is accessible
as follows:

ELO EL1 EL2(NS)

- RO RO

ICC _IARO is only accessible at Non-secure EL1 when AArch32 HCR.FMO is set to 0.

Note

When AArch32 HCR.FMO is set to 1, at Non-secure EL1, the instruction encoding used to access
ICC _IARO results in an access to I