Arm® Reliability, Availability, and
Serviceability (RAS) System
Architecture

for A-profile architecture

Documen t number IHI0100
Document quality EAC

Document version Aa

Document confidentiality Non-Confidential

arm

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Documen t number: IHI0100

IHI0100
Aa

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

Release information

The following releases of this document have been made.

Date Version Changes
16/Jan/2025 Aa . Initial release of the RAS System Architecture standalone document.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. iii

Aa

Non-Confidential

IHI0100
Aa

Arm Non-Confidential Document License (“License”)

This License is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property
(including, without limitation, any copyright) embodied in the document accompanying this License (“Document”).
Arm licenses its intellectual property in the Document to you on condition that you agree to the terms of this License. By
using or copying the Document you indicate that you agree to be bound by the terms of this License.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owned or controlled, directly
or indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the
terms of this License between you and Arm.

Subject to the terms and conditions of this License, Arm hereby grants to Licensee under the intellectual property in the
Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide
License to:

(1) use and copy the Document for the purpose of designing and having designed products that comply with the
Document;

(i) manufacture and have manufactured products which have been created under the License granted in (i) above; and

(iii) sell, supply and distribute products which have been created under the License granted in (i) above.

Licensee hereby agrees that the Licenses granted above shall not extend to any portion or function of a product that
is not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual
property embodied therein.

The content of this document is informational only. Any solutions presented herein are subject to changing conditions,
information, scope, and data. This document was produced using reasonable efforts based on information available as of
the date of issue of this document. The scope of information in this document may exceed that which Arm is required to
provide, and such additional information is merely intended to further assist the recipient and does not represent Arm’s
view of the scope of its obligations. You acknowledge and agree that you possess the necessary expertise in system
security and functional safety and that you shall be solely responsible for compliance with all legal, regulatory, safety and
security related requirements concerning your products, notwithstanding any information or support that may be
provided by Arm herein. In addition, you are responsible for any applications which are used in conjunction with any
Arm technology described in this document, and to minimize risks, adequate design and operating safeguards should be
provided for by you.

Reference by Arm to any third party’s products or services within this document is not an express or implied approval or
endorsement of the use thereof.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may make changes to the Document at any
time and without notice. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken
no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENSE, TO THE FULLEST
EXTENT PERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN
CONTRACT, TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENSE
(INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II) THE
IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDER THIS
LICENSE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE
LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN
EXCESS OF THIS LIMITATION.

This License shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if
Licensee is in breach of any of the terms and conditions of this License then Arm may terminate this License
immediately upon giving written notice to Licensee. Licensee may terminate this License at any time. Upon termination
of this License by Licensee or by Arm, Licensee shall stop using the Document and destroy all copies of the Document
in its possession. Upon termination of this License, all terms shall survive except for the License grants.

Any breach of this License by a Subsidiary shall entitle Arm to terminate this License as if you were the party in breach.

Any termination of this License shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 0-4
Non-Confidential

IHI0100
Aa

hereunder shall automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication
or disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document
or any portion thereof is not exported, directly or indirectly, in violation of such export laws.

This License may be translated into other languages for convenience, and Licensee agrees that if there is any conflict
between the English version of this License and any translation, the terms of the English version of this License shall
prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may
be the trademarks of their respective owners. No license, express, implied or otherwise, is granted to Licensee under this
License, to use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s
website at http://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this License shall be governed by English Law.
Copyright © 2017-2025 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: PRE-21585

version 5.0, March 2024

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this
document to.

Product Status
The information in this document is final, that is for a developed product.

The information in this supplement is at EAC quality, which means that all features of the specification are described in
the supplement.

Web Address

https://www.arm.com

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. v
Non-Confidential

http://www.arm.com/company/policies/trademarks
https://www.arm.com

Contents

Arm® Reliability, Availability, and Serviceability (RAS) System Architecture, for
A-profile architecture

Preface

Chapter 1

Chapter 2

Chapter 3

Glossary

IHI0100
Aa

ADBOUL thisS DOCUMENToeiei e e ettt eaeaes ix
USING thisS DOCUMENT ...« .ot e et e et e e ettt e et e et e et e e et et e e e e et e e e eaenenns X
CONVENLIONS ... e et ettt ettt Xi
e Lo 11T =4 Y= T LT T Xiv
FEEADACK.t XV

Introduction to RAS

1.1 INEFOTUCTION ...eeie ettt 17
1.2 Faults, errors, and failures ... 18
1.3 GeNEral taXONOMY Of EITO S .. .ttt ettt ettt e et e et et e e et et e e et et et e e e e et et e e eaaeaneanaaneeneenens 19
1.4 Techniques for improving reliability, availability, and serviceabilityc.ccooiiiiiiiiiiien 21

RAS System Architecture

21 About the RAS System ArchiteCture ..o e 24
2.2 NOTES .. e e 25
2.3 DetecCting @nd CONSUMING BITOISttt ettt ettt et et e e e e e e et et et et et e e e e e e et e teaeeaneaneanaaneeneanens 28
2.4 StaNAArd EITOT FECOTTeuitit ettt ettt et e e et et e a e 31
25 L NS TN 01 (= 3 (T o] £ N 45
2.6 IN-band error responNSE SIGNAIINGouiiiii e 50
2.7 Error reCord reSet......oouiuiiii 51
2.8 EXEENSIONS ..ottt e 54
29 ACCESSING RAS TEGISTEIS ... et ettt e e e e ettt et e et et et aens 59

RAS Memory-mapped Register Descriptions

3.1 RAS rgIStEIS SUMMAIYuiititii ittt ettt e et et e e et e e et e e eet e et e e e e ea e e e ea e easenaneanenaneannn 64
3.2 RAS register dESCHPHONSuuitii ittt et e et e et et et et e e et e et et et e e e e eaeeneanan 69
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. Vi

Non-Confidential

Contents
Contents

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. vii
Aa Non-Confidential

Preface

Preface

This preface introduces the RAS System Architecture, for A-profile architecture. It contains the following sections:

. About this Document.
. Using this Document.
. Conventions.
. Additional reading.
. Feedback.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. viii

Aa Non-Confidential

Preface

About this Document

IHI0100
Aa

This Document describes the Arm® RAS System Architecture.

This Document is organized into chapters:

Chapter 1, Introduction to RAS

Provides an introduction to the RAS System Architecture. Defines terminology used regarding the
RAS System Architecture.

Chapter 2, RAS System Architecture

Describes the RAS System Architecture. It includes details of nodes, the standard Error record, Error
recovery interrupts, Fault handling interrupts, and Critical error interrupts. It also describes extensions
of the RAS System Architecture, some of which are optional.

Chapter 3, RAS Memory-mapped Register Descriptions

Describes the RAS System Architecture registers.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. ix
Non-Confidential

Preface

Using this Document

This Document is intended to be read in conjunction with the Arm® Architecture Reference Manual, for A-profile
architecture.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Aa Non-Confidential

Preface

Conventions

The following sections describe conventions that this book can use:

. Typographic conventions.
. Rules-based writing.

. Signals.

. Numbers.

. Pseudocode descriptions.

Typographic conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.
bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, and are defined in the
Glossary.

Colored text Indicates a link. This can be:

. A URL, for example https://developer.arm.com.

. A cross-reference that includes the page number of the referenced information if it is not on the
current page, for example, Assembler syntax descriptions.

. A link, to a chapter or appendix, or to a glossary entry, or to the section of the Document that
defines the colored term, for example Simple sequential execution or SCTLR.

{and } Braces, { and }, have two distinct uses:
Optional items

In syntax descriptions braces enclose optional items. In the following example they
indicate that the <shi ft>parameter is optional:

ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

Similarly, they can be used in generalized field descriptions, for example
TCR_ELx.{I}PS refers to a field in the TCR_ELx registers that is called either IPS or
PS.

Sets of items

Braces can be used to enclose sets. For example, HCR_EL2.{E2H, TGE} refers to a
set of two register fields, HCR_EL2.E2H and HCR_EL2.TGE.

Notes Notes are formatted as:

Note
This is a Note.

In this Document, Notes are used only to provide additional information, usually to help understanding
of the text. While a Note might repeat architectural information given elsewhere in the Document, a
Note never provides any part of the definition of the architecture.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. Xi
Aa Non-Confidential

https://developer.arm.com

Preface

Rules-based writing

Signals

IHI0100
Aa

Some sections of this Document use rules-based writing. Rules-based writing consists of a set of individual content
items. A content item is classified as one of the following:

. Rule.

. Information.

. Software usage.
. Declaration.

Rules are normative statements. An implementation that is compliant with this specification must conform to all Rules in
this Document that apply to that implementation.

Rules must not be read in isolation. Where a particular feature is specified by multiple Rules, these are generally grouped
into sections and subsections that provide context. Where appropriate, these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this Document to ensure that an
implementation is compliant.

Content items other than Rules are informative statements. These are provided as an aid to understanding this Document.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this Document. After content
reaches beta status, a given content item has the same identifier across subsequent versions of this Document.

Content item rendering

Content item classes

Each of the content item classes has a different function in this Document.
Rule

A Rule is a statement that describes the behavior of a compliant implementation.
A Rule explains what happens in a particular situation.
A Rule does not define concepts or terminology.

A Rule is rendered with the label R.

Information

An Information statement provides information and guidance as an aid to understanding the Document.
An Information statement is rendered with the label 1.

Software usage

A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is rendered with the label S.
Declaration

A Declaration statement introduces concepts or terminology.
A Declaration does not describe behavior.

A Declaration is rendered with the label D.

In general this specification does not define hardware signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted
means:

. HIGH for active-HIGH signals.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. Xii
Non-Confidential

Preface

. LOW for active-LOW signals.

Lowercasen At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In both
cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To improve
readability, long numbers can be written with an underscore separator between every four characters, for example
0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This Document uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in monospace font.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. xiii
Aa Non-Confidential

Preface

Additional reading

This section lists relevant publications from Arm.

See Arm Developer, https://developer.arm.com, for access to Arm documentation.

Arm publications

. Arm® Architecture Reference Manual for A-profile architecture (ARM DDI 0487).

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. Xiv
Aa Non-Confidential

https://developer.arm.com

Preface

Feedback

Arm welcomes feedback on its documentation.

Feedback on this Document

If you have any comments or queries about this Document, create a ticket at https://support.developer.arm.com.
As part of the ticket, include:

. The title, Arm® Reliability, Availability, and Serviceability (RAS) System Architecture, for A-profile
architecture.

. The number, IHI0100 A.a.

. The section name to which your comments refer.

. The page number(s) to which your comments refer.

. The rule identifier(s) to which your comments refer, if applicable.
. A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note
Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of any
document when viewed with any other PDF reader. Search performance may be significantly improved by increasing the
Fast Find Maximum Cache Size under Search in Preferences.

Inclusive terminology commitment

IHI0100
Aa

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm
strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please contact
terms@arm.com.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. XV
Non-Confidential

https://support.developer.arm.com

Chapter 1
Introduction to RAS

This chapter introduces the RAS System Architecture. It contains the following sections:

. Introduction.

. Faults, errors, and failures.

. General taxonomy of errors.

. Techniques for improving reliability, availability, and serviceability.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.

Aa Non-Confidential

Introduction to RAS
1.1 Introduction

1.1 Introduction

II,\IHI’])

InwHIM

Iponzy

IHI0100
Aa

RAS are three aspects of the dependability of a system:

. Reliability, that is, the continuity of correct service.
. Availability, that is, the readiness for correct service.
. Serviceability, that is, the ability to undergo modifications and repairs.

RAS techniques reduce unplanned outages because:

. Transient errors can be detected and corrected before they cause application or system failure.
. Failing components can be identified and replaced.
. Failure can be predicted ahead-of-time to allow replacement during planned maintenance.

This Document describes the RAS System Architecture. For information on RAS PE architecture, see the chapter RAS
PE architecture in Arm® Architecture Reference Manual, for A-profile architecture.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 1-17
Non-Confidential

Introduction to RAS

1.2 Faults, errors, and failures

1.2 Faults, errors, and failures

RnvNNe

lowsvk

Ryrrsc

RnBDX

IrnoPk

Ilgrykv

InmaGPro

IHI0100
Aa

Correct service is delivered when the service implements the system function.

Correct service might include:

. Producing correct results.
. Producing results within the time allotted to the task.
. Not divulging secret or secure information.

For the purpose of describing the RAS System Architecture, deviation from correct service is defined using the
following terms:

. A failure is the event of deviation from correct service. This includes data corruption, data loss, and service loss.
. An error is the deviation from correct service. An incorrect value that has an error is corrupt.
. A fault is the cause of the error.

Errors that are present but not detected are latent errors or undetected errors.

In a system with no error detection, all errors are latent errors and are silently propagated by components until they are
either masked or cause failure.

The severity of a failure can range from minor to catastrophic:

. The harmful consequences of a minor failure are of a similar cost to the benefits provided by correct service
delivery.
. The harmful consequences of a catastrophic failure are orders of magnitude, or even incommensurably, higher

than the benefit provided by correct service delivery.

There are many sources of faults in a system, including both software and hardware faults:

. Hardware faults originate in, or affect, hardware.
. Software faults affect software, that is programs or data.
The RAS System Architecture primarily address errors produced from hardware faults. These fall into two main areas:
. Transient faults.
. Non-transient or persistent faults.
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 1-18

Non-Confidential

Introduction to RAS

1.3 General taxonomy of errors

1.3 General taxonomy of errors
1.31 Error detection
RrHxwp When a component accesses memory or other state, an error might be detected in that memory or state.

Iwkpvr

The error might be corrected or deferred by the component, or signaled to another component as either a deferred error or
a detected error.

1.3.2 Error propagation

RirzDN

Ivycex

[RHGDI

Rskzza

Rchueev

RyrBrv

Reuwvx

RI- PBYS

IHI0100
Aa

A transaction occurs when a producer of the transaction passes a value or other signal to a consumer of the transaction.
Transactions are part of the service provided by the producer for the consumer.

In many protocols and service interface definitions, a high-level transaction consists of a sequence of operations, for
instance between a Requester and a Completer.

For the purposes of this manual, the most basic form of a unidirectional transfer between a producer and consumer is
considered as a transaction.

That is, each one of the sequence of operations is considered a separate transaction. For some operations, such as a
request, the Requester is producer and the Completer is the consumer. For other operations, such as a response, the
Completer is producer and the Requester is the consumer.

An error is propagated by the producer of a transaction when the service interface is incorrect because of the error. The
error is propagated to the consumer.

An error is propagated by deviations from correct service, including when any of the following occurs that would not
have been permitted to occur had the fault not been activated:

. A corrupt value is passed from producer to consumer.

. A transaction or other operation occurs that should not have occurred.

. A transaction or other operation that should have occurred does not occur.

. A loss of uniprocessor semantics or any other loss of coherency in a multiprocessor coherent system is observed.
. Changing the timing and/or order of transactions or other operations such that the timing and/or order of those

transactions or operations is incorrect. In this case, the service interface defines acceptable timings and/or orders
for transactions and other operations.

The service interface for a transaction might include means to signal that the transaction is propagating either of the
following:

. A detected error.
. A deferred error.

An error is silently propagated by the producer of a transaction if the consumer of the transaction cannot detect the error
and consumes an undetected error because of the transaction. This might be because of one of the following:

. The error is present on the transaction, but was not detected by the producer. The error is silently propagated by
the producer.

. The error is present on the transaction, but was not signaled to the consumer as an error. For example, a corrupt
value was passed in the transaction with no indication that it was corrupt. The error is silently propagated by the
producer.

A latent, possibly detectable, error is silently propagated by the consumer of an otherwise correct transaction if the
transaction causes the error to become undetectable.

Example 1-1

A partial write to a protection granule removes poison, leaving the unchanged portion of the location corrupt. To
implement a partial write, the consumer logically reads the current value of the location, modifies the value, and
then writes the modified value back. These are internal transactions in the consumer that silently propagate the
error. In this example there was no error at the producer nor on the transaction.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 1-19
Non-Confidential

Introduction to RAS
1.3 General taxonomy of errors

loxrLB Errors might be propagated by components in a system until one of the following occurs:
. They are masked and do not affect the outcome of the system.
The error might be masked because a corrupt value is discarded or overwritten, or the error is detected and
removed.
. They affect the service interface of the system and possibly cause failure. If the error has been silently propagated

to the service interface, then:

— This is a Silent Data Corruption, SDC.

— The rate of such failures, measured as the number of failures per billion device-hours of operation, is
called the Silent Data Corruption Failure-in-Time rate, SDC FIT rate.

Alternatively, the error might have been detected, causing the system to invoke error handling and recovery. See

Error handling and recovery.

1.3.3 Infected and poisoned
Ryxnows The state of a component becomes infected when the component consumes an Uncorrected error that updates the state.
Rrzsw A value is poisoned in the state of a component if it is marked as being in error, such that a subsequent access of the state

will detect the value is so marked and is treated as a detected error.

IyBmFK Poison is used to defer an error.

1.34 Containable and uncontainable

RpxQrD An undetected error is uncontained at the component that failed to detect it.

Rrivro A silently propagated error is uncontained at the component that silently propagated it.

Raionr A Detected Uncorrected Error is uncontainable at the component if it might be uncontained at the component. A

Detected Uncorrected Error is containable at the component if it is not uncontainable at the component. If the component
cannot determine whether a Detected Uncorrected Error is uncontainable at the component or containable at the
component, then the component treats the Detected Uncorrected Error as uncontainable at the component.

IMRDMR An error that is uncontainable at the component might be containable at the system level.

INwzGB Reporting an error as containable allows software to contain the error. This does not mean that hardware has contained
the error.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 1-20

Aa Non-Confidential

Introduction to RAS
1.4 Techniques for improving reliability, availability, and serviceability

1.4 Techniques for improving reliability, availability, and serviceability

ITpGKr Each device sets its own targets for reliability, availability, and serviceability, using various techniques to achieve these
targets, including:
. Fault prevention and fault removal.
. Error handling and recovery.

. Fault handling.

IpmMKGY The level of reliability, availability, and serviceability in any implementation, and which parts of the system include
RAS, are IMPLEMENTATION DEFINED. The RAS Extension and RAS System Architecture do not prescribe the level of
reliability, availability, and serviceability in any implementation, or which parts of the system include RAS.

1.4.1 Fault prevention and fault removal
Ryrvrs Fault prevention and fault removal are two techniques for handling faults. Fault prevention and fault removal
mechanisms are IMPLEMENTATION DEFINED.

IwzTks Fault prevention techniques are outside the scope of the architecture.

Ryvine A fault that is removed is a Corrected error and might be recorded and generate a Fault handling interrupt, but it is not
propagated. This means that it is not consumed and does not cause service failure.

IwspBC A common technique to detect and correct errors is the use of an Error Detection and Correction Code (EDAC), more
commonly referred to as simply an Error Correction Code (ECC). ECC schemes use mathematical codes to detect and
correct an error in a value in memory. The size of the value is the protection granule for the ECC scheme.

Ippirc The RAS Extension and RAS System Architecture do not require implementation of any fault removal schemes,
including ECC.

1.4.2 Error handling and recovery

Rxprvr A fault that is not removed gives rise to an Uncorrected error.

Rvrxyy Error recovery is the process by which software and hardware minimize the impact of an Uncorrected error.

L ywrs Error recovery methods include all of the following:
. Deferring an error from a fault. An error is deferred by hardware if hardware can make forward progress without

consuming the error. Deferring the error means:

— The fault might become masked later (fault removal). For example, because the corrupt value is
overwritten before it is consumed.

— If the deferred error is later consumed, then the error is reported at the point of consumption. For
example, if the deferred error is consumed by a PE then the consumer PE generates an Error exception.
This can give better results in terms of error recovery in the case where the original producer of the data is
not known when the error was deferred. For example because a latent error was detected.

A common technique to defer an error is to replace the corrupt value with a poisoned value, for example in
memory or in a transaction.

. Preventing further propagation of the error, that is containing the error. In particular, preventing silent
propagation of the error.

. Reducing the severity of a failure by invoking a service failure mode:
— This is a Detected Uncorrected Error (DUE).
— The rate of such failures gives the DUE FIT rate.
— The type of service failure mode depends on what is acceptable to the service.

IBrRDMK A software error recovery agent is typically invoked when hardware detects an error it cannot correct, defer, or remove.

IpGxrk An error recovery agent also provides information to the operator through error logs to improve serviceability, for
example to help with the identification of a Field Replaceable Unit, FRU.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 1-21
Aa Non-Confidential

Introduction to RAS
1.4 Techniques for improving reliability, availability, and serviceability

IMFPRY The RAS Extension and RAS System Architecture provide optional common programmers’ models to record
information about an error in an Error record.

Icvern The RAS Extension describes the behavior of a PE when an error is signaled to it by the system, including invoking a
service failure mode by taking an Error exception, and optional mechanisms to limit propagation of an error.

Itipey The RAS Extension and RAS System Architecture do not require systems to implement error recovery mechanisms,
including poison, and do not require systems to limit the silent propagation of errors.

143 Fault handling
IswrrLo Fault handling by software is the process by which software diagnoses and responds to faults to improve availability.
lgGepn Fault handling methods include Predictive Failure Analysis (PFA), using information recorded by hardware to trigger

preemptive action.

TwNHIT The RAS Extension and RAS System Architecture provide optional mechanisms to allow the reporting of errors and
warnings to a fault handling agent, and to record information about the fault in an Error record. It is the responsibility of
the Error recovery and fault handling processes to collate the Error record data and write it to an error log.

IrQrsQ The detailed nature of the fault handling agent is outside the scope of this architecture. Fault handling and Error recovery
might be independent agents.

IpoBcy See also Standard error record.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 1-22
Aa Non-Confidential

Chapter 2

RAS System Architecture

IHI0100
Aa

This chapter describes the RAS System Architecture. It contains the following sections:

. About the RAS System Architecture.
. Nodes.

. Detecting and consuming errors.

. Standard error record.

. RAS interrupts.

. In-band error response signaling

. Error record reset.

. Extensions.

. Accessing RAS registers.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

2-23

RAS System Architecture
2.1 About the RAS System Architecture

21

IxkHGG

Rpkip

[\ ITRXQ

IepMKF

ILiwmz

lorzek

IHTDRT

l—)I(}I\’I’\I

RHI%JIII)

R/,I‘\1HI\

IHI0100
Aa

About the RAS System Architecture

The RAS System Architecture provides a framework for building RAS features in a system. It provides a reusable
component architecture for components that can detect and record errors, and signal them to a PE.

A node is a RAS System Architecture element that records errors detected or consumed by one or more system
components.

A RAS System Architecture implementation includes one or more nodes. The RAS System Architecture does not
require that all components in a system implement the RAS System Architecture or appear as a node.

The RAS System Architecture does not prescribe the level of reliability, availability, and serviceability in the system.
The RAS features that the system includes, for example to detect, correct, contain, or defer errors, are IMPLEMENTATION
DEFINED.

The RAS features and behavior of components that do not implement the RAS System Architecture are IMPLEMENTATION
DEFINED.

Arm recommends that all errors are reported to a RAS System Architecture node to enable error recovery and fault
handling.

This section describes the behavior of RAS System Architecture nodes, and other required behaviors of components that
implement the RAS System Architecture.

In this chapter, OPTIONAL from or permitted from refers to the earliest version of the RAS System Architecture in which
the feature is permitted to be implemented. A system must be FEAT RASSAvIpl compliant to include a feature
permitted from FEAT RASSAvlpl, and must be FEAT RASSAv2 compliant to include a feature permitted from
FEAT RASSAvV2. If no version is indicated, this means the feature is OPTIONAL from or permitted from

FEAT RASSAvI.

Unless otherwise specified, all required features in FEAT RASSAv1 compliant implementations are required in
FEAT RASSAvlipl compliant implementations, and all required features in FEAT RASSAv1pl compliant
implementations are required in FEAT _RASSAv2 compliant implementations.

Except where restricted by Drgkpm, FEAT RASSAv1 compliant implementations can implement any subset of features
from FEAT RASSAvlpl, and FEAT RASSAvIpl compliant implementations can implement any subset of features
from FEAT _RASSAv2.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-24
Non-Confidential

RAS System Architecture

2.2 Nodes

2.2 Nodes

IrDHHP

Dpymcw

RxmrkF

RenBYQ

Raqqrso

Rwrwct

RzmmvBH

RvHpzw

Renpy

RRrENHX

IHI0100
Aa

A component might implement one or more nodes, or a node might be implemented outside of a component.
See also RWXPDN and RGCDCL~

The RAS System Architecture defines the features described in this section for a node.

Error detection and correction
The level of error correction and detection implemented at a component is IMPLEMENTATION DEFINED.

A node might include the control to disable error reporting and recording of detected errors, for
example while software initializes the component.

It is IMPLEMENTATION DEFINED wWhether error detection and correction is fully disabled at the component
when reporting and recording are disabled at the node.

See Detecting and consuming errors.

Fault handling interrupt

Asynchronous reporting of all or some recorded errors by an interrupt, that is, Corrected errors,
Deferred errors, and Uncorrected errors. It is IMPLEMENTATION DEFINED whether a node provides a
single control for all errors, or a first control for Corrected errors and a second control for all other
detected errors.

See Fault handling interrupt.

Corrected error counter

It is IMPLEMENTATION DEFINED whether a node implements a counter for counting errors. Software can
poll the error counter or initialize the counter with a threshold value and receive an interrupt when the
counter overflows. A counter overflows when incrementing the counter results in unsigned integer
overflow.

It is IMPLEMENTATION DEFINED which Corrected errors are counted.

It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether Deferred errors and Uncorrected
errors are counted by the Corrected error counter.

See Standard format Corrected error counter.

Timestamps
It is IMPLEMENTATION DEFINED whether a node records a timestamp in each Error record.
See The RAS Timestamp Extension.

In-band error response (External abort)

In-band signaling of a detected Uncorrected error to the Requester of the transaction. It is also referred
to as an External abort.

Corrected errors and errors deferred to the Requester are not reported by such means.
See In-band error response signaling.

Error recovery interrupt

Asynchronous (out-of-band) reporting of recorded Uncorrected errors by an interrupt. The interrupt
can be used for error recovery, fault handling, or both. Corrected errors are not reported by this means.
It is IMPLEMENTATION DEFINED whether the node provides the control to enable Deferred errors to be
reported in this way. If the control is not provided, then Deferred errors are not reported by this means.

See Error recovery interrupt.

Critical Error interrupt

Critical error interrupts provide a mechanism for a node to report a critical error condition to a system
controller for error recovery.

See Critical error interrupt.

Records

A node implements one or more standard Error records. When an error is detected or consumed,
syndrome about the error is written to an Error record.

See Standard error record.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-25
Non-Confidential

RAS System Architecture

2.2 Nodes

RFyyxr

IwrwMK

Ryusas

RymrML

Rewwxn

RaGsonz

2.21

RRMRKT

IyknTD

Rpzcqv

Durvsn

lcczix

ece

Dpippm

Rprpwx

Rrrpvw

IHI0100
Aa

Proxies

A node can be a proxy for another component implementing multiple other nodes. In this case, there is
a proxy error record.

See System RAS Agents.
A node might implement some or all of these features.

The first standard Error record for a node contains:

. An identification register, ERR<n>FR, that describes the implemented features of the node.
. The ERR<n>CTLR register to enable or disable the features.

A node has a single ERR<n>FR and a single ERR<n>CTLR register.

If the node implements multiple Error records, then each Error record has the same features and all Error records share
the controls.

Note
If a component requires multiple sets of controls, then the component implements multiple nodes.

For each node, it is IMPLEMENTATION DEFINED whether the fault and error reporting mechanisms apply to both reads and
writes, or whether the mechanisms can be individually controlled for reads and writes.

Multiple error records per node

Each node contains at least one Error record.

A node might implement multiple Error records for one or more of the following purposes:

. To record different types of error in different Error records.

. To record errors from different components, or different FRUs accessed by a component, in different Error
records.

. To record multiple errors.

If a single node implements multiple Error records, then all of the following are true:

. The Error records are indexed sequentially within an Error record group starting from the first Error record for
the node.
. For each Error record other than the first Error record for the node, the following are true:

— The ERR<n>FR.ED field is 0b00.
— IfFEAT RASSA_ERT is not implemented, ERR<n>FR[63:2] are RES0.
— The ERR<n>CTLR register is RESO.

When FEAT _RASSAv2 is implemented, each node implements support for FEAT RASSA_ERT. FEAT RASSA_ERT
is permitted from FEAT RASSAv2.

FEAT RASSA_ ERT enables software to discover differences between error records owned by the same error node, and
allows continuation records, which enable an error node to record additional IMPLEMENTATION DEFINED syndrome
information.

In a continuation record, error record <n> is a continuation of error record <n-1>. Error record <n—1> might also be a
continuation of error record <n—2>, and so on.

When FEAT RASSA_ERT is implemented, if ERR<n>FR.ED is 0000, then ERR<n>FR.ERT defines the error record
type.

Continuation records are only permitted in an Error record group. Within the Error record group, error record 0 is not
permitted to be a continuation record.

An Error record group consists of the Error records of one or more nodes.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-26
Non-Confidential

RAS System Architecture
2.2 Nodes

Rpppra An Error record group might be sparsely populated. Locations relating to unimplemented Error records are RAZ/WI,
meaning that they have an ERR<n>FR register that reads as zero.

See Nodes.

Example 2-1

An Error record group contains five error records owned by three nodes, arranged as shown below:

Node: <0> <l> <5>

Record: <0> <l> <2> <3> <5>

. Node <0> owns a single Error record: <0>. ERROFR describes the features for this node, and ERROCTLR
contains the controls for this node. ERROSTATUS, ERROADDR, and ERROMISC<m> record syndrome
for this Error record.

. Node <1> owns three Error records: <1>, <2>, and <3>.

— Error record <1> is the first error record of the node. ERRI1FR.ED is 0b01 or 0b10. ERRIFR
describes the features for this node, and ERRICTLR contains the controls for this node.
ERRISTATUS, ERR1ADDR, and ERR1MISC<m> record syndrome for this Error record.

— ERR2FR.{ED, ERT} is {0000, 0000} and ERR2CTLR is REsO. ERR2STATUS, ERR2ADDR,
and ERR2MISC<m> record syndrome for this Error record.

— Error record <3> is a continuation of Error record <2>. ERR3FR.{ED, ERT} is {0000, 0b01},
ERR3CTLR is resO, ERR3STATUS.{V, AV, MV, IERR} are defined and all other values in
ERR3STATUS are rResO, and ERR3ADDR and ERR3MISC<m> are IMPLEMENTATION DEFINED,
recording additional syndrome for the error recorded by Error record <2>.

. Error record <4> is not implemented. ERR4FR.{ED, ERT} is {0b00, 0000}, and ERR4CTLR,
ERR4STATUS, ERR4ADDR, and ERR4MISC<m> are RAZ/WI.

. Node <5> owns a single error record: <5>. ERR5FR describes the features for this node, and ERRSCTLR
contains the controls for this node. ERRSSTATUS, ERRSADDR, and ERRSMISC<m> record syndrome
for this Error record.

. If the Error record group is accessed using a memory-mapped view then ERRDEVID.NUM is 6.

. If the Error record group is accessed using System registers then ERRIDR_EL1.NUM is 6.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-27

Aa Non-Confidential

RAS System Architecture
2.3 Detecting and consuming errors

23

Rzt

IS\'/KY

LoxprLk

Rirsmz

RwxppN
Ryyrx1
RirosG
Rwpicp
Rgvemk

RgepeL

IHI0100
Aa

Detecting and consuming errors

A component detects an error when it detects that a deviation from correct service has occurred or will occur. For
example, including but not limited to when any of the following occurs that would not be permitted to occur had the fault
not been activated:

. A corrupt value has been or will be passed to a consumer.

. A transaction or other operation occurs or will occur that should not occur.

. A transaction or other operation that should occur does not occur or will not occur.

. A loss of uniprocessor semantics or any other loss of coherency in a multiprocessor coherent system is or will be
observed. See Isvzky.

. The timing and/or order of transactions or other operations has been or will be changed.

. A latent error has become or will become undetectable. See Ioxprk.

Examples of a loss of uniprocessor semantics or other loss of coherency that might occur because of an error include:
. A cache loses data that it holds in a modified state.
. A cache writes back unmodified data to memory.

An example that should not occur is when a partial write to the protection granule of a cache location holding poison
occurs, and the cache later invalidates the line without writing back the poison value.

Example 2-2 Maintaining poisoned cache locations

A cache fetches data from memory and receives poison, and subsequently, a partial write to that location is
insufficient to clean the location of the poison and the location remains poisoned.

The cache should treat the location as modified, even though it appears that the write did not modify the location.
That is, the cache should take ownership of the location and write-back poison when the location is evicted from
the cache. Otherwise if the original error was transient and later disappears from memory, the location reverts to
the unmodified value, silently propagating the error.

An example of a latent error becoming undetectable includes when a poison value indicating a deferred error is lost at the
interface between domains. For example, because a poison value is passed to a component that does not support
poisoning.

An example of a latent error becoming undetectable that should not occur is when a poison value is lost by a partial write
to the protection granule. In this case, the partial write should leave the protection granule containing poison.

A component consumes an error that is signaled to the component in response to a memory access, cache maintenance
operation, or other transaction initiated by the component as one of:

. An In-band error response.
. A deferred error.

When an error is detected or consumed by a component, the error is reported to one or more nodes.

It is IMPLEMENTATION DEFINED whether a Requester that consumes a signaled detected error reports the consumed error.
It is IMPLEMENTATION DEFINED whether errors are reported when a detected error is propagated between components.

It is IMPLEMENTATION DEFINED whether all corrected errors are reported.

It is IMPLEMENTATION DEFINED wWhether errors detected on hardware speculation are reported.

It is IMPLEMENTATION DEFINED whether the node or nodes that an error is reported to are one or more of the following:

. The same component that detected the error.

. The consumer of the transaction that consumes a detected error signaled by the producer of the transaction which
detected the error. Syndrome information might be passed with the signaled detected error to the consumer.

. Another component that neither detected nor consumed the error. For example, a node whose purpose is to
record errors for other components. Such a node might comprise one record for each component for which it is
recording an error, or a number of shared records, where each record identifies the originating component, or
some other arrangement.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-28
Non-Confidential

RAS System Architecture
2.3 Detecting and consuming errors

RLBHMF

Rimeve

Rrkenc

N1

loorkD

ILRNRJ

Rrrepp

Isnnzr

IHI0100
Aa

When an error is detected or consumed by a component, if the error can be corrected:
. The error is corrected.

. Optionally, the detected error is reported to a node, the node records a Corrected error, and if implemented and
enabled, a Fault handling interrupt is raised.

. If the error is detected on a read access by a Requester, corrected data is returned to the Requester.

When an error is detected or consumed by a component, if the error cannot be corrected and can be deferred:

. The error is deferred. For example, the location being accessed is poisoned or poisoned data is returned to the
Requester.

. The error is reported to a node and the node records a Deferred error.

. If the error is detected on an access by a Requester, the error is not deferred to the Requester, and if implemented

and enabled, it is IMPLEMENTATION DEFINED whether an In-band error response is returned to the Requester.

. If the error is detected on a read access by a Requester, the error is not deferred to the Requester, and an In-band
error response is not returned to the Requester, the data returned to the Requester is IMPLEMENTATION DEFINED and
might be UNKNOWN.

. If implemented and enabled, a Fault handling interrupt is raised.
. If implemented and enabled, an Error recovery interrupt is raised.
Note

An error cannot be deferred to a component that does not accept deferred errors.

When an error is detected or consumed by a component, if the error cannot be corrected and cannot be deferred:

. The error is reported to a node and the node records an Uncorrected error.

. If implemented and enabled, a Fault handling interrupt is raised.

. If implemented and enabled, an Error recovery interrupt is raised.

. If the error is detected on an access by a Requester, and if implemented and enabled, an In-band error response is

returned to the Requester.

. If the error is detected on a read access by a Requester, and an In-band error response is not returned to the
Requester, the data returned to the Requester is IMPLEMENTATION DEFINED and might be UNKNOWN.

. If the component is unable to continue operation, it might enter a service failure mode.

The criteria by which a component determines when it can correct or defer an error are IMPLEMENTATION DEFINED. For
example, if the error is detected in response to an access by a Requester that is not capable of receiving a Deferred error
response, then it is not possible to defer the error to the Requester.

Rimcve permits a component to both defer an error and return an In-band error response to the Requester. For instance if
it is not possible to defer the error to the Requester.

Example 2-3 Treating poisoned PE caches

A PE executes a load instruction which misses in the PE cache and the subsequent cache refill receives poison
in the cache line for the location being accessed. The cache line is allocated into the cache, but the cache cannot
return poison to PE and signals an In-band error response to the PE. It is IMPLEMENTATION DEFINED whether the
cache records this as a Deferred error or an Uncorrected error.

Rrkene and Rypeye permit a component to return a fixed known value to a Requester when an uncorrected error is
detected on a read access, not deferred to the Requester, and either support for an In-band error response is not
implemented or the In-band error response is disabled. For example, zero or an all-ones value.

See also Software faults.
When an error is reported to a node, the node records syndrome information for the error in a standard Error record.

Arm recommends that hardware records sufficient information to:
. Determine whether error recovery is possible, if the error was not corrected by hardware.

. Allow fault analysis to find trends in the faults. This information is IMPLEMENTATION DEFINED but might include
the location of the data.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-29
Non-Confidential

RAS System Architecture
2.3 Detecting and consuming errors

INmFY

IwmvTN

Lot

IGGosr

IzzKRs

IHI0100
Aa

. Allow identification of a FRU.
The node registers might also contain control registers for error detection, correction and reporting at the component.

Corrected errors can be recorded by counting each Corrected error. Counting might be done by either software or
hardware. The fault handling process compares the Corrected error rate with a threshold value to determine whether to
take action.

Standard format Corrected error counter and Corrected error counter describe an optional standard hardware mechanism
for counting errors.

The details of any service failure mode are IMPLEMENTATION DEFINED. For example:

. A component that fetches data from memory and processes that data might halt processing and await servicing
by an application processor when it receives an In-band error response. This is a form of service failure mode.
. When a PE takes an Error exception and executes an error handler, this is also a form of service failure mode.

The component might implement multiple functions, some of which can be in a service failure mode while others
continue to operate, or the service failure mode might affect multiple or all functions of the component.

See also:

. Standard error record.

. Fault handling interrupt.

. Error recovery interrupt.

. In-band error response signaling.

. Standard format Corrected error counter.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-30
Non-Confidential

RAS System Architecture
2.4 Standard error record

24

Rareqs

Rxcarz

RmaoprL

Raockva

Ipszmvk

Rpxzpx

Ipvyzo

IpBTI

IgnpzB

Rwpsrz

2.41

Rxwykp

RpgpvB

24.2

Ryvwssx

TN

RrgBpN

IHI0100
Aa

Standard error record

The RAS System Architecture defines a standard Error record and a mechanism to access Error records as System
registers or as a memory-mapped component.

The standard Error record contains:

. A status register, ERR<n>STATUS, for common status fields, such as the type and coarse characterization of the
erTor.

. An optional address register, ERR<n>ADDR.

. IMPLEMENTATION DEFINED status registers, referred to as ERR<n>MISC<m>. Arm recommends these are used
for:
— Identifying a FRU.

— Locating the error within the FRU.
— Optionally, a Corrected error counter or counters for software to poll the rate of Corrected errors.
— Optionally, a timestamp value for when the error was recorded.

When FEAT RASSAv1 is implemented, there are two ERR<n>MISC<m> registers for each Error record:
. ERR<n>MISCO.
. ERR<n>MISCI1.

When FEAT RASSAvlpl is implemented, there are four ERR<n>MISC<m> registers for each Error record:

. ERR<n>MISCO.
. ERR<n>MISCI.
. ERR<n>MISC2.
. ERR<n>MISC3.

The RAS System Architecture permits the implementation of ERR<n>MISC2 and ERR<n>MISC3 in implementations
of the FEAT RASSAv1.

An Error record might include additional IMPLEMENTATION DEFINED controls and identification registers.

Error record System register view in Arm® Architecture Reference Manual, for A-profile architecture defines System
registers for accessing a group of Error records.

Accessing RAS registers defines reusable formats for a memory-mapped views of Error records. Use of reusable formats
by any component in the system is OPTIONAL.

The format of the Error record registers is the same for both access mechanisms.

Error records are preserved over Error Recovery reset. This allows for a diagnosis after system failure.

Additional Error record types

An Error record might be a proxy error record. See System RAS Agents.

An Error record might be a continuation record. See Multiple error records per node.

Component error states

When a node records an error, the component error state is recorded in the Error record.

The component error state recorded in the Error record describes the error state of the component only. For example, the
component state might be Unrecoverable but the system is recoverable by resetting the component.

For a standard Error record, the component error state types that can be recorded are:

. Corrected error (CE).

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-31
Non-Confidential

RAS System Architecture
2.4 Standard error record

Rkrppr

RxirmG

IRFzHC

Rxitoq

Rwhasp

RpHroQ

Reryhe

IHI0100
Aa

. Deferred error (DE).
. Uncorrected error.

If and only if all of the following are true, then on recording an error, the component error state is recorded as Corrected
error (CE):

. The error was corrected.

. The error has not been silently propagated.

. The component has not entered a service failure mode and continues to operate.

. The implementation has not elected to record the component error state as Deferred error, or Uncorrected error.

In normal circumstances, the error no longer infects the state of the component. However, in the case of a persistent
correctable fault, or other rare IMPLEMENTATION DEFINED circumstances, the error might remain latent in the component.

If and only if all of the following are true, then on recording an error, the component error state is recorded as Deferred
error (DE):
. At least one of the following are true:

— The error was not corrected, and was deferred.

— The error was corrected, and the implementation elected to record the component error state as Deferred

error.

. The error has not been silently propagated.

. The error might be latent in the system.

. It is IMPLEMENTATION DEFINED whether the error continues to infect the state of the component or whether it has
been deferred to a consumer.

. The component has not entered a service failure mode and continues to operate.

. The implementation has not elected to record the component error state as Uncorrected error.

A Deferred error might be recorded for an error that cannot be corrected. However, for the purposes of the component
error state taxonomy, Deferred error is classified separately from Uncorrected error.

If and only if all of the following are true, then on recording an error, the component error state is recorded as
Uncorrected error:
. At least one of the following are true:

— The error was not corrected and not deferred.

— The error might have been silently propagated.

— The component has entered as service failure mode and does not continue to operate the function that
consumed the error.

— The error was either corrected or deferred, and the implementation elected to record the component error
state as Uncorrected error.

. The error is latent in the system.

An Uncorrected error is recorded as one of the following sub-types:

. Uncontainable error (UC).

. Unrecoverable error (UEU).

. Recoverable error or Signaled error (UER).
. Restartable error or Latent error (UEO).

If any of the following are true, then on recording an Uncorrected error, the component error state is recorded as
Uncontainable error (UC):

. The error might have been silently propagated by the component.
. The implementation has elected to record the error as Uncontainable error.

If the error cannot be isolated, then the system must be shut down to avoid catastrophic failure.

If and only if all of the following are true, then on recording an Uncorrected error, the component error state is recorded
as Unrecoverable error (UEU):

. The error has not been silently propagated by the component.
. Either of the following are true:
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-32

Non-Confidential

RAS System Architecture
2.4 Standard error record

Rengry

RrrrxZ

INngDWZ

Roryep

Rcrzmh

Ipcyvn

Irvinm

IHI0100
Aa

— The component has halted operation (entered a service failure mode) of the function that consumed the
error. The component determines that software will not be able to recover operation of the function.

— The implementation has elected to record the error as Unrecoverable error.
. The implementation has not elected to record the error as Uncontainable error.

If and only if all of the following are true, then on recording an Uncorrected error, the component error state is recorded
as Signaled error (UER):

. The error was produced at the component.

. The error has not been silently propagated by the component.

. The error has been or might have been consumed, and was not recorded as a Deferred error.

. The implementation has not elected to record the error as Unrecoverable error, or Uncontainable error.

If and only if all of the following are true, then on recording an Uncorrected error, the component error state is recorded
as Latent error (UEO):

. The error was produced at the component.

. The error has not been propagated by the component, silently or otherwise.

. The implementation has not elected to record the error as Deferred error, Unrecoverable error, or Uncontainable
€ITor.

That is, the error was detected but not consumed, and was not recorded as a Deferred error.

The producer is usually unable to determine whether a consumer has architecturally consumed the error. An error might
be recorded as Latent error if it has definitely not been propagated to any consumer, and as Signaled error otherwise.

If and only if all of the following are true, then on recording an Uncorrected error, the component error state is recorded
as Recoverable error (UER):

. The error has not been silently propagated by the component.
. The component has halted operation (entered a service failure mode) of the function that consumed the error.
. Either of the following is true:

— The component is reliant on consuming the corrupted data to continue operation of the function that
consumed the error. The component determines that software will be able to recover operation of the
function if it locates and repairs the error.

— The implementation has elected to record the error as Recoverable error.

. The implementation has not elected to record the error as Deferred error, Unrecoverable error, or Uncontainable
error.

If and only if all of the following are true, then on recording an Uncorrected error, the component error state is recorded
as Restartable error (UEO):

. The error has not been silently propagated by the component.

. The component has halted operation (entered a service failure mode) of the function that consumed the error.

. The component determines that it does not rely on the corrupted data, and so can recover operation even if
software does not locate and repair the error.

. The implementation has not elected to record the error as Deferred error, Unrecoverable error, or Uncontainable
error.

As described by Rwngsp, for an Uncorrected error, the Error record records the component error state as one of UC,
UEU, UER, or UEO. UER and UEO have two possible interpretations:

. UER can mean either Recoverable error or Signaled error.
. UEO can mean either Restartable error or Latent error.
This might depend on the type of component:

. Signaled error and Latent error are more applicable to a producer or Completer component. For example, one
that stores or transports data, such as memory or a cache.

. Recoverable error and Restartable error are more applicable to a consumer or Requester component. For
example, one that might consume data and performs some operation on it.

The component error state types are summarized by Figure 2-1. Figure 2-1 assumes the component supports the
resulting component error state and the implementation never elects to record an error as a different component error
state when permitted.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-33
Non-Confidential

RAS System Architecture
2.4 Standard error record

olerity e ? yes Corrected
propagated? ————> Emorcorrected? ————» "

b,
yes Deferred

Error deferred? @ —— > (DE)

fo
i Uncorrected

State recoverable?

maybe &es

Producer or consumer?

no fonsumer roducer

Action required?

Propagated?
(Signaled as error)

&GS no yes &0
\ \24

Uncontainable Unrecoverable Recoverable Restartable
(UC) (UEU) or Signaled (UER) or Latent (UEO)

Figure 2-1 Component error state types

243 Writing the error record
Rmpxxv When a new error is recorded, the node:
. Does one of the following:

— Overwrites the Error record with the syndrome for the new error.

— Keeps the syndrome for the previous error.

The previous component error state and the new component error state determine which. See:
— Prioritizing errors, FEAT RASSAvI1.

— Prioritizing errors, FEAT RASSAvIpl.

. Modifies ERR<n>STATUS.{CE, DE, UE} to indicate the component error state. See Component error states
and priorities.
. Counts the error, if a Corrected error counter is implemented and the error is of a type that the counter counts.
Rrokrr If the Error record is corrupt or the previous component error state is otherwise not known, the node overwrites the Error

record with the new error syndrome and sets ERR<n>STATUS.OF to 0b1.

RBaxqq If counting a Deferred error or Uncorrected error causes the counter to overflow, then ERR<n>STATUS.OF is set as it
would be for a Corrected error that causes Corrected error counter overflow. However, if the RAS System Architecture
requires that recording the Deferred error or Uncorrected error sets the ERR<n>STATUS.OF flag to 0b1, then this flag is
also set to 0b1 even if the error is counted and the Corrected error counter does not overflow.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-34
Aa Non-Confidential

RAS System Architecture
2.4 Standard error record

2.4.3.1 Component error states and priorities

Rpxcpz The highest priority recorded component error state type is recorded in the ERR<n>STATUS.{V, CE, DE, UE, UET}
fields, as shown in Table 2-1.

In Table 2-1, V, CE, DE, UE, UET refer to fields in ERR<n>STATUS.

Table 2-1 Encoding the highest priority component error state

ERR<n>STATUS Highest priority component error state type Mnemonic

v CE DE UE UET

0b0 UNKNOWN UNKNOWN UNKNOWN UNKNOWN None (not valid) -

0bl 0b00 0b0 0b0 UNKNOWN None -

0bl 1= 0000 0b0 0b0 UNKNOWN Corrected error CE

0b1l X 0bl 0b0 UNKNOWN Deferred error DE

0bl X X 0bl 0b10 Uncorrected error: Latent error or Restartable error UEO

0bl X X 0bl 0b11 Uncorrected error: Signaled error or Recoverable UER

error

0b1l X X 0b1l 0b01 Uncorrected error: Unrecoverable error UEU

0bl X X 0bl 0b00 Uncorrected error: Uncontainable error ucC
IonsGyv The component error state types implemented at a node are IMPLEMENTATION DEFINED. An implementation might only

include a simplified subset of these component error state types.
A node can always elect to record:

. UEO as any of UER, UEU, or UC.

. UER as either UEU or UC.

. UEU as UC.

2.4.3.2 Prioritizing errors, FEAT_RASSAv1
RzprxT When FEAT RASSAvlpl is not implemented, overwriting depends on the component error state type of the previous
highest priority error and on the component error state type of the newly recorded error, as shown in Table 2-2.
In Table 2-2:
. Each row corresponds to the highest priority previous component error state type recorded in the Error record.
. Each column corresponds to the component error state type of the new detected error.
The row and column headings use the mnemonics from Table 2-1, and the following additional abbreviations are used:
K

Keep. Keep the previous error syndrome. It is IMPLEMENTATION DEFINED whether ERR<n>STATUS.OF
is set to 0b1 or unchanged.

Overflow. Keep the previous error syndrome and set ERR<n>STATUS.OF to 0b1.

Overwrite. Overwrite with the new error syndrome. It is IMPLEMENTATION DEFINED whether
ERR<n>STATUS.OF is set to 0b0 or unchanged.
CK

Count and keep. Count the error if a Corrected error counter is implemented, and keep the previous
error syndrome. If the counter overflows, or if no Corrected error counter is implemented, then it is
IMPLEMENTATION DEFINED whether ERR<n>STATUS.OF is set to 0b1 or unchanged.

CWK

Count and overwrite or keep. The behavior is IMPLEMENTATION DEFINED and described by the value of
ERR<q>FR.CEO, where <g> is the index of the first Error record owned by the node:

. 0b00: Count the error if a Corrected error counter is implemented. Keep the previous error
syndrome.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-35
Aa Non-Confidential

RAS System Architecture
2.4 Standard error record

. 0b01: Count the error. If ERR<n>STATUS.OF is 0b1 before the error is counted, then keep the
previous syndrome. Otherwise, overwrite with the new error syndrome.

If counting the error causes unsigned overflow of the counter, or if no Corrected error counter is
implemented, then ERR<n>STATUS.OF is set to 0b1.

CwW
Count and overwrite. Count the error if a Corrected error counter is implemented, and overwrite with
the new error syndrome. If a Corrected error counter is implemented and counting the error causes
unsigned overflow of the counter, then ERR<n>STATUS.OF is set to an UNKNOWN value. Otherwise,
it is IMPLEMENTATION DEFINED whether ERR<n>STATUS.OF is set to 0b0 or unchanged.
WO
Overwrite and overflow. Overwrite with the new error syndrome. ERR<n>STATUS.OF is set to 0b1.
Table 2-2 FEAT_RASSAvV1 rules for overwriting error records
Previous error
type New detected errror type
CE DE UEO UER UEU uc
- CW W W Y W w
CE CWK W W W W W
DE CK (0] W w W W
UEO CK K (¢} WO WO WO
UER CK K (¢} 0] WO WO
UEU CK K (¢} 0] (0] WO
ucC CK K O o (¢ 0]
2.4.3.3 Prioritizing errors, FEAT_RASSAv1p1
RpnrpB When FEAT RASSAvlpl is implemented, overwriting depends on the component error state type of the previous
highest priority error and on the component error state type of the newly recorded error, as shown in Table 2-3.
In Table 2-3:
. Each row corresponds to the highest priority previous component error state type recorded in the Error record.
. Each column corresponds to the component error state type of the new detected error.

The row and column headings use the mnemonics from Table 2-1, and the following additional abbreviations are used:

W

Overwrite. Overwrite with the new error syndrome. ERR<n>STATUS.OF is unchanged.
WO

Overwrite and overflow. Overwrite with the new error syndrome. ERR<n>STATUS.OF is set to 0b1.
(0]

Overflow. Keep the previous error syndrome and set ERR<n>STATUS.OF to 0b1.
If no Corrected error counter is implemented, then all of the following apply:

CW

Behaves the same as W.
CWO and CO

Behave the same as O.

Otherwise, a Corrected error counter is implemented, and all of the following apply:

CwW
Count and overwrite. Overwrite with the new error syndrome, and count the error. If counting the error
causes unsigned overflow of the counter, then ERR<n>STATUS.OF is set to 0b1.

CWO
Count, overwrite or keep, and overflow. The behavior is IMPLEMENTATION DEFINED and described by the
value of ERR<q>FR.CEO, where <g> is the index of the first Error record owned by the node:
. 0b00: The behavior is the same as CO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-36

Aa Non-Confidential

RAS System Architecture
2.4 Standard error record

(6(0)

. 0b01: Count the error. If ERR<n>STATUS.OF is 0b1 before the error is counted, then the
behavior is the same as CO. Otherwise, the behavior is the same as CW.

Count and overflow. Keep the previous error syndrome, and count the error. If counting the error
causes unsigned overflow of the counter, then ERR<n>STATUS.OF is set to 0b1.

Table 2-3 FEAT_RASSAv1p1 rules for overwriting error records

Previous error
type New detected errror type

CE DE UEO UER UEU uc
- CwW W W W W W
CE CWO WO WO WO WO WO
DE CO (0] WO WO WO WO
UEO CO 0) O WO WO WO
UER CO (@) O o WO WO
UEU CO 0] O o o WO
ucC CO 0] O o (¢ 0]

2.4.3.4 Overwriting the error syndrome

RrvGrM When the node records an error in an Error record and either the previous syndrome is overwritten with the new error
syndrome, or the Error record was previously not valid:

. Modifies ERR<n>STATUS.{V, CE, DE, UE} to indicate the new component error state, as described by Table
2-1:
— Fields shown as X in Table 2-1 are unchanged.
— Other ERR<n>STATUS.{V, CE, DE, UE} fields are set to the value given in Table 2-1.
If the component error state is Corrected error, then the nonzero value written to ERR<n>STATUS.CE is
IMPLEMENTATION DEFINED and depends on the properties of the Corrected error recorded.

. If the new error is a type of Uncorrected error, then ERR<n>STATUS.UET is set to indicate the component error
state sub-type. See Component error states and priorities.

. The ERR<n>STATUS.{ER, PN, IERR, SERR} syndrome fields are written with the syndrome for the new error.

. If there is an address syndrome for the new error, then ERR<n>STATUS.AV is set to 0b1 and the address is
written to ERR<n>ADDR. Otherwise ERR<n>STATUS.AV is set to 0b0 and ERR<n>ADDR becomes
UNKNOWN.

. If the RAS Timestamp Extension is implemented, then a timestamp is recorded in ERR<n>MISC3 and
ERR<n>STATUS.MV is set to 0b1.

. If there is other miscellaneous syndrome for the new error, then the syndrome is written to the
ERR<n>MISC<m> registers and ERR<n>STATUS.MV is set to 0b1.

. If there is no additional miscellaneous syndrome for the new error written to the ERR<n>MISC<m> registers,
then it is IMPLEMENTATION DEFINED wWhether ERR<n>STATUS.MYV is set to 0b0 or unchanged.
— If software can determine from the ERR<n>MISC<m> contents that the syndrome is not related to the

highest priority error, then the ERR<n>STATUS.MV bit is unchanged.

— Otherwise the ERR<n>STATUS.MV bit is cleared to zero.

. ERR<n>STATUS.V is set to 0b1.

SxFyoK After reading an ERR<n>STATUS register, software has to write to the register to clear the valid bits in the register to
allow new errors to be recorded. During this period, a new error might overwrite the syndrome for the previously read
error. To prevent this, the write, or part of the write, is ignored by hardware if fields appear to have been updated. For
more information see ERR<n>STATUS.
2.4.3.5 Keeping the previous error syndrome

RpGeBD When the previous Error record is kept:

. Sets the applicable one of ERR<n>STATUS.{CE, DE, UE} to indicate the new component error state:
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-37

Aa

Non-Confidential

RAS System Architecture
2.4 Standard error record

Rrxoww

Rzixmp

[wNKMD

IpuBRX

244

[yLuwp

IgrRMPK

Rrcops

IpTYHM

Rpnksh

IHI0100
Aa

If Uncorrected error, then ERR<n>STATUS.UE is set to 0b1.
— If Deferred error, then ERR<n>STATUS.DE is set to Ob1.

— If Corrected error, then the nonzero value written to ERR<n>STATUS.CE is IMPLEMENTATION DEFINED
and depends on the properties of the Corrected error recorded.

The remaining ERR<n>STATUS.{UE, DE, CE} fields are unchanged.

. ERR<n>STATUS.UET is unchanged, even if the new error is a type of Uncorrected error.

. ERR<n>STATUS.{ER, PN, IERR, SERR}, ERR<n>ADDR, and ERR<n>STATUS.AV are unchanged.
. If the RAS Timestamp Extension is implemented, then the timestamp is not recorded.

. It is IMPLEMENTATION DEFINED whether any of ERR<n>MISC<m> are updated. The contents of

ERR<n>MISC<m> are IMPLEMENTATION DEFINED. Therefore, it is possible that some of the information about an
otherwise discarded error is recorded in these registers. If data is written to any of ERR<n>MISC<m>, then
ERR<n>STATUS.MV is set to 0b1.

2.4.3.6 Detecting multiple errors
If multiple errors are simultaneously reported to a node, then it is IMPLEMENTATION DEFINED whether the node behaves:
. As if all errors were recorded, in any order. In this case, the prioritization rules mean that the highest priority

error is recorded in the syndrome registers. However, the final value of the syndrome registers might depend on
the logical order in which the errors were recorded.

. As if the highest priority error was recorded and one or more of the lower priority errors were not recorded.

If a Corrected error counter is implemented, and multiple countable errors are detected simultaneously, then at least one
of the detected errors is counted and it is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether any other of
the detected errors are counted.

If a pair of error counters that count repeat and other errors are implemented, and the multiple countable errors comprise
at least one repeat error and at least one other error, then Arm recommends that at least one repeat error and at least one
other error are counted. Rxyrvs and Irypwq describe such an implementation.

See also Standard format Corrected error counter.

Error syndrome

This section provides additional information for some of the error syndrome fields defined in the standard Error record.

2.441 Corrected error field

When the syndrome for a Corrected error is recorded, the node can indicate through the ERR<n>STATUS.CE error type
field one of the following:

. The component or node has determined that the error is transient, or likely to be so.
. The component or node has determined that the error is persistent, or likely to be so.
. The component or node does not support making such a determination or is unable to.

The mechanism by which a component or node determines whether a Corrected error is transient or persistent is
IMPLEMENTATION DEFINED.

2.4.4.2 Poison indicator

If supported by a node, then when the syndrome for a Deferred error or Uncorrected error is recorded, the
ERR<n>STATUS.PN syndrome field is set to indicate that a poisoned value was detected.

When the node records an error and overwrites the previous error syndrome, if all of the following are true the

ERR<n>STATUS.PN syndrome field is set to 0b1, and is set to 0b0 otherwise:

. The component checks a value for an error and detects the value indicates a previously deferred error. For
example, the value is a poisoned value.

. The node does one of the following:

Records the error as an Uncorrected error. For example, because the component does one or more of:
— Enters a service failure mode.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-38
Non-Confidential

RAS System Architecture
2.4 Standard error record

— Propagates the value to a component that does not support poison. This is an Uncontainable error.

— If the component has deferred the error again, records the error as a Deferred error. See also Bridges to
other architectures.

[iBDPT When a component checks a value and detects an Uncorrectable error, and defers the error by generating a poisoned
value, the node records this as a Deferred error with ERR<n>STATUS.PN set to 0b0.
Therefore when software examines the Error records, an ERR<n>STATUS.PN value of 0b1 indicates that the
component was propagating a previously deferred error, and so the fault did not originate in that component. An
ERR<n>STATUS.PN value of 0b0 indicates that the fault originated at the component.

Iorsmy In some Error Detection Code (EDC) schemes, a poisoned value is encoded as a reserved value, one that would not be
generated by a detectable corruption of valid data.

Example 2-4 Encoding poisoned values

In a SECDED error detection scheme, a value with a Hamming distance greater than 2 bits from all valid values is
chosen to represent a poisoned value.

For such a scheme, it is IMPLEMENTATION DEFINED whether the component can distinguish a corrupt data value from
the poison value. The component might accept and store a poisoned value when an error is deferred to it, but treat
it as any other Uncorrectable error when it is accessed, meaning ERR<n>STATUS.PN is set to 0b0.

245 Security and Virtualization
2451 Confidential data
leLoro In a system with FEAT_RME:

In normal operation, when a Security state cannot access data because that data is from a different
Security state, that data is confidential data. For example:

. Non-secure state cannot access data from any other Security state. When executing in
Non-secure state, data from all other Security states is confidential.

When accessed from a PE executing in:

. Realm state, data from Secure and Root states is confidential.
. Secure state, data from Realm and Root states is confidential.
. Root state, there is no confidential data.

Confidential data comprises all of:

. Confidential data in memory locations, including locations that the Granule Protection Table
(GPT) prohibits access to.
. Confidential data in registers: SIMD&FP, SVE, SME, System, Special-purpose, and

general-purpose registers.

All the following are considered to be always non-confidential data:

. Addresses at which errors are detected, captured in ERR<n>ADDR registers.
Note
There are exceptions in the case of error injection. See The Common Fault Injection Model
Extension.
. Identities of FRUs, captured in ERR<n>STATUS and/or ERR<n>MISC<m> registers.
. Information about the severity of an error, such as:

— Error record status information captured in ERR<n>STATUS registers.

— Error counters.
. Information used to ascertain the priorities of an error node, identification, and affinity.
Ixeryw In a system without FEAT _RME:

Which data is categorized as confidential data is implementation-specific and depends on how the
information encoded in the data relates to the threat model for the system.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-39
Aa Non-Confidential

RAS System Architecture
2.4 Standard error record

IrLcor

Rsxkng

IP\\ XNT

Rppots

Ivkzng

I]'\IR/I)

RSI\YII\\

RvGsma

ItroNp

IHI0100
Aa

Example 2-5 Categorizing confidential data

Data from Secure state might be called Secure data. Non-secure state cannot access Secure data, therefore when
executing in Non-secure state, Secure data is categorized as confidential data.
Confidential data comprises all of:

. Confidential data in memory locations.
. Confidential data in registers: SIMD&FP, SVE, SME, System, Special-purpose, and general-purpose
registers.

The highest Security state is:

. Root state if FEAT RME is implemented.
. Secure state otherwise.

Error detection and correction for accesses to memory assigned to the:
. Secure physical address space, cannot be disabled by either:
— Controls accessible in the Non-secure or Realm physical address spaces.
— A PE executing in Non-secure or Realm state.
. Realm physical address space, cannot be disabled by either:
— Controls accessible in the Non-secure or Secure physical address spaces.
— A PE executing in Non-secure or Secure state.
. Root physical address space, cannot be disabled by any of:
— Controls accessible in the Non-secure, Secure, or Realm physical address spaces.
— A PE executing in Non-secure, Secure, or Realm state.

Arm strongly recommends that all the following apply:

. Error detection and correction for accesses to shared resources, and for memory that can be assigned to any
physical address space, cannot be disabled by controls accessible to all Security states.

. Any configuration that can control error detection and correction is writable in the highest Security state only, or
firmware can block write access to the configuration by using a control that is writable in the highest Security
state only.

In a system with FEAT RME, error signaling and recording controls for error records that might contain confidential
data are accessible to a PE executing in Root state only.

In a system without FEAT RME, Arm recommends that error signaling and recording controls for error records that
might contain confidential data are accessible to a PE executing in Secure state only.

Memory contents that are encrypted without freshness are considered as confidential as their corresponding plaintext.

Scrubbers and DM As must report faults or errors back to an agent that can attribute the error back to the owner.

2.4.5.2 Security of error records

For memory-mapped components, accesses to error records from:

. Non-secure state do not expose Secure, Realm, or Root data.
. Secure state do not expose Realm or Root data.
. Realm state do not expose Secure or Root data.

This might be guaranteed by the implementation, or by software executing at the highest Security state, or both.

To achieve Rygsma, @ number of implementation options are possible, for example:

. Error records contain always non-confidential data only.

. The Security state accessing the error record defines the data that the error record exposes. For example, for an
access from Secure state:

— Data from Realm and Root states is confidential. The error record cannot expose this.
— Data from Secure and Non-secure states is non-confidential. The error record can expose this.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-40
Non-Confidential

RAS System Architecture
2.4 Standard error record

[FcRRD

Dvkivy

ImTYGN

RFTLLR

SnxxBP

Rozwvx

RysvLc

SHSDRT

Rosryn

IkrNnck

IHI0100
Aa

. Error records that might contain confidential data are accessible to the highest Security state only:

— For memory-mapped components, they are accessible in the physical address space corresponding to the
highest Security state only.

— If a PE implements System register access to error records, software can use PE Trap exception controls
to ensure that error records that might contain confidential data are accessible to the highest Security state
only.

. FEAT RASSA_ACR might be implemented.

If a memory-mapped component processes Non-confidential data only, it is IMPLEMENTATION DEFINED whether:

. Error records are accessible to all Security states.
. Error records are accessible to the highest Security state only.
. The ERRACR register is implemented.

For each Security state, it can be configurable whether error records are accessible.
Arm strongly recommends against making all error records accessible to the highest Security state only.

See also:

. Confidential data.
FEAT RASSA_ ACR is an oPTIONAL Error record group feature from FEAT RASSAvipl.

When FEAT RASSA_ ACR is implemented, a trusted agent is able to restrict control over error detection, correction,
and signaling for data owned by a Security state to at least the owner of the data or the trusted agent, and prevent
untrusted agents from being able to modify error records that might be used by trusted agents.

When FEAT RASSA_ACR is implemented by an Error record group, the group includes the Access Control Register,
ERRACR.

FEAT RASSA ACR is identified to software by ERRACR.IMPL.

When FEAT RASSA ACR is implemented and FEAT RME is not implemented, all of the following apply:

. Each Error record group has views in the Secure and Non-secure physical address spaces (PASs).
. The Secure PAS view includes ERRACR.

. ERRACR controls Non-secure access to the error records.

. ERRACR is RAZ/WI in the Non-secure PAS view.

When FEAT RASSA_ACR is implemented and FEAT RME is implemented, all of the following apply:

. Each Error record group has views in the Root, Secure, Realm, and Non-secure physical address spaces (PASs).
. The Root PAS view includes ERRACR.
. ERRACR controls Secure, Realm, and Non-secure access to the error records.

It is IMPLEMENTATION DEFINED whether ERRACR includes one control that applies to all PASs other than Root, or
one control per other PAS.

. ERRACR is RAZ/WI in the Secure, Realm, and Non-secure PAS views.

Providing controls per PAS allows system firmware that trusts Secure state software to handle RAS configuration, but
not Realm or Non-secure states.

The access control levels provided for a PAS in ERRACR are:

. Access is disabled. All registers are RAZ/WI.

. Read-only access is enabled. All error record and interrupt configuration registers ignore writes. The effect on
accesses to IMPLEMENTATION DEFINED registers iS IMPLEMENTATION DEFINED.

. Read/write access is enabled.

Access to error records from reset is IMPLEMENTATION DEFINED, and depends on the security policy of the component
implementing this register.

The read-only access level applies to all error record registers (ERR<n>*, including, if implemented, the fault injection
registers ERR<n>PFG*), and interrupt configuration registers (ERR<irg>CR<m> and, if implemented, ERRIRQSR) in
the Error record group.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-41
Non-Confidential

RAS System Architecture
2.4 Standard error record

Rvkipy

[xBPWR

Ircppx

[LrcBW

Rzpsks

RNyGDN

246

Rvkyvs

Rvycry

RNI 1ZBG

IHI0100
Aa

When FEAT RASSA_ACR is implemented and ERRACR allows Non-secure or Realm writes to an ERR<irqg>CR<m>
register, ERR<irqg>CR2.NSMSI is ignored and writes for that message signaled interrupt are always to the Non-secure
PAS.

ERRACR is intended for use by system firmware. An implementation might include IMPLEMENTATION DEFINED
equivalent controls in a different location, for example, outside of the Error record group page.

An implementation might extend the ERRACR to control other aspects of the Error record group.

For example, by default the access PAS also determines what confidential information is visible in other views, when
FEAT RME is implemented. However, an implementation might include confidential information observability
controls for different PAS accesses.

For example, fine-grained write access controls might be defined for the ERR<n>CTLR and ERR<irq>CR<m>
registers:

. Per-interrupt write access controls for control fields relating to each of the FHI, ERI, and CRI interrupts.
. Write access control for the in-band error response control, ERR<n>CTLR.UE.
. Write access control for the error detection enable control, ERR<n>CTLR.ED.

Common Fault Injection Model Extension registers can be placed in a separate fault injection group page, with
ERR<n>PFGCTL for node # located at 0x000+64 xn.

2.4.5.3 IMPLEMENTATION DEFINED fault or error injection models
If FEAT_RME is implemented:

. IMPLEMENTATION DEFINED error injection mechanisms must not corrupt any data.

. IMPLEMENTATION DEFINED error injection models that support signaling an error on a PE accessing a specific
physical address must not be implemented when all the following are true:

— The address can be set by PEs not in Root state.
— The error injection controls are accessible to PEs not in Root state.

If FEAT RME is not implemented, Arm recommends:

. IMPLEMENTATION DEFINED error injection mechanisms do not corrupt any data.

. Not to allow all of the following if the error injection models that support signaling an error on a PE accessing a
specific physical address:

— The address can be set by PEs not in Secure state.
— The error injection controls are accessible to PEs not in Secure state.

Synchronization and error record accesses

When a component reports an error to a node, the node updates the Error record registers and might generate one or more
of the following:

. A Fault handling interrupt.
. An Error recovery interrupt.
. A Critical Error interrupt.

. An In-band error response.

Each of these might generate an exception at a PE.

If the PE reads the Error record registers at the node, after taking an exception generated by such a signal from a node,
then the read returns the updated values. This applies for both:

. Error records accessed through memory-mapped registers, only if the memory-mapped registers are mapped as a
Device type that does not permit read speculation.

. Error records accessed through System registers, only if either the exception is a Context synchronization event
or a Context synchronization event occurs in program order after taking the exception and before reading the
System registers

When a component reports an error to node, the node updates the Error record registers in finite time, and the update is
globally observed for all observers in the system in finite time.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-42
Non-Confidential

RAS System Architecture
2.4 Standard error record

247

Riwack

Irkkvy

RzxBsx

Iyomvs

Iytxwa

2438

Issoxp

IBywqo

IHI0100
Aa

Bridges to other architectures

A bridge is a component that passes transactions between two domains. For example, a bridge between an SoC domain
and a Peripheral Component Interconnect Express (PCle) domain.

As described in Error propagation, a high-level transaction might consist of a sequence of operations passed between the
domains by the bridge. For the purposes of this manual, the most basic form of a unidirectional transfer between a
producer and consumer is considered as a transaction. That is, each one of the sequence of operations is a transaction.

Other standards might define mechanisms for RAS error recording and handling in particular domains.

In the case of PCle, the PCle domain might implement one or more of:

. Simple error recording. Errors are recorded in the PCle device status register.

. PCle advanced error reporting (AER). Errors are recorded in the AER logs.

. Vendor-specific error recording. Errors are recorded in Designated-Vendor-Specific Extended Capability
(DVSEC) logs.

In each case, errors detected in the PCle domain are recorded in the PCle domain and not in the SoC domain.

For the purposes of tracking the origins of a detected error or a deferred error that has propagated between domains, it
may be useful to record when a transaction propagates a detected error or a deferred error to a different domain.

Arm recommends that a bridge between domains, where the domains implement different error recording mechanisms,
uses a node to record when a transaction that is signaled as propagating either a detected error or a deferred error crosses
between the domains, recording the source and direction of the transaction in the IMPLEMENTATION DEFINED syndrome for
the Error record. The direction is either inbound or outbound.

Software faults

Examples of software faults include:

. Access to memory or peripheral register that is not present. This includes cases where physical address spaces
are physically aliased.

. Access to a peripheral that is not permitted at the completer. For example, a Non-secure access to a Secure
register.

. Access to a peripheral that is in an inaccessible state or other illegal access. For example, the peripheral is

powered down, or the value written is not supported.

Software fault handling is outside the scope of the RAS System Architecture. Arm makes the following
recommendations for accesses that constitute a software fault:

. Accesses to a memory location that is not present can return an In-band error response when all of the following
are true:

— The location is not present due to a configuration of the physical address map that is either static or
controlled by trusted software. For example, a configuration choice made by the designer, set during
initial system configuration, or reconfigured by trusted software.

It is not because a peripheral has been unexpectedly removed or the address map has been otherwise
reconfigured. For example, when a user unplugs a peripheral, or using software controls intended to be
available to untrusted software. The split between trusted and untrusted is implementation-specific, but,
for example untrusted would typically include unprivileged software and, in systems that supports
virtualization, guest operating systems. Untrusted might or might not include Non-secure hypervisors.

— Within the aligned page that contains the not-present location, all other locations are also not present and
have the same behavior. The size of this page is the largest supported translation granule size of all PEs in
the system.

That is, there is never any legitimate reason for software to access the page containing the location, and trusted

software should set up the translation tables to prevent accesses from occurring.

. Where another standard defines a rule or sets a convention, that should be followed. For example:

— For a PCle device, certain illegal accesses are RAO/WI or can have their behavior configured by
software.

— The Arm architecture requires that reserved accesses to a component behave as RAZ/WI. This includes
reads and writes of unallocated or unimplemented registers and writes to read-only registers.

— The Arm architecture requires that under certain conditions accesses to certain debug registers return an
eITor response.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-43
Non-Confidential

RAS System Architecture
2.4 Standard error record

Inx

For other cases, the access should do one of the following:

. Return zeros to the requester for a read and ignore writes. This is the recommended behavior for reads and writes
of unallocated or unimplemented registers, reads of write-only registers, and writes of read-only registers.

. Return all-ones to the requester for a read and ignore writes.

. Return an IMPLEMENTATION DEFINED value to the requester for a read and ignore writes.

In some implementations, this is done by the completer of the access.

In other implementations, this might be done by a bridge wrapper for a component or components that do not natively
support recording a software fault. The wrapper detects and suppresses an In-band error response from the completer
and responds to the requester appropriately. Such a wrapper might be configurable and might also record the software
fault, as described by Inxcpr.

If the system does not support any means to record the software fault, then an In-band error response should not be
returned to the requester.

The system might implement a RAS System Architecture node or nodes and Error records to record software faults, for

CDR
improved debuggability of the faults.
When a node and Error records for recording software faults is implemented, software faults can be recorded as an error,
and reported with an In-band error response and/or a Fault handling interrupt, referred to as a software fault interrupt.
Arm recommends that this is configurable through ERR<n>CTLR, allowing software to disable the feature. For
example, if an Error exception might cause an unrecoverable software state.
When the feature is disabled, accesses should behave as recommended above.
The following ERR<n>STATUS.SERR values can be used to record software faults.
SERR Description
0x0D Illegal address (software fault). For example, access to unpopulated memory.
0x0E Illegal access (software fault). For example, byte write to word register.
0x0F Illegal state (software fault). For example, device not ready.
0x19 Error recorded by PCle error logs. Indicates that the node has recorded an error in a PClIe error log. This might be the PCle
device status register, AER, DVSEC, or other mechanisms defined by PCle.
249 Other sources of error and warnings
Inwxos Other sources of error and warning are possible in a system. Within the RAS System Architecture, these are signaled to a
PE using an Error recovery interrupt or Fault handling interrupt.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-44

Aa

Non-Confidential

RAS System Architecture

2.5 RAS interrupts

25 RAS interrupts

2.51 Overview

IgHBCB

loToBs

Rvkiwp

Rwmaqzp

RprkpL

Rsvwpz

RmsyyrL

RvHsry

RziroN

RkTvHF

Rxma

Ryppws

IHI0100
Aa

Error recovery, Fault handling, and Critical Error interrupt requests are normally routed to a PE using an interrupt
controller.

For an Arm Generic Interrupt Controller (GIC), if the Error records of the node that generates the interrupt requests are
only accessible via the System registers of one or more PEs, Arm strongly recommends that the interrupt is a Private
Peripheral Interrupt (PPI) targeting that PE or one of those PEs.

It is IMPLEMENTATION DEFINED whether each Error record has independent interrupt request signals for Error recovery,
Fault handling, and Critical Error interrupt requests, or whether it shares any of these interrupt requests with other Error
records and/or other nodes.

It is IMPLEMENTATION DEFINED whether interrupt requests are edge-triggered or level-sensitive.

It is IMPLEMENTATION DEFINED whether interrupt requests are implemented as a direct connection (wire) to an interrupt
controller or controllers, as an Message Signaled Interrupt (MSI), or both.

The Fault handling condition for an Error record <n> is true if and only if any of the following apply:
. Fault handling interrupts on all Uncorrected errors are enabled, ERR<n>STATUS.V is 0b1, and
ERR<n>STATUS.UE is 0b1.

. Fault handling interrupts on all Deferred errors are enabled, ERR<n>STATUS.V is 0b1, and
ERR<n>STATUS.DE is 0b1.

. Fault handling interrupts on Corrected errors are enabled and either:
— The Error record implements a Corrected error counter, ERR<n>STATUS.V is 0b1, and any of the
following apply:
— The counter overflow flag is 0b1, and either FEAT RASSA CED is not implemented or
ERR<n>CTLR.CED is 0b0.

— FEAT RASSA CED is implemented, ERR<n>CTLR.CED is 0b1, and ERR<n>STATUS.CE is
nonzero.

— The Error record does not implement a Corrected error counter, ERR<n>STATUS.V is 0b1, and
ERR<n>STATUS.CE is nonzero.

If the Fault handling interrupt is level-sensitive and the Fault handling condition is true for an Error record <n>, then the
node asserts the interrupt request.

The Error recovery condition for an Error record <n> is true if and only if any of the following apply:

. Error recovery interrupts on Uncorrected errors are enabled, ERR<n>STATUS.V is 0b1, and
ERR<n>STATUS.UE is 0b1.

. Error recovery interrupts on Deferred errors are enabled, ERR<n>STATUS.V is 0b1, and ERR<n>STATUS.DE
is Ob1.

If the Error recovery interrupt is level-sensitive and the Error recovery condition is true for an Error record <n>, then the
node asserts the interrupt request.

The Critical Error condition for an Error record <n> is true if and only if Critical Error interrupts are enabled,
ERR<n>STATUS.V is 0b1, and ERR<n>STATUS.CI is 0b1.

If the Critical Error interrupt is level-sensitive and the Critical Error condition is true for an Error record <n>, then the
node asserts the interrupt request.

If the Fault handling interrupt is edge-triggered, then the interrupt request is generated by the node for an Error record
when any of the following occur:

. Fault handling interrupts on all Deferred errors and Uncorrected errors are enabled, and an error is recorded in
the Error record as either Deferred error or Uncorrected error.
. Fault handling interrupts on Corrected errors are enabled and a Corrected error event occurs for the Error record.
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-45

Non-Confidential

RAS System Architecture

2.5 RAS interrupts

Rrrwak

RFrLpkB

IMyKYF

RxwwmLB

DywrHK

DprGrz

Skmmsp

RGzowv

RrzpwL

IHI0100
Aa

If the Error recovery interrupt is edge-triggered, then the interrupt request is generated by the node for an Error record
when any of the following occur:

. Error recovery interrupts on Uncorrected errors are enabled, and an error is recorded in the Error record as
Uncorrected error.

. Error recovery interrupts on Deferred errors are enabled, and an error is recorded in the Error record as Deferred
erTor.

If the Critical Error interrupt is edge-triggered, then the interrupt request is generated by the node for an Error record <n>
when Critical Error interrupts are enabled, and the node records an error setting ERR<n>STATUS.CI to 0b1.

The Critical Error interrupt request is generated even if ERR<n>STATUS.CI was already 0b1.

An enabled edge-triggered interrupt request is generated even if the error syndrome is discarded because the Error record
already records a higher priority error.

It is IMPLEMENTATION DEFINED whether an edge-triggered interrupt request is generated by a write to a register that
enables an interrupt or otherwise creates the conditions for the interrupt request in the other syndrome registers, as
defined for a level-sensitive interrupt request.

FEAT RASSA IRQCR_SIMPLE is an opTIONAL Error record group feature from FEAT RASSAvI.
FEAT RASSA IRQCR_MSI is an oPTIONAL Error record group feature from FEAT RASSAv1.

FEAT RASSA_IRQCR_SIMPLE and FEAT RASSA IRQCR_MSI are identified to software by ERRDEVID.IRQCR
from FEAT RASSAv2.

The following are identified to software by ERRDEVID.IRQCR:
. Whether interrupt control registers are implemented.

. If interrupt control registers are implemented, whether the registers use the recommended format or are
IMPLEMENTATION DEFINED.

. If the interrupt control registers use the recommended format, which of the following controls are implemented:
— Simple interrupt controls, FEAT RASSA IRQCR _SIMPLE.
— Message-signaled interrupt controls, FEAT RASSA IRQCR_MSI.

The standard Error record reserves a set of register locations for configuring Message Signaled Interrupts (MSIs),
ERRIRQCR<n>. Two recommended layouts for these registers are described by FEAT RASSA IRQCR_SIMPLE and
FEAT RASSA IRQCR_MSI, as follows:

. IfFEAT RASSA IRQCR_SIMPLE is implemented, an interrupt enable control for each of the Error recovery,
Fault handling, and Critical Error interrupt requests is implemented. These are ERRERICR2.IRQEN,
ERRFRICR2.IRQEN, and ERRCRICR2.IRQEN respectively. The reset value for these controls is
IMPLEMENTATION DEFINED.

. If FEAT_RASSA_IRQCR_MSI is implemented, the Interrupt Status Register, ERRIRQSR, is implemented, and
for each of the Error recovery, Fault handling, and Critical Error interrupt requests, three configuration registers
are implemented:

— Interrupt Configuration Register 0 holds the address to which the node writes to request the interrupt.
These are ERRERICRO, ERRFHICRO, and ERRCRICRO respectively.

— Interrupt Configuration Register 1 holds the 32-bit data value that the node writes to the address. These
are ERRERICR1, ERRFHICR1, and ERRCRICRI respectively.

— Interrupt Configuration Register 2 configures all the following:
— Whether the message signaled interrupt is enabled or disabled.
— The Shareability domain and memory type attributes for the address.

— The physical address space for the address. This is either the Non-secure physical address space
or the Secure physical address space.

These controls and attributes are optional. These registers are ERRERICR2, ERRFHICR2, and
ERRCRICR2 respectively.

If the recommended layouts are not used, then the ERRIRQCR<n> registers are IMPLEMENTATION DEFINED.

When an error is recorded, or an interrupt becomes enabled, the state of the interrupt requests is updated in finite time.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-46
Non-Confidential

RAS System Architecture

2.5 RAS interrupts

25.2 Fault handling interrupt

IpzTCo

Drsxmy
DzTrrN

Dpuias

Rnowkr
Raorene
DwxmB
Rrsprz

RzvpHD

Ruscro

Rjysksw

Rowrks

RpsxnL

RmrLink

RwrNLG

IxrFwmB

IHI0100
Aa

If a Fault handling interrupt is implemented by a node, then the set of controls for enabling Fault handling interrupts is
IMPLEMENTATION DEFINED. Software uses ERR<n>FR to determine what controls are implemented.

For a node <n>, ERR<n>CTLR.FI is the oPTIONAL control for generating the Fault handling interrupt.
FEAT RASSA DFlI is an orTIONAL node feature from FEAT RASSAvipl.

For a node <n>, ERR<n>CTLR.DFI is the oPTIONAL control for generating the Fault handling interrupt on Deferred
erTors.

For anode <n>, if FEAT RASSA DFI is implemented, then the ERR<n>CTLR.DFI control is implemented.

For anode <n>, if FEAT RASSA_DFI is implemented, then the ERR<n>CTLR.FI control is implemented.
ERR<n>CTLR.CFI is the oPTIONAL control for generating the Fault handling interrupt on Corrected error events.

For a node <n>, if the ERR<n>CTLR.CFI control is implemented, then the ERR<n>CTLR.FI control is implemented.

For a node <n>, if the ERR<n>CTLR.FI control is implemented, then the Fault handling interrupt is enabled for
Uncorrected errors when ERR<n>CTLR.FI is 0b1, and disabled for Uncorrected errors when ERR<n>CTLR.FI is 0b0.

For a node <n>, if FEAT RASSA_ DFI is implemented, then the Fault handling interrupt is enabled for Deferred errors
when ERR<n>CTLR.DFT is not equal to ERR<n>CTLR.FI, and disabled for Deferred errors when ERR<n>CTLR.DFI
is equal to ERR<n>CTLR.FIL.

For a node <n>, if the ERR<n>CTLR.FI control is implemented and FEAT RASSA DFI is not implemented, then the
Fault handling interrupt is enabled for Deferred errors when ERR<n>CTLR.FI is 0b1, and disabled for Deferred errors
when ERR<n>CTLR.FI is 0b0.

For a node <n>, if the ERR<n>CTLR.CFI control is implemented, then the Fault handling interrupt is enabled for
Corrected error events when ERR<n>CTLR.CFI is 0b1 and disabled for Corrected error events when
ERR<n>CTLR.CFI is 0b0.

For a node <n>, if the ERR<n>FR.CFI control is not implemented, then the Fault handling interrupt is enabled for
Corrected error events when the Fault handling interrupt for Deferred errors is enabled, and disabled otherwise.

For a node <n>, if the ERR<n>CTLR_.FI control is not implemented, then the Fault handling interrupt is always enabled
for all Corrected error events, Deferred errors and Uncorrected errors.

For a node <n>, if a Fault handling interrupt is not implemented, then the ERR<n>CTLR.{CFL,DFLFI} controls are not
implemented.

When a node implements separate ERR<n>CTLR.{CFL,DFL,FI} controls, the node generates Fault handling interrupts
as follows:

Table 2-5 Fault handling interrupt generation when FEAT_RASSA_DFl is implemented

ERR<n>CTLR Fault handling interrupt generated by:
CFI DFI Fl CE Event DE UE
0b0 0b0 0b0 No No No
0b0 0b0 0b1l No Yes Yes
0b0 Obl 0b0 No Yes No
0b0 Obl Obl No No Yes
Obl 0b0 0b0 Yes No No
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-47

Non-Confidential

RAS System Architecture

2.5 RAS interrupts

Dnpsny

[wBBGW

SFHBIT

Reprr

Regzvp

RyjuNt

RyzpHm

Rpowvyn

ERR<n>CTLR Fault handling interrupt generated by:
CFI DFI Fl ‘ CE Event DE UE
0b1l 0b0 Ob1l ‘ Yes Yes Yes
0b1l Obl 0b0 ‘ Yes Yes No
0bl Obl 0bl ‘ Yes No Yes

FEAT RASSA_CED is an opTIONAL node feature from FEAT RASSAvlpl.

FEAT RASSA_CED allows software to switch to a mode where each corrected error generates a fault handling
interrupt, without having to reset the error counter after each interrupt.

FEAT RASSA_CED is identified to software by ERR<n>FR.CED.

When FEAT RASSA_CED is implemented by a node, each error record <n> owned by the node that includes an error
counter includes the corrected error event from error counter disable control, ERR<n>CTLR.CED.

If the node implements a Corrected error counter, and either FEAT RASSA CED is not implemented or

ERR<n>CTLR.CED is 0b0, then all of the following are true:

. A Corrected error event occurs when a counter overflows and sets a counter overflow flag to 0b1.

. It is UNPREDICTABLE whether a Corrected error event occurs when a software write sets the counter overflow flag
to Ob1.

. It is UNPREDICTABLE whether a Corrected error event occurs when a counter overflows and the overflow flag was
previously set to 0b1.

Otherwise, a Corrected error event occurs when the node records an error as Corrected error.

IfFEAT RASSA DFI is implemented and an error counter or counters are implemented, then the error counter counts
Deferred errors and Corrected errors. It is IMPLEMENTATION DEFINED whether the counter counts Uncorrected errors.
This means that a Deferred error might also cause a Corrected error event and, if the ERR<n>CTLR.CFI control is
implemented, might generate a fault handling interrupt when fault handling interrupt for Deferred errors is Disabled
because fault handling interrupt for Corrected error events is enabled.

For each implemented control, it is IMPLEMENTATION DEFINED whether there is a single control or separate controls for
reads and writes.

The Fault handling interrupt is generated when the node records an error, even if the error syndrome is discarded because
the Error record already records a higher priority error.

253 Error recovery interrupt

[1xHyH

RyyrnD

Rxcriv

RkrpEZ

Rosyrk

Rcevis

IHI0100
Aa

If an Error recovery interrupt is implemented by a node, then the set of controls for enabling Error recovery interrupts is
IMPLEMENTATION DEFINED. Software uses ERR<n>FR to determine what controls are implemented.

For a node <n>, if an Error recovery interrupt is implemented, then a control for enabling the Error recovery interrupt on
Deferred errors, ERR<n>CTLR.DUI, might be implemented.

For a node <n>, if the ERR<n>CTLR.DUI control is implemented, then the Error recovery interrupt is enabled for
Deferred errors when ERR<n>CTLR.DUI is 0b1, and disabled for Deferred errors when ERR<n>CTLR.DUI is 0b0.

For a node <n>, if the ERR<n>CTLR.DUI control is not implemented, then the Error recovery interrupt is always
disabled for Deferred errors.

For a node <n>, if an Error recovery interrupt is implemented, then a control for enabling the Error recovery interrupt on
Uncorrected errors, ERR<n>CTLR.UI, might be implemented.

For a node <n>, if the ERR<n>CTLR.UI control is implemented, then the Error recovery interrupt is enabled for
Uncorrected errors when ERR<n>CTLR.UI is 0b1 and disabled for Uncorrected errors when ERR<n>CTLR.UI is 0b0.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-48
Non-Confidential

RAS System Architecture

2.5 RAS interrupts

Rz xwq

Rprvmz

yywe

Rxwhzr

Rrmrix

For a node <n>, if the ERR<n>CTLR.UI control is not implemented, then the Error recovery interrupt is always enabled
for Uncorrected errors.

For a node <n>, if an Error recovery interrupt is not implemented, then the ERR<n>CTLR.{DULUI} controls are not
implemented.

For a node <n>, if an error can both signal an in-band error response and be recorded as a Deferred error, and the
ERR<n>CTLR.UI control is implemented, then it is recommended that the ERR<n>CTLR.DUI control is also
implemented.

For each implemented control, it is further IMPLEMENTATION DEFINED Whether there is a single control or separate controls
for reads and writes.

The Error recovery interrupt is generated when the node records an error, even if the error syndrome is discarded because
the Error record already records a higher priority error.

254 Critical error interrupt

Romnims

Rrwnps

IwPpESE

Ryqrpr

Rrzvmx

Rysvrw

Rymacoa

IeNDZW

IvsksB

IHI0100
Aa

Support for critical error conditions and Critical Error interrupts at a node is IMPLEMENTATION DEFINED. Software uses
ERR<n>FR to determine what support is implemented.

Critical Error interrupts provide a mechanism for a node to report a critical error condition to a system controller for error
recovery.

An example of a critical error is one where the node has entered a service failure mode which means that the primary
error recovery mechanisms cannot be used.

Example 2-6 Example of a critical error

A memory controller enters a failure mode and stops servicing memory requests from application processors, and
application processors host the primary error recovery software. The error is signaled to a secondary error controller
that has its own private resources in order to log the error.

For a node <n>, if the Critical Error interrupt is implemented, then the Error recovery interrupt is implemented.

For a node <n>, if the Critical Error interrupt is implemented, then the Critical Error interrupt is enabled when
ERR<n>CTLR.CI is 0b1 and disabled when ERR<n>CTLR.CI is 0b0.

For a node <n>, if the Critical Error interrupt is implemented, then when a critical error condition is recorded the node
sets ERR<n>STATUS.CI to 0b1, regardless of whether the Critical Error interrupt is enabled or disabled.

ERR<n>STATUS.Cl is set to 0b1 in addition to the other syndrome information for the error, which is handled in the
normal way.

For a node <n>, if the Critical Error interrupt is implemented and disabled, then when a critical error condition is
detected, the node records the critical error as an Uncontainable error.

Classifying the critical error condition as an Uncontainable error if the Critical Error interrupt is disabled has the effect of
causing the node to generate an Error recovery interrupt.

For a node <n>, if the Critical Error interrupt is implemented and enabled, then it is IMPLEMENTATION DEFINED how the
error is classified at the node.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-49
Non-Confidential

RAS System Architecture
2.6 In-band error response signaling

2.6

Rornmu

RpprMmc

Rxpxwp

Rpmrey

RnkmpL

Rjryxp

IHI0100
Aa

In-band error response signaling

For a node <n>, if support for In-band error response signaling, also referred to as External aborts, is implemented by the
node, then the control for enabling In-band error response signaling, ERR<n>CTLR.UE, might be implemented.
Software uses ERR<n>FR to determine what controls are implemented.

For a node <n>, if the ERR<n>CTLR.UE control is implemented, then In-band error response signaling is enabled when
ERR<n>CTLR.UE is 0b1, and In-band error response signaling is disabled when ERR<n>CTLR.UE is 0b0.

For a node <n>, if the ERR<n>CTLR.UE control is not implemented and support for In-band error response signaling is
implemented, then In-band error response signaling is always enabled.

For a node <n>, if support for In-band error response signaling is not implemented, then the ERR<n>CTLR.UE control
is not implemented.

For the ERR<n>CTLR.UE control, it is further IMPLEMENTATION DEFINED whether there is a single control or separate
ERR<n>CTLR.{RUE, WUE} controls for reads and writes.

When the node signals an In-band error response, it sets ERR<n>STATUS.ER to 0b1.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-50
Non-Confidential

RAS System Architecture

2.7 Error record reset

2.7 Error record reset

IrQDBT

Rivpps

Rpkkyc

Rwxrxp

Rpxsrs
Rppywx
RzLzpR

IwrcoQ

RrwzyL

RinsQz

Ivborv

IMBLBG

IHI0100
Aa

A system comprises multiple power and logical domains, each of which might implement one or more reset signals.

The RAS System Architecture defines two classes of reset:
. Cold reset.
. Error Recovery reset.

A Cold reset resets all of the logic in a component, including RAS functionality, to a known initial state.

An Error Recovery reset resets some of the logic in the component to a known state.

However, some state is purposefully unchanged by an Error Recovery reset. Unlike Cold reset, any recorded error
syndrome information is preserved by Error Recovery reset.

All logic of the component that is reset by a Error Recovery reset is also reset by a Cold reset.
How these resets map to other resets iS IMPLEMENTATION DEFINED.
Mechanisms for asserting resets are IMPLEMENTATION DEFINED.

Rz1zpr means it is IMPLEMENTATION DEFINED Whether it is possible to independently assert an Error Recovery reset and a

Cold reset. Arm recommends that Error Recovery reset can be asserted independently of Cold reset, and:

. Cold reset is asserted to a component when it transitions from a powered off state to a powered on state. No state
is preserved from the previous powered off state.

. Error Recovery reset can be asserted at other times, for example when a system fatal error is detected. Error
recovery software executed after reset can recover the recorded error syndrome information.

For example, Error Recovery reset might be implemented by a Warm reset, such as the architectural Warm reset defined

for a PE by the Arm architecture. In such an implementation, when Warm reset is asserted, the error records of the
component are preserved.

For each message-signaled fault handling, error recovery, and critical error interrupt, the implementation must ensure
that assertion of the interrupt is disabled at reset, to prevent a spurious write to a location.

For each fault handling, error recovery, and critical error interrupt that is not message-signaled, it is IMPLEMENTATION
DEFINED whether the assertion of the interrupt is disabled at Cold and/or Error Recovery resets.

Assertion of an interrupt at reset can be disabled by one of the following:

. Implementing the interrupt control registers using a recommended layout, and setting the interrupt enable
controls, ERR<irqg>CR2.IRQEN, to 0b0 at reset. See also Rgzqwv.
. Implementing interrupt control registers using an IMPLEMENTATION DEFINED layout with an equivalent interrupt

enable control that is disabled at reset.
. Defining that each architecturally UNKNOWN reset value for an interrupt enable control in each error record
control register ERR<n>CTLR is 0b0.

Using the interrupt control registers in this way is only possible when the error record registers and interrupt control
registers are reset by the same reset signals.

For many systems, it is recommended that assertion of interrupts is disabled at Cold and Error Recovery resets.
However, for some systems this is not necessary or not recommended. For example:

. The interrupts are simple wired interrupts and will be ignored following a reset until software enables the
interrupt at the interrupt controller. Software can disable the interrupt at the node before enabling the interrupt at
the interrupt controller.

. The system has a requirement that the system must not rely on boot software correctly re-enabling interrupts after
a system reset. For example, where a complete system failure must trigger a fail-safe mode of operation.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-51
Non-Confidential

RAS System Architecture

2.7 Error record reset

271 Error record reset flag

Dcprwa

IRNJWE

Rsmopn

SSKYFI

Rgerer

FEAT RASSA RV is an oPTIONAL node feature from FEAT RASSAvipl.

FEAT RASSA_ RV allow software to determine, during boot, whether an error recorded by the error record occurred
before or after an Error Recovery reset.

When FEAT RASSA_RV is implemented by a node, each Error record <n> owned by the node includes the reset valid
flags, ERR<n>STATUS.{RV, RV2}.

FEAT _RASSA_RV is identified to software for node <n>by ERR<n>FR.RV.

ERR<n>STATUS.{RV, RV2} are R/W1C fields.

2.7.2 Reset values

IpQvrQ

IzTwhHG

Dmcany
SGHQHP

IMkkGG

Rrcpep

IHI0100
Aa

When the node records an error in an Error record, depending on the type of error being recorded, it is IMPLEMENTATION
DEFINED whether some fields are set to a zero or unchanged.

In most cases, for each of these fields, it is IMPLEMENTATION DEFINED which of the following applies:

. The node sets the field to zero on Cold reset, meaning the value is not required to be changed when the first error
is recorded.

. The node sets the field to zero on recording the first error after Cold reset.

To allow for either implementation, software must clear these fields to zero after logging a recorded error and performing
a software reset of the Error record.

For more information, see Accessing ERR<n>STATUS in ERR<n>STATUS.

The reset values of ERR<n>STATUS. {AV,V MV}, ERR<FirstRecordOfNode(n)>CTLR.ED, and
ERR<n>PFGCTL.CDNEN depend on whether FEAT RASSA_ SRV is implemented.

FEAT RASSA SRV is an OPTIONAL node feature from FEAT RASSAvipl.
FEAT RASSA SRV is identified to software for node <n> by ERR<n>FR.SRV.

When FEAT RASSA_SRV is not implemented by a node <n>, all of the following apply:

. ERR<n>STATUS.{AV, V, MV} are set to {0b0, 0b0, 0b0} on a Cold reset and preserved on Error Recovery
reset.

. ERR<FirstRecordOfNode(n)>CTLR.ED is set to an IMPLEMENTATION DEFINED value, 0b0 or 0b1, on a Cold reset
and preserved on Error Recovery reset.

. If the Common Fault Injection Model Extension is implemented, ERR<n>PFGCTL.CDNEN is set to 0b0 on a
Cold reset and preserved by Error Recovery reset.

. When FEAT RASSA RV is implemented, ERR<n>STATUS.{RV, RV2} are set to {0b1, 0b1} on both Cold
reset and Error Recovery reset. (See Rgywir.)

This means that:

. IfFEAT RASSA_ RV is implemented, there are two reset signals for the node.
. Otherwise, there is effectively a single reset signal for the node.

When FEAT RASSA SRV is implemented by a node <n>, all of the following apply:

. ERR<n>STATUS.{AV, V, MV} are set to architecturally UNKNOWN values on a Cold reset and preserved on
Error Recovery reset.

. ERR<FirstRecordOfNode(n)>CTLR.ED is set to 0b0 on both Cold reset and Error Recovery reset.

. If the Common Fault Injection Model Extension is implemented, ERR<n>PFGCTL.CDNEN is set to 0b0 on
both Cold reset and Error Recovery reset.

. When FEAT RASSA RV is implemented, ERR<n>STATUS.{RV, RV2} are set to {0b1, 0b1} on both Cold
reset and Error Recovery reset. (See Rgywar.)

This means there is effectively a single reset signal for the node.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-52
Non-Confidential

RAS System Architecture

2.7 Error record reset

Sl)\'B\ S

IHI0100
Aa

If ERR<n>STATUS.V is reset to an architecturally UNKNOWN value then power-on reset software must initialize
ERR<n>STATUS before enabling error detection and recording by the node. If error detection and recording is enabled
when ERR<n>STATUS.V is still architecturally UNKNOWN, then any detected error might be discarded because of the
error record overwriting rules described in the sections Prioritizing errors, FEAT RASSAv1 and Prioritizing errors,
FEAT RASSAvlpl.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-53
Non-Confidential

RAS System Architecture
2.8 Extensions

2.8 Extensions

2.8.1 The RAS Timestamp Extension

Rewymi The RAS Timestamp Extension is an optional part of FEAT RASSAvIpl.

Ipzvxp The RAS Timestamp Extension provides a standard mechanism for timestamping Error records.

Rrrusp For a given Error record <n>, if the RAS Timestamp Extension is implemented, the timestamp value is recorded in
ERR<n>MISC3.

Skzivi Software uses ERR<n>FR.TS to determine whether the RAS Timestamp Extension is implemented by node <n>.

Rmurso The timestamp value uses either the system Generic Timer counter or an IMPLEMENTATION DEFINED timebase.

SHLDRQ Software uses ERR<n>FR.TS to determine which timebase is used by node <n>.

RxxBrs Other than when IMPLEMENTATION DEFINED conditions apply, the following are true:
. The timebase is encoded as a plain binary number.
. The timebase is monotonically increasing at a fixed rate compared to wallclock time.

Ipqenk The IMPLEMENTATION DEFINED conditions are to allow for the timebase to violate these conditions during initial system
configuration.

2.8.2 The Common Fault Injection Model Extension

Revipn The Common Fault Injection Model Extension is an optional part of FEAT RASSAvlipl.

ITswkx Other forms of error or fault injection are permitted. For example, if the Common Fault Injection Model Extension is not

implemented, the ERRIMPDEF<n> registers might be used for an IMPLEMENTATION DEFINED fault injection mechanism.

RyBsx The Common Fault Injection Model Extension can only be implemented for Error records accessed through a
memory-mapped group of Error records if ERRDEVARCH.REVISION >= 050001.

IprGzw The Common Fault Injection Model Extension fakes the detection of an error at a component.

IcpyrQ A faked error detection results in the node signaling the appropriate ones of the Fault handling interrupt, Error recovery
interrupt, and In-band error response, according to the type of injected error and the control settings of the node.

Rxaxnw If FEATiRME is implemented:

. When all the following are true, it must not be possible to determine which address a PE is accessing from an
address captured in ERR<n>ADDR as a result of error injection:
— The ERR<n>ADDR is accessible to PEs not in Root state.

— The error injection controls are accessible to PEs not in Root state.
If FEAT RME is not implemented, Arm recommends:

. When all the following are true, it must not be possible to determine which address a PE is accessing from an
address captured in ERR<n>ADDR as a result of error injection:
— The ERR<n>ADDR is accessible to PEs not in Secure state.

— The error injection controls are accessible to PEs not in Secure state.

IrrCGL To achieve Rxgxnw, it is permitted for an implementation to, for example:
. Not provide a valid address.
. Not update the ERR<n>ADDR as a result of error injection.

Rryrop The Common Fault Injection Model Extension supports generating a subset of the component error state types supported
by the node.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-54

Aa Non-Confidential

RAS System Architecture

2.8 Extensions

lysqus

Sqvipn

SzBzHW

IzppwWF

IyMwNE

lirnce

I QFYWD

Irqvow

Dyhnzuk

Rvpzsc

Ixpway

RpLzmr

Rporir

Ipvnzx

RpppmH

IHI0100
Aa

Arm recommends that the Common Fault Injection Model Extension supports all the component error state types
supported by the node.

The Common Fault Injection Model Extension is identified to software for node <n>by ERR<n>FR.INJ,

Software uses ERR<n>PFGF to determine the Common Fault Injection Model Extension capabilities for node <n> that
implements the Common Fault Injection Model Extension.

If a node is not capable of recording a component error state type, then it does not support injecting that component error
state type.

The Common Fault Injection Model Extension registers are:
. ERR<n>PFGF.

. ERR<n>PFGCTL.

. ERR<n>PFGCDN.

The Common Fault Injection Model Extension registers are not accessible from AArch32 state. However, when
accessed via ERXFR, AArch32 state can access the ERR<n>FR.INJ field described in this section.

The Common Fault Injection Model Extension registers can be implemented directly, or as a Fault Injection Group. See
Fault injection groups.

Additional constraints might apply if fault injection can affect the operation of Secure and/or Root states.

See also Security and Virtualization.

2.8.2.1 Operation of the Common Fault Injection Model Extension

The behaviors in this section apply for a given node <n> if node <n> implements the Common Fault Injection Model
Extension.

When software writes 0b1 to ERR<n>PFGCTL.CDNEN:
. The internal Error Generation Counter is set to ERR<n>PFGCDN.CDN if all of the following apply:
— Error reporting and logging at the node is enabled.
— ERR<n>PFGCTL.CDNEN was previously 0b0.
— ERR<n>PFGCDN.CDN is nonzero.
— The component is not in the fault injection state.
. Otherwise, all of the following apply:

— It is UNPREDICTABLE whether the Error Generation Counter is unchanged or is set to
ERR<n>PFGCDN.CDN, which might be zero.

— If the component is in the fault injection state, the component might leave the fault injection state.
— If the component is not in the fault injection state, the component might enter the fault injection state.

The current value of the Error Generation Counter is not visible to software.

If error reporting and logging at the node is enabled, then while ERR<n>PFGCTL.CDNEN is 0b1 and the Error
Generation Counter is nonzero, the Error Generation Counter decrements by 1 for each cycle at an IMPLEMENTATION
DEFINED clock rate.

If error reporting and logging at the node is disabled, then while ERR<n>PFGCTL.CDNEN is 0b1 and the Error
Generation Counter is nonzero, it is IMPLEMENTATION DEFINED whether:

. The Error Generation Counter decrements by 1 for each cycle at an IMPLEMENTATION DEFINED clock rate.
. The Error Generation Counter remains unchanged.

The rate at which the component decrements the counter is defined by the component. For example, it might be the
native clock rate for the component, and this might not be the same as the PE clock rate. Software typically discovers
this rate from firmware.

When the Error Generation Counter decrements to or past zero, the component enters a fault injection state.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-55
Non-Confidential

RAS System Architecture

2.8 Extensions

Ryxxwr

Ipnmxx

RyrBLN

RxmzBB

RarxeL

Rrsxmt

Rxrivmm

Icsspm

Rwmpwr

losivz

RGGFsF

IHI0100
Aa

When the component is in the fault injection state, the component does all of the following:

. Fakes detection of the component error state type(s) described by ERR<n>PFGCTL.

. Reports the injected error to the node.

. If error reporting and logging at the node is enabled in ERR<n>CTLR.ED, then the node recorded the injected
e1Tor.

. If error reporting and logging at the node is disabled in ERR<n>CTLR.ED, then it is UNPREDICTABLE whether or

not the node records the injected error.
It is IMPLEMENTATION DEFINED whether this occurs only on the next access to the component in the fault injection state, or
occurs spontaneously in the fault injection state. ERR<n>PFGF.NA describes which.
The component then leaves fault injection state.

For components that support the concept of an access to the component, Arm recommends that Ryxxwr applies on the
next access to the component.

If ERR<n>PFGCTL.CDNEN is cleared to 0b0 when the component is in the fault injection state, it iS UNPREDICTABLE
whether the component leaves the fault injection state or remains in the fault injection state.

When an injected error is recorded, the node signals the appropriate ones of the Fault handling interrupt, Error recovery
interrupt, and In-band error response, according to the type of injected error and the control settings of the node.

When an injected error is recorded, the node writes the ERR<n>STATUS.{V, UE, CE, DE, UET} fields according to the
component error state type described by ERR<n>PFGCTL.

If ERR<n>PFGCTL defines multiple component error state types, or none, then the behavior is UNPREDICTABLE and is
one of the following:

. No error is injected.

. An error is injected with an UNPREDICTABLE choice of component error state.

It is IMPLEMENTATION DEFINED how the node updates the ERR<n>STATUS.{AV, ER, OF, MV, PN, CL, IERR, SERR},
ERR<n>ADDR, and ERR<n>MISC<m> when recording an injected error. ERR<n>PFGF describes the
IMPLEMENTATION DEFINED options and the controls available in ERR<n>PFGCTL.

For many fields, the implementation has the choice to either set the syndrome register or field according to the access
that triggers the injected error, or provide finer-grained control over the field, either by a control bit in ERR<n>PFGCTL
or by not updating the register or field when the injected error is recorded meaning software can write the injected
syndrome to the register or field ahead of injecting the error.

For each of the ERR<n>STATUS.{CI, ER, PN} bits, the behavior is UNPREDICTABLE if all of the following are true:
. ERR<n>PFGF defines that the value injected is controlled by the corresponding ERR<n>PFGCTL bit.
. The corresponding ERR<n>PFGCTL bit is 0b1.

. For the ER and PN bits, the definition of the ERR<n>STATUS field defines that the bit is not valid for the
component error state requested by ERR<n>PFGCTL. For the CI bit, the component error state requested by
ERR<n>PFGCTL is not one of an IMPLEMENTATION DEFINED set of permitted values for critical error conditions.

The UNPREDICTABLE behavior is one of:

. No error is injected.
. An error is injected, but the component error state and syndrome bits do not match the requested error type.
. The error is injected as requested, including setting the invalid bit or bits to the requested values.

This means that:

. It is IMPLEMENTATION DEFINED which component error states the CI value can be injected with.

. The PN value can be injected with an Uncorrected error or Deferred error and cannot be injected with a
Corrected error.

. The ER value can be injected with an Uncorrected error and cannot be injected with a Corrected error.

. It is IMPLEMENTATION DEFINED whether the ER value can be injected with a Deferred error.

If a single node has multiple Error records, then only the first Error record has fault injection registers.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-56
Non-Confidential

RAS System Architecture

2.8 Extensions

RrBYRG If a single node has multiple Error records and any of ERR<n>PFGF.{SYN, AV, MV} for the first Error record of the
node are nonzero, meaning the fault injection mechanism does not update all or some of the ERR<n>MISC<m> or fields
when the injected error is recorded, then the injected fault is recorded in the first Error record. Otherwise, the injected
error might be recorded in any of the multiple Error records.

Note
If a single node has multiple Error records and any of ERR<n>PFGF.{SYN, AV, MV} for the first Error record of the
node are zero then a node might define which Error record is updated or implement an IMPLEMENTATION DEFINED control
to allow this to be specified.

IgpDZZ If the node implements Fault handling interrupt, Error recovery interrupt, and Critical Error interrupt as edge-triggered
interrupts, then recording an injected error has the same behavior as recording a detected error, for generating the
edge-triggered interrupt. That is, the interrupt is generated if the interrupt is enabled for the type of error being injected.

ItvrDH If the node implements Fault handling interrupt, Error recovery interrupt, and Critical Error interrupt as level-sensitive
interrupts, then the level of the interrupt request is a function of the values of the control and status register fields. The
behavior of the interrupt request does not depend on whether the control and status registers were written by the node
when detecting an error, or written by error injection.

Rerraz If the Error Generation Counter is zero and ERR<n>PFGCTL.R is 1, then:

. If ERR<n>PFGCDN.CDN is nonzero, then the internal Error Generation Counter is set to
ERR<n>PFGCDN.CDN.
. If ERR<n>PFGCDN.CDN is zero, the behavior is UNPREDICTABLE and is one of:
— The Error Generation Counter is unchanged.
— The Error Generation Counter is set to zero.
— The Error Generation Counter is set to zero and the component reenters the fault injection state.

2.8.3 Standard format Corrected error counter

IrQLp The RAS System Architecture defines standard formats for a Corrected error counter. Software uses ERR<n>FR to
determine whether any standard format Corrected error counter is implemented by a node.

Rxvyrvs If a standard format Corrected error counter is implemented by a node, then it is IMPLEMENTATION DEFINED whether a
single counter or a pair of counters is implemented by Error records owned by the node.

Rsrrow For an Error record <n>, if a standard format Corrected error counter is implemented by the node and the error record
can record countable errors, then the counter or counters are recorded in ERR<n>MISCO0.

ReypBW It is IMPLEMENTATION DEFINED whether an Error record can record countable errors.

IryBWQ If a pair of standard format Corrected error counters are implemented by a node, then the node provides all of the
following:

. A first (repeat) error counter to count the first error and any subsequent error detected at the same location.
. A second (other) error counter to count errors detected in other locations.

RGyppy If a pair of standard format Corrected error counters are implemented by a node, then an Error record <n> records a

counted-fault location for the error, in one or more of:

. The ERR<n>ADDR register.

. The ERR<n>STATUS.IERR field.

. The ERR<n>STATUS.SERR field.

. The ERR<n>MISC<m> registers.

It is IMPLEMENTATION DEFINED which of these or parts thereof describe the counted-fault location.

Note: These registers might contain additional IMPLEMENTATION DEFINED fault location information that is not considered
part of the counted-fault location.

Rimrcea The counted-fault location recorded in Error record <n> is either valid or invalid.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-57

Aa

Non-Confidential

RAS System Architecture
2.8 Extensions

Rycnnx If the counted-fault location or part of the counted-fault location is held in the ERR<n>ADDR register, then all of the
following apply:
. This part is valid when ERR<n>STATUS.{V, AV} is {0b1, Ob1}.
. It is IMPLEMENTATION DEFINED whether this part of the counted-fault location is treated as valid or invalid when
ERR<n>STATUS.{V, AV} is {0b1, 0b0}.
. This part is invalid when ERR<n>STATUS.V is 0b0.

Rimvkq If the counted-fault location or part of the counted-fault location is held in the ERR<n>STATUS.IERR field, then this
part is valid when ERR<n>STATUS.V is 0b1 and invalid otherwise.

RitexMm If the counted-fault location or part of the counted-fault location is held in the ERR<n>STATUS.SERR field, then this
part is valid when ERR<n>STATUS.V is 0b1 and invalid otherwise.

Rsrykr If the counted-fault location or part of the counted-fault location is held in the ERR<n>MISC<m> registers, then:
. This part is valid when ERR<n>STATUS.{V, MV} is {0b1, 0b1} and IMPLEMENTATION DEFINED parts of the
syndrome data indicate the registers contain a valid counted-fault location.
. It is IMPLEMENTATION DEFINED whether this part of the counted-fault location is treated as valid or invalid when
ERR<n>STATUS.{V, MV} is {0b1, 0b0}.
. This part is invalid when ERR<n>STATUS.V is 0b0.

Ristys If the counted-fault location is held across multiple of these registers, then the counted-fault location is valid only if all
parts are valid and invalid otherwise.

Ioppmp The counted-fault location is always invalid if ERR<n>STATUS.V is 0b0, that is, if no error has been recorded by the
Error record since ERR<n>STATUS.V was last cleared to 0b0.

Igowap The content of IMPLEMENTATION DEFINED syndrome is IMPLEMENTATION DEFINED. This permits, but does not require, for
example, the ERR<n>MISC<m> registers to contain additional valid flags for other parts of the syndrome, or for some
parts of ERR<n>MISC<m> to be valid only for some values of ERR<n>STATUS.{IERR, SERR}.

IwrGprQ For some implementations, ERR<n>ADDR is always written when an error is recorded, meaning the hardware never
sets ERR<n>STATUS.{V, AV} to {0b1, 0b0} when recording an error. Similarly, for some implementations, the
hardware never sets ERR<n>STATUS.{V, MV} to {0b1, 0b0} when recording an error. For these cases, the
implementation might ignore the applicable one or ones of the AV and MV bits when determining whether the
counted-fault location is valid.

Riqzzt If a pair of standard format Corrected error counters are implemented by a node, then when a countable error is recorded
by Error record <n>:

. The first (repeat) error counter counts an error if either of the following are true:
— The counted-fault location recorded in error record <n> is invalid.

— The error being counted is at the same location as the valid counted-fault location recorded in error record

<n>.
. The second (other) counter counts the error otherwise.
IRYGGw When the counted-fault location recorded in error record <n> is invalid, because this typically means that

ERR<n>STATUS.V is 0b0, the node typically overwrites the syndrome, meaning it captures the new counted-fault
location. Otherwise, because ERR<n>STATUS.V is 0b1 the node keeps the syndrome, meaning the counted-fault
location is unchanged.

Rrycry If a standard format Corrected error counter is implemented by a node, then if counting an error causes unsigned
overflow of the Corrected error counter:
. The counter overflow flag is set to 0b1.
. A Corrected error event occurs.

loziry IMPLEMENTATION DEFINED forms of counters, including other sizes, other overflow models, and other miscellaneous

syndrome register locations, might be implemented.

LyTrrw See also:
. Writing the error record.
. Fault handling interrupt.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-58

Aa Non-Confidential

RAS System Architecture
2.9 Accessing RAS registers

Imopmy
Ruqons

R\\ WDBV

DxpBLL

Rpuypc

Rpcxrp

[FzRW

2.91

Dqirwp

RTprwE

SNVRSW

SNBFYF

IHI0100
Aa

Accessing RAS registers

RAS registers summary defines the registers for memory-mapped Error records.
It is IMPLEMENTATION DEFINED which components in the system, if any, implement memory-mapped Error records.

A memory-mapped component might implement several Error records in an Error record group, relating to one or more
nodes.

The RAS System Architecture defines the reusable formats described in this section for memory-mapped Error records.

The Table 3-4 describes a format for a memory-mapped component that implements a single Error record. This might
be implemented as part of the control registers for a memory-mapped component. In this format, the first register,
ERROFR, is at an address aligned to a multiple of 64 bytes.

The Table 3-4 might be repeated in the control registers for a memory-mapped component that implements a small

number of Error records. Each error record has its own IMPLEMENTATION DEFINED base within the control registers of the
component.

The Error records in a memory-mapped component might be accessible only through that component, or might be shared
and accessible through any of:

. System registers by one or more PEs.

. Other memory-mapped components in the same physical address space, including aliases with the same Error
record group.

. Other memory-mapped components in other address spaces. For example, in both Non-secure and Secure
physical address spaces.

Arm recommends that each memory-mapped Error record is accessible at most once in any given physical address
space.

Error record groups

When FEAT RASSAv2 is implemented, each Error record group and, if applicable, its corresponding fault injection
group, implements one of:

. FEAT RASSA 4KB GRP, meaning it supports the 4KB Error record group format. FEAT RASSA 4KB GRP
is permitted from FEAT _RASSAvI.

. FEAT RASSA 16KB_GRP, meaning it supports the 16KB Error record group format.
FEAT RASSA_16KB_GRP is permitted from FEAT RASSAv2.

. FEAT RASSA_64KB_GRP, meaning it supports the 64KB Error record group format
FEAT RASSA 64KB_GRP is permitted from FEAT RASSAv2.

When FEAT RASSAV?2 is not implemented, an Error record group implements FEAT RASSA 4KB GRP.

The Table 3-1 describes an Error record group. The first register, ERROFR, is aligned to a multiple of:
. 4KB, when FEAT RASSA 4KB_ GRP is implemented.

. 16KB, when FEAT RASSA 16KB_GRP is implemented.

. 64KB, when FEAT RASSA 64KB_GRP is implemented.

When FEAT RASSAv2 is implemented, for each Error record group and each fault injection group, implementation of
one of FEAT RASSA 4KB GRP, FEAT RASSA 16KB_GRP, or FEAT RASSA 64KB_GRP is identified to
software by ERRPIDR4.SIZE.

If ERRPIDRA4 is not implemented, software identifies the group format by IMPLEMENTATION DEFINED means.

In an Error record group, the group is described to software by the following registers:

. The following registers provide a unique combination of a part number identifier, revision, and designer of the
group:
— The implementation identification register, ERRIIDR. This register is optional.

— The peripheral identification registers ERRPIDRO, ERRPIDR1, ERRPIDR2, ERRPIDR3, and
ERRPIDRA4. These registers are optional.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-59
Non-Confidential

RAS System Architecture
2.9 Accessing RAS registers

IGrLxs

Arm recommends that at least one of these identification mechanisms is implemented.

. The ERRDEVARCH register defines that the group implements the RAS System Architecture and the version
implemented.
. The optional ERRDEVAFF register describes when the group records errors for components that have an affinity

with a single PE, or a group of PEs in the system.
Each PE has a unique value that identifies it in the system. MPIDR ELI in the PE and ERRDEVAFF in the Error
record group contain this value. ERRDEVAFF might contain a value that matches a group of PEs. Arm
deprecates use of ERRDEVAFF by software.

. ERRDEVID identifies the highest numbered index of the Error records that can be accessed, and what features
are implemented by the Error record group.

The maximum number of Error records that can be accessed depends on which of FEAT RASSA 4KB GRP,
FEAT RASSA 16KB_GRP, or FEAT RASSA 64KB_GRP is implemented. If the Common Fault Injection Model
Extension is implemented and fault injection groups are not implemented, fewer Error records will be accessible.

Common Fault Injection Model
Extension implemented and Fault

Injection Groups not implemented Feature Implemented Number of accessible Error records
No FEAT RASSA 4KB GRP <56

No FEAT RASSA 16KB_GRP <224

No FEAT RASSA 64KB_GRP <896

Yes FEAT RASSA 4KB GRP <24

Yes FEAT RASSA 16KB_GRP <96

Yes FEAT RASSA 64KB_GRP <384

RvyGgwpk In an Error record group, each Error record occupies a set of locations at offsets from an Error record base. This Error

Ryrenk

Reckxaoc

IwLxTv

29.2

ItyyGr
DrquBy

lecoup

IHI0100
Aa

record base is offset from the group base at a multiple of 64 times the index of the Error record.

When FEAT RASSA 4KB_ GRP is implemented, the Error record group includes a group status register, ERRGSR.
When FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_GRP is implemented, the Error record group includes

multiple group status registers, ERRGSR<m>, where ERRGSR<m> defines the group status for error records
[(64xm)..(64xm+63)].

When FEAT RASSAWV2 is not implemented, it is IMPLEMENTATION DEFINED whether the status of each error record <n>
supports being read through the group status register.

When FEAT RASSAv2 is implemented, a group status register bit ERRGSR<n DIV 64>[n MOD 64] is implemented
for each error record <n> in the Error record group.

A read from ERRGSR<m> requires the component to collect all ERR<n>STATUS.V values for Error records
[(64xm)..(64 xm+63)] into a single return value. This allows software to check the status of up to 64 error records in a
single read.

When the component aggregates error records for multiple other components into a single view, this might involve many
accesses into those other components. When multiple ERRGSR<m> registers are implemented, because a read of
ERRGSR<m> only accesses ERR<n>STATUS.V values for error records [(64 xm)..(64 xm+63)], one implementation
choice might be to assign error record indices so as to reduce the number of remote accesses that need to be made.
However, the advantage to software of using ERRGSR<m> scales with the number of status bits returned with each
read. For example, if a single record is mapped to the ERRGSR<m> register, then there is no advantage for software
over reading the ERR<n>STATUS register directly.

Fault injection groups

The Common Fault Injection Model Extension is not supported in the Table 3-4 format.
FEAT RASSA PFG_GRP is an opTIONAL Error record group feature from FEAT RASSAvipl.

FEAT RASSA_PFG_GRP allows for fault injection controls to be separated from error records, so that software with
access to the latter does not necessarily have access to the former.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-60
Non-Confidential

RAS System Architecture
2.9 Accessing RAS registers

RrGwik

SxmpMK

Dxcenyr

SrszqF

Syvexr

IrkNG)

293

DvypprQ

ILYRER

lervmz

[HGIRX

IiTsva

Rpzmup

IHI0100
Aa

When FEAT RASSA PFG_GRP is implemented by an Error record group, the Common Fault Injection Model
Extension registers for any node that is part of an Error record group implementing the Common Fault Injection Model
Extension are accessed through a fault injection group.

FEAT RASSA PFG_GRP is identified to software by ERRDEVID.PFG.

A fault injection group is a component comprising the Common Fault Injection Model Extension registers for a
corresponding Error record group.

A fault injection group is identified to software by ERRDEVARCH.

If the ERRDEVAFF register is implemented, then it has the same value for both the Error record group and the fault
injection group.

IfFEAT RASSA PFG_GRP is not implemented, the Common Fault Injection Model Extension registers might be
implemented directly. See The Common Fault Injection Model Extension.

System RAS Agents

A RAS agent implements an Error record group and provides RAS error control and reporting for other components.
RAS agents can be hierarchical. That is, a first RAS agent reports errors to a second RAS agent. In this case, the first
RAS agent (called the downstream RAS agent) records the error, but signals the second RAS agent (called the upstream
RAS agent) that it has a valid RAS record. This then repeats to create a hierarchy.

The RAS agent at the top of such a tree is called a System RAS agent. The System RAS agent is connected to the
interrupt controller.

RAS agents reduce the cost of finding an active error record to a log(n) search. Each layer indicates the status of up-to 64
lower levels through a single 64-bit ERRGSR<m> status register.

Per-node error detection and interrupt controls (ERR<n>CTLR.{DF]I, CFI, FI, DUI, Ul}) and error records are
implemented by the downstream RAS agent connected to the component that detects the error.

The downstream RAS agent might implement FEAT RASSA_TRQCR_SIMPLE to control signaling error statuses on
the interface to the upstream RAS agent. Any interrupt control registers that control signaling interrupts to the interrupt
controller are implemented by the System RAS agent.

This allows software the same fine-grain control of which nodes generate interrupts, and provides an additional level of
control and merging of interrupt sources at the upstream RAS agent.

The downstream RAS agent might include Common Fault Injection Model Extension registers, as permitted by
FEAT RASvlpl, or might implement a complementary fault injection group.

The downstream RAS agent might include ERRIMPDEF<n> IMPLEMENTATION DEFINED registers, as permitted by
FEAT RASvlpl.

A downstream RAS agent appears in the programmers’ model of the upstream RAS agent as occupying a proxy error
record. For the proxy error record <n> in the upstream RAS agent:

. ERR<n>FR.{ED, ERT} indicates that the record is a proxy for a downstream RAS agent.
. ERR<n>STATUS.{V, ERI, FHI, CRI} are read-only flags which report the downstream RAS agent error record
error status:

— ERR<n>STATUS.V reads as 1 if, for any error record <p> in the downstream RAS agent,
ERR<p>STATUS.V is 1, and ERR<n>STATUS.V reads as 0 otherwise.

— ERR<n>STATUS.ERI reads as 1 if the Error recovery condition is true for any error record <p> in the
downstream RAS agent, and ERR<n>STATUS.ERI reads as 0 otherwise.

— ERR<n>STATUS.FHI reads as 1 if the Fault handling condition is true for any error record <p> in the
downstream RAS agent, and ERR<n>STATUS.FHI reads as 0 otherwise.

— ERR<n>STATUS.CRI reads as 1 if the Critical Error condition is true for any error record <p> in the
downstream RAS agent, and ERR<n>STATUS.CRI reads as 0 otherwise.

Reset of the proxy error record does not affect ERR<n>STATUS.{V, ERI, FHI, CRI}.
. ERR<n>CTLR, ERR<n>ADDR, ERR<n>MISC<m>, and the remaining fields in ERR<n>STATUS are RES0.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-61
Non-Confidential

RAS System Architecture
2.9 Accessing RAS registers

RrBkzK

DriqkB

I}NI’\\(]

Scrrws

294

Dprnk

IHI0100
Aa

For the upstream RAS agent, ERRGSR<n DIV 64>[n MOD 64] is an alias for ERR<n>STATUS.V.

The upstream RAS agent implements FEAT RASSA_ PARENT_GRP.
A RAS agent that does not implement FEAT RASSA PARENT_GRP does not include proxy error records.

When FEAT RASSA PARENT GRP is implemented by a RAS agent, FEAT RASSA ERT is implemented by each
node <n> in the RAS agent, and, if ERR<n>FR.ED is 0b11, then ERR<n>FR.ERT defines the error record type.

Because the downstream RAS agent and upstream RAS agent are separate peripherals in the system, the architecture
does not guarantee the order in which accesses are completed. This includes two accesses from the same PE to
Device-nGnRnE memory, and the indirect writes of a reset.

In addition, the link between the downstream and upstream RAS agents is a separate path from the paths used by a PE to
access the RAS agent registers.

For more information, see Ordering relations in Arm® Architecture Reference Manual, for A-profile architecture.

Example 2-7 Example showing uncertain ordering of downstream RAS agent and upstream RAS agent
accesses

Considering the following sequence:

1. PE A performs a sequence of writes W, consisting of a write to each ERR<n>STATUS register in a
downstream RAS agent B that clears ERR<n>STATUS.V to 0b0.

2. PE A executes an instruction or sequence of instructions R, to ensure that W is complete. For example, one

of the following:

. R, is a sequence of reads of ERR<n>STATUS in B, each in program order after the corresponding
write in W.

. R, is aread of ERRGSR in B, that is ordered after W; and observes that ERRGSR[n] is 0b0.

3. PE A performs a read R3 of ERR<m>STATUS in the proxy error record <m> for B in an upstream RAS agent
C, such that R, is Ordered-before R3.
Even if no other fault is recorded by B after Wi, Irpnpwc means that R3 might not return ERR<m>STATUS.V in
C equal to 0b0 as expected. This is similar to the issue of deasserting an interrupt request at a peripheral and that
interrupt still being observed as asserted at an interrupt controller.

The topology that maps error record <n> in the upstream RAS agent to a downstream RAS agent is described to software
through firmware tables. There is no description of this mapping nor hardware support for topology detection in the
architecture.

Access requirements for memory-mapped views of RAS error records

The requirements for a memory-mapped view of RAS Error records are described in Requirements for
Memory-mapped Components in Arm® Architecture Reference Manual, for A-profile architecture.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 2-62
Non-Confidential

Chapter 3
RAS Memory-mapped Register Descriptions

This chapter describes the RAS memory-mapped registers. It contains the following sections:

. RAS registers summary.
. RAS register descriptions.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.

Aa Non-Confidential

3-63

RAS Memory-mapped Register Descriptions
3.1 RAS registers summary

31 RAS registers summary

This section describes the memory-mapped interface to the RAS registers. The descriptions in this section apply whether
the error records is accessed:

. Through the indirection mechanism, as described in Error record System register view in Arm® Architecture
Reference Manual, for A-profile architecture.
. As memory-mapped registers, as described in RAS memory-mapped register views.
311 RAS memory-mapped register views

The following tables show the memory-mapped view of the RAS registers:

. Table 3-1 for the error record group memory-mapped registers when FEAT RASSA 4KB GRP is
implemented.

. Table 3-2 for the error record group memory-mapped registers when FEAT RASSA 16KB_GRP is
implemented.

. Table 3-3 for the error record group memory-mapped registers when FEAT RASSA 64KB_GRP is
implemented.

. Table 3-4 for the single error record memory-mapped registers.

. Table 3-5 for the fault injection group memory-mapped registers when FEAT RASSA 4KB GRP is
implemented.

Each entry in the Name column links to the register description in RAS register descriptions.

The number of ERRGSR<m> registers is the ceiling of (N+64). This means that:

. When FEAT RASSA 4KB_GRP is implemented, there is a single ERRGSR register.
. When FEAT RASSA 16KB_GRP is implemented, the ERRGSR<m> registers are ERRGSRO to ERRGSR3.
. When FEAT RASSA 64KB GRP is implemented, the ERRGSR<m> registers are ERRGSRO to ERRGSR13.

Table 3-1 Standard memory-mapped view of group of error records, 4KB page

Name Type Size Description Offset
ERR<n>FR RO 64 Error Record Feature Register 0x000+64Xn
ERR<n>CTLR RW 64 Error Record Control Register 0x008+64Xn
ERR<n>STATUS RwW 64 Error Record Primary Status Register 0x010+64Xn
ERR<n>ADDR RW 64 Error Record Address Register 0x018+64Xn
ERR<n>MISCO RW 64 Error Record Miscellaneous Register 0 0x020+64Xn
ERR<n>MISCl1 RW 64 Error Record Miscellaneous Register 1 0x028+64Xn
ERR<n>MISC2 RW 64 Error Record Miscellaneous Register 2 0x030+64Xn
ERR<n>MISC3 RW 64 Error Record Miscellaneous Register 3 0x038+64Xn
ERRIMPDEF<n> RW 64 IMPLEMENTATION DEFINED Register 0x800+8Xn
ERR<n>PFGF RO 64 Error Record Pseudo-fault Generation Feature Register 0x800+64Xn
ERR<n>PFGCTL RW 64 Error Record Pseudo-fault Generation Control Register 0x808+64Xn
ERR<n>PFGCDN RW 64 Error Record Pseudo-fault Generation Countdown Register 0x810+64Xn
ERRGSR RO 64 Error Group Status Register 0xE00
ERRIIDR RO 32 Error Group Implementation Identification Register 0xE10
ERRACR RW 64 Access Configuration Register 0xE40
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-64

Aa

Non-Confidential

RAS Memory-mapped Register Descriptions
3.1 RAS registers summary

Name Type Size Description Offset
ERRIRQCR<n> RwW 64 Generic Error Interrupt Configuration Register 0xE80+64Xn
ERRFHICRO RW 64 Fault Handling Interrupt Configuration Register 0 0xE80
ERRFHICR1 RW 32 Fault Handling Interrupt Configuration Register 1 0xE88
ERRFHICR2 RW 32 Fault Handling Interrupt Configuration Register 2 0xE8C
ERRERICRO RW 64 Error Recovery Interrupt Configuration Register O 0xE90
ERRERICR1 RW 32 Error Recovery Interrupt Configuration Register 1 0xE98
ERRERICR2 RwW 32 Error Recovery Interrupt Configuration Register 2 0xE9C
ERRCRICRO RwW 64 Critical Error Interrupt Configuration Register 0 0xEAQ
ERRCRICR1 RW 32 Critical Error Interrupt Configuration Register 1 OxEA8
ERRCRICR2 RW 32 Critical Error Interrupt Configuration Register 2 0xEAC
ERRIRQSR RW 64 Error Interrupt Status Register OxEF8
ERRDEVAFF RO 64 Device Affinity Register OxFAS8
ERRDEVARCH RO 32 Device Architecture Register O0xFBC
ERRDEVID RO 32 Device Configuration Register 0xFC8
ERRPIDR4 RO 32 Peripheral Identification Register 4 0xFDO
ERRPIDRO RO 32 Peripheral Identification Register 0 OxXFEQ
ERRPIDR1 RO 32 Peripheral Identification Register 1 OxFE4
ERRPIDR2 RO 32 Peripheral Identification Register 2 OxFES8
ERRPIDR3 RO 32 Peripheral Identification Register 3 O0xFEC
ERRCIDRO RO 32 Component Identification Register 0 O0xFFO
ERRCIDRI1 RO 32 Component Identification Register 1 OxFF4
ERRCIDR2 RO 32 Component Identification Register 2 OxFF8
ERRCIDR3 RO 32 Component Identification Register 3 OXFFC

Table 3-2 Standard memory-mapped view of group of error records, 16KB page

Name Type Size Description Offset
ERR<n>FR RO 64 Error Record Feature Register 0x0000+64 Xn
ERR<n>CTLR RW 64 Error Record Control Register 0x0008+64 Xn
ERR<n>STATUS RwW 64 Error Record Primary Status Register 0x0010+64Xn
ERR<n>ADDR RW 64 Error Record Address Register 0x0018+64Xn
ERR<n>MISCO0 RW 64 Error Record Miscellaneous Register 0 0x0020+64Xn
ERR<n>MISCI1 RwW 64 Error Record Miscellaneous Register 1 0x0028+64 Xn
ERR<n>MISC2 RW 64 Error Record Miscellaneous Register 2 0x0030+64 Xn
ERR<n>MISC3 RW 64 Error Record Miscellaneous Register 3 0x0038+64Xn
ERRIMPDEF<n> RwW 64 IMPLEMENTATION DEFINED Register 0x2000+8Xn
ERR<n>PFGF RO 64 Error Record Pseudo-fault Generation Feature Register 0x2000+64 Xn
ERR<n>PFGCTL RW 64 Error Record Pseudo-fault Generation Control Register 0x2008+64 Xn
ERR<n>PFGCDN RW 64 Error Record Pseudo-fault Generation Countdown Register 0x2010+64Xn
ERRGSR<m> RO 64 Error Group Status Register 0x3800+8Xm
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-65

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.1 RAS registers summary

Name Type Size Description Offset
ERRIIDR RO 32 Error Group Implementation Identification Register 0x3E10
ERRACR RW 64 Access Configuration Register 0x3E40
ERRIRQCR<n> RW 64 Generic Error Interrupt Configuration Register 0x3E80+64Xn
ERRFHICRO RW 64 Fault Handling Interrupt Configuration Register 0 0x3E80
ERRFHICR1 RW 32 Fault Handling Interrupt Configuration Register 1 0x3E88
ERRFHICR2 RW 32 Fault Handling Interrupt Configuration Register 2 0x3E8C
ERRERICRO RwW 64 Error Recovery Interrupt Configuration Register 0 0x3E90
ERRERICR1 RW 32 Error Recovery Interrupt Configuration Register 1 0x3E98
ERRERICR2 RW 32 Error Recovery Interrupt Configuration Register 2 0x3E9C
ERRCRICRO RW 64 Critical Error Interrupt Configuration Register 0 0x3EAQ
ERRCRICR1 RW 32 Critical Error Interrupt Configuration Register 1 0x3EAS
ERRCRICR2 RW 32 Critical Error Interrupt Configuration Register 2 0x3EAC
ERRIRQSR RwW 64 Error Interrupt Status Register 0x3EF8
ERRDEVAFF RO 64 Device Aftinity Register 0x3FA8
ERRDEVARCH RO 32 Device Architecture Register 0x3FBC
ERRDEVID RO 32 Device Configuration Register 0x3FC8
ERRPIDR4 RO 32 Peripheral Identification Register 4 0x3FDO
ERRPIDRO RO 32 Peripheral Identification Register 0 0x3FE0
ERRPIDR1 RO 32 Peripheral Identification Register 1 0x3FE4
ERRPIDR2 RO 32 Peripheral Identification Register 2 0x3FE8
ERRPIDR3 RO 32 Peripheral Identification Register 3 0x3FEC
ERRCIDRO RO 32 Component Identification Register 0 0x3FF0
ERRCIDR1 RO 32 Component Identification Register 1 0x3FF4
ERRCIDR2 RO 32 Component Identification Register 2 0x3FF8
ERRCIDR3 RO 32 Component Identification Register 3 0x3FFC

Table 3-3 Standard memory-mapped view of group of error records, 64KB page

Name Type Size Description Offset
ERR<n>FR RO 64 Error Record Feature Register 0x0000+64Xn
ERR<n>CTLR RW 64 Error Record Control Register 0x0008+64Xn
ERR<n>STATUS RW 64 Error Record Primary Status Register 0x0010+64Xn
ERR<n>ADDR RwW 64 Error Record Address Register 0x0018+64Xn
ERR<n>MISCO0 RW 64 Error Record Miscellaneous Register 0 0x0020+64 Xn
ERR<n>MISC1 RW 64 Error Record Miscellaneous Register 1 0x0028+64Xn
ERR<n>MISC2 RwW 64 Error Record Miscellaneous Register 2 0x0030+64Xn
ERR<n>MISC3 RW 64 Error Record Miscellaneous Register 3 0x0038+64Xn
ERRIMPDEF<n> RwW 64 IMPLEMENTATION DEFINED Register 0x8000+8Xn
ERR<n>PFGF RO 64 Error Record Pseudo-fault Generation Feature Register 0x8000+64 Xn
ERR<n>PFGCTL RW 64 Error Record Pseudo-fault Generation Control Register 0x8008+64Xn
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-66

Aa Non-Confidential

RAS Memory-mapped Register Descriptions

3.1 RAS registers summary

Name Type Size Description Offset
ERR<n>PFGCDN RW 64 Error Record Pseudo-fault Generation Countdown Register 0x8010+64Xn
ERRGSR<m> RO 64 Error Group Status Register 0xE000+8Xm
ERRIIDR RO 32 Error Group Implementation Identification Register 0xFE10
ERRACR RW 64 Access Configuration Register 0xFE40
ERRIRQCR<n> RW 64 Generic Error Interrupt Configuration Register OxXFE80+64 Xn
ERRFHICRO RW 64 Fault Handling Interrupt Configuration Register 0 OxFE80
ERRFHICR1 RwW 32 Fault Handling Interrupt Configuration Register 1 OxFES88
ERRFHICR2 RW 32 Fault Handling Interrupt Configuration Register 2 OxFE8C
ERRERICRO RW 64 Error Recovery Interrupt Configuration Register 0 0xFE90
ERRERICRI RW 32 Error Recovery Interrupt Configuration Register 1 O0xFE98
ERRERICR2 RW 32 Error Recovery Interrupt Configuration Register 2 0xXFE9C
ERRCRICRO RW 64 Critical Error Interrupt Configuration Register 0 OxXFEAQ
ERRCRICRI1 RwW 32 Critical Error Interrupt Configuration Register 1 OxFEAS8
ERRCRICR2 RW 32 Critical Error Interrupt Configuration Register 2 OxFEAC
ERRIRQSR RW 64 Error Interrupt Status Register OXFEF8
ERRDEVAFF RO 64 Device Affinity Register OxFFAS
ERRDEVARCH RO 32 Device Architecture Register OxFFBC
ERRDEVID RO 32 Device Configuration Register OxFFC8
ERRPIDR4 RO 32 Peripheral Identification Register 4 O0xFFDO
ERRPIDRO RO 32 Peripheral Identification Register 0 OxFFEOQ
ERRPIDRI1 RO 32 Peripheral Identification Register 1 OxFFE4
ERRPIDR2 RO 32 Peripheral Identification Register 2 OxXFFES
ERRPIDR3 RO 32 Peripheral Identification Register 3 OxXFFEC
ERRCIDRO RO 32 Component Identification Register 0 OxXFFFO0
ERRCIDR1 RO 32 Component Identification Register 1 OxFFF4
ERRCIDR2 RO 32 Component Identification Register 2 OxFFF8
ERRCIDR3 RO 32 Component Identification Register 3 0xFFFC
Table 3-4 RAS, single error record, memory-mapped register map
Name Type Size Description Offset
ERR<n>FR RO 64 Error Record Feature Register 0x000
ERR<n>CTLR RW 64 Error Record Control Register 0x008
ERR<n>STATUS RW 64 Error Record Primary Status Register 0x010
ERR<n>ADDR RW 64 Error Record Address Register 0x018
ERR<n>MISCO0 RW 64 Error Record Miscellaneous Register 0 0x020
ERR<n>MISC1 RW 64 Error Record Miscellaneous Register 1 0x028
ERR<n>MISC2 RW 64 Error Record Miscellaneous Register 2 0x030
ERR<n>MISC3 RW 64 Error Record Miscellaneous Register 3 0x038
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-67

Aa

Non-Confidential

RAS Memory-mapped Register Descriptions

3.1 RAS registers summary

Table 3-5 RAS, fault injection group, memory-mapped register map, 4KB page

Name Type Size Description Offset
ERR<n>PFGF RO 64 Error Record Pseudo-fault Generation Feature 0x000+64Xn
Register
ERR<n>PFGCTL RW 64 Error Record Pseudo-fault Generation Control 0x008+64Xn
Register
ERR<n>PFGCDN RW 64 Error Record Pseudo-fault Generation Countdown 0x010+64Xn
Register
ERRIIDR RO 32 Implementation Identification Register 0xE10
ERRACR RW 64 Access Configuration Register 0xE40
ERRDEVAFF RO 64 Device Affinity Register OxFAS8
ERRDEVARCH RO 32 Device Architecture Register OxFBC
ERRDEVID RO 32 Device Configuration Register 0xFC8
ERRPIDR4 RO 32 Peripheral Identification Register 4 0xFDO
ERRPIDRO RO 32 Peripheral Identification Register O O0xFEOQ
ERRPIDRI1 RO 32 Peripheral Identification Register 1 O0xFE4
ERRPIDR2 RO 32 Peripheral Identification Register 2 OxXFES8
ERRPIDR3 RO 32 Peripheral Identification Register 3 OXFEC
ERRCIDRO RO 32 Component Identification Register O OxXFF0
ERRCIDR1 RO 32 Component Identification Register 1 O0xFF4
ERRCIDR2 RO 32 Component Identification Register 2 OxFF8
ERRCIDR3 RO 32 Component Identification Register 3 OxFFC
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-68

Aa

Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2

IHI0100
Aa

RAS register descriptions

This section describes the RAS registers.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

3-69

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.21 ERRACR, Access Configuration Register
The ERRACR characteristics are:

Purpose

Controls visibility of error records.

Configuration

This register is present only when (Root state is implemented or Secure state is implemented) and an
implementation implements ERRACR. Otherwise, direct accesses to ERRACR are RESO.

Attributes
ERRACR is a 64-bit register.

Field descriptions

63 32
IMPLEMENTATION DEFINED

31,30 5 4,3 2,1 0

: RESO RLRA | SRA | NSRA

|_IMPL

IMPLEMENTATION DEFINED, bits [63:32]

IMPLEMENTATION DEFINED observation controls. Additional IMPLEMENTATION DEFINED access control bits.

IMPL, bit [31]

IMPL

Meaning

Obl

Indicates ERRACR is present.

Access to this field is RAO/WI.

Bits [30:6]

Reserved, RESO.

RLRA, bits [5:4]

When FEAT RME is implemented and the error record group allows configuration of Secure and Realm

register accesses:

Realm Restricted Access. Controls Realm access to error records and interrupt configuration registers in the

error record group.

RLRA Meaning

0b00 Realm access is disabled. All error record, ERR<irg>CR<m>, and ERRIRQSR registers are
RAZ/WI to Realm accesses.

0b01 Realm read access is enabled. Realm writes are ignored.

0b11 Realm read/write access is allowed. If the error record group supports MSIs, generated MSIs are

always Non-secure.

All other values are reserved.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Aa Non-Confidential

3-70

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

This control applies to all error record registers (ERR<n>* including fault injection registers ERR<n>PFG*
if implemented), and interrupt configuration registers (ERR<irq>CR<m> and ERRIRQSR, if implemented)
in the error record group. The effect on any IMPLEMENTATION DEFINED registers iS IMPLEMENTATION DEFINED.

When Realm access to error records is disabled, a Realm read of ERRGSR will return the error record status
for the error records that cannot be accessed.

When Realm access is fully or partially disabled, the effect on Realm accesses to IMPLEMENTATION DEFINED
registers is IMPLEMENTATION DEFINED.

Realm access to error records is enabled from reset.

The reset domain and value of this field is IMPLEMENTATION DEFINED, and depends on the security policy of
the component implementing this register.

The reset behavior of this field is:

. On a Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.
. On a Cold reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RAZ/WI.

SRA, bits [3:2]

When Secure state is implemented, FEAT RME is implemented, and the error record group allows

configuration of Secure and Realm register accesses:

Secure Restricted Access. Controls Secure access to error records and interrupt configuration registers in the
error record group.

SRA Meaning

0b00 Secure access is disabled. All error record, ERR<irqg>CR<m>, and ERRIRQSR registers are
RAZ/WT to Secure accesses.

0b01 Secure read access is enabled. Secure writes are ignored.

0b11l Secure read/write access is allowed.

All other values are reserved.

This control applies to all error record registers (ERR<n>*, including fault injection registers ERR<n>PFG*
if implemented), and interrupt configuration registers (ERR<irg>CR<m> and ERRIRQSR, if implemented)
in the error record group. The effect on any IMPLEMENTATION DEFINED registers is IMPLEMENTATION DEFINED.

When Secure access to error records is disabled, a Secure read of ERRGSR will return the error record status
for the error records that cannot be accessed.

When Secure access is fully or partially disabled, the effect on Secure accesses to IMPLEMENTATION DEFINED
registers is IMPLEMENTATION DEFINED.

Secure access to error records is enabled from reset.

The reset domain and value of this field is IMPLEMENTATION DEFINED, and depends on the security policy of
the component implementing this register.

The reset behavior of this field is:

. On a Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.
. On a Cold reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RAZ/WI.

NSRA, bits [1:0]

IHI0100
Aa

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-71
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

Non-secure Restricted Access. Controls Non-secure access to error records and interrupt configuration registers in
the error record group.

NSRA Meaning

0b00 Non-secure access is disabled. All error record, ERR<irg>CR<m>, and ERRIRQSR registers are
RAZ/WI to Non-secure accesses.

0b01 Non-secure read access is enabled. Non-secure writes are ignored.

0bl1 Non-secure read/write access is allowed. If the error record group supports MSIs, generated MSIs

are always Non-secure.

All other values are reserved.

This control applies to all error record registers (ERR<n>*, including fault injection registers ERR<n>PFG* if
implemented), and interrupt configuration registers (ERR<irg>CR<m> and ERRIRQSR, if implemented) in the
error record group. The effect on any IMPLEMENTATION DEFINED registers is IMPLEMENTATION DEFINED.

‘When Non-secure access to error records is disabled, a Non-secure read of ERRGSR will return the error record
status for the error records that cannot be accessed.

When Non-secure access is fully or partially disabled, the effect on Non-secure accesses to IMPLEMENTATION
DEFINED registers iS IMPLEMENTATION DEFINED.

Non-secure access to error records is enabled from reset.

If FEAT RME is implemented and ERRACR.{RLRA, SRA} are not implemented, then ERRACR.NSRA applies
to all Security states other than Root.

The reset domain and value of this field is IMPLEMENTATION DEFINED, and depends on the security policy of the
component implementing this register.

The reset behavior of this field is:

. On a Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.
. On a Cold reset, this field resets to an IMPLEMENTATION DEFINED value.
Accessing ERRACR

This section shows the offset of ERRACR when FEAT RASSA 4KB_GRP is implemented. If
FEAT RASSA 16KB GRP or FEAT RASSA 64KB GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRACR.

ERRACR can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xE40 ERRACR
Accessible as follows:
. When (FEAT RME is implemented and an access is not Root) or an access is Non-secure, accesses to this
register are RAZ/WI.
. Otherwise, accesses to this register are RW.
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-72

Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.2

IHI0100
Aa

ERRCIDRO, Component Identification Register 0

The ERRCIDRO characteristics are:

Purpose

Provides discovery information about the component.

Configuration
ERRCIDRO is implemented only as part of a memory-mapped group of error records.

Implementation of this register is OPTIONAL.

Attributes

ERRCIDRO is a 32-bit register.

Field descriptions

8,7 0

RESO 6 06 6 6 1 1 0 1

L PRMBL 0

Bits [31:8]

Reserved, RESO.

PRMBL 0, bits [7:0]
Component identification preamble, segment 0.
Reads as 0xop
Access to this field is RO.

Accessing ERRCIDRO

This section shows the offset of ERRCIDR0O when FEAT RASSA 4KB GRP is implemented. If
FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRCIDRO.

ERRCIDRO can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xFF0 ERRCIDRO
Accesses to this register are RO.
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-73

Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.3 ERRCIDR1, Component Identification Register 1

The ERRCIDRI1 characteristics are:

Purpose

Provides discovery information about the component.

Configuration
ERRCIDRI1 is implemented only as part of a memory-mapped group of error records.

Implementation of this register is OPTIONAL.

Attributes

ERRCIDRI1 is a 32-bit register.

Field descriptions

IHI0100
Aa

31 8,7 4,3 0
RESO 1 1 1 1|0 0 0 0
CLASSJ |—PRMBL71
Bits [31:8]
Reserved, RESO.
CLASS, bits [7:4]
Component class.
CLASS Meaning
0b1111 Generic peripheral with IMPLEMENTATION DEFINED register layout.

Other values are defined by the CoreSight Architecture.
This field reads as oxr.

Access to this field is RO.

PRMBL_1, bits [3:0]
Component identification preamble, segment 1.
Reads as 00000
Access to this field is RO.

Accessing ERRCIDR1

This section shows the offset of ERRCIDR1 when FEAT RASSA 4KB_GRP is implemented. If
FEAT RASSA_16KB_GRP or FEAT RASSA_64KB_GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRCIDRI.

ERRCIDRI1 can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xFF4 ERRCIDRI1
Accesses to this register are RO.
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-74

Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.24

IHI0100
Aa

ERRCIDR2, Component Identification Register 2

The ERRCIDR2 characteristics are:

Purpose

Provides discovery information about the component.

Configuration
ERRCIDR?2 is implemented only as part of a memory-mapped group of error records.

Implementation of this register is OPTIONAL.

Attributes

ERRCIDR?2 is a 32-bit register.

Field descriptions

8,7 0

RESO 6 06 6 6 0 1 0 1

L PRMBL 2

Bits [31:8]

Reserved, RESO.

PRMBL _2, bits [7:0]
Component identification preamble, segment 2.
Reads as 0x05
Access to this field is RO.

Accessing ERRCIDR2

This section shows the offset of ERRCIDR2 when FEAT RASSA 4KB GRP is implemented. If
FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRCIDR2.

ERRCIDR?2 can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xFF8 ERRCIDR2
Accesses to this register are RO.
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-75

Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.5

IHI0100
Aa

ERRCIDR3, Component Identification Register 3

The ERRCIDR3 characteristics are:

Purpose

Provides discovery information about the component.

Configuration
ERRCIDR3 is implemented only as part of a memory-mapped group of error records.

Implementation of this register is OPTIONAL.

Attributes

ERRCIDR3 is a 32-bit register.

Field descriptions

8,7 0

RESO 1 6 1 1 06 6 0 1

L PRMBL 3

Bits [31:8]

Reserved, RESO.

PRMBL_3, bits [7:0]
Component identification preamble, segment 3.
Reads as 0xz1
Access to this field is RO.

Accessing ERRCIDR3

This section shows the offset of ERRCIDR3 when FEAT RASSA 4KB GRP is implemented. If
FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRCIDR3.

ERRCIDR3 can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xFFC ERRCIDR3
Accesses to this register are RO.
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-76

Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.26 ERRCRICRO, Critical Error Interrupt Configuration Register 0
The ERRCRICRO characteristics are:

Purpose

Critical Error Interrupt configuration register.

Configuration
ERRCRICRO is implemented only as part of a memory-mapped group of error records.

This register is present only when (the Critical Error Interrupt is implemented or the implementation does not use
the recommended layout for the ERRIRQCR registers) and interrupt configuration registers are implemented.
Otherwise, direct accesses to ERRCRICRO are RESO.

Attributes

ERRCRICRO is a 64-bit register.

Field descriptions

When the Critical Error Interrupt is implemented, the implementation uses the recommended layout for the
ERRIRQCR registers, and the implementation uses simple interrupts:

63 32
RESO

31 0
RESO

Bits [63:0]

Reserved, RESO.

When the implementation uses message-signaled interrupts, the Critical Error Interrupt is implemented, and the
implementation uses the recommended layout for the ERRIRQCR registers:

63 56 55 32
RESO ADDR :

31 2,1 0

: ADDR RESO

Bits [63:56]

Reserved, RESO.

ADDR, bits [55:2]

Message Signaled Interrupt address. (ERRCRICR0.ADDR « 2) is the address that the component writes to when
signaling the Critical Error Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED. Unimplemented high-order
physical address bits are RESO.

The reset behavior of this field is:
. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RESO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-77
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

63

When the implementation does not use the recommended layout for the ERRIRQCR registers:

32

IMPLEMENTATION DEFINED

31

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing ERRCRICRO

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to ERRCRICRO
are IMPLEMENTATION DEFINED.

This section shows the offset of ERRCRICR0O when FEAT RASSA _4KB_GRP is implemented. If
FEAT RASSA 16KB GRP or FEAT RASSA 64KB GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRCRICRO.

ERRCRICRO can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0XEAD ERRCRICRO
Accessible as follows:
. When ((the implementation uses message-signaled interrupts && (IsAccessNonSecure() || IsAccessRealm()))

&& the implementation uses the recommended layout for the ERRIRQCR registers) && ERRCRICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure, accesses to this register are RO.
. Otherwise, accesses to this register are RW.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-78
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.27 ERRCRICR1, Critical Error Interrupt Configuration Register 1

The ERRCRICRI characteristics are:

Purpose

Critical Error Interrupt configuration register.

Configuration
ERRCRICRI1 is implemented only as part of a memory-mapped group of error records.

This register is present only when (the Critical Error Interrupt is implemented or the implementation does not use
the recommended layout for the ERRIRQCR registers) and interrupt configuration registers are implemented.
Otherwise, direct accesses to ERRCRICRI1 are ResO.

Attributes

ERRCRICRI is a 32-bit register.

Field descriptions

When the Critical Error Interrupt is implemented, the implementation uses the recommended layout for the
ERRIRQCR registers, and the implementation uses simple interrupts:

31 0
RESO
Bits [31:0]
Reserved, RESO.
When the implementation uses message-signaled interrupts, the Critical Error Interrupt is implemented, and the
implementation uses the recommended layout for the ERRIRQCR registers:
31 0
DATA
DATA, bits [31:0]
Payload for the message signaled interrupt.
The reset behavior of this field is:
. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.
When the implementation does not use the recommended layout for the ERRIRQCR registers:
31 0

IMPLEMENTATION DEFINED

IHI0100
Aa

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.

Accessing ERRCRICR1

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to ERRCRICR1
are IMPLEMENTATION DEFINED.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-79
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

This section shows the offset of ERRCRICR1 when FEAT RASSA 4KB_GRP is implemented. If
FEAT RASSA_16KB_GRP or FEAT RASSA_64KB_GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRCRICRI.

ERRCRICRI can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xEA8 ERRCRICR1
Accessible as follows:
. When ((the implementation uses message-signaled interrupts && (IsAccessNonSecure() || IsAccessRealm()))

&& the implementation uses the recommended layout for the ERRIRQCR registers) && ERRCRICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure, accesses to this register are RO.
. Otherwise, accesses to this register are RW.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-80
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.28 ERRCRICRZ2, Critical Error Interrupt Configuration Register 2
The ERRCRICR?2 characteristics are:

Purpose

Critical Error Interrupt control and configuration register.

Configuration

ERRCRICR2 is implemented only as part of a memory-mapped group of error records.

This register is present only when (the Critical Error Interrupt is implemented or the implementation does not use

the recommended layout for the ERRIRQCR registers) and interrupt configuration registers are implemented.

Otherwise, direct accesses to ERRCRICR2 are RESO.

Attributes

ERRCRICR? is a 32-bit register.

Field descriptions

When the Critical Error Interrupt is implemented, the implementation uses the recommended layout for the

ERRIRQCR registers, and the implementation uses simple interrupts:

31 8,7 ,6
RESO RESO
|_ IRQEN
Bits [31:8]
Reserved, RESO.
IRQEN, bit [7]
Interrupts enable. Enables generation of interrupts.
IRQEN Meaning
0b0 Disabled.
0bl Enabled.
The reset behavior of this field is:
. On a Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.
Bits [6:0]
Reserved, RESO.
When the implementation uses message-signaled interrupts, the Critical Error Interrupt is implemented, and the
implementation uses the recommended layout for the ERRIRQCR registers:
31 8,7,6,;5 4,3
RESO SH MemAttr
IRQEN J |_ NSMSI
Bits [31:8]
Reserved, RESO.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-81

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IRQEN, bit [7]

When the component supports disabling message signaled interrupts:

Message signaled interrupt enable. Enables generation of message signaled interrupts.

IRQEN Meaning
0b0 Disabled.
0b1l Enabled.
The reset behavior of this field is:
. On a Error recovery reset, this field resets to 'o'.

Otherwise:
Reserved, RESO.
Message signaled interrupt enable.

Message signaled interrupts are always enabled.

NSMSI, bit [6]
When the component supports configuring the physical address space for message signaled interrupts:

Non-secure message signaled interrupt. Defines the physical address space for message signaled interrupts.

NSMSI Meaning

0b0 Secure physical address space.

0bl Non-secure physical address space.
The reset behavior of this field is:
. On a Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

. Access to this field is RO if any of the following are true:

— an access is Non-secure
— an access is Realm

. Otherwise, access to this field is RW.
Otherwise:

Reserved, RESO.

Non-secure message signaled interrupt.

The physical address space for message signaled interrupts is IMPLEMENTATION DEFINED.

SH, bits [S:4]
When the component supports configuring the Shareability domain for message signaled interrupts:

Shareability. Defines the Shareability domain for message signaled interrupts.

SH Meaning
0b00 Not shared.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-82

Aa Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

IHI0100
Aa

SH Meaning
0b10 Outer Shareable.
0bl11l Inner Shareable.

All other values are reserved.

This field is ignored when ERRCRICR2.MemAttr specifies any of the following memory types:

. Any Device memory type.
. Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated as
Outer Shareable.

The reset behavior of this field is:

. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.
Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

MemAttr, bits [3:0]

When the component supports configuring the memory type for message signaled interrupts:

Memory type. Defines the memory type and attributes for message signaled interrupts.

MemAttr Meaning

000000 Device-nGnRnE memory.

000001 Device-nGnRE memory.

000010 Device-nGRE memory.

000011 Device-GRE memory.

0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.
0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
061010 Normal memory, Inner Write-Through, Outer Write-Through.
0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.
This is the same format as the VMSAv8-64 stage 2 memory region attributes.

The reset behavior of this field is:

. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-83
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

31

Otherwise:
Reserved, RESO.
Memory type.

The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

When the implementation does not use the recommended layout for the ERRIRQCR registers:

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing ERRCRICR2

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to ERRCRICR2
are IMPLEMENTATION DEFINED.

This section shows the offset of ERRCRICR2 when FEAT RASSA 4KB_GRP is implemented. If
FEAT RASSA_16KB_GRP or FEAT RASSA_64KB_GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRCRICR2.

ERRCRICR2 can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0XEAC ERRCRICR2
Accessible as follows:
. When ((the implementation uses message-signaled interrupts && (IsAccessNonSecure() || IsAccessRealm()))

&& the implementation uses the recommended layout for the ERRIRQCR registers) && ERRCRICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure, accesses to this register are RO.
. Otherwise, accesses to this register are RW.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-84
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.29 ERRDEVAFF, Device Affinity Register
The ERRDEVAFF characteristics are:

Purpose

For a group of error records that has affinity with a single PE or a group of PEs, ERRDEVAFF is a copy of
MPIDR_EL1 or part of MPIDR EL1:

. If the group of error records has affinity with a single PE, the affinity level is 0, then ERRDEVAFF reads
the same value as MPIDR_EL1, and ERRDEVAFE.FOV reads-as-one to indicate affinity level 0.

. If the group of error records has affinity with a group of PEs, the affinity level is 1, 2, or 3, then parts of
ERRDEVAFF reads the same value as parts of MPIDR_EL1, and the rest of ERRDEVAFF indicates the
level.

For example, if the group of PEs is a subset of the PEs at affinity level 1 then all of the following are true:

. All the PEs in the group have the same values in MPIDR _EL1.{Aff3,Aff2}, and these values are equal to
ERRDEVAFF.{Aff3,Aff2}.
. ERRDEVAFF.Aff1 is nonzero and not 0x80, and ERRDEVAFF.{Aff0,FOV} read-as-zero, to indicate at

least affinity level 1. The subset of PEs at level 1 that the group of error records has affinity with is
indicated by the least-significant set bit in ERRDEVAFF.Aff1. In this example, if ERRDEVAFF.Aff1[2:0]
is 0b100, then the group of error records has affinity with the up-to 8 PEs that have MPIDR _EL1.Aff1[7:3]
==ERRDEVAFF.Aff1[7:3].

Depending on the IMPLEMENTATION DEFINED nature of the system, it might be possible that ERRDEVAFF is read
before system firmware has configured the group of error records or the PE or group of PEs that the group of error
records has affinity with. When this is the case, ERRDEVAFF reads as zero.

If RAS System Architecture v1.1 is not implemented then ERRDEVAFF can only describe a group of error
records that is affine with a single PE or all the PEs at an affinity level.

Configuration
ERRDEVAFF is implemented only as part of a memory-mapped group of error records.
Arm deprecates use of this register by software

This register is present only when the group of error records has affinity with a PE or cluster of PEs and an
implementation implements ERRDEVAFF. Otherwise, direct accesses to ERRDEVAFF are RESO.

Attributes

ERRDEVAFF is a 64-bit register.

Field descriptions

63 40 39 32
RESO Aff3 :
31,30,29 25,24 ,23 16,15 8,7 0
iFov| u RESO MT Aff2 Affl AffO

Bits [63:40]

Reserved, RESO.

Aff3, bits [39:32]

PE affinity level 3. The MPIDR _EL1.Aff3 field, viewed from the highest Exception level of the associated PE or
PEs.

FOV, bit [31]

Indicates that the ERRDEVAFF.AfO field is valid.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-85
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

The value of this field is an IMPLEMENTATION DEFINED choice of:

FOV Meaning
0b0 ERRDEVAFF.Af0 is not valid, and the PE affinity is above level 0 or a subset of level 0.
0bl ERRDEVAFF.Aff0 is valid, and the PE affinity is at level 0.

Access to this field is RO.

U, bit [30]
When ERRDEVAFEFOV ==1:
Uniprocessor. The MPIDR_EL1.U field, viewed from the highest Exception level of the associated PE.

Otherwise:

Reserved, UNKNOWN.

Bits [29:25]
Reserved, RESO.
MT, bit [24]
When ERRDEVAFF.FOV == 1:
Multithreaded. The MPIDR_EL1.MT field, viewed from the highest Exception level of the associated PE.

Otherwise:

Reserved, UNKNOWN.

Aff2, bits [23:16]
When !IsZero(| ERRDEVAFF.Affl, ERRDEVAFF.Aff), ERRDEVAFF.FOV]):

PE affinity level 2. The MPIDR EL1.Aff2 field, viewed from the highest Exception level of the associated
PE or PEs.

Otherwise:

PE affinity level 2. Defines part of the MPIDR _EL1.Aff2 field, viewed from the highest Exception level of
the associated PEs.

Aff2 Meaning
Obxxxxxxx1 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7:1] is the value of
MPIDR_EL1.Aff2[7:1], viewed from the highest Exception level of the associated PEs.
Obxxxxxx10 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7:2] is the value of
MPIDR_ELI1.Aff2[7:2], viewed from the highest Exception level of the associated PEs.
Obxxxxx100 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7:3] is the value of
MPIDR_EL1.Aff2[7:3], viewed from the highest Exception level of the associated PEs.
Obxxxx1000 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7:4] is the value of
MPIDR_EL1.Aff2[7:4], viewed from the highest Exception level of the associated PEs.
0bxxx10000 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7:5] is the value of
MPIDR_EL1.Aff2[7:5], viewed from the highest Exception level of the associated PEs.
0bxx100000 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7:6] is the value of

MPIDR_EL1.Aff2[7:6], viewed from the highest Exception level of the associated PEs.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-86
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Aff2 Meaning
0bx1000000 PE affinity is the subset of level 2 where ERRDEVAFF.Aff2[7] is the value of
MPIDR_EL1.Aff2[7], viewed from the highest Exception level of the associated PEs.
0x80 PE affinity is at level 3.
Aff1, bits [15:8]
When !IsZero(|ERRDEVAFF.Aff0, ERRDEVAFF.FOV]):
PE affinity level 1. The MPIDR EL1.Aff1 field, viewed from the highest Exception level of the associated
PE or PEs.
Otherwise:
PE affinity level 1. Defines part of the MPIDR EL1.Aff1 field, viewed from the highest Exception level of
the associated PEs.
Aff1 Meaning
Obxxxxxxx1 PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7:1] is the value of

Obxxxxxx10

Obxxxxx100

Obxxxx1000

Obxxx10000

0bxx100000

0bx1000000

0x80

0x00

MPIDR_ELI1.Aff1[7:1], viewed from the highest Exception level of the associated PEs.

PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7:2] is the value of
MPIDR_EL1.Aff1[7:2], viewed from the highest Exception level of the associated PEs.

PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7:3] is the value of
MPIDR_EL1.Aff1[7:3], viewed from the highest Exception level of the associated PEs.

PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7:4] is the value of
MPIDR_EL1.Aff1[7:4], viewed from the highest Exception level of the associated PEs.

PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7:5] is the value of
MPIDR_EL1.Aff1[7:5], viewed from the highest Exception level of the associated PEs.

PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7:6] is the value of
MPIDR_EL1.Aff1[7:6], viewed from the highest Exception level of the associated PEs.

PE affinity is the subset of level 1 where ERRDEVAFF.Aff1[7] is the value of
MPIDR_EL1.Aff1[7], viewed from the highest Exception level of the associated PEs.

PE affinity is at level 2.

PE affinity is above level 2 or a subset of level 2.

Aff0, bits [7:0]

When ERRDEVAFEFOV ==1:

PE affinity level 0. The MPIDR EL1.Aff0 field, viewed from the highest Exception level of the associated

PE.

Otherwise:

PE affinity level 0. Defines part of the MPIDR_EL1.Aff0 field, viewed from the highest Exception level of

the associated PEs.
Affo Meaning
Obxxxxxxx1 PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7:1] is the value of

Obxxxxxx10

Obxxxxx100

MPIDR_EL1.Aff0[7:1], viewed from the highest Exception level of the associated PEs.

PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7:2] is the value of
MPIDR_EL1.Aff0[7:2], viewed from the highest Exception level of the associated PEs.

PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7:3] is the value of
MPIDR_EL1.Aff0[7:3], viewed from the highest Exception level of the associated PEs.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-87

Aa

Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Aff0 Meaning

0Obxxxx1000 PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7:4] is the value of
MPIDR_EL1.Aff0[7:4], viewed from the highest Exception level of the associated PEs.

0Obxxx10000 PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7:5] is the value of
MPIDR_EL1.Aff0[7:5], viewed from the highest Exception level of the associated PEs.

0bxx100000 PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7:6] is the value of
MPIDR_EL1.Aff0[7:6], viewed from the highest Exception level of the associated PEs.

0bx1000000 PE affinity is the subset of level 0 where ERRDEVAFF.Aff0[7] is the value of
MPIDR_EL1.Aft0[7], viewed from the highest Exception level of the associated PEs.

0x80 PE affinity is at level 1.

0x00 PE affinity is above level 1 or a subset of level 1.

IHI0100
Aa

Accessing ERRDEVAFF
This section shows the offset of ERRDEVAFF when FEAT RASSA 4KB GRP is implemented. If

FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_ GRP is implemented, see ‘RAS memory-mapped register views’

for the offset of ERRDEVAFF.

ERRDEVAFF can be accessed through the memory-mapped interface:

Component Offset Instance

RAS 0xFAS8 ERRDEVAFF

Accesses to this register are RO.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

3-88

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.10 ERRDEVARCH, Device Architecture Register
The ERRDEVARCH characteristics are:

Purpose

Provides discovery information for the component.

Configuration

ERRDEVARCH is implemented only as part of a memory-mapped group of error records.

Attributes

ERRDEVARCH is a 32-bit register.

Field descriptions

31 21,20,19 16,15 12,11 0
6 1 6 6 6 1 1 1 6 1 1(1 REVISION ARCHVER ARCHPART
ARCHITECTJ LPRESENT

ARCHITECT, bits [31:21]
Defines the architect of the component. For RAS,; this is Arm Limited.
Bits [31:28] are the JEP106 continuation code, 0n0100.
Bits [27:21] are the JEP106 identification code, 0b0111011.
Reads as 0001000111011

Access to this field is RO.

PRESENT, bit [20]
DEVARCH present. Indicates that the ERRDEVARCH register is present.
Reads as op1

Access to this field is RO.

REVISION, bits [19:16]
When UInt(ERRDEVARCH.ARCHPART) == 0xA00 and ERRDEVARCH.ARCHVER == 0b0000:
Revision. Defines the architecture revision of the component.

The value of this field is an IMPLEMENTATION DEFINED choice of:

REVISION Meaning
0b0000 RAS System Architecture, error record group v1.0.
0b0001 RAS System Architecture, error record group v1.1. As oboooo and also:

. Simplifies ERR<n>STATUS.

. Adds support for additional ERR<n>MISC<m> registers.
. Adds support for the optional RAS Timestamp Extension.
. Adds support for the optional Common Fault Injection Model Extension.

All other values are reserved.

Access to this field is RO.

When UInt(ERRDEVARCH.ARCHPART) == 0x200 and ERRDEVARCH.ARCHVER == 0b0001:

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Aa Non-Confidential

3-89

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Revision. Defines the architecture revision of the component.

REVISION Meaning

060000 RAS System Architecture, error record group v2.0.

All other values are reserved.

Access to this field is RO.

When UInt(ERRDEVARCH.ARCHPART) == 0x208 and ERRDEVARCH.ARCHVER == 0b0000:

Revision. Defines the architecture revision of the component.

REVISION Meaning

060000 RAS System Architecture, fault injection group v1.0.

All other values are reserved.

Access to this field is RO.

Otherwise:

Reserved, RESO.

ARCHVER, bits [15:12]

When UInt(ERRDEVARCH.ARCHPART) == 0xA00:
Architecture Version. Defines the architecture version of the component.

The value of this field is an IMPLEMENTATION DEFINED choice of:

ARCHVER Meaning
0b0000 RAS System Architecture, error record group v1.
0b0001 RAS System Architecture, error record group v2. As oboooo and also:
. Adds an optional access control register, ERRACR.
. Adds an optional control for disabling error counters.
. Adds optional fault handling interrupt controls for Deferred errors.
. Adds support for continuation and proxy error records.
. Adds support for implementing Common Fault Injection Mechanism
registers in a separate page from the error record registers.
. Adds support for simple interrupt control registers.
. Defines fields in ERRDEVID that describe these properties.

All other values are reserved.

ERRDEVARCH.ARCHVER and ERRDEVARCH.ARCHPART are also defined as a single field,

ERRDEVARCH.ARCHID, so that ERRDEVARCH.ARCHVER is ERRDEVARCH.ARCHID[15:12].

Access to this field is RO.

When UInt(ERRDEVARCH.ARCHPART) == 0xA08:

Architecture Version. Defines the architecture version of the component.

ARCHVER Meaning
060000 RAS System Architecture, fault injection group v1.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-90

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

All other values are reserved.

ERRDEVARCH.ARCHVER and ERRDEVARCH.ARCHPART are also defined as a single field,
ERRDEVARCH.ARCHID, so that ERRDEVARCH.ARCHVER is ERRDEVARCH.ARCHID[15:12].

Access to this field is RO.
Otherwise:

Reserved, RESO.

ARCHPART, bits [11:0]
Architecture Part. Defines the architecture of the component.

The value of this field is an IMPLEMENTATION DEFINED choice of:

ARCHPART Meaning
0xA00 RAS System Architecture, error record group.
0xA08 RAS System Architecture, fault injection group.

ERRDEVARCH.ARCHVER and ERRDEVARCH.ARCHPART are also defined as a single field,
ERRDEVARCH.ARCHID, so that ERRDEVARCH.ARCHPART is ERRDEVARCH.ARCHID[11:0].

Access to this field is RO.

Accessing ERRDEVARCH

This section shows the offset of ERRDEVARCH when FEAT RASSA 4KB GRP is implemented. If
FEAT RASSA_16KB_GRP or FEAT RASSA_64KB_GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRDEVARCH.

ERRDEVARCH can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xXFBC ERRDEVARCH
Accesses to this register are RO.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-91

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.11 ERRDEVID, Device Configuration Register

The ERRDEVID characteristics are:

Purpose

Provides discovery information for the component.

Configuration

ERRDEVID is implemented only as part of a memory-mapped group of error records.

Attributes
ERRDEVID is a 32-bit register.
Field descriptions

31 22,21,20,19 16,15 0
RESO PFG IRQCR NUM

LRESO

Bits [31:22]

Reserved, RESO.

PFG, bit [21]
When RAS System Architecture v2 is implemented:

Common Fault Injection Mechanism. Describes whether any Common Fault Injection Mechanism registers
are implemented in the same page as this register.

The value of this field is an IMPLEMENTATION DEFINED choice of:

PFG Meaning

0b0 Any Common Fault Injection Mechanism registers are implemented in the same page as this register.

0b1 Any Common Fault Injection Mechanism registers are implemented in a separate fault injection group
page.

The value of this field does not indicate that any Common Fault Injection Mechanism registers are
implemented by the nodes in this error record group. Software must use ERR<n>FR to discover whether
each node implements Common Fault Injection Mechanism registers.

Accessing this field has the following behavior:

. When ERRDEVID is part of a fault injection group, access to this field is RAZ/WI.
. Otherwise, access to this field is RO.

Otherwise:

Reserved, RAZ.

Bit [20]
Reserved, RESO.
IRQCR, bits [19:16]
Interrupt Control registers. Describes whether the interrupt control registers are implemented.

The value of this field is an IMPLEMENTATION DEFINED choice of:

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-92
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IRQCR Meaning

0b0000 It is IMPLEMENTATION DEFINED whether any interrupt control registers are implemented.

0b0001 An IMPLEMENTATION DEFINED form of interrupt control registers are implemented.

0b0010 The recommended layout form of interrupt control registers are implemented, for simple
interrupts.

0b0011 The recommended layout form of interrupt control registers are implemented, for

message-signaled interrupts.

0b1111 Interrupt control registers are not implemented.

All other values are reserved.

Accessing this field has the following behavior:

. When ERRDEVID is part of a fault injection group, access to this field is RAZ/WI.
. Otherwise, access to this field is RO.
NUM, bits [15:0]

Highest numbered index of the error records in this group, plus one. Each implemented record is owned by a node.
A node might own multiple records.

This field has an IMPLEMENTATION DEFINED value.

This manual describes a group of error records accessed via a standard 4KB memory-mapped peripheral. For a
4KB peripheral, up to 24 error records can be accessed if the Common Fault Injection Model is implemented, and
up to 56 otherwise.

Access to this field is RO.

Accessing ERRDEVID

This section shows the offset of ERRDEVID when FEAT RASSA 4KB GRP is implemented. If
FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_ GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRDEVID.

ERRDEVID can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xFC8 ERRDEVID
Accesses to this register are RO.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-93

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.12 ERRERICRO, Error Recovery Interrupt Configuration Register 0
The ERRERICRO characteristics are:

Purpose

Error Recovery Interrupt configuration register.

Configuration
ERRERICRO is implemented only as part of a memory-mapped group of error records.

This register is present only when (the Error Recovery Interrupt is implemented or the implementation does not
use the recommended layout for the ERRIRQCR registers) and interrupt configuration registers are implemented.
Otherwise, direct accesses to ERRERICRO are RESO.

Attributes

ERRERICRO is a 64-bit register.

Field descriptions

When the Error Recovery Interrupt is implemented, the implementation uses the recommended layout for the
ERRIRQCR registers, and the implementation uses simple interrupts:

63 32
RESO

31 0
RESO

Bits [63:0]

Reserved, RESO.

When the implementation uses message-signaled interrupts, the Error Recovery Interrupt is implemented, and the
implementation uses the recommended layout for the ERRIRQCR registers:

63 56 55 32
RESO ADDR :

31 2,1 0

: ADDR RESO

Bits [63:56]

Reserved, RESO.

ADDR, bits [55:2]

Message Signaled Interrupt address. (ERRERICR0.ADDR « 2) is the address that the component writes to when
signaling the Error Recovery Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED. Unimplemented high-order
physical address bits are RESO.

The reset behavior of this field is:
. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.
Bits [1:0]

Reserved, RESO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-94
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

63

When the implementation does not use the recommended layout for the ERRIRQCR registers:

32

IMPLEMENTATION DEFINED

31

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing ERRERICRO

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to ERRERICRO
are IMPLEMENTATION DEFINED.

This section shows the offset of ERRERICRO when FEAT _RASSA_4KB_GRP is implemented. If
FEAT RASSA 16KB GRP or FEAT RASSA 64KB GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRERICRO.

ERRERICRO can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xE90 ERRERICRO
Accessible as follows:
. When ((the implementation uses message-signaled interrupts && (IsAccessNonSecure() || IsAccessRealm()))

&& the implementation uses the recommended layout for the ERRIRQCR registers) && ERRERICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure, accesses to this register are RO.
. Otherwise, accesses to this register are RW.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-95
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.13 ERRERICR1, Error Recovery Interrupt Configuration Register 1

The ERRERICRI1 characteristics are:

Purpose

Error Recovery Interrupt configuration register.

Configuration
ERRERICRI1 is implemented only as part of a memory-mapped group of error records.

This register is present only when (the Error Recovery Interrupt is implemented or the implementation does not
use the recommended layout for the ERRIRQCR registers) and interrupt configuration registers are implemented.
Otherwise, direct accesses to ERRERICR1 are RESO.

Attributes

ERRERICRI1 is a 32-bit register.

Field descriptions

When the Error Recovery Interrupt is implemented, the implementation uses the recommended layout for the
ERRIRQCR registers, and the implementation uses simple interrupts:

31 0
RESO
Bits [31:0]
Reserved, RESO.
When the implementation uses message-signaled interrupts, the Error Recovery Interrupt is implemented, and the
implementation uses the recommended layout for the ERRIRQCR registers:
31 0
DATA
DATA, bits [31:0]
Payload for the message signaled interrupt.
The reset behavior of this field is:
. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.
When the implementation does not use the recommended layout for the ERRIRQCR registers:
31 0

IMPLEMENTATION DEFINED

IHI0100
Aa

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.

Accessing ERRERICR1

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to ERRERICR1
are IMPLEMENTATION DEFINED.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-96
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

This section shows the offset of ERRERICR1 when FEAT RASSA 4KB GRP is implemented. If
FEAT RASSA_16KB_GRP or FEAT RASSA_64KB_GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRERICRI.

ERRERICRI1 can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xE98 ERRERICRI
Accessible as follows:
. When ((the implementation uses message-signaled interrupts && (IsAccessNonSecure() || IsAccessRealm()))

&& the implementation uses the recommended layout for the ERRIRQCR registers) && ERRERICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure, accesses to this register are RO.
. Otherwise, accesses to this register are RW.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-97
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.214 ERRERICR2, Error Recovery Interrupt Configuration Register 2
The ERRERICR?2 characteristics are:

Purpose

Error Recovery Interrupt control and configuration register.

Configuration
ERRERICR?2 is implemented only as part of a memory-mapped group of error records.

This register is present only when (the Error Recovery Interrupt is implemented or the implementation does not
use the recommended layout for the ERRIRQCR registers) and interrupt configuration registers are implemented.
Otherwise, direct accesses to ERRERICR2 are RESO.

Attributes

ERRERICR? is a 32-bit register.

Field descriptions

When the Error Recovery Interrupt is implemented, the implementation uses the recommended layout for the
ERRIRQCR registers, and the implementation uses simple interrupts:

31 8,7,6 0
RESO RESO

|_IROEN

Bits [31:8]

Reserved, RESO.

IRQEN, bit [7]

Interrupts enable. Enables generation of interrupts.

IRQEN Meaning
0b0 Disabled.
0bl Enabled.
The reset behavior of this field is:
. On a Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [6:0]

Reserved, RESO.

When the implementation uses message-signaled interrupts, the Error Recovery Interrupt is implemented, and the
implementation uses the recommended layout for the ERRIRQCR registers:

31 8,7,6,5 4,3 0
RESO SH MemAttr

IRQENJ LNSMSI

Bits [31:8]

Reserved, RESO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-98
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IRQEN, bit [7]

When the component supports disabling message signaled interrupts:

Message signaled interrupt enable. Enables generation of message signaled interrupts.

IRQEN Meaning
0b0 Disabled.
0b1l Enabled.
The reset behavior of this field is:
. On a Error recovery reset, this field resets to 'o'.

Otherwise:
Reserved, RESO.
Message signaled interrupt enable.

Message signaled interrupts are always enabled.

NSMSI, bit [6]
When the component supports configuring the physical address space for message signaled interrupts:

Non-secure message signaled interrupt. Defines the physical address space for message signaled interrupts.

NSMSI Meaning

0b0 Secure physical address space.

0bl Non-secure physical address space.
The reset behavior of this field is:
. On a Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

. Access to this field is RO if any of the following are true:

— an access is Non-secure
— an access is Realm

. Otherwise, access to this field is RW.
Otherwise:

Reserved, RESO.

Non-secure message signaled interrupt.

The physical address space for message signaled interrupts is IMPLEMENTATION DEFINED.

SH, bits [S:4]
When the component supports configuring the Shareability domain for message signaled interrupts:

Shareability. Defines the Shareability domain for message signaled interrupts.

SH Meaning
0b00 Not shared.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-99

Aa Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

IHI0100
Aa

SH Meaning
0b10 Outer Shareable.
0bl11l Inner Shareable.

All other values are reserved.

This field is ignored when ERRERICR2.MemAttr specifies any of the following memory types:

. Any Device memory type.
. Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated as
Outer Shareable.

The reset behavior of this field is:

. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.
Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

MemAttr, bits [3:0]

When the component supports configuring the memory type for message signaled interrupts:

Memory type. Defines the memory type and attributes for message signaled interrupts.

MemAttr Meaning

000000 Device-nGnRnE memory.

000001 Device-nGnRE memory.

000010 Device-nGRE memory.

000011 Device-GRE memory.

0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.
0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
061010 Normal memory, Inner Write-Through, Outer Write-Through.
0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.
This is the same format as the VMSAv8-64 stage 2 memory region attributes.

The reset behavior of this field is:

. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-100
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

31

Otherwise:
Reserved, RESO.
Memory type.

The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

When the implementation does not use the recommended layout for the ERRIRQCR registers:

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing ERRERICR2

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to ERRERICR2
are IMPLEMENTATION DEFINED.

This section shows the offset of ERRERICR2 when FEAT RASSA 4KB GRP is implemented. If
FEAT RASSA_16KB_GRP or FEAT RASSA_64KB_GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRERICR2.

ERRERICR?2 can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xE9C ERRERICR2
Accessible as follows:
. When ((the implementation uses message-signaled interrupts && (IsAccessNonSecure() || IsAccessRealm()))

&& the implementation uses the recommended layout for the ERRIRQCR registers) && ERRERICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure, accesses to this register are RO.
. Otherwise, accesses to this register are RW.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-101
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.15 ERRFHICRO, Fault Handling Interrupt Configuration Register 0
The ERRFHICRO characteristics are:

Purpose

Fault Handling Interrupt configuration register.

Configuration
ERRFHICRO is implemented only as part of a memory-mapped group of error records.

This register is present only when (the Fault Handling Interrupt is implemented or the implementation does not use
the recommended layout for the ERRIRQCR registers) and interrupt configuration registers are implemented.
Otherwise, direct accesses to ERRFHICRO are RESO.

Attributes

ERRFHICRO is a 64-bit register.

Field descriptions

When the Fault Handling Interrupt is implemented, the implementation uses the recommended layout for the
ERRIRQCR registers, and the implementation uses simple interrupts:

63 32
RESO

31 0
RESO

Bits [63:0]

Reserved, RESO.

When the implementation uses message-signaled interrupts, the Fault Handling Interrupt is implemented, and the
implementation uses the recommended layout for the ERRIRQCR registers:

63 56 55 32
RESO ADDR :

31 2,1 0

: ADDR RESO

Bits [63:56]

Reserved, RESO.

ADDR, bits [55:2]

Message Signaled Interrupt address. (ERRFHICRO.ADDR « 2) is the address that the component writes to when
signaling the Fault Handling Interrupt. Bits [1:0] of the address are always zero.

The physical address size supported by the component is IMPLEMENTATION DEFINED. Unimplemented high-order
physical address bits are RESO.

The reset behavior of this field is:
. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.
Bits [1:0]

Reserved, RESO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-102
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

63

When the implementation does not use the recommended layout for the ERRIRQCR registers:

32

IMPLEMENTATION DEFINED

31

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing ERRFHICRO

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to ERRFHICRO
are IMPLEMENTATION DEFINED.

This section shows the offset of ERRFHICRO when FEAT _RASSA_4KB_GRP is implemented. If
FEAT RASSA 16KB GRP or FEAT RASSA 64KB GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRFHICRO.

ERRFHICRO can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xE80 ERRFHICRO
Accessible as follows:
. When ((the implementation uses message-signaled interrupts && (IsAccessNonSecure() || IsAccessRealm()))

&& the implementation uses the recommended layout for the ERRIRQCR registers) && ERRFHICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure, accesses to this register are RO.
. Otherwise, accesses to this register are RW.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-103
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.16 ERRFHICR1, Fault Handling Interrupt Configuration Register 1

The ERRFHICRI1 characteristics are:

Purpose

Fault Handling Interrupt configuration register.

Configuration
ERRFHICRI1 is implemented only as part of a memory-mapped group of error records.

This register is present only when (the Fault Handling Interrupt is implemented or the implementation does not use
the recommended layout for the ERRIRQCR registers) and interrupt configuration registers are implemented.
Otherwise, direct accesses to ERRFHICR1 are RESO.

Attributes

ERRFHICRI1 is a 32-bit register.

Field descriptions

When the Fault Handling Interrupt is implemented, the implementation uses the recommended layout for the
ERRIRQCR registers, and the implementation uses simple interrupts:

31 0
RESO
Bits [31:0]
Reserved, RESO.
When the implementation uses message-signaled interrupts, the Fault Handling Interrupt is implemented, and the
implementation uses the recommended layout for the ERRIRQCR registers:
31 0
DATA
DATA, bits [31:0]
Payload for the message signaled interrupt.
The reset behavior of this field is:
. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.
When the implementation does not use the recommended layout for the ERRIRQCR registers:
31 0

IMPLEMENTATION DEFINED

IHI0100
Aa

IMPLEMENTATION DEFINED, bits [31:0]
IMPLEMENTATION DEFINED.

Accessing ERRFHICR1

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to ERRFHICR1
are IMPLEMENTATION DEFINED.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-104
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

This section shows the offset of ERRFHICR1 when FEAT RASSA 4KB_ GRP is implemented. If
FEAT RASSA_16KB_GRP or FEAT RASSA_64KB_GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRFHICRI.

ERRFHICRI1 can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xE88 ERRFHICRI
Accessible as follows:
. When ((the implementation uses message-signaled interrupts && (IsAccessNonSecure() || IsAccessRealm()))

&& the implementation uses the recommended layout for the ERRIRQCR registers) && ERRFHICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure, accesses to this register are RO.
. Otherwise, accesses to this register are RW.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-105
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.17 ERRFHICR2, Fault Handling Interrupt Configuration Register 2
The ERRFHICR?2 characteristics are:

Purpose

Fault Handling Interrupt control and configuration register.

Configuration
ERRFHICR?2 is implemented only as part of a memory-mapped group of error records.

This register is present only when (the Fault Handling Interrupt is implemented or the implementation does not use
the recommended layout for the ERRIRQCR registers) and interrupt configuration registers are implemented.
Otherwise, direct accesses to ERRFHICR2 are RESO.

Attributes

ERRFHICR? is a 32-bit register.

Field descriptions

When the Fault Handling Interrupt is implemented, the implementation uses the recommended layout for the
ERRIRQCR registers, and the implementation uses simple interrupts:

31 8,7,6 0
RESO RESO

|_IROEN

Bits [31:8]

Reserved, RESO.

IRQEN, bit [7]

Interrupts enable. Enables generation of interrupts.

IRQEN Meaning
0b0 Disabled.
0bl Enabled.
The reset behavior of this field is:
. On a Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

Bits [6:0]

Reserved, RESO.

When the implementation uses message-signaled interrupts, the Fault Handling Interrupt is implemented, and the
implementation uses the recommended layout for the ERRIRQCR registers:

31 8,7,6,5 4,3 0
RESO SH MemAttr

IRQENJ LNSMSI

Bits [31:8]

Reserved, RESO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-106
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IRQEN, bit [7]

When the component supports disabling message signaled interrupts:

Message signaled interrupt enable. Enables generation of message signaled interrupts.

IRQEN Meaning
0b0 Disabled.
0b1l Enabled.
The reset behavior of this field is:
. On a Error recovery reset, this field resets to 'o'.

Otherwise:
Reserved, RESO.
Message signaled interrupt enable.

Message signaled interrupts are always enabled.

NSMSI, bit [6]
When the component supports configuring the physical address space for message signaled interrupts:

Non-secure message signaled interrupt. Defines the physical address space for message signaled interrupts.

NSMSI Meaning

0b0 Secure physical address space.

0bl Non-secure physical address space.
The reset behavior of this field is:
. On a Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

Accessing this field has the following behavior:

. Access to this field is RO if any of the following are true:

— an access is Non-secure
— an access is Realm

. Otherwise, access to this field is RW.
Otherwise:

Reserved, RESO.

Non-secure message signaled interrupt.

The physical address space for message signaled interrupts is IMPLEMENTATION DEFINED.

SH, bits [S:4]
When the component supports configuring the Shareability domain for message signaled interrupts:

Shareability. Defines the Shareability domain for message signaled interrupts.

SH Meaning
0b00 Not shared.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-107

Aa Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

IHI0100
Aa

SH Meaning
0b10 Outer Shareable.
0bl11l Inner Shareable.

All other values are reserved.

This field is ignored when ERRFHICR2.MemAttr specifies any of the following memory types:

. Any Device memory type.
. Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated as
Outer Shareable.

The reset behavior of this field is:

. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.
Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

MemAttr, bits [3:0]

When the component supports configuring the memory type for message signaled interrupts:

Memory type. Defines the memory type and attributes for message signaled interrupts.

MemAttr Meaning

000000 Device-nGnRnE memory.

000001 Device-nGnRE memory.

000010 Device-nGRE memory.

000011 Device-GRE memory.

0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.
0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
061010 Normal memory, Inner Write-Through, Outer Write-Through.
0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.
This is the same format as the VMSAv8-64 stage 2 memory region attributes.

The reset behavior of this field is:

. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-108
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

31

Otherwise:
Reserved, RESO.
Memory type.

The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

When the implementation does not use the recommended layout for the ERRIRQCR registers:

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing ERRFHICR2

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to ERRFHICR2
are IMPLEMENTATION DEFINED.

This section shows the offset of ERRFHICR2 when FEAT RASSA 4KB_ GRP is implemented. If
FEAT RASSA_16KB_GRP or FEAT RASSA_64KB_GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRFHICR2.

ERRFHICR?2 can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xE8C ERRFHICR2
Accessible as follows:
. When ((the implementation uses message-signaled interrupts && (IsAccessNonSecure() || IsAccessRealm()))

&& the implementation uses the recommended layout for the ERRIRQCR registers) && ERRFHICR2.NSMSI
configures the physical address space for message-signaled interrupts as Secure, accesses to this register are RO.
. Otherwise, accesses to this register are RW.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-109
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.18

IHI0100
Aa

ERRGSR, Error Group Status Register
The ERRGSR characteristics are:

63

Purpose

Shows the status for the records in the group.

Configuration

ERRGSR is implemented only as part of a memory-mapped group of error records.

IfFEAT RASSA 16KB_GRP or FEAT RASSA 64KB_GRP is implemented, then multiple ERRGSR<n>

registers are implemented.

Attributes

ERRGSR is a 64-bit register.

Field descriptions

61

59,58,57,56,55,54,53,52,51,50,49,48,47,46,45,44,43,42,41,40,39,38,37,36,35

32

563

561

S59|S58|S57|S56[S55[554{S53(S52(S511S50|549[S48[S47|546/S545(S44(543|542/S41|S40[S39|538]S37[S36(S35)

534

533

532,

31

27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9 ;8 ;7 ;6 ;5,43

1[S31

529

S27|S26/S25|524{523|522|S21{S26[S19|S18/S17[S16/S15/S14{S13(S12/S11/S106{ S9 | S8 [S7|S6|S5[S4|S3

S2

S1

S<m>, bits [m], for m =63 to 0

IfFEAT RASSA 4KB_GRP is implemented, the status for error record <m>. A read-only copy of

ERR<m>STATUS.V.

IfFEAT RASSA_16KB_GRP is implemented or FEAT RASSA 64KB_GRP is implemented, the status for error

record <nx 64+m>, where n is the index of this register, ERRGSR<n>. A read-only copy of
ERR<nx 64+m>STATUS.V.

S<m> Meaning
0b0 No error.
0bl One or more errors.
Accessing this field has the following behavior:
. Access to this field is ResO if all of the following are true:
— FEAT RASSA 4KB_GRP is implemented
— m>=56
. Access to this field is REsO if all of the following are true:

— FEAT RASSA 4KB GRP is implemented

— the Common Fault Injection Model is implemented by any error record in the group

— m>=24
. Access to this field is RAZ/WI if all of the following are true:
— FEAT RASSA 4KB GRP is implemented
— error record m is not implemented
. Access to this field is RAZ/WI if all of the following are true:
— Any of the following are true:
— FEAT RASSA_16KB_GRP is implemented
— FEAT RASSA 64KB_GRP is implemented
— error record (n * 64) + m is not implemented
. Access to this field is RAZ/WI if all of the following are true:
— FEAT RASSAV2 is not implemented
— error record m does not support this type of reporting
. Otherwise, access to this field is RO.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

3-110

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions
Accessing ERRGSR

This section shows the offset of ERRGSR when FEAT RASSA 4KB GRP is implemented. If
FEAT RASSA_16KB_GRP or FEAT RASSA_64KB_GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRGSR<n>.

ERRGSR can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xE00 ERRGSR
Accesses to this register are RO.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-111

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.19

IHI0100
Aa

ERRIIDR, Implementation Identification Register

31

The ERRIIDR characteristics are:

Purpose

Defines the implementer of the component.

Configuration

This register is present only when RAS System Architecture vlp1 is implemented. Otherwise, direct accesses to
ERRIIDR are REsO.

Attributes

ERRIIDR is a 32-bit register.

Field descriptions

20,19 16,15 12,11 0

ProductID Variant Revision Implementer

ProductID, bits [31:20]
Part number, bits [11:0]. The part number is selected by the designer of the component.
This field has an IMPLEMENTATION DEFINED value.

If ERRPIDRO and ERRPIDR1 are implemented, ERRPIDRO.PART 0 matches bits [7:0] of ERRIIDR.ProductID
and ERRPIDR1.PART 1 matches bits [11:8] of ERRIIDR.ProductID.

Access to this field is RO.

Variant, bits [19:16]
Component major revision.
This field distinguishes product variants or major revisions of the product.
This field has an IMPLEMENTATION DEFINED value.
If ERRPIDR?2 is implemented, ERRPIDR2.REVISION matches ERRIIDR. Variant.

Access to this field is RO.

Revision, bits [15:12]
Component minor revision.
This field distinguishes minor revisions of the product.
This field has an IMPLEMENTATION DEFINED value.
If ERRPIDR3 is implemented, ERRPIDR3.REVAND matches ERRIIDR.Revision.

Access to this field is RO.

Implementer, bits [11:0]
Contains the JEP106 manufacturer’s identification code of the designer of the RAS component.

The code identifies the designer of the component, which might not be the same as the implementer of the device
containing the component.

Zero is not a valid JEP106 identification code, meaning a value of zero for ERRIIDR indicates this register is not
implemented.

For an implementation designed by Arm, this field reads as 0x43s.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-112
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

This field has an IMPLEMENTATION DEFINED value.

Bits [11:8] contain the JEP106 bank identifier of the designer minus 1.

Bit 7 is RESO.

Bits [6:0] contain bits [6:0] of the JEP106 manufacturer’s identification code of the designer.
If ERRPIDR4 is implemented, ERRPIDR4.DES 2 matches bits [11:8] of this field.

If ERRPIDR?2 is implemented, ERRPIDR2.DES 1 matches bits [6:4] of this field.

If ERRPIDR1 is implemented, ERRPIDR1.DES 0 matches bits [3:0] of this field.

Access to this field is RO.

Accessing ERRIIDR

This section shows the offset of ERRIIDR when FEAT RASSA 4KB GRP is implemented. If
FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_ GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRIIDR.

ERRIIDR can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xE10 ERRIIDR
Accesses to this register are RO.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-113

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.20 ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <n>,n =0 - 191
The ERRIMPDEF<n> characteristics are:

Purpose

IMPLEMENTATION DEFINED RAS extensions.

Configuration

This register is present only when the Common Fault Injection Model Extension is not implemented,
UInt(ERRDEVID.NUM) <= 32, and an implementation implements ERRIMPDEF<n>. Otherwise, direct
accesses to ERRIMPDEF<n> are RESO.

Attributes
ERRIMPDEF<n> is a 64-bit register.
Field descriptions

63 32
IMPLEMENTATION DEFINED

31 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [63:0]
IMPLEMENTATION DEFINED.

Accessing ERRIMPDEF<n>

This section shows the offset of ERRIMPDEF<n>when FEAT RASSA 4KB GRP is implemented. If
FEAT RASSA 16KB GRP or FEAT RASSA 64KB GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRIMPDEF<n>.

ERRIMPDEF<n> can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0x800 + (8 * ERRIMPDEF<n>
“—n)

Accesses to this register are RW.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-114
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.21 ERRIRQCR<n>, Generic Error Interrupt Configuration Register <n>, n=0-15
The ERRIRQCR<n> characteristics are:

Purpose
The ERRIRQCR<n> registers are reserved for IMPLEMENTATION DEFINED interrupt configuration registers.

The architecture provides a recommended layout for the ERRIRQCR<n> registers. These registers are named:

. ERRFHICRO, ERRFHICR1, and ERRFHICR?2 for the fault handling interrupt controls.
. ERRERICRO, ERRERICR1, and ERRERICR?2 for the error recovery interrupt controls.
. ERRCRICRO, ERRCRICR1, and ERRCRICR2 for the critical error interrupt controls.

. ERRIRQSR for the status register.

This section describes the generic, IMPLEMENTATION DEFINED, format.

Configuration
ERRIRQCR<n> is implemented only as part of a memory-mapped group of error records.

This register is present only when the interrupt configuration registers are implemented. Otherwise, direct accesses
to ERRIRQCR<n> are RESO.

Attributes
ERRIRQCR<n> is a 64-bit register.

Field descriptions

63 32
IMPLEMENTATION DEFINED

31 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [63:0]
IMPLEMENTATION DEFINED controls. The content of these registers is IMPLEMENTATION DEFINED.

Accessing ERRIRQCR<n>

This section shows the offset of ERRIRQCR<n> when FEAT RASSA 4KB_ GRP is implemented. If
FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_ GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRIRQCR<n>.

ERRIRQCR<n> can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xE80 + (8 * ERRIRQCR<n>
“—n)

Accesses to this register are RW.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-115
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.22 ERRIRQSR, Error Interrupt Status Register
The ERRIRQSR characteristics are:

Purpose

Interrupt status register.

Configuration
ERRIRQSR is implemented only as part of a memory-mapped group of error records.

This register is present only when interrupt configuration registers are implemented. Otherwise, direct accesses to
ERRIRQSR are RESO.

Attributes

ERRIRQSR is a 64-bit register.

Field descriptions

When the implementation uses the recommended layout for the ERRIRQCR registers and the implementation uses
simple interrupts:

63 32
RESO

31 0
RESO

Bits [63:0]
Reserved, RESO.

To determine whether an interrupt is active, software must examine the individual ERR<n>STATUS registers.

When the implementation uses message-signaled interrupts and the implementation uses the recommended layout
for the ERRIRQCR registers:

63 32
RESO :
31 6,5,4,3,2,1,0
: RESO cr1l [ERI] [FHI
CRIERRJ L- L Furerr
ERIERR
Bits [63:6]

Reserved, RESO.

CRIERR, bit [5]
When the Critical Error Interrupt is implemented:

Critical Error Interrupt Error.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-116
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

CRIERR Meaning

0b0 Critical Error Interrupt write has not returned an error since this field was last
cleared to zero.

0bl Critical Error Interrupt write has returned an error since this field was last
cleared to zero.

The reset behavior of this field is:
. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.
Access to this field is W1C.
Otherwise:
Reserved, RESO.
CRI, bit [4]
When the Critical Error Interrupt is implemented:

Critical Error Interrupt write in progress.

CRI Meaning
0b0 Critical Error Interrupt write not in progress.
0b1 Critical Error Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

This field does not indicate whether an interrupt is active, but rather whether a write triggered by the interrupt
is in progress.

To determine whether an interrupt is active, software must examine the individual ERR<n>STATUS
registers.

Access to this field is RO.
Otherwise:
Reserved, RESO.
ERIERR, bit [3]
When the Error Recovery Interrupt is implemented:

Error Recovery Interrupt Error.

ERIERR Meaning

0b0 Error Recovery Interrupt write has not returned an error since this field was
last cleared to zero.

0bl Error Recovery Interrupt write has returned an error since this field was last
cleared to zero.

The reset behavior of this field is:
. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.

Access to this field is WIC.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-117
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Otherwise:

Reserved, RESO.

ERI, bit [2]

When the Error Recovery Interrupt is implemented:

Error Recovery Interrupt write in progress.

ERI Meaning
0b0 Error Recovery Interrupt write not in progress.
0bl Error Recovery Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

This field does not indicate whether an interrupt is active, but rather whether a write triggered by the interrupt
is in progress.

To determine whether an interrupt is active, software must examine the individual ERR<n>STATUS
registers.

Access to this field is RO.
Otherwise:

Reserved, RESO.

FHIERR, bit [1]

When the Fault Handling Interrupt is implemented:

Fault Handling Interrupt Error.

FHIERR Meaning

0b0 Fault Handling Interrupt write has not returned an error since this field was
last cleared to zero.

0bl Fault Handling Interrupt write has returned an error since this field was last

cleared to zero.

IHI0100
Aa

The reset behavior of this field is:
. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.
Access to this field is W1C.

Otherwise:

Reserved, RESO.

FHI, bit [0]
When the Fault Handling Interrupt is implemented:

Fault Handling Interrupt write in progress.

FHI Meaning
0b0 Fault Handling Interrupt write not in progress.
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-118

Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

63

0bl Fault Handling Interrupt write in progress.

Software must not disable an interrupt whilst the write is in progress.

This field does not indicate whether an interrupt is active, but rather whether a write triggered by the interrupt
is in progress.

To determine whether an interrupt is active, software must examine the individual ERR<n>STATUS
registers.

Access to this field is RO.

Otherwise:

Reserved, RESO.
When the implementation does not use the recommended layout for the ERRIRQCR registers:

32

IMPLEMENTATION DEFINED

31

IMPLEMENTATION DEFINED

IHI0100
Aa

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED.

Accessing ERRIRQSR

If the implementation does not use the recommended layout for the ERRIRQCR registers then accesses to ERRIRQSR
are IMPLEMENTATION DEFINED.

This section shows the offset of ERRIRQSR when FEAT RASSA 4KB_GRP is implemented. If
FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_ GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRIRQSR.

ERRIRQSR can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xEF8 ERRIRQSR
Accessible as follows:
. When ((the implementation uses message-signaled interrupts && (IsAccessNonSecure() || IsAccessRealm()))

&& the implementation uses the recommended layout for the ERRIRQCR registers) && ERRIRQSR.NSMSI
configures the physical address space for message-signaled interrupts as Secure, accesses to this register are RO.
. Otherwise, accesses to this register are RW.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-119
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.23 ERR<n>ADDR, Error Record <n> Address Register, n =0 - 65534
The ERR<n>ADDR characteristics are:

Purpose

If an address is associated with a detected error, then it is written to ERR<n>ADDR when the error is recorded. It
iS IMPLEMENTATION DEFINED how the recorded address maps to the software-visible physical address. Software
might have to reconstruct the actual physical addresses using the identity of the node and knowledge of the system.

Configuration

ERRFR[FirstRecordOfNode(n)] describes the features implemented by the node that owns error record <n>.
FirstRecordOfNode(n) is the index of the first error record owned by the same node as error record <n>. If the
node owns a single record then FirstRecordOfNode(n) = n.

This register is present only when error record n is implemented and error record n includes an address associated
with an error. Otherwise, direct accesses to ERR<n>ADDR are RESO.

Attributes
ERR<n>ADDR is a 64-bit register.

Field descriptions

63,62 ,61,60,59,58 56 55 32
NS|[SI|AI|VANSE RES@ PADDR :
31 0
: PADDR

NS, bit [63]

When FEAT RME is implemented:
Non-secure attribute. With ERR<n>ADDR.NSE, indicates the physical address space of the recorded

location.
NS Meaning
010 When ERR<n>ADDR.NSE == 0: ERR<n>ADDR.PADDR is a Secure address.
When ERR<n>ADDR.NSE == 1: ERR<n>ADDR.PADDR is a Root address.
0bl When ERR<n>ADDR.NSE == 0: ERR<n>ADDR.PADDR is a Non-secure address.

When ERR<n>ADDR.NSE == 1: ERR<n>ADDR.PADDR is a Realm address.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Non-secure attribute.

NS Meaning
0b0 ERR<n>ADDR.PADDR is a Secure address.
0bl ERR<n>ADDR.PADDR is a Non-secure address.
The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-120

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

SI, bit [62]

When FEAT RME is implemented:
Secure Incorrect. Indicates whether ERR<n>ADDR.{NS, NSE} are valid.

Si Meaning

0b0 ERR<n>ADDR.{NS, NSE} are correct. That is, they match the software’s view of the physical address
space for the recorded location.

0bl ERR<n>ADDR.{NS, NSE} might not be correct, and might not match the software’s view of the
physical address space for the recorded location.

It is IMPLEMENTATION DEFINED whether this field is read-only or read/write.
The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Secure Incorrect. Indicates whether ERR<n>ADDR.NS is valid.

Si Meaning

0b0 ERR<n>ADDR.NS is correct. That is, it matches the software’s view of the Non-secure attribute for the
recorded location.

0bl ERR<n>ADDR.NS might not be correct, and might not match the software’s view of the Non-secure
attribute for the recorded location.

It is IMPLEMENTATION DEFINED whether this field is read-only or read/write.
The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

AL bit [61]

Address Incorrect. Indicates whether ERR<n>ADDR.PADDR is a valid physical address that is known to match
the software’s view of the physical address for the recorded location.

Al Meaning

0b0 ERR<n>ADDR.PADDR is a valid physical address. That is, it matches the software’s view of the
physical address for the recorded location.

0bl ERR<n>ADDR.PADDR might not be a valid physical address, and might not match the software’s view
of the physical address for the recorded location.

It is IMPLEMENTATION DEFINED whether this field is read-only or read/write.
The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

VA, bit [60]
Virtual Address. Indicates whether ERR<n>ADDR.PADDR field is a virtual address.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-121
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

VA Meaning
0b0 ERR<n>ADDR.PADDR is not a virtual address.
0bl ERR<n>ADDR.PADDR is a virtual address.

No context information is provided for the virtual address. When ERR<n>ADDR.VA is recorded as 1,
ERR<n>ADDR.{NS, SI, Al} are recorded as {0, 1, 1} and, if FEAT RME is implemented, ERR<n>ADDR.NSE
is recorded as 0.

Support for this field is optional. If this field is not implemented and ERR<n>ADDR.PADDR field is a virtual
address, then ERR<n>ADDR.{NS, SI, Al} read as {0, 1, 1} and, if FEAT RME is implemented,
ERR<n>ADDR.NSE reads as 0.

It is IMPLEMENTATION DEFINED whether this field is read-only or read/write.
The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

NSE, bit [59]
When FEAT RME is implemented:

Physical Address Space. Together with ERR<n>ADDR.NS, indicates the address space for
ERR<n>ADDR.PADDR.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

Bits [58:56]

Reserved, RESO.

PADDR, bits [55:0]

Physical Address. Address of the recorded location. If the physical address size implemented by this component is
smaller than the size of this field, then high-order bits are unimplemented and either ResO or have a fixed read-only
IMPLEMENTATION DEFINED value. Low-order address bits might also be unimplemented and ResO, for example, if
the physical address is always aligned to the size of a protection granule.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing ERR<n>ADDR
ERR<n>ADDR can be accessed through the memory-mapped interface:

Component Offset Instance

RAS 0x018 + (64 * ERR<n>ADDR
“—n)

Accessible as follows:

. When the node that owns error record n implements the Common Fault Injection Model Extension,
ERRPFGF[FirstRecordOfNode(n)].AV == 0, and ERR<n>STATUS.AV == 1, accesses to this register are RO.

. When the node that owns error record n does not implement the Common Fault Injection Model Extension and
ERR<n>STATUS.AV == 1, accesses to this register are RO.

. Otherwise, accesses to this register are RW.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-122
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.24 ERR<n>CTLR, Error Record <n> Control Register, n = 0 - 65534

The ERR<n>CTLR characteristics are:

Purpose

The error control register contains enable bits for the node that writes to this record:

. Enabling error detection and correction.
. Enabling the critical error, error recovery, and fault handling interrupts.
. Enabling in-band error response for uncorrected errors.

For each bit, if the node does not support the feature, then the bit is RESO. The definition of each record is
IMPLEMENTATION DEFINED.

Configuration
ERR<n>FR contains additional information about the node.

This register is present only when error record n is implemented and error record n is the first error record in the
node. Otherwise, direct accesses to ERR<n>CTLR are RESO.

Attributes
ERR<n>CTLR is a 64-bit register.
Field descriptions

63 32
IMPLEMENTATION DEFINED

31 16,15,14,13,12,11,10, 9 ;8 ;7,6 ;5,4 ,3,2,1,0
E RESO DFI|{CI |CED| DUI CFIWUEWFIWUIIUE|FI|UI ED
WDFIJ J LIMPLEMENTA
WDUI TION
DEFINED
WCFI

IMPLEMENTATION DEFINED, bits [63:32]

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

Bits [31:16]

Reserved, RESO.

WDFI, bit [15]
When RAS System Architecture v2 is implemented and ERR<n>FR.DFI == 0b11:
Fault handling interrupt for Deferred errors on writes enable, with ERR<n>CTLR.WFIL.

When enabled by ERR<n>CTLR.{WDFI, wr1}:

. The fault handling interrupt is generated for errors recorded as Deferred error on writes.
. If the corresponding fault handling interrupt control for corrected error events, ERR<n>CTLR.WCFI,
is not implemented, then the fault handling interrupt is generated for corrected error events on writes.

WDFI Meaning
0b0 When ERR<n>CTLR.WFI == 0, Fault handling interrupt not generated for Deferred errors on
writes.

When ERR<n>CTLR.WFI == 1, Fault handling interrupt generated for Deferred errors on writes.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-123
Aa Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

WODFI

Meaning

Obl

When ERR<n>CTLR.WFI == 0, Fault handling interrupt generated for Deferred errors on writes.
When ERR<n>CTLR.WFI == 1, Fault handling interrupt not generated for Deferred errors on
writes.

Bit [14]

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

When RAS System Architecture v2 is implemented and ERR<n>FR.DFI == 0b10:

DFTI, bit [14]

Fault handling interrupt for Deferred errors enable, with ERR<n>CTLR.FI.
When ERR<n>FR.DFI == ob10, this control applies to errors on both reads and writes.

When enabled by ERR<n>CTLR.{DFI, FI}:

. The fault handling interrupt is generated for all errors recorded as Deferred error.
. If the fault handling interrupt control for corrected error events, ERR<n>CTLR.CFI, is not
implemented, then the fault handling interrupt is generated for all corrected error events.

DFI

Meaning

0b0

Obl

When ERR<n>CTLR.FI == 0, Fault handling interrupt not generated for Deferred errors.
When ERR<n>CTLR.FI == 1, Fault handling interrupt generated for Deferred errors.

When ERR<n>CTLR.FI == 0, Fault handling interrupt generated for Deferred errors.
When ERR<n>CTLR.FI == 1, Fault handling interrupt not generated for Deferred errors.

IHI0100
Aa

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

When RAS System Architecture v2 is implemented and ERR<n>FR.DFI == 0b11:

RDFTI, bit [14]

Fault handling interrupt for Deferred errors on reads enable, with ERR<n>CTLR.RFI.
When enabled by ERR<n>CTLR.{RDFI, RFI}:

. The fault handling interrupt is generated for errors recorded as Deferred error on reads.
. If the corresponding fault handling interrupt control for corrected error events, ERR<n>CTLR.RCFI,
is not implemented, then the fault handling interrupt is generated for corrected error events on reads.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-124
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

RDFI Meaning

0b0 When ERR<n>CTLR.RFI == 0, Fault handling interrupt not generated for Deferred errors on reads.
When ERR<n>CTLR.RFI == 1, Fault handling interrupt generated for Deferred errors on reads.

0bl When ERR<n>CTLR.RFI == 0, Fault handling interrupt generated for Deferred errors on reads.
When ERR<n>CTLR.RFI == 1, Fault handling interrupt not generated for Deferred errors on reads.

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.
CI, bit [13]

When ERR<n>FR.CI == 0b10:

Critical error interrupt enable. When enabled, the critical error interrupt is generated for a critical error

condition.
Cl Meaning
0b0 Critical error interrupt not generated for critical errors. Critical errors are treated as Uncontained
errors.
0bl Critical error interrupt generated for critical errors.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

CED, bit [12]

When RAS System Architecture v2 is implemented, ERR<n>FR.CEC != 00000, and ERR<n>FR.CED ==

Disable generation of corrected error events from error counters.

CED Meaning
0b0 Corrected error events are generated by the error counter or counters.
0bl Corrected error events are generated when a Corrected error is recorded.

See ERR<n>CTLR.CFI for more information on corrected error events.
The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-125
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

WDUI, bit [11]
When ERR<n>FR.DUI == 0b11:

Error recovery interrupt for Deferred errors on writes enable.

When enabled, the error recovery interrupt is generated for errors recorded as Deferred error on writes.

WDUI Meaning
0b0 Error recovery interrupt not generated for Deferred errors on writes.
0b1l Error recovery interrupt generated for Deferred errors on writes.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

Bit [10]
When ERR<n>FR.DUI == 0b10:
DUI, bit [10]
Error recovery interrupt for Deferred errors enable.
When ERR<n>FR.DUI == o010, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all errors recorded as Deferred error.

DUI Meaning
0b0 Error recovery interrupt not generated for Deferred errors.
0b1 Error recovery interrupt generated for Deferred errors.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.
When ERR<n>FR.DUI == 0b11:
RDUI, bit [10]

Error recovery interrupt for Deferred errors on reads enable.

When enabled, the error recovery interrupt is generated for errors recorded as Deferred error on reads.

RDUI Meaning
0b0 Error recovery interrupt not generated for Deferred errors on reads.
0bl Error recovery interrupt generated for Deferred errors on reads.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-126
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

WCFI, bit [9]
When ERR<n>FR.CFI == 0b11:
Fault handling interrupt for corrected error events on writes enable.

When enabled, the fault handling interrupt is generated for corrected error events on writes.

WCFI Meaning
0b0 Fault handling interrupt not generated for corrected error events on writes.
0bl Fault handling interrupt generated for corrected error events on writes.

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

Bit [8]
When ERR<n>FR.CFI == 0b10:
CFI, bit [8]
Fault handling interrupt for corrected error events enable.
When ERR<n>FR.CFI == ob10, this control applies to errors on both reads and writes.

When enabled, the fault handling interrupt is generated for all corrected error events.

CFI Meaning
0b0 Fault handling interrupt not generated for corrected error events.
0bl Fault handling interrupt generated for corrected error events.

If the node implements a corrected error counter or counters, and either ERR<n>CTLR.CED is not
implemented or ERR<n>CTLR.CED is 0, then a corrected error event is defined as follows:

. A corrected error event occurs when a counter overflows and sets a counter overflow flag to 1.

. It is UNPREDICTABLE whether a corrected error event occurs when a software write sets a counter
overflow flag to 1.

. It is UNPREDICTABLE whether a corrected error event occurs when a counter overflows and the
overflow flag was previously set to 1.

Otherwise, a corrected error event occurs when the error record records an error as a Corrected error.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-127
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

. On a Cold reset, this field resets to an architecturally UNKNOWN value.
When ERR<n>FR.CFI == 0b11:
RCFI, bit [8]

Fault handling interrupt for corrected error events on reads enable.

When enabled, the fault handling interrupt is generated for corrected error events on reads.

RCFI Meaning
0b0 Fault handling interrupt not generated for corrected error events on reads.
0bl Fault handling interrupt generated for corrected error events on reads.

If the node implements a corrected error counter or counters, and either ERR<n>CTLR.CED is not
implemented or ERR<n>CTLR.CED is 0, then a corrected error event is defined as follows:

. A corrected error event occurs when a counter overflows and sets a counter overflow flag to 1.

. It is UNPREDICTABLE whether a corrected error event occurs when a software write sets a counter
overflow flag to 1.

. It is UNPREDICTABLE whether a corrected error event occurs when a counter overflows and the
overflow flag was previously set to 1.

Otherwise, a corrected error event occurs when the error record records an error as a Corrected error.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

WUE, bit [7]
When ERR<n>FR.UE == 0b11:
In-band error response on writes enable.

When enabled, responses to writes that detect an error that is not corrected and is not deferred are signaled
with an in-band error response (External abort).

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as Deferred error,
but is not deferred to the Requester, will signal an in-band error response to the Requester.

WUE Meaning
0b0 In-band error response for uncorrected errors on writes disabled.
0bl In-band error response for uncorrected errors on writes enabled.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.
WFTI, bit [6]

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-128
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

When ERR<n>FR.FI == 0b11:

Fault handling interrupt on writes enable.

When enabled:

. The fault handling interrupt is generated for errors recorded as Uncorrected error on writes.

. If the corresponding fault handling interrupt control for Deferred errors, ERR<n>CTLR.WDFTI, is not
implemented, then the fault handling interrupt is generated for errors recorded as Deferred error on
writes.

. If the corresponding fault handling interrupt controls for Deferred errors and corrected error events,

ERR<n>CTLR.{WDFI, WCFI}, are not implemented, then the fault handling interrupt is generated
for corrected error events on writes.

WFI Meaning
0b0 Fault handling interrupt on writes disabled.
Obl Fault handling interrupt on writes enabled.

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

WUL, bit [5]
When ERR<n>FR.Ul == 0b11:
Uncorrected error recovery interrupt on writes enable.

When enabled, the error recovery interrupt is generated for errors recorded as Uncorrected error on writes.

wul Meaning
0b0 Error recovery interrupt on writes disabled.
0b1l Error recovery interrupt on writes enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

Bit [4]
When ERR<n>FR.UE == 0b10:
UE, bit [4]
In-band error response enable.

When ERR<n>FR.UE == ob10, this control applies to errors arising from both reads and writes.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-129
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

When enabled, responses to transactions that detect an error that is not corrected and is not deferred are
signaled with an in-band error response (External abort).

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as Deferred error,
but is not deferred to the Requester, will signal an in-band error response to the Requester.

UE Meaning
0b0 In-band error response for uncorrected errors disabled.
0bl In-band error response for uncorrected errors enabled.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.
When ERR<n>FR.UE == 0b11:
RUE, bit [4]

In-band error response on reads enable.

When enabled, responses to reads that detect an error that is not corrected and is not deferred are signaled
with an in-band error response (External abort).

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as Deferred error,
but is not deferred to the Requester, will signal an in-band error response to the Requester.

RUE Meaning
0b0 In-band error response for uncorrected errors on reads disabled.
0b1 In-band error response for uncorrected errors on reads enabled.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

Bit [3]
When ERR<n>FR.FI == 0b10:
FI, bit [3]
Fault handling interrupt enable.

When ERR<n>FR.FI == o010, this control applies to errors on both reads and writes.

When enabled:

. The fault handling interrupt is generated for all errors recorded as Uncorrected error.

. If the fault handling interrupt control for Deferred errors, ERR<n>CTLR.DFI, is not implemented,
then the fault handling interrupt is generated for all errors recorded as Deferred error.

. If the fault handling interrupt controls for Deferred errors and corrected error events,

ERR<n>CTLR.{DFI, CFI}, are not implemented, then the fault handling interrupt is generated for all
corrected error events.

Fl Meaning
0b0 Fault handling interrupt disabled.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-130

Aa Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

Bit [2]

IHI0100
Aa

Fl Meaning

Obl Fault handling interrupt enabled.

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.FI == 0b11:

RFI, bit [3]

Fault handling interrupt on reads enable.

When enabled:

. The fault handling interrupt is generated for errors recorded as Uncorrected error on reads.

. If the corresponding fault handling interrupt control for Deferred errors, ERR<n>CTLR.RDFI, is not
implemented, then the fault handling interrupt is generated for errors recorded as Deferred error on
reads.

. If the corresponding fault handling interrupt controls for Deferred errors and corrected error events,

ERR<n>CTLR.{RDFI, RCFI}, are not implemented, then the fault handling interrupt is generated for
corrected error events on reads.

RFI Meaning
0b0 Fault handling interrupt on reads disabled.
0bl Fault handling interrupt on reads enabled.

See ERR<n>CTLR.CFI for more information on corrected error events.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

When ERR<n>FR.UI == 0b10:

UL bit [2]

Uncorrected error recovery interrupt enable.
When ERR<n>FR.UI == ob10, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all errors recorded as Uncorrected error.

ul Meaning
0b0 Error recovery interrupt disabled.
0bl Error recovery interrupt enabled.
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-131

Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.
When ERR<n>FR.Ul == 0b11:
RUI, bit [2]

Uncorrected error recovery interrupt on reads enable.

When enabled, the error recovery interrupt is generated for errors recorded as Uncorrected error on reads.

RUI Meaning
0b0 Error recovery interrupt on reads disabled.
0bl Error recovery interrupt on reads enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a
higher priority error.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

IMPLEMENTATION DEFINED, bit [1]

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

ED, bit [0]

IHI0100
Aa

When ERR<n>FR.ED == 0b10:

Error reporting and logging enable. When disabled, the node behaves as if error detection and correction are
disabled, and no errors are recorded or signaled by the node. Arm recommends that, when disabled, correct
error detection and correction codes are written for writes, unless disabled by an IMPLEMENTATION DEFINED
control for error injection.

ED Meaning
0b0 Error reporting disabled.
0bl Error reporting enabled.

It is IMPLEMENTATION DEFINED whether the node fully disables error detection and correction when reporting
is disabled. That is, even with error reporting disabled, the node might continue to silently correct errors.
Uncorrected errors might result in corrupt data being silently propagated by the node.

If this node requires initialization after Cold reset to prevent signaling false errors, then Arm recommends this
field is set to 0 on Cold reset, meaning errors are not reported from Cold reset. This allows boot software to
initialize a node without signaling errors. Software can enable error reporting after the node is initialized.
Otherwise, the Cold reset value is IMPLEMENTATION DEFINED. If the Cold reset value is 1, the reset values of
other controls in this register are also IMPLEMENTATION DEFINED and should not be UNKNOWN.

The reset behavior of this field is:

. On a Error recovery reset:
— When RAS System Architecture v2 is implemented and ERR<n>FR.SRV == 1, this field
resetsto 'o'.
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-132

Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

. On a Cold reset:

— When RAS System Architecture v2 is implemented and ERR<n>FR.SRV == 1, this field

resets to '0'.
— Otherwise, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RESO.

Accessing ERR<n>CTLR
ERR<n>CTLR can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0x008 + (64 * ERR<n>CTLR
“—n)

Accesses to this register are RW.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Aa Non-Confidential

3-133

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.25 ERR<n>FR, Error Record <n> Feature Register, n = 0 - 65534

The ERR<n>FR characteristics are:

Purpose
Defines whether error record <n> is the first record owned by a node:

. If error record <n> is the first error record owned by a node, then ERR<n>FR.ED is not on00.
. If error record <n> is not the first error record owned by a node, then ERR<n>FR.ED is onoo.

If error record <n> is the first record owned by the node, defines which of the common architecturally-defined
features are implemented by the node and, of the implemented features, which are software programmable.

Configuration

There are no configuration notes.

Attributes

ERR<n>FR is a 64-bit register.

Field descriptions

When error record n is not implemented or error record n is not the first error record in the node:

63 56,5554 5352515049 48,47 32
RESO NCE| CE |DE UEOUERUEU| UC RESO :
31,30 4,3 2,1
i[FRX RESO ERT |0 0

Leo

Bits [63:56]
Reserved, RESO.
NCE, bit [55]
When ERR<n>FR.FRX == 1 and ERRFR[FirstRecordOfNode(n)].CEC != 0:000:

No countable errors. Describes whether this error record supports recording countable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

NCE Meaning
0b0 Records countable errors.
0bl Does not record countable errors.

When ERRFR[FirstRecordOfNode(n)].CEC != ovo00, at least one error record owned by the node records
countable errors.

Access to this field is RO.
Otherwise:

Reserved, RESO.
CE, bits [54:53]
When ERR<n>FR.FRX ==1:

Corrected Error recording. Describes the types of Corrected errors the error record can record, if any.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-134
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

The value of this field is an IMPLEMENTATION DEFINED choice of:

CE Meaning
0b00 Does not record Corrected errors.
0b01 Records only transient or persistent Corrected errors. That is, Corrected errors recorded by setting

ERR<n>STATUS.CE to either 0601 or ob11.

0b10 Records only non-specific Corrected errors. That is, Corrected errors recorded by setting
ERR<n>STATUS.CE to op1o0.

0bl1 Records all types of Corrected error.

Access to this field is RO.

Otherwise:

Reserved, RESO.

DE, bit [52]
When ERR<n>FR.FRX ==
Deferred Error recording. Describes whether the error record supports recording Deferred errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

DE Meaning
0b0 Does not record Deferred errors.
0bl Records Deferred errors.

Access to this field is RO.

Otherwise:

Reserved, RESO.

UEO, bit [51]
When ERR<n>FR.FRX ==1:

Latent or Restartable Error recording. Describes whether the error record supports recording Latent or
Restartable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

UEO Meaning
0b0 Does not record Latent or Restartable errors.
0bl Records Latent or Restartable errors.
Access to this field is RO.
Otherwise:
Reserved, RESO.
UER, bit [50]
When ERR<n>FR.FRX ==1:
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-135

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Signaled or Recoverable Error recording. Describes whether the error record supports recording Signaled or
Recoverable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

UER Meaning
0b0 Does not record Signaled or Recoverable errors.
0bl Records Signaled or Recoverable errors.

Access to this field is RO.

Otherwise:

Reserved, RESO.

UELU, bit [49]
When ERR<n>FR.FRX ==1:
Unrecoverable Error recording. Describes whether the error record supports recording Unrecoverable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

UEU Meaning
0b0 Does not record Unrecoverable errors.
0bl Records Unrecoverable errors.

Access to this field is RO.

Otherwise:

Reserved, RESO.

UG, bit [48]
When ERR<p>FR.FRX ==1:
Uncontainable Error recording. Describes whether the error record supports recording Uncontainable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

uc Meaning
0b0 Does not record Uncontainable errors.
0bl Records Uncontainable errors.
Access to this field is RO.
Otherwise:
Reserved, RESO.
Bits [47:32]
Reserved, RESO.
FRX, bit [31]
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-136

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

When error record n is implemented, RAS System Architecture v2 is implemented, and ERR<n>FR.ERT ==
0b00:

Feature Register extension. Defines whether ERR<n>FR[63:48] describe architecturally-defined properties
of this error record, including the supported error types.

The value of this field is an IMPLEMENTATION DEFINED choice of:

FRX Meaning
0b0 ERR<n>FR[63:48] are RES0.
0bl ERR<n>FR[63:48] are defined by the architecture.

If ERR<n>FR.FRX is 0, error record <n> is implemented, and ERRFR[FirstRecordOfNode(n)].FRX is 1,
then ERRFR[FirstRecordOfNode(n)][63:48] describe the architecturally-defined properties of all error
records owned by the node.

Access to this field is RO.

Otherwise:

Reserved, RESO.

Bits [30:4]

Reserved, RESO.

ERT, bits [3:2]
When RAS System Architecture v2 is implemented:
Error Record Type. Defines the type of error record.

The value of this field is an IMPLEMENTATION DEFINED choice of:

ERT Meaning
0b00 Error record <n> not implemented or is a normal record that is not the first error record of the
node.
0b01 Error record <n> is a continuation record of the previous error record, <n-1>.
All other values are reserved.
Access to this field is RO.
Otherwise:
Reserved, RESO.
ED, bits [1:0]
Error reporting and logging. Indicates error record <n> is not the first error record owned the node.
ED Meaning
0b00 Error record <n> is not implemented or is not the first error record owned by the node.
Access to this field is RO.
When error record n is the first error record in the node:
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-137

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

63 56 55,54 53,52,51,50,49,48,47 32
RESO NCE| CE |[DE[UEOUERUEU|UC IMPLEMENTATION DEFINED

31,30,29,28,27 26,25 24,23 22,21 20,19 18,17 16,15,14 12,11 10,9 8,7 6,5 4,3 2,1 0
FRX|CED[SRV|RV | DFI TS CI INJ CEO DUI |RP CEC CFI UE FI uI ED

|_ IMPLEMENTATION

DEFINED

Bits [63:56]
When ERR<n>FR.FRX ==1:
Bits [63:56]
Reserved, RESO.
Otherwise:
Bits [63:56]

Reserved for identifying IMPLEMENTATION DEFINED controls.

NCE, bit [55]

When RAS System Architecture v2 is implemented, ERR<n>FR.FRX == 1, and ERR<n>FR.CEC != 0b000:

No countable errors. Describes whether this error record supports recording countable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

NCE Meaning
0b0 Records countable errors.
0bl Does not record countable errors.

When ERR<n>FR.CEC != 0000, at least one error record owned by the node records countable errors.

Access to this field is RO.
When ERR<n>FR.FRX ==

Reserved, RESO.

Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

CE, bits [54:53]
When ERR<n>FR.FRX ==1:
Corrected Error recording. Describes the types of Corrected errors the node can record, if any.

The value of this field is an IMPLEMENTATION DEFINED choice of:

CE Meaning
0b00 Does not record Corrected errors.
0b01 Records only transient or persistent Corrected errors. That is, Corrected errors recorded by setting

ERR<n>STATUS.CE to either 0501 or ob11.

0b10 Records only non-specific Corrected errors. That is, Corrected errors recorded by setting
ERR<n>STATUS.CE to op1o0.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Aa Non-Confidential

3-138

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

CE Meaning

0b11 Records all types of Corrected error.

Access to this field is RO.

Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

DE, bit [52]
When ERR<n>FR.FRX =1:
Deferred Error recording. Describes whether the node supports recording Deferred errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

DE Meaning
0b0 Does not record Deferred errors.
0bl Records Deferred errors.

Access to this field is RO.
Otherwise:
Reserved for identifying IMPLEMENTATION DEFINED controls.
UEO, bit [51]

When ERR<n>FR.FRX ==1:

Latent or Restartable Error recording. Describes whether the node supports recording Latent or Restartable

€ITors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

UEO Meaning
0b0 Does not record Latent or Restartable errors.
0bl Records Latent or Restartable errors.

Access to this field is RO.

Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

UER, bit [50]
When ERR<n>FR.FRX =1:

Signaled or Recoverable Error recording. Describes whether the node supports recording Signaled or
Recoverable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

UER Meaning
0b0 Does not record Signaled or Recoverable errors.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-139

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

UER Meaning

0bl Records Signaled or Recoverable errors.

Access to this field is RO.

Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

UEU, bit [49]
When ERR<n>FR.FRX =1:
Unrecoverable Error recording. Describes whether the node supports recording Unrecoverable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

UEU Meaning
0b0 Does not record Unrecoverable errors.
0bl Records Unrecoverable errors.

Access to this field is RO.

Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

UC, bit [48]
When ERR<n>FR.FRX ==1:
Uncontainable Error recording. Describes whether the node supports recording Uncontainable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

uc Meaning
0b0 Does not record Uncontainable errors.
0bl Records Uncontainable errors.

Access to this field is RO.

Otherwise:

Reserved for identifying IMPLEMENTATION DEFINED controls.

IMPLEMENTATION DEFINED, bits [47:32]

Reserved for identifying IMPLEMENTATION DEFINED controls.

FRX, bit [31]
When RAS System Architecture vlp1 is implemented:
Feature Register extension.

Defines whether ERR<n>FR[63:48] describe architecturally-defined properties of this error record or node,
including the supported error types, or describe IMPLEMENTATION DEFINED properties.

The value of this field is an IMPLEMENTATION DEFINED choice of:

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-140
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

FRX Meaning
0b0 ERR<n>FR[63:48] are IMPLEMENTATION DEFINED.
0bl ERR<n>FR[63:48] are defined by the architecture.

When ERR<n>FR.FRXis 1:

. If RAS System Architecture v2 is implemented and ERR<m>FR.FRX is 1 for other error records
<m> owned by the same node, then ERR<n>FR[63:48] describe the architecturally-defined
properties of error record <n> only, and ERR<m>FR[63:48] describe the properties for error record
<m>.

. Otherwise, ERR<n>FR[63:48] describe the architecturally-defined properties of all error records
owned by the node.

Access to this field is RO.

Otherwise:

Reserved, RESO.

CED, bit [30]
When RAS System Architecture v2 is implemented and ERR<n>FR.CEC != 0b000:

Error counter disable. Indicates whether the node implements a control to disable any implemented Corrected
error counters.

The value of this field is an IMPLEMENTATION DEFINED choice of:

CED Meaning

0b0 Error counter disable control is not implemented and the error counter(s) are always enabled.
ERR<n>CTLR.CED is RESO.

0bl Enabling and disabling of error counter(s) is supported and controlled by ERR<n>CTLR.CED.

Access to this field is RO.

Otherwise:

Reserved, RESO.
SRY, bit [29]
When RAS System Architecture v2 is implemented:

Status Reset Value. Indicates how node <n> and each error record <m> owned by node <n> is reset.

The value of this field is an IMPLEMENTATION DEFINED choice of:

SRV Meaning

0b0 Node <n> and each error record <m> owned by node <n> are reset as follows:

. ERR<m>STATUS.{AV, V, MV} are set to {0, 0, 0} on a Cold reset and preserved on Error

Recovery reset.

. ERR<n>CTLR.ED is set to an IMPLEMENTATION DEFINED value on a Cold reset and preserved on
Error Recovery reset.

0bl Node <n> and each error record <m> owned by node <n> are reset as follows:

. ERR<m>STATUS.{AV, V, MV} are set to architecturally UNKNOWN values on a Cold reset and
preserved on Error Recovery reset.

. ERR<n>CTLR.ED is set to 0 on both Cold reset and Error Recovery reset.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-141

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

All other values are reserved.
Access to this field is RO.

Otherwise:

Reserved, RESO.

RY, bit [28]
When RAS System Architecture v2 is implemented:

Reset Valid. Indicates whether each error record <m> implemented by the node includes the Reset Valid
flags, ERR<m>STATUS.{RV, RV2}.

The value of this field is an IMPLEMENTATION DEFINED choice of:

RV Meaning
0b0 ERR<m>STATUS.{RV, RV2} are RESO.
0b1 ERR<m>STATUS.{RV, RV2} are R/W1C bits. See ERR<m>STATUS.{RV, RV2} for more information.

All other values are reserved.
Access to this field is RO.
Otherwise:

Reserved, RESO.

DFI, bits [27:26]
When RAS System Architecture v2 is implemented and !(ERR<n>FR.FI IN 0b0x):

Fault handling interrupt for deferred errors control. Indicates whether the enabling and disabling of fault
handling interrupts on deferred errors is supported by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

DFI Meaning

0b00 Does not support the enabling and disabling of fault handling interrupts on deferred errors.
ERR<n>CTLR.DFT is RESO.

0b10 Enabling and disabling of fault handling interrupts on deferred errors is supported and controllable using
ERR<n>CTLR.DFIL.

0bl1 Enabling and disabling of fault handling interrupts on deferred errors is supported, and controllable

using ERR<n>CTLR.WDFI for writes and ERR<n>CTLR.RDFI for reads.

All other values are reserved.
Access to this field is RO.
Otherwise:

Reserved, RESO.

TS, bits [25:24]

Timestamp Extension. Indicates whether, for each error record <m> owned by this node, ERR<m>MISC3 is used
as the timestamp register, and, if it is, the timebase used by the timestamp.

The value of this field is an IMPLEMENTATION DEFINED choice of’

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-142
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

TS Meaning
0b00 Does not support a timestamp register.
0b01 Implements a timestamp register in ERR<n>MISC3 for each error record <m> owned by the node. The

timestamp uses the same timebase as the system Generic Timer.
For an error record that has an affinity to a PE, this is the same timer that is visible through
CNTPCT ELO at the highest Exception level on that PE.

0b10 Implements a timestamp register in ERR<m>MISC3 for each error record <m> owned by the node. The
timestamp uses an IMPLEMENTATION DEFINED timebase.

All other values are reserved.

Access to this field is RO.

CI, bits [23:22]

Critical error interrupt. Indicates whether the critical error interrupt and associated controls are implemented by
the node.

The value of this field is an IMPLEMENTATION DEFINED choice of’

Cl Meaning

0b00 Does not support the critical error interrupt. ERR<n>CTLR.CI is ResO.

0b01 Critical error interrupt is supported and always enabled. ERR<n>CTLR.CI is RES0.
0b10 Critical error interrupt is supported and controllable using ERR<n>CTLR.CI.

All other values are reserved.

Access to this field is RO.

INJ, bits [21:20]

Fault Injection Extension. Indicates whether the Common Fault Injection Model Extension is implemented by the
node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

INJ Meaning
0b00 Does not support the Common Fault Injection Model Extension.
0b01 Supports the Common Fault Injection Model Extension. See ERR<n>PFGF for more information.

All other values are reserved.

Access to this field is RO.

CEOQ, bits [19:18]
When ERR<n>FR.CEC != 00000:

Corrected Error overwrite. Indicates the behavior of the node when a second or subsequent Corrected error is
recorded and a first Corrected error has previously been recorded by an error record <m> owned by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-143
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

CEO Meaning
0b00 Keeps the previous error syndrome.
0b01 If ERR<m>STATUS.OF is 1 before the Corrected error is counted, then the error record keeps the

previous syndrome. Otherwise the previous syndrome is overwritten.

All other values are reserved.

The second or subsequent Corrected error is counted by the Corrected error counter, regardless of the value of
this field. If counting the error causes unsigned overflow of the counter, then ERR<m>STATUS.OF is set to
1.

This means that, if no other error is subsequently recorded that overwrites the syndrome:

. If ERR<n>FR.CEO is ono0, the error record holds the syndrome for the first recorded Corrected error.
. If ERR<n>FR.CEO is ob01, the error record holds the syndrome for the most recently recorded
Corrected error before the counter overflows.

Access to this field is RO.

Otherwise:

Reserved, RESO.

DUI, bits [17:16]
When ERR<n>FR.UI != 0b00:

Error recovery interrupt for deferred errors control. Indicates whether the enabling and disabling of error
recovery interrupts on deferred errors is supported by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

DUI Meaning

0b00 Does not support the enabling and disabling of error recovery interrupts on deferred errors.
ERR<n>CTLR.DUTI is RESO.

0b10 Enabling and disabling of error recovery interrupts on deferred errors is supported and controllable using
ERR<n>CTLR.DUIL

0bl1l Enabling and disabling of error recovery interrupts on deferred errors is supported, and controllable

using ERR<n>CTLR.WDUI for writes and ERR<n>CTLR.RDUI for reads.

All other values are reserved.
Access to this field is RO.
Otherwise:

Reserved, RESO.

RP, bit [15]
When ERR<n>FR.CEC != 00000:

Repeat counter. Indicates whether the node implements a second Corrected error counter in ERR<m>MISCO0
for each error record <m> owned by the node that can record countable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-144
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

RP Meaning

0b0 Implements a single Corrected error counter in ERR<m>MISCO for each error record <m> owned by
the node that can record countable errors.

0b1 Implements a first (repeat) counter and a second (other) counter in ERR<m>MISCO for each error
record <m> owned by the node that can record countable errors. The repeat counter is the same size as
the primary error counter.

Access to this field is RO.
Otherwise:

Reserved, RESO.

CEC, bits [14:12]

Corrected Error Counter. Indicates whether the node implements the standard format Corrected error counter
mechanisms in ERR<m>MISCO for each error record <m> owned by the node that can record countable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of’

CEC Meaning
0b000 Does not implement the standard format Corrected error counter model.
0b010 Implements an 8-bit Corrected error counter in ERR<m>MISC0[39:32] for each error record <m>

owned by the node that can record countable errors.

0b100 Implements a 16-bit Corrected error counter in ERR<m>MISC0[47:32] for each error record <m>
owned by the node that can record countable errors.

All other values are reserved.

Implementations might include other error counter models, or might include the standard format model and not
indicate this in ERR<n>FR.

Access to this field is RO.

CFI, bits [11:10]
When !(ERR<n>FR.FI IN 050x):

Fault handling interrupt for corrected errors control. Indicates whether the enabling and disabling of fault
handling interrupts on corrected errors is supported by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

CFI Meaning

0b00 Does not support the enabling and disabling of fault handling interrupts on corrected errors.
ERR<n>CTLR.CFI is RESO.

0b10 Enabling and disabling of fault handling interrupts on corrected errors is supported and controllable
using ERR<n>CTLR.CFL

0bl1 Enabling and disabling of fault handling interrupts on corrected errors is supported, and controllable

using ERR<n>CTLR.WCFI for writes and ERR<n>CTLR.RCFTI for reads.

All other values are reserved.
Access to this field is RO.
Otherwise:

Reserved, RESO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-145
Aa Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

UE, bits [9:8]

In-band error response (External abort). Indicates whether the in-band error response and associated controls are
implemented by the node.

The value of this field is an IMPLEMENTATION DEFINED choice of:

UE Meaning
0b00 Does not support the in-band error response. ERR<n>CTLR.UE is RESO.
0b01 In-band error response is supported and always enabled. ERR<n>CTLR.UE is RESO.
0b10 In-band error response is supported and controllable using ERR<n>CTLR.UE.
0b11 In-band error response is supported, and controllable using ERR<n>CTLR.WUE for writes and
ERR<n>CTLR.RUE for reads.
It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as Deferred error, but is
not deferred to the Requester, will signal an in-band error response to the Requester.
Access to this field is RO.
FI, bits [7:6]
Fault handling interrupt. Indicates whether the fault handling interrupt and associated controls are implemented by
the node.
The value of this field is an IMPLEMENTATION DEFINED choice of:
Fl Meaning
0b00 Does not support the fault handling interrupt. ERR<n>CTLR.FT is RESO.
0b01 Fault handling interrupt is supported and always enabled. ERR<n>CTLR_.FI is RESO.
0b10 Fault handling interrupt is supported and controllable using ERR<n>CTLR.FI.
0bl1 Fault handling interrupt is supported, and controllable using ERR<n>CTLR.WFT for writes and
ERR<n>CTLR.RFI for reads.
Access to this field is RO.
UL, bits [5:4]
Error recovery interrupt for uncorrected errors. Indicates whether the error handling interrupt and associated
controls are implemented by the node.
The value of this field is an IMPLEMENTATION DEFINED choice of:
ul Meaning
0b00 Does not support the error handling interrupt. ERR<n>CTLR.UI is RESO.
0b01 Error handling interrupt is supported and always enabled. ERR<n>CTLR.UI is RESO.
0b10 Error handling interrupt is supported and controllable using ERR<n>CTLR.UL
0bl11 Error handling interrupt is supported, and controllable using ERR<n>CTLR.WUI for writes and

ERR<n>CTLR.RUI for reads.

Access to this field is RO.

IMPLEMENTATION DEFINED, bits [3:2]

IMPLEMENTATION DEFINED.

IHI0100
Aa

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-146
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

ED, bits [1:0]

Error reporting and logging. Indicates error record <n> is a normal record and the first record owned the node, and
whether the node implements the controls for enabling and disabling error reporting and logging.

The value of this field is an IMPLEMENTATION DEFINED choice of:

ED Meaning
0b01 Error reporting and logging always enabled. ERR<n>CTLR.ED is REs0.
0b10 Error reporting and logging is controllable using ERR<n>CTLR.ED.

All other values are reserved.

Access to this field is RO.

When RAS System Architecture v2 is implemented and error record <n> is a proxy for a RAS agent:

63 32
RESO :

31 4,3 2,1 @

: RESO 1)1 1

Bits [63:4]

Reserved, RESO.

ERT, bits [3:2]

Error Record Type. Defines the type of error record.

ERT Meaning

0b01 Error record is a proxy for a RAS agent.

All other values are reserved.

Access to this field is RO.

ED, bits [1:0]

Error reporting and logging. Indicates error record <n> is not a true error record.

ED Meaning

0bl1l Error record <n> is not an error record.

Access to this field is RO.

Accessing ERR<n>FR

ERR<n>FR can be accessed through the memory-mapped interface:

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-147
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Component Offset Instance
RAS 0x000 + (64 * ERR<n>FR
“—n)

Accesses to this register are RO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-148
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.26

63

ERR<n>MISCO, Error Record <n> Miscellaneous Register 0, n = 0 - 65534

The ERR<n>MISCO characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

. Information to locate where the error was detected.

. If the error was detected within a FRU, the identity of the FRU.

. A Corrected error counter or counters.

. Other state information not present in the corresponding status and address registers.

If the node that owns error record <n> implements a standard format Corrected error counter or counters
(ERRFR[FirstRecordOfNode(n)].CEC != 0b000), then it is IMPLEMENTATION DEFINED whether error record <n> can
record countable errors, and:

. If error record <n> records countable errors, then ERR<n>MISCO implements the standard format
Corrected error counter or counters for error record <n>.

. If error record <n> does not record countable errors, then it is recommended that the fields in
ERR<n>MISCO defined for the standard format counter or counters are RESO. That is, the fields behave
like counters that never count.

Configuration

ERRFR[FirstRecordOfNode(n)] describes the features implemented by the node that owns error record <n>.
FirstRecordOfNode(n) is the index of the first error record owned by the same node as error record <n>. If the
node owns a single record then FirstRecordOfNode(n) = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISCO0, writing zero returns the error record to an initial quiescent
state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery
Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, nonzero, and ignore writes are compliant with this requirement.

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault Handling, Error
Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at Cold reset and is enabled by
software writing an IMPLEMENTATION DEFINED nonzero value to an IMPLEMENTATION DEFINED field in
ERRCTLR[FirstRecordOfNode(n)].

This register is present only when error record n is implemented. Otherwise, direct accesses to ERR<n>MISCO are
RESO.

Attributes

ERR<n>MISCO is a 64-bit register.

Field descriptions

When ERRFR[FirstRecordOfNode(n)].CEC == 00000 or error record n does not record countable errors:

32

IMPLEMENTATION DEFINED

31

IMPLEMENTATION DEFINED

IHI0100
Aa

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

When ERRFR[FirstRecordOfNode(n)].CEC == 0100, ERRFR[FirstRecordOfNode(n)].RP == 0, and error record

n records countable errors:

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-149
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

63 48,4746 32
IMPLEMENTATION DEFINED OF CEC :
31 0
: IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [63:48]
IMPLEMENTATION DEFINED syndrome.
OF, bit [47]

Sticky overflow bit. Set to 1 when ERR<n>MISCO0.CEC is incremented and wraps through zero.

OF Meaning
0b0 Counter has not overflowed.
0b1l Counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct
write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field to an UNKNOWN value.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

CEC, bits [46:32]

Corrected error count. Incremented for each Corrected error. It is IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether Deferred and Uncorrected errors are counted.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

When ERRFR[FirstRecordOfNode(n)].CEC == 0b010, ERRFR|[FirstRecordOfNode(n)].RP == 0, and error record
n records countable errors:

63 40,39,38 32
IMPLEMENTATION DEFINED OF CEC

31 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [63:40]
IMPLEMENTATION DEFINED syndrome.
OF, bit [39]

Sticky overflow bit. Set to 1 when ERR<n>MISCO0.CEC is incremented and wraps through zero.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-150
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

OF Meaning
0b0 Counter has not overflowed.
0bl Counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct
write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field to an UNKNOWN value.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

CEG, bits [38:32]

Corrected error count. Incremented for each Corrected error. It is IMPLEMENTATION DEFINED and might be
UNPREDICTABLE whether Deferred and Uncorrected errors are counted.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

When ERRFR[FirstRecordOfNode(n)].CEC == 0100, ERRFR[FirstRecordOfNode(n)].RP == 1, and error record
n records countable errors:

63,62 484746 32
0F0 CECO OFR| CECR :
31 0

: IMPLEMENTATION DEFINED

OFO, bit [63]

Sticky overflow bit, other. Set to 1 when ERR<n>MISCO0.CECO is incremented and wraps through zero.

OFO Meaning
050 Other counter has not overflowed.
0bl Other counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct
write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field to an UNKNOWN value.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECO, bits [62:48]

Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing
ERR<n>MISCO0.CECR.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.
OFR, bit [47]

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-151
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

Sticky overflow bit, repeat. Set to 1 when ERR<n>MISCO0.CECR is incremented and wraps through zero.

OFR Meaning
0b0 Repeat counter has not overflowed.
0b1 Repeat counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct
write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field to an UNKNOWN value.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECR, bits [46:32]

Corrected error count, repeat. Incremented for the first countable error, which also records other syndrome for the
error, and subsequently for each countable error that matches the recorded other syndrome. Corrected errors are
countable errors. It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether Deferred and Uncorrected

errors are countable errors.

For example, the other syndrome might include the set and way information for an error detected in a cache. This
might be recorded in the IMPLEMENTATION DEFINED ERR<n>MISC<m> fields on a first Corrected error.
ERR<n>MISCO0.CECR is then incremented for each subsequent Corrected Error in the same set and way.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndrome.

When ERRFR[FirstRecordOfNode(n)].CEC == 0010, ERRFR[FirstRecordOfNode(n)].RP == 1, and error record

n records countable errors:

63 48,47 ,46 40,39,38 32
IMPLEMENTATION DEFINED 0FOQ CECO OFR| CECR :
31 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [63:48]

IMPLEMENTATION DEFINED syndrome.

OFO, bit [47]

Sticky overflow bit, other. Set to 1 when ERR<n>MISCO0.CECO is incremented and wraps through zero.

OFO Meaning
0b0 Other counter has not overflowed.
0bl Other counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct
write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field to an UNKNOWN value.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-152
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

CECO, bits [46:40]

Corrected error count, other. Incremented for each countable error that is not accounted for by incrementing
ERR<n>MISCO0.CECR.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

OFR, bit [39]

Sticky overflow bit, repeat. Set to 1 when ERR<n>MISCO0.CECR is incremented and wraps through zero.

OFR Meaning
0b0 Repeat counter has not overflowed.
0b1l Repeat counter has overflowed.

A direct write that modifies this field might indirectly set ERR<n>STATUS.OF to an UNKNOWN value and a direct
write to ERR<n>STATUS.OF that clears it to zero might indirectly set this field to an UNKNOWN value.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

CECR, bits [38:32]

Corrected error count, repeat. Incremented for the first countable error, which also records other syndrome for the
error, and subsequently for each countable error that matches the recorded other syndrome. Corrected errors are
countable errors. It is IMPLEMENTATION DEFINED and might be UNPREDICTABLE whether Deferred and Uncorrected
errors are countable errors.

For example, the other syndrome might include the set and way information for an error detected in a cache. This
might be recorded in the IMPLEMENTATION DEFINED ERR<n>MISC<m> fields on a first Corrected error.
ERR<n>MISCO0.CECR is then incremented for each subsequent Corrected Error in the same set and way.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED syndr ome.

Accessing ERR<n>MISCO

Reads from ERR<n>MISCO return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERRPFGF[FirstRecordOfNode(n)].MV is 1, then some parts of this register are read/write when ERR<n>STATUS.MV
is 0. See ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm recommends
that:

. Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
. When ERR<n>STATUS.MV is 1, the miscellaneous syndrome specific to the most recently recorded error
ignores writes.

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific
information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISCO can be accessed through the memory-mapped interface:

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-153
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Component Offset Instance
RAS 0x020 + (64 * ERR<n>MISCO
“—n)

Accesses to this register are RW.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-154
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.27

IHI0100
Aa

63

ERR<n>MISC1, Error Record <n> Miscellaneous Register 1, n = 0 - 65534
The ERR<n>MISC1 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

. Information to locate where the error was detected.

. If the error was detected within a FRU, the identity of the FRU.

. A Corrected error counter or counters.

. Other state information not present in the corresponding status and address registers.
Configuration

ERRFR[FirstRecordOfNode(n)] describes the features implemented by the node that owns error record <n>.
FirstRecordOfNode(n) is the index of the first error record owned by the same node as error record <n>. If the
node owns a single record then FirstRecordOfNode(n) = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC1, writing zero returns the error record to an initial quiescent
state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery
Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, nonzero, and ignore writes are compliant with this requirement.

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault Handling, Error
Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at Cold reset and is enabled by
software writing an IMPLEMENTATION DEFINED nonzero value to an IMPLEMENTATION DEFINED field in
ERRCTLR[FirstRecordOfNode(n)].

This register is present only when error record n is implemented. Otherwise, direct accesses to ERR<n>MISCI are
RESO.

Attributes

ERR<n>MISClI is a 64-bit register.
Field descriptions

32

IMPLEMENTATION DEFINED

31

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED SyIldI ome.

Accessing ERR<n>MISC1

Reads from ERR<n>MISCI1 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERRPFGF[FirstRecordOfNode(n)].MV is 1, then some parts of this register are read/write when ERR<n>STATUS.MV
is 0. See ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm recommends

that:
. Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
. When ERR<n>STATUS.MV is 1, the miscellaneous syndrome specific to the most recently recorded error

ignores writes.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-155
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific

information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISCI can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0x028 + (64 * ERR<n>MISCI1
“—n)

Accesses to this register are RW.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-156
Aa Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

3.2.28

IHI0100
Aa

ERR<n>MISC2, Error Record <n> Miscellaneous Register 2, n = 0 - 65534

63

The ERR<n>MISC2 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

. Information to locate where the error was detected.

. If the error was detected within a FRU, the identity of the FRU.

. A Corrected error counter or counters.

. Other state information not present in the corresponding status and address registers.

Configuration

ERRFR[FirstRecordOfNode(n)] describes the features implemented by the node that owns error record <n>.
FirstRecordOfNode(n) is the index of the first error record owned by the same node as error record <n>. If the
node owns a single record then FirstRecordOfNode(n) = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC2, writing zero returns the error record to an initial quiescent
state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery
Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, nonzero, and ignore writes are compliant with this requirement.

Arm recommends that if RAS System Architecture v1.1 is not implemented then ERR<n>MISC2 does not require
zeroing to return the record to a quiescent state.

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault Handling, Error
Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at Cold reset and is enabled by
software writing an IMPLEMENTATION DEFINED nonzero value to an IMPLEMENTATION DEFINED field in
ERRCTLR[FirstRecordOfNode(n)].

This register is present only when (an implementation implements ERR<n>MISC2 or RAS System Architecture
v1pl is implemented) and error record n is implemented. Otherwise, direct accesses to ERR<n>MISC2 are RES0.

Attributes

ERR<n>MISC?2 is a 64-bit register.

Field descriptions

32

IMPLEMENTATION DEFINED

31

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED Syl’ldI‘OIIlG.

Accessing ERR<n>MISC2

Reads from ERR<n>MISC2 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERRPFGF[FirstRecordOfNode(n)].MV is 1, then some parts of this register are read/write when ERR<n>STATUS.MV
is 0. See ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm recommends

Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-157
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

. When ERR<n>STATUS.MV is 1, the miscellaneous syndrome specific to the most recently recorded error
ignores writes.

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific
information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC2 can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0x030 + (64 * ERR<n>MISC2
“—»n)

Accesses to this register are RW.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Aa Non-Confidential

3-158

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.29 ERR<n>MISC3, Error Record <n> Miscellaneous Register 3, n = 0 - 65534

The ERR<n>MISC3 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

. Information to locate where the error was detected.

. If the error was detected within a FRU, the identity of the FRU.

. A Corrected error counter or counters.

. Other state information not present in the corresponding status and address registers.

If the node that owns error record n supports the RAS Timestamp Extension (ERRFR[FirstRecordOfNode(n)].TS
1= 0p00), then ERR<n>MISC3 contains the timestamp value for error record n when the error was detected.
Otherwise the contents of ERR<n>MISC3 are IMPLEMENTATION DEFINED.

Configuration

ERRFR[FirstRecordOfNode(n)] describes the features implemented by the node that owns error record <n>.
FirstRecordOfNode(n) is the index of the first error record owned by the same node as error record <n>. If the
node owns a single record then FirstRecordOfNode(n) = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC3, writing zero returns the error record to an initial quiescent
state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery
Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, nonzero, and ignore writes are compliant with this requirement.

Arm recommends that if RAS System Architecture v1.1 is not implemented then ERR<n>MISC3 does not require
zeroing to return the record to a quiescent state.

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault Handling, Error
Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at Cold reset and is enabled by
software writing an IMPLEMENTATION DEFINED nonzero value to an IMPLEMENTATION DEFINED field in
ERRCTLR[FirstRecordOfNode(n)].

This register is present only when (an implementation implements ERR<n>MISC3 or RAS System Architecture
vlpl is implemented) and error record n is implemented. Otherwise, direct accesses to ERR<n>MISC3 are RESO.

Attributes

ERR<n>MISC3 is a 64-bit register.

Field descriptions

When ERRFR[FirstRecordOfNode(n)].TS != 0b00:

63 32
TS

31 0
TS

TS, bits [63:0]
Timestamp. Timestamp value recorded when the error was detected. Valid only if ERR<n>STATUS.V == 1.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO or RW.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-159
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

When ERRFR[FirstRecordOfNode(n)].TS == 0b00:

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

Accessing ERR<n>MISC3

Reads from ERR<n>MISC3 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and

ERRPFGF[FirstRecordOfNode(n)].MV is 1, then some parts of this register are read/write when ERR<n>STATUS.MV

is 0. See ERR<n>PFGF.MYV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm recommends

that:
. Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
. When ERR<n>STATUS.MV is 1, the miscellaneous syndrome specific to the most recently recorded error

ignores writes.

These recommendations allow a counter to be reset in the presence of a persistent error, while preventing specific
information, such as that identifying a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC3 can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0x038 + (64 * ERR<n>MISC3
“—n)

Accesses to this register are RW.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

3-160

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.30 ERR<n>PFGCDN, Error Record <n> Pseudo-fault Generation Countdown Register, n = 0 - 65534

The ERR<n>PFGCDN characteristics are:

Purpose

Generates one of the errors enabled in the corresponding ERR<n>PFGCTL register.

Configuration

ERR<n>FR describes the features implemented by the node.

This register is present only when error record n is implemented, the node that owns error record n implements the
Common Fault Injection Model Extension, and error record n is the first error record in the node. Otherwise, direct

accesses to ERR<n>PFGCDN are Res0.

Attributes

ERR<n>PFGCDN is a 64-bit register.

Field descriptions

63

32

RESO

31

CDN

Bits [63:32]
Reserved, RESO.
CDN, bits [31:0]
Countdown value.

This field is copied to Error Generation Counter when either:

. Software writes 1 to ERR<n>PFGCTL.CDNEN.

. The Error Generation Counter decrements to zero and ERR<n>PFGCTL.R is 1.

While ERR<n>PFGCTL.CDNEN is 1 and the Error Generation Counter is nonzero, the counter decrements by 1
for each cycle at an IMPLEMENTATION DEFINED clock rate. When the counter reaches zero, one of the errors enabled

in the ERR<n>PFGCTL register is generated.
The current Error Generation Counter value is not visible to software.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing ERR<n>PFGCDN

This section shows the offset of ERR<n>PFGCDN in an error record group when FEAT RASSA 4KB GRP is

implemented. [f FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_GRP is implemented, or ERR<n>PFGCDN is

accessed in a fault injection group, see ‘RAS memory-mapped register views’ for the offset of ERR<n>PFGCDN.

ERR<n>PFGCDN can be accessed through the memory-mapped interface:

Component Offset Instance

RAS 0x810 + (64 * ERR<n>PFGCDN
“—n)

Accesses to this register are RW.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Aa Non-Confidential

3-161

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.31 ERR<n>PFGCTL, Error Record <n> Pseudo-fault Generation Control Register, n = 0 - 65534
The ERR<n>PFGCTL characteristics are:

Purpose

Enables controlled fault generation.

Configuration
ERR<n>PFGF describes the Common Fault Injection features implemented by the node.
ERR<n>FR describes the features implemented by the node.

This register is present only when error record n is implemented, the node that owns error record n implements the
Common Fault Injection Model Extension, and error record n is the first error record in the node. Otherwise, direct
accesses to ERR<n>PFGCTL are RESO.

Attributes

ERR<n>PFGCTL is a 64-bit register.

Field descriptions

63 32
RESO :
31,30,29 13,12,11,10,9 ;8,7 6,5,4,3,2,1,0
: R RESO mv|av|pn|ER|cI| cE |DEUEQUERUEU|UC |0F
L conen

Bits [63:32]
Reserved, RESO.

CDNEN, bit [31]

Countdown Enable. Controls transfers of the value held in ERR<n>PFGCDN to the Error Generation Counter and
enables this counter.

CDNEN Meaning

0b0 The Error Generation Counter is disabled.

0bl The Error Generation Counter is enabled. On a write of 1 to this field, the Error Generation Counter is
set to ERR<n>PFGCDN.CDN.

The reset behavior of this field is:

. On a Cold reset, this field resets to 'o'.
R, bit [30]

When ERR<n>PFGFE.R ==1:

Restart. Controls whether the Error Generation Counter restarts or stops counting on reaching zero.

R Meaning
0b0 On reaching zero, the Error Generation Counter will stop counting.
0bl On reaching zero, the Error Generation Counter is set to ERR<n>PFGCDN.CDN.

The reset behavior of this field is:

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-162
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

Bits [29:13]
Reserved, RESO.
MYV, bit [12]
When ERR<n>PFGFEMYV == 1:

Miscellaneous syndrome. The value written to ERR<n>STATUS.MV when an injected error is recorded.

Mv Meaning
0b0 ERR<n>STATUS.MV is set to 0 when an injected error is recorded.
0b1 ERR<n>STATUS.MV is set to 1 when an injected error is recorded.

The reset behavior of this field is:
. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.

When the node always sets ERRSTATUS.MV to 1 when an injected error is recorded, access to this field is
RAO/WI

When the node always sets ERR<n>STATUS.MV to 1 when an injected error is recorded and this field is
RAO/WI:

Reserved, RAO/WI.

Otherwise:

Reserved, RESO.
AV, bit [11]

When ERR<n>PFGF.AV == 1:

Address syndrome. The value written to ERR<n>STATUS.AV when an injected error is recorded.

AV Meaning
0b0 ERR<n>STATUS.AV is set to 0 when an injected error is recorded.
0bl ERR<n>STATUS.AV is set to 1 when an injected error is recorded.

The reset behavior of this field is:
. On a Error recovery reset, this field resets to an architecturally UNKNOWN value.

When the node always sets ERRSTATUS.AV to 1 when an injected error is recorded, access to this field is
RAO/WL

When the node always sets ERR<n>STATUS.AV to 1 when an injected error is recorded and this field is
RAO/WI:

Reserved, RAO/WI.
Otherwise:

Reserved, RESO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-163
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

PN, bit [10]

When ERR<n>PFGE.PN ==1:

Poison flag. The value written to ERR<n>STATUS.PN when an injected error is recorded.

PN Meaning
0b0 ERR<n>STATUS.PN is set to 0 when an injected error is recorded.
0bl ERR<n>STATUS.PN is set to 1 when an injected error is recorded.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:
Reserved, RESO.
ER, bit [9]

When ERR<n>PFGF.ER ==1:

Error Reported flag. The value written to ERR<n>STATUS.ER when an injected error is recorded.

ER Meaning
0b0 ERR<n>STATUS.ER is set to 0 when an injected error is recorded.
0bl ERR<n>STATUS.ER is set to 1 when an injected error is recorded.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RESO.

CI, bit [8]
When ERR<n>PFGFE.CI ==1:
Critical Error flag. The value written to ERR<n>STATUS.CI when an injected error is recorded.
Cl Meaning
0b0 ERR<n>STATUS.Cl is set to 0 when an injected error is recorded.
0b1 ERR<n>STATUS.CI is set to 1 when an injected error is recorded.
The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

CE, bits [7:6]

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Aa Non-Confidential

3-164

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

When ERR<n>PFGF.CE != 0b00:

Corrected Error generation enable. Controls the type of injected Corrected error generated by the fault
injection feature of the node.

CE Meaning Applies when

0b00 An injected Corrected error will not be generated by the fault
injection feature of the node.

0b01 An injected non-specific Corrected error is generated in the ERRPFGF.CE == ovo01
fault injection state. ERR<n>STATUS.CE is set to 0b10
when the injected error is recorded.

0b10 An injected transient Corrected error is generated in the fault ~ ERRPFGF.CE == op11
injection state. ERR<n>STATUS.CE is set to 001 when the
injected error is recorded.

Obl1l An injected persistent Corrected error is generated in the ERRPFGF.CE == op11
fault injection state. ERR<n>STATUS.CE is set to ob11
when the injected error is recorded.

The set of permitted values for this field is defined by ERR<n>PFGF.CE.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It is
IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on an access to
the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

DE, bit [5]
When ERR<n>PFGF.DE == 1:

Deferred Error generation enable. Controls whether an injected Deferred error is generated by the fault
injection feature of the node.

DE Meaning
0b0 An injected Deferred error will not be generated by the fault generation feature of the node.
0bl An injected Deferred error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It is
IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on an access to
the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

UEO, bit [4]
When ERR<n>PFGF.UEO == 1:

Latent or Restartable Error generation enable. Controls whether an injected Latent or Restartable error is
generated by the fault injection feature of the node.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-165
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

UEO Meaning

0b0 An injected Latent or Restartable error will not be generated by the fault generation feature of the
node.

0b1 An injected Latent or Restartable error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It is
IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on an access to
the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

UER, bit [3]
When ERR<n>PFGF.UER == 1:

Signaled or Recoverable Error generation enable. Controls whether an injected Signaled or Recoverable error
is generated by the fault injection feature of the node.

UER Meaning

0b0 An injected Signaled or Recoverable error will not be generated by the fault generation feature of the
node.

0bl An injected Signaled or Recoverable error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It is
IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on an access to
the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

UEU, bit 2]
When ERR<n>PFGF.UEU == 1:

Unrecoverable Error generation enable. Controls whether an injected Unrecoverable error is generated by the
fault injection feature of the node.

UEU Meaning
0b0 An injected Unrecoverable error will not be generated by the fault generation feature of the node.
0bl An injected Unrecoverable error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It is
IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on an access to
the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:

. On a Cold reset, this field resets to an architecturally UNKNOWN value.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-166
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Otherwise:

Reserved, RESO.

UC, bit [1]
When ERR<n>PFGF.UC == 1:

Uncontainable Error generation enable. Controls whether an injected Uncontainable error is generated by the
fault injection feature of the node.

uc Meaning
0b0 An injected Uncontainable error will not be generated by the fault generation feature of the node.
0bl An injected Uncontainable error is generated in the fault injection state.

The node enters the fault injection state when the Error Generation Counter decrements to zero. It is
IMPLEMENTATION DEFINED whether the injected error is generated when the error is generated on an access to
the component in the fault injection state and the data is not consumed.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

OF, bit [0]
When ERR<n>PFGF.OF ==1:
Overflow flag. The value written to ERR<n>STATUS.OF when an injected error is recorded.
OF Meaning
0b0 ERR<n>STATUS.OF is set to 0 when an injected error is recorded.
0bl ERR<n>STATUS.OF is set to 1 when an injected error is recorded.
The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Otherwise:

Reserved, RESO.

Accessing ERR<n>PFGCTL

This section shows the offset of ERR<n>PFGCTL in an error record group when FEAT RASSA 4KB GRPis
implemented. If FEAT RASSA 16KB_GRP or FEAT RASSA_64KB_GRP is implemented, or ERR<n>PFGCTL is
accessed in a fault injection group, see ‘RAS memory-mapped register views’ for the offset of ERR<n>PFGCTL.

ERR<n>PFGCTL can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0x808 + (64 * ERR<n>PFGCTL
“—n)

Accesses to this register are RW.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-167
Aa Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

3.2.32 ERR<n>PFGF, Error Record <n> Pseudo-fault Generation Feature Register, n = 0 - 65534

The ERR<n>PFGF characteristics are:

Purpose

Defines which common architecturally-defined fault generation features are implemented.

Configuration

ERR<n>FR describes the features implemented by the node.

This register is present only when error record n is implemented, the node that owns error record n implements the
Common Fault Injection Model Extension, and error record n is the first error record in the node. Otherwise, direct

accesses to ERR<n>PFGF are RESO0.

Attributes

ERR<n>PFGF is a 64-bit register.

Field descriptions

63 32
RESO
31,30,29,28,27 13,12,11,10, 9 |, 8 5,4,3,2,1,0
E R [SYN|NA RESO MV|AV|PN[ER|CI| CE ([DE[EOUERUEU[UC|OF
I— RESO
Bits [63:31]
Reserved, RESO.
R, bit [30]
Restartable. Support for Error Generation Counter restart mode.
The value of this field is an IMPLEMENTATION DEFINED choice of:
R Meaning
0b0 The node does not support this feature. ERR<n>PFGCTL.R is RESO.
0bl Error Generation Counter restart mode is implemented and is controlled by ERR<n>PFGCTL.R.
ERR<n>PFGCTL.R is a read/write field.
Access to this field is RO.
SYN, bit [29]
Syndrome. Fault syndrome injection.
The value of this field is an IMPLEMENTATION DEFINED choice of:
SYN Meaning
0b0 When an injected error is recorded, the node sets ERR<n>STATUS.{IERR, SERR} to IMPLEMENTATION
DEFINED values. ERR<n>STATUS.{IERR, SERR} are UNKkNOWN when ERR<n>STATUS.V is 0.
0bl When an injected error is recorded, the node does not update the ERR<n>STATUS.{IERR, SERR} fields.

ERR<n>STATUS.{IERR, SERR} are writable when ERR<n>STATUS.V is 0.

IHI0100
Aa

If ERR<n>PFGF.SYN is 1 then software can write specific values into the ERR<n>STATUS.{IERR, SERR}

fields when setting up a fault injection event. The sets of values that can be written to these fields is

IMPLEMENTATION DEFINED.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

3-168

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

NA, b

Access to this field is RO.

it [28]

No access required. Defines whether this component fakes detection of the error on an access to the component or
spontaneously in the fault injection state.

The value of this field is an IMPLEMENTATION DEFINED choice of:

NA

Meaning

0b0

Obl

The component fakes detection of the error on an access to the component.

The component fakes detection of the error spontaneously in the fault injection state.

Access to this field is RO.

Bits [27:13]

Reserved, RESO.

MYV, bit [12]

Miscellaneous syndrome.

Defines whether software can control all or part of the syndrome recorded in the ERR<n>MISC<m> registers
when an injected error is recorded.

It is IMPLEMENTATION DEFINED which ERR<n>MISC<m> syndrome fields, if any, are updated by the node when an
injected error is recorded. Some syndrome fields might always be updated by the node when an error, including an
injected error, is recorded. For example, a corrected error counter might always be updated when any countable
error, including a injected countable error, is recorded.

The value of this field is an IMPLEMENTATION DEFINED choice of’

Mmv

Meaning

0b0

Obl

When an injected error is recorded, the node might update the ERR<n>MISC<m> registers:

. If any syndrome is recorded by the node in the ERR<n>MISC<m> registers, then
ERR<n>STATUS.MV is set to 1.
. Otherwise, ERR<n>STATUS.MYV is unchanged.

If the node always sets ERR<n>STATUS.MV to 1 when recording an injected error then
ERR<n>PFGCTL.MV might be RAO/WI. Otherwise ERR<n>PFGCTL.MV is RES0.

When an injected error is recorded, the node might update some, but not all ERR<n>MISC<m>

syndrome fields:

. If any syndrome is recorded by the node in the ERR<n>MISC<m> registers, then
ERR<n>STATUS.MV is set to 1.

. Otherwise, ERR<n>STATUS.MYV is set to ERR<n>PFGCTL.MV.

ERR<n>MISC<m> syndrome fields that are not updated by the node are writable when
ERR<n>STATUS.MV is 0.

If the node always sets ERR<n>STATUS.MV to 1 when recording an injected error then
ERR<n>PFGCTL.MV is RAO/WI. Otherwise ERR<n>PFGCTL.MV is a read/write field.

If ERR<n>PFGF.MV is 1, software can write specific additional syndrome values into the ERR<n>MISC<m>
registers when setting up a fault injection event. The permitted values that can be written to these registers are
IMPLEMENTATION DEFINED.

Access to this field is RO.

AV, bit [11]

IHI0100
Aa

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-169
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Address syndrome. Defines whether software can control the address recorded in ERR<n>ADDR when an
injected error is recorded.

The value of this field is an IMPLEMENTATION DEFINED choice of:

AV Meaning

0b0 When an injected error is recorded, the node might record an address in ERR<n>ADDR. If an address is
recorded in ERR<n>ADDR, then ERR<n>STATUS.AV is set to 1. Otherwise, ERR<n>ADDR and
ERR<n>STATUS.AV are unchanged.
If the node always records an address and sets ERR<n>STATUS.AV to 1 when recording an injected
error then ERR<n>PFGCTL.AV might be RAO/WI. Otherwise ERR<n>PFGCTL.AV is REsO.

0bl When an injected error is recorded, the node does not update ERR<n>ADDR and does one of:
. Sets ERR<n>STATUS.AV to ERR<n>PFGCTL.AV. ERR<n>PFGCTL.AV is a read/write field.
. Sets ERR<n>STATUS.AV to 1. ERR<n>PFGCTL.AV is RAO/WL.

ERR<n>ADDR is writable when ERR<n>STATUS.AV is 0.

If ERR<n>PFGF.AV is 1 then software can write a specific address value into ERR<n>ADDR when setting up a
fault injection event.

Access to this field is RO.
PN, bit [10]
When the node supports this flag:
Poison flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.PN status flag.

The value of this field is an IMPLEMENTATION DEFINED choice of:

PN Meaning

0b0 When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the node sets
ERR<n>STATUS.PN to 1. ERR<n>PFGCTL.PN is REsO.

0b1 When an injected error is recorded, ERR<n>STATUS.PN is set to ERR<n>PFGCTL.PN.
ERR<n>PFGCTL.PN is a read/write field.

This behavior replaces the architecture-defined rules for setting the ERR<n>STATUS.PN bit.
Access to this field is RO.

Otherwise:

Reserved, RAZ.

ER, bit [9]
When the node supports this flag:

Error Reported flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.ER
status flag.

The value of this field is an IMPLEMENTATION DEFINED choice of:

ER Meaning

0b0 When an injected error is recorded, the node sets ERR<n>STATUS.ER according to the
architecture-defined rules for setting the ER field. ERR<n>PFGCTL.ER is REs0.

0bl When an injected error is recorded, ERR<n>STATUS.ER is set to ERR<n>PFGCTL.ER. This behavior
replaces the architecture-defined rules for setting the ER bit. ERR<n>PFGCTL.ER is a read/write field.

Access to this field is RO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-170
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Otherwise:

Reserved, RAZ.

CI, bit [8]
When the node supports this flag:

Critical Error flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.CI status
flag.

The value of this field is an IMPLEMENTATION DEFINED choice of:

Cl Meaning

0b0 When an injected error is recorded, it is IMPLEMENTATION DEFINED whether the node sets
ERR<n>STATUS.CI to 1. ERR<n>PFGCTL.CI is RESO.

0bl When an injected error is recorded, ERR<n>STATUS.CI is set to ERR<n>PFGCTL.CL
ERR<n>PFGCTL.Cl is a read/write field.

This behavior replaces the architecture-defined rules for setting the ERR<n>STATUS.CI bit.
Access to this field is RO.

Otherwise:

Reserved, RAZ.

CE, bits [7:6]
When the node supports this type of error:

Corrected Error generation. Describes the types of Corrected error that the fault generation feature of the
node can generate.

The value of this field is an IMPLEMENTATION DEFINED choice of:

CE Meaning

0b00 The fault generation feature of the node does not generate Corrected errors. ERR<n>PFGCTL.CE is
RESO.

0b01 The fault generation feature of the node allows generation of a non-specific Corrected error, that is, a

Corrected error that is recorded by setting ERR<n>STATUS.CE to ob10. ERR<n>PFGCTL.CE is a
read/write field. The values ob10 and ob11 in ERR<n>PFGCTL.CE are reserved.

0bl1 The fault generation feature of the node allows generation of transient or persistent Corrected errors, that
is, Corrected errors that are recorded by setting ERR<n>STATUS.CE to ono1 or ob11 respectively.
ERR<n>PFGCTL.CE is a read/write field. The value obo1 in ERR<n>PFGCTL.CE is reserved.

All other values are reserved.
If ERR<n>FR.FRX is 1 then ERR<n>FR.CE indicates whether the node supports this type of error.
Access to this field is RO.

Otherwise:

Reserved, RAZ.

DE, bit [5]
‘When the node supports this type of error:
Deferred Error generation. Describes whether the fault generation feature of the node can generate Deferred

errors.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-171
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

The value of this field is an IMPLEMENTATION DEFINED choice of:

DE Meaning
0b0 The fault generation feature of the node does not generate Deferred errors. ERR<n>PFGCTL.DE is RESO.
0bl The fault generation feature of the node allows generation of Deferred errors. ERR<n>PFGCTL.DE is a

read/write field.

If ERR<n>FR.FRX is 1 then ERR<n>FR.DE indicates whether the node supports this type of error.
Access to this field is RO.

Otherwise:

Reserved, RAZ.

UEO, bit [4]
‘When the node supports this type of error:

Latent or Restartable Error generation. Describes whether the fault generation feature of the node can
generate Latent or Restartable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

UEO Meaning

0b0 The fault generation feature of the node does not generate Latent or Restartable errors.
ERR<n>PFGCTL.UEO is RESO.

0bl The fault generation feature of the node allows generation of Latent or Restartable errors.

ERR<n>PFGCTL.UEO is a read/write field.

If ERR<n>FR.FRX is 1 then ERR<n>FR.UEO indicates whether the node supports this type of error.
Access to this field is RO.

Otherwise:

Reserved, RAZ.

UER, bit [3]
When the node supports this type of error:

Signaled or Recoverable Error generation. Describes whether the fault generation feature of the node can
generate Signaled or Recoverable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

UER Meaning

0b0 The fault generation feature of the node does not generate Signaled or Recoverable errors.
ERR<n>PFGCTL.UER is RESO.

0bl The fault generation feature of the node allows generation of Signaled or Recoverable errors.
ERR<n>PFGCTL.UER is a read/write field.

If ERR<n>FR.FRXis 1 then ERR<n>FR.UER indicates whether the node supports this type of error.
Access to this field is RO.

Otherwise:

Reserved, RAZ.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-172
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

UEU, bit [2]

When the node supports this type of error:

Unrecoverable Error generation. Describes whether the fault generation feature of the node can generate
Unrecoverable errors.

The value of this field is an IMPLEMENTATION DEFINED choice of:

UEU Meaning
0b0 The fault generation feature of the node does not generate Unrecoverable errors. ERR<n>PFGCTL.UEU
is RESO.
0b1 The fault generation feature of the node allows generation of Unrecoverable errors.
ERR<n>PFGCTL.UEU is a read/write field.
If ERR<n>FR.FRX is 1 then ERR<n>FR.UEU indicates whether the node supports this type of error.
Access to this field is RO.
Otherwise:
Reserved, RAZ.
UG, bit [1]
When the node supports this type of error:
Uncontainable Error generation. Describes whether the fault generation feature of the node can generate
Uncontainable errors.
The value of this field is an IMPLEMENTATION DEFINED choice of:
uc Meaning
0b0 The fault generation feature of the node does not generate Uncontainable errors. ERR<n>PFGCTL.UC is
RESO.
0bl The fault generation feature of the node allows generation of Uncontainable errors.
ERR<n>PFGCTL.UC is a read/write field.
If ERR<n>FR.FRX is 1 then ERR<n>FR.UC indicates whether the node supports this type of error.
Access to this field is RO.
Otherwise:
Reserved, RAZ.
OF, bit [0]
When the node supports this flag:
Overflow flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.OF status
flag.
The value of this field is an IMPLEMENTATION DEFINED choice of:
OF Meaning
0b0 When an injected error is recorded, the node sets ERR<n>STATUS.OF according to the
architecture-defined rules for setting the OF field. ERR<n>PFGCTL.OF is RESO.
0bl When an injected error is recorded, ERR<n>STATUS.OF is set to ERR<n>PFGCTL.OF. This behavior

replaces the architecture-defined rules for setting the OF bit. ERR<n>PFGCTL.OF is a read/write field.

IHI0100
Aa

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-173
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Access to this field is RO.
Otherwise:

Reserved, RAZ.

Accessing ERR<n>PFGF

This section shows the offset of ERR<n>PFGF in an error record group when FEAT RASSA 4KB GRP is
implemented. If FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_GRP is implemented, or ERR<n>PFGF is
accessed in a fault injection group, see ‘RAS memory-mapped register views’ for the offset of ERR<n>PFGF.

ERR<n>PFGF can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0x800 + (64 * ERR<n>PFGF
“—n)

Accesses to this register are RO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-174
Aa Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

3.2.33

IHI0100
Aa

ERR<n>STATUS, Error Record <n> Primary Status Register, n = 0 - 65534

The ERR<n>STATUS characteristics are:

Purpose

When RAS System Architecture v2 is implemented, error record <n> might be one of the following:

. A continuation record containing more information about the error recorded in error record <n-1>. In this
case, ERR<n>STATUS contains a subset of the values of a normal error record status register.
. A proxy for a different RAS agent. In this case, ERR<n>STATUS reports the status of the RAS agent.

Otherwise, ERR<n>STATUS contains status information for error record <n>, including:

. Whether any error has been detected (valid).

. Whether any detected error was not corrected, and returned to a Requester.

. Whether any detected error was not corrected and deferred.

. Whether an error record has been discarded because additional errors have been detected before the first
error was handled by software (overflow).

. Whether any error has been reported.

. Whether the other error record registers contain valid information.

. Whether the error was reported because poison data was detected or because a corrupt value was detected
by an error detection code.

. A primary error code.

. An IMPLEMENTATION DEFINED extended error code.

Within this register:

. ERR<n>STATUS.{AV, V, MV} are valid bits that define whether error record <n> registers are valid.

. ERR<n>STATUS.{UE, OF, CE, DE, UET} encode the types of error or errors recorded.
. ERR<n>STATUS.{CIL ER, PN, IERR, SERR} are syndrome fields.

Configuration

ERRFRPFGEF[FirstRecordOfNode(n)] describes the features implemented by the node that owns error record <n>.
FirstRecordOfNode(n) is the index of the first error record owned by the same node as error record <n>. If the
node owns a single record then FirstRecordOfNode(n) =n.

For IMPLEMENTATION DEFINED fields in ERR<n>STATUS, writing zero returns the error record to an initial
quiescent state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery
Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, nonzero, and ignore writes are compliant with this requirement.

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can generate a Fault Handling, Error
Recovery, Critical, or IMPLEMENTATION DEFINED, interrupt request is disabled at Cold reset and is enabled by
software writing an IMPLEMENTATION DEFINED nonzero value to an IMPLEMENTATION DEFINED field in
ERRCTLR[FirstRecordOfNode(n)].

This register is present only when error record n is implemented. Otherwise, direct accesses to ERR<n>STATUS
are RESO.

Attributes

ERR<n>STATUS is a 64-bit register.

Field descriptions

When RAS System Architecture v2 is implemented, ERR<n>FR.ED == 0600, and ERR<n>FR.ERT == 0b01:

63 32
RESO :
31,30,29,28 27,2625 23,22 20,19,18 16,15 8,7 0
AV |V [RAZ RESO |MV RAZ RESO |RAZ| RESO IERR RESO
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-175

Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Continuation record.
Bits [63:32]

Reserved, RESO.
AV, bit [31]

When error record n includes an address associated with an error:

Address Valid.
AV Meaning
0b0 ERR<n>ADDR not valid.
0bl ERR<n>ADDR contains an additional address associated with the highest priority error recorded by this
record.

The reset behavior of this field is:

. On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally UNKNOWN
value.

— Otherwise, this field resets to 'o.

Access to this field is W1C.

Otherwise:

Reserved, RESO.

V, bit [30]
Status Register Valid.
\' Meaning
0b0 ERR<n>STATUS not valid.
0bl ERR<n>STATUS valid. Additional syndrome has been recorded.

The reset behavior of this field is:

. On a Cold reset:

— When RAS System Architecture v2 is implemented and ERRFR[FirstRecordOfNode(n)].SRV ==
1, this field resets to an architecturally UNKNOWN value.
— Otherwise, this field resets to 'o'.

Access to this field is W1C.

Bit [29]

Reserved, RAZ.

Bits [28:27]

Reserved, RESO.

MYV, bit [26]

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-176
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

When error record <n> includes additional information for an error:

Miscellaneous Registers Valid.

Mv Meaning
0b0 ERR<n>MISC<m> not valid.
0bl The contents of the ERR<n>MISC<m> registers contain additional information for an error recorded by

this record.

IHI0100
Aa

If the ERR<n>MISC<m> registers can contain additional information for a previously recorded error, then
the contents must be self-describing to software or a user. For example, certain fields might relate only to
Corrected errors, and other fields only to the most recent error that was not discarded.

The reset behavior of this field is:

. On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally UNKNOWN
value.

— Otherwise, this field resets to 'o".

Access to this field is W1C.

Otherwise:

Reserved, RESO.

Bits [25:23]

Reserved, RAZ.

Bits [22:20]

Reserved, RESO.

Bit [19]

Reserved, RAZ.

Bits [18:16]

Reserved, RESO.

IERR, bits [15:8]

IMPLEMENTATION DEFINED additional error code. Used with any primary error code ERR<n>STATUS.SERR value.
Further IMPLEMENTATION DEFINED information can be placed in the ERR<n>MISC<m> registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value not in this set
is written to this register, then the value read back from this field is UNKNOWN.

This means that one or more bits of this field might be implemented as fixed read-as-zero or read-as-one values.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:

. Access to this field is UNKNOWN/WI if all of the following are true:
— ERR<n>STATUS.V ==
— the node that owns error record n does not implement the Common Fault Injection Model
Extension

. Access to this field is UNKNOWN/WTI if all of the following are true:

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-177
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

— ERR<n>STATUS.V ==
— ERRPFGF[FirstRecordOfNode(n)].SYN ==
. Otherwise, access to this field is RW.
Bits [7:0]

Reserved, RESO.

When RAS System Architecture v2 is implemented, ERR<n>FR.ED == 0b11, and ERR<n>FR.ERT == 0b01:

63 32
RESO :
31,30,29,28 25,24 ,23 20,19,18 0
: V [ERI] RES@ [FHI| RES@ [CRT RESO
|_ RESO
Proxy for a RAS agent.
Bits [63:31]
Reserved, RESO.
V, bit [30]
RAS agent error status.
\' Meaning
0b0 RAS agent error status is not asserted.
Obl RAS agent error status is asserted.
Access to this field is RO.
ERI, bit [29]
RAS agent Error Recovery condition.
ERI Meaning
0b0 RAS agent error recovery condition is false.
Obl RAS agent error recovery condition is true.
Access to this field is RO.
Bits [28:25]
Reserved, RESO.
FHI, bit [24]
RAS agent Fault Handling condition.
FHI Meaning
0b0 RAS agent fault handling condition is false.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-178

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

0bl

RAS agent fault handling condition is true.

Access to this field is RO.

Bits [23:20]

Reserved, RESO.

CRI, bit [19]

RAS agent criticial error condition.

CRI

Meaning

0b0

Obl

RAS agent criticial error condition is false.

RAS agent criticial error condition is true.

Access to this field is RO.

Bits [18:0]

Reserved, RESO.

When RAS System Architecture vlpl1 is implemented:

63 32
RESO :
31,30,29,28,27,26,25 24,23,22,21 20,19,18,17,16,15 8,7 0
E AV|V [UE|ER|OF|MV| CE |DE|PN| UET |CI|RV[RV2 IERR SERR
|_ RESO
Normal record, from FEAT RASSAvipl.
Bits [63:32]
Reserved, RESO.
AV, bit [31]
When error record n includes an address associated with an error:
Address Valid.
AV Meaning
0b0 ERR<n>ADDR not valid.
0bl ERR<n>ADDR contains an address associated with the highest priority error recorded by this record.

The reset behavior of this field is:

. On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally UNKNOWN
value.

— Otherwise, this field resets to 'o'.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-179

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Access to this field is W1C.
Otherwise:

Reserved, RESO.

V, bit [30]
Status Register Valid.
\' Meaning
0b0 ERR<n>STATUS not valid.
0bl ERR<n>STATUS valid. At least one error has been recorded.

The reset behavior of this field is:

. On a Cold reset:

— When RAS System Architecture v2 is implemented and ERRFR[FirstRecordOfNode(n)].SRV =
1, this field resets to an architecturally UNKNOWN value.
— Otherwise, this field resets to 'o'.

Access to this field is W1C.

UE, bit [29]

Uncorrected Error.

UE Meaning
0b0 No errors have been detected, or all detected errors have been either corrected or deferred.
0bl At least one detected error was not corrected and not deferred.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to
this field to clear this field to zero.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:

. When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.
. Otherwise, access to this field is W1C.

ER, bit [28]

When in-band error responses can be returned for a Deferred error:

Error Reported.
ER Meaning
0b0 No in-band error response (External abort) signaled to the Requester making the access or other
transaction.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-180

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

ER Meaning

0b1 An in-band error response was signaled by the component to the Requester making the access or other
transaction. This can be because any of the following are true:

. The ERRCTLR[FirstRecordOfNode(n)].UE field, or applicable one of the
ERRCTLR[FirstRecordOfNode(n)]. {WUE, RUE} fields, is implemented and was 1 when an error
was detected and not corrected.

. The ERRCTLR[FirstRecordOfNode(n)].{WUE, RUE, UE} fields are not implemented and the
component always reports errors.

An in-band error response signaled by the component might be masked and not generate any exception.

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as a Deferred error,
but is not deferred to the Requester, can signal an in-band error response to the Requester, causing this field to
be setto 1.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

. Access to this field is UNKNOWN/WT if any of the following are true:
— ERR<n>STATUS.V ==
— [ERR<n>STATUS.DE, ERR<n>STATUS.UE] == 0b00

. Otherwise, access to this field is W1C.

When in-band error responses are never returned for a Deferred error:

Error Reported.
ER Meaning
0b0 No in-band error response (External abort) signaled to the Requester making the access or other
transaction.
0bl An in-band error response was signaled by the component to the Requester making the access or other

transaction. This can be because any of the following are true:

. The ERRCTLR[FirstRecordOfNode(n)].UE field, or applicable one of the
ERRCTLR[FirstRecordOfNode(n)]. { WUE, RUE} fields, is implemented and was 1 when an error
was detected and not corrected.

. The ERRCTLR[FirstRecordOfNode(n)].{WUE, RUE, UE} fields are not implemented and the
component always reports errors.

An in-band error response signaled by the component might be masked and not generate any exception.

It is IMPLEMENTATION DEFINED whether an uncorrected error that is deferred and recorded as a Deferred error,
but is not deferred to the Requester, can signal an in-band error response to the Requester, causing this field to
besetto 1.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

. Access to this field is UNKNOWN/WI if any of the following are true:
— ERR<n>STATUS.V ==
— ERR<n>STATUS.UE ==
. Otherwise, access to this field is W1C.
Otherwise:

Reserved, RESO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-181
Aa Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

OF, bit [27]

Overflow.

Indicates that multiple errors have been detected. This field is set to 1 when one of the following occurs:

. A Corrected error counter is implemented, an error is counted, and the counter overflows.

. ERR<n>STATUS.V was previously 1, a Corrected error counter is not implemented, and a Corrected error
is recorded.

. ERR<n>STATUS.V was previously 1, and a type of error other than a Corrected error is recorded.

Otherwise, this field is unchanged when an error is recorded.

If a Corrected error counter is implemented, then:

. A direct write that modifies the counter overflow flag indirectly might set this field to an UNKNOWN value.
. A direct write to this field that clears this field to zero might indirectly set the counter overflow flag to an
UNKNOWN value.
OF Meaning
0b0 Since this field was last cleared to zero, no error syndrome has been discarded and, if a Corrected error
counter is implemented, it has not overflowed.
0bl Since this field was last cleared to zero, at least one error syndrome has been discarded or, if a Corrected
error counter is implemented, it might have overflowed.
When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to
this field to clear this field to zero.
The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:
. When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.
. Otherwise, access to this field is W1C.
MV, bit [26]
When error record <n> includes additional information for an error:
Miscellaneous Registers Valid.
MV Meaning
0b0 ERR<n>MISC<m> not valid.
0bl The contents of the ERR<n>MISC<m> registers contain additional information for an error recorded by

this record.

IHI0100
Aa

If the ERR<n>MISC<m> registers can contain additional information for a previously recorded error, then
the contents must be self-describing to software or a user. For example, certain fields might relate only to
Corrected errors, and other fields only to the most recent error that was not discarded.

The reset behavior of this field is:

. On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally UNKNOWN
value.

— Otherwise, this field resets to 'o'.

Access to this field is W1C.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-182
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Otherwise:

Reserved, RESO.

CE, bits [25:24]

Corrected Error.

CE Meaning

0b00 No errors were corrected.

0b01 At least one transient error was corrected.
0b10 At least one error was corrected.

0b11 At least one persistent error was corrected.

The mechanism by which a component or node detects whether a Corrected error is transient or persistent is
IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets this field to on10 when a
corrected error is recorded.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write ones to
this field to clear this field to zero.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:

. When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

. Otherwise, access to this field is W1C.
DE, bit [23]
Deferred Error.
DE Meaning
0b0 No errors were deferred.
0bl At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to
this field to clear this field to zero.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:

. When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

. Otherwise, access to this field is W1C.
PN, bit [22]
Poison.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-183

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

PN Meaning

0b0 Uncorrected error or Deferred error recorded because a corrupt value was detected, for example, by an
error detection code (EDC), or Corrected error recorded.

0b1 Uncorrected error or Deferred error recorded because a poison value was detected.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to
this field to clear this field to zero.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:

. Access to this field is UNKNOWN/WTI if any of the following are true:
— ERR<n>STATUS.V ==
— [ERR<n>STATUS.DE, ERR<n>STATUS.UE] == 0v00

. Otherwise, access to this field is W1C.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected error.

UET Meaning

0b00 Uncorrected error, Uncontainable error (UC).

0b01 Uncorrected error, Unrecoverable error (UEU).

0b10 Uncorrected error, Latent or Restartable error (UEO).
0b11 Uncorrected error, Signaled or Recoverable error (UER).

UER can mean either Signaled or Recoverable error, and UEO can mean either Latent or Restartable error.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write ones to
this field to clear this field to zero.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

. Access to this field is UNKNOWN/WTI if any of the following are true:
— ERR<n>STATUS.V ==
— ERR<n>STATUS.UE =

. Otherwise, access to this field is W1C.

CI, bit [19]

Critical Error. Indicates whether a critical error condition has been recorded.

Cl Meaning
0b0 No critical error condition.
0bl Critical error condition.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to
this field to clear this field to zero.

The reset behavior of this field is:

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-184
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:

. When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.
. Otherwise, access to this field is W1C.

RY, bit [18]
When RAS System Architecture v2 is implemented:

Reset Valid. When ERR<n>STATUS.V is 1, indicating the error record is valid, this field indicates whether
the error was recorded before or after the most recent Error Recovery reset.

RV Meaning

0b0 If the error record is valid then one or more errors have been recorded after the last Error Recovery
reset. This error or errors might have overwritten lower priority errors recorded before the last Error
Recovery reset.

0bl If the error record is valid then one or more errors were recorded before the last Error Recovery reset.

This field is set to 0 when an error is recorded and either the fault overwrites the error syndrome, or the error
record was previously not valid.

The reset behavior of this field is:
. On a Error recovery reset, this field resets to 1.
Access to this field is W1C.

Otherwise:

Reserved, RESO.

RV2, bit [17]
When RAS System Architecture v2 is implemented:

Reset Valid 2. When ERR<n>STATUS.{V, RV} is {1, 1}, indicating the error record is valid and one or more
errors were recorded before the last Error Recovery reset, this field indicates whether any lower severity
errors have been recorded after the Error Recovery reset that did not overwrite the syndrome.

RV2 Meaning

0b0 If the error record is valid then one or more errors were recorded after the last Error Recovery reset
that did not overwrite the error syndrome. This includes errors that did not overwrite a previously
recorded error syndrome.

0bl If the error record is valid then one or more errors were recorded before the last Error Recovery
reset.

This field is set to 0 when an error is recorded, including when the fault does not overwrite a previously
recorded syndrome.

The reset behavior of this field is:
. On a Error recovery reset, this field resets to 1.
Access to this field is W1C.

Otherwise:

Reserved, RESO.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-185
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Bit [16]

Reserved, RESO.

IERR, bits [15:8]

IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<n>STATUS.SERR value. Further
IMPLEMENTATION DEFINED information can be placed in the ERR<n>MISC<m> registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value not in this set
is written to this register, then the value read back from this field is UNKNOWN.

This means that one or more bits of this field might be implemented as fixed read-as-zero or read-as-one values.

The reset behavior of this field is:

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

Access to this field is UNKNOWN/WI if all of the following are true:

— the node that owns error record n does not implement the Common Fault Injection Model
Extension

— ERR<n>STATUS.V =0

Access to this field is UNKNOWN/WI if all of the following are true:

— ERRPFGF[FirstRecordOfNode(n)].SYN ==

— ERR<n>STATUS.V ==

Otherwise, access to this field is RW.

SERR, bits [7:0]

Architecturally-defined primary error code. The primary error code might be used by a fault handling agent to
triage an error without requiring device-specific code. For example, to count and threshold corrected errors in
software, or generate a short log entry.

IHI0100
Aa

SERR Meaning

0x00 No error.

0x01 IMPLEMENTATION DEFINED €ITOT.

0x02 Data value from (non-associative) internal memory. For example, ECC from on-chip SRAM or buffer.
0x03 IMPLEMENTATION DEFINED pin. For example, nSEI pin.

0x04 Assertion failure. For example, consistency failure.

0x05 Error detected on internal data path. For example, parity on ALU result.

0x06 Data value from associative memory. For example, ECC error on cache data.

0x07 Address/control value from associative memory. For example, ECC error on cache tag.
0x08 Data value from a TLB. For example, ECC error on TLB data.

0x09 Address/control value from a TLB. For example, ECC error on TLB tag.

0x0A Data value from producer. For example, parity error on write data bus.

0x0B Address/control value from producer. For example, parity error on address bus.

0x0C Data value from (non-associative) external memory. For example, ECC error in SDRAM.
0x0D Illegal address (software fault). For example, access to unpopulated memory.

0x0F Illegal access (software fault). For example, byte write to word register.

0x0F Illegal state (software fault). For example, device not ready.

0x10 Internal data register. For example, parity on a SIMD&FP register.

For a PE, all general-purpose, stack pointer, SIMD&FP, SVE, and SME registers are data registers.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-186
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

SERR

Meaning

0x11

0x12

0x13

0x14

0x15

0x16

0x17

0x18

0x19

0x1A

Internal control register. For example, parity on a System register.
For a PE, all registers other than general-purpose, stack pointer, SIMD&FP, SVE, and SME registers are
control registers.

Error response from Completer of access. For example, error response from cache write-back.
External timeout. For example, timeout on interaction with another component.
Internal timeout. For example, timeout on interface within the component.

Deferred error from Completer not supported at Requester. For example, poisoned data received from
the Completer of an access by a Requester that cannot defer the error further.

Deferred error from Requester not supported at Completer. For example, poisoned data received from
the Requester of an access by a Completer that cannot defer the error further.

Deferred error from Completer passed through. For example, poisoned data received from the
Completer of an access and returned to the Requester.

Deferred error from Requester passed through. For example, poisoned data received from the Requester
of an access and deferred to the Completer.

Error recorded by PCle error logs. Indicates that the component has recorded an error in a PCle error
log. This might be the PCle device status register, AER, DVSEC, or other mechanisms defined by PCle.

Other internal error. For example, parity error on internal state of the component that is not covered by
another primary error code.

IHI0100
Aa

63

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value not in this set
is written to this register, then the value read back from this field is UNKNOWN.

This means that one or more bits of this field might be implemented as fixed read-as-zero or read-as-one values.

The reset behavior of this field is:

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

Otherwise:

Access to this field is UNKNOWN/WI if all of the following are true:

— the node that owns error record n does not implement the Common Fault Injection Model
Extension

— ERR<n>STATUS.V =0

Access to this field is UNKNOWN/WTI if all of the following are true:

— ERRPFGF[FirstRecordOfNode(n)].SYN ==
— ERR<n>STATUS.V ==

Otherwise, access to this field is RW.

32

RESO

31

30

25 24,23,22,21 20,19 16,15 8,7 0

AV

UE [ER|OF | MV

CE |DE|PN| UET RESO IERR SERR

Normal record, when FEAT RASSAvIpl is not implemented.

Bits [63:32]

Reserved, RESO.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-187
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

AV, bit [31]

‘When error record n includes an address associated with an error:

Address Valid.
AV Meaning
0b0 ERR<n>ADDR not valid.
0bl ERR<n>ADDR contains an address associated with the highest priority error recorded by this record.

The reset behavior of this field is:

. On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally UNKNOWN
value.

— Otherwise, this field resets to 'o'.

Accessing this field has the following behavior:

. Access to this field is RO if all of the following are true:

— [ERR<n>STATUS.DE, ERR<n>STATUS.UE] == oboo
— ERR<n>STATUS.CE != ono0
— ERR<n>STATUS.CE is not being cleared to 0n00 in the same write

. Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE ==
— ERR<n>STATUS.DE =0
— ERR<n>STATUS.DE is not being cleared to ovo in the same write

. Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE !=0
— ERR<n>STATUS.UE is not being cleared to ono in the same write

. Otherwise, access to this field is W1C.

Otherwise:

Reserved, RESO.

V, bit [30]
Status Register Valid.
\' Meaning
0b0 ERR<n>STATUS not valid.
0bl ERR<n>STATUS valid. At least one error has been recorded.

The reset behavior of this field is:

. On a Cold reset:
— When RAS System Architecture v2 is implemented and ERRFR[FirstRecordOfNode(n)].SRV =
1, this field resets to an architecturally UNKNOWN value.
— Otherwise, this field resets to 'o'.

Accessing this field has the following behavior:

. Access to this field is RO if all of the following are true:
— ERR<n>STATUS.CE != oboo
— ERR<n>STATUS.CE is not being cleared to oboo in the same write

. Access to this field is RO if all of the following are true:
— ERR<n>STATUS.DE !=0

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-188
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

— ERR<n>STATUS.DE is not being cleared to ovo in the same write
. Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE !=0
— ERR<n>STATUS.UE is not being cleared to ovo in the same write

. Otherwise, access to this field is W1C.
UE, bit [29]
Uncorrected Error.
UE Meaning
0b0 No errors have been detected, or all detected errors have been either corrected or deferred.
0bl At least one detected error was not corrected and not deferred.
When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to
this field to clear this field to zero.
The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:
. When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.
. Access to this field is RO if all of the following are true:
— ERR<n>STATUS.OF =
— ERR<n>STATUS.OF is not being cleared to o0 in the same write
. Otherwise, access to this field is W1C.
ER, bit [28]
When in-band error responses can be returned for a Deferred error:
Error Reported.
ER Meaning
0b0 No in-band error response (External abort) signaled to the Requester making the access or other
transaction.
0b1 An in-band error response was signaled by the component to the Requester making the access or other

transaction. This can be because any of the following are true:

. The ERRCTLR[FirstRecordOfNode(n)].UE field, or applicable one of the
ERRCTLR[FirstRecordOfNode(n)].{WUE, RUE} fields, is implemented and was 1 when an error
was detected and not corrected.

. The ERRCTLR[FirstRecordOfNode(n)].{WUE, RUE, UE} fields are not implemented and the
component always reports errors.

IHI0100
Aa

If this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to zero,
when any of:

. Clearing ERR<n>STATUS.V to 0.
. Clearing both ERR<n>STATUS.{DE, UE} to 0.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:

. Access to this field is UNKNOWN/WI if any of the following are true:

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-189
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

— ERR<n>STATUS.V ==

— [ERR<n>STATUS.DE, ERR<n>STATUS.UE] == o0n00
. Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE !=0

— ERR<n>STATUS.UE is not being cleared to obo in the same write
. Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE =0

— ERR<n>STATUS.DE =0

— ERR<n>STATUS.DE is not being cleared to ovo in the same write
. Otherwise, access to this field is W1C.

When in-band error responses are never returned for a Deferred error:

Error Reported.
ER Meaning
0b0 No in-band error response (External abort) signaled to the Requester making the access or other
transaction.
0bl An in-band error response was signaled by the component to the Requester making the access or other

transaction. This can be because any of the following are true:

. The ERRCTLR[FirstRecordOfNode(n)].UE field, or applicable one of the
ERRCTLR[FirstRecordOfNode(n)]. { WUE, RUE} fields, is implemented and was 1 when an error
was detected and not corrected.

. The ERRCTLR[FirstRecordOfNode(n)].{WUE, RUE, UE} fields are not implemented and the
component always reports errors.

IHI0100
Aa

If this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to zero,
when any of:

. Clearing ERR<n>STATUS.V to 0.
. Clearing ERR<n>STATUS.UE to 0.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:

. Access to this field is UNKNOWN/WT if any of the following are true:
— ERR<n>STATUS.V =
— ERR<n>STATUS.UE ==

. Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE =0
— ERR<n>STATUS.UE is not being cleared to ovo in the same write

. Otherwise, access to this field is W1C.

Otherwise:

Reserved, RESO.

OF, bit [27]

Overflow.

Indicates that multiple errors have been detected. This field is set to 1 when one of the following occurs:

An Uncorrected error is detected and ERR<n>STATUS.UE == 1.

A Deferred error is detected, ERR<n>STATUS.UE == 0 and ERR<n>STATUS.DE == 1.

A Corrected error is detected, no Corrected error counter is implemented, ERR<n>STATUS.UE == 0,
ERR<n>STATUS.DE == 0, and ERR<n>STATUS.CE != 0v00. ERR<n>STATUS.CE might be updated
for the new Corrected error.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-190
Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

. A Corrected error counter is implemented, ERR<n>STATUS.UE == 0, ERR<n>STATUS.DE == 0, and
the counter overflows.

It is IMPLEMENTATION DEFINED whether this field is set to 1 when one of the following occurs:

. A Deferred error is detected and ERR<n>STATUS.UE == 1.

. A Corrected error is detected, no Corrected error counter is implemented, and ERR<n>STATUS.{UE, DE}
1= {0, 0}.

. A Corrected error counter is implemented, ERR<n>STATUS.{UE, DE} != {0, 0}, and the counter
overflows.

It is IMPLEMENTATION DEFINED whether this field is cleared to 0 when one of the following occurs:

. An Uncorrected error is detected and ERR<n>STATUS.UE == 0.

. A Deferred error is detected, ERR<n>STATUS.UE == 0, and ERR<n>STATUS.DE == 0.

. A Corrected error is detected, ERR<n>STATUS.UE == 0, ERR<n>STATUS.DE == 0, and
ERR<n>STATUS.CE == on00.

The IMPLEMENTATION DEFINED clearing of this field might also depend on the value of the other error status fields.

If a Corrected error counter is implemented, then:

. A direct write that modifies the counter overflow flag indirectly might set this field to an UNKNOWN value.
. A direct write to this field that clears this field to 0 might indirectly set the counter overflow flag to an
UNKNOWN value.
OF Meaning
0b0 If ERR<n>STATUS.UE == 1, then no error syndrome for an Uncorrected error has been discarded.
If ERR<n>STATUS.UE == 0 and ERR<n>STATUS.DE == 1, then no error syndrome for a Deferred
error has been discarded.
If ERR<n>STATUS.UE == 0, ERR<n>STATUS.DE == 0, and a Corrected error counter is
implemented, then the counter has not overflowed.
If ERR<n>STATUS.UE == 0, ERR<n>STATUS.DE == 0, ERR<n>STATUS.CE != 0v00, and no
Corrected error counter is implemented, then no error syndrome for a Corrected error has been
discarded.
This field might have been set to 1 when an error syndrome was discarded and later cleared to 0 when a
higher priority syndrome was recorded.
0b1 At least one error syndrome has been discarded or, if a Corrected error counter is implemented, it might
have overflowed.
When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to
this field to clear this field to zero.
The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:
. When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.
. Otherwise, access to this field is W1C.
MY, bit [26]
When error record <n> includes additional information for an error:
Miscellaneous Registers Valid.
MV Meaning
0b0 ERR<n>MISC<m> not valid.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-191

Aa

Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Mmv

Meaning

Obl

The contents of the ERR<n>MISC<m> registers contain additional information for an error recorded by
this record.

IHI0100
Aa

If the ERR<n>MISC<m> registers can contain additional information for a previously recorded error, then
the contents must be self-describing to software or a user. For example, certain fields might relate only to
Corrected errors, and other fields only to the most recent error that was not discarded.

The reset behavior of this field is:

. On a Cold reset:

— When RAS System Architecture v2 is implemented and
ERRFR[FirstRecordOfNode(n)].SRV == 1, this field resets to an architecturally UNKNOWN
value.

— Otherwise, this field resets to 'o'.

Accessing this field has the following behavior:

. Access to this field is RO if all of the following are true:

— [ERR<n>STATUS.DE, ERR<n>STATUS.UE] == oboo
— ERR<n>STATUS.CE != ono0
— ERR<n>STATUS.CE is not being cleared to ob00 in the same write

. Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE =
— ERR<n>STATUS.DE !=0
— ERR<n>STATUS.DE is not being cleared to ono in the same write

. Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE !=0
— ERR<n>STATUS.UE is not being cleared to ovo in the same write

. Otherwise, access to this field is W1C.
Otherwise:

Reserved, RESO.

CE, bits [25:24]

Corrected Error.

CE Meaning

0b00 No errors were corrected.

0b01 At least one transient error was corrected.
0b10 At least one error was corrected.

0bl1 At least one persistent error was corrected.

The mechanism by which a component or node detects whether a Corrected error is transient or persistent is
IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets this field to on10 when a
corrected error is recorded.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write ones to
this field to clear this field to zero.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:

. When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-192
Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

DE, bit [23]

. Access to this field is RO if all of the following are true:
— ERR<n>STATUS.OF =
— ERR<n>STATUS.OF is not being cleared to ov0 in the same write
. Otherwise, access to this field is W1C.
Deferred Error.
DE Meaning
0b0 No errors were deferred.
0b1l At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0, if this field is nonzero, then Arm recommends that software write 1 to
this field to clear this field to zero.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:

. When ERR<n>STATUS.V == 0, access to this field is UNKNOWN/WI.
. Access to this field is RO if all of the following are true:

— ERR<n>STATUS.OF == 1

— ERR<n>STATUS.OF is not being cleared to oo in the same write

. Otherwise, access to this field is W1C.
PN, bit [22]
Poison.
PN Meaning
0b0 Uncorrected error or Deferred error recorded because a corrupt value was detected, for example, by an
error detection code (EDC), or Corrected error recorded.
0bl Uncorrected error or Deferred error recorded because a poison value was detected.

IHI0100
Aa

If this field is nonzero, then Arm recommends that software write 1 to this field to clear this field to zero, when any
of:

. Clearing ERR<n>STATUS.V to 0.
. Clearing both ERR<n>STATUS.{DE, UE} to 0.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:

. Access to this field is UNKNOWN/WTI if any of the following are true:
— ERR<n>STATUS.V ==
— [ERR<n>STATUS.DE, ERR<n>STATUS.UE] == 0v00

. Access to this field is RO if all of the following are true:

— [ERR<n>STATUS.DE, ERR<n>STATUS.UE] == 0v00
— ERR<n>STATUS.CE != ono0
— ERR<n>STATUS.CE is not being cleared to oo in the same write

. Access to this field is RO if all of the following are true:

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-193
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

— ERR<n>STATUS.UE =

— ERR<n>STATUS.DE !=0

— ERR<n>STATUS.DE is not being cleared to ovo in the same write
. Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE =0

— ERR<n>STATUS.UE is not being cleared to ovo in the same write
. Otherwise, access to this field is W1C.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected error.

UET Meaning

0600 Uncorrected error, Uncontainable error (UC).

0b01 Uncorrected error, Unrecoverable error (UEU).

0b10 Uncorrected error, Latent or Restartable error (UEO).
Obl1 Uncorrected error, Signaled or Recoverable error (UER).

UER can mean either Signaled or Recoverable error, and UEO can mean either Latent or Restartable error.

If this field is nonzero, then Arm recommends that software write ones to this field to clear this field to zero, when
any of:

. Clearing ERR<n>STATUS.V to 0.
. Clearing ERR<n>STATUS.UE to 0.

The reset behavior of this field is:
. On a Cold reset, this field resets to an architecturally UNKNOWN value.
Accessing this field has the following behavior:

. Access to this field is UNKNOWN/WI if any of the following are true:

— ERR<n>STATUS.V ==

— ERR<n>STATUS.UE =
. Access to this field is RO if all of the following are true:

— [ERR<n>STATUS.DE, ERR<n>STATUS.UE] == 0v00

— ERR<n>STATUS.CE != onoo

— ERR<n>STATUS.CE is not being cleared to oboo in the same write
. Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE =

— ERR<n>STATUS.DE !=0

— ERR<n>STATUS.DE is not being cleared to ovo in the same write
. Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE =0

— ERR<n>STATUS.UE is not being cleared to obo in the same write
. Otherwise, access to this field is W1C.

Bits [19:16]

Reserved, RESO.

IERR, bits [15:8]

IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<n>STATUS.SERR value. Further
IMPLEMENTATION DEFINED information can be placed in the ERR<n>MISC<m> registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value not in this set
is written to this register, then the value read back from this field is UNKNOWN.

This means that one or more bits of this field might be implemented as fixed read-as-zero or read-as-one values.

The reset behavior of this field is:

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-194
Aa Non-Confidential

RAS Memory-mapped Register Descriptions

3.2 RAS register descriptions

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

Access to this field is UNKNOWN/WI if all of the following are true:

— the node that owns error record n does not implement the Common Fault Injection Model
Extension

— ERR<n>STATUS.V ==

Access to this field is UNKNOWN/WI if all of the following are true:

— ERRPFGEF[FirstRecordOfNode(n)].SYN == 0

— ERR<n>STATUS.V =

Access to this field is RO if all of the following are true:

— [ERR<n>STATUS.DE, ERR<n>STATUS.UE] == 0000

— ERR<n>STATUS.CE != onoo

— ERR<n>STATUS.CE is not being cleared to oboo in the same write

Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE ==

— ERR<n>STATUS.DE !=0

— ERR<n>STATUS.DE is not being cleared to w0 in the same write

Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE !=0

— ERR<n>STATUS.UE is not being cleared to ovo in the same write

Otherwise, access to this field is RW.

SERR, bits [7:0]

Architecturally-defined primary error code. The primary error code might be used by a fault handling agent to
triage an error without requiring device-specific code. For example, to count and threshold corrected errors in
software, or generate a short log entry.

IHI0100
Aa

SERR Meaning

0x00 No error.

0x01 IMPLEMENTATION DEFINED €ITOT.

0x02 Data value from (non-associative) internal memory. For example, ECC from on-chip SRAM or buffer.
0x03 IMPLEMENTATION DEFINED pin. For example, nSEI pin.

0x04 Assertion failure. For example, consistency failure.

0x05 Error detected on internal data path. For example, parity on ALU result.

0x06 Data value from associative memory. For example, ECC error on cache data.

0x07 Address/control value from associative memory. For example, ECC error on cache tag.
0x08 Data value from a TLB. For example, ECC error on TLB data.

0x09 Address/control value from a TLB. For example, ECC error on TLB tag.

0x0A Data value from producer. For example, parity error on write data bus.

0x0B Address/control value from producer. For example, parity error on address bus.

0x0C Data value from (non-associative) external memory. For example, ECC error in SDRAM.
0x0D Illegal address (software fault). For example, access to unpopulated memory.

0x0E Illegal access (software fault). For example, byte write to word register.

0x0F Illegal state (software fault). For example, device not ready.

0x10 Internal data register. For example, parity on a SIMD&FP register.

For a PE, all general-purpose, stack pointer, SIMD&FP, SVE, and SME registers are data registers.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-195
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

SERR Meaning

ox11 Internal control register. For example, parity on a System register.
For a PE, all registers other than general-purpose, stack pointer, SIMD&FP, SVE, and SME registers are
control registers.

0x12 Error response from Completer of access. For example, error response from cache write-back.

0x13 External timeout. For example, timeout on interaction with another component.

0x14 Internal timeout. For example, timeout on interface within the component.

0x15 Deferred error from Completer not supported at Requester. For example, poisoned data received from
the Completer of an access by a Requester that cannot defer the error further.

0x16 Deferred error from Requester not supported at Completer. For example, poisoned data received from
the Requester of an access by a Completer that cannot defer the error further.

0x17 Deferred error from Completer passed through. For example, poisoned data received from the
Completer of an access and returned to the Requester.

0x18 Deferred error from Requester passed through. For example, poisoned data received from the Requester
of an access and deferred to the Completer.

0x19 Error recorded by PCle error logs. Indicates that the component has recorded an error in a PCle error
log. This might be the PCle device status register, AER, DVSEC, or other mechanisms defined by PCle.

0x1A Other internal error. For example, parity error on internal state of the component that is not covered by

another primary error code.

IHI0100
Aa

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value not in this set
is written to this register, then the value read back from this field is UNKNOWN.

This means that one or more bits of this field might be implemented as fixed read-as-zero or read-as-one values.

The reset behavior of this field is:

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing this field has the following behavior:

Access to this field is UNKNOWN/WI if all of the following are true:

— the node that owns error record n does not implement the Common Fault Injection Model
Extension

— ERR<n>STATUS.V =0

Access to this field is UNKNOWN/WI if all of the following are true:

— ERRPFGEF[FirstRecordOfNode(n)].SYN == 0

— ERR<n>STATUS.V =0

Access to this field is RO if all of the following are true:

— ERR<n>STATUS.DE =0

— ERR<n>STATUS.UE ==

— ERR<n>STATUS.CE != obo0

— ERR<n>STATUS.CE is not being cleared to ob0o in the same write

Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE ==

— ERR<n>STATUS.DE =0

— ERR<n>STATUS.DE is not being cleared to ovo in the same write

Access to this field is RO if all of the following are true:

— ERR<n>STATUS.UE =0

— ERR<n>STATUS.UE is not being cleared to ono in the same write

Otherwise, access to this field is RW.

Accessing ERR<n>STATUS

ERR<n>STATUS.{AV, V, UE, ER, OF, MV, CE, DE, PN, UET, CI} are write-one-to-clear (W1C) fields, meaning writes
of zero are ignored, and a write of one or all-ones to the field clears the field to zero. ERR<n>STATUS.{IERR, SERR}

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-196
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

are read/write (RW) fields, although the set of implemented valid values is IMPLEMENTATION DEFINED. See also
ERR<n>PFGF.SYN.

After reading ERR<n>STATUS, software must clear the valid fields in the register to allow new errors to be recorded.
However, between reading the register and clearing the valid fields, a new error might have overwritten the register. To
prevent this error being lost by software, the register prevents updates to fields that might have been updated by a new
erTor.

When RAS System Architecture v1.0 is implemented:

. Writes to ERR<n>STATUS. {UE, DE, CE} are ignored if ERR<n>STATUS.OF is 1 and is not being cleared to 0.

. Writes to ERR<n>STATUS.V are ignored if any of ERR<n>STATUS.{UE, DE, CE} are nonzero and are not
being cleared to zero.

. Writes to ERR<n>STATUS.{AV, MV} and the ERR<n>STATUS.{ER, PN, UET, IERR, SERR} syndrome fields
are ignored if the highest priority nonzero error status field is not being cleared to zero. The error status fields in
priority order from highest to lowest, are ERR<n>STATUS.UE, ERR<n>STATUS.DE, and
ERR<n>STATUS.CE.

When RAS System Architecture v1.1 is implemented, a write to the register is ignored if all of:

. Any of ERR<n>STATUS.{V, UE, OF, CE, DE} are nonzero before the write.
. The write does not clear the nonzero ERR<n>STATUS.{V, UE, OF, CE, DE} fields to zero by writing ones to the
applicable field or fields.

Some of the fields in ERR<n>STATUS are also defined as UNKNOWN where certain combinations of
ERR<n>STATUS.{V, DE, UE} are zero. The rules for writes to ERR<n>STATUS allow a node to implement such a
field as a fixed read-only value.

For example, when RAS System Architecture v1.1 is implemented, a write to ERR<n>STATUS when
ERR<n>STATUS.V is 1 results in either ERR<n>STATUS.V field being cleared to zero, or ERR<n>STATUS.V not
changing. Since all fields in ERR<n>STATUS, other than ERR<n>STATUS.{AV, V, MV}, usually read as UNKNOWN
values when ERR<n>STATUS.V is zero, this means those fields can be implemented as read-only if applicable.

To ensure correct and portable operation, when software is clearing the valid fields in the register to allow new errors to
be recorded, Arm recommends that software performs the following sequence of operations in order:

1. Read ERR<n>STATUS and determine which fields need to be cleared to zero.
2. In asingle write to ERR<n>STATUS:

. Write ones to all the W1C fields that are nonzero in the read value.
. Write zero to all the W1C fields that are zero in the read value.
. Write zero to all the RW fields.

3. Read back ERR<n>STATUS after the write to confirm no new fault has been recorded.

Otherwise, these fields might not have the correct value when a new fault is recorded.

ERR<n>STATUS can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0x010 + (64 * ERR<n>STATUS
“—n)

Accessible as follows:

. When ERR<n>STATUS.V !=0, ERR<n>STATUS.V is not being cleared to ovo in the same write, and RAS
System Architecture v1pl is implemented, accesses to this register are RO.

. When ERR<n>STATUS.UE != 0, ERR<n>STATUS.UE is not being cleared to ono in the same write, and RAS
System Architecture v1p1 is implemented, accesses to this register are RO.
. When ERR<n>STATUS.OF != 0, ERR<n>STATUS.OF is not being cleared to ovo in the same write, and RAS

System Architecture v1p1 is implemented, accesses to this register are RO.
. When ERR<n>STATUS.CE != ov00, ERR<n>STATUS.CE is not being cleared to ob00 in the same write, and
RAS System Architecture vipl is implemented, accesses to this register are RO.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-197
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

. When ERR<n>STATUS.DE != 0, ERR<n>STATUS.DE is not being cleared to ovo in the same write, and RAS
System Architecture vlp1 is implemented, accesses to this register are RO.
. Otherwise, accesses to this register are RW.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-198
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.34 ERRPIDRO, Peripheral Identification Register 0
The ERRPIDRO characteristics are:

Purpose

Provides discovery information about the component.

Configuration
ERRPIDRO is implemented only as part of a memory-mapped group of error records.

Implementation of this register is OPTIONAL.

Attributes
ERRPIDRO is a 32-bit register.
Field descriptions

31 8,7 0
RESO PART 0

Bits [31:8]

Reserved, RESO.

PART 0, bits [7:0]
Part number, bits [7:0].

The part number is selected by the designer of the component. The designer chooses whether to use a 12-bit or a
16-bit part number:

. If a 12-bit part number is used, then it is stored in ERRPIDR1.PART 1 and ERRPIDRO.PART 0. There
are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the
component.

. If a 16-bit part number is used, then it is stored in ERRPIDR2.PART 2, ERRPIDR1.PART 1 and
ERRPIDRO.PART 0. There are 4 bits, ERRPIDR3.REVISION, available to define the revision of the
component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing ERRPIDRO

This section shows the offset of ERRPIDRO when FEAT RASSA_4KB_GRP is implemented. If
FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_ GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRPIDRO.

ERRPIDRO can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xFEQ ERRPIDRO
Accesses to this register are RO.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-199

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.35 ERRPIDR1, Peripheral Identification Register 1

The ERRPIDRI1 characteristics are:

Purpose

Provides discovery information about the component.

Configuration
ERRPIDRI1 is implemented only as part of a memory-mapped group of error records.

Implementation of this register is OPTIONAL.

Attributes

ERRPIDRI1 is a 32-bit register.

Field descriptions

31 8,7

RESO DES 0

PART 1

Bits [31:8]

Reserved, RESO.

DES 0, bits [7:4]

Designer, JEP106 identification code, bits [3:0]. ERRPIDR1.DES 0 and ERRPIDR2.DES 1 together form the

JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106
identification code is not included. The code identifies the designer of the component, which might not be not the
same as the implementer of the device containing the component. To obtain a number, or to see the assignment of
these codes, contact JEDEC http://www.jedec.org.

This field has an IMPLEMENTATION DEFINED value.
For a component designed by Arm Limited, the JEP106 identification code is 0x38.

Access to this field is RO.

PART _1, bits [3:0]

Part number, bits [11:8].

The part number is selected by the designer of the component. The designer chooses whether to use a 12-bit or a
16-bit part number:

. If a 12-bit part number is used, then it is stored in ERRPIDR1.PART 1 and ERRPIDRO.PART 0. There
are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the
component.

. If a 16-bit part number is used, then it is stored in ERRPIDR2.PART 2, ERRPIDR1.PART _1 and
ERRPIDRO.PART 0. There are 4 bits, ERRPIDR3.REVISION, available to define the revision of the
component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Accessing ERRPIDR1

This section shows the offset of ERRPIDR1 when FEAT RASSA 4KB GRP is implemented. If

FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_ GRP is implemented, see ‘RAS memory-mapped register views’

for the offset of ERRPIDRI.

ERRPIDRI1 can be accessed through the memory-mapped interface:

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved.
Aa Non-Confidential

3-200

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

Component Offset Instance
RAS 0xFE4 ERRPIDR1
Accesses to this register are RO.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-201

Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.36

IHI0100
Aa

ERRPIDR2, Peripheral Identification Register 2

The ERRPIDR2 characteristics are:

Purpose

Provides discovery information about the component.

Configuration

ERRPIDR?2 is implemented only as part of a memory-mapped group of error records.

Implementation of this register is OPTIONAL.

Attributes

ERRPIDR?2 is a 32-bit register.

Field descriptions

When the component uses a 12-bit part number:

31 8,7 4,32 0
RESO REVISION 1 DES_1
|_JEDEC

Bits [31:8]

Reserved, RESO.

REVISION, bits [7:4]

Component major revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the revision
number of the component, with ERRPIDR2.REVISION being the most significant part and ERRPIDR3.REVAND
the least significant part. When a component is changed, ERRPIDR2.REVISION or ERRPIDR3.REVAND are
increased to ensure that software can differentiate the different revisions of the component. ERRPIDR3.REVAND
should be set to oboooo when ERRPIDR2.REVISION is increased.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDECG, bit [3]

DES_

JEDEC-assigned JEP106 implementer code is used.
Reads as op1

Access to this field is RO.

1, bits [2:0]

Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES 0 and ERRPIDR2.DES 1 together form the
JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106
identification code is not included. The code identifies the designer of the component, which might not be not the
same as the implementer of the device containing the component. To obtain a number, or to see the assignment of
these codes, contact JEDEC http://www.jedec.org.

This field has an IMPLEMENTATION DEFINED value.
For a component designed by Arm Limited, the JEP106 identification code is 0x38.

Access to this field is RO.

When the component uses a 16-bit part number:

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-202
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

31 8,7 4,3,2 0
RESO PART 2 1| DES 1
L sepec

Bits [31:8]

Reserved, RESO.

PART _2, bits [7:4]

Part number, bits [15:12].

The part number is selected by the designer of the component. The designer chooses whether to use a 12-bit or a
16-bit part number:

. If a 12-bit part number is used, then it is stored in ERRPIDR1.PART 1 and ERRPIDRO.PART 0. There
are 8 bits, ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the
component.

. If a 16-bit part number is used, then it is stored in ERRPIDR2.PART 2, ERRPIDRI.PART 1 and
ERRPIDRO.PART 0. There are 4 bits, ERRPIDR3.REVISION, available to define the revision of the
component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

JEDEG, bit [3]

DES_

JEDEC-assigned JEP106 implementer code is used.
Reads as op1

Access to this field is RO.

1, bits [2:0]

Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES 0 and ERRPIDR2.DES 1 together form the
JEDEC-assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106
identification code is not included. The code identifies the designer of the component, which might not be not the
same as the implementer of the device containing the component. To obtain a number, or to see the assignment of
these codes, contact JEDEC http://www.jedec.org.

This field has an IMPLEMENTATION DEFINED value.
For a component designed by Arm Limited, the JEP106 identification code is 0x38.

Access to this field is RO.

Accessing ERRPIDR2

This section shows the offset of ERRPIDR2 when FEAT RASSA 4KB GRP is implemented. If
FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_ GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRPIDR2.

ERRPIDR?2 can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xFE8 ERRPIDR2
Accesses to this register are RO.
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-203

Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.37 ERRPIDR3, Peripheral Identification Register 3

The ERRPIDR3 characteristics are:

Purpose

Provides discovery information about the component.

Configuration
ERRPIDR3 is implemented only as part of a memory-mapped group of error records.

Implementation of this register is OPTIONAL.

Attributes

ERRPIDR3 is a 32-bit register.

Field descriptions

When the component uses a 12-bit part number:

31 8,7

RESO REVAND

CMOD

Bits [31:8]

Reserved, RESO.

REVAND, bits [7:4]

IHI0100
Aa

Component minor revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the revision
number of the component, with ERRPIDR2.REVISION being the most significant part and ERRPIDR3.REVAND
the least significant part. When a component is changed, ERRPIDR2.REVISION or ERRPIDR3.REVAND are
increased to ensure that software can differentiate the different revisions of the component. ERRPIDR3.REVAND
should be set to opboooo when ERRPIDR2.REVISION is increased.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]

Customer Modified.

Indicates the component has been modified.

A value of 00000 means the component is not modified from the original design.

Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.
This field has an IMPLEMENTATION DEFINED value.

For any two components with the same Unique Component Identifier:

. If ERRPIDR3.CMOD is zero in both components, then the components are identical.

. If ERRPIDR3.CMOD has the same nonzero value in both components, then this does not necessarily mean
that they have the same modifications.

. If ERRPIDR3.CMOD is nonzero in either component, the two components might not be identical despite

having the same Unique Component Identifier.

Access to this field is RO.

When the component uses a 16-bit part number:

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-204
Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

IHI0100
Aa

8,7 4,3 0

RESO REVISION CMOD

Bits [31:8]

Reserved, RESO.

REVISION, bits [7:4]

Component revision. When a component is changed, ERRPIDR3.REVISION is increased to ensure that software
can differentiate the different revisions of the component.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

CMOD, bits [3:0]
Customer Modified.
Indicates the component has been modified.
A value of 00000 means the component is not modified from the original design.
Any other value means the component has been modified in an IMPLEMENTATION DEFINED way.
This field has an IMPLEMENTATION DEFINED value.

For any two components with the same Unique Component Identifier:

. If ERRPIDR3.CMOD is zero in both components, then the components are identical.

. If ERRPIDR3.CMOD has the same nonzero value in both components, then this does not necessarily mean
that they have the same modifications.

. If ERRPIDR3.CMOD is nonzero in either component, the two components might not be identical despite

having the same Unique Component Identifier.
Access to this field is RO.

Accessing ERRPIDR3

This section shows the offset of ERRPIDR3 when FEAT RASSA 4KB_GRP is implemented. If
FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_ GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRPIDR3.

ERRPIDR3 can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0XFEC ERRPIDR3
Accesses to this register are RO.
Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-205

Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

3.2.38 ERRPIDRA4, Peripheral Identification Register 4
The ERRPIDR4 characteristics are:

Purpose

Provides discovery information about the component.

Configuration
ERRPIDR4 is implemented only as part of a memory-mapped group of error records.

Implementation of this register is OPTIONAL.

Attributes
ERRPIDRA4 is a 32-bit register.
Field descriptions

31 8,7 4,3 0
RESO SIZE DES_2

Bits [31:8]
Reserved, RESO.
SIZE, bits [7:4]
When RAS System Architecture v2 is implemented:

Size of the component.

SIZE Meaning
0b0000 FEAT RASSA 4KB is implemented.
000010 FEAT RASSA 16KB is implemented.
0b0100 FEAT RASSA_64KB is implemented.
All other values are reserved.
Otherwise:
Size of the component.
SIZE Meaning
0b0000 One of the following is true:
. The component uses a single 4KB block.
. The component uses an IMPLEMENTATION DEFINED number of
4KB blocks.
0b0001..0b1111 The component occupies 2ERRPIPR4SIZE 4K R blocks.

DES 2, bits [3:0]

Designer, JEP106 continuation code. This is the JEDEC-assigned JEP106 bank identifier for the designer of the
component, minus 1. The code identifies the designer of the component, which might not be not the same as the
implementer of the device containing the component. To obtain a number, or to see the assignment of these codes,
contact JEDEC http://www.jedec.org.

This field has an IMPLEMENTATION DEFINED value.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-206
Aa Non-Confidential

RAS Memory-mapped Register Descriptions
3.2 RAS register descriptions

For a component designed by Arm Limited, the JEP106 bank is 5, meaning this field has the value oxa4.
Access to this field is RO.

Accessing ERRPIDR4

This section shows the offset of ERRPIDR4 when FEAT RASSA 4KB_GRP is implemented. If
FEAT RASSA 16KB_GRP or FEAT RASSA 64KB_ GRP is implemented, see ‘RAS memory-mapped register views’
for the offset of ERRPIDR4.

ERRPIDR4 can be accessed through the memory-mapped interface:

Component Offset Instance
RAS 0xFDO ERRPIDR4
Accesses to this register are RO.
IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-207

Aa Non-Confidential

Glossary

Glossary

Availability Readiness for correct service.

Baseboard Management Controller A PE dedicated to system control and monitoring.
BIST Built-in self-test.

Built-in self-test A mechanism that permits a machine to test itself.

Catastrophic failure A failure with harmful consequences that are orders of magnitude, or even incommensurably,
higher than the benefit provided by correct service delivery.

CE Corrected Error.
Completer An agent in a computing system that responds to and completes a transaction initiated by a Requester.
Contained or containable error An error that is not uncontained or uncontainable.

Containment Limiting or preventing the silent propagation of an error. Arm recommends that the scope to which an
error is contained is specified.

Corrected Error An error that is detected by hardware and that hardware has corrected.

DECTED Double error correct, triple error detect EDAC. This can detect a single, double or triple bit error and
correct a single or double bit error in a protection granule.

Deferred error An error that has not been silently propagated but does not require immediate action at the producer.
The error might have passed from the producer to a consumer.

Detected error An error that has been detected and signaled to a consumer.
Detected Uncorrected Error A detected error that has not been be corrected and causes failure.

Device memory Memory locations where an access to the location can cause side-effects, or where the value returned
for a load can vary depending on the number of loads performed. Typically, the Device memory
attributes are used for memory-mapped peripherals and similar locations.

DUE Detected Uncorrected Error.

DUE FIT rate The FIT rate for failures from a DUE.

ECC Error Correction Code.

EDAC Error Detection and Correction Code.

EDC Error Detection Code.

Error Deviation from correct service or a correct value.

Error Correction Code or Error Detection and Correction Code A code capable of detecting and correcting a
number of errors.

Error Detection Code A code capable of detecting, but not correcting, errors.
Error log Historical data recorded about errors, usually by software.
Error propagation Passing an error from a producer to a consumer.

Error record Data recorded about an error, usually by hardware.

Exception An exception handles an event. For example, an exception could handle an external interrupt or an
undefined instruction.

External abort Either:

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 208
Aa Non-Confidential

Glossary

. An in-band error that is generated as a response to a transaction. The name derives from the
specific case of an abort generated by a memory system that is external to a PE, but the concept
can apply to other interfaces.

. A type of exception in the Arm architecture, generated when consuming an in-band error
response.
Fail-safe A failure mode in which the PE and other system components switch to backup mechanisms that keep

processing instructions and data to allow either a safe shutdown or restart of the system, or to continue
processing critical functions, or both.

Fail-secure A failure mode in which the PE and other system components fail but the system is secured to allow
either a safe shutdown or restart of the system, or to continue processing critical functions without
exposing secret data, or both.

Fail-signaled A failure mode in which the PE signals to the system that it has failed. It might continue to process
instructions, but the system must ignore its output, or treat all outputs as detected errors.

Fail-silent Failure mode in which the PE and all other system components (such as DMAs) stop processing
instructions. A watchdog process will detect the failure and restart the system with an Error Recovery
reset.

Failure The event of deviation from correct service.

Failure-in-Time The number of expected failures per billion hours of operation.

Fault The cause of an error.

Fault injection The deliberate injection of faults into a system for testing.

Fault prevention Designing a system to avoid faults.

Fault removal Logic or other mechanisms for detecting faults and correcting or bypassing their effect.

Field Replaceable Unit A component or unit in a system that can be replaced without return to base.

FIT Failure-in-Time.

FRU Field Replaceable Unit.

Generic Interrupt Controller Arm system architecture interrupt controller for IRQ and FIQ interrupt exceptions.
GIC Generic Interrupt Controller.

Hardware fault A fault that originates in, or affects, hardware.

Infected Being in error.
Interrupt An asynchronous event sent to a PE or GIC for processing as an interrupt exception.
Isolation Limiting the impact of an error only to components that actually try to use corrupted data.

Latent error or latent fault An error that is present in a system but not yet detected.
MBIST Memory BIST.

Minor failure A failure with harmful consequences that are of a similar cost to the benefits that are provided by
correct service delivery.

MSI Message Signaled Interrupt.

Normal memory Used for bulk memory operations. Hardware might speculatively read these locations.
PCle Peripheral Component Interconnect Express.

PE Processing Element.

Peripheral Component Interconnect Express (PCI Express or PCIe) A high-speed serial computer expansion bus
standard maintained and developed by the PCI Special Interest Group.

IHI0100 Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. Glossary-209
Aa Non-Confidential

Glossary

IHI0100
Aa

Persistent fault A fault that is not transient.
PFA Predictive Failure Analysis.

Poisoned State that has been marked as being in error so that subsequent consumption of the state will be treated
as a detected error.

PPI Private Peripheral Interrupt.
Predictive Failure Analysis Mechanisms to analyze errors and predict future failures.

Processing Element (PE) The abstract machine defined in the Armv§ architecture, as documented in an Arm
Architecture Reference Manual. A PE implementation compliant with the Armv8 architecture
conforms with the behaviors described in the corresponding Arm Architecture Reference Manual.

Propagated See Error propagation.

Protection granule A quantum of memory for which an EDC or ECC provides detection or correction. For example, a
72/64 SECDED ECC scheme has a 64-bit protection granule.

RAS Reliability, Availability, Serviceability.

Recoverable error A contained error that must be corrected to allow the correct operation of the system or smaller parts
of the system to continue.

Reliability Continuity of correct service.
Requester An agent in a computing system that initiates transactions.

Restartable error A contained error that does not immediately impact correct operation. Usually this means correct
operation of the system, but it can also be used in other contexts to describe correct operation of a
smaller part.

SDC Silent Data Corruption.
SDC FIT rate The FIT rate for failures because of SDC.

SDEC Single device error correction EDAC. This can detect and correct multiple clustered errors in a
protection granule, such as the types of errors that might be seen if a protection granule is striped across
multiple devices and multiple errors come from a single device.

SECDED Single error correct, double error detect EDAC. This can detect a single or double bit error and correct a
single bit error in a protection granule.

SED Single error detect EDC. This can detect a single bit error in a protection granule.

Service failure mode A mode entered to reduce the severity of an error.

Serviceability The ability to undergo modifications and repairs.

Silent Data Corruption An error that is not detected by hardware or software.

Silently propagated An error that is passed from place to place without being signaled as a detected error.
Software fault A fault that originates in and affects software.

System Control Processor A PE dedicated to system control and monitoring.

Transient fault A fault that is not persistent.

Uncontained or uncontainable error An error that has been, or might have been, silently propagated.
Undetected error or undetected fault See Latent error or latent fault.

Unrecoverable error A contained error that is not recoverable. Continued correct operation is generally not possible.
Usually this means correct operation of the system, but it can also be used in other contexts to describe
correct operation of a smaller part. Systems might use high-level recovery techniques to work around
an unrecoverable yet contained error in a component so that the system recovers from the error.

Copyright © 2017-2025 Arm Limited or its affiliates. All rights reserved. 3-210
Non-Confidential

	Arm® Reliability, Availability, and Serviceability (RAS) System Architecture, for A-profile architecture
	Contents
	Preface
	About this Document
	Using this Document
	Conventions
	Typographic conventions
	Rules-based writing
	Content item identifiers
	Content item rendering
	Content item classes
	Rule
	Information
	Software usage
	Declaration

	Signals
	Numbers
	Pseudocode descriptions

	Additional reading
	Arm publications

	Feedback
	Feedback on this Document
	Inclusive terminology commitment

	1 Introduction to RAS
	1.1 Introduction
	1.2 Faults, errors, and failures
	1.3 General taxonomy of errors
	1.3.1 Error detection
	1.3.2 Error propagation
	1.3.3 Infected and poisoned
	1.3.4 Containable and uncontainable

	1.4 Techniques for improving reliability, availability, and serviceability
	1.4.1 Fault prevention and fault removal
	1.4.2 Error handling and recovery
	1.4.3 Fault handling

	2 RAS System Architecture
	2.1 About the RAS System Architecture
	2.2 Nodes
	2.2.1 Multiple error records per node

	2.3 Detecting and consuming errors
	2.4 Standard error record
	2.4.1 Additional Error record types
	2.4.2 Component error states
	2.4.3 Writing the error record
	2.4.3.1 Component error states and priorities
	2.4.3.2 Prioritizing errors, FEAT_RASSAv1
	2.4.3.3 Prioritizing errors, FEAT_RASSAv1p1
	2.4.3.4 Overwriting the error syndrome
	2.4.3.5 Keeping the previous error syndrome
	2.4.3.6 Detecting multiple errors

	2.4.4 Error syndrome
	2.4.4.1 Corrected error field
	2.4.4.2 Poison indicator

	2.4.5 Security and Virtualization
	2.4.5.1 Confidential data
	2.4.5.2 Security of error records
	2.4.5.3 IMPLEMENTATION DEFINED fault or error injection models

	2.4.6 Synchronization and error record accesses
	2.4.7 Bridges to other architectures
	2.4.8 Software faults
	2.4.9 Other sources of error and warnings

	2.5 RAS interrupts
	2.5.1 Overview
	2.5.2 Fault handling interrupt
	2.5.3 Error recovery interrupt
	2.5.4 Critical error interrupt

	2.6 In-band error response signaling
	2.7 Error record reset
	2.7.1 Error record reset flag
	2.7.2 Reset values

	2.8 Extensions
	2.8.1 The RAS Timestamp Extension
	2.8.2 The Common Fault Injection Model Extension
	2.8.2.1 Operation of the Common Fault Injection Model Extension

	2.8.3 Standard format Corrected error counter

	2.9 Accessing RAS registers
	2.9.1 Error record groups
	2.9.2 Fault injection groups
	2.9.3 System RAS Agents
	2.9.4 Access requirements for memory-mapped views of RAS error records

	3 RAS Memory-mapped Register Descriptions
	3.1 RAS registers summary
	3.1.1 RAS memory-mapped register views

	3.2 RAS register descriptions
	3.2.1 ERRACR, Access Configuration Register
	Field descriptions
	Accessing ERRACR

	3.2.2 ERRCIDR0, Component Identification Register 0
	Field descriptions
	Accessing ERRCIDR0

	3.2.3 ERRCIDR1, Component Identification Register 1
	Field descriptions
	Accessing ERRCIDR1

	3.2.4 ERRCIDR2, Component Identification Register 2
	Field descriptions
	Accessing ERRCIDR2

	3.2.5 ERRCIDR3, Component Identification Register 3
	Field descriptions
	Accessing ERRCIDR3

	3.2.6 ERRCRICR0, Critical Error Interrupt Configuration Register 0
	Field descriptions
	Accessing ERRCRICR0

	3.2.7 ERRCRICR1, Critical Error Interrupt Configuration Register 1
	Field descriptions
	Accessing ERRCRICR1

	3.2.8 ERRCRICR2, Critical Error Interrupt Configuration Register 2
	Field descriptions
	Accessing ERRCRICR2

	3.2.9 ERRDEVAFF, Device Affinity Register
	Field descriptions
	Accessing ERRDEVAFF

	3.2.10 ERRDEVARCH, Device Architecture Register
	Field descriptions
	Accessing ERRDEVARCH

	3.2.11 ERRDEVID, Device Configuration Register
	Field descriptions
	Accessing ERRDEVID

	3.2.12 ERRERICR0, Error Recovery Interrupt Configuration Register 0
	Field descriptions
	Accessing ERRERICR0

	3.2.13 ERRERICR1, Error Recovery Interrupt Configuration Register 1
	Field descriptions
	Accessing ERRERICR1

	3.2.14 ERRERICR2, Error Recovery Interrupt Configuration Register 2
	Field descriptions
	Accessing ERRERICR2

	3.2.15 ERRFHICR0, Fault Handling Interrupt Configuration Register 0
	Field descriptions
	Accessing ERRFHICR0

	3.2.16 ERRFHICR1, Fault Handling Interrupt Configuration Register 1
	Field descriptions
	Accessing ERRFHICR1

	3.2.17 ERRFHICR2, Fault Handling Interrupt Configuration Register 2
	Field descriptions
	Accessing ERRFHICR2

	3.2.18 ERRGSR, Error Group Status Register
	Field descriptions
	Accessing ERRGSR

	3.2.19 ERRIIDR, Implementation Identification Register
	Field descriptions
	Accessing ERRIIDR

	3.2.20 ERRIMPDEF<n>, IMPLEMENTATION DEFINED Register <n>, n = 0 - 191
	Field descriptions
	Accessing ERRIMPDEF<n>

	3.2.21 ERRIRQCR<n>, Generic Error Interrupt Configuration Register <n>, n = 0 - 15
	Field descriptions
	Accessing ERRIRQCR<n>

	3.2.22 ERRIRQSR, Error Interrupt Status Register
	Field descriptions
	Accessing ERRIRQSR

	3.2.23 ERR<n>ADDR, Error Record <n> Address Register, n = 0 - 65534
	Field descriptions
	Accessing ERR<n>ADDR

	3.2.24 ERR<n>CTLR, Error Record <n> Control Register, n = 0 - 65534
	Field descriptions
	Accessing ERR<n>CTLR

	3.2.25 ERR<n>FR, Error Record <n> Feature Register, n = 0 - 65534
	Field descriptions
	Accessing ERR<n>FR

	3.2.26 ERR<n>MISC0, Error Record <n> Miscellaneous Register 0, n = 0 - 65534
	Field descriptions
	Accessing ERR<n>MISC0

	3.2.27 ERR<n>MISC1, Error Record <n> Miscellaneous Register 1, n = 0 - 65534
	Field descriptions
	Accessing ERR<n>MISC1

	3.2.28 ERR<n>MISC2, Error Record <n> Miscellaneous Register 2, n = 0 - 65534
	Field descriptions
	Accessing ERR<n>MISC2

	3.2.29 ERR<n>MISC3, Error Record <n> Miscellaneous Register 3, n = 0 - 65534
	Field descriptions
	Accessing ERR<n>MISC3

	3.2.30 ERR<n>PFGCDN, Error Record <n> Pseudo-fault Generation Countdown Register, n = 0 - 65534
	Field descriptions
	Accessing ERR<n>PFGCDN

	3.2.31 ERR<n>PFGCTL, Error Record <n> Pseudo-fault Generation Control Register, n = 0 - 65534
	Field descriptions
	Accessing ERR<n>PFGCTL

	3.2.32 ERR<n>PFGF, Error Record <n> Pseudo-fault Generation Feature Register, n = 0 - 65534
	Field descriptions
	Accessing ERR<n>PFGF

	3.2.33 ERR<n>STATUS, Error Record <n> Primary Status Register, n = 0 - 65534
	Field descriptions
	Accessing ERR<n>STATUS

	3.2.34 ERRPIDR0, Peripheral Identification Register 0
	Field descriptions
	Accessing ERRPIDR0

	3.2.35 ERRPIDR1, Peripheral Identification Register 1
	Field descriptions
	Accessing ERRPIDR1

	3.2.36 ERRPIDR2, Peripheral Identification Register 2
	Field descriptions
	Accessing ERRPIDR2

	3.2.37 ERRPIDR3, Peripheral Identification Register 3
	Field descriptions
	Accessing ERRPIDR3

	3.2.38 ERRPIDR4, Peripheral Identification Register 4
	Field descriptions
	Accessing ERRPIDR4

	Glossary

