
Arm® Architecture Reference
Manual Supplement, The

Scalable Matrix Extension
(SME), for Armv9-A

Document number DDI0616

Document quality EAC

Document version A.a

Document confidentiality Non-confidential

Document build information a950072 Monday, 7 February 2022 at 11:07

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.

Arm® Architecture Reference Manual Supplement, The Scalable
Matrix Extension (SME), for Armv9-A

Release information

Date Version Changes

2022/Feb/07 A.a • First release.

ii

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks
.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349 version 21.0

Product Status

The information in this document is final; that is, it is for a developed product.

The information in this Manual is at EAC quality, which means that:

• All features of the specification are described in the manual.
• Information can be used for software and hardware development.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

http://www.arm.com/company/policies/trademarks

Contents

Arm® Architecture Reference Manual Supplement, The Scalable
Matrix Extension (SME), for Armv9-A

Arm® Architecture Reference Manual Supplement, The Scalable Matrix Extension (SME),
for Armv9-A . ii

Release information . ii
Non-Confidential Proprietary Notice . iii
Product Status . iii

Preface
About this supplement . x
Conventions . xi

Typographical conventions . xi
Numbers . xi
Pseudocode descriptions . xi
Asterisks in instruction mnemonics . xi
Assembler syntax descriptions . xii

Rules-based writing . xiii
Identifiers . xiii
Examples . xiii

Additional reading . xiv
Feedback . xv

Feedback on this book . xv
Progressive terminology commitment . xvi

Part A Introduction

Chapter A1 SME Introduction
A1.1 About the Scalable Matrix Extension (SME) 18

Chapter A2 Architecture Features and Extensions
A2.1 Extensions and features defined by SME . 19
A2.2 Changes to existing features and extension requirements 20

Part B SME application level programmers’ model

Chapter B1 Application processing modes
B1.1 Overview . 22

B1.1.1 Process state . 22

Chapter B2 Architectural state
B2.1 Architectural state summary . 26
B2.2 SME ZA storage . 28

B2.2.1 ZA array vector access . 28
B2.2.2 ZA tile access . 28
B2.2.3 Accessing an 8-bit element ZA tile . 29
B2.2.4 Accessing a 16-bit element ZA tile . 30
B2.2.5 Accessing a 32-bit element ZA tile . 31
B2.2.6 Accessing a 64-bit element ZA tile . 32

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

Contents

B2.2.7 Accessing a 128-bit element ZA tile . 32
B2.3 ZA storage layout . 34

B2.3.1 ZA array vector and tile slice mappings 34
B2.3.2 Tile mappings . 34
B2.3.3 Horizontal tile slice mappings . 36
B2.3.4 Vertical tile slice mappings . 36
B2.3.5 Mixed horizontal and vertical tile slice mappings 37

Chapter B3 Floating-point behaviors
B3.1 Overview . 39

B3.1.1 Extended BFloat16 . 39
B3.1.2 BFloat16 behaviors . 39
B3.1.3 Floating-point behaviors in Streaming SVE mode 41
B3.1.4 ZA-targeting floating-point behaviors 41

Part C SME system level programmers’ model

Chapter C1 Introduction

Chapter C2 System management
C2.1 Overview . 45

C2.1.1 Identification . 46
C2.1.2 Traps and exceptions . 46
C2.1.3 Vector lengths . 47
C2.1.4 Streaming execution priority . 48

C2.2 Processor behavior . 49
C2.2.1 Exception priorities . 49
C2.2.2 Synchronous Data Abort . 51
C2.2.3 Validity of SME and SVE state . 51
C2.2.4 Streaming execution priority for shared implementations 52
C2.2.5 Security considerations . 53

C2.3 Changes to existing System registers . 54
C2.3.1 ID_AA64PFR1_EL1 . 54
C2.3.2 ID_AA64ZFR0_EL1 . 54
C2.3.3 CPACR_EL1 . 54
C2.3.4 CPTR_EL2 . 54
C2.3.5 CPTR_EL3 . 55
C2.3.6 HCR_EL2 . 55
C2.3.7 HCRX_EL2 . 55
C2.3.8 SCR_EL3 . 55
C2.3.9 SCTLR_EL1 . 55
C2.3.10 SCTLR_EL2 . 56
C2.3.11 HFGRTR_EL2 . 56
C2.3.12 HFGWTR_EL2 . 56
C2.3.13 ESR_EL1, ESR_EL2, and ESR_EL3 56
C2.3.14 ZCR_EL1, ZCR_EL2, and ZCR_EL3 57

C2.4 SME-specific System registers . 58
C2.4.1 ID_AA64SMFR0_EL1 . 58
C2.4.2 SMCR_EL1 . 58
C2.4.3 SMCR_EL2 . 58
C2.4.4 SMCR_EL3 . 58
C2.4.5 SVCR . 58
C2.4.6 SMPRI_EL1 . 58
C2.4.7 SMPRIMAP_EL2 . 59

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

Contents

C2.4.8 SMIDR_EL1 . 59
C2.4.9 TPIDR2_EL0 . 59

Chapter C3 Interaction with other Armv9-A architectural features
C3.1 Overview . 60
C3.2 Other architectural features . 61

C3.2.1 Watchpoints . 61
C3.2.2 Self-hosted debug . 64
C3.2.3 External debug . 64
C3.2.4 Memory Tagging Extension (MTE) . 65
C3.2.5 Reliability, Availability, and Serviceability (RAS) 65
C3.2.6 Memory Partitioning and Monitoring (MPAM) 65
C3.2.7 Transactional Memory Extension (TME) 65
C3.2.8 Memory consistency model . 66

Part D SME instruction set

Chapter D1 SME instructions
D1.1 SME data-processing instructions . 69

D1.1.1 ADDHA . 69
D1.1.2 ADDSPL . 71
D1.1.3 ADDSVL . 72
D1.1.4 ADDVA . 73
D1.1.5 BFMOPA . 75
D1.1.6 BFMOPS . 77
D1.1.7 FMOPA (non-widening) . 79
D1.1.8 FMOPA (widening) . 81
D1.1.9 FMOPS (non-widening) . 83
D1.1.10 FMOPS (widening) . 85
D1.1.11 LD1B . 87
D1.1.12 LD1D . 89
D1.1.13 LD1H . 91
D1.1.14 LD1Q . 93
D1.1.15 LD1W . 95
D1.1.16 LDR . 97
D1.1.17 MOV (tile to vector) . 98
D1.1.18 MOV (vector to tile) . 101
D1.1.19 MOVA (tile to vector) . 104
D1.1.20 MOVA (vector to tile) . 107
D1.1.21 RDSVL . 110
D1.1.22 SMOPA . 111
D1.1.23 SMOPS . 113
D1.1.24 ST1B . 115
D1.1.25 ST1D . 117
D1.1.26 ST1H . 119
D1.1.27 ST1Q . 121
D1.1.28 ST1W . 123
D1.1.29 STR . 125
D1.1.30 SUMOPA . 126
D1.1.31 SUMOPS . 128
D1.1.32 UMOPA . 130
D1.1.33 UMOPS . 132
D1.1.34 USMOPA . 134
D1.1.35 USMOPS . 136

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Contents

D1.1.36 ZERO . 138
D1.2 Base A64 instructions . 140

D1.2.1 MSR (immediate) . 140
D1.2.2 SMSTART . 144
D1.2.3 SMSTOP . 146

D1.3 SVE2 instructions . 148
D1.3.1 PSEL . 148
D1.3.2 REVD . 150
D1.3.3 SCLAMP . 152
D1.3.4 UCLAMP . 154

Part E Appendices

Chapter E1 Instructions affected by SME
E1.1 Illegal instructions in Streaming SVE mode . 158

E1.1.1 Illegal Advanced SIMD instructions . 158
E1.1.2 Illegal SVE instructions . 166

E1.2 Unimplemented SVE instructions . 170
E1.3 Reduced performance in Streaming SVE mode 171

E1.3.1 Scalar floating-point instructions . 171
E1.3.2 SVE instructions . 171

Chapter E2 SME Shared pseudocode
E2.1 AArch64.CheckFPAdvSIMDEnabled . 173
E2.2 BFDotAdd . 173
E2.3 CheckFPAdvSIMDEnabled64 . 174
E2.4 CheckNonStreamingSVEEnabled . 174
E2.5 CheckSMEAccess . 174
E2.6 CheckSMEAndZAEnabled . 174
E2.7 CheckSMEEnabled . 175
E2.8 CheckStreamingSVEAndZAEnabled . 175
E2.9 CheckStreamingSVEEnabled . 175
E2.10 FPDot . 175
E2.11 FPDotAdd_ZA . 177
E2.12 FPMulAdd_ZA . 177
E2.13 FPProcessDenorms4 . 177
E2.14 FPProcessNaNs4 . 177
E2.15 HaveEBF16 . 178
E2.16 HaveSME . 178
E2.17 HaveSMEF64F64 . 178
E2.18 HaveSMEI16I64 . 178
E2.19 ImplementedSMEVectorLength . 178
E2.20 InStreamingMode . 179
E2.21 IsFullA64Enabled . 179
E2.22 IsMerging . 179
E2.23 IsNormalSVEEnabled . 179
E2.24 IsStreamingSVEEnabled . 180
E2.25 IsSVEEnabled . 180
E2.26 MaybeZeroSVEUppers . 181
E2.27 NVL . 181
E2.28 ResetSMEState . 182
E2.29 ResetSVEState . 182
E2.30 SetPSTATE_SM . 182
E2.31 SetPSTATE_SVCR . 182

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii

Contents
Contents

E2.32 SetPSTATE_ZA . 182
E2.33 SMEAccessTrap . 183
E2.34 SVL . 183
E2.35 VL . 183
E2.36 ZAhslice . 183
E2.37 ZAslice . 184
E2.38 ZAtile . 184
E2.39 ZAvector . 185
E2.40 ZAvslice . 185

Chapter E3 System registers affected by SME
E3.1 SME-Specific System registers . 187

E3.1.1 ID_AA64SMFR0_EL1, SME Feature ID register 0 188
E3.1.2 MPAMSM_EL1, MPAM Streaming Mode Register 192
E3.1.3 SMCR_EL1, SME Control Register (EL1) 195
E3.1.4 SMCR_EL2, SME Control Register (EL2) 200
E3.1.5 SMCR_EL3, SME Control Register (EL3) 205
E3.1.6 SMIDR_EL1, Streaming Mode Identification Register 208
E3.1.7 SMPRI_EL1, Streaming Mode Priority Register 211
E3.1.8 SMPRIMAP_EL2, Streaming Mode Priority Mapping Register 214
E3.1.9 SVCR, Streaming Vector Control Register 219
E3.1.10 TPIDR2_EL0, EL0 Read/Write Software Thread ID Register 2 224
E3.1.11 EDHSR, External Debug Halt Status Register 227

E3.2 Changes to existing System registers . 230
E3.2.1 CPACR_EL1, Architectural Feature Access Control Register 231
E3.2.2 CPTR_EL2, Architectural Feature Trap Register (EL2) 237
E3.2.3 CPTR_EL3, Architectural Feature Trap Register (EL3) 249
E3.2.4 FAR_EL1, Fault Address Register (EL1) 254
E3.2.5 FAR_EL2, Fault Address Register (EL2) 259
E3.2.6 FAR_EL3, Fault Address Register (EL3) 263
E3.2.7 FPCR, Floating-point Control Register 266
E3.2.8 HCRX_EL2, Extended Hypervisor Configuration Register 277
E3.2.9 HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register 285
E3.2.10 HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register 310
E3.2.11 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1 . . . 330
E3.2.12 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1 338
E3.2.13 ID_AA64ZFR0_EL1, SVE Feature ID register 0 344
E3.2.14 MPAM2_EL2, MPAM2 Register (EL2) 349
E3.2.15 SCR_EL3, Secure Configuration Register 356
E3.2.16 SCTLR_EL1, System Control Register (EL1) 375
E3.2.17 SCTLR_EL2, System Control Register (EL2) 405
E3.2.18 EDDEVID1, External Debug Device ID register 1 438

Chapter E4 Glossary terms

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

Preface

ix

About this supplement

IRFSSZ This supplement is the Arm® Architecture Reference Manual Supplement, The Scalable Matrix Extension (SME),
for Armv9-A.

ILZCVC This supplement describes the changes and additions introduced by SME to the Armv9-A architecture.

ICDMPR For SME, this supplement is to be read with the following documents:

• Arm® Architecture Reference Manual for A-profile architecture [1]
• Arm® Architecture Registers Armv9, for Armv9-A architecture profile [2]
• Arm® A64 Instruction Set Architecture Armv9, for Armv9-A architecture profile [3]

Together, the supplement and these documents provide a full description of the Armv9-A Scalable Matrix
Extension.

This supplement is organized into parts:

• SME Application level programmers’ model

Describes how the PE at an application level is altered by the implementation of SME.

• SME System level programmers’ model

Describes how the PE at a system level is altered by the implementation of SME.

• SME instruction set

Describes the extensions made for SME to the A64 instruction set.

• Appendices

Provides reference information relating to the SME. This includes summarized information about the
instruction set, imported shared pseudocode and System register data, and a glossary that defines terms used
in this document that have a specialized meaning.

x

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Blue text

Indicates a link. This can be

• A cross-reference to another location within the document
• A URL, for example http://developer.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for
example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Asterisks in instruction mnemonics

Some behavior descriptions in this manual apply to a group of similar instructions that start with the same
characters. In these situations, an * might be inserted at the end of a series of characters as a wildcard.

xi

http://developer.arm.com

Preface
Conventions

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xii

Rules-based writing

This specification consists of a set of individual rules. Each rule is clearly identified by the letter R.

Rules must not be read in isolation, and where more than one rule relating to a particular feature exists, individual
rules are grouped into sections and subsections to provide the proper context. Where appropriate, these sections
contain a short introduction to aid the reader. An implementation which is compliant with the architecture must
conform to all of the rules in this specification.

Some architecture rules are accompanied by rationale statements which explain why the architecture was specified
as it was. Rationale statements are identified by the letter X.

Some sections contain additional information and guidance that do not constitute rules. This information and
guidance is provided purely as an aid to understanding the architecture. Information statements are clearly
identified by the letter I.

Implementation notes are identified by the letter U.

Software usage descriptions are identified by the letter S.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Rules, rationale statements, information statements, implementation notes and software usage statements are
collectively referred to as content items.

Identifiers

Each content item may have an associated identifier which is unique within the context of this specification.

When the document is prior to beta status:

• Content items are assigned numerical identifiers, in ascending order through the document (0001, 0002, . . .).
• Identifiers are volatile: the identifier for a given content item may change between versions of the document.

After the document reaches beta status:

• Content items are assigned random alphabetical identifiers (HJQS, PZWL, . . .).
• Identifiers are preserved: a given content item has the same identifier across versions of the document.

Examples

Below are examples showing the appearance of each type of content item.

RBNPWG This is a rule statement.

IRSPLN This is an information statement.

DDDYRY This is a term, syntax, data structure, or encoding description.

GPBGWT This is a goal statement.

xiii

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.

[1] Arm® Architecture Reference Manual for A-profile architecture. (ARM DDI 0487) Arm Ltd.

[2] Arm® Architecture Registers Armv9, for Armv9-A architecture profile. (ARM DDI 0601) Arm Ltd.

[3] Arm® A64 Instruction Set Architecture Armv9, for Armv9-A architecture profile. (ARM DDI 0602) Arm Ltd.

[4] Arm® Architecture Reference Manual Supplement Armv9, for A-profile architecture. (ARM DDI 0608) Arm
Ltd.

[5] Arm® Reliability, Availability, and Serviceability (RAS) Specification, for A-profile architecture. (ARM DDI
0587) Arm Ltd.

[6] Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring
(MPAM), for A-profile architecture. (ARM DDI 0598) Arm Ltd.

xiv

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

• The title (Arm® Architecture Reference Manual Supplement, The Scalable Matrix Extension (SME), for
Armv9-A).

• The number (DDI0616 A.a).
• The page numbers to which your comments apply.
• The rule identifiers to which your comments apply, if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

xv

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please
contact terms@arm.com.

xvi

Part A
Introduction

Chapter A1
SME Introduction

A1.1 About the Scalable Matrix Extension (SME)

IYVCPK The Scalable Matrix Extension (SME) defines architectural state capable of holding two-dimensional matrix tiles,
and a Streaming SVE mode which supports execution of SVE2 instructions with a vector length that matches the
tile width, along with instructions that accumulate the outer product of two vectors into a tile, as well as load, store,
and move instructions that transfer a vector to or from a tile row or column. The extension also defines System
registers and fields that identify the presence and capabilities of SME, and enable and control its behavior at each
Exception level.

ISQCGB Unless otherwise specified by this document, the behaviors of instructions and architectural state when the PE is in
Streaming SVE mode are as described in Arm® Architecture Reference Manual for A-profile architecture [1].

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

18

Chapter A2
Architecture Features and Extensions

A2.1 Extensions and features defined by SME

The Scalable Matrix Extension (SME) inherits the rules for architectural features and extensions from Armv9-A
Arm® Architecture Reference Manual for A-profile architecture [1]. This specification describes changes to those
rules, and defines any features added by SME.

RPDXHJ An architecture extension, the Scalable Matrix Extension (SME), is introduced. SME is represented by the feature
FEAT_SME.

RQFSVK SME is an OPTIONAL extension from Armv9.2-A.

IVQCZZ The following list summarizes the OPTIONAL SME features:

• FEAT_SME_FA64: Support the full A64 instruction set in Streaming SVE mode.
• FEAT_SME_F64F64: Double-precision floating-point outer product instructions.
• FEAT_SME_I16I64: 16-bit to 64-bit integer widening outer product instructions.
• FEAT_EBF16: Support for Extended BFloat16 mode.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

19

Chapter A2. Architecture Features and Extensions
A2.2. Changes to existing features and extension requirements

A2.2 Changes to existing features and extension requirements

RDSHWS If SME is implemented, the following features that are not already mandatory in Armv9.1 are also implemented:

• FEAT_HCX.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

20

Part B
SME application level programmers’ model

Chapter B1
Application processing modes

B1.1 Overview

SME extends the AArch64 application level programmers’ model with added processing modes and related
instructions, architectural state, and registers:

• The PSTATE.SM control to enable an execution mode, known as Streaming SVE mode.
• The PSTATE.ZA control to enable access to SME ZA storage.
• The Special-purpose register, SVCR, which provides read/write access to PSTATE.SM and PSTATE.ZA from any

Exception level.
• The SMSTART and SMSTOP instructions, aliases of MSR (immediate) instructions, that can set or clear PSTATE.SM,

PSTATE.ZA, or both PSTATE.SM and PSTATE.ZA from any Exception level.

B1.1.1 Process state

DXDPXS A PE that implements SME has a Streaming SVE mode.

DJYVLM Streaming SVE register state is the vector registers Z0-Z31 and predicate registers P0-P15 that may be accessed by
SME, SVE, Advanced SIMD, and floating-point instructions when the PE is in Streaming SVE mode.

DDMZFR Streaming SVE register state includes the SVE FFR predicate register if FEAT_SME_FA64 is implemented and
enabled at the current Exception level.

IXXKGV If SME is implemented, a PE has the following additional architectural state:

• Streaming SVE vector and predicate register state.
• SME ZA storage.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

22

Chapter B1. Application processing modes
B1.1. Overview

IZTTNW A PE enters Streaming SVE mode to access Streaming SVE vector and predicate register state.

INXQFB If SME is implemented, this does not imply that FEAT_SVE and FEAT_SVE2 are implemented by the PE when it
is not in Streaming SVE mode.

IRNTPX When the PE is in Streaming SVE mode, a different set of vector lengths might be available for SVE instructions,
as specified in C2.1.3 Vector lengths.

ITDSPN When the PE is in Streaming SVE mode, the performance characteristics of some instructions may be significantly
reduced, as specified in E1.3 Reduced performance in Streaming SVE mode.

INWFQX SME extends a PE’s Process state or PSTATE with the SM and ZA fields, which control the execution mode, Streaming
SVE mode, and access to SME ZA storage, respectively. These PSTATE fields can be modified by the SMSTART and
SMSTOP instructions, and can also be read and written using the SVCR register.

IDVPDL The SMSTART instruction is used to enter Streaming SVE mode, or to enable the SME ZA storage, or both
simultaneously.

IQQZTL The SMSTOP instruction is used to exit Streaming SVE mode, or to disable the SME ZA storage, or both simultaneously.

INKJKL After entering Streaming SVE mode, subsequent SMSTART and SMSTOP instructions might be used to enable and
disable the ZA storage for different phases of execution within Streaming SVE mode, before using a final SMSTOP
instruction to exit Streaming SVE mode.

DRSYPB SME instructions are the instructions defined by the SME architecture in Chapter D1 SME instructions.

DLSJBN SME data-processing instructions are the instructions defined in D1.1 SME data-processing instructions.

DNHNFF A legal instruction is an implemented instruction which can be executed by a PE when PSTATE.SM and PSTATE.ZA are
in the required state, unless its execution at this Exception level is prevented by a configurable trap or enable.

DHZFSG An illegal instruction is an implemented instruction whose attempted execution by a PE when PSTATE.SM and
PSTATE.ZA are not in the required state will cause an SME illegal instruction exception to be taken, unless its
execution at this Exception level is prevented by a higher-priority configurable trap or enable.

IPSNCC When the PE is in Streaming SVE mode:

• SME data-processing instructions that do not access the SME ZA storage are legal.
• SME data-processing instructions that access SME ZA storage are legal, if SME ZA storage is enabled.

ICKSBS When the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level:

• Most Advanced SIMD instructions become illegal, as described in E1.1.1 Illegal Advanced SIMD
instructions.

• Some SVE and SVE2 instructions become illegal, as described in E1.1.2 Illegal SVE instructions.
• Most other instructions implemented by the PE, including scalar floating-point instructions, remain legal.

IDGNQM When the PE is not in Streaming SVE mode:

• SME data-processing instructions that access SVE vector registers Z0-Z31 and predicate registers P0-P15 are
illegal.

• SME LDR, STR, and ZERO instructions that access the SME ZA storage are legal if ZA is enabled.
• The MSR and MRS instructions that directly access the SME SVCR register are legal.
• All other instructions implemented by the PE are legal.

IHDWMG When the SME ZA storage is not enabled:

• SME data-processing instructions that access SME ZA storage are illegal.
• There is no effect on other instructions implemented by the PE.

See also:

• SVCR
• ESR_EL1, ESR_EL2, and ESR_EL3

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

23

Chapter B1. Application processing modes
B1.1. Overview

• MSR (immediate)
• SMSTART
• SMSTOP
• C2.1.3 Vector lengths
• C2.2.3 Validity of SME and SVE state
• Chapter E1 Instructions affected by SME

B1.1.1.1 PSTATE.SM

IYYQJK The value of PSTATE.SM can be changed by executing the MSR instructions that access the SVCR. For more information,
see B1.1.1.3 Changing PSTATE.SM and PSTATE.ZA.

DPRGHY The PE is in Streaming SVE mode when the Effective value of PSTATE.SM is 1.

RQGXCF When the PE is in Streaming SVE mode:

• Streaming SVE register state is valid.
• SME data-processing instructions which access any of the SVE registers Z0-Z31 and P0-P15 are legal.
• Legal instructions which access SVE or SIMD&FP registers will access Streaming SVE register state.

IYDRPH The SVE FFR predicate register is not architecturally visible when the PE is in Streaming SVE mode if
FEAT_SME_FA64 is not implemented or not enabled at the current Exception level.

RGBNWK When the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level:

• Most Advanced SIMD instructions are illegal, as described in E1.1.1 Illegal Advanced SIMD instructions.
• Some SVE and SVE2 instructions are illegal, as described in E1.1.2 Illegal SVE instructions.

DDVDTY The PE is not in Streaming SVE mode when the Effective value of PSTATE.SM is 0.

RCSSWX When the PE is not in Streaming SVE mode:

• Streaming SVE register state is not valid.
• Instructions which access SVE or SIMD&FP registers will access the Non-streaming SVE or SIMD&FP

register state.
• SME data-processing instructions which access any of the SVE registers Z0-Z31 and P0-P15 are illegal.

RRSWFQ When the Effective value of PSTATE.SM is changed by any means from 0 to 1, an entry to Streaming SVE mode is
performed, and each implemented bit of SVE registers Z0-Z31, P0-P15, and FFR in the new mode is set to zero.

RKFRQZ When the Effective value of PSTATE.SM is changed by any means from 1 to 0, an exit from Streaming SVE mode is
performed, and each implemented bit of SVE registers Z0-Z31, P0-P15, and FFR in the new mode is set to zero.

RMHTLZ When the Effective value of PSTATE.SM is changed by any means from 0 to 1, or from 1 to 0, the FPSR is set to the
value 0x0000_0000_0800_009f, in which all of the cumulative status bits are set to 1.

IYTZVD Statements which refer to the value of the SVE vector registers, Z0-Z31, implicitly also refer to the lower bits
of those registers accessed by the SIMD&FP register names V0-V31, Q0-Q31, D0-D31, S0-S31, H0-H31, and
B0-B31.

See also:

• SVCR
• C2.1.2 Traps and exceptions

B1.1.1.2 PSTATE.ZA

IGJZLD The value of PSTATE.ZA can be changed by executing the MSR instructions that access the SVCR. For more information,
see B1.1.1.3 Changing PSTATE.SM and PSTATE.ZA.

DHBFWD The SME ZA storage is enabled when PSTATE.ZA is 1.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

24

Chapter B1. Application processing modes
B1.1. Overview

RSFWMY When ZA storage is enabled:

• The contents of ZA storage is valid and will be retained by hardware irrespective of whether the PE is in
Streaming SVE mode.

• SME data-processing instructions which access the ZA storage are legal and may be executed, unless
execution is prevented by some other trap or exception.

DVLMFC The SME ZA storage is disabled when PSTATE.ZA is 0.

RJHMYL When ZA storage is disabled:

• The contents of ZA storage is not valid.
• SME data-processing instructions which access the ZA storage are illegal.

RYRZRM When PSTATE.ZA is changed by any means from 0 to 1, all implemented bits of the SME ZA storage are set to zero.

ILRDZR There is no architecturally defined effect on the SME ZA storage when PSTATE.ZA is changed from 1 to 0, because
the contents of ZA storage cannot be observed when PSTATE.ZA is 0.

IQWCJS When PSTATE.ZA is changed from 0 to 1, or 1 to 0, there is no effect on the SVE vector and predicate registers and
the FPSR if PSTATE.SM is not changed.

See also:

• SVCR
• C2.1.2 Traps and exceptions

B1.1.1.3 Changing PSTATE.SM and PSTATE.ZA

DQRSXV The MSR (immediate) instructions, MSR SVCRSM, #<imm1>, MSR SVCRZA, #<imm1>, and MSR SVCRSMZA, #<imm1>, are
provided to independently set or clear PSTATE.SM, PSTATE.ZA, or both PSTATE.SM and PSTATE.ZA respectively.

RMPQWY MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are permitted to be executed from any Exception level.

ISZYBC Access to SVCR through the MRS and MSR (register) instructions might be used where a calling convention or ABI
requires save/restore of current state, and are permitted to be executed from any Exception level. However, the MSR

(immediate) instructions might be higher performance than the MSR (register) instruction, so the MSR (immediate)
instructions should be preferred for explicit changes to PSTATE.SM and PSTATE.ZA.

DYGDXX The SMSTART instruction is the preferred alias of the MSR SVCRSM, #1, MSR SVCRZA, #1, and MSR SVCRSMZA, #1

instructions.

DDZTDH The SMSTOP instruction is the preferred alias of the MSR SVCRSM, #0, MSR SVCRZA, #0, and MSR SVCRSMZA, #0

instructions.

IHNNJR The PE might consume less power when PSTATE.SM is 0 and PSTATE.ZA is 0.

See also:

• SVCR
• MSR (immediate)
• SMSTART
• SMSTOP

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

Chapter B2
Architectural state

B2.1 Architectural state summary

DXJCGQ The Effective Streaming SVE vector length, SVL, is a power of two in the range 128 to 2048 bits inclusive.

INBPPM When the PE is in Streaming SVE mode, the Effective SVE vector length, VL, is equal to SVL.

This might be different from the value of VL when the PE is not in Streaming SVE mode, as described in C2.1.3
Vector lengths.

DJBVYJ In a vector of SVL bits:

• SVLB is the number of 8-bit elements.
• SVLH is the number of 16-bit elements.
• SVLS is the number of 32-bit elements.
• SVLD is the number of 64-bit elements.
• SVLQ is the number of 128-bit elements.

SVL [bits] SVLB SVLH SVLS SVLD SVLQ

128 16 8 4 2 1

256 32 16 8 4 2

512 64 32 16 8 4

1024 128 64 32 16 8

2048 256 128 64 32 16

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

Chapter B2. Architectural state
B2.1. Architectural state summary

See also:

• Chapter B1 Application processing modes
• C2.1.3 Vector lengths.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

Chapter B2. Architectural state
B2.2. SME ZA storage

B2.2 SME ZA storage

DSSXPL The ZA storage is architectural register state consisting of a two-dimensional ZA array of [SVLB × SVLB] bytes.

B2.2.1 ZA array vector access

RFFWNB The ZA array can be accessed as vectors of SVL bits.

DPPPCM An untyped vector access to the ZA array is represented by ZA[N], where N is in the range 0 to SVLB-1 inclusive.

DDTVZN In SME LDR and STR instructions an untyped ZA array vector is selected by the sum of a 32-bit general-purpose
register (vector select register Wv) and an immediate, modulo SVLB.

DYXHFR The preferred disassembly for an untyped ZA array vector is ZA[Wv, imm], where imm is in the range 0 to 15
inclusive.

DCRJPC The ZA array can be accessed as vectors of 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit elements.

DWMVZT An element-wise vector access to the ZA array is indicated by appending a vector index “[N]” to the ZA array
name and element size qualifier, where N is in the range 0 to SVLB-1 inclusive, as follows:

• An 8-bit element vector access to the ZA array is represented by ZA.B[N].
• A 16-bit element vector access to the ZA array is represented by ZA.H[N].
• A 32-bit element vector access to the ZA array is represented by ZA.S[N].
• A 64-bit element vector access to the ZA array is represented by ZA.D[N].
• A 128-bit element vector access to the ZA array is represented by ZA.Q[N].

B2.2.2 ZA tile access

DVSVMX A ZA tile is a square, two-dimensional sub-array of elements within the ZA array.

IWLRTV Depending on the element size with which it is accessed, the ZA array is treated as containing one or more ZA
tiles, as described in the following sections.

DDWMYT A ZA tile is indicated by appending the tile number to the ZA name.

DZGBHT A ZA tile slice is a one-dimensional set of horizontally or vertically contiguous elements within a ZA tile.

RPZNWB A vector access to a tile reads or writes a ZA tile slice.

INFXHH A ZA tile can be accessed as vectors of 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit elements.

IYZDBS A ZA tile can be accessed as horizontal slices of SVL bits.

RGPVSZ A ZA tile is accessed as horizontal slices if the V field in the accessing instruction opcode is 0.

DTRHTX An access to horizontal tile slices is indicated by an “H” suffix on the ZA tile name.

IHBYTT A ZA tile can be accessed as vertical slices of SVL bits.

RGPPPK A ZA tile is accessed as vertical slices if the V field in the accessing instruction opcode is 1.

DWSBVG An access to vertical tile slices is indicated by a “V” suffix on the ZA tile name.

RTWWTL In SME instructions the tile slice is selected by the sum of a 32-bit general-purpose register (slice index register
Ws) and an immediate, modulo the number of slices in the named tile.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28

Chapter B2. Architectural state
B2.2. SME ZA storage

B2.2.3 Accessing an 8-bit element ZA tile

DHMSNH An 8-bit element ZA tile is indicated by a “.B” qualifier following the tile name.

DNLCNH There is a single tile named ZA0.B which consists of [SVLB × SVLB] 8-bit elements and occupies all of the ZA
storage.

RNBSMJ An access to a horizontal or vertical 8-bit element ZA tile slice reads or writes SVLB 8-bit elements.

DNMHLM An access to a horizontal or vertical 8-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier, ZA0H.B[N] or ZA0V.B[N], where N is in the range 0 to SVLB-1
inclusive.

IJVTNY Horizontal and vertical ZA0.B slice accesses are illustrated in the following diagram for SVL of 256 bits:ZA0.B (SVL = 256 bits)

ZA
0V

.B
[3
1]

ZA
0V

.B
[0
]

ZA
0V

.B
[1
6]

ZA0H.B[0]

ZA0H.B[15]

ZA0H.B[31]

RDCSDX An access to the horizontal slice ZA0H.B[N] reads or writes the SVLB bytes in ZA array vector ZA.B[N].

RFHYSQ An access to the vertical slice ZA0V.B[N] reads or writes the 8-bit element [N] within each horizontal slice of
ZA0.B.

DCDDVV The preferred disassembly is:

• ZA0H.B[Ws, imm], for a horizontal 8-bit element ZA tile slice selection.
• ZA0V.B[Ws, imm], for a vertical 8-bit element ZA tile slice selection.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

Chapter B2. Architectural state
B2.2. SME ZA storage

Where imm is in the range 0 to 15 inclusive.

B2.2.4 Accessing a 16-bit element ZA tile

DLNXPD A 16-bit element ZA tile is indicated by a “.H” qualifier following the tile name.

DGWZDM There are two tiles named ZA0.H and ZA1.H which each consists of [SVLH × SVLH] 16-bit elements. Each tile
occupies half of the ZA storage.

RNMGXG An access to a horizontal or vertical 16-bit element ZA tile slice reads or writes SVLH 16-bit elements.

DDHKMC An access to a horizontal or vertical 16-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier, ZAtH.H[N] or ZAtV.H[N], where t is 0 or 1 and N is in the range 0 to
SVLH-1 inclusive.

IZSWJW Horizontal and vertical ZAt.H slice accesses, where t is 0 or 1, are illustrated in the following diagram for SVL of
256 bits:

ZAtH.H[15]

ZA
tV

.H
[1
5]

ZA
tV

.H
[8
]

ZA
tV

.H
[0
]

ZAtH.H[0]

RBTLQC An access to the horizontal slice ZAtH.H[N] reads or writes the SVLH 16-bit elements in ZA array vector ZA.H[t
+ 2 * N].

RNGJBJ

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

Chapter B2. Architectural state
B2.2. SME ZA storage

An access to the vertical slice ZAtV.H[N] reads or writes the 16-bit element [N] within each horizontal slice of
ZAt.H.

DRHQJT The preferred disassembly is:

• ZAtH.H[Ws, imm], for a horizontal 16-bit element ZA tile slice selection.
• ZAtV.H[Ws, imm], for a vertical 16-bit element ZA tile slice selection.

Where t is 0 or 1, and imm is in the range 0 to 7 inclusive.

B2.2.5 Accessing a 32-bit element ZA tile

DHBKZV A 32-bit element ZA tile is indicated by a “.S” qualifier following the tile name.

DRDRRT There are four tiles named ZA0.S, ZA1.S, ZA2.S, and ZA3.S. Each tile consists of [SVLS × SVLS] 32-bit elements.
Each tile occupies quarter of the ZA storage.

RXFPPL An access to a horizontal or vertical 32-bit element ZA tile slice reads or writes SVLS 32-bit elements.

DJFPSJ An access to a horizontal or vertical 32-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier, ZAtH.S[N] or ZAtV.S[N], where t is 0, 1, 2, or 3 and N is in the range
0 to SVLS-1 inclusive.

ISZXZR Horizontal and vertical ZAt.S slice accesses, where t is 0, 1, 2, or 3, are illustrated in the following diagram for
SVL of 256 bits:

ZA
tV

.S
[7
]

ZA
tV

.S
[0
]

ZAtH.S[0]

ZAtH.S[7]

RJBJZY An access to the horizontal slice ZAtH.S[N] reads or writes the SVLS 32-bit elements in ZA array vector ZA.S[t +
4 * N].

RGBYSJ An access to the vertical slice ZAtV.S[N] reads or writes the 32-bit element [N] within each horizontal slice of
ZAt.S.

DLQLJH The preferred disassembly is:

• ZAtH.S[Ws, imm], for a horizontal 32-bit element ZA tile slice selection.
• ZAtV.S[Ws, imm], for a vertical 32-bit element ZA tile slice selection.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

Chapter B2. Architectural state
B2.2. SME ZA storage

Where t is 0, 1, 2, or 3, and imm is 0, 1, 2, or 3.

B2.2.6 Accessing a 64-bit element ZA tile

DTWMMM A 64-bit element ZA tile is indicated by a “.D” qualifier following the tile name.

DTHPSD There are eight tiles named ZA0.D, ZA1.D, ZA2.D, ZA3.D, ZA4.D, ZA5.D, ZA6.D, and ZA7.D. Each tile consists
of [SVLD × SVLD] 64-bit elements. Each tile occupies an eighth of the ZA storage.

RZXYBQ An access to a horizontal or vertical 64-bit element ZA tile slice reads or writes SVLD 64-bit elements.

DDCXSX An access to a horizontal or vertical 64-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier, ZAtH.D[N] or ZAtV.D[N], where t is in the range 0 to 7 inclusive and
N is in the range 0 to SVLD-1 inclusive.

ILGJZC Horizontal and vertical ZAt.D slice accesses, where t is in the range 0 to 7 inclusive, are illustrated in the following
diagram for SVL of 256 bits:

ZAtH.D[0]

ZAtH.D[3]
ZA

tV
.D
[3
]

ZA
tV

.D
[0
]

RCVVJK An access to the horizontal slice ZAtH.D[N] reads or writes the SVLD 64-bit elements in ZA array vector ZA.D[t
+ 8 * N].

RJYQKK An access to the vertical slice ZAtV.D[N] reads or writes the 64-bit element [N] within each horizontal slice of
ZAt.D.

DMQQPX The preferred disassembly is:

• ZAtH.D[Ws, imm], for a horizontal 64-bit element ZA tile slice selection.
• ZAtV.D[Ws, imm], for a vertical 64-bit element ZA tile slice selection.

Where t is in the range 0 to 7 inclusive, and imm is 0 or 1.

B2.2.7 Accessing a 128-bit element ZA tile

DGZDSH A 128-bit element ZA tile is indicated by a “.Q” qualifier following the tile name.

DRPMJL There are sixteen tiles named ZA0.Q, ZA1.Q, ZA2.Q, ZA3.Q, ZA4.Q, ZA5.Q, ZA6.Q, ZA7.Q, ZA8.Q, ZA9.Q,
ZA10.Q, ZA11.Q, ZA12.Q, ZA13.Q, ZA14.Q, and ZA15.Q. Each tile consists of [SVLQ × SVLQ] 128-bit elements.
Each tile occupies a sixteenth of the ZA storage.

RQGHPF An access to a horizontal or vertical 128-bit element ZA tile slice reads or writes SVLQ 128-bit elements.

DRLQKW

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

Chapter B2. Architectural state
B2.2. SME ZA storage

An access to a horizontal or vertical 128-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier, ZAtH.Q[N] or ZAtV.Q[N], where t is in the range 0 to 15 inclusive
and N is in the range 0 to SVLQ-1 inclusive.

IYQPWS Horizontal and vertical ZAt.Q slice accesses, where t is in the range 0 to 15 inclusive, are illustrated in the following
diagram for SVL of 256 bits:

ZAtH.Q[0]

ZA
tV

.Q
[1
]

RPJTQJ An access to the horizontal slice ZAtH.Q[N] reads or writes the SVLQ 128-bit elements in ZA array vector ZA.Q[t
+ 16 * N].

RTRJFZ An access to the vertical slice ZAtV.Q[N] reads or writes the 128-bit element [N] within each horizontal slice of
ZAt.Q.

DVCLJP The preferred disassembly is:

• ZAtH.Q[Ws, 0], for a horizontal 128-bit element ZA tile slice selection.
• ZAtV.Q[Ws, 0], for a vertical 128-bit element ZA tile slice selection.

Where t is in the range 0 to 15 inclusive, and the immediate offset is always zero.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

Chapter B2. Architectural state
B2.3. ZA storage layout

B2.3 ZA storage layout

B2.3.1 ZA array vector and tile slice mappings

IPYTLW Each horizontal tile slice corresponds to one ZA array vector.

The horizontal slice mappings for all tile sizes are illustrated by this table:

ZA Array
Vector

8-bit element Tile
Horizontal Slice

16-bit element Tile
Horizontal Slice

32-bit element Tile
Horizontal Slice

64-bit element Tile
Horizontal Slice

128-bit element Tile
Horizontal Slice

ZA[0] ZA0H.B[0] ZA0H.H[0] ZA0H.S[0] ZA0H.D[0] ZA0H.Q[0]

ZA[1] ZA0H.B[1] ZA1H.H[0] ZA1H.S[0] ZA1H.D[0] ZA1H.Q[0]

ZA[2] ZA0H.B[2] ZA0H.H[1] ZA2H.S[0] ZA2H.D[0] ZA2H.Q[0]

ZA[3] ZA0H.B[3] ZA1H.H[1] ZA3H.S[0] ZA3H.D[0] ZA3H.Q[0]

ZA[4] ZA0H.B[4] ZA0H.H[2] ZA0H.S[1] ZA4H.D[0] ZA4H.Q[0]

ZA[5] ZA0H.B[5] ZA1H.H[2] ZA1H.S[1] ZA5H.D[0] ZA5H.Q[0]

ZA[6] ZA0H.B[6] ZA0H.H[3] ZA2H.S[1] ZA6H.D[0] ZA6H.Q[0]

ZA[7] ZA0H.B[7] ZA1H.H[3] ZA3H.S[1] ZA7H.D[0] ZA7H.Q[0]

ZA[8] ZA0H.B[8] ZA0H.H[4] ZA0H.S[2] ZA0H.D[1] ZA8H.Q[0]

ZA[9] ZA0H.B[9] ZA1H.H[4] ZA1H.S[2] ZA1H.D[1] ZA9H.Q[0]

ZA[10] ZA0H.B[10] ZA0H.H[5] ZA2H.S[2] ZA2H.D[1] ZA10H.Q[0]

ZA[11] ZA0H.B[11] ZA1H.H[5] ZA3H.S[2] ZA3H.D[1] ZA11H.Q[0]

ZA[12] ZA0H.B[12] ZA0H.H[6] ZA0H.S[3] ZA4H.D[1] ZA12H.Q[0]

ZA[13] ZA0H.B[13] ZA1H.H[6] ZA1H.S[3] ZA5H.D[1] ZA13H.Q[0]

ZA[14] ZA0H.B[14] ZA0H.H[7] ZA2H.S[3] ZA6H.D[1] ZA14H.Q[0]

ZA[15] ZA0H.B[15] ZA1H.H[7] ZA3H.S[3] ZA7H.D[1] ZA15H.Q[0]

if applicable
ZA[16] to ZA[SVLB-1]

.

B2.3.2 Tile mappings

IYVYJP The smallest ZA tile granule is the 128-bit element tile. When the ZA storage is viewed as an array of tiles, the
larger 64-bit, 32-bit, 16-bit, and 8-bit element tiles overlap multiple 128-bit element tiles as follows:

Tile Overlaps

ZA0.B ZA0.Q, ZA1.Q, ZA2.Q, ZA3.Q, ZA4.Q, ZA5.Q, ZA6.Q, ZA7.Q,
ZA8.Q, ZA9.Q, ZA10.Q, ZA11.Q, ZA12.Q, ZA13.Q, ZA14.Q, ZA15.Q

ZA0.H ZA0.Q, ZA2.Q, ZA4.Q, ZA6.Q, ZA8.Q, ZA10.Q, ZA12.Q, ZA14.Q

ZA1.H ZA1.Q, ZA3.Q, ZA5.Q, ZA7.Q, ZA9.Q, ZA11.Q, ZA13.Q, ZA15.Q

ZA0.S ZA0.Q, ZA4.Q, ZA8.Q, ZA12.Q

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

Chapter B2. Architectural state
B2.3. ZA storage layout

Tile Overlaps

ZA1.S ZA1.Q, ZA5.Q, ZA9.Q, ZA13.Q

ZA2.S ZA2.Q, ZA6.Q, ZA10.Q, ZA14.Q

ZA3.S ZA3.Q, ZA7.Q, ZA11.Q, ZA15.Q

ZA0.D ZA0.Q, ZA8.Q

ZA1.D ZA1.Q, ZA9.Q

ZA2.D ZA2.Q, ZA10.Q

ZA3.D ZA3.Q, ZA11.Q

ZA4.D ZA4.Q, ZA12.Q

ZA5.D ZA5.Q, ZA13.Q

ZA6.D ZA6.Q, ZA14.Q

ZA7.D ZA7.Q, ZA15.Q

IWGZBT The architecture permits concurrent use of different element size tiles.

IHVFMB It is possible to simultaneously use non-overlapping ZA array vectors within tiles of differing element sizes. For
example, tiles ZA1.H, ZA0.S, and ZA2.D have no ZA array vectors in common, as illustrated in the following
diagram for SVL of 256 bits:

.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0[0] 0[0] 0[0] 0[0] 0[0] [0] ZA0H.S[0]
1[0] 1[0] 1[0] 1[0] 0[1] [1] ZA1H.H[0]
2[0] 2[0] 2[0] 0[1] 0[2] [2] ZA2H.D[0]
3[0] 3[0] 3[0] 1[1] 0[3] [3] ZA1H.H[1]
4[0] 4[0] 0[1] 0[2] 0[4] [4] ZA0H.S[1]
5[0] 5[0] 1[1] 1[2] 0[5] [5] ZA1H.H[2]
6[0] 6[0] 2[1] 0[3] 0[6] [6]
7[0] 7[0] 3[1] 1[3] 0[7] [7] ZA1H.H[3]
8[0] 0[1] 0[2] 0[4] 0[8] [8] ZA0H.S[2]
9[0] 1[1] 1[2] 1[4] 0[9] [9] ZA1H.H[4]
10[0] 2[1] 2[2] 0[5] 0[10] [10] ZA2H.D[1]
11[0] 3[1] 3[2] 1[5] 0[11] [11] ZA1H.H[5]
12[0] 4[1] 0[3] 0[6] 0[12] [12] ZA0H.S[3]
13[0] 5[1] 1[3] 1[6] 0[13] [13] ZA1H.H[6]
14[0] 6[1] 2[3] 0[7] 0[14] [14]
15[0] 7[1] 3[3] 1[7] 0[15] [15] ZA1H.H[7]
0[1] 0[2] 0[4] 0[8] 0[16] [16] ZA0H.S[4]
1[1] 1[2] 1[4] 1[8] 0[17] [17] ZA1H.H[8]
2[1] 2[2] 2[4] 0[9] 0[18] [18] ZA2H.D[2]
3[1] 3[2] 3[4] 1[9] 0[19] [19] ZA1H.H[9]
4[1] 4[2] 0[5] 0[10] 0[20] [20] ZA0H.S[5]
5[1] 5[2] 1[5] 1[10] 0[21] [21] ZA1H.H[10]
6[1] 6[2] 2[5] 0[11] 0[22] [22]
7[1] 7[2] 3[5] 1[11] 0[23] [23] ZA1H.H[11]
8[1] 0[3] 0[6] 0[12] 0[24] [24] ZA0H.S[6]
9[1] 1[3] 1[6] 1[12] 0[25] [25] ZA1H.H[12]
10[1] 2[3] 2[6] 0[13] 0[26] [26] ZA2H.D[3]
11[1] 3[3] 3[6] 1[13] 0[27] [27] ZA1H.H[13]
12[1] 4[3] 0[7] 0[14] 0[28] [28] ZA0H.S[7]
13[1] 5[3] 1[7] 1[14] 0[29] [29] ZA1H.H[14]
14[1] 6[3] 2[7] 0[15] 0[30] [30]
15[1] 7[3] 3[7] 1[15] 0[31] [31] ZA1H.H[15]

ZA storage (SVL = 256 bits)

IWDMCK It is possible to access overlapping ZA array vectors within tiles of differing element sizes. For example, tiles
ZA0.H, ZA2.S, and ZA6.D have common ZA array vectors.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35

Chapter B2. Architectural state
B2.3. ZA storage layout

B2.3.3 Horizontal tile slice mappings

INJJXW The following diagram illustrates the ZA storage mapping, for SVL of 256 bits, for a 32-bit element and 64-bit
element horizontal tile slice.

Each small numbered square represents 8 bits.

.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0[0] 0[0] 0[0] 0[0] 0[0] [0]
1[0] 1[0] 1[0] 1[0] 0[1] [1]
2[0] 2[0] 2[0] 0[1] 0[2] [2]
3[0] 3[0] 3[0] 1[1] 0[3] [3]
4[0] 4[0] 0[1] 0[2] 0[4] [4]
5[0] 5[0] 1[1] 1[2] 0[5] [5]
6[0] 6[0] 2[1] 0[3] 0[6] [6] ZA2H.S[1]
7[0] 7[0] 3[1] 1[3] 0[7] [7]
8[0] 0[1] 0[2] 0[4] 0[8] [8]
9[0] 1[1] 1[2] 1[4] 0[9] [9]
10[0] 2[1] 2[2] 0[5] 0[10] [10]
11[0] 3[1] 3[2] 1[5] 0[11] [11]
12[0] 4[1] 0[3] 0[6] 0[12] [12]
13[0] 5[1] 1[3] 1[6] 0[13] [13]
14[0] 6[1] 2[3] 0[7] 0[14] [14]
15[0] 7[1] 3[3] 1[7] 0[15] [15]
0[1] 0[2] 0[4] 0[8] 0[16] [16]
1[1] 1[2] 1[4] 1[8] 0[17] [17]
2[1] 2[2] 2[4] 0[9] 0[18] [18]
3[1] 3[2] 3[4] 1[9] 0[19] [19]
4[1] 4[2] 0[5] 0[10] 0[20] [20] ZA4H.D[2]
5[1] 5[2] 1[5] 1[10] 0[21] [21]
6[1] 6[2] 2[5] 0[11] 0[22] [22]
7[1] 7[2] 3[5] 1[11] 0[23] [23]
8[1] 0[3] 0[6] 0[12] 0[24] [24]
9[1] 1[3] 1[6] 1[12] 0[25] [25]
10[1] 2[3] 2[6] 0[13] 0[26] [26]
11[1] 3[3] 3[6] 1[13] 0[27] [27]
12[1] 4[3] 0[7] 0[14] 0[28] [28]
13[1] 5[3] 1[7] 1[14] 0[29] [29]
14[1] 6[3] 2[7] 0[15] 0[30] [30]
15[1] 7[3] 3[7] 1[15] 0[31] [31]

ZA storage (SVL = 256 bits)

An SME vector load, store, or move instruction which accesses horizontal tile slices ZA2H.S[1] or ZA4H.D[2]
treats the slices as vectors with the following layout:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ZA2H.S[1]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ZA4H.D[2]

B2.3.4 Vertical tile slice mappings

ITNCCV The following diagram illustrates the ZA storage mapping, for SVL of 256 bits, for a 32-bit element and 64-bit
element vertical tile slice.

Each small numbered square represents 8 bits.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

Chapter B2. Architectural state
B2.3. ZA storage layout

.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0[0] 0[0] 0[0] 0[0] 0[0] [0]
1[0] 1[0] 1[0] 1[0] 0[1] [1]
2[0] 2[0] 2[0] 0[1] 0[2] [2]
3[0] 3[0] 3[0] 1[1] 0[3] [3]
4[0] 4[0] 0[1] 0[2] 0[4] [4]
5[0] 5[0] 1[1] 1[2] 0[5] [5]
6[0] 6[0] 2[1] 0[3] 0[6] [6]
7[0] 7[0] 3[1] 1[3] 0[7] [7]
8[0] 0[1] 0[2] 0[4] 0[8] [8]
9[0] 1[1] 1[2] 1[4] 0[9] [9]
10[0] 2[1] 2[2] 0[5] 0[10] [10]
11[0] 3[1] 3[2] 1[5] 0[11] [11]
12[0] 4[1] 0[3] 0[6] 0[12] [12]
13[0] 5[1] 1[3] 1[6] 0[13] [13]
14[0] 6[1] 2[3] 0[7] 0[14] [14]
15[0] 7[1] 3[3] 1[7] 0[15] [15]
0[1] 0[2] 0[4] 0[8] 0[16] [16]
1[1] 1[2] 1[4] 1[8] 0[17] [17]
2[1] 2[2] 2[4] 0[9] 0[18] [18]
3[1] 3[2] 3[4] 1[9] 0[19] [19]
4[1] 4[2] 0[5] 0[10] 0[20] [20]
5[1] 5[2] 1[5] 1[10] 0[21] [21]
6[1] 6[2] 2[5] 0[11] 0[22] [22]
7[1] 7[2] 3[5] 1[11] 0[23] [23]
8[1] 0[3] 0[6] 0[12] 0[24] [24]
9[1] 1[3] 1[6] 1[12] 0[25] [25]
10[1] 2[3] 2[6] 0[13] 0[26] [26]
11[1] 3[3] 3[6] 1[13] 0[27] [27]
12[1] 4[3] 0[7] 0[14] 0[28] [28]
13[1] 5[3] 1[7] 1[14] 0[29] [29]
14[1] 6[3] 2[7] 0[15] 0[30] [30]
15[1] 7[3] 3[7] 1[15] 0[31] [31]

ZA storage (SVL = 256 bits)
ZA2V.S[1]ZA4V.D[2]

An SME vector load, store, or move instruction which accesses vertical tile slices ZA2V.S[1] or ZA4V.D[2] treats
the slices as vectors with the following layout:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 ZA2V.S[1]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
23 22 21 20 19 18 17 16 23 22 21 20 19 18 17 16 23 22 21 20 19 18 17 16 23 22 21 20 19 18 17 16 ZA4V.D[2]

B2.3.5 Mixed horizontal and vertical tile slice mappings

ICGXPJ The ZA storage mapping, for SVL of 256 bits, for various element size tiles, horizontal tile slices, and vertical tile
slices, is illustrated in the following diagram.

Each small square represents 8 bits.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter B2. Architectural state
B2.3. ZA storage layout

.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0[0] 0[0] 0[0] 0[0] 0[0] [0]
1[0] 1[0] 1[0] 1[0] 0[1] [1]
2[0] 2[0] 2[0] 0[1] 0[2] [2]
3[0] 3[0] 3[0] 1[1] 0[3] [3]
4[0] 4[0] 0[1] 0[2] 0[4] [4]
5[0] 5[0] 1[1] 1[2] 0[5] [5]
6[0] 6[0] 2[1] 0[3] 0[6] [6] ZA6H.D[0]
7[0] 7[0] 3[1] 1[3] 0[7] [7]
8[0] 0[1] 0[2] 0[4] 0[8] [8]
9[0] 1[1] 1[2] 1[4] 0[9] [9]
10[0] 2[1] 2[2] 0[5] 0[10] [10]
11[0] 3[1] 3[2] 1[5] 0[11] [11]
12[0] 4[1] 0[3] 0[6] 0[12] [12]
13[0] 5[1] 1[3] 1[6] 0[13] [13]
14[0] 6[1] 2[3] 0[7] 0[14] [14] ZA0H.H[7]
15[0] 7[1] 3[3] 1[7] 0[15] [15]
0[1] 0[2] 0[4] 0[8] 0[16] [16]
1[1] 1[2] 1[4] 1[8] 0[17] [17]
2[1] 2[2] 2[4] 0[9] 0[18] [18]
3[1] 3[2] 3[4] 1[9] 0[19] [19]
4[1] 4[2] 0[5] 0[10] 0[20] [20] ZA0H.B[20]
5[1] 5[2] 1[5] 1[10] 0[21] [21]
6[1] 6[2] 2[5] 0[11] 0[22] [22] ZA2H.S[5]
7[1] 7[2] 3[5] 1[11] 0[23] [23]
8[1] 0[3] 0[6] 0[12] 0[24] [24]
9[1] 1[3] 1[6] 1[12] 0[25] [25]
10[1] 2[3] 2[6] 0[13] 0[26] [26]
11[1] 3[3] 3[6] 1[13] 0[27] [27]
12[1] 4[3] 0[7] 0[14] 0[28] [28] ZA12H.Q[1]
13[1] 5[3] 1[7] 1[14] 0[29] [29]
14[1] 6[3] 2[7] 0[15] 0[30] [30]
15[1] 7[3] 3[7] 1[15] 0[31] [31]

ZA3V.S[4]ZA7V.D[3] ZA0V.B[22] ZA8V.Q[0] ZA1V.H[1]

ZA storage (SVL = 256 bits)

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter B3
Floating-point behaviors

B3.1 Overview

SME modifies some of the Armv9-A floating-point behaviors when a PE is in Streaming SVE mode, and introduces
an FPCR control which extends BFloat16 dot product calculations to support a wider range of numeric behaviors.

See also:

• FPCR.
• B1.1.1 Process state

B3.1.1 Extended BFloat16

DDLNNC When the optional FEAT_EBF16 feature is implemented, the following control bit, FPCR.EBF, is present at bit [13].
For more information, see FPCR.EBF.

RBSHYK When the ID_AA64ZFR0_EL1.BF16 and ID_AA64ISAR1_EL1.BF16 fields have the value 0b0010 the PE implements
FEAT_EBF16 and supports the FPCR.EBF control.

See also:

• ID_AA64ISAR1_EL1.
• ID_AA64ZFR0_EL1.

B3.1.2 BFloat16 behaviors

If FEAT_EBF16 is implemented, the FPCR.EBF control can be used to enable the Extended BFloat16 behaviors.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

Chapter B3. Floating-point behaviors
B3.1. Overview

RRKGSJ If FEAT_EBF16 is implemented, then:

• The FEAT_EBF16 feature is enabled when FPCR.EBF is 1.
• The FEAT_EBF16 feature is not enabled when FPCR.EBF is 0.

B3.1.2.1 Common BFloat16 behaviors

These are the behaviors currently defined in Arm® Architecture Reference Manual for A-profile architecture [1]
which are not changed by the optional FPCR.EBF control.

RGJWLL The BFDOT, BFMMLA, BFMOPA, and BFMOPS instructions support the BFloat16 and the IEEE 754-2008 Single-precision
floating-point data types defined respectively in sections BFloat16 floating-point format and Single-precision
floating-point format of Arm® Architecture Reference Manual for A-profile architecture [1].

RRDCPW The BFDOT, BFMMLA, BFMOPA, and BFMOPS instructions which detect exceptional floating-point conditions produce
the expected single-precision default result but do not modify the cumulative floating-point exception flag bits,
FPSR.{IDC,IXC,UFC,OFC,DZC,IOC}.

RPFFFF The BFDOT, BFMMLA, BFMOPA, and BFMOPS instructions generate default NaN values, as if the FPCR.DN control had the
value 1.

See also:

• FPSR, Floating-point Status Register in Arm® Architecture Reference Manual for A-profile architecture [1].

B3.1.2.2 Standard BFloat16 behaviors

These are the behaviors currently defined in Arm® Architecture Reference Manual for A-profile architecture [1]
which may be changed by the FPCR.EBF control provided by FEAT_EBF16.

RJFWDV If FEAT_EBF16 is either not implemented or not enabled, then the BFDOT, BFMMLA, BFMOPA, and BFMOPS instructions
ignore the FPCR.RMode control and use the rounding mode defined for BFloat16 in section Round to Odd mode of
Arm® Architecture Reference Manual for A-profile architecture [1].

RWBLQD If FEAT_EBF16 is either not implemented or not enabled, then the BFDOT, BFMMLA, BFMOPA, and BFMOPS instructions
flush denormalized inputs and outputs to zero, as if the FPCR.FZ control had the value 1.

RJPNSN If FEAT_EBF16 is either not implemented or not enabled, then the BFDOT, BFMMLA, BFMOPA, and BFMOPS instructions
perform unfused multiplies and additions with intermediate rounding of all products and sums.

B3.1.2.3 Extended BFloat16 behaviors

These are the behaviors that may be enabled by the FPCR.EBF control provided by FEAT_EBF16.

RRQKQZ If FEAT_EBF16 is implemented and enabled, then the BFDOT, BFMMLA, BFMOPA, and BFMOPS instructions support all
four IEEE 754 rounding modes selected by the FPCR.RMode control.

RJZVPD If FEAT_EBF16 is implemented and enabled, then the BFDOT, BFMMLA, BFMOPA, and BFMOPS instructions may flush
denormalized inputs and outputs to zero, governed by the FPCR.FZ control.

RLJGTX If FEAT_EBF16 is implemented and enabled, then the BFDOT, BFMMLA, BFMOPA, and BFMOPS instructions perform
a fused two-way sum-of-products for each pair of adjacent BFloat16 elements in the source vectors, without
intermediate rounding of the products, but rounding the single-precision sum before addition to the single-precision
accumulator element.

RCQFQT If FEAT_EBF16 is implemented and enabled, then the BFDOT, BFMMLA, BFMOPA, and BFMOPS instructions generate the
default NaN as intermediate sum-of-products when any multiplier input is a NaN, or any product is infinity × 0.0,
or there are infinite products with differing signs.

RWQDBR If FEAT_EBF16 is implemented and enabled, then the BFDOT, BFMMLA, BFMOPA, and BFMOPS instructions generate an
intermediate sum-of-products of the same infinity when there are infinite products all with the same sign.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

Chapter B3. Floating-point behaviors
B3.1. Overview

RYPGLB When a PE implements the FEAT_AFP feature and FEAT_EBF16 is implemented and enabled, the BFDOT, BFMMLA,
BFMOPA, and BFMOPS instructions honor the FPCR.AH and FPCR.FIZ controls.

IWKNML When a PE implements the FEAT_AFP feature and FEAT_EBF16 is implemented and enabled, the following
alternate floating-point behaviors affect the BFDOT, BFMMLA, BFMOPA, and BFMOPS instructions:

• When FPCR.AH is 1, the sign bit of a generated default NaN result is set to 1 instead of 0.
• When FPCR.AH is 1 and FPCR.FZ is 1, a denormal result, detected after rounding with an unbounded exponent

has been applied, is flushed to zero.
• When FPCR.AH is 1, the FPCR.FZ control does not cause denormalized inputs to be flushed to zero.
• When FPCR.FIZ is 1, all denormalized inputs are flushed to zero.

B3.1.3 Floating-point behaviors in Streaming SVE mode

RNHZCN When the PE is in Streaming SVE mode, the legal floating-point instructions that operate on half-precision,
single-precision, and double-precision input data types and write to SIMD&FP registers or SVE Z vectors, and
the SVE BFMLALB and BFMLALT instructions, honor the Non-streaming scalar and SVE floating-point behaviors, as
governed by the FPCR.{RMode,AHP,DN,FZ,FZ16} controls.

RGTYSK When the PE is in Streaming SVE mode, the legal floating-point instructions that operate on half-precision,
single-precision, and double-precision input data types and write to SIMD&FP registers or SVE Z vectors,
and the SVE BFMLALB and BFMLALT instructions, which detect exceptional floating-point conditions produce
the expected IEEE 754 default result and set the appropriate cumulative floating-point exception flag bits in
FPSR.{IDC,IXC,UFC,OFC,DZC,IOC} to 1.

RFBFNT When the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level, the Effective value of the FPCR is as if all of the IDE, IXE, UFE, OFE, DZE, and IOE floating-point
exception trap enable controls, and the NEP element preserve control, are 0 for all purposes other than a direct read
or write of the register.

RSGZLB When a PE which implements the FEAT_AFP feature is in Streaming SVE mode, the legal floating-point instructions
that operate on half-precision, single-precision, and double-precision input data types and write to SIMD&FP
registers or SVE Z vectors, and the SVE BFMLALB and BFMLALT instructions, honor the FPCR.AH and FPCR.FIZ controls.

See also:

• FPSR, Floating-point Status Register in Arm® Architecture Reference Manual for A-profile architecture [1].

B3.1.4 ZA-targeting floating-point behaviors

RKVYHW SME floating-point instructions that write to the ZA array, except for BFMOPA and BFMOPS, support the IEEE 754-2008
floating-point data types as defined in the following sections of Arm® Architecture Reference Manual for A-profile
architecture [1]:

• Half-precision floating-point formats (but not the Arm alternative half-precision format).
• Single-precision floating-point format.
• Double-precision floating-point format.

RTGSKG SME floating-point instructions that write to the ZA array, except for BFMOPA and BFMOPS, which detect exceptional
floating-point conditions produce the expected IEEE 754 default result but do not modify any of the cumulative
floating-point exception flag bits, FPSR.{IDC,IXC,UFC,OFC,DZC,IOC}.

RRKHHZ SME floating-point instructions that write to the ZA array, except for BFMOPA and BFMOPS, generate default NaN
values, as if the FPCR.DN control had the value 1.

RTCLRM SME floating-point instructions that write to the ZA array, except for BFMOPA and BFMOPS, support all four IEEE 754
rounding modes selected by the FPCR.RMode control.

RVVVNR

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

Chapter B3. Floating-point behaviors
B3.1. Overview

SME floating-point instructions that write to the ZA array, except for BFMOPA and BFMOPS, may flush denormalized
single- and double-precision inputs and outputs to zero, governed by the FPCR.FZ control.

RTXKVK SME floating-point instructions which accumulate dot products of pairs of adjacent half-precision elements in the
source vectors into single-precision elements in the ZA array may flush denormalized half-precision inputs to zero,
governed by the FPCR.FZ16 control.

RJRRMJ SME floating-point instructions which multiply single elements from each source vector and accumulate their
product into the ZA array perform a fused multiply-add to each accumulator tile element, without intermediate
rounding.

RNNCFV SME floating-point instructions which accumulate dot products of pairs of adjacent half-precision elements in
the source vectors into single-precision elements in the ZA array perform a fused sum-of-products, without
intermediate rounding of the products, but rounding the single-precision sum before addition to the accumulator.

RQPKJC SME floating-point instructions which accumulate dot products of pairs of adjacent half-precision elements
in the source vectors into single-precision elements in the ZA array generate the default NaN as intermediate
sum-of-products when any multiplier input is a NaN, or any product is infinity × 0.0, or there are infinite products
with differing signs.

RZBLND SME floating-point instructions which accumulate dot products of pairs of adjacent half-precision elements in the
source vectors into single-precision elements in the ZA array generate an intermediate sum-of-products of the
same infinity when there are infinite products all with the same sign.

RRPSLK When a PE implements the FEAT_AFP feature the SME floating-point instructions that write to the ZA array,
except for BFMOPA and BFMOPS, honor the FPCR.AH and FPCR.FIZ controls.

IYPCHJ When a PE implements the FEAT_AFP feature, the following alternate floating-point behaviors affect the SME
FMOPA and FMOPS instructions:

• When FPCR.AH is 1, the sign bit of a generated default NaN result is set to 1 instead of 0.
• When FPCR.AH is 1 and FPCR.FZ is 1, a denormal result, detected after rounding with an unbounded exponent

has been applied, is flushed to zero.
• When FPCR.AH is 1, the FPCR.FZ control does not cause denormalized inputs to be flushed to zero.
• When FPCR.FIZ is 1, all denormalized single-precision and double-precision inputs are flushed to zero.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Part C
SME system level programmers’ model

Chapter C1
Introduction

The SME System Management architecture provides mechanisms for system software to:

• Discover the presence of SME.
• Discover the capabilities of SME.
• Control SME usage.
• Monitor SME usage.

The architecture consists of extensions to processor mode, the Exception model, and System registers for trap
control and identification.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

Chapter C2
System management

C2.1 Overview

SME extends the AArch64 System registers and processor state, by introducing the following:

• An SME presence identification field added to ID_AA64PFR1_EL1.
• An SME-specific ID register, ID_AA64SMFR0_EL1, for SME feature discovery.
• An execution mode, Streaming SVE mode.
• Mode flags in PSTATE to enable Streaming SVE mode and SME architectural state, accessible using the SVCR

register.
• Configuration settings for SME in CPACR_EL1, CPTR_EL2, CPTR_EL3, HCR_EL2, HCRX_EL2, HFGRTR_EL2, and

HFGWTR_EL2.
• An SME exception type, with new ESR_ELx.EC and ESR_ELx.ISS encodings.
• A field in ESR_ELx.ISS to signal that an imprecise FAR_ELx value has been reported on a synchronous Data

Abort exception.
• SME controls to set the Effective Streaming SVE vector length in SMCR_EL1, SMCR_EL2, and SMCR_EL3.
• ID and control registers that influence streaming execution priority in multiprocessor systems: SMIDR_EL1,

SMPRI_EL1, and SMPRIMAP_EL2.
• A software thread ID register to manage per-thread SME context, TPIDR2_EL0, with enables in SCR_EL3,

SCTLR_EL2, and SCTLR_EL1.

See also:

• ID_AA64PFR1_EL1
• CPACR_EL1
• CPTR_EL2
• CPTR_EL3

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45

Chapter C2. System management
C2.1. Overview

• ESR_EL1, ESR_EL2, and ESR_EL3
• HCR_EL2
• HCRX_EL2
• HFGRTR_EL2
• HFGWTR_EL2
• SCR_EL3
• SCTLR_EL2
• SCTLR_EL1
• ID_AA64SMFR0_EL1
• SMCR_EL1
• SMCR_EL2
• SMCR_EL3
• SMIDR_EL1
• SMPRI_EL1
• SMPRIMAP_EL2
• SVCR
• TPIDR2_EL0

C2.1.1 Identification

IXTNNP ID_AA64PFR1_EL1.SME indicates whether SME is implemented in a PE.

IRLFXX If SME is implemented, the SME features that are implemented in a PE are determined from ID_AA64SMFR0_EL1.

See also:

• ID_AA64PFR1_EL1
• ID_AA64SMFR0_EL1

C2.1.2 Traps and exceptions

DDMBHW The SME-related instructions that may be configured to trap by CPACR_EL1, CPTR_EL2, and CPTR_EL3 controls, unless
otherwise stated, include all of the following:

• SME data-processing instructions.
• SME mode change instructions SMSTART and SMSTOP.
• AArch64 MRS and MSR instructions which directly access any of the SVCR, SMCR_EL1, SMCR_EL2, or SMCR_EL3

registers.

IMQBFG Execution of SME-related instructions can be trapped by supervisor software. The mechanisms provided are:

• CPACR_EL1, which enables execution of SME-related instructions at EL0 or EL1 to be trapped to EL1 or EL2.
• CPTR_EL2, which enables execution of SME-related instructions at EL0, EL1 or EL2 to be trapped to EL2.
• CPTR_EL3, which enables execution of SME-related instructions at any Exception level to be trapped to EL3.

IXKMKY SME adds an exception syndrome value 0b011101 (0x1D), which is used to identify instructions that are trapped by
the SME controls in CPACR_EL1, CPTR_EL2, and CPTR_EL3, or by the PSTATE.SM and PSTATE.ZA modes.

See also:

• CPACR_EL1
• CPTR_EL2
• CPTR_EL3
• ESR_EL1, ESR_EL2, and ESR_EL3
• C2.2.1 Exception priorities

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter C2. System management
C2.1. Overview

C2.1.3 Vector lengths

DQQRNR The Effective Streaming SVE vector length, SVL, is the accessible length in bits of the ZA array vectors and
Streaming SVE vector registers at the current Exception level. SVL is determined by the LEN field of the appropriate
SME SMCR_ELx registers, as defined in rule RGWVHP.

IBHFWG SVL is used explicitly by the unpredicated SME LDR, STR, and ZERO instructions which can access the ZA array
irrespective of whether the PE is in Streaming SVE mode.

RVCQBB The Effective SVE vector length, VL, is equal to SVL when the PE is in Streaming SVE mode.

ILRBQY The Effective SVE vector length, VL, is determined by the LEN field of the ZCR_ELx registers when the PE is not in
Streaming SVE mode and FEAT_SVE is implemented.

IWQZKK Unlike the Non-streaming SVE vector length, SVL can only be a power of two.

RJRCSH An implementation is permitted to support any subset of the architecturally defined SVL values.

IFQKMN For example, this means that the set of supported SVLs might be discontiguous and might not start at the smallest
permitted SVL.

RRZNVH An implementation is permitted but not required to support more than one SVL.

RWDKGR An implementation is permitted to support a set of SVLs that do not overlap with the set of VLs that are supported
when the PE is not in Streaming SVE mode.

IGZRPL There is no requirement for the maximum implemented Streaming SVE vector length to be greater than or equal to
the maximum implemented SVE vector length.

RGWVHP The Effective Streaming SVE vector length at a given Exception level is determined from the requested length,
encoded as a multiple of 16 bytes in SMCR_EL1.LEN, SMCR_EL2.LEN, or SMCR_EL3.LEN, according to the Exception level,
following these steps:

1. If the requested length is less than the minimum implemented Streaming SVE vector length, the Effective
length is the minimum implemented Streaming SVE vector length.

2. If this is the highest implemented Exception level and the requested length is greater than the maximum
implemented Streaming SVE vector length, then the Effective length is the maximum implemented Streaming
SVE vector length.

3. If this is not the highest implemented Exception level and the requested length is greater than the Effective
length at the next more privileged implemented Exception level in the current Security state, then the Effective
length at the more privileged Exception level is used.

4. If the requested length is not supported by the implementation, then the Effective length is the highest
supported Streaming SVE vector length that is less than the requested length.

5. Otherwise, the Effective length is the requested length.

IVRRYR The set of supported values of SVL at Exception level ELx (where ELx is EL1, EL2 or EL3) can be discovered by
privileged software in a similar way to determining the set of supported values of VL. For example, when SME is
enabled by the appropriate control fields in CPACR_EL1, CPTR_EL2 and CPTR_EL3:

1. Request an out of range vector length of 8192 bytes by writing 0x1ff to SMCR_ELx[8:0].
2. Use the SME RDSVL instruction to read SVL.
3. If SMCR_ELx requests a supported Streaming SVE vector length, the requested length in bytes will be returned

by RDSVL.
4. If SMCR_ELx requests an unsupported Streaming SVE vector length, a supported length in bytes will be returned

by RDSVL.
5. If the returned length len is less than or equal to the requested vector length, and greater than 16 bytes (128

bits), then request the next lower vector length by writing (len/16)-2 to SMCR_ELx[8:0] and go to step 2.

RYRPDH When SVL changes from a smaller to a larger value without leaving Streaming SVE mode, a new area of storage
becomes architecturally visible in the Streaming SVE registers and, if enabled, the SME ZA storage. The values in

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter C2. System management
C2.1. Overview

the area common to the previous and current length are preserved, and the values in the newly accessible area are a
CONSTRAINED UNPREDICTABLE choice between the following:

• Zero.
• The value the bits had before executing at the more constrained size.

IHGYPV The SVL might change without leaving Streaming SVE mode because of an explicit action such as a write to
SMCR_ELx, or an implicit action such as taking an exception to an Exception level with a less constrained SVL.

IPDLWX The SVL can be raised and then restored to a previous value without affecting the original contents of the Streaming
SVE registers and the SME ZA storage.

IFMWZZ Supervisory software must guarantee that values generated by one body of software are not observable by another
body of software in a different trust or security scope. When SVL is increased, steps must be taken to ensure the
newly accessible area does not contain values unrelated to another body of software. This might be achieved by
ensuring that the PE exits Streaming SVE mode and disables SME ZA storage when performing a context switch,
or by explicitly resetting all register values.

IBRMMV System software provides a maximum SVL to lower-privileged software, which might further constrain the SVL.
However, system software must initialize and context switch values consistent with the maximum SVL provided
and should not make assumptions about any smaller size being in use by lower-privileged software. For example,
if a hypervisor exposes an SVL of 512 to a VM, that VM might choose to constrain SVL to 256. The hypervisor
should still save and restore 512-bit vectors to prevent leakage of values between VMs, because the VM might
later raise its SVL to 512 and must not be able to observe values created by other software in the newly visible
upper portion of the registers.

See also:

• SMCR_EL1
• SMCR_EL2
• SMCR_EL3

C2.1.4 Streaming execution priority

DDXMSW Streaming execution refers to the execution of instructions by a PE when that PE is in Streaming SVE mode.

ICMRVS Arm expects a variety of implementation styles for SME, including styles where more than one PE shares SME
and Streaming SVE compute resources.

IPQNJS Shared SME and Streaming SVE compute resources are called a Streaming Mode Compute Unit (SMCU).

IMZXWD For implementations that share an SMCU, this architecture provides per-PE mechanisms that software can use to
dynamically prioritize performance characteristics experienced by each PE.

See also:

• C2.2.4 Streaming execution priority for shared implementations

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter C2. System management
C2.2. Processor behavior

C2.2 Processor behavior

C2.2.1 Exception priorities

RNXSFT Exceptions due to configuration settings and modes resulting from the attempted execution of an SME
data-processing instruction are evaluated in the following order from highest to lowest priority:

1. If FEAT_SME is not implemented, then the instruction is UNDEFINED.
2. If CPACR_EL1.SMEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS code

0x0000000.
3. If CPACR_EL1.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
4. If CPTR_EL2.SMEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS code

0x0000000.
5. If CPTR_EL2.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
6. If CPTR_EL2.TSM configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS code

0x0000000.
7. If CPTR_EL2.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
8. If CPTR_EL3.ESM configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS code

0x0000000.
9. If CPTR_EL3.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.

10. If the PE is not in Streaming SVE mode and the SME instruction would access any of the SVE registers
Z0-Z31 or P0-P15, then an SME exception is taken, using ESR_ELx.EC value 0x1D with ISS code 0x0000002.

11. If the SME ZA storage is disabled and the SME instruction would access ZA, then an SME exception is taken,
using ESR_ELx.EC value 0x1D with ISS code 0x0000003.

12. Otherwise, the instruction executes.

RXQKHH Exceptions due to configuration settings resulting from attempted execution of MRS or MSR instructions which
directly access one of the SVCR, SMCR_EL1, SMCR_EL2, or SMCR_EL3 registers, are evaluated in the following order from
highest to lowest priority:

1. If FEAT_SME is not implemented, then the instruction is UNDEFINED.
2. If CPACR_EL1.SMEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D, with ISS code

0x0000000.
3. If CPTR_EL2.SMEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D, with ISS code

0x0000000.
4. If CPTR_EL2.TSM configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D, with ISS code

0x0000000.
5. If CPTR_EL3.ESM configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D, with ISS code

0x0000000.
6. Otherwise, the instruction executes.

RPLYVH Exceptions due to configuration settings and modes resulting from the attempted execution of an SVE or SVE2
instruction when FEAT_SVE is not implemented or when the PE is in Streaming SVE mode, are evaluated in the
following order from highest to lowest priority:

1. If FEAT_SME is not implemented and FEAT_SVE is not implemented, then the instruction is UNDEFINED.
2. If FEAT_SVE is not implemented and the instruction is illegal when the PE is in Streaming SVE mode, then

the instruction is UNDEFINED.
3. If FEAT_SME is not implemented and the instruction is defined as part of the SME architecture in D1.3

SVE2 instructions, then the instruction is UNDEFINED.
4. If CPACR_EL1.SMEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS code

0x0000000.
5. If CPACR_EL1.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
6. If CPTR_EL2.SMEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS code

0x0000000.
7. If CPTR_EL2.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter C2. System management
C2.2. Processor behavior

8. If CPTR_EL2.TSM configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS code
0x0000000.

9. If CPTR_EL2.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
10. If CPTR_EL3.ESM configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS code

0x0000000.
11. If CPTR_EL3.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
12. If the PE is in Streaming SVE mode and the SVE instruction is illegal in that mode, then an SME exception is

taken, using ESR_ELx.EC value 0x1D with ISS code 0x0000001.
13. If the PE is not in Streaming SVE mode and FEAT_SVE is not implemented, then an SME exception is taken,

using ESR_ELx.EC value 0x1D with ISS code 0x0000002.
14. Otherwise, the instruction executes.

RZTKXF Exceptions due to configuration settings resulting from the attempted execution of an SVE or SVE2 instruction
when FEAT_SVE is implemented and when the PE is not in Streaming SVE mode, are evaluated in the following
order from highest to lowest priority:

1. If FEAT_SME is not implemented and the instruction is defined as part of the SME architecture in D1.3
SVE2 instructions, then the instruction is UNDEFINED.

2. If CPACR_EL1.ZEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x19.
3. If CPACR_EL1.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
4. If CPTR_EL2.ZEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x19.
5. If CPTR_EL2.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
6. If CPTR_EL2.TZ configures the instruction to trap, it is reported using ESR_ELx.EC value 0x19.
7. If CPTR_EL2.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
8. If CPTR_EL3.EZ configures the instruction to trap, it is reported using ESR_ELx.EC value 0x19.
9. If CPTR_EL3.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.

10. Otherwise, the instruction executes.

RDTCLZ Exceptions due to configuration settings and modes resulting from the attempted execution of an AArch64
Advanced SIMD and floating-point instruction when the PE is in Streaming SVE mode are evaluated in the
following order from highest to lowest priority:

1. If CPACR_EL1.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
2. If CPTR_EL2.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
3. If CPTR_EL2.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
4. If CPTR_EL3.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
5. If the instruction is illegal when the PE is in *Streaming SVE mode", then an SME exception is taken, using

ESR_ELx.EC value 0x1D with ISS code 0x0000001.
6. Otherwise, the instruction executes.

INWNQZ When the PE is in Streaming SVE mode or FEAT_SVE is not implemented, the CPACR_EL1.SMEN, CPTR_EL2.SMEN,
CPTR_EL2.TSM, and CPTR_EL3.ESM controls configure SVE instructions to trap, and the CPACR_EL1.ZEN, CPTR_EL2.ZEN,
CPTR_EL2.TZ, and CPTR_EL3.EZ controls do not cause any SVE instructions to be trapped.

IPKGPR When the PE is not in Streaming SVE mode and FEAT_SVE is implemented, the CPACR_EL1.ZEN, CPTR_EL2.ZEN,
CPTR_EL2.TZ, and CPTR_EL3.EZ controls configure SVE instructions to trap, and the CPACR_EL1.SMEN, CPTR_EL2.SMEN,
CPTR_EL2.TSM, and CPTR_EL3.ESM controls do not cause any SVE instructions to be trapped.

RZZBRC An Undefined Instruction exception due to the pairing of an SVE MOVPRFX with an instruction which cannot be
predictably prefixed has a higher exception priority than a PSTATE mode-dependent SME exception with ESR_ELx.EC

value 0x1D and an ISS code that is not 0x0000000.

See also:

• CPACR_EL1
• CPTR_EL2
• CPTR_EL3
• ESR_EL1, ESR_EL2, and ESR_EL3
• C2.2 Processor behavior

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter C2. System management
C2.2. Processor behavior

• Chapter E1 Instructions affected by SME

C2.2.2 Synchronous Data Abort

RJXPNL If SME is implemented, then on taking a Data Abort exception which sets ESR_ELx.ISV to 0 caused by an SVE
contiguous vector load/store instruction when the PE is in Streaming SVE mode, or by an SME load/store
instruction, the PE:

• Sets ESR_ELx.FnP to 1 if the value written to the corresponding FAR_ELx might not be the same as the faulting
virtual address that generated the Data Abort.

• Otherwise, sets ESR_ELx.FnP to 0.

RXMWQT If the PE sets ESR_ELx.ISV to 0 and ESR_ELx.FnP to 1 on taking a Data Abort exception, then the PE sets the
corresponding FAR_ELx to any address within the naturally-aligned fault granule which contains the faulting virtual
address that generated the Data Abort.

DBRGHW The naturally-aligned fault granule is one of the following:

• A 16-byte tag granule when ESR_ELx.DFSC is 0b010001, indicating a Synchronous Tag Check fault.
• An IMPLEMENTATION DEFINED granule when ESR_ELx.DFSC is 0b11010x, indicating an IMPLEMENTATION

DEFINED fault.
• Otherwise, the smallest implemented translation granule.

See also:

• ESR_EL1, ESR_EL2, and ESR_EL3
• FAR_EL1
• FAR_EL2
• FAR_EL3

C2.2.3 Validity of SME and SVE state

IWFHKZ Fields in CPACR_EL1, CPTR_EL2, and CPTR_EL3 configure whether SME-related instructions can be executed, or are
trapped.

IVBJBR The Effective values of PSTATE.SM and PSTATE.ZA configure whether SME architectural state is valid and accessible.

RXCCXW The controls for trapping SME-related instructions and controls for validity of SME architectural state are
independent.

IJGRTR Because the trap and architectural state validity are controlled independently, the following scenarios are all
permissible:

• Instructions trap, state invalid.
– For example, an OS traps the first usage of SME-related instructions by a process.

• Instructions trap, state valid.
– For example, a process was running with valid SME architectural state and an OS configures traps to

detect when the next usage of SME architectural state occurs.
– Enabling the trap does not affect or corrupt the SME architectural state.

• Instructions permitted, state invalid.
– For example, a process is permitted to execute SME-related instructions but is currently not running in

Streaming SVE mode. SME data-processing instructions which access SVE vector or predicate registers
are illegal and are trapped, but SVE instructions operate on the Non-streaming SVE register state. The
process can execute an SMSTART instruction to enter Streaming SVE mode.

– For example, a process is running in Streaming SVE mode, but has not enabled access to the SME ZA
storage. SME instructions that access ZA are illegal and are trapped, but the process can execute an
SMSTART instruction to enable access to the ZA storage.

• Instructions permitted, state valid.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter C2. System management
C2.2. Processor behavior

– For example, a process is running in Streaming SVE mode, and has enabled access to ZA storage.

RSWQGH An exception return from AArch64 to AArch32 Execution state does not change the values of PSTATE.SM and
PSTATE.ZA.

RMZLVB An exception taken from AArch32 to AArch64 Execution state does not change the values of PSTATE.SM and
PSTATE.ZA.

RGXKNK When a PE is executing in the AArch32 Execution state, the Effective value of PSTATE.SM is 0.

IMWQNV When PSTATE.SM is 1, a change in Execution state from AArch64 to AArch32, or from AArch32 to AArch64,
causes all implemented bits of the SVE registers (including SIMD&FP registers) and the FPSR to be reset to a fixed
value, which software must mitigate.

IWYKRM The Effective value of PSTATE.ZA does not change in AArch32 Execution state, so a transition between AArch64
and AArch32 Execution state when PSTATE.ZA is 1 has no effect on the contents of SME ZA storage.

IVGWQW An implementation might use the activity of the PSTATE.SM and PSTATE.ZA bits to influence the choice of power-saving
states for both functional units and retention of architected state.

C2.2.4 Streaming execution priority for shared implementations

IYYRZQ Execution of certain instructions by a PE in Streaming SVE mode might experience a performance dependency on
other PEs in the system that are also executing instructions in Streaming SVE mode. For example, this might occur
when a Streaming Mode Compute Unit (SMCU) is shared between PEs.

IWPQVV The architecture provides a mechanism to control the streaming execution priority of a PE, in SMPRI_EL1. The
streaming execution priority of a PE is relative to the streaming execution priority of other PEs, when a performance
dependency exists between PEs executing in Streaming SVE mode.

DDGRTS All PEs that share a given SMCU form a Priority domain.

DYQFWM Different Priority domains represent unrelated SMCUs.

RWPVQK All PEs in a Priority domain have the same value of SMIDR_EL1.Affinity.

RCVLSF PEs in differing Priority domains have different values of SMIDR_EL1.Affinity.

RGGDRC The streaming execution priority in SMPRI_EL1 affects execution of a PE relative to all other PEs in the same Priority
domain.

IWVGGW System software can use the streaming execution priority mechanism to manage scenarios where multiple
concurrent software threads contend on shared SMCUs.

RRQXFC The streaming execution priority mechanism affects the execution of instructions by a shared SMCU when the PE
is in Streaming SVE mode and does not directly control the execution of other types of instruction.

IHQXBH The streaming execution priority mechanism is optional.

IKTYTD An implementation that does not share SMCUs or has no performance dependency between PEs might not need to
limit or prioritize execution of one PE relative to another.

IYBQNW The architecture considers Priority domains to be non-overlapping sets, meaning that in a shared-SMCU system a
PE is associated with at most one SMCU.

C2.2.4.1 Streaming execution context management

IPRNMJ Arm expects that the SVE- and SME-related instructions used to save, restore, and clear routines for Streaming
SVE mode SVE register state and ZA array state are limited to using the following SME and SVE instructions:

• Unpredicated SME ZA array vector LDR and STR instructions.
• Unpredicated SVE vector register LDR and STR instructions.
• Unpredicated SVE predicate register LDR and STR instructions.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter C2. System management
C2.2. Processor behavior

• SME ZA tile ZERO instruction.
• SVE vector DUP (immediate) instruction with zero immediate.
• SVE predicate PFALSE instruction.

For implementations with a shared SMCU, PEs are expected to execute these instructions in a way that experiences
a reduced effect of contention from other PEs, compared to other SME and SVE instructions executed in Streaming
SVE mode.

C2.2.4.2 Streaming execution priority control

IRMDCP The streaming execution priority is controlled by a 4-bit priority value. When the streaming execution priority
mechanism is not supported, the priority value is ignored.

IFJQRG A higher priority value corresponds to a higher streaming execution priority. Priority value 15 is the highest priority.

IQHKWP The behavior of any given priority value relative to that of another PE is IMPLEMENTATION DEFINED.

C2.2.4.3 Streaming execution priority virtualization

ISQBCZ The Effective streaming execution priority is either the value configured in SMPRI_EL1, or the value of SMPRI_EL1

mapped into a new value by indexing the fields in SMPRIMAP_EL2. This choice is affected by the current Exception
level, and the HCRX_EL2.SMPME configuration.

ILSZZG A hypervisor can use SMPRIMAP_EL2 to map the virtual streaming execution priority values written into SMPRI_EL1 by
a guest OS into different physical priority values.

See also:

• SMIDR_EL1
• SMPRI_EL1
• SMPRIMAP_EL2
• HCRX_EL2

C2.2.5 Security considerations

IDXRGG All load and store instructions introduced by SME adhere to the memory access permissions model in VMSA.

IMGLWR The entire architectural state added by SME can be access-controlled, meaning that higher levels of privilege can
trap access to the state from the same or lower levels of privilege.

For example, execution of SME instructions including entry to or exit from Streaming SVE mode in EL0 might be
trapped to EL2.

ICYPJJ System software has controls available to save and restore state between unrelated pieces of software, and must
ensure that steps are taken to preserve isolation and privacy.

ITDPHC Operations performed in Streaming SVE mode respect the requirements of PSTATE.DIT. DIT requires
data-independent timing when enabled.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter C2. System management
C2.3. Changes to existing System registers

C2.3 Changes to existing System registers

C2.3.1 ID_AA64PFR1_EL1

DKHPZL If SME is implemented, the field ID_AA64PFR1_EL1.SME is defined at bits [27:24]. For more information, see
ID_AA64PFR1_EL1.SME.

IDJQVZ A non-zero value in ID_AA64PFR1_EL1.SME does not imply that ID_AA64PFR0_EL1.SVE must also contain a non-zero
value.

C2.3.2 ID_AA64ZFR0_EL1

RSYRGK The ID_AA64ZFR0_EL1 Purpose is modified to state that it provides information about the implemented features of
the AArch64 Scalable Vector Extension instruction set when any of ID_AA64PFR0_EL1.SVE and ID_AA64PFR1_EL1.SME

are non-zero.

RJLSQK If SME is implemented, then ID_AA64ZFR0_EL1.SVEver has the value 0b0001, indicating that legal SVE and SVE2
instructions can be executed when the PE is in Streaming SVE mode.

RRFZRM If SME is implemented and ID_AA64PFR0_EL1.SVE is non-zero, then FEAT_SVE2 is implemented and SVE and
SVE2 instructions can be executed when the PE is not in Streaming SVE mode.

RXFFLH If SME is implemented and ID_AA64PFR0_EL1.SVE is zero, then FEAT_SVE is not implemented and the
ID_AA64ZFR0_EL1 fields named F64MM, F32MM, SM4, SHA3, BitPerm, and AES hold the value zero.

See also:

• ID_AA64PFR0_EL1, defined in Arm® Architecture Registers Armv9, for Armv9-A architecture profile [2].
• ID_AA64PFR1_EL1
• ID_AA64ZFR0_EL1

C2.3.3 CPACR_EL1

RQBTKS If SME is implemented, the field CPACR_EL1.SMEN is defined at bits [25:24]. For more information, see
CPACR_EL1.SMEN.

IZNSLS The set of SME-related instructions trapped by this control is defined by rule DDMBHW in C2.1.2 Traps and
exceptions.

See also:

• ESR_EL1, ESR_EL2, and ESR_EL3
• C2.1.2 Traps and exceptions
• C2.2.1 Exception priorities
• C2.2.3 Validity of SME and SVE state

C2.3.4 CPTR_EL2

RZXZZC If SME is implemented, FEAT_VHE is implemented, and HCR_EL2.E2H is 1, the field CPTR_EL2.SMEN is defined at
bits [25:24]. For more information, see CPTR_EL2.SMEN.

RQLKFH When SME is implemented, FEAT_VHE is implemented, and HCR_EL2.E2H is 0, the field CPTR_EL2.TSM is defined at
bit [12]. For more information, see CPTR_EL2.TSM.

IDYLZC The set of SME-related instructions trapped by this control is defined by rule DDMBHW in C2.1.2 Traps and
exceptions.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter C2. System management
C2.3. Changes to existing System registers

See also:

• ESR_EL1, ESR_EL2, and ESR_EL3
• C2.1.2 Traps and exceptions
• C2.2.1 Exception priorities
• C2.2.3 Validity of SME and SVE state

C2.3.5 CPTR_EL3

RNPVSR If SME is implemented, the field CPTR_EL3.ESM is defined at bit [12]. For more information, see CPTR_EL3.ESM.

ILGJZY The set of SME-related instructions trapped by this control is defined by rule DDMBHW in C2.1.2 Traps and
exceptions.

See also:

• ESR_EL1, ESR_EL2, and ESR_EL3
• C2.1.2 Traps and exceptions
• C2.2.1 Exception priorities
• C2.2.3 Validity of SME and SVE state

C2.3.6 HCR_EL2

RBWHVR If SME is implemented, the HCR_EL2.TID3 field causes accesses to ID_AA64SMFR0_EL1 to be trapped. EL1 reads of
ID_AA64SMFR0_EL1 are trapped to EL2, reported using EC syndrome value 0x18.

RZRBBT If SME is implemented, the HCR_EL2.TID1 field causes accesses to SMIDR_EL1 to be trapped. EL1 reads of SMIDR_EL1
are trapped to EL2, reported using EC syndrome value 0x18.

C2.3.7 HCRX_EL2

RYDHJV If SME is implemented, the field HCRX_EL2.SMPME is defined at bit [5]. For more information, see
HCRX_EL2.SMPME.

See also:

• SMPRI_EL1
• SMPRIMAP_EL2
• C2.2.4 Streaming execution priority for shared implementations

C2.3.8 SCR_EL3

RTCPTK If SME is implemented, the field SCR_EL3.EnTP2 is defined at bit [41]. For more information, see SCR_EL3.EnTP2.

See also:

• TPIDR2_EL0

C2.3.9 SCTLR_EL1

RNMVMQ If SME is implemented, the field SCTLR_EL1.EnTP2 is defined at bit [60]. For more information, see
SCTLR_EL1.EnTP2.

RMXHMD When EL2 is implemented and enabled in the current Security state and HCR_EL2.{E2H, TGE} is {1, 1}, the
SCTLR_EL1.EnTP2 control has no effect on execution at EL0 and the SCTLR_EL2.EnTP2 control is used for this purpose.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter C2. System management
C2.3. Changes to existing System registers

See also:

• TPIDR2_EL0

C2.3.10 SCTLR_EL2

RKGMHQ If SME is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the field SCTLR_EL2.EnTP2 is defined at bit [60]. For more
information, see SCTLR_EL2.EnTP2.

See also:

• TPIDR2_EL0

C2.3.11 HFGRTR_EL2

RSXDSB If SME is implemented, the fields HFGRTR_EL2.nTPIDR2_EL0 and HFGRTR_EL2.nSMPRI_EL1 are defined at bits [55] and
[54]. For more information, see:

• HFGRTR_EL2.nTPIDR2_EL0
• HFGRTR_EL2.nSMPRI_EL1

See also:

• TPIDR2_EL0
• SMPRI_EL1

C2.3.12 HFGWTR_EL2

RXKLBN If SME is implemented, the fields HFGWTR_EL2.nTPIDR2_EL0 and HFGWTR_EL2.nSMPRI_EL1 are defined at bits [55] and
[54]. For more information, see:

• HFGWTR_EL2.nTPIDR2_EL0
• HFGWTR_EL2.nSMPRI_EL1

See also:

• TPIDR2_EL0
• SMPRI_EL1

C2.3.13 ESR_EL1, ESR_EL2, and ESR_EL3

DDZSWB If SME is implemented, an Exception Class value 0x1D is added to ESR_EL1, ESR_EL2, and ESR_EL3, for exceptions
taken from AArch64.

EC Meaning ISS[2:0]

0b011101 Access to SME functionality trapped as a result of CPACR_EL1.SMEN, CPTR_EL2.SMEN,
CPTR_EL2.TSM, or CPTR_EL3.ESM, that is not reported using EC 0b000000.

0b000

0b011101 Illegal Advanced SIMD, SVE, or SVE2 instruction trapped because PSTATE.SM is 1 0b001

0b011101 Illegal SME instruction trapped because PSTATE.SM is 0 0b010

0b011101 Illegal SME instruction trapped because PSTATE.ZA is 0 0b011

0b011101 Reserved 0b1xx

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter C2. System management
C2.3. Changes to existing System registers

RDYSFV If SME is implemented, then the following field is defined in the ESR_EL1, ESR_EL2, and ESR_EL3 ISS encoding for an
exception from a Data Abort, when the EC value is 0b100100 (0x24) or 0b100101 (0x25):

Field Name Meaning

[15] FnP When ISV == 0:
FAR not Precise.
0b0 The FAR holds the faulting virtual address that generated the Data Abort.
0b1 The FAR holds any address within the naturally-aligned fault granule (see DBRGHW)

which contains the faulting virtual address that generated a Data Abort exception
caused by an SVE contiguous vector load/store instruction when the PE is in
Streaming SVE mode, or by an SME load/store instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C2.3.14 ZCR_EL1, ZCR_EL2, and ZCR_EL3

ICRKQJ If FEAT_SVE is implemented, then the ZCR_ELx registers have their described effect on the Effective SVE vector
length only when the PE is not in Streaming SVE mode.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter C2. System management
C2.4. SME-specific System registers

C2.4 SME-specific System registers

C2.4.1 ID_AA64SMFR0_EL1

The AArch64 SME Feature ID Register describes the set of implemented SME data-processing instructions.

DGRPHH If SME is implemented, the register ID_AA64SMFR0_EL1 is added. For more information, see ID_AA64SMFR0_EL1.

C2.4.2 SMCR_EL1

The Streaming SVE Mode Control Register for EL1 configures the Effective Streaming SVE vector length when
the PE is in Streaming SVE mode and executing at EL1 or EL0.

RHRTZQ If SME is implemented, the register SMCR_EL1 is added. For more information, see SMCR_EL1.

RNWXVG When EL2 is implemented and enabled in the current Security state and HCR_EL2.{E2H, TGE} is {1, 1}, the SMCR_EL1

register has no effect on execution at EL0 and EL1 and the SMCR_EL2 register is used for this purpose.

C2.4.3 SMCR_EL2

The Streaming Mode Control Register for EL2 configures the Effective SVE Streaming SVE vector length when
the PE is in Streaming SVE mode and executing at EL2, and at EL1 or EL0 in the same Security state as EL2.

RJPZPH If SME is implemented, the register SMCR_EL2 is added. For more information, see SMCR_EL2.

C2.4.4 SMCR_EL3

The Streaming Mode Control Register for EL3 configures the Effective Streaming SVE vector length when the PE
is in Streaming SVE mode and executing at EL3, EL2, EL1, or EL0.

RDBGWC If SME is implemented, the register SMCR_EL3 is added. For more information, see SMCR_EL3.

C2.4.5 SVCR

The Streaming Vector Control Register provides direct access to the PSTATE.SM and PSTATE.ZA mode bits from any
Exception level.

DJXVQJ If SME is implemented, the register SVCR is added. For more information, see SVCR.

See also:

• B1.1.1.3 Changing PSTATE.SM and PSTATE.ZA

C2.4.6 SMPRI_EL1

The Streaming Mode Priority register configures the streaming execution priority for instructions executed in
Streaming SVE mode on a shared SMCU at any Exception level.

RJKMFH If SME is implemented, the register SMPRI_EL1 is added. For more information, see SMPRI_EL1.

RDWGZP In an implementation that shares execution resources between PEs, higher streaming execution priority values are
allocated more processing resource than other PEs configured with lower streaming execution priority values in
the same Priority domain.

RDFQLX The precise meaning and behavior of each streaming execution priority value is IMPLEMENTATION DEFINED.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Chapter C2. System management
C2.4. SME-specific System registers

ITCJVY Arm expects that, under contention for SMCU resources, PEs assigned higher streaming execution priority values
achieve higher performance relative to PEs with lower streaming execution priority values.

RGLKXP PEs that have equal streaming execution priority values in the same Priority domain are allocated equal resources
by the SMCU.

IBLMYK If system software does not support differentiation of streaming execution priority of threads, it is safe to use a
value of 0 for all threads.

RSRMZT The streaming execution priority of all PEs in the Priority domain have no effect when there is no contention for
an SMCU. An uncontended client PE request achieves full performance.

RSBCRG All SMCUs in the system have a consistent interpretation of the streaming execution priority values.

C2.4.7 SMPRIMAP_EL2

The Streaming Mode Priority Mapping register maps the current virtual streaming execution priority value to a
physical streaming execution priority value for instructions executed in Streaming SVE mode on a shared SMCU at
EL1 or EL0 in the same Security states as EL2.

DCHVZD If SME is implemented, the register SMPRIMAP_EL2 is added. For more information, see SMPRIMAP_EL2.

SMPRIMAP_EL2 contains 16 equally spaced fields of 4 bits. Fields are numbered 0 to 15 upwards in sequence starting
from field 0 at bits [3:0].

C2.4.8 SMIDR_EL1

The Streaming Mode Identification Register provides additional information about the Streaming SVE mode
implementation.

DNBDMK If SME is implemented, the register SMIDR_EL1 is added. For more information, see SMIDR_EL1.

C2.4.9 TPIDR2_EL0

The Software Thread ID Register #2 provides additional thread identifying information that can be read and written
from all Exception levels.

DFJMMT If SME is implemented, the register TPIDR2_EL0 is added. For more information, see TPIDR2_EL0.

IQPMJN This register is reserved for use by the ABI to manage per-thread SME context.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter C3
Interaction with other Armv9-A architectural features

C3.1 Overview

This section describes the interaction of SME with other aspects and features of the Armv9-A architecture.

It covers:

• Self-hosted debug.
• External debug.
• Memory Tagging Extension (MTE).
• Reliability, Availability, and Serviceability (RAS).
• Transactional Memory Extension (TME).
• Memory Partitioning and Monitoring (MPAM).

See also:

• Arm® Architecture Reference Manual for A-profile architecture [1].
• Arm® Architecture Reference Manual Supplement Armv9, for A-profile architecture [4].
• Arm® Reliability, Availability, and Serviceability (RAS) Specification, for A-profile architecture [5].
• Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring

(MPAM), for A-profile architecture [6].

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter C3. Interaction with other Armv9-A architectural features
C3.2. Other architectural features

C3.2 Other architectural features

C3.2.1 Watchpoints

RPDGZL For a memory access or set of contiguous memory accesses generated by an SVE contiguous vector load/store
instruction when the PE is in Streaming SVE mode, or by an SME load/store instruction, if a watchpoint matches
a range where the lowest accessed address is rounded down to the nearest multiple of 16 bytes and the highest
accessed address is rounded up to the nearest multiple of 16 bytes minus 1, but the watchpoint does not the match
the range of the original access or set of contiguous accesses, then it is CONSTRAINED UNPREDICTABLE whether
or not a Watchpoint debug event is triggered.

RXKRPV If a watchpoint matches only the rounded access address ranges of Inactive elements in a predicated vector
load/store instruction, then it does not trigger a Watchpoint debug event.

IYVSFL If a Watchpoint debug event is triggered by a match on a rounded access address range that would not have been
triggered by the original access address range, then this may report a false-positive match. Debug software must
attempt to detect and step over false-positive matches. The architecture does not permit missed, or false-negative
matches.

C3.2.1.1 Reporting watchpoints

RKDRCX If SME is implemented, then the following fields are added to ESR_EL1 and ESR_EL2 in the ISS encoding for an
exception from a Watchpoint exception, when the EC value is 0x24 or 0x25:

Field Name Meaning

[24] ISV RES0

[23:18] WPT Watchpoint number, 0 to 15 inclusive.
All other values are reserved.

[17] WPTV Watchpoint number Valid.
0b0 The WPT field is invalid, and holds an UNKNOWN value.
0b1 The WPT field is valid, and holds the number of a watchpoint that triggered a

Watchpoint debug event.

[16] WPF Watchpoint might be false-positive.
0b0 The watchpoint matched the original access or set of contiguous accesses.
0b1 The watchpoint matched an access or set of contiguous accesses where the lowest

accessed address was rounded down to the nearest multiple of 16 bytes and the
highest accessed address was rounded up to the nearest multiple of 16 bytes
minus 1, but the watchpoint might not have matched the original access or set of
contiguous accesses.

[15] FnP FAR not Precise.
This field only has meaning if the FAR is valid; that is, when the FnV field is 0. If the FnV

field is 1, the FnP field is 0.
0b0 If the FnV field is 0, the FAR holds the virtual address of an access or set of

contiguous accesses that triggered a Watchpoint debug event.
0b1 The FAR holds any address within the smallest implemented translation granule

that contains the virtual address of an access or set of contiguous accesses that
triggered a Watchpoint debug event.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter C3. Interaction with other Armv9-A architectural features
C3.2. Other architectural features

Field Name Meaning

[10] FnV FAR not Valid.
0b0 The FAR is valid, and its value is as described by the FnP field.
0b1 The FAR is invalid, and holds an UNKNOWN value.

RMFRPZ If SME is implemented, then the following field is added to the EDDEVID1 register:

Field Name Meaning

[7:4] HSR Indicates support for the External Debug Halt Status Register (EDHSR). Defined values
are:
0b0000 EDHSR not implemented, and the PE follows behaviors consistent with all of

the EDHSR fields having a zero value.
0b0001 EDHSR implemented.
All other values are reserved.
If FEAT_SME is implemented, the permitted values are 0b0000 and 0b0001.
If FEAT_SME is not implemented, the only permitted value is 0b0000.

RQBKWY If SME is implemented, then the read-only External Debug Halt Status Register (EDHSR) may be implemented at
offset 0x038. The field EDDEVID1.HSR1 indicates whether the EDHSR is implemented.

RLXGXN If the EDHSR is implemented, it is in the Core power domain.

RSDSFM If the EDHSR is implemented, then it is only valid when the PE is in Debug state and EDSCR.STATUS indicates a
Watchpoint debug event (0b101011), otherwise it has an UNKNOWN value.

The EDHSR fields are defined as follows:

Field Name Meaning

[23:18] WPT Watchpoint number, 0 to 15 inclusive.
All other values are reserved.

[17] WPTV Watchpoint number Valid.
0b0 The WPT field is invalid, and holds an UNKNOWN value.
0b1 The WPT field is valid, and holds the number of a watchpoint that triggered a

Watchpoint debug event.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

[16] WPF Watchpoint might be false-positive.
0b0 The watchpoint matched the original access or set of contiguous accesses.
0b1 The watchpoint matched an access or set of contiguous accesses where the lowest

accessed address was rounded down to the nearest multiple of 16 bytes and the
highest accessed address was rounded up to the nearest multiple of 16 bytes
minus 1, but the watchpoint might not have matched the original access or set of
contiguous accesses.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter C3. Interaction with other Armv9-A architectural features
C3.2. Other architectural features

Field Name Meaning

[15] FnP FAR not Precise.
This field only has meaning if the EDWAR is valid; that is, when the FnV field is 0. If the
FnV field is 1, the FnP field is 0.
0b0 If the FnV field is 0, the EDWAR holds the virtual address of an access or set of

contiguous accesses that triggered a Watchpoint debug event.
0b1 The EDWAR holds any address within the smallest implemented translation granule

that contains the virtual address of an access or set of contiguous accesses that
triggered a Watchpoint debug event.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

[10] FnV FAR not Valid.
0b0 The EDWAR is valid, and its value is as described by the FnP field.
0b1 The EDWAR is invalid, and holds an UNKNOWN value.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

RXWDJT If the EDHSR is not implemented, then the PE must follow behaviors consistent with all of the EDHSR fields having a
zero value.

RCXZCY If a Watchpoint debug event is triggered by an SVE contiguous load/store instruction when the PE is in Streaming
SVE mode, or by an SME load/store instruction, then a virtual address recorded in FAR_ELx or EDWAR must be derived
from an address that is both:

• In the inclusive range between:
– The lowest address accessed by the vector instruction that triggered the watchpoint.
– The highest watchpointed address accessed by the vector instruction that triggered the watchpoint.

• Within a naturally-aligned block of memory.

RSQDKJ If a watchpoint matches an access or set of contiguous accesses where the lowest accessed address was rounded
down to the nearest multiple of 16 bytes and the highest accessed address was rounded up to the nearest multiple of
16 bytes minus 1, but the watchpoint might not have matched the original address of the access or set of contiguous
accesses, the PE:

• Sets ESR_ELx.WPF to 1, on taking a Watchpoint exception generated by the watchpoint match.
• Sets EDHSR.WPF to 1, on entering Debug state on a Watchpoint debug event generated by the watchpoint match.
• Otherwise, ESR_ELx.WPF or EDHSR.WPF (as applicable) is set to 0.

RKSSHC If a watchpoint matches an access that is due to an SVE contiguous load/store instruction when the PE is in
Streaming SVE mode, or is due to an SME load/store instruction, then the PE:

• Sets ESR_ELx.FnV to an IMPLEMENTATION DEFINED value, 0 or 1, on taking a Watchpoint exception generated
by the watchpoint match.

• Sets EDHSR.FnV to an IMPLEMENTATION DEFINED value, 0 or 1, on entering Debug state on a Watchpoint
debug event generated by the watchpoint match.

• Otherwise, ESR_ELx.FnV or EDHSR.FnV (as applicable) is set to 0.

RRLWSF When the PE sets ESR_ELx.FnV to 0 on taking a Watchpoint exception generated by the watchpoint match:

• If the lowest watchpointed address higher than or the same as the address recorded in FAR_ELx might not have
been accessed by the instruction, other than as permitted by RPDGZL, then the PE sets ESR_ELx.FnP to 1.

• Otherwise, the PE sets ESR_ELx.FnP to 0.

RCJWYX When the PE sets EDHSR.FnV to 0 on entering Debug state on a Watchpoint debug event generated by a watchpoint
match:

• If the lowest watchpointed address higher than or the same as the address recorded in EDWAR might not have
been accessed by the instruction, other than as permitted by RPDGZL, then the PE sets EDHSR.FnP to 1.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter C3. Interaction with other Armv9-A architectural features
C3.2. Other architectural features

• Otherwise, the PE sets EDHSR.FnP to 0.

RDTWTH When a Watchpoint debug event is triggered by a watchpoint match:

• If the PE sets ESR_ELx.FnV to 1 or ESR_ELx.FnP to 1 on taking a Watchpoint exception generated by the
watchpoint match, then the PE sets ESR_ELx.WPTV to 1.

• If the PE sets ESR_ELx.FnV to 0 and ESR_ELx.FnP to 0 on taking a Watchpoint exception generated by the
watchpoint match, then the PE sets ESR_ELx.WPTV to an IMPLEMENTATION DEFINED value, 0 or 1.

• If the PE sets EDHSR.FnV to 1 or EDHSR.FnP to 1 on entering Debug state on a Watchpoint debug event generated
by the watchpoint match, then the PE sets EDHSR.WPTV to 1.

• If the PE sets EDHSR.FnV to 0 and EDHSR.FnP to 0 on entering Debug state on a Watchpoint debug event generated
by the watchpoint match, then the PE sets EDHSR.WPTV to an IMPLEMENTATION DEFINED value, 0 or 1.

RPVYNL On a watchpoint match generated by watchpoint <n>:

• If the PE sets ESR_ELx.WPTV to 1 on taking a Watchpoint exception generated by the watchpoint match, then
ESR_ELx.WPT is set to <n>.

• If the PE sets EDHSR.WPTV to 1 on entering Debug state on a Watchpoint debug event generated by the
watchpoint match, then EDHSR.WPT is set to <n>.

• Otherwise, ESR_ELx.WPT or EDHSR.WPT (as applicable) is UNKNOWN.

RKHSFH When an instruction generates multiple watchpoint matches and the PE sets ESR_ELx.WPTV or EDHSR.WPTV to 1, then it
is UNPREDICTABLE which matched watchpoint is reported in ESR_ELx.WPT or EDHSR.WPT (as applicable).

DLXZPC The naturally-aligned block of memory is all of the following:

• A power-of-two size.
• No larger than the DC ZVA block size if ESR_ELx.FnP or EDHSR.FnP (as appropriate) is 0.
• No larger than the smallest implemented translation granule if ESR_ELx.FnP or EDHSR.FnP (as appropriate) is 1.
• Contains a watchpointed address accessed by the memory access or set of contiguous memory accesses that

triggered the watchpoint.

The size of the block is IMPLEMENTATION DEFINED.

There is no architectural means of discovering the size.

DLTGKY A watchpointed address is an address that a watchpoint is watching.

C3.2.2 Self-hosted debug

ICDBZX SME has no additional effect on self-hosted debug.

C3.2.3 External debug

RXQQRS The following SME-related instructions are unchanged in Debug state:

• MOVA (array to vector).
• MOVA (vector to array).
• MRS SVCR.
• MSR SVCR.
• RDSVL.

All other SME-related instructions are CONSTRAINED UNPREDICTABLE in Debug state, with the same set of
CONSTRAINED UNPREDICTABLE options as other instructions in Debug state, as defined in Arm® Architecture
Reference Manual for A-profile architecture [1].

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Chapter C3. Interaction with other Armv9-A architectural features
C3.2. Other architectural features

C3.2.4 Memory Tagging Extension (MTE)

The following rules apply when the optional FEAT_MTE feature is implemented.

RBGGMD When the Memory Tagging Extension is implemented, it is IMPLEMENTATION DEFINED whether memory accesses
due to SME, SVE, and SIMD&FP load and store instructions executed when the PE is in Streaming SVE mode
will perform a Tag Check.

RGLYMK When the Memory Tagging Extension is implemented, it is IMPLEMENTATION DEFINED whether memory accesses
due to SME LDR and STR instructions that access the SME ZA array vectors will perform a Tag Check.

IRBPTM An implementation of FEAT_MTE is only expected to perform Tag Checking when the PE is in Streaming SVE
mode if it can do so with a similar relative performance impact to Tag Checking memory accesses due to SVE and
SIMD&FP load and store instructions executed when the PE is not in Streaming SVE mode.

C3.2.5 Reliability, Availability, and Serviceability (RAS)

RRVYHY Rules INTXKV and RNQDWB in Arm® Reliability, Availability, and Serviceability (RAS) Specification, for A-profile
architecture [5] are extended by adding the SME ZA storage to any list of program-visible architectural state or
registers that includes the SIMD&FP or SVE registers.

C3.2.6 Memory Partitioning and Monitoring (MPAM)

The following System registers are modified or added when the optional FEAT_MPAM feature is implemented.

C3.2.6.1 MPAMSM_EL1

If FEAT_MPAM is implemented, the MPAM Streaming Mode register is added by SME to generate MPAM labels
for memory requests issued at any Exception level by SME load/store instructions and, when the PE is in Streaming
SVE mode, SVE and SIMD&FP load/store instructions and SVE prefetch instructions.

RNXYPS If SME and FEAT_MPAM are implemented, the register MPAMSM_EL1 is added. For more information, see
MPAMSM_EL1.

C3.2.6.2 MPAM2_EL2

RLJVWP If SME, FEAT_MPAM, and EL2 are implemented, the field MPAM2_EL2.EnMPAMSM is defined at bit [50]. For more
information, see MPAM2_EL2.EnMPAMSM.

C3.2.7 Transactional Memory Extension (TME)

The following rules apply when the optional FEAT_TME feature is implemented.

RKHVVR Executing a TSTART instruction when PSTATE.SM is 1 fails the transaction with the ERR cause.

RLYBMR Executing an SME LDR, STR, or ZERO instruction that accesses the SME ZA array while in Transactional state will
cause the transaction to fail with the ERR cause.

ITNZSW Any MSR instruction that writes to the PSTATE.SM or PSTATE.ZA bits in Transactional state, including the SMSTART and
SMSTOP aliases, are UNDEFINED according to the rules in Arm® Architecture Reference Manual Supplement Armv9,
for A-profile architecture [4] and will cause the transaction to fail with the ERR cause, without trapping.

For more information about the rules, see the “MSR (register)” and “MSR (immediate)” sections in The Trans-
actional Memory Extension chapter of Arm® Architecture Reference Manual Supplement Armv9, for A-profile
architecture [4].

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

65

Chapter C3. Interaction with other Armv9-A architectural features
C3.2. Other architectural features

C3.2.8 Memory consistency model

RBQSCG SME and Streaming SVE memory accesses are subjected to the same ordering rules as existing SVE memory
accesses, defined in Arm® Architecture Reference Manual for A-profile architecture [1].

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Part D
SME instruction set

Chapter D1
SME instructions

This chapter defines the instructions added to the A64 instruction set when SME is implemented.

This content is from the 2021-12 version of Arm® A64 Instruction Set Architecture Armv9, for Armv9-A architecture
profile [3], which contains the definitive details of the instruction set.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1 SME data-processing instructions

The following SME data-processing instructions are available when SME is implemented. The new SME
instructions are identified by the presence of the FEAT_SME symbol, or a call to one of the HaveSME pseudocode
functions.

D1.1.1 ADDHA

Add horizontally vector elements to ZA tile

Add each element of the source vector to the corresponding active element of each horizontal slice of a ZA tile.
The tile elements are predicated by a pair of governing predicates. An element of a horizontal slice is considered
active if its corresponding element in the second governing predicate is TRUE and the element corresponding to its
horizontal slice number in the first governing predicate is TRUE. Inactive elements in the destination tile remain
unmodified.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 1

31 30

0 0 0 0 0 0 1

29 23

0

22

0 1

21 20

0 0 0

19 17

0

16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

V

ADDHA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S

1 if !HaveSME() then UNDEFINED;
2 integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer da = UInt(ZAda);

64-bit
(FEAT_SME_I16I64)

1 1

31 30

0 0 0 0 0 0 1

29 23

1

22

0 1 0 0 0

21 17

0

16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

V

ADDHA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.D

1 if !HaveSMEI16I64() then UNDEFINED;
2 integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer da = UInt(ZAda);

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter D1. SME instructions
D1.1. SME data-processing instructions

field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand_src = Z[n];
6 bits(dim*dim*esize) operand_acc = ZAtile[da, esize];
7 bits(dim*dim*esize) result;
8
9 for col = 0 to dim-1

10 bits(esize) element = Elem[operand_src, col, esize];
11 for row = 0 to dim-1
12 bits(esize) res = Elem[operand_acc, row*dim+col, esize];
13 if ElemP[mask1, row, esize] == '1' && ElemP[mask2, col, esize] == '1' then
14 res = res + element;
15 Elem[result, row*dim+col, esize] = res;
16
17 ZAtile[da, esize] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.2 ADDSPL

Add multiple of Streaming SVE predicate register size to scalar register

Add the Streaming SVE predicate register size in bytes multiplied by an immediate in the range -32 to 31 to
the 64-bit source general-purpose register or current stack pointer and place the result in the 64-bit destination
general-purpose register or current stack pointer.

This instruction does not require the PE to be in Streaming SVE mode.

SME
(FEAT_SME)

0 0 0 0 0 1 0 0 0

31 23

1

22

1

21

Rn

20 16

0 1 0 1 1

15 11

imm6

10 5

Rd

4 0

ADDSPL <Xd|SP>, <Xn|SP>, #<imm>

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer d = UInt(Rd);
4 integer imm = SInt(imm6);

Assembler Symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the
"Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the
"Rn" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation
1 CheckSMEEnabled();
2 integer len = imm * (SVL DIV 64);
3 bits(64) operand1 = if n == 31 then SP[] else X[n];
4 bits(64) result = operand1 + len;
5
6 if d == 31 then
7 SP[] = result;
8 else
9 X[d] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.3 ADDSVL

Add multiple of Streaming SVE vector register size to scalar register

Add the Streaming SVE vector register size in bytes multiplied by an immediate in the range -32 to 31 to the
64-bit source general-purpose register or current stack pointer, and place the result in the 64-bit destination
general-purpose register or current stack pointer.

This instruction does not require the PE to be in Streaming SVE mode.

SME
(FEAT_SME)

0 0 0 0 0 1 0 0 0

31 23

0

22

1

21

Rn

20 16

0 1 0 1 1

15 11

imm6

10 5

Rd

4 0

ADDSVL <Xd|SP>, <Xn|SP>, #<imm>

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer d = UInt(Rd);
4 integer imm = SInt(imm6);

Assembler Symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the
"Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the
"Rn" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation
1 CheckSMEEnabled();
2 integer len = imm * (SVL DIV 8);
3 bits(64) operand1 = if n == 31 then SP[] else X[n];
4 bits(64) result = operand1 + len;
5
6 if d == 31 then
7 SP[] = result;
8 else
9 X[d] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.4 ADDVA

Add vertically vector elements to ZA tile

Add each element of the source vector to the corresponding active element of each vertical slice of a ZA tile.
The tile elements are predicated by a pair of governing predicates. An element of a vertical slice is considered
active if its corresponding element in the first governing predicate is TRUE and the element corresponding to its
vertical slice number in the second governing predicate is TRUE. Inactive elements in the destination tile remain
unmodified.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 1

31 30

0 0 0 0 0 0 1

29 23

0

22

0 1

21 20

0 0 0

19 17

1

16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

V

ADDVA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S

1 if !HaveSME() then UNDEFINED;
2 integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer da = UInt(ZAda);

64-bit
(FEAT_SME_I16I64)

1 1

31 30

0 0 0 0 0 0 1

29 23

1

22

0 1 0 0 0

21 17

1

16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

V

ADDVA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.D

1 if !HaveSMEI16I64() then UNDEFINED;
2 integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer da = UInt(ZAda);

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter D1. SME instructions
D1.1. SME data-processing instructions

5 bits(VL) operand_src = Z[n];
6 bits(dim*dim*esize) operand_acc = ZAtile[da, esize];
7 bits(dim*dim*esize) result;
8
9 for row = 0 to dim-1

10 bits(esize) element = Elem[operand_src, row, esize];
11 for col = 0 to dim-1
12 bits(esize) res = Elem[operand_acc, row*dim+col, esize];
13 if ElemP[mask1, row, esize] == '1' && ElemP[mask2, col, esize] == '1' then
14 res = res + element;
15 Elem[result, row*dim+col, esize] = res;
16
17 ZAtile[da, esize] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.5 BFMOPA

BFloat16 sum of outer products and accumulate

The BFloat16 floating-point sum of outer products and accumulate instruction works with a 32-bit element ZA tile.

This instruction multiplies the SVLS×2 sub-matrix of BFloat16 values held in the first source vector by the
2×SVLS sub-matrix of BFloat16 values in the second source vector.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is Inactive it is treated as having the value +0.0, but if both pairs of source vector elements that correspond
to a 32-bit destination element contain Inactive elements, then the destination element remains unmodified.

The resulting SVLS×SVLS single-precision floating-point sum of outer products is then destructively added to
the single-precision floating-point destination tile. This is equivalent to performing a 2-way dot product and
accumulate to each of the destination tile elements.

Each 32-bit container of first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix. Similarly, each 32-bit container of second source vector holds 2 consecutive row elements of each
column of a 2×SVLS sub-matrix.

This instruction follows SME BFloat16 numerical behaviors.

SME
(FEAT_SME)

1 0

31 30

0 0 0 0 0 1 1 0 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

S

BFMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSME() then UNDEFINED;
2 integer a = UInt(Pn);
3 integer b = UInt(Pm);
4 integer n = UInt(Zn);
5 integer m = UInt(Zm);
6 integer da = UInt(ZAda);
7 boolean sub_op = FALSE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV 32;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*32) operand3 = ZAtile[da, 32];
8 bits(dim*dim*32) result;
9

10 for row = 0 to dim-1
11 for col = 0 to dim-1
12 // determine row/col predicates
13 boolean prow_0 = (ElemP[mask1, 2*row + 0, 16] == '1');

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

Chapter D1. SME instructions
D1.1. SME data-processing instructions

14 boolean prow_1 = (ElemP[mask1, 2*row + 1, 16] == '1');
15 boolean pcol_0 = (ElemP[mask2, 2*col + 0, 16] == '1');
16 boolean pcol_1 = (ElemP[mask2, 2*col + 1, 16] == '1');
17
18 bits(32) sum = Elem[operand3, row*dim+col, 32];
19 if (prow_0 && pcol_0) || (prow_1 && pcol_1) then
20 bits(16) erow_0 = (if prow_0 then Elem[operand1, 2*row + 0, 16] else FPZero('0'));
21 bits(16) erow_1 = (if prow_1 then Elem[operand1, 2*row + 1, 16] else FPZero('0'));
22 bits(16) ecol_0 = (if pcol_0 then Elem[operand2, 2*col + 0, 16] else FPZero('0'));
23 bits(16) ecol_1 = (if pcol_1 then Elem[operand2, 2*col + 1, 16] else FPZero('0'));
24 if sub_op then
25 if prow_0 then erow_0 = BFNeg(erow_0);
26 if prow_1 then erow_1 = BFNeg(erow_1);
27 sum = BFDotAdd(sum, erow_0, erow_1, ecol_0, ecol_1, FPCR[]);
28
29 Elem[result, row*dim+col, 32] = sum;
30
31 ZAtile[da, 32] = result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.6 BFMOPS

BFloat16 sum of outer products and subtract

The BFloat16 floating-point sum of outer products and subtract instruction works with a 32-bit element ZA tile.

This instruction multiplies the SVLS×2 sub-matrix of BFloat16 values held in the first source vector by the
2×SVLS sub-matrix of BFloat16 values in the second source vector.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is Inactive it is treated as having the value +0.0, but if both pairs of source vector elements that correspond
to a 32-bit destination element contain Inactive elements, then the destination element remains unmodified.

The resulting SVLS×SVLS single-precision floating-point sum of outer products is then destructively subtracted
from the single-precision floating-point destination tile. This is equivalent to performing a 2-way dot product and
subtract from each of the destination tile elements.

Each 32-bit container of first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix. Similarly, each 32-bit container of second source vector holds 2 consecutive row elements of each
column of a 2×SVLS sub-matrix.

This instruction follows SME BFloat16 numerical behaviors.

SME
(FEAT_SME)

1 0

31 30

0 0 0 0 0 1 1 0 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

S

BFMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSME() then UNDEFINED;
2 integer a = UInt(Pn);
3 integer b = UInt(Pm);
4 integer n = UInt(Zn);
5 integer m = UInt(Zm);
6 integer da = UInt(ZAda);
7 boolean sub_op = TRUE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV 32;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*32) operand3 = ZAtile[da, 32];
8 bits(dim*dim*32) result;
9

10 for row = 0 to dim-1
11 for col = 0 to dim-1
12 // determine row/col predicates
13 boolean prow_0 = (ElemP[mask1, 2*row + 0, 16] == '1');

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter D1. SME instructions
D1.1. SME data-processing instructions

14 boolean prow_1 = (ElemP[mask1, 2*row + 1, 16] == '1');
15 boolean pcol_0 = (ElemP[mask2, 2*col + 0, 16] == '1');
16 boolean pcol_1 = (ElemP[mask2, 2*col + 1, 16] == '1');
17
18 bits(32) sum = Elem[operand3, row*dim+col, 32];
19 if (prow_0 && pcol_0) || (prow_1 && pcol_1) then
20 bits(16) erow_0 = (if prow_0 then Elem[operand1, 2*row + 0, 16] else FPZero('0'));
21 bits(16) erow_1 = (if prow_1 then Elem[operand1, 2*row + 1, 16] else FPZero('0'));
22 bits(16) ecol_0 = (if pcol_0 then Elem[operand2, 2*col + 0, 16] else FPZero('0'));
23 bits(16) ecol_1 = (if pcol_1 then Elem[operand2, 2*col + 1, 16] else FPZero('0'));
24 if sub_op then
25 if prow_0 then erow_0 = BFNeg(erow_0);
26 if prow_1 then erow_1 = BFNeg(erow_1);
27 sum = BFDotAdd(sum, erow_0, erow_1, ecol_0, ecol_1, FPCR[]);
28
29 Elem[result, row*dim+col, 32] = sum;
30
31 ZAtile[da, 32] = result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.7 FMOPA (non-widening)

Floating-point outer product and accumulate

The single-precision variant works with a 32-bit element ZA tile.

The double-precision variant works with a 64-bit element ZA tile.

These instructions generate an outer product of the first source vector and the second source vector. In case of the
single-precision variant, the first source is SVLS×1 vector and the second source is 1×SVLS vector. In case of the
double-precision variant, the first source is SVLD×1 vector and the second source is 1×SVLD vector.

Each source vector is independently predicated by a corresponding governing predicate. When either source vector
element is Inactive the corresponding destination tile element remains unmodified.

The resulting outer product, SVLS×SVLS in case of single-precision variant or SVLD×SVLD in case of
double-precision variant, is then destructively added to the destination tile. This is equivalent to performing
a single multiply-accumulate to each of the destination tile elements.

This instruction follows SME floating-point numerical behaviors.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

It has encodings from 2 classes: Single-precision and Double-precision

Single-precision
(FEAT_SME)

1 0

31 30

0 0 0 0 0 0 1 0 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

S

FMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S, <Zm>.S

1 if !HaveSME() then UNDEFINED;
2 integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;

Double-precision
(FEAT_SME_F64F64)

1 0

31 30

0 0 0 0 0 0 1 1 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

S

FMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.D, <Zm>.D

1 if !HaveSMEF64F64() then UNDEFINED;
2 integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;

Assembler Symbols

<ZAda> For the single-precision variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda"
field.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Chapter D1. SME instructions
D1.1. SME data-processing instructions

For the double-precision variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda"
field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*esize) operand3 = ZAtile[da, esize];
8 bits(dim*dim*esize) result;
9

10 for row = 0 to dim-1
11 for col = 0 to dim-1
12 bits(esize) element1 = Elem[operand1, row, esize];
13 bits(esize) element2 = Elem[operand2, col, esize];
14 bits(esize) element3 = Elem[operand3, row*dim+col, esize];
15
16 if ElemP[mask1, row, esize] == '1' && ElemP[mask2, col, esize] == '1' then
17 if sub_op then element1 = FPNeg(element1);
18 Elem[result, row*dim+col, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR[]);
19 else
20 Elem[result, row*dim+col, esize] = element3;
21
22 ZAtile[da, esize] = result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

80

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.8 FMOPA (widening)

Half-precision floating-point sum of outer products and accumulate

The half-precision floating-point sum of outer products and accumulate instruction works with a 32-bit element
ZA tile.

This instruction widens the SVLS×2 sub-matrix of half-precision floating-point values held in the first source vector
to single-precision floating-point values and multiplies it by the widened 2×SVLS sub-matrix of half-precision
floating-point values in the second source vector to single-precision floating-point values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is Inactive it is treated as having the value +0.0, but if both pairs of source vector elements that correspond
to a 32-bit destination element contain Inactive elements, then the destination element remains unmodified.

The resulting SVLS×SVLS single-precision floating-point sum of outer products is then destructively added to
the single-precision floating-point destination tile. This is equivalent to performing a 2-way dot product and
accumulate to each of the destination tile elements.

Each 32-bit container of first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix. Similarly, each 32-bit container of second source vector holds 2 consecutive row elements of each
column of a 2×SVLS sub-matrix.

This instruction follows SME floating-point numerical behaviors.

SME
(FEAT_SME)

1 0

31 30

0 0 0 0 0 1 1 0 1

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

S

FMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSME() then UNDEFINED;
2 integer a = UInt(Pn);
3 integer b = UInt(Pm);
4 integer n = UInt(Zn);
5 integer m = UInt(Zm);
6 integer da = UInt(ZAda);
7 boolean sub_op = FALSE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV 32;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*32) operand3 = ZAtile[da, 32];
8 bits(dim*dim*32) result;
9

10 for row = 0 to dim-1

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

Chapter D1. SME instructions
D1.1. SME data-processing instructions

11 for col = 0 to dim-1
12 // determine row/col predicates
13 boolean prow_0 = (ElemP[mask1, 2*row + 0, 16] == '1');
14 boolean prow_1 = (ElemP[mask1, 2*row + 1, 16] == '1');
15 boolean pcol_0 = (ElemP[mask2, 2*col + 0, 16] == '1');
16 boolean pcol_1 = (ElemP[mask2, 2*col + 1, 16] == '1');
17
18 bits(32) sum = Elem[operand3, row*dim+col, 32];
19 if (prow_0 && pcol_0) || (prow_1 && pcol_1) then
20 bits(16) erow_0 = (if prow_0 then Elem[operand1, 2*row + 0, 16] else FPZero('0'));
21 bits(16) erow_1 = (if prow_1 then Elem[operand1, 2*row + 1, 16] else FPZero('0'));
22 bits(16) ecol_0 = (if pcol_0 then Elem[operand2, 2*col + 0, 16] else FPZero('0'));
23 bits(16) ecol_1 = (if pcol_1 then Elem[operand2, 2*col + 1, 16] else FPZero('0'));
24 if sub_op then
25 if prow_0 then erow_0 = FPNeg(erow_0);
26 if prow_1 then erow_1 = FPNeg(erow_1);
27 sum = FPDotAdd_ZA(sum, erow_0, erow_1, ecol_0, ecol_1, FPCR[]);
28
29 Elem[result, row*dim+col, 32] = sum;
30
31 ZAtile[da, 32] = result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.9 FMOPS (non-widening)

Floating-point outer product and subtract

The single-precision variant works with a 32-bit element ZA tile.

The double-precision variant works with a 64-bit element ZA tile.

These instructions generate an outer product of the first source vector and the second source vector. In case of the
single-precision variant, the first source is SVLS×1 vector and the second source is 1×SVLS vector. In case of the
double-precision variant, the first source is SVLD×1 vector and the second source is 1×SVLD vector.

Each source vector is independently predicated by a corresponding governing predicate. When either source vector
element is Inactive the corresponding destination tile element remains unmodified.

The resulting outer product, SVLS×SVLS in case of single-precision variant or SVLD×SVLD in case of
double-precision variant, is then destructively subtracted from the destination tile. This is equivalent to performing
a single multiply-subtract from each of the destination tile elements.

This instruction follows SME floating-point numerical behaviors.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

It has encodings from 2 classes: Single-precision and Double-precision

Single-precision
(FEAT_SME)

1 0

31 30

0 0 0 0 0 0 1 0 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

S

FMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S, <Zm>.S

1 if !HaveSME() then UNDEFINED;
2 integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;

Double-precision
(FEAT_SME_F64F64)

1 0

31 30

0 0 0 0 0 0 1 1 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

ZAda

2 0

S

FMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.D, <Zm>.D

1 if !HaveSMEF64F64() then UNDEFINED;
2 integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;

Assembler Symbols

<ZAda> For the single-precision variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda"
field.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

83

Chapter D1. SME instructions
D1.1. SME data-processing instructions

For the double-precision variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda"
field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*esize) operand3 = ZAtile[da, esize];
8 bits(dim*dim*esize) result;
9

10 for row = 0 to dim-1
11 for col = 0 to dim-1
12 bits(esize) element1 = Elem[operand1, row, esize];
13 bits(esize) element2 = Elem[operand2, col, esize];
14 bits(esize) element3 = Elem[operand3, row*dim+col, esize];
15
16 if ElemP[mask1, row, esize] == '1' && ElemP[mask2, col, esize] == '1' then
17 if sub_op then element1 = FPNeg(element1);
18 Elem[result, row*dim+col, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR[]);
19 else
20 Elem[result, row*dim+col, esize] = element3;
21
22 ZAtile[da, esize] = result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.10 FMOPS (widening)

Half-precision floating-point sum of outer products and subtract

The half-precision floating-point sum of outer products and subtract instruction works with a 32-bit element ZA
tile.

This instruction widens the SVLS×2 sub-matrix of half-precision floating-point values held in the first source vector
to single-precision floating-point values and multiplies it by the widened 2×SVLS sub-matrix of half-precision
floating-point values in the second source vector to single-precision floating-point values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is Inactive it is treated as having the value +0.0, but if both pairs of source vector elements that correspond
to a 32-bit destination element contain Inactive elements, then the destination element remains unmodified.

The resulting SVLS×SVLS single-precision floating-point sum of outer products is then destructively subtracted
from the single-precision floating-point destination tile. This is equivalent to performing a 2-way dot product and
subtract from each of the destination tile elements.

Each 32-bit container of first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix. Similarly, each 32-bit container of second source vector holds 2 consecutive row elements of each
column of a 2×SVLS sub-matrix.

This instruction follows SME floating-point numerical behaviors.

SME
(FEAT_SME)

1 0

31 30

0 0 0 0 0 1 1 0 1

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

S

FMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSME() then UNDEFINED;
2 integer a = UInt(Pn);
3 integer b = UInt(Pm);
4 integer n = UInt(Zn);
5 integer m = UInt(Zm);
6 integer da = UInt(ZAda);
7 boolean sub_op = TRUE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV 32;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*32) operand3 = ZAtile[da, 32];
8 bits(dim*dim*32) result;
9

10 for row = 0 to dim-1

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter D1. SME instructions
D1.1. SME data-processing instructions

11 for col = 0 to dim-1
12 // determine row/col predicates
13 boolean prow_0 = (ElemP[mask1, 2*row + 0, 16] == '1');
14 boolean prow_1 = (ElemP[mask1, 2*row + 1, 16] == '1');
15 boolean pcol_0 = (ElemP[mask2, 2*col + 0, 16] == '1');
16 boolean pcol_1 = (ElemP[mask2, 2*col + 1, 16] == '1');
17
18 bits(32) sum = Elem[operand3, row*dim+col, 32];
19 if (prow_0 && pcol_0) || (prow_1 && pcol_1) then
20 bits(16) erow_0 = (if prow_0 then Elem[operand1, 2*row + 0, 16] else FPZero('0'));
21 bits(16) erow_1 = (if prow_1 then Elem[operand1, 2*row + 1, 16] else FPZero('0'));
22 bits(16) ecol_0 = (if pcol_0 then Elem[operand2, 2*col + 0, 16] else FPZero('0'));
23 bits(16) ecol_1 = (if pcol_1 then Elem[operand2, 2*col + 1, 16] else FPZero('0'));
24 if sub_op then
25 if prow_0 then erow_0 = FPNeg(erow_0);
26 if prow_1 then erow_1 = FPNeg(erow_1);
27 sum = FPDotAdd_ZA(sum, erow_0, erow_1, ecol_0, ecol_1, FPCR[]);
28
29 Elem[result, row*dim+col, 32] = sum;
30
31 ZAtile[da, 32] = result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

86

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.11 LD1B

Contiguous load of bytes to 8-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and an immediate, modulo the
number of 8-bit elements in a Streaming SVE vector. The immediate is in the range 0 to 15. The memory address
is generated by scalar base and optional scalar offset which is added to the base address. Inactive elements will not
cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

0

23

0

22

0

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

imm4

3 0

msz<1> msz<0>

LD1B { ZA0<HV>.B[<Ws>, <imm>] }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = 0;
7 integer imm = UInt(imm4);
8 integer esize = 8;
9 boolean vertical = V == '1';

Assembler Symbols

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<imm> Is the slice index offset, in the range 0 to 15, encoded in the "imm4" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(64) base;
4 bits(64) addr;
5 bits(64) offset;
6 bits(PL) mask = P[g];
7 bits(VL) result;
8 bits(32) index = X[s];
9 integer slice = (UInt(index) + imm) MOD dim;

10 constant integer mbytes = esize DIV 8;
11
12 if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
13
14 if n == 31 then
15 if AnyActiveElement(mask, esize) ||
16 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 base = SP[];
19 else
20 base = X[n];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

87

Chapter D1. SME instructions
D1.1. SME data-processing instructions

21 offset = X[m];
22
23 for e = 0 to dim - 1
24 addr = base + UInt(offset) * mbytes;
25 if ElemP[mask, e, esize] == '1' then
26 Elem[result, e, esize] = Mem[addr, mbytes, AccType_SME];
27 else
28 Elem[result, e, esize] = Zeros();
29 offset = offset + 1;
30
31 ZAslice[t, esize, vertical, slice] = result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

88

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.12 LD1D

Contiguous load of doublewords to 64-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and an immediate, modulo the
number of 64-bit elements in a Streaming SVE vector. The immediate is in the range 0 to 1. The memory address is
generated by scalar base and optional scalar offset which is multiplied by 8 and added to the base address. Inactive
elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

1

23

1

22

0

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3 1

i1

0

msz<1> msz<0>

LD1D { <ZAt><HV>.D[<Ws>, <imm>] }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #3}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer imm = UInt(i1);
8 integer esize = 64;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<imm> Is the slice index offset, in the range 0 to 1, encoded in the "i1" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(64) base;
4 bits(64) addr;
5 bits(64) offset;
6 bits(PL) mask = P[g];
7 bits(VL) result;
8 bits(32) index = X[s];
9 integer slice = (UInt(index) + imm) MOD dim;

10 constant integer mbytes = esize DIV 8;
11
12 if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
13
14 if n == 31 then
15 if AnyActiveElement(mask, esize) ||
16 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 base = SP[];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

89

Chapter D1. SME instructions
D1.1. SME data-processing instructions

19 else
20 base = X[n];
21 offset = X[m];
22
23 for e = 0 to dim - 1
24 addr = base + UInt(offset) * mbytes;
25 if ElemP[mask, e, esize] == '1' then
26 Elem[result, e, esize] = Mem[addr, mbytes, AccType_SME];
27 else
28 Elem[result, e, esize] = Zeros();
29 offset = offset + 1;
30
31 ZAslice[t, esize, vertical, slice] = result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.13 LD1H

Contiguous load of halfwords to 16-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and an immediate, modulo the
number of 16-bit elements in a Streaming SVE vector. The immediate is in the range 0 to 7. The memory address is
generated by scalar base and optional scalar offset which is multiplied by 2 and added to the base address. Inactive
elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

0

23

1

22

0

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3

imm3

2 0

msz<1> msz<0>

LD1H { <ZAt><HV>.H[<Ws>, <imm>] }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #1}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer imm = UInt(imm3);
8 integer esize = 16;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<imm> Is the slice index offset, in the range 0 to 7, encoded in the "imm3" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(64) base;
4 bits(64) addr;
5 bits(64) offset;
6 bits(PL) mask = P[g];
7 bits(VL) result;
8 bits(32) index = X[s];
9 integer slice = (UInt(index) + imm) MOD dim;

10 constant integer mbytes = esize DIV 8;
11
12 if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
13
14 if n == 31 then
15 if AnyActiveElement(mask, esize) ||
16 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 base = SP[];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter D1. SME instructions
D1.1. SME data-processing instructions

19 else
20 base = X[n];
21 offset = X[m];
22
23 for e = 0 to dim - 1
24 addr = base + UInt(offset) * mbytes;
25 if ElemP[mask, e, esize] == '1' then
26 Elem[result, e, esize] = Mem[addr, mbytes, AccType_SME];
27 else
28 Elem[result, e, esize] = Zeros();
29 offset = offset + 1;
30
31 ZAslice[t, esize, vertical, slice] = result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.14 LD1Q

Contiguous load of quadwords to 128-bit element ZA tile slice

The slice number in the tile is selected by the slice index register, modulo the number of 128-bit elements in
a Streaming SVE vector. The memory address is generated by scalar base and optional scalar offset which is
multiplied by 16 and added to the base address. Inactive elements will not cause a read from Device memory or
signal a fault, and are set to zero in the destination vector.

SME
(FEAT_SME)

1 1 1 0 0 0 0 1 1 1 0

31 21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3 0

LD1Q { <ZAt><HV>.Q[<Ws>, <imm>] }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #4}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer imm = 0;
8 integer esize = 128;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<imm> Is the slice index offset 0.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(64) base;
4 bits(64) addr;
5 bits(64) offset;
6 bits(PL) mask = P[g];
7 bits(VL) result;
8 bits(32) index = X[s];
9 integer slice = (UInt(index) + imm) MOD dim;

10 constant integer mbytes = esize DIV 8;
11
12 if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
13
14 if n == 31 then
15 if AnyActiveElement(mask, esize) ||
16 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 base = SP[];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter D1. SME instructions
D1.1. SME data-processing instructions

19 else
20 base = X[n];
21 offset = X[m];
22
23 for e = 0 to dim - 1
24 addr = base + UInt(offset) * mbytes;
25 if ElemP[mask, e, esize] == '1' then
26 Elem[result, e, esize] = Mem[addr, mbytes, AccType_SME];
27 else
28 Elem[result, e, esize] = Zeros();
29 offset = offset + 1;
30
31 ZAslice[t, esize, vertical, slice] = result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.15 LD1W

Contiguous load of words to 32-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and an immediate, modulo the
number of 32-bit elements in a Streaming SVE vector. The immediate is in the range 0 to 3. The memory address is
generated by scalar base and optional scalar offset which is multiplied by 4 and added to the base address. Inactive
elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

1

23

0

22

0

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3 2

imm2

1 0

msz<1> msz<0>

LD1W { <ZAt><HV>.S[<Ws>, <imm>] }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #2}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer imm = UInt(imm2);
8 integer esize = 32;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<imm> Is the slice index offset, in the range 0 to 3, encoded in the "imm2" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(64) base;
4 bits(64) addr;
5 bits(64) offset;
6 bits(PL) mask = P[g];
7 bits(VL) result;
8 bits(32) index = X[s];
9 integer slice = (UInt(index) + imm) MOD dim;

10 constant integer mbytes = esize DIV 8;
11
12 if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
13
14 if n == 31 then
15 if AnyActiveElement(mask, esize) ||
16 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 base = SP[];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

95

Chapter D1. SME instructions
D1.1. SME data-processing instructions

19 else
20 base = X[n];
21 offset = X[m];
22
23 for e = 0 to dim - 1
24 addr = base + UInt(offset) * mbytes;
25 if ElemP[mask, e, esize] == '1' then
26 Elem[result, e, esize] = Mem[addr, mbytes, AccType_SME];
27 else
28 Elem[result, e, esize] = Zeros();
29 offset = offset + 1;
30
31 ZAslice[t, esize, vertical, slice] = result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.16 LDR

Load vector to ZA array

The ZA array vector is selected by the sum of the vector select register and an immediate, modulo the number
of bytes in a Streaming SVE vector. The immediate is in the range 0 to 15. The memory address is generated
by scalar base, plus the same optional immediate offset multiplied by the current vector length in bytes. This
instruction is unpredicated.

The load is performed as contiguous byte accesses, with no endian conversion and no guarantee of single-copy
atomicity larger than a byte. However, if alignment is checked, then the base register must be aligned to 16 bytes.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

SME
(FEAT_SME)

1 1 1 0 0 0 0 1 0 0

31 22

0

21

0 0 0 0 0 0

20 15

Rv

14 13

0 0 0

12 10

Rn

9 5

0

4

imm4

3 0

LDR ZA[<Wv>, <imm>], [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer v = UInt('011':Rv);
4 integer imm = UInt(imm4);

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W12-W15, encoded in the "Rv" field.

<imm> Is the vector select offset and optional memory offset, in the range 0 to 15, defaulting to 0,
encoded in the "imm4" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

Operation
1 CheckSMEAndZAEnabled();
2 integer dim = SVL DIV 8;
3 bits(64) base;
4 integer offset = imm * dim;
5 bits(SVL) result;
6 bits(32) idx = X[v];
7 integer vec = (UInt(idx) + imm) MOD dim;
8
9 if HaveTME() && TSTATE.depth > 0 then

10 FailTransaction(TMFailure_ERR, FALSE);
11
12 if n == 31 then
13 if HaveMTEExt() then SetTagCheckedInstruction(FALSE);
14 CheckSPAlignment();
15 base = SP[];
16 else
17 if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
18 base = X[n];
19
20 boolean aligned = AArch64.CheckAlignment(base + offset, 16, AccType_SME, FALSE);
21 for e = 0 to dim-1
22 Elem[result, e, 8] = AArch64.MemSingle[base + offset, 1, AccType_SME, aligned];
23 offset = offset + 1;
24
25 ZAvector[vec] = result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.17 MOV (tile to vector)

Move ZA tile slice to vector register

The instruction operates on individual horizontal or vertical slices within a named ZA tile of the specified element
size. The slice number within the tile is selected by the sum of the slice index register and an immediate, modulo
the number of such elements in a Streaming SVE vector. The immediate is in the range 0 to the number of elements
in a 128-bit vector segment minus 1.

Inactive elements in the destination vector remain unmodified.

This is an alias of MOVA (tile to vector). This means:

• The encodings in this description are named to match the encodings of MOVA (tile to vector).

• The description of MOVA (tile to vector) gives the operational pseudocode for this instruction.

It has encodings from 5 classes: 8-bit , 16-bit , 32-bit , 64-bit and 128-bit

8-bit

1 1 0 0 0 0 0 0

31 24

0

23

0

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

imm4

8 5

Zd

4 0

size<1> size<0> Q

MOV <Zd>.B, <Pg>/M, ZA0<HV>.B[<Ws>, <imm>]

is equivalent to
MOVA<Zd>.B, <Pg>/M, ZA0<HV>.B[<Ws>, <imm>]

and is always the preferred disassembly.

16-bit

1 1 0 0 0 0 0 0

31 24

0

23

1

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8

imm3

7 5

Zd

4 0

size<1> size<0> Q

MOV <Zd>.H, <Pg>/M, <ZAn><HV>.H[<Ws>, <imm>]

is equivalent to
MOVA<Zd>.H, <Pg>/M, <ZAn><HV>.H[<Ws>, <imm>]

and is always the preferred disassembly.

32-bit

1 1 0 0 0 0 0 0

31 24

1

23

0

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8 7

imm2

6 5

Zd

4 0

size<1> size<0> Q

MOV <Zd>.S, <Pg>/M, <ZAn><HV>.S[<Ws>, <imm>]

is equivalent to
MOVA<Zd>.S, <Pg>/M, <ZAn><HV>.S[<Ws>, <imm>]

and is always the preferred disassembly.

64-bit

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

Chapter D1. SME instructions
D1.1. SME data-processing instructions

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8 6

i1

5

Zd

4 0

size<1> size<0> Q

MOV <Zd>.D, <Pg>/M, <ZAn><HV>.D[<Ws>, <imm>]

is equivalent to
MOVA<Zd>.D, <Pg>/M, <ZAn><HV>.D[<Ws>, <imm>]

and is always the preferred disassembly.

128-bit

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 1

21 17

1

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8 5

Zd

4 0

size<1> size<0> Q

MOV <Zd>.Q, <Pg>/M, <ZAn><HV>.Q[<Ws>, <imm>]

is equivalent to
MOVA<Zd>.Q, <Pg>/M, <ZAn><HV>.Q[<Ws>, <imm>]

and is always the preferred disassembly.

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAn" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAn" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAn" field.

For the 128-bit variant: is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the
"ZAn" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<imm> For the 8-bit variant: is the slice index offset, in the range 0 to 15, encoded in the "imm4"
field.

For the 16-bit variant: is the slice index offset, in the range 0 to 7, encoded in the "imm3"
field.

For the 32-bit variant: is the slice index offset, in the range 0 to 3, encoded in the "imm2"
field.

For the 64-bit variant: is the slice index offset, in the range 0 to 1, encoded in the "i1" field.

For the 128-bit variant: is the slice index offset 0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter D1. SME instructions
D1.1. SME data-processing instructions

Operation

The description of MOVA (tile to vector) gives the operational pseudocode for this instruction.

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.18 MOV (vector to tile)

Move vector register to ZA tile slice

The instruction operates on individual horizontal or vertical slices within a named ZA tile of the specified element
size. The slice number within the tile is selected by the sum of the slice index register and an immediate, modulo
the number of such elements in a Streaming SVE vector. The immediate is in the range 0 to the number of elements
in a 128-bit vector segment minus 1.

Inactive elements in the destination slice remain unmodified.

This is an alias of MOVA (vector to tile). This means:

• The encodings in this description are named to match the encodings of MOVA (vector to tile).

• The description of MOVA (vector to tile) gives the operational pseudocode for this instruction.

It has encodings from 5 classes: 8-bit , 16-bit , 32-bit , 64-bit and 128-bit

8-bit

1 1 0 0 0 0 0 0

31 24

0

23

0

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

imm4

3 0

size<1> size<0> Q

MOV ZA0<HV>.B[<Ws>, <imm>], <Pg>/M, <Zn>.B

is equivalent to
MOVAZA0<HV>.B[<Ws>, <imm>], <Pg>/M, <Zn>.B

and is always the preferred disassembly.

16-bit

1 1 0 0 0 0 0 0

31 24

0

23

1

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3

imm3

2 0

size<1> size<0> Q

MOV <ZAd><HV>.H[<Ws>, <imm>], <Pg>/M, <Zn>.H

is equivalent to
MOVA<ZAd><HV>.H[<Ws>, <imm>], <Pg>/M, <Zn>.H

and is always the preferred disassembly.

32-bit

1 1 0 0 0 0 0 0

31 24

1

23

0

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3 2

imm2

1 0

size<1> size<0> Q

MOV <ZAd><HV>.S[<Ws>, <imm>], <Pg>/M, <Zn>.S

is equivalent to
MOVA<ZAd><HV>.S[<Ws>, <imm>], <Pg>/M, <Zn>.S

and is always the preferred disassembly.

64-bit

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter D1. SME instructions
D1.1. SME data-processing instructions

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3 1

i1

0

size<1> size<0> Q

MOV <ZAd><HV>.D[<Ws>, <imm>], <Pg>/M, <Zn>.D

is equivalent to
MOVA<ZAd><HV>.D[<Ws>, <imm>], <Pg>/M, <Zn>.D

and is always the preferred disassembly.

128-bit

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 0

21 17

1

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3 0

size<1> size<0> Q

MOV <ZAd><HV>.Q[<Ws>, <imm>], <Pg>/M, <Zn>.Q

is equivalent to
MOVA<ZAd><HV>.Q[<Ws>, <imm>], <Pg>/M, <Zn>.Q

and is always the preferred disassembly.

Assembler Symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAd" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAd" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAd" field.

For the 128-bit variant: is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the
"ZAd" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<imm> For the 8-bit variant: is the slice index offset, in the range 0 to 15, encoded in the "imm4"
field.

For the 16-bit variant: is the slice index offset, in the range 0 to 7, encoded in the "imm3"
field.

For the 32-bit variant: is the slice index offset, in the range 0 to 3, encoded in the "imm2"
field.

For the 64-bit variant: is the slice index offset, in the range 0 to 1, encoded in the "i1" field.

For the 128-bit variant: is the slice index offset 0.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter D1. SME instructions
D1.1. SME data-processing instructions

Operation

The description of MOVA (vector to tile) gives the operational pseudocode for this instruction.

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.19 MOVA (tile to vector)

Move ZA tile slice to vector register

The instruction operates on individual horizontal or vertical slices within a named ZA tile of the specified element
size. The slice number within the tile is selected by the sum of the slice index register and an immediate, modulo
the number of such elements in a Streaming SVE vector. The immediate is in the range 0 to the number of elements
in a 128-bit vector segment minus 1.

Inactive elements in the destination vector remain unmodified.

This instruction is used by the alias MOV (tile to vector).

It has encodings from 5 classes: 8-bit , 16-bit , 32-bit , 64-bit and 128-bit

8-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

0

23

0

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

imm4

8 5

Zd

4 0

size<1> size<0> Q

MOVA <Zd>.B, <Pg>/M, ZA0<HV>.B[<Ws>, <imm>]

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = 0;
5 integer imm = UInt(imm4);
6 integer esize = 8;
7 integer d = UInt(Zd);
8 boolean vertical = V == '1';

16-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

0

23

1

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8

imm3

7 5

Zd

4 0

size<1> size<0> Q

MOVA <Zd>.H, <Pg>/M, <ZAn><HV>.H[<Ws>, <imm>]

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(ZAn);
5 integer imm = UInt(imm3);
6 integer esize = 16;
7 integer d = UInt(Zd);
8 boolean vertical = V == '1';

32-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

1

23

0

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8 7

imm2

6 5

Zd

4 0

size<1> size<0> Q

MOVA <Zd>.S, <Pg>/M, <ZAn><HV>.S[<Ws>, <imm>]

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

104

Chapter D1. SME instructions
D1.1. SME data-processing instructions

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(ZAn);
5 integer imm = UInt(imm2);
6 integer esize = 32;
7 integer d = UInt(Zd);
8 boolean vertical = V == '1';

64-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8 6

i1

5

Zd

4 0

size<1> size<0> Q

MOVA <Zd>.D, <Pg>/M, <ZAn><HV>.D[<Ws>, <imm>]

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(ZAn);
5 integer imm = UInt(i1);
6 integer esize = 64;
7 integer d = UInt(Zd);
8 boolean vertical = V == '1';

128-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 1

21 17

1

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8 5

Zd

4 0

size<1> size<0> Q

MOVA <Zd>.Q, <Pg>/M, <ZAn><HV>.Q[<Ws>, <imm>]

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(ZAn);
5 integer imm = 0;
6 integer esize = 128;
7 integer d = UInt(Zd);
8 boolean vertical = V == '1';

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAn" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAn" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAn" field.

For the 128-bit variant: is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the
"ZAn" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

105

Chapter D1. SME instructions
D1.1. SME data-processing instructions

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<imm> For the 8-bit variant: is the slice index offset, in the range 0 to 15, encoded in the "imm4"
field.

For the 16-bit variant: is the slice index offset, in the range 0 to 7, encoded in the "imm3"
field.

For the 32-bit variant: is the slice index offset, in the range 0 to 3, encoded in the "imm2"
field.

For the 64-bit variant: is the slice index offset, in the range 0 to 1, encoded in the "i1" field.

For the 128-bit variant: is the slice index offset 0.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask = P[g];
4 bits(32) index = X[s];
5 integer slice = (UInt(index) + imm) MOD dim;
6 bits(VL) operand = ZAslice[n, esize, vertical, slice];
7 bits(VL) result = Z[d];
8
9 for e = 0 to dim-1

10 bits(esize) element = Elem[operand, e, esize];
11 if ElemP[mask, e, esize] == '1' then
12 Elem[result, e, esize] = element;
13
14 Z[d] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.20 MOVA (vector to tile)

Move vector register to ZA tile slice

The instruction operates on individual horizontal or vertical slices within a named ZA tile of the specified element
size. The slice number within the tile is selected by the sum of the slice index register and an immediate, modulo
the number of such elements in a Streaming SVE vector. The immediate is in the range 0 to the number of elements
in a 128-bit vector segment minus 1.

Inactive elements in the destination slice remain unmodified.

This instruction is used by the alias MOV (vector to tile).

It has encodings from 5 classes: 8-bit , 16-bit , 32-bit , 64-bit and 128-bit

8-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

0

23

0

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

imm4

3 0

size<1> size<0> Q

MOVA ZA0<HV>.B[<Ws>, <imm>], <Pg>/M, <Zn>.B

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(Zn);
5 integer d = 0;
6 integer imm = UInt(imm4);
7 integer esize = 8;
8 boolean vertical = V == '1';

16-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

0

23

1

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3

imm3

2 0

size<1> size<0> Q

MOVA <ZAd><HV>.H[<Ws>, <imm>], <Pg>/M, <Zn>.H

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(Zn);
5 integer d = UInt(ZAd);
6 integer imm = UInt(imm3);
7 integer esize = 16;
8 boolean vertical = V == '1';

32-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

1

23

0

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3 2

imm2

1 0

size<1> size<0> Q

MOVA <ZAd><HV>.S[<Ws>, <imm>], <Pg>/M, <Zn>.S

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter D1. SME instructions
D1.1. SME data-processing instructions

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(Zn);
5 integer d = UInt(ZAd);
6 integer imm = UInt(imm2);
7 integer esize = 32;
8 boolean vertical = V == '1';

64-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3 1

i1

0

size<1> size<0> Q

MOVA <ZAd><HV>.D[<Ws>, <imm>], <Pg>/M, <Zn>.D

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(Zn);
5 integer d = UInt(ZAd);
6 integer imm = UInt(i1);
7 integer esize = 64;
8 boolean vertical = V == '1';

128-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 0

21 17

1

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3 0

size<1> size<0> Q

MOVA <ZAd><HV>.Q[<Ws>, <imm>], <Pg>/M, <Zn>.Q

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(Zn);
5 integer d = UInt(ZAd);
6 integer imm = 0;
7 integer esize = 128;
8 boolean vertical = V == '1';

Assembler Symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAd" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAd" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAd" field.

For the 128-bit variant: is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the
"ZAd" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

Chapter D1. SME instructions
D1.1. SME data-processing instructions

<imm> For the 8-bit variant: is the slice index offset, in the range 0 to 15, encoded in the "imm4"
field.

For the 16-bit variant: is the slice index offset, in the range 0 to 7, encoded in the "imm3"
field.

For the 32-bit variant: is the slice index offset, in the range 0 to 3, encoded in the "imm2"
field.

For the 64-bit variant: is the slice index offset, in the range 0 to 1, encoded in the "i1" field.

For the 128-bit variant: is the slice index offset 0.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask = P[g];
4 bits(VL) operand = Z[n];
5 bits(32) index = X[s];
6 integer slice = (UInt(index) + imm) MOD dim;
7 bits(VL) result = ZAslice[d, esize, vertical, slice];
8
9 for e = 0 to dim-1

10 bits(esize) element = Elem[operand, e, esize];
11 if ElemP[mask, e, esize] == '1' then
12 Elem[result, e, esize] = element;
13
14 ZAslice[d, esize, vertical, slice] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.21 RDSVL

Read multiple of Streaming SVE vector register size to scalar register

Multiply the Streaming SVE vector register size in bytes by an immediate in the range -32 to 31 and place the
result in the 64-bit destination general-purpose register.

This instruction does not require the PE to be in Streaming SVE mode.

SME
(FEAT_SME)

0 0 0 0 0 1 0 0 1

31 23

0

22

1

21

1 1 1 1

20 17

1

16

0 1 0 1 1

15 11

imm6

10 5

Rd

4 0

RDSVL <Xd>, #<imm>

1 if !HaveSME() then UNDEFINED;
2 integer d = UInt(Rd);
3 integer imm = SInt(imm6);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation
1 CheckSMEEnabled();
2 integer len = imm * (SVL DIV 8);
3 X[d] = len<63:0>;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

110

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.22 SMOPA

Signed integer sum of outer products and accumulate

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The signed integer sum of outer products and accumulate instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds
SVLS×4 sub-matrix of signed 8-bit integer values, and the second source holds 4×SVLS sub-matrix of signed
8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of signed
16-bit integer values, and the second source holds 4×SVLD sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively added to the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer and
16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and accumulate to each of
the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of first source vector holds 4 consecutive column elements
of each row of a SVLS×4 sub-matrix, and each 32-bit container of second source vector holds 4 consecutive row
elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit container of
first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and each 64-bit
container of second source vector holds 4 consecutive row elements of each column of a 4×SVLD sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 0

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

u0 u1 S

SMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = FALSE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 1

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

u0 u1 S

SMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

Chapter D1. SME instructions
D1.1. SME data-processing instructions

1 if !HaveSMEI16I64() then UNDEFINED;
2 integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = FALSE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*esize) operand3 = ZAtile[da, esize];
8 bits(dim*dim*esize) result;
9 integer prod;

10
11 for row = 0 to dim-1
12 for col = 0 to dim-1
13 bits(esize) sum = Elem[operand3, row*dim+col, esize];
14 for k = 0 to 3
15 if ElemP[mask1, 4*row + k, esize DIV 4] == '1' &&
16 ElemP[mask2, 4*col + k, esize DIV 4] == '1' then
17 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
18 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
19 if sub_op then prod = -prod;
20 sum = sum + prod;
21
22 Elem[result, row*dim+col, esize] = sum;
23
24 ZAtile[da, esize] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

112

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.23 SMOPS

Signed integer sum of outer products and subtract

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The signed integer sum of outer products and subtract instructions multiply the sub-matrix in the first source vector
by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds SVLS×4
sub-matrix of signed 8-bit integer values, and the second source holds 4×SVLS sub-matrix of signed 8-bit integer
values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of signed 16-bit integer
values, and the second source holds 4×SVLD sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively subtracted from the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit
integer and 16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and subtract
from each of the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of first source vector holds 4 consecutive column elements
of each row of a SVLS×4 sub-matrix, and each 32-bit container of second source vector holds 4 consecutive row
elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit container of
first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and each 64-bit
container of second source vector holds 4 consecutive row elements of each column of a 4×SVLD sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 0

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

u0 u1 S

SMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = FALSE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 1

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

ZAda

2 0

u0 u1 S

SMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

113

Chapter D1. SME instructions
D1.1. SME data-processing instructions

1 if !HaveSMEI16I64() then UNDEFINED;
2 integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = FALSE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*esize) operand3 = ZAtile[da, esize];
8 bits(dim*dim*esize) result;
9 integer prod;

10
11 for row = 0 to dim-1
12 for col = 0 to dim-1
13 bits(esize) sum = Elem[operand3, row*dim+col, esize];
14 for k = 0 to 3
15 if ElemP[mask1, 4*row + k, esize DIV 4] == '1' &&
16 ElemP[mask2, 4*col + k, esize DIV 4] == '1' then
17 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
18 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
19 if sub_op then prod = -prod;
20 sum = sum + prod;
21
22 Elem[result, row*dim+col, esize] = sum;
23
24 ZAtile[da, esize] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

114

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.24 ST1B

Contiguous store of bytes from 8-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and an immediate, modulo the
number of 8-bit elements in a Streaming SVE vector. The immediate is in the range 0 to 15. The memory address
is generated by scalar base and optional scalar offset which is added to the base address. Inactive elements are not
written to memory.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

0

23

0

22

1

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

imm4

3 0

msz<1> msz<0>

ST1B { ZA0<HV>.B[<Ws>, <imm>] }, <Pg>, [<Xn|SP>{, <Xm>}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = 0;
7 integer imm = UInt(imm4);
8 integer esize = 8;
9 boolean vertical = V == '1';

Assembler Symbols

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<imm> Is the slice index offset, in the range 0 to 15, encoded in the "imm4" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(64) base;
4 bits(64) addr;
5 bits(PL) mask = P[g];
6 bits(64) offset = X[m];
7 bits(32) index = X[s];
8 integer slice = (UInt(index) + imm) MOD dim;
9 bits(VL) src;

10 constant integer mbytes = esize DIV 8;
11
12 if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
13
14 if n == 31 then
15 if AnyActiveElement(mask, esize) ||
16 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 base = SP[];
19 else
20 base = X[n];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

115

Chapter D1. SME instructions
D1.1. SME data-processing instructions

21
22 src = ZAslice[t, esize, vertical, slice];
23 for e = 0 to dim-1
24 addr = base + UInt(offset) * mbytes;
25 if ElemP[mask, e, esize] == '1' then
26 Mem[addr, mbytes, AccType_SME] = Elem[src, e, esize];
27 offset = offset + 1;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

116

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.25 ST1D

Contiguous store of doublewords from 64-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and an immediate, modulo the
number of 64-bit elements in a Streaming SVE vector. The immediate is in the range 0 to 1. The memory address
is generated by scalar base and optional scalar offset which is multiplied by 8 and added to the base address.
Inactive elements are not written to memory.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

1

23

1

22

1

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3 1

i1

0

msz<1> msz<0>

ST1D { <ZAt><HV>.D[<Ws>, <imm>] }, <Pg>, [<Xn|SP>{, <Xm>, LSL #3}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer imm = UInt(i1);
8 integer esize = 64;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<imm> Is the slice index offset, in the range 0 to 1, encoded in the "i1" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(64) base;
4 bits(64) addr;
5 bits(PL) mask = P[g];
6 bits(64) offset = X[m];
7 bits(32) index = X[s];
8 integer slice = (UInt(index) + imm) MOD dim;
9 bits(VL) src;

10 constant integer mbytes = esize DIV 8;
11
12 if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
13
14 if n == 31 then
15 if AnyActiveElement(mask, esize) ||
16 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 base = SP[];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

117

Chapter D1. SME instructions
D1.1. SME data-processing instructions

19 else
20 base = X[n];
21
22 src = ZAslice[t, esize, vertical, slice];
23 for e = 0 to dim-1
24 addr = base + UInt(offset) * mbytes;
25 if ElemP[mask, e, esize] == '1' then
26 Mem[addr, mbytes, AccType_SME] = Elem[src, e, esize];
27 offset = offset + 1;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

118

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.26 ST1H

Contiguous store of halfwords from 16-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and an immediate, modulo the
number of 16-bit elements in a Streaming SVE vector. The immediate is in the range 0 to 7. The memory address
is generated by scalar base and optional scalar offset which is multiplied by 2 and added to the base address.
Inactive elements are not written to memory.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

0

23

1

22

1

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3

imm3

2 0

msz<1> msz<0>

ST1H { <ZAt><HV>.H[<Ws>, <imm>] }, <Pg>, [<Xn|SP>{, <Xm>, LSL #1}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer imm = UInt(imm3);
8 integer esize = 16;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<imm> Is the slice index offset, in the range 0 to 7, encoded in the "imm3" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(64) base;
4 bits(64) addr;
5 bits(PL) mask = P[g];
6 bits(64) offset = X[m];
7 bits(32) index = X[s];
8 integer slice = (UInt(index) + imm) MOD dim;
9 bits(VL) src;

10 constant integer mbytes = esize DIV 8;
11
12 if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
13
14 if n == 31 then
15 if AnyActiveElement(mask, esize) ||
16 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 base = SP[];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

119

Chapter D1. SME instructions
D1.1. SME data-processing instructions

19 else
20 base = X[n];
21
22 src = ZAslice[t, esize, vertical, slice];
23 for e = 0 to dim-1
24 addr = base + UInt(offset) * mbytes;
25 if ElemP[mask, e, esize] == '1' then
26 Mem[addr, mbytes, AccType_SME] = Elem[src, e, esize];
27 offset = offset + 1;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

120

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.27 ST1Q

Contiguous store of quadwords from 128-bit element ZA tile slice

The slice number in the tile is selected by the slice index register, modulo the number of 128-bit elements in
a Streaming SVE vector. The memory address is generated by scalar base and optional scalar offset which is
multiplied by 16 and added to the base address. Inactive elements are not written to memory.

SME
(FEAT_SME)

1 1 1 0 0 0 0 1 1 1 1

31 21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3 0

ST1Q { <ZAt><HV>.Q[<Ws>, <imm>] }, <Pg>, [<Xn|SP>{, <Xm>, LSL #4}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer imm = 0;
8 integer esize = 128;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<imm> Is the slice index offset 0.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(64) base;
4 bits(64) addr;
5 bits(PL) mask = P[g];
6 bits(64) offset = X[m];
7 bits(32) index = X[s];
8 integer slice = (UInt(index) + imm) MOD dim;
9 bits(VL) src;

10 constant integer mbytes = esize DIV 8;
11
12 if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
13
14 if n == 31 then
15 if AnyActiveElement(mask, esize) ||
16 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 base = SP[];
19 else
20 base = X[n];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

121

Chapter D1. SME instructions
D1.1. SME data-processing instructions

21
22 src = ZAslice[t, esize, vertical, slice];
23 for e = 0 to dim-1
24 addr = base + UInt(offset) * mbytes;
25 if ElemP[mask, e, esize] == '1' then
26 Mem[addr, mbytes, AccType_SME] = Elem[src, e, esize];
27 offset = offset + 1;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

122

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.28 ST1W

Contiguous store of words from 32-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and an immediate, modulo the
number of 32-bit elements in a Streaming SVE vector. The immediate is in the range 0 to 3. The memory address
is generated by scalar base and optional scalar offset which is multiplied by 4 and added to the base address.
Inactive elements are not written to memory.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

1

23

0

22

1

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3 2

imm2

1 0

msz<1> msz<0>

ST1W { <ZAt><HV>.S[<Ws>, <imm>] }, <Pg>, [<Xn|SP>{, <Xm>, LSL #2}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer imm = UInt(imm2);
8 integer esize = 32;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<imm> Is the slice index offset, in the range 0 to 3, encoded in the "imm2" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(64) base;
4 bits(64) addr;
5 bits(PL) mask = P[g];
6 bits(64) offset = X[m];
7 bits(32) index = X[s];
8 integer slice = (UInt(index) + imm) MOD dim;
9 bits(VL) src;

10 constant integer mbytes = esize DIV 8;
11
12 if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
13
14 if n == 31 then
15 if AnyActiveElement(mask, esize) ||
16 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 base = SP[];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

123

Chapter D1. SME instructions
D1.1. SME data-processing instructions

19 else
20 base = X[n];
21
22 src = ZAslice[t, esize, vertical, slice];
23 for e = 0 to dim-1
24 addr = base + UInt(offset) * mbytes;
25 if ElemP[mask, e, esize] == '1' then
26 Mem[addr, mbytes, AccType_SME] = Elem[src, e, esize];
27 offset = offset + 1;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

124

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.29 STR

Store vector from ZA array

The ZA array vector is selected by the sum of the vector select register and an immediate, modulo the number
of bytes in a Streaming SVE vector. The immediate is in the range 0 to 15. The memory address is generated
by scalar base, plus the same optional immediate offset multiplied by the current vector length in bytes. This
instruction is unpredicated.

The store is performed as contiguous byte accesses, with no endian conversion and no guarantee of single-copy
atomicity larger than a byte. However, if alignment is checked, then the base register must be aligned to 16 bytes.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

SME
(FEAT_SME)

1 1 1 0 0 0 0 1 0 0

31 22

1

21

0 0 0 0 0 0

20 15

Rv

14 13

0 0 0

12 10

Rn

9 5

0

4

imm4

3 0

STR ZA[<Wv>, <imm>], [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer v = UInt('011':Rv);
4 integer imm = UInt(imm4);

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W12-W15, encoded in the "Rv" field.

<imm> Is the vector select offset and optional memory offset, in the range 0 to 15, defaulting to 0,
encoded in the "imm4" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

Operation
1 CheckSMEAndZAEnabled();
2 integer dim = SVL DIV 8;
3 bits(32) idx = X[v];
4 integer vec = (UInt(idx) + imm) MOD dim;
5 bits(SVL) src;
6 bits(64) base;
7 integer offset = imm * dim;
8
9 if HaveTME() && TSTATE.depth > 0 then

10 FailTransaction(TMFailure_ERR, FALSE);
11
12 if n == 31 then
13 if HaveMTEExt() then SetTagCheckedInstruction(FALSE);
14 CheckSPAlignment();
15 base = SP[];
16 else
17 if HaveMTEExt() then SetTagCheckedInstruction(TRUE);
18 base = X[n];
19
20 src = ZAvector[vec];
21 boolean aligned = AArch64.CheckAlignment(base + offset, 16, AccType_SME, TRUE);
22 for e = 0 to dim-1
23 AArch64.MemSingle[base + offset, 1, AccType_SME, aligned] = Elem[src, e, 8];
24 offset = offset + 1;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

125

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.30 SUMOPA

Signed by unsigned integer sum of outer products and accumulate

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The signed by unsigned integer sum of outer products and accumulate instructions multiply the sub-matrix in the
first source vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source
holds SVLS×4 sub-matrix of signed 8-bit integer values, and the second source holds 4×SVLS sub-matrix of
unsigned 8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of
signed 16-bit integer values, and the second source holds 4×SVLD sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively added to the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer and
16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and accumulate to each of
the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of first source vector holds 4 consecutive column elements
of each row of a SVLS×4 sub-matrix, and each 32-bit container of second source vector holds 4 consecutive row
elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit container of
first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and each 64-bit
container of second source vector holds 4 consecutive row elements of each column of a 4×SVLD sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 0

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

u0 u1 S

SUMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = TRUE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 1

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

u0 u1 S

SUMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

126

Chapter D1. SME instructions
D1.1. SME data-processing instructions

1 if !HaveSMEI16I64() then UNDEFINED;
2 integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = TRUE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*esize) operand3 = ZAtile[da, esize];
8 bits(dim*dim*esize) result;
9 integer prod;

10
11 for row = 0 to dim-1
12 for col = 0 to dim-1
13 bits(esize) sum = Elem[operand3, row*dim+col, esize];
14 for k = 0 to 3
15 if ElemP[mask1, 4*row + k, esize DIV 4] == '1' &&
16 ElemP[mask2, 4*col + k, esize DIV 4] == '1' then
17 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
18 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
19 if sub_op then prod = -prod;
20 sum = sum + prod;
21
22 Elem[result, row*dim+col, esize] = sum;
23
24 ZAtile[da, esize] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

127

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.31 SUMOPS

Signed by unsigned integer sum of outer products and subtract

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The signed by unsigned integer sum of outer products and subtract instructions multiply the sub-matrix in the first
source vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source
holds SVLS×4 sub-matrix of signed 8-bit integer values, and the second source holds 4×SVLS sub-matrix of
unsigned 8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of
signed 16-bit integer values, and the second source holds 4×SVLD sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively subtracted from the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit
integer and 16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and subtract
from each of the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of first source vector holds 4 consecutive column elements
of each row of a SVLS×4 sub-matrix, and each 32-bit container of second source vector holds 4 consecutive row
elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit container of
first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and each 64-bit
container of second source vector holds 4 consecutive row elements of each column of a 4×SVLD sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 0

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

u0 u1 S

SUMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = TRUE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 1

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

ZAda

2 0

u0 u1 S

SUMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

128

Chapter D1. SME instructions
D1.1. SME data-processing instructions

1 if !HaveSMEI16I64() then UNDEFINED;
2 integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = TRUE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*esize) operand3 = ZAtile[da, esize];
8 bits(dim*dim*esize) result;
9 integer prod;

10
11 for row = 0 to dim-1
12 for col = 0 to dim-1
13 bits(esize) sum = Elem[operand3, row*dim+col, esize];
14 for k = 0 to 3
15 if ElemP[mask1, 4*row + k, esize DIV 4] == '1' &&
16 ElemP[mask2, 4*col + k, esize DIV 4] == '1' then
17 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
18 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
19 if sub_op then prod = -prod;
20 sum = sum + prod;
21
22 Elem[result, row*dim+col, esize] = sum;
23
24 ZAtile[da, esize] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

129

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.32 UMOPA

Unsigned integer sum of outer products and accumulate

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The unsigned integer sum of outer products and accumulate instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds
SVLS×4 sub-matrix of unsigned 8-bit integer values, and the second source holds 4×SVLS sub-matrix of unsigned
8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of unsigned
16-bit integer values, and the second source holds 4×SVLD sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively added to the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer and
16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and accumulate to each of
the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of first source vector holds 4 consecutive column elements
of each row of a SVLS×4 sub-matrix, and each 32-bit container of second source vector holds 4 consecutive row
elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit container of
first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and each 64-bit
container of second source vector holds 4 consecutive row elements of each column of a 4×SVLD sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 0

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

u0 u1 S

UMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = TRUE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 1

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

u0 u1 S

UMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

130

Chapter D1. SME instructions
D1.1. SME data-processing instructions

1 if !HaveSMEI16I64() then UNDEFINED;
2 integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = TRUE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*esize) operand3 = ZAtile[da, esize];
8 bits(dim*dim*esize) result;
9 integer prod;

10
11 for row = 0 to dim-1
12 for col = 0 to dim-1
13 bits(esize) sum = Elem[operand3, row*dim+col, esize];
14 for k = 0 to 3
15 if ElemP[mask1, 4*row + k, esize DIV 4] == '1' &&
16 ElemP[mask2, 4*col + k, esize DIV 4] == '1' then
17 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
18 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
19 if sub_op then prod = -prod;
20 sum = sum + prod;
21
22 Elem[result, row*dim+col, esize] = sum;
23
24 ZAtile[da, esize] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

131

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.33 UMOPS

Unsigned integer sum of outer products and subtract

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The unsigned integer sum of outer products and subtract instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds
SVLS×4 sub-matrix of unsigned 8-bit integer values, and the second source holds 4×SVLS sub-matrix of unsigned
8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of unsigned
16-bit integer values, and the second source holds 4×SVLD sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively subtracted from the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit
integer and 16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and subtract
from each of the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of first source vector holds 4 consecutive column elements
of each row of a SVLS×4 sub-matrix, and each 32-bit container of second source vector holds 4 consecutive row
elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit container of
first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and each 64-bit
container of second source vector holds 4 consecutive row elements of each column of a 4×SVLD sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 0

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

u0 u1 S

UMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = TRUE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 1

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

ZAda

2 0

u0 u1 S

UMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

132

Chapter D1. SME instructions
D1.1. SME data-processing instructions

1 if !HaveSMEI16I64() then UNDEFINED;
2 integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = TRUE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*esize) operand3 = ZAtile[da, esize];
8 bits(dim*dim*esize) result;
9 integer prod;

10
11 for row = 0 to dim-1
12 for col = 0 to dim-1
13 bits(esize) sum = Elem[operand3, row*dim+col, esize];
14 for k = 0 to 3
15 if ElemP[mask1, 4*row + k, esize DIV 4] == '1' &&
16 ElemP[mask2, 4*col + k, esize DIV 4] == '1' then
17 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
18 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
19 if sub_op then prod = -prod;
20 sum = sum + prod;
21
22 Elem[result, row*dim+col, esize] = sum;
23
24 ZAtile[da, esize] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

133

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.34 USMOPA

Unsigned by signed integer sum of outer products and accumulate

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The unsigned by signed integer sum of outer products and accumulate instructions multiply the sub-matrix in the
first source vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source
holds SVLS×4 sub-matrix of unsigned 8-bit integer values, and the second source holds 4×SVLS sub-matrix of
signed 8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of
unsigned 16-bit integer values, and the second source holds 4×SVLD sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively added to the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer and
16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and accumulate to each of
the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of first source vector holds 4 consecutive column elements
of each row of a SVLS×4 sub-matrix, and each 32-bit container of second source vector holds 4 consecutive row
elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit container of
first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and each 64-bit
container of second source vector holds 4 consecutive row elements of each column of a 4×SVLD sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 0

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

u0 u1 S

USMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = FALSE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 1

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

u0 u1 S

USMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

134

Chapter D1. SME instructions
D1.1. SME data-processing instructions

1 if !HaveSMEI16I64() then UNDEFINED;
2 integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = FALSE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*esize) operand3 = ZAtile[da, esize];
8 bits(dim*dim*esize) result;
9 integer prod;

10
11 for row = 0 to dim-1
12 for col = 0 to dim-1
13 bits(esize) sum = Elem[operand3, row*dim+col, esize];
14 for k = 0 to 3
15 if ElemP[mask1, 4*row + k, esize DIV 4] == '1' &&
16 ElemP[mask2, 4*col + k, esize DIV 4] == '1' then
17 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
18 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
19 if sub_op then prod = -prod;
20 sum = sum + prod;
21
22 Elem[result, row*dim+col, esize] = sum;
23
24 ZAtile[da, esize] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

135

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.35 USMOPS

Unsigned by signed integer sum of outer products and subtract

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The unsigned by signed integer sum of outer products and subtract instructions multiply the sub-matrix in the first
source vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source
holds SVLS×4 sub-matrix of unsigned 8-bit integer values, and the second source holds 4×SVLS sub-matrix of
signed 8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of
unsigned 16-bit integer values, and the second source holds 4×SVLD sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively subtracted from the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit
integer and 16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and subtract
from each of the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of first source vector holds 4 consecutive column elements
of each row of a SVLS×4 sub-matrix, and each 32-bit container of second source vector holds 4 consecutive row
elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit container of
first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and each 64-bit
container of second source vector holds 4 consecutive row elements of each column of a 4×SVLD sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 0

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

u0 u1 S

USMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = FALSE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 1

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

ZAda

2 0

u0 u1 S

USMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

136

Chapter D1. SME instructions
D1.1. SME data-processing instructions

1 if !HaveSMEI16I64() then UNDEFINED;
2 integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = FALSE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 integer dim = VL DIV esize;
3 bits(PL) mask1 = P[a];
4 bits(PL) mask2 = P[b];
5 bits(VL) operand1 = Z[n];
6 bits(VL) operand2 = Z[m];
7 bits(dim*dim*esize) operand3 = ZAtile[da, esize];
8 bits(dim*dim*esize) result;
9 integer prod;

10
11 for row = 0 to dim-1
12 for col = 0 to dim-1
13 bits(esize) sum = Elem[operand3, row*dim+col, esize];
14 for k = 0 to 3
15 if ElemP[mask1, 4*row + k, esize DIV 4] == '1' &&
16 ElemP[mask2, 4*col + k, esize DIV 4] == '1' then
17 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
18 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
19 if sub_op then prod = -prod;
20 sum = sum + prod;
21
22 Elem[result, row*dim+col, esize] = sum;
23
24 ZAtile[da, esize] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

137

Chapter D1. SME instructions
D1.1. SME data-processing instructions

D1.1.36 ZERO

Zero a list of 64-bit element ZA tiles

Zeroes all bytes within each of the up to eight listed 64-bit element tiles named ZA0.D to ZA7.D, leaving the other
64-bit element tiles unmodified.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

For programmer convenience an assembler must also accept the names of 32-bit, 16-bit and 8-bit element tiles
which are converted into the corresponding set of 64-bit element tiles.

In accordance with the architecturally defined mapping between different element size tiles:

* Zeroing the 8-bit element tile name ZA0.B, or the entire array name ZA, is equivalent to zeroing all eight 64-bit
element tiles named ZA0.D to ZA7.D.

* Zeroing the 16-bit element tile name ZA0.H is equivalent to zeroing 64-bit element tiles named ZA0.D, ZA2.D,
ZA4.D and ZA6.D.

* Zeroing the 16-bit element tile name ZA1.H is equivalent to zeroing 64-bit element tiles named ZA1.D, ZA3.D,
ZA5.D and ZA7.D.

* Zeroing the 32-bit element tile name ZA0.S is equivalent to zeroing 64-bit element tiles named ZA0.D and
ZA4.D.

* Zeroing the 32-bit element tile name ZA1.S is equivalent to zeroing 64-bit element tiles named ZA1.D and
ZA5.D.

* Zeroing the 32-bit element tile name ZA2.S is equivalent to zeroing 64-bit element tiles named ZA2.D and
ZA6.D.

* Zeroing the 32-bit element tile name ZA3.S is equivalent to zeroing 64-bit element tiles named ZA3.D and
ZA7.D.

The preferred disassembly of this instruction uses the shortest list of tile names that represent the encoded
immediate mask.

For example:

* An immediate which encodes 64-bit element tiles ZA0.D, ZA1.D, ZA4.D and ZA5.D is disassembled as {ZA0.S,
ZA1.S}.

* An immediate which encodes 64-bit element tiles ZA0.D, ZA2.D, ZA4.D and ZA6.D is disassembled as
{ZA0.H}.

* An all-ones immediate is disassembled as {ZA}.

* An all-zeros immediate is disassembled as an empty list { }.

SME
(FEAT_SME)

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

31 10

0 0

9 8

imm8

7 0

ZERO { <mask>}

1 if !HaveSME() then UNDEFINED;
2 bits(8) mask = imm8;
3 integer esize = 64;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

138

Chapter D1. SME instructions
D1.1. SME data-processing instructions

Assembler Symbols

<mask> Is a list of up to eight 64-bit element tile names separated by commas, encoded in the "imm8"
field.

Operation
1 CheckSMEAndZAEnabled();
2 integer dim = SVL DIV esize;
3 bits(dim*dim*esize) result = Zeros();
4
5 if HaveTME() && TSTATE.depth > 0 then
6 FailTransaction(TMFailure_ERR, FALSE);
7
8 for i = 0 to 7
9 if mask<i> == '1' then ZAtile[i, esize] = result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

139

Chapter D1. SME instructions
D1.2. Base A64 instructions

D1.2 Base A64 instructions

The following Base A64 instructions are added or modified by the SME architecture.

D1.2.1 MSR (immediate)

Move immediate value to Special Register moves an immediate value to selected bits of the PSTATE. For more
information, see Process state, PSTATE.

The bits that can be written by this instruction are:

• PSTATE.D, PSTATE.A, PSTATE.I, PSTATE.F, and PSTATE.SP.

• If FEAT_SSBS is implemented, PSTATE.SSBS.

• If FEAT_PAN is implemented, PSTATE.PAN.

• If FEAT_UAO is implemented, PSTATE.UAO.

• If FEAT_DIT is implemented, PSTATE.DIT.

• If FEAT_MTE is implemented, PSTATE.TCO.

• If FEAT_NMI is implemented, PSTATE.ALLINT.

• If FEAT_SME is implemented, PSTATE.SM and PSTATE.ZA.

This instruction is used by the aliases SMSTART, and SMSTOP.

1 1 0 1 0 1 0 1 0 0

31 22

0

21

0 0

20 19

op1

18 16

0 1 0 0

15 12

CRm

11 8

op2

7 5

1 1 1 1 1

4 0

MSR <pstatefield>, #<imm>

1 if op1 == '000' && op2 == '000' then SEE "CFINV";
2 if op1 == '000' && op2 == '001' then SEE "XAFLAG";
3 if op1 == '000' && op2 == '010' then SEE "AXFLAG";
4
5 AArch64.CheckSystemAccess('00', op1, '0100', CRm, op2, '11111', '0');
6 bits(2) min_EL;
7 boolean need_secure = FALSE;
8
9 case op1 of

10 when '00x'
11 min_EL = EL1;
12 when '010'
13 min_EL = EL1;
14 when '011'
15 min_EL = EL0;
16 when '100'
17 min_EL = EL2;
18 when '101'
19 if !HaveVirtHostExt() then
20 UNDEFINED;
21 min_EL = EL2;
22 when '110'
23 min_EL = EL3;
24 when '111'
25 min_EL = EL1;
26 need_secure = TRUE;
27
28 if UInt(PSTATE.EL) < UInt(min_EL) || (need_secure && !IsSecure()) then
29 UNDEFINED;
30
31 bits(4) operand = CRm;
32 PSTATEField field;
33 case op1:op2 of
34 when '000 011'
35 if !HaveUAOExt() then UNDEFINED;
36 field = PSTATEField_UAO;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

140

Chapter D1. SME instructions
D1.2. Base A64 instructions

37 when '000 100'
38 if !HavePANExt() then UNDEFINED;
39 field = PSTATEField_PAN;
40 when '000 101' field = PSTATEField_SP;
41 when '001 000'
42 if !HaveFeatNMI() then UNDEFINED;
43 if CRm<3:1> != '000' then UNDEFINED;
44 field = PSTATEField_ALLINT;
45 when '011 010'
46 if !HaveDITExt() then UNDEFINED;
47 field = PSTATEField_DIT;
48 when '011 011'
49 case CRm of
50 when '001x'
51 if !HaveSME() then UNDEFINED;
52 field = PSTATEField_SVCRSM;
53 when '010x'
54 if !HaveSME() then UNDEFINED;
55 field = PSTATEField_SVCRZA;
56 when '011x'
57 if !HaveSME() then UNDEFINED;
58 field = PSTATEField_SVCRSMZA;
59 otherwise
60 UNDEFINED;
61 when '011 100'
62 if !HaveMTEExt() then UNDEFINED;
63 field = PSTATEField_TCO;
64 when '011 110' field = PSTATEField_DAIFSet;
65 when '011 111' field = PSTATEField_DAIFClr;
66 when '011 001'
67 if !HaveSSBSExt() then UNDEFINED;
68 field = PSTATEField_SSBS;
69 otherwise UNDEFINED;
70
71 // Check that an AArch64 MSR/MRS access to the DAIF flags is permitted
72 if PSTATE.EL == EL0 && field IN {PSTATEField_DAIFSet, PSTATEField_DAIFClr} then
73 if !ELUsingAArch32(EL1) && ((EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA == '0') then
74 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
75 AArch64.SystemAccessTrap(EL2, 0x18);
76 else
77 AArch64.SystemAccessTrap(EL1, 0x18);

Assembler Symbols

<pstatefield> Is a PSTATE field name. For the MSR instruction, this is encoded in "op1:op2:CRm":

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

141

Chapter D1. SME instructions
D1.2. Base A64 instructions

op1 op2 CRm <pstatefield> Architectural Feature
000 00x xxxx SEE PSTATE -
000 010 xxxx SEE PSTATE -
000 011 xxxx UAO FEAT_UAO
000 100 xxxx PAN FEAT_PAN
000 101 xxxx SPSel -
000 11x xxxx RESERVED -
001 000 000x ALLINT FEAT_NMI
001 000 001x RESERVED -
001 000 01xx RESERVED -
001 000 1xxx RESERVED -
001 001 xxxx RESERVED -
001 01x xxxx RESERVED -
001 1xx xxxx RESERVED -
010 xxx xxxx RESERVED -
011 000 xxxx RESERVED -
011 001 xxxx SSBS FEAT_SSBS
011 010 xxxx DIT FEAT_DIT
011 011 000x RESERVED -
011 011 001x SVCRSM FEAT_SME
011 011 010x SVCRZA FEAT_SME
011 011 011x SVCRSMZA FEAT_SME
011 011 1xxx RESERVED -
011 100 xxxx TCO FEAT_MTE
011 101 xxxx RESERVED -
011 110 xxxx DAIFSet -
011 111 xxxx DAIFClr -
1xx xxx xxxx RESERVED -

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field. Restricted
to the range 0 to 1, encoded in "CRm<0>", when <pstatefield> is ALLINT, SVCRSM,
SVCRSMZA, or SVCRZA.

Alias Conditions

Alias Is preferred when

SMSTART op1 == ’011’ && CRm == ’0xx1’ && op2 == ’011’

SMSTOP op1 == ’011’ && CRm == ’0xx0’ && op2 == ’011’

Operation
1 case field of
2 when PSTATEField_SSBS
3 PSTATE.SSBS = operand<0>;
4 when PSTATEField_SP
5 PSTATE.SP = operand<0>;
6 when PSTATEField_DAIFSet
7 PSTATE.D = PSTATE.D OR operand<3>;
8 PSTATE.A = PSTATE.A OR operand<2>;
9 PSTATE.I = PSTATE.I OR operand<1>;

10 PSTATE.F = PSTATE.F OR operand<0>;
11 when PSTATEField_DAIFClr
12 PSTATE.D = PSTATE.D AND NOT(operand<3>);
13 PSTATE.A = PSTATE.A AND NOT(operand<2>);
14 PSTATE.I = PSTATE.I AND NOT(operand<1>);
15 PSTATE.F = PSTATE.F AND NOT(operand<0>);
16 when PSTATEField_PAN
17 PSTATE.PAN = operand<0>;
18 when PSTATEField_UAO
19 PSTATE.UAO = operand<0>;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

142

Chapter D1. SME instructions
D1.2. Base A64 instructions

20 when PSTATEField_DIT
21 PSTATE.DIT = operand<0>;
22 when PSTATEField_TCO
23 PSTATE.TCO = operand<0>;
24 when PSTATEField_ALLINT
25 if (PSTATE.EL == EL1 && IsHCRXEL2Enabled() &&
26 HCRX_EL2.TALLINT == '1' && operand<0> == '1') then
27 AArch64.SystemAccessTrap(EL2, 0x18);
28 PSTATE.ALLINT = operand<0>;
29 when PSTATEField_SVCRSM
30 CheckSMEAccess();
31 SetPSTATE_SM(operand<0>);
32 when PSTATEField_SVCRZA
33 CheckSMEAccess();
34 SetPSTATE_ZA(operand<0>);
35 when PSTATEField_SVCRSMZA
36 CheckSMEAccess();
37 SetPSTATE_SM(operand<0>);
38 SetPSTATE_ZA(operand<0>);

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

143

Chapter D1. SME instructions
D1.2. Base A64 instructions

D1.2.2 SMSTART

Enables access to Streaming SVE mode and SME architectural state.

SMSTART enters Streaming SVE mode, and enables the SME ZA array storage.

SMSTART SM enters Streaming SVE mode, but does not enable the SME ZA array storage.

SMSTART ZA enables the SME ZA array storage, but does not cause an entry to Streaming SVE mode.

This is an alias of MSR (immediate). This means:

• The encodings in this description are named to match the encodings of MSR (immediate).

• The description of MSR (immediate) gives the operational pseudocode for this instruction.

System
(FEAT_SME)

1 1 0 1 0 1 0 1 0 0

31 22

0

21

0 0

20 19

0 1 1

18 16

0 1 0 0

15 12

0 x x 1

11 8

0 1 1

7 5

1 1 1 1 1

4 0

op1 CRm op2

SMSTART {<option>}

is equivalent to
MSR<pstatefield>, #1

and is always the preferred disassembly.

Assembler Symbols

<option> Is an optional mode, encoded in "CRm<2:1>":
CRm<2:1> <option>

00 RESERVED
01 SM
10 ZA
11 [no specifier]

<pstatefield> Is a PSTATE field name. For the MSR instruction, this is encoded in "op1:op2:CRm":

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

144

Chapter D1. SME instructions
D1.2. Base A64 instructions

op1 op2 CRm <pstatefield> Architectural Feature
000 00x xxxx SEE PSTATE -
000 010 xxxx SEE PSTATE -
000 011 xxxx UAO FEAT_UAO
000 100 xxxx PAN FEAT_PAN
000 101 xxxx SPSel -
000 11x xxxx RESERVED -
001 000 000x ALLINT FEAT_NMI
001 000 001x RESERVED -
001 000 01xx RESERVED -
001 000 1xxx RESERVED -
001 001 xxxx RESERVED -
001 01x xxxx RESERVED -
001 1xx xxxx RESERVED -
010 xxx xxxx RESERVED -
011 000 xxxx RESERVED -
011 001 xxxx SSBS FEAT_SSBS
011 010 xxxx DIT FEAT_DIT
011 011 000x RESERVED -
011 011 001x SVCRSM FEAT_SME
011 011 010x SVCRZA FEAT_SME
011 011 011x SVCRSMZA FEAT_SME
011 011 1xxx RESERVED -
011 100 xxxx TCO FEAT_MTE
011 101 xxxx RESERVED -
011 110 xxxx DAIFSet -
011 111 xxxx DAIFClr -
1xx xxx xxxx RESERVED -

Operation

The description of MSR (immediate) gives the operational pseudocode for this instruction.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

145

Chapter D1. SME instructions
D1.2. Base A64 instructions

D1.2.3 SMSTOP

Disables access to Streaming SVE mode and SME architectural state.

SMSTOP exits Streaming SVE mode, and disables the SME ZA array storage.

SMSTOP SM exits Streaming SVE mode, but does not disable the SME ZA array storage.

SMSTOP ZA disables the SME ZA array storage, but does not cause an exit from Streaming SVE mode.

This is an alias of MSR (immediate). This means:

• The encodings in this description are named to match the encodings of MSR (immediate).

• The description of MSR (immediate) gives the operational pseudocode for this instruction.

System
(FEAT_SME)

1 1 0 1 0 1 0 1 0 0

31 22

0

21

0 0

20 19

0 1 1

18 16

0 1 0 0

15 12

0 x x 0

11 8

0 1 1

7 5

1 1 1 1 1

4 0

op1 CRm op2

SMSTOP {<option>}

is equivalent to
MSR<pstatefield>, #0

and is always the preferred disassembly.

Assembler Symbols

<option> Is an optional mode, encoded in "CRm<2:1>":
CRm<2:1> <option>

00 RESERVED
01 SM
10 ZA
11 [no specifier]

<pstatefield> Is a PSTATE field name. For the MSR instruction, this is encoded in "op1:op2:CRm":

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

146

Chapter D1. SME instructions
D1.2. Base A64 instructions

op1 op2 CRm <pstatefield> Architectural Feature
000 00x xxxx SEE PSTATE -
000 010 xxxx SEE PSTATE -
000 011 xxxx UAO FEAT_UAO
000 100 xxxx PAN FEAT_PAN
000 101 xxxx SPSel -
000 11x xxxx RESERVED -
001 000 000x ALLINT FEAT_NMI
001 000 001x RESERVED -
001 000 01xx RESERVED -
001 000 1xxx RESERVED -
001 001 xxxx RESERVED -
001 01x xxxx RESERVED -
001 1xx xxxx RESERVED -
010 xxx xxxx RESERVED -
011 000 xxxx RESERVED -
011 001 xxxx SSBS FEAT_SSBS
011 010 xxxx DIT FEAT_DIT
011 011 000x RESERVED -
011 011 001x SVCRSM FEAT_SME
011 011 010x SVCRZA FEAT_SME
011 011 011x SVCRSMZA FEAT_SME
011 011 1xxx RESERVED -
011 100 xxxx TCO FEAT_MTE
011 101 xxxx RESERVED -
011 110 xxxx DAIFSet -
011 111 xxxx DAIFClr -
1xx xxx xxxx RESERVED -

Operation

The description of MSR (immediate) gives the operational pseudocode for this instruction.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

147

Chapter D1. SME instructions
D1.3. SVE2 instructions

D1.3 SVE2 instructions

The following SVE2 instructions are added by the SME architecture, but are also usable when the PE is not in
Streaming SVE mode, if FEAT_SVE2 is implemented.

D1.3.1 PSEL

Predicate select between predicate register or all-false

If the indexed element of the second source predicate is true, place the contents of the first source predicate register
into the destination predicate register, otherwise set the destination predicate to all-false. The indexed element is
determined by the sum of a general-purpose index register and an immediate, modulo the number of elements.
Does not set the condition flags.

SVE2
(FEAT_SME)

0 0 1 0 0 1 0 1

31 24

i1

23 22

1

21

tszl

20 18

Rv

17 16

0 1

15 14

Pn

13 10

0

9

Pm

8 5

0

4

Pd

3 0

tszh S

PSEL <Pd>, <Pn>, <Pm>.<T>[<Wv>, <imm>]

1 if !HaveSME() then UNDEFINED;
2 bits(5) imm5 = i1:tszh:tszl;
3 integer esize;
4 integer imm;
5 case tszh:tszl of
6 when '0000' UNDEFINED;
7 when '1000' esize = 64; imm = UInt(imm5<4>);
8 when 'x100' esize = 32; imm = UInt(imm5<4:3>);
9 when 'xx10' esize = 16; imm = UInt(imm5<4:2>);

10 when 'xxx1' esize = 8; imm = UInt(imm5<4:1>);
11 integer n = UInt(Pn);
12 integer m = UInt(Pm);
13 integer d = UInt(Pd);
14 integer v = UInt('011':Rv);

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in "tszh:tszl":
tszh tszl <T>
0 000 RESERVED
x xx1 B
x x10 H
x 100 S
1 000 D

<Wv> Is the 32-bit name of the vector select register W12-W15, encoded in the "Rv" field.

<imm> Is the element index, in the range 0 to one less than the number of vector elements in a
128-bit vector register, encoded in "i1:tszh:tszl".

Operation
1 CheckSVEEnabled();
2 integer elements = VL DIV esize;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

148

Chapter D1. SME instructions
D1.3. SVE2 instructions

3 bits(PL) operand1 = P[n];
4 bits(PL) operand2 = P[m];
5 bits(32) idx = X[v];
6 integer element = (UInt(idx) + imm) MOD elements;
7 bits(PL) result;
8
9 if ElemP[operand2, element, esize] == '1' then

10 result = operand1;
11 else
12 result = Zeros();
13
14 P[d] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

149

Chapter D1. SME instructions
D1.3. SVE2 instructions

D1.3.2 REVD

Reverse 64-bit doublewords in elements (predicated)

Reverse the order of 64-bit doublewords within each active element of the source vector, and place the results in
the corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

SVE2
(FEAT_SME)

0 0 0 0 0 1 0 1

31 24

0

23

0

22

1 0 1 1 1 0 1 0 0

21 13

Pg

12 10

Zn

9 5

Zd

4 0

size<1> size<0>

REVD <Zd>.Q, <Pg>/M, <Zn>.Q

1 if !HaveSME() then UNDEFINED;
2 integer esize = 128;
3 integer g = UInt(Pg);
4 integer n = UInt(Zn);
5 integer d = UInt(Zd);
6 integer swsize = 64;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation
1 CheckSVEEnabled();
2 integer elements = VL DIV esize;
3 bits(PL) mask = P[g];
4 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n] else Zeros();
5 bits(VL) result = Z[d];
6
7 for e = 0 to elements-1
8 if ElemP[mask, e, esize] == '1' then
9 bits(esize) element = Elem[operand, e, esize];

10 Elem[result, e, esize] = Reverse(element, swsize);
11
12 Z[d] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

150

Chapter D1. SME instructions
D1.3. SVE2 instructions

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

151

Chapter D1. SME instructions
D1.3. SVE2 instructions

D1.3.3 SCLAMP

Signed clamp to minimum/maximum vector

Clamp each signed element in the destination vector to between the signed minimum value in the corresponding
element of the first source vector and the signed maximum value in the corresponding element of the second source
vector and destructively write the results in the corresponding elements of the destination vector. This instruction
is unpredicated.

SVE2
(FEAT_SME)

0 1 0 0 0 1 0 0

31 24

size

23 22

0

21

Zm

20 16

1 1 0 0 0

15 11

0

10

Zn

9 5

Zd

4 0

U

SCLAMP <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

1 if !HaveSME() then UNDEFINED;
2 integer esize = 8 << UInt(size);
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckSVEEnabled();
2 integer elements = VL DIV esize;
3 bits(VL) operand1 = Z[n];
4 bits(VL) operand2 = Z[m];
5 bits(VL) operand3 = Z[d];
6 bits(VL) result;
7
8 for e = 0 to elements-1
9 integer element1 = SInt(Elem[operand1, e, esize]);

10 integer element2 = SInt(Elem[operand2, e, esize]);
11 integer element3 = SInt(Elem[operand3, e, esize]);
12 integer res = Min(Max(element1 , element3), element2);
13 Elem[result, e, esize] = res<esize-1:0>;
14
15 Z[d] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

152

Chapter D1. SME instructions
D1.3. SVE2 instructions

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

153

Chapter D1. SME instructions
D1.3. SVE2 instructions

D1.3.4 UCLAMP

Unsigned clamp to minimum/maximum vector

Clamp each unsigned element in the destination vector to between the unsigned minimum value in the
corresponding element of the first source vector and the unsigned maximum value in the corresponding element of
the second source vector and destructively write the results in the corresponding elements of the destination vector.
This instruction is unpredicated.

SVE2
(FEAT_SME)

0 1 0 0 0 1 0 0

31 24

size

23 22

0

21

Zm

20 16

1 1 0 0 0

15 11

1

10

Zn

9 5

Zd

4 0

U

UCLAMP <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

1 if !HaveSME() then UNDEFINED;
2 integer esize = 8 << UInt(size);
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckSVEEnabled();
2 integer elements = VL DIV esize;
3 bits(VL) operand1 = Z[n];
4 bits(VL) operand2 = Z[m];
5 bits(VL) operand3 = Z[d];
6 bits(VL) result;
7
8 for e = 0 to elements-1
9 integer element1 = UInt(Elem[operand1, e, esize]);

10 integer element2 = UInt(Elem[operand2, e, esize]);
11 integer element3 = UInt(Elem[operand3, e, esize]);
12 integer res = Min(Max(element1 , element3), element2);
13 Elem[result, e, esize] = res<esize-1:0>;
14
15 Z[d] = result;

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then when PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

154

Chapter D1. SME instructions
D1.3. SVE2 instructions

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

155

Part E
Appendices

Chapter E1
Instructions affected by SME

The behavior of some non-SME instructions is affected when SME is implemented and the PE is in Streaming
SVE mode.

This section lists affected instructions by the type of effect, with a description of the changes. It is a reference
summary of information that can be viewed in more detail in Arm® A64 Instruction Set Architecture Armv9, for
Armv9-A architecture profile [3].

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

157

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

E1.1 Illegal instructions in Streaming SVE mode

E1.1.1 Illegal Advanced SIMD instructions

The instruction encoding tables in this section are provided as an aid to understanding, and are consistent with the
A64 ISA in Armv8.7-A and Armv9.2-A, but will require correction if subsequent versions of the A64 ISA add
new instructions which overlap with these encodings.

AArch64 Advanced SIMD instructions with encodings that match the following patterns are illegal when the PE is
in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current Exception level:

A64 Encoding Pattern Encoding Block

0x00 110x xxxx xxxx xxxx xxxx xxxx xxxx Advanced SIMD structure load/store

0xx0 111x xxxx xxxx xxxx xxxx xxxx xxxx Advanced SIMD vector operations

01x1 111x xxxx xxxx xxxx xxxx xxxx xxxx Advanced SIMD single-element operations

1100 1110 xxxx xxxx xxxx xxxx xxxx xxxx Advanced SIMD cryptography extensions

With the exception of certain vector to GPR integer move instructions, and some single-element floating-point
instructions that match the following patterns and which execute normally when the PE is in Streaming SVE mode:

A64 Encoding Pattern Instructions or Instruction Class

0x00 1110 0000 0001 0010 11xx xxxx xxxx SMOV W|Xd,Vn.B[0]

0x00 1110 0000 0010 0010 11xx xxxx xxxx SMOV W|Xd,Vn.H[0]

0100 1110 0000 0100 0010 11xx xxxx xxxx SMOV Xd,Vn.S[0]

0000 1110 0000 0001 0011 11xx xxxx xxxx UMOV Wd,Vn.B[0]

0000 1110 0000 0010 0011 11xx xxxx xxxx UMOV Wd,Vn.H[0]

0000 1110 0000 0100 0011 11xx xxxx xxxx UMOV Wd,Vn.S[0]

0100 1110 0000 1000 0011 11xx xxxx xxxx UMOV Xd,Vn.D[0]

0101 1110 xx1x xxxx 11x1 11xx xxxx xxxx FMULX/FRECPS/FRSQRTS (scalar)

0101 1110 x10x xxxx 00x1 11xx xxxx xxxx FMULX/FRECPS/FRSQRTS (scalar, FP16)

01x1 1110 1x10 0001 11x1 10xx xxxx xxxx FRECPE/FRSQRTE/FRECPX (scalar)

01x1 1110 1111 1001 11x1 10xx xxxx xxxx FRECPE/FRSQRTE/FRECPX (scalar, FP16)

For the avoidance of doubt, A64 scalar floating-point instructions which match following encoding patterns remain
legal when the PE is in Streaming SVE mode:

A64 Encoding Pattern Instructions or Instruction Class

x001 111x xxxx xxxx xxxx xxxx xxxx xxxx Scalar floating-point operations

xx10 110x xxxx xxxx xxxx xxxx xxxx xxxx Load/store pair of FP registers

xx01 1100 xxxx xxxx xxxx xxxx xxxx xxxx Load FP register (PC-relative literal)

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

158

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

A64 Encoding Pattern Instructions or Instruction Class

xx11 1100 xx0x xxxx xxxx xxxx xxxx xxxx Load/store FP register (unscaled imm)

xx11 1100 xx1x xxxx xxxx xxxx xxxx xx10 Load/store FP register (register offset)

xx11 1101 xxxx xxxx xxxx xxxx xxxx xxxx Load/store FP register (scaled imm)

With the exception of the following floating-point operation which is illegal when the PE is in Streaming SVE
mode:

A64 Encoding Pattern Instructions or Instruction Class

0001 1110 0111 1110 0000 00xx xxxx xxxx FJCVTZS

E1.1.1.1 Vector instructions

This section lists by name those A64 Advanced SIMD instruction pages in which all encoding variants are illegal
when the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level.

The Advanced SIMD instructions described in the following pages, and their aliases, are affected in this way:

• ABS: Absolute value (vector).
• ADD (vector): Add (vector).
• ADDHN, ADDHN2: Add returning High Narrow.
• ADDP (scalar): Add Pair of elements (scalar).
• ADDP (vector): Add Pairwise (vector).
• ADDV: Add across Vector.
• AESD: AES single round decryption.
• AESE: AES single round encryption.
• AESIMC: AES inverse mix columns.
• AESMC: AES mix columns.
• AND (vector): Bitwise AND (vector).
• BCAX: Bit Clear and XOR.
• BFCVTN, BFCVTN2: Floating-point convert from single-precision to BFloat16 format (vector).
• BFDOT (by element): BFloat16 floating-point dot product (vector, by element).
• BFDOT (vector): BFloat16 floating-point dot product (vector).
• BFMLALB, BFMLALT (by element): BFloat16 floating-point widening multiply-add long (by element).
• BFMLALB, BFMLALT (vector): BFloat16 floating-point widening multiply-add long (vector).
• BFMMLA: BFloat16 floating-point matrix multiply-accumulate into 2x2 matrix.
• BIC (vector, immediate): Bitwise bit Clear (vector, immediate).
• BIC (vector, register): Bitwise bit Clear (vector, register).
• BIF: Bitwise Insert if False.
• BIT: Bitwise Insert if True.
• BSL: Bitwise Select.
• CLS (vector): Count Leading Sign bits (vector).
• CLZ (vector): Count Leading Zero bits (vector).
• CMEQ (register): Compare bitwise Equal (vector).
• CMEQ (zero): Compare bitwise Equal to zero (vector).
• CMGE (register): Compare signed Greater than or Equal (vector).
• CMGE (zero): Compare signed Greater than or Equal to zero (vector).
• CMGT (register): Compare signed Greater than (vector).
• CMGT (zero): Compare signed Greater than zero (vector).

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

159

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• CMHI (register): Compare unsigned Higher (vector).
• CMHS (register): Compare unsigned Higher or Same (vector).
• CMLE (zero): Compare signed Less than or Equal to zero (vector).
• CMLT (zero): Compare signed Less than zero (vector).
• CMTST: Compare bitwise Test bits nonzero (vector).
• CNT: Population Count per byte.
• DUP (element): Duplicate vector element to vector or scalar.
• DUP (general): Duplicate general-purpose register to vector.
• EOR (vector): Bitwise Exclusive OR (vector).
• EOR3: Three-way Exclusive OR.
• EXT: Extract vector from pair of vectors.
• FABD: Floating-point Absolute Difference (vector).
• FABS (vector): Floating-point Absolute value (vector).
• FACGE: Floating-point Absolute Compare Greater than or Equal (vector).
• FACGT: Floating-point Absolute Compare Greater than (vector).
• FADD (vector): Floating-point Add (vector).
• FADDP (scalar): Floating-point Add Pair of elements (scalar).
• FADDP (vector): Floating-point Add Pairwise (vector).
• FCADD: Floating-point Complex Add.
• FCMEQ (register): Floating-point Compare Equal (vector).
• FCMEQ (zero): Floating-point Compare Equal to zero (vector).
• FCMGE (register): Floating-point Compare Greater than or Equal (vector).
• FCMGE (zero): Floating-point Compare Greater than or Equal to zero (vector).
• FCMGT (register): Floating-point Compare Greater than (vector).
• FCMGT (zero): Floating-point Compare Greater than zero (vector).
• FCMLA: Floating-point Complex Multiply Accumulate.
• FCMLA (by element): Floating-point Complex Multiply Accumulate (by element).
• FCMLE (zero): Floating-point Compare Less than or Equal to zero (vector).
• FCMLT (zero): Floating-point Compare Less than zero (vector).
• FCVTAS (vector): Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector).
• FCVTAU (vector): Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector).
• FCVTL, FCVTL2: Floating-point Convert to higher precision Long (vector).
• FCVTMS (vector): Floating-point Convert to Signed integer, rounding toward Minus infinity (vector).
• FCVTMU (vector): Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector).
• FCVTN, FCVTN2: Floating-point Convert to lower precision Narrow (vector).
• FCVTNS (vector): Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector).
• FCVTNU (vector): Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector).
• FCVTPS (vector): Floating-point Convert to Signed integer, rounding toward Plus infinity (vector).
• FCVTPU (vector): Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector).
• FCVTXN, FCVTXN2: Floating-point Convert to lower precision Narrow, rounding to odd (vector).
• FCVTZS (vector, fixed-point): Floating-point Convert to Signed fixed-point, rounding toward Zero (vector).
• FCVTZS (vector, integer): Floating-point Convert to Signed integer, rounding toward Zero (vector).
• FCVTZU (vector, fixed-point): Floating-point Convert to Unsigned fixed-point, rounding toward Zero

(vector).
• FCVTZU (vector, integer): Floating-point Convert to Unsigned integer, rounding toward Zero (vector).
• FDIV (vector): Floating-point Divide (vector).
• FJCVTZS: Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero.
• FMAX (vector): Floating-point Maximum (vector).
• FMAXNM (vector): Floating-point Maximum Number (vector).
• FMAXNMP (scalar): Floating-point Maximum Number of Pair of elements (scalar).
• FMAXNMP (vector): Floating-point Maximum Number Pairwise (vector).
• FMAXNMV: Floating-point Maximum Number across Vector.
• FMAXP (scalar): Floating-point Maximum of Pair of elements (scalar).
• FMAXP (vector): Floating-point Maximum Pairwise (vector).
• FMAXV: Floating-point Maximum across Vector.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

160

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• FMIN (vector): Floating-point minimum (vector).
• FMINNM (vector): Floating-point Minimum Number (vector).
• FMINNMP (scalar): Floating-point Minimum Number of Pair of elements (scalar).
• FMINNMP (vector): Floating-point Minimum Number Pairwise (vector).
• FMINNMV: Floating-point Minimum Number across Vector.
• FMINP (scalar): Floating-point Minimum of Pair of elements (scalar).
• FMINP (vector): Floating-point Minimum Pairwise (vector).
• FMINV: Floating-point Minimum across Vector.
• FMLA (by element): Floating-point fused Multiply-Add to accumulator (by element).
• FMLA (vector): Floating-point fused Multiply-Add to accumulator (vector).
• FMLAL, FMLAL2 (by element): Floating-point fused Multiply-Add Long to accumulator (by element).
• FMLAL, FMLAL2 (vector): Floating-point fused Multiply-Add Long to accumulator (vector).
• FMLS (by element): Floating-point fused Multiply-Subtract from accumulator (by element).
• FMLS (vector): Floating-point fused Multiply-Subtract from accumulator (vector).
• FMLSL, FMLSL2 (by element): Floating-point fused Multiply-Subtract Long from accumulator (by element).
• FMLSL, FMLSL2 (vector): Floating-point fused Multiply-Subtract Long from accumulator (vector).
• FMOV (vector, immediate): Floating-point move immediate (vector).
• FMUL (by element): Floating-point Multiply (by element).
• FMUL (vector): Floating-point Multiply (vector).
• FMULX (by element): Floating-point Multiply extended (by element).
• FNEG (vector): Floating-point Negate (vector).
• FRINT32X (vector): Floating-point Round to 32-bit Integer, using current rounding mode (vector).
• FRINT32Z (vector): Floating-point Round to 32-bit Integer toward Zero (vector).
• FRINT64X (vector): Floating-point Round to 64-bit Integer, using current rounding mode (vector).
• FRINT64Z (vector): Floating-point Round to 64-bit Integer toward Zero (vector).
• FRINTA (vector): Floating-point Round to Integral, to nearest with ties to Away (vector).
• FRINTI (vector): Floating-point Round to Integral, using current rounding mode (vector).
• FRINTM (vector): Floating-point Round to Integral, toward Minus infinity (vector).
• FRINTN (vector): Floating-point Round to Integral, to nearest with ties to even (vector).
• FRINTP (vector): Floating-point Round to Integral, toward Plus infinity (vector).
• FRINTX (vector): Floating-point Round to Integral exact, using current rounding mode (vector).
• FRINTZ (vector): Floating-point Round to Integral, toward Zero (vector).
• FSQRT (vector): Floating-point Square Root (vector).
• FSUB (vector): Floating-point Subtract (vector).
• INS (element): Insert vector element from another vector element.
• INS (general): Insert vector element from general-purpose register.
• LD1 (multiple structures): Load multiple single-element structures to one, two, three, or four registers.
• LD1 (single structure): Load one single-element structure to one lane of one register.
• LD1R: Load one single-element structure and Replicate to all lanes (of one register).
• LD2 (multiple structures): Load multiple 2-element structures to two registers.
• LD2 (single structure): Load single 2-element structure to one lane of two registers.
• LD2R: Load single 2-element structure and Replicate to all lanes of two registers.
• LD3 (multiple structures): Load multiple 3-element structures to three registers.
• LD3 (single structure): Load single 3-element structure to one lane of three registers).
• LD3R: Load single 3-element structure and Replicate to all lanes of three registers.
• LD4 (multiple structures): Load multiple 4-element structures to four registers.
• LD4 (single structure): Load single 4-element structure to one lane of four registers.
• LD4R: Load single 4-element structure and Replicate to all lanes of four registers.
• MLA (by element): Multiply-Add to accumulator (vector, by element).
• MLA (vector): Multiply-Add to accumulator (vector).
• MLS (by element): Multiply-Subtract from accumulator (vector, by element).
• MLS (vector): Multiply-Subtract from accumulator (vector).
• MOVI: Move Immediate (vector).
• MUL (by element): Multiply (vector, by element).
• MUL (vector): Multiply (vector).

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

161

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• MVNI: Move inverted Immediate (vector).
• NEG (vector): Negate (vector).
• NOT: Bitwise NOT (vector).
• ORN (vector): Bitwise inclusive OR NOT (vector).
• ORR (vector, immediate): Bitwise inclusive OR (vector, immediate).
• ORR (vector, register): Bitwise inclusive OR (vector, register).
• PMUL: Polynomial Multiply.
• PMULL, PMULL2: Polynomial Multiply Long.
• RADDHN, RADDHN2: Rounding Add returning High Narrow.
• RAX1: Rotate and Exclusive OR.
• RBIT (vector): Reverse Bit order (vector).
• REV16 (vector): Reverse elements in 16-bit halfwords (vector).
• REV32 (vector): Reverse elements in 32-bit words (vector).
• REV64: Reverse elements in 64-bit doublewords (vector).
• RSHRN, RSHRN2: Rounding Shift Right Narrow (immediate).
• RSUBHN, RSUBHN2: Rounding Subtract returning High Narrow.
• SABA: Signed Absolute difference and Accumulate.
• SABAL, SABAL2: Signed Absolute difference and Accumulate Long.
• SABD: Signed Absolute Difference.
• SABDL, SABDL2: Signed Absolute Difference Long.
• SADALP: Signed Add and Accumulate Long Pairwise.
• SADDL, SADDL2: Signed Add Long (vector).
• SADDLP: Signed Add Long Pairwise.
• SADDLV: Signed Add Long across Vector.
• SADDW, SADDW2: Signed Add Wide.
• SCVTF (vector, fixed-point): Signed fixed-point Convert to Floating-point (vector).
• SCVTF (vector, integer): Signed integer Convert to Floating-point (vector).
• SDOT (by element): Dot Product signed arithmetic (vector, by element).
• SDOT (vector): Dot Product signed arithmetic (vector).
• SHA1C: SHA1 hash update (choose).
• SHA1H: SHA1 fixed rotate.
• SHA1M: SHA1 hash update (majority).
• SHA1P: SHA1 hash update (parity).
• SHA1SU0: SHA1 schedule update 0.
• SHA1SU1: SHA1 schedule update 1.
• SHA256H: SHA256 hash update (part 1).
• SHA256H2: SHA256 hash update (part 2).
• SHA256SU0: SHA256 schedule update 0.
• SHA256SU1: SHA256 schedule update 1.
• SHA512H: SHA512 Hash update part 1.
• SHA512H2: SHA512 Hash update part 2.
• SHA512SU0: SHA512 Schedule Update 0.
• SHA512SU1: SHA512 Schedule Update 1.
• SHADD: Signed Halving Add.
• SHL: Shift Left (immediate).
• SHLL, SHLL2: Shift Left Long (by element size).
• SHRN, SHRN2: Shift Right Narrow (immediate).
• SHSUB: Signed Halving Subtract.
• SLI: Shift Left and Insert (immediate).
• SM3PARTW1: SM3PARTW1.
• SM3PARTW2: SM3PARTW2.
• SM3SS1: SM3SS1.
• SM3TT1A: SM3TT1A.
• SM3TT1B: SM3TT1B.
• SM3TT2A: SM3TT2A.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

162

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• SM3TT2B: SM3TT2B.
• SM4E: SM4 Encode.
• SM4EKEY: SM4 Key.
• SMAX: Signed Maximum (vector).
• SMAXP: Signed Maximum Pairwise.
• SMAXV: Signed Maximum across Vector.
• SMIN: Signed Minimum (vector).
• SMINP: Signed Minimum Pairwise.
• SMINV: Signed Minimum across Vector.
• SMLAL, SMLAL2 (by element): Signed Multiply-Add Long (vector, by element).
• SMLAL, SMLAL2 (vector): Signed Multiply-Add Long (vector).
• SMLSL, SMLSL2 (by element): Signed Multiply-Subtract Long (vector, by element).
• SMLSL, SMLSL2 (vector): Signed Multiply-Subtract Long (vector).
• SMMLA (vector): Signed 8-bit integer matrix multiply-accumulate (vector).
• SMULL, SMULL2 (by element): Signed Multiply Long (vector, by element).
• SMULL, SMULL2 (vector): Signed Multiply Long (vector).
• SQABS: Signed saturating Absolute value.
• SQADD: Signed saturating Add.
• SQDMLAL, SQDMLAL2 (by element): Signed saturating Doubling Multiply-Add Long (by element).
• SQDMLAL, SQDMLAL2 (vector): Signed saturating Doubling Multiply-Add Long.
• SQDMLSL, SQDMLSL2 (by element): Signed saturating Doubling Multiply-Subtract Long (by element).
• SQDMLSL, SQDMLSL2 (vector): Signed saturating Doubling Multiply-Subtract Long.
• SQDMULH (by element): Signed saturating Doubling Multiply returning High half (by element).
• SQDMULH (vector): Signed saturating Doubling Multiply returning High half.
• SQDMULL, SQDMULL2 (by element): Signed saturating Doubling Multiply Long (by element).
• SQDMULL, SQDMULL2 (vector): Signed saturating Doubling Multiply Long.
• SQNEG: Signed saturating Negate.
• SQRDMLAH (by element): Signed Saturating Rounding Doubling Multiply Accumulate returning High

Half (by
• element).
• SQRDMLAH (vector): Signed Saturating Rounding Doubling Multiply Accumulate returning High Half

(vector).
• SQRDMLSH (by element): Signed Saturating Rounding Doubling Multiply Subtract returning High Half

(by element).
• SQRDMLSH (vector): Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector).
• SQRDMULH (by element): Signed saturating Rounding Doubling Multiply returning High half (by element).
• SQRDMULH (vector): Signed saturating Rounding Doubling Multiply returning High half.
• SQRSHL: Signed saturating Rounding Shift Left (register).
• SQRSHRN, SQRSHRN2: Signed saturating Rounded Shift Right Narrow (immediate).
• SQRSHRUN, SQRSHRUN2: Signed saturating Rounded Shift Right Unsigned Narrow (immediate).
• SQSHL (immediate): Signed saturating Shift Left (immediate).
• SQSHL (register): Signed saturating Shift Left (register).
• SQSHLU: Signed saturating Shift Left Unsigned (immediate).
• SQSHRN, SQSHRN2: Signed saturating Shift Right Narrow (immediate).
• SQSHRUN, SQSHRUN2: Signed saturating Shift Right Unsigned Narrow (immediate).
• SQSUB: Signed saturating Subtract.
• SQXTN, SQXTN2: Signed saturating extract Narrow.
• SQXTUN, SQXTUN2: Signed saturating extract Unsigned Narrow.
• SRHADD: Signed Rounding Halving Add.
• SRI: Shift Right and Insert (immediate).
• SRSHL: Signed Rounding Shift Left (register).
• SRSHR: Signed Rounding Shift Right (immediate).
• SRSRA: Signed Rounding Shift Right and Accumulate (immediate).
• SSHL: Signed Shift Left (register).
• SSHLL, SSHLL2: Signed Shift Left Long (immediate).

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

163

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• SSHR: Signed Shift Right (immediate).
• SSRA: Signed Shift Right and Accumulate (immediate).
• SSUBL, SSUBL2: Signed Subtract Long.
• SSUBW, SSUBW2: Signed Subtract Wide.
• ST1 (multiple structures): Store multiple single-element structures from one, two, three, or four registers.
• ST1 (single structure): Store a single-element structure from one lane of one register.
• ST2 (multiple structures): Store multiple 2-element structures from two registers.
• ST2 (single structure): Store single 2-element structure from one lane of two registers.
• ST3 (multiple structures): Store multiple 3-element structures from three registers.
• ST3 (single structure): Store single 3-element structure from one lane of three registers.
• ST4 (multiple structures): Store multiple 4-element structures from four registers.
• ST4 (single structure): Store single 4-element structure from one lane of four registers.
• SUB (vector): Subtract (vector).
• SUBHN, SUBHN2: Subtract returning High Narrow.
• SUDOT (by element): Dot product with signed and unsigned integers (vector, by element).
• SUQADD: Signed saturating Accumulate of Unsigned value.
• TBL: Table vector Lookup.
• TBX: Table vector lookup extension.
• TRN1: Transpose vectors (primary).
• TRN2: Transpose vectors (secondary).
• UABA: Unsigned Absolute difference and Accumulate.
• UABAL, UABAL2: Unsigned Absolute difference and Accumulate Long.
• UABD: Unsigned Absolute Difference (vector).
• UABDL, UABDL2: Unsigned Absolute Difference Long.
• UADALP: Unsigned Add and Accumulate Long Pairwise.
• UADDL, UADDL2: Unsigned Add Long (vector).
• UADDLP: Unsigned Add Long Pairwise.
• UADDLV: Unsigned sum Long across Vector.
• UADDW, UADDW2: Unsigned Add Wide.
• UCVTF (vector, fixed-point): Unsigned fixed-point Convert to Floating-point (vector).
• UCVTF (vector, integer): Unsigned integer Convert to Floating-point (vector).
• UDOT (by element): Dot Product unsigned arithmetic (vector, by element).
• UDOT (vector): Dot Product unsigned arithmetic (vector).
• UHADD: Unsigned Halving Add.
• UHSUB: Unsigned Halving Subtract.
• UMAX: Unsigned Maximum (vector).
• UMAXP: Unsigned Maximum Pairwise.
• UMAXV: Unsigned Maximum across Vector.
• UMIN: Unsigned Minimum (vector).
• UMINP: Unsigned Minimum Pairwise.
• UMINV: Unsigned Minimum across Vector.
• UMLAL, UMLAL2 (by element): Unsigned Multiply-Add Long (vector, by element).
• UMLAL, UMLAL2 (vector): Unsigned Multiply-Add Long (vector).
• UMLSL, UMLSL2 (by element): Unsigned Multiply-Subtract Long (vector, by element).
• UMLSL, UMLSL2 (vector): Unsigned Multiply-Subtract Long (vector).
• UMMLA (vector): Unsigned 8-bit integer matrix multiply-accumulate (vector).
• UMULL, UMULL2 (by element): Unsigned Multiply Long (vector, by element).
• UMULL, UMULL2 (vector): Unsigned Multiply long (vector).
• UQADD: Unsigned saturating Add.
• UQRSHL: Unsigned saturating Rounding Shift Left (register).
• UQRSHRN, UQRSHRN2: Unsigned saturating Rounded Shift Right Narrow (immediate).
• UQSHL (immediate): Unsigned saturating Shift Left (immediate).
• UQSHL (register): Unsigned saturating Shift Left (register).
• UQSHRN, UQSHRN2: Unsigned saturating Shift Right Narrow (immediate).
• UQSUB: Unsigned saturating Subtract.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

164

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• UQXTN, UQXTN2: Unsigned saturating extract Narrow.
• URECPE: Unsigned Reciprocal Estimate.
• URHADD: Unsigned Rounding Halving Add.
• URSHL: Unsigned Rounding Shift Left (register).
• URSHR: Unsigned Rounding Shift Right (immediate).
• URSQRTE: Unsigned Reciprocal Square Root Estimate.
• URSRA: Unsigned Rounding Shift Right and Accumulate (immediate).
• USDOT (by element): Dot Product with unsigned and signed integers (vector, by element).
• USDOT (vector): Dot Product with unsigned and signed integers (vector).
• USHL: Unsigned Shift Left (register).
• USHLL, USHLL2: Unsigned Shift Left Long (immediate).
• USHR: Unsigned Shift Right (immediate).
• USMMLA (vector): Unsigned and signed 8-bit integer matrix multiply-accumulate (vector).
• USQADD: Unsigned saturating Accumulate of Signed value.
• USRA: Unsigned Shift Right and Accumulate (immediate).
• USUBL, USUBL2: Unsigned Subtract Long.
• USUBW, USUBW2: Unsigned Subtract Wide.
• UZP1: Unzip vectors (primary).
• UZP2: Unzip vectors (secondary).
• XAR: Exclusive OR and Rotate.
• XTN, XTN2: Extract Narrow.
• ZIP1: Zip vectors (primary).
• ZIP2: Zip vectors (secondary).

If execution of an illegal Advanced SIMD instruction is attempted when the PE is in Streaming SVE mode, and the
instructions are not configured to trap, this will cause an SME exception to be taken, as defined by rule RDTCLZ in
C2.2.1 Exception priorities.

E1.1.1.2 Single-element instructions

This section lists by name those A64 Advanced SIMD instruction pages in which only the SIMD “Vector” encoding
variants can be illegal when the PE is in Streaming SVE mode, but in which the single-element “Scalar” encoding
variants are always legal in Streaming SVE mode.

The Vector encodings of Advanced SIMD instructions described in the following pages are affected in this way:

• FMULX: Floating-point Multiply extended.
• FRECPE: Floating-point Reciprocal Estimate.
• FRECPS: Floating-point Reciprocal Step.
• FRECPX: Floating-point Reciprocal Exponent.1

• FRSQRTE: Floating-point Reciprocal Square Root Estimate.
• FRSQRTS: Floating-point Reciprocal Square Root Step.

E1.1.1.3 Element move to general register

The following Advanced SIMD instructions and their aliases can only be illegal when the PE is in Streaming SVE
mode if their immediate vector element index is greater than zero. They are always legal in Streaming SVE mode
when their element index is zero:

• SMOV: Signed Move vector element to general-purpose register.
• UMOV: Unsigned Move vector element to general-purpose register.

The 64-bit to top half of 128-bit and Top half of 128-bit to 64-bit variants from the following instruction page are
part of the scalar floating-point instruction set and therefore execute normally when the PE is in Streaming SVE
mode:

1FRECPX is an exception in that it only has a single-element form.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

165

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• FMOV (general): Floating-point Move to or from general-purpose register without conversion.

E1.1.2 Illegal SVE instructions

Allocated SVE and SVE2 instructions with encodings that match the following patterns are illegal when the PE is
in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current Exception level:

A64 Encoding Pattern SVE Instructions or Instruction Class

0000 0100 xx1x xxxx 1010 xxxx xxxx xxxx ADR

0000 0100 xx1x xxxx 1011 x0xx xxxx xxxx FTSSEL, FEXPA

0000 0101 xx10 0001 100x xxxx xxxx xxxx COMPACT

0010 0101 xx01 100x 1111 000x xxx0 xxxx RDFFR, RDFFRS

0010 0101 xx10 1xxx 1001 xxxx xxxx xxxx WRFFR, SETFFR

0100 0101 xx0x xxxx 1011 xxxx xxxx xxxx BDEP, BEXT, BGRP

0100 0101 000x xxxx 0110 1xxx xxxx xxxx PMULLB, PMULLT (128b result)

0110 0100 xx1x xxxx 1110 01xx xxxx xxxx FMMLA, BFMMLA

0110 0101 xx0x xxxx 0000 11xx xxxx xxxx FTSMUL

0110 0101 xx01 0xxx 100x xxxx xxxx xxxx FTMAD

0110 0101 xx01 1xxx 001x xxxx xxxx xxxx FADDA

0100 0101 xx0x xxxx 1001 10xx xxxx xxxx SMMLA, UMMLA, USMMLA

0100 0101 xx1x xxxx 1xxx xxxx xxxx xxxx SVE2 string/histo/crypto instructions

1000 010x x00x xxxx 10xx xxxx xxxx xxxx SVE2 32-bit gather NT load (vector+scalar)

1000 010x x00x xxxx 111x xxxx xxxx xxxx SVE 32-bit gather prefetch (vector+imm)

1000 0100 0x1x xxxx 0xxx xxxx xxxx xxxx SVE 32-bit gather prefetch (scalar+vector)

1000 010x x01x xxxx 1xxx xxxx xxxx xxxx SVE 32-bit gather load (vector+imm)

1000 0100 0x0x xxxx 0xxx xxxx xxxx xxxx SVE 32-bit gather load byte (scalar+vector)

1000 0100 1xxx xxxx 0xxx xxxx xxxx xxxx SVE 32-bit gather load half (scalar+vector)

1000 0101 0xxx xxxx 0xxx xxxx xxxx xxxx SVE 32-bit gather load word (scalar+vector)

1010 010x xxxx xxxx 011x xxxx xxxx xxxx SVE contiguous FF load (scalar+scalar)

1010 010x xxx1 xxxx 101x xxxx xxxx xxxx SVE contiguous NF load (scalar+imm)

1010 010x x10x xxxx 000x xxxx xxxx xxxx SVE load & replicate 32 bytes (scalar+scalar)

1010 010x x100 xxxx 001x xxxx xxxx xxxx SVE load & replicate 32 bytes (scalar+imm)

1100 010x xxxx xxxx xxxx xxxx xxxx xxxx SVE 64-bit gather load/prefetch

1110 010x x00x xxxx 001x xxxx xxxx xxxx SVE2 64-bit scatter NT store (vector+scalar)

1110 010x x10x xxxx 001x xxxx xxxx xxxx SVE2 32-bit scatter NT store (vector+scalar)

1110 010x xxxx xxxx 1x0x xxxx xxxx xxxx SVE scatter store (scalar+32-bit vector)

1110 010x xxxx xxxx 101x xxxx xxxx xxxx SVE scatter store (misc)

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

166

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

The following SVE and SVE2 instructions and their aliases are affected:

• ADR: Compute vector address.
• AESD: AES single round decryption.
• AESE: AES single round encryption.
• AESIMC: AES inverse mix columns.
• AESMC: AES mix columns.
• BDEP: Scatter lower bits into positions selected by bitmask
• BEXT: Gather lower bits from positions selected by bitmask.
• BFMMLA: BFloat16 floating-point matrix multiply-accumulate.
• BGRP: Group bits to right or left as selected by bitmask.
• COMPACT: Shuffle active elements of vector to the right and fill with zero.
• FADDA: Floating-point add strictly-ordered reduction, accumulating in scalar.
• FEXPA: Floating-point exponential accelerator.
• FMMLA: Floating-point matrix multiply-accumulate.
• FTMAD: Floating-point trigonometric multiply-add coefficient.
• FTSMUL: Floating-point trigonometric starting value.
• FTSSEL: Floating-point trigonometric select coefficient.
• HISTCNT: Count matching elements in vector.
• HISTSEG: Count matchine elements in vector segments.
• LD1B (scalar plus vector): Gather load unsigned bytes to vector (vector index).
• LD1B (vector plus immediate): Gather load unsigned bytes to vector (immediate index).
• LD1D (scalar plus vector): Gather load doublewords to vector (vector index).
• LD1D (vector plus immediate): Gather load doublewords to vector (immediate index).
• LD1H (scalar plus vector): Gather load unsigned halfwords to vector (vector index).
• LD1H (vector plus immediate): Gather load unsigned halfwords to vector (immediate index).
• LD1ROB (scalar plus immediate): Contiguous load and replicate thirty-two bytes (immediate index).
• LD1ROB (scalar plus scalar): Contiguous load and replicate thirty-two bytes (scalar index).
• LD1ROD (scalar plus immediate): Contiguous load and replicate four doublewords (immediate index).
• LD1ROD (scalar plus scalar): Contiguous load and replicate four doublewords (scalar index).
• LD1ROH (scalar plus immediate): Contiguous load and replicate sixteen halfwords (immediate index).
• LD1ROH (scalar plus scalar): Contiguous load and replicate sixteen halfwords (scalar index).
• LD1ROW (scalar plus immediate): Contiguous load and replicate eight words (immediate index).
• LD1ROW (scalar plus scalar): Contiguous load and replicate eight words (scalar index).
• LD1SB (scalar plus vector): Gather load signed bytes to vector (vector index).
• LD1SB (vector plus immediate): Gather load signed bytes to vector (immediate index).
• LD1SH (scalar plus vector): Gather load signed halfwords to vector (vector index).
• LD1SH (vector plus immediate): Gather load signed halfwords to vector (immediate index).
• LD1SW (scalar plus vector): Gather load signed words to vector (vector index).
• LD1SW (vector plus immediate): Gather load signed words to vector (immediate index).
• LD1W (scalar plus vector): Gather load unsigned words to vector (vector index).
• LD1W (vector plus immediate): Gather load unsigned words to vector (immediate index).
• LDFF1B (scalar plus scalar): Contiguous load first-fault unsigned bytes to vector (scalar index).
• LDFF1B (scalar plus vector): Gather load first-fault unsigned bytes to vector (vector index).
• LDFF1B (vector plus immediate): Gather load first-fault unsigned bytes to vector (immediate index).
• LDFF1D (scalar plus scalar): Contiguous load first-fault doublewords to vector (scalar index).
• LDFF1D (scalar plus vector): Gather load first-fault doublewords to vector (vector index).
• LDFF1D (vector plus immediate): Gather load first-fault doublewords to vector (immediate index).
• LDFF1H (scalar plus scalar): Contiguous load first-fault unsigned halfwords to vector (scalar index).
• LDFF1H (scalar plus vector): Gather load first-fault unsigned halfwords to vector (vector index).
• LDFF1H (vector plus immediate): Gather load first-fault unsigned halfwords to vector (immediate index).
• LDFF1SB (scalar plus scalar): Contiguous load first-fault signed bytes to vector (scalar index).
• LDFF1SB (scalar plus vector): Gather load first-fault signed bytes to vector (vector index).
• LDFF1SB (vector plus immediate): Gather load first-fault signed bytes to vector (immediate index).
• LDFF1SH (scalar plus scalar): Contiguous load first-fault signed halfwords to vector (scalar index).

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

167

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• LDFF1SH (scalar plus vector): Gather load first-fault signed halfwords to vector (vector index).
• LDFF1SH (vector plus immediate): Gather load first-fault signed halfwords to vector (immediate index).
• LDFF1SW (scalar plus scalar): Contiguous load first-fault signed words to vector (scalar index).
• LDFF1SW (scalar plus vector): Gather load first-fault signed words to vector (vector index).
• LDFF1SW (vector plus immediate): Gather load first-fault signed words to vector (immediate index).
• LDFF1W (scalar plus scalar): Contiguous load first-fault unsigned words to vector (scalar index).
• LDFF1W (scalar plus vector): Gather load first-fault unsigned words to vector (vector index).
• LDFF1W (vector plus immediate): Gather load first-fault unsigned words to vector (immediate index).
• LDNF1B: Contiguous load non-fault unsigned bytes to vector (immediate index).
• LDNF1D: Contiguous load non-fault doublewords to vector (immediate index).
• LDNF1H: Contiguous load non-fault unsigned halfwords to vector (immediate index).
• LDNF1SB: Contiguous load non-fault signed bytes to vector (immediate index).
• LDNF1SH: Contiguous load non-fault signed halfwords to vector (immediate index).
• LDNF1SW: Contiguous load non-fault signed words to vector (immediate index).
• LDNF1W: Contiguous load non-fault unsigned words to vector (immediate index).
• LDNT1B (vector plus scalar): Gather load non-temporal unsigned bytes.
• LDNT1D (vector plus scalar): Gather load non-temporal unsigned doublewords.
• LDNT1H (vector plus scalar): Gather load non-temporal unsigned halfwords.
• LDNT1SB: Gather load non-temporal signed bytes.
• LDNT1SH: Gather load non-temporal signed halfwords.
• LDNT1SW: Gather load non-temporal signed words.
• LDNT1W (vector plus scalar): Gather load non-temporal unsigned words.
• MATCH: Detect any matching elements, setting the condition flags.
• NMATCH: Detect no matching elements, setting the condition flags.
• PMULLB: Polynomial multiply long (bottom) [128b result only].
• PMULLT: Polynomial multiply long (top) [128b result only].
• PRFB (scalar plus vector): Gather prefetch bytes (scalar plus vector).
• PRFB (vector plus immediate): Gather prefetch bytes (vector plus immediate).
• PRFD (scalar plus vector): Gather prefetch doublewords (scalar plus vector).
• PRFD (vector plus immediate): Gather prefetch doublewords (vector plus immediate).
• PRFH (scalar plus vector): Gather prefetch halfwords (scalar plus vector).
• PRFH (vector plus immediate): Gather prefetch halfwords (vector plus immediate).
• PRFW (scalar plus vector): Gather prefetch words (scalar plus vector).
• PRFW (vector plus immediate): Gather prefetch words (vector plus immediate).
• RAX1: Bitwise rotate left by 1 and exclusive OR.
• RDFFR (unpredicated): Read the first-fault register.
• RDFFR, RDFFRS (predicated): Return predicate of succesfully loaded elements.
• SETFFR: Initialise the first-fault register to all true.
• SM4E: SM4 encryption and decryption.
• SM4EKEY: SM4 key updates.
• SMMLA: Signed integer matrix multiply-accumulate.
• ST1B (scalar plus vector): Scatter store bytes from a vector (vector index).
• ST1B (vector plus immediate): Scatter store bytes from a vector (immediate index).
• ST1D (scalar plus vector): Scatter store doublewords from a vector (vector index).
• ST1D (vector plus immediate): Scatter store doublewords from a vector (immediate index).
• ST1H (scalar plus vector): Scatter store halfwords from a vector (vector index).
• ST1H (vector plus immediate): Scatter store halfwords from a vector (immediate index).
• ST1W (scalar plus vector): Scatter store words from a vector (vector index).
• ST1W (vector plus immediate): Scatter store words from a vector (immediate index).
• STNT1B (vector plus scalar): Scatter store non-temporal bytes.
• STNT1D (vector plus scalar): Scatter store non-temporal doublewords.
• STNT1H (vector plus scalar): Scatter store non-temporal halfwords.
• STNT1W (vector plus scalar): Scatter store non-temporal words.
• UMMLA: Unsigned integer matrix multiply-accumulate.
• USMMLA: Unsigned by signed integer matrix multiply-accumulate.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

168

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• WRFFR: Write the first-fault register.

If execution of an illegal SVE or SVE2 instruction is attempted when the PE is in Streaming SVE mode, and SVE
instructions are not configured to trap, this will cause an SME exception to be taken, as defined by rule RPLYVH in
C2.2.1 Exception priorities.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

169

Chapter E1. Instructions affected by SME
E1.2. Unimplemented SVE instructions

E1.2 Unimplemented SVE instructions

If execution of any SVE or SVE2 instruction is attempted when the PE is not in Streaming SVE mode and
FEAT_SVE or FEAT_SVE2 is not implemented by the PE, and the instructions are not configured to trap, this will
cause an SME exception to be taken, as defined by rule RPLYVH in C2.2.1 Exception priorities.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

170

Chapter E1. Instructions affected by SME
E1.3. Reduced performance in Streaming SVE mode

E1.3 Reduced performance in Streaming SVE mode

Instructions which are dependent on results generated from vector or SIMD&FP register sources written to a
general-purpose destination register, a predicate destination register, or the NZCV condition flags, might be
significantly delayed if the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled
at the current Exception level.

The following subsections list the instructions that are affected by this change.

E1.3.1 Scalar floating-point instructions

The following scalar floating-point instructions are affected.

• FCCMP: Floating-point Conditional quiet Compare (scalar).
• FCCMPE: Floating-point Conditional signaling Compare (scalar).
• FCMP: Floating-point quiet Compare (scalar).
• FCMPE: Floating-point signaling Compare (scalar).
• FCVTAS (scalar): Floating-point Convert to Signed integer, rounding to nearest with ties to Away (scalar).
• FCVTAU (scalar): Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (scalar).
• FCVTMS (scalar): Floating-point Convert to Signed integer, rounding toward Minus infinity (scalar).
• FCVTMU (scalar): Floating-point Convert to Unsigned integer, rounding toward Minus infinity (scalar).
• FCVTNS (scalar): Floating-point Convert to Signed integer, rounding to nearest with ties to even (scalar).
• FCVTNU (scalar): Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (scalar).
• FCVTPS (scalar): Floating-point Convert to Signed integer, rounding toward Plus infinity (scalar).
• FCVTPU (scalar): Floating-point Convert to Unsigned integer, rounding toward Plus infinity (scalar).
• FCVTZS (scalar, fixed-point): Floating-point Convert to Signed fixed-point, rounding toward Zero (scalar).
• FCVTZS (scalar, integer): Floating-point Convert to Signed integer, rounding toward Zero (scalar).
• FCVTZU (scalar, fixed-point): Floating-point Convert to Unsigned fixed-point, rounding toward Zero

(scalar).
• FCVTZU (scalar, integer): Floating-point Convert to Unsigned integer, rounding toward Zero (scalar).

This only applies to the variants of the following scalar floating-point instructions that write to a general-purpose
register:

• FMOV (general): Floating-point Move to or from general-purpose register without conversion.

E1.3.2 SVE instructions

The following SVE instructions are affected.

• ANDS (predicates): Bitwise AND predicates.
• BICS (predicates): Bitwise clear predicates.
• BRKAS: Break after first true condition.
• BRKBS: Break before first true condition.
• BRKNS: Propagate break to next partition.
• BRKPAS: Break after first true condition, propagating from previous partition.
• BRKPBS: Break before first true condition, propagating from previous partition.
• CLASTA (scalar): Conditionally extract element after last to general-purpose register.
• CLASTB (scalar): Conditionally extract last element to general-purpose register.
• CMP<cc> (immediate): Compare vector to immediate.
• CMP<cc> (vectors): Compare vectors.
• CMP<cc> (wide elements): Compare vector to 64-bit wide elements.
• CNTP: Set scalar to count of true predicate elements.
• DECP (scalar): Decrement scalar by count of true predicate elements.
• EORS (predicates): Bitwise exclusive OR predicates.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

171

Chapter E1. Instructions affected by SME
E1.3. Reduced performance in Streaming SVE mode

• FAC<cc>: Floating-point absolute compare vectors.
• FCM<cc> (vectors): Floating-point compare vectors.
• FCM<cc> (zero): Floating-point compare vector with zero.
• INCP (scalar): Increment scalar by count of true predicate elements.
• LASTA (scalar): Extract element after last to general-purpose register.
• LASTB (scalar): Extract last element to general-purpose register.
• NANDS: Bitwise NAND predicates.
• NORS: Bitwise NOR predicates.
• ORNS (predicates): Bitwise inclusive OR inverted predicate.
• ORRS (predicates): Bitwise inclusive OR predicate.
• PFIRST: Set the first active predicate element to true.
• PNEXT: Find next active predicate.
• PTEST: Set condition flags for predicate.
• PTRUES: Initialise predicate from named constraint.
• SQDECP (scalar): Signed saturating decrement scalar by count of true predicate elements.
• SQINCP (scalar): Signed saturating increment scalar by count of true predicate elements.
• UQDECP (scalar): Unsigned saturating decrement scalar by count of true predicate elements.
• UQINCP (scalar): Unsigned saturating increment scalar by count of true predicate elements.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

172

Chapter E2
SME Shared pseudocode

E2.1 AArch64.CheckFPAdvSIMDEnabled

1 // AArch64.CheckFPAdvSIMDEnabled()
2 // ===============================
3
4 AArch64.CheckFPAdvSIMDEnabled()
5 AArch64.CheckFPEnabled();
6 // Check for illegal use of Advanced
7 // SIMD in Streaming SVE Mode
8 if HaveSME() && PSTATE.SM == '1' && !IsFullA64Enabled() then
9 SMEAccessTrap(SMEExceptionType_Streaming, PSTATE.EL);

E2.2 BFDotAdd

1 // BFDotAdd()
2 // ==========
3 // BFloat16 2-way dot-product and add to single-precision
4 // result = addend + op1_a*op2_a + op1_b*op2_b
5
6 bits(32) BFDotAdd(bits(32) addend, bits(16) op1_a, bits(16) op1_b,
7 bits(16) op2_a, bits(16) op2_b, FPCRType fpcr_in)
8 FPCRType fpcr = fpcr_in;
9

10 bits(32) prod;
11
12 bits(32) result;
13 if !HaveEBF16() || fpcr.EBF == '0' then // Standard BFloat16 behaviors
14 prod = BFAdd(BFMul(op1_a, op2_a), BFMul(op1_b, op2_b));
15 result = BFAdd(addend, prod);
16 else // Extended BFloat16 behaviors
17 boolean isbfloat16 = TRUE;
18 boolean fpexc = FALSE; // Do not generate floating-point exceptions
19 fpcr.DN = '1'; // Generate default NaN values

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

173

Chapter E2. SME Shared pseudocode
E2.3. CheckFPAdvSIMDEnabled64

20 prod = FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc);
21 result = FPAdd(addend, prod, fpcr, fpexc);
22
23 return result;

E2.3 CheckFPAdvSIMDEnabled64

1 // CheckFPAdvSIMDEnabled64()
2 // =========================
3 // AArch64 instruction wrapper
4
5 CheckFPAdvSIMDEnabled64()
6 AArch64.CheckFPAdvSIMDEnabled();

E2.4 CheckNonStreamingSVEEnabled

1 // CheckNonStreamingSVEEnabled()
2 // =============================
3 // Checks for traps on SVE instructions that are not legal in streaming mode.
4
5 CheckNonStreamingSVEEnabled()
6 CheckSVEEnabled();
7
8 if HaveSME() && PSTATE.SM == '1' && !IsFullA64Enabled() then
9 SMEAccessTrap(SMEExceptionType_Streaming, PSTATE.EL);

E2.5 CheckSMEAccess

1 // CheckSMEAccess()
2 // ================
3 // Check that access to SME System registers is enabled.
4
5 CheckSMEAccess()
6 boolean disabled;
7 // Check if access disabled in CPACR_EL1
8 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
9 // Check SME at EL0/EL1

10 case CPACR_EL1.SMEN of
11 when 'x0' disabled = TRUE;
12 when '01' disabled = PSTATE.EL == EL0;
13 when '11' disabled = FALSE;
14 if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL1);
15
16 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
17 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
18 // Check SME at EL2
19 case CPTR_EL2.SMEN of
20 when 'x0' disabled = TRUE;
21 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
22 when '11' disabled = FALSE;
23 if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);
24 else
25 if CPTR_EL2.TSM == '1' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);
26
27 // Check if access disabled in CPTR_EL3
28 if HaveEL(EL3) then
29 if CPTR_EL3.ESM == '0' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL3);

E2.6 CheckSMEAndZAEnabled

1 // CheckSMEAndZAEnabled()
2 // ======================
3
4 CheckSMEAndZAEnabled()
5 CheckSMEEnabled();
6
7 if PSTATE.ZA == '0' then
8 SMEAccessTrap(SMEExceptionType_InactiveZA, PSTATE.EL);

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

174

Chapter E2. SME Shared pseudocode
E2.7. CheckSMEEnabled

E2.7 CheckSMEEnabled

1 // CheckSMEEnabled()
2 // =================
3
4 CheckSMEEnabled()
5 boolean disabled;
6 // Check if access disabled in CPACR_EL1
7 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
8 // Check SME at EL0/EL1
9 case CPACR_EL1.SMEN of

10 when 'x0' disabled = TRUE;
11 when '01' disabled = PSTATE.EL == EL0;
12 when '11' disabled = FALSE;
13 if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL1);
14
15 // Check SIMD&FP at EL0/EL1
16 case CPACR_EL1.FPEN of
17 when 'x0' disabled = TRUE;
18 when '01' disabled = PSTATE.EL == EL0;
19 when '11' disabled = FALSE;
20 if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);
21
22 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
23 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
24 // Check SME at EL2
25 case CPTR_EL2.SMEN of
26 when 'x0' disabled = TRUE;
27 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
28 when '11' disabled = FALSE;
29 if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);
30
31 // Check SIMD&FP at EL2
32 case CPTR_EL2.FPEN of
33 when 'x0' disabled = TRUE;
34 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
35 when '11' disabled = FALSE;
36 if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
37 else
38 if CPTR_EL2.TSM == '1' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);
39 if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);
40
41 // Check if access disabled in CPTR_EL3
42 if HaveEL(EL3) then
43 if CPTR_EL3.ESM == '0' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL3);
44 if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);

E2.8 CheckStreamingSVEAndZAEnabled

1 // CheckStreamingSVEAndZAEnabled()
2 // ===============================
3
4 CheckStreamingSVEAndZAEnabled()
5 CheckStreamingSVEEnabled();
6
7 if PSTATE.ZA == '0' then
8 SMEAccessTrap(SMEExceptionType_InactiveZA, PSTATE.EL);

E2.9 CheckStreamingSVEEnabled

1 // CheckStreamingSVEEnabled()
2 // ==========================
3
4 CheckStreamingSVEEnabled()
5 CheckSMEEnabled();
6
7 if PSTATE.SM == '0' then
8 SMEAccessTrap(SMEExceptionType_NotStreaming, PSTATE.EL);

E2.10 FPDot

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

175

Chapter E2. SME Shared pseudocode
E2.10. FPDot

1 // FPDot()
2 // =======
3 // Calculates single-precision result of 2-way 16-bit floating-point dot-product
4 // with a single rounding.
5 // The 'fpcr' argument supplies the FPCR control bits and 'isbfloat16'
6 // determines whether input operands are BFloat16 or half-precision type.
7 // and 'fpexc' controls the generation of floating-point exceptions.
8
9 bits(N) FPDot(bits(N DIV 2) op1_a, bits(N DIV 2) op1_b, bits(N DIV 2) op2_a,

10 bits(N DIV 2) op2_b, FPCRType fpcr, boolean isbfloat16)
11 boolean fpexc = TRUE; // Generate floating-point exceptions
12 return FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc);
13
14 bits(N) FPDot(bits(N DIV 2) op1_a, bits(N DIV 2) op1_b, bits(N DIV 2) op2_a,
15 bits(N DIV 2) op2_b, FPCRType fpcr_in, boolean isbfloat16, boolean fpexc)
16 FPCRType fpcr = fpcr_in;
17
18 assert N == 32;
19 bits(N) result;
20 fpcr.AHP = '0'; // Ignore alternative half-precision option
21 rounding = FPRoundingMode(fpcr);
22
23 (type1_a,sign1_a,value1_a) = FPUnpackBase(op1_a, fpcr, fpexc, isbfloat16);
24 (type1_b,sign1_b,value1_b) = FPUnpackBase(op1_b, fpcr, fpexc, isbfloat16);
25 (type2_a,sign2_a,value2_a) = FPUnpackBase(op2_a, fpcr, fpexc, isbfloat16);
26 (type2_b,sign2_b,value2_b) = FPUnpackBase(op2_b, fpcr, fpexc, isbfloat16);
27
28 inf1_a = (type1_a == FPType_Infinity); zero1_a = (type1_a == FPType_Zero);
29 inf1_b = (type1_b == FPType_Infinity); zero1_b = (type1_b == FPType_Zero);
30 inf2_a = (type2_a == FPType_Infinity); zero2_a = (type2_a == FPType_Zero);
31 inf2_b = (type2_b == FPType_Infinity); zero2_b = (type2_b == FPType_Zero);
32
33 (done,result) = FPProcessNaNs4(type1_a, type1_b, type2_a, type2_b,
34 op1_a, op1_b, op2_a, op2_b, fpcr, fpexc);
35
36 if (((inf1_a && zero2_a) || (zero1_a && inf2_a)) &&
37 ((inf1_b && zero2_b) || (zero1_b && inf2_b))) then
38 result = FPDefaultNaN(fpcr);
39 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
40
41 if !done then
42 // Determine sign and type products will have if it does not cause an Invalid
43 // Operation.
44 signPa = sign1_a EOR sign2_a;
45 signPb = sign1_b EOR sign2_b;
46 infPa = inf1_a || inf2_a;
47 infPb = inf1_b || inf2_b;
48 zeroPa = zero1_a || zero2_a;
49 zeroPb = zero1_b || zero2_b;
50
51 // Non SNaN-generated Invalid Operation cases are multiplies of zero
52 // by infinity and additions of opposite-signed infinities.
53 invalidop = ((inf1_a && zero2_a) || (zero1_a && inf2_a) ||
54 (inf1_b && zero2_b) || (zero1_b && inf2_b) || (infPa && infPb && signPa != signPb));
55
56 if invalidop then
57 result = FPDefaultNaN(fpcr);
58 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
59
60 // Other cases involving infinities produce an infinity of the same sign.
61 elsif (infPa && signPa == '0') || (infPb && signPb == '0') then
62 result = FPInfinity('0');
63 elsif (infPa && signPa == '1') || (infPb && signPb == '1') then
64 result = FPInfinity('1');
65
66 // Cases where the result is exactly zero and its sign is not determined by the
67 // rounding mode are additions of same-signed zeros.
68 elsif zeroPa && zeroPb && signPa == signPb then
69 result = FPZero(signPa);
70
71 // Otherwise calculate fused sum of products and round it.
72 else
73 result_value = (value1_a * value2_a) + (value1_b * value2_b);
74 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
75 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
76 result = FPZero(result_sign);
77 else
78 result = FPRound(result_value, fpcr, rounding, fpexc);
79
80 if !invalidop && fpexc then
81 FPProcessDenorms4(type1_a, type1_b, type2_a, type2_b, N, fpcr);
82

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

176

Chapter E2. SME Shared pseudocode
E2.11. FPDotAdd_ZA

83 return result;

E2.11 FPDotAdd_ZA

1 // FPDotAdd_ZA()
2 // =============
3 // Half-precision 2-way dot-product and add to single-precision
4 // for SME ZA-targeting instructions.
5
6 bits(N) FPDotAdd_ZA(bits(N) addend, bits(N DIV 2) op1_a, bits(N DIV 2) op1_b,
7 bits(N DIV 2) op2_a, bits(N DIV 2) op2_b, FPCRType fpcr_in)
8 FPCRType fpcr = fpcr_in;
9 assert N == 32;

10
11 bits(N) prod;
12 boolean isbfloat16 = FALSE;
13 boolean fpexc = FALSE; // Do not generate floating-point exceptions
14 fpcr.DN = '1'; // Generate default NaN values
15 prod = FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc);
16 result = FPAdd(addend, prod, fpcr, fpexc);
17
18 return result;

E2.12 FPMulAdd_ZA

1 // FPMulAdd_ZA()
2 // =============
3 // Calculates addend + op1*op2 with a single rounding for SME ZA-targeting
4 // instructions.
5
6 bits(N) FPMulAdd_ZA(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr_in)
7 FPCRType fpcr = fpcr_in;
8 boolean fpexc = FALSE; // Do not generate floating-point exceptions
9 fpcr.DN = '1'; // Generate default NaN values

10 return FPMulAdd(addend, op1, op2, fpcr, fpexc);

E2.13 FPProcessDenorms4

1 // FPProcessDenorms4()
2 // ===================
3 // Handles denormal input in case of single-precision or double-precision
4 // when using alternative floating-point mode.
5
6 FPProcessDenorms4(FPType type1, FPType type2, FPType type3, FPType type4, integer N, FPCRType fpcr)
7 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
8 if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal ||
9 type3 == FPType_Denormal || type4 == FPType_Denormal) then

10 FPProcessException(FPExc_InputDenorm, fpcr);

E2.14 FPProcessNaNs4

1 // FPProcessNaNs4()
2 // ================
3 // The boolean part of the return value says whether a NaN has been found and
4 // processed. The bits(N) part is only relevant if it has and supplies the
5 // result of the operation.
6 //
7 // The 'fpcr' argument supplies FPCR control bits.
8 // Status information is updated directly in the FPSR where appropriate.
9 // The 'fpexc' controls the generation of floating-point exceptions.

10
11 (boolean, bits(N)) FPProcessNaNs4(FPType type1, FPType type2, FPType type3, FPType type4,
12 bits(N DIV 2) op1, bits(N DIV 2) op2, bits(N DIV 2) op3,
13 bits(N DIV 2) op4, FPCRType fpcr, boolean fpexc)
14
15 assert N == 32;
16
17 bits(N) result;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

177

Chapter E2. SME Shared pseudocode
E2.15. HaveEBF16

18 boolean done;
19 // The FPCR.AH control does not affect these checks
20 if type1 == FPType_SNaN then
21 done = TRUE; result = FPConvertNaN(FPProcessNaN(type1, op1, fpcr, fpexc));
22 elsif type2 == FPType_SNaN then
23 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc));
24 elsif type3 == FPType_SNaN then
25 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc));
26 elsif type4 == FPType_SNaN then
27 done = TRUE; result = FPConvertNaN(FPProcessNaN(type4, op4, fpcr, fpexc));
28 elsif type1 == FPType_QNaN then
29 done = TRUE; result = FPConvertNaN(FPProcessNaN(type1, op1, fpcr, fpexc));
30 elsif type2 == FPType_QNaN then
31 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc));
32 elsif type3 == FPType_QNaN then
33 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc));
34 elsif type4 == FPType_QNaN then
35 done = TRUE; result = FPConvertNaN(FPProcessNaN(type4, op4, fpcr, fpexc));
36 else
37 done = FALSE; result = Zeros(); // 'Don't care' result
38
39 return (done, result);

E2.15 HaveEBF16

1 // HaveEBF16()
2 // ===========
3 // Returns TRUE if the EBF16 extension is implemented, FALSE otherwise.
4
5 boolean HaveEBF16()
6 return boolean IMPLEMENTATION_DEFINED "Have EBF16 extension";

E2.16 HaveSME

1 // HaveSME()
2 // =========
3 // Returns TRUE if the SME extension is implemented, FALSE otherwise.
4
5 boolean HaveSME()
6 return boolean IMPLEMENTATION_DEFINED "Have SME extension";

E2.17 HaveSMEF64F64

1 // HaveSMEF64F64()
2 // ===============
3 // Returns TRUE if the SMEF64F64 extension is implemented, FALSE otherwise.
4
5 boolean HaveSMEF64F64()
6 return HaveSME() && boolean IMPLEMENTATION_DEFINED "Have SMEF64F64 extension";

E2.18 HaveSMEI16I64

1 // HaveSMEI16I64()
2 // ===============
3 // Returns TRUE if the SMEI16I64 extension is implemented, FALSE otherwise.
4
5 boolean HaveSMEI16I64()
6 return HaveSME() && boolean IMPLEMENTATION_DEFINED "Have SMEI16I64 extension";

E2.19 ImplementedSMEVectorLength

1 // ImplementedSMEVectorLength()
2 // ============================
3 // Reduce SVE/SME vector length to a supported value (power of two)
4

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

178

Chapter E2. SME Shared pseudocode
E2.20. InStreamingMode

5 integer ImplementedSMEVectorLength(integer nbits_in)
6 integer maxbits = MaxImplementedSVL();
7 assert 128 <= maxbits && maxbits <= 2048 && IsPow2(maxbits);
8 integer nbits = Min(nbits_in, maxbits);
9 assert 128 <= nbits && nbits <= 2048 && Align(nbits, 128) == nbits;

10
11 // Search for a supported power-of-two VL less than or equal to nbits
12 while nbits > 128 do
13 if IsPow2(nbits) && SupportedPowerTwoSVL(nbits) then return nbits;
14 nbits = nbits - 128;
15
16 // Return the smallest supported power-of-two VL
17 nbits = 128;
18 while nbits < maxbits do
19 if SupportedPowerTwoSVL(nbits) then return nbits;
20 nbits = nbits * 2;
21
22 // The only option is maxbits
23 return maxbits;

E2.20 InStreamingMode

1 // InStreamingMode()
2 // =================
3
4 boolean InStreamingMode()
5 return HaveSME() && PSTATE.SM == '1';

E2.21 IsFullA64Enabled

1 // IsFullA64Enabled()
2 // ==================
3 // Returns TRUE is full A64 is enabled in Streaming mode and FALSE othersise.
4
5 boolean IsFullA64Enabled()
6 if !HaveSMEFullA64() then return FALSE;
7
8 // Check if full SVE disabled in SMCR_EL1
9 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then

10 // Check full SVE at EL0/EL1
11 if SMCR_EL1.FA64 == '0' then return FALSE;
12
13 // Check if full SVE disabled in SMCR_EL2
14 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
15 if SMCR_EL2.FA64 == '0' then return FALSE;
16
17 // Check if full SVE disabled in SMCR_EL3
18 if HaveEL(EL3) then
19 if SMCR_EL3.FA64 == '0' then return FALSE;
20
21 return TRUE;

E2.22 IsMerging

1 // IsMerging()
2 // ===========
3 // Returns TRUE if the output elements other than the lowest are taken from
4 // the destination register.
5
6 boolean IsMerging(FPCRType fpcr)
7 bit nep = if HaveSME() && PSTATE.SM == '1' && !IsFullA64Enabled() then '0' else fpcr.NEP;
8 return HaveAltFP() && !UsingAArch32() && nep == '1';

E2.23 IsNormalSVEEnabled

1 // IsNormalSVEEnabled()
2 // ====================
3 // Returns TRUE if access to normal SVE is enabled at the target

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

179

Chapter E2. SME Shared pseudocode
E2.24. IsStreamingSVEEnabled

4 // exception level and FALSE otherwise.
5
6 boolean IsNormalSVEEnabled(bits(2) el)
7 boolean disabled;
8 if ELUsingAArch32(el) then
9 return FALSE;

10
11 // Check if access disabled in CPACR_EL1
12 if el IN {EL0, EL1} && !IsInHost() then
13 // Check SVE at EL0/EL1
14 case CPACR_EL1.ZEN of
15 when 'x0' disabled = TRUE;
16 when '01' disabled = el == EL0;
17 when '11' disabled = FALSE;
18 if disabled then return FALSE;
19
20 // Check if access disabled in CPTR_EL2
21 if el IN {EL0, EL1, EL2} && EL2Enabled() then
22 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
23 case CPTR_EL2.ZEN of
24 when 'x0' disabled = TRUE;
25 when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
26 when '11' disabled = FALSE;
27 if disabled then return FALSE;
28 else
29 if CPTR_EL2.TZ == '1' then return FALSE;
30
31 // Check if access disabled in CPTR_EL3
32 if HaveEL(EL3) then
33 if CPTR_EL3.EZ == '0' then return FALSE;
34
35 return TRUE;

E2.24 IsStreamingSVEEnabled

1 // IsStreamingSVEEnabled()
2 // =======================
3 // Returns TRUE if access to streaming SVE is enabled at the
4 // target exception level and FALSE otherwise.
5
6 boolean IsStreamingSVEEnabled(bits(2) el)
7 boolean disabled;
8 if ELUsingAArch32(el) then
9 return FALSE;

10
11 // Check if access disabled in CPACR_EL1
12 if el IN {EL0, EL1} && !IsInHost() then
13 // Check SME at EL0/EL1
14 case CPACR_EL1.SMEN of
15 when 'x0' disabled = TRUE;
16 when '01' disabled = el == EL0;
17 when '11' disabled = FALSE;
18 if disabled then return FALSE;
19
20 // Check if access disabled in CPTR_EL2
21 if el IN {EL0, EL1, EL2} && EL2Enabled() then
22 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
23 case CPTR_EL2.SMEN of
24 when 'x0' disabled = TRUE;
25 when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
26 when '11' disabled = FALSE;
27 if disabled then return FALSE;
28 else
29 if CPTR_EL2.TSM == '1' then return FALSE;
30
31 // Check if access disabled in CPTR_EL3
32 if HaveEL(EL3) then
33 if CPTR_EL3.ESM == '0' then return FALSE;
34
35 return TRUE;

E2.25 IsSVEEnabled

1 // IsSVEEnabled()
2 // ==============

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

180

Chapter E2. SME Shared pseudocode
E2.26. MaybeZeroSVEUppers

3 // Returns TRUE if access to SVE instructions and System registers is
4 // enabled at the target exception level and FALSE otherwise.
5
6 boolean IsSVEEnabled(bits(2) el)
7 if HaveSME() && PSTATE.SM == '1' then
8 return IsStreamingSVEEnabled(el);
9 elsif HaveSVE() then

10 return IsNormalSVEEnabled(el);
11 else
12 return FALSE;

E2.26 MaybeZeroSVEUppers

1 // MaybeZeroSVEUppers()
2 // ====================
3
4 MaybeZeroSVEUppers(bits(2) target_el)
5 boolean lower_enabled;
6
7 if UInt(target_el) <= UInt(PSTATE.EL) || !IsSVEEnabled(target_el) then
8 return;
9

10 if target_el == EL3 then
11 if EL2Enabled() then
12 lower_enabled = IsFPEnabled(EL2);
13 else
14 lower_enabled = IsFPEnabled(EL1);
15 elsif target_el == EL2 then
16 assert !ELUsingAArch32(EL2);
17 if HCR_EL2.TGE == '0' then
18 lower_enabled = IsFPEnabled(EL1);
19 else
20 lower_enabled = IsFPEnabled(EL0);
21 else
22 assert target_el == EL1 && !ELUsingAArch32(EL1);
23 lower_enabled = IsFPEnabled(EL0);
24
25 if lower_enabled then
26 integer vl = if IsSVEEnabled(PSTATE.EL) then VL else 128;
27 integer pl = vl DIV 8;
28 for n = 0 to 31
29 if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
30 _Z[n] = ZeroExtend(_Z[n]<vl-1:0>);
31 for n = 0 to 15
32 if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
33 _P[n] = ZeroExtend(_P[n]<pl-1:0>);
34 if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
35 _FFR = ZeroExtend(_FFR<pl-1:0>);
36 if HaveSME() && PSTATE.ZA == '1' then
37 integer accessiblerows = VL DIV 8;
38 integer allrows = MAX_VL DIV 8;
39
40 for n = 0 to accessiblerows - 1
41 if ConstrainUnpredictableBool(Unpredictable_SMEZEROUPPER) then
42 _ZA[n] = ZeroExtend(_ZA[n]<VL-1:0>);
43 for n = accessiblerows to allrows - 1
44 if ConstrainUnpredictableBool(Unpredictable_SMEZEROUPPER) then
45 _ZA[n] = Zeros();

E2.27 NVL

1 // NVL - non-assignment form
2 // =========================
3 // Normal VL
4
5 integer NVL
6 integer vl;
7
8 if PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost()) then
9 vl = UInt(ZCR_EL1.LEN);

10
11 if PSTATE.EL == EL2 || (PSTATE.EL == EL0 && IsInHost()) then
12 vl = UInt(ZCR_EL2.LEN);
13 elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
14 vl = Min(vl, UInt(ZCR_EL2.LEN));

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

181

Chapter E2. SME Shared pseudocode
E2.28. ResetSMEState

15
16 if PSTATE.EL == EL3 then
17 vl = UInt(ZCR_EL3.LEN);
18 elsif HaveEL(EL3) then
19 vl = Min(vl, UInt(ZCR_EL3.LEN));
20
21 vl = (vl + 1) * 128;
22 vl = ImplementedSVEVectorLength(vl);
23
24 return vl;

E2.28 ResetSMEState

1 // ResetSMEState()
2 // ===============
3
4 ResetSMEState()
5 integer vectors = MAX_VL DIV 8;
6 for n = 0 to vectors - 1
7 _ZA[n] = Zeros();

E2.29 ResetSVEState

1 // ResetSVEState()
2 // ===============
3
4 ResetSVEState()
5 for n = 0 to 31
6 _Z[n] = Zeros();
7 for n = 0 to 15
8 _P[n] = Zeros();
9 _FFR = Zeros();

10 FPSR = ZeroExtend(0x0800009f<31:0>);

E2.30 SetPSTATE_SM

1 // SetPSTATE_SM()
2 // ==============
3
4 SetPSTATE_SM(bit value)
5 if PSTATE.SM != value then
6 ResetSVEState();
7 PSTATE.SM = value;

E2.31 SetPSTATE_SVCR

1 // SetPSTATE_SVCR
2 // ==============
3
4 SetPSTATE_SVCR(bits(32) svcr)
5 SetPSTATE_SM(svcr<0>);
6 SetPSTATE_ZA(svcr<1>);

E2.32 SetPSTATE_ZA

1 // SetPSTATE_ZA()
2 // ==============
3
4 SetPSTATE_ZA(bit value)
5 if PSTATE.ZA != value then
6 ResetSMEState();
7 PSTATE.ZA = value;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

182

Chapter E2. SME Shared pseudocode
E2.33. SMEAccessTrap

E2.33 SMEAccessTrap

1 // SMEAccessTrap()
2 // ===============
3 // Trapped access to SME registers due to CPACR_EL1, CPTR_EL2, or CPTR_EL3.
4
5 SMEAccessTrap(SMEExceptionType etype, bits(2) target_el_in)
6 bits(2) target_el = target_el_in;
7 assert UInt(target_el) >= UInt(PSTATE.EL);
8 if target_el == EL0 then
9 target_el = EL1;

10 boolean route_to_el2 = PSTATE.EL == EL0 && target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1';
11
12 exception = ExceptionSyndrome(Exception_SMEAccessTrap);
13 bits(64) preferred_exception_return = ThisInstrAddr();
14 vect_offset = 0x0;
15
16 case etype of
17 when SMEExceptionType_AccessTrap
18 exception.syndrome<1:0> = '00';
19 when SMEExceptionType_Streaming
20 exception.syndrome<1:0> = '01';
21 when SMEExceptionType_NotStreaming
22 exception.syndrome<1:0> = '10';
23 when SMEExceptionType_InactiveZA
24 exception.syndrome<1:0> = '11';
25
26 if route_to_el2 then
27 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
28 else
29 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

E2.34 SVL

1 // SVL - non-assignment form
2 // =========================
3 // Streaming SVL
4
5 integer SVL
6 integer vl;
7
8 if PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost()) then
9 vl = UInt(SMCR_EL1.LEN);

10
11 if PSTATE.EL == EL2 || (PSTATE.EL == EL0 && IsInHost()) then
12 vl = UInt(SMCR_EL2.LEN);
13 elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
14 vl = Min(vl, UInt(SMCR_EL2.LEN));
15
16 if PSTATE.EL == EL3 then
17 vl = UInt(SMCR_EL3.LEN);
18 elsif HaveEL(EL3) then
19 vl = Min(vl, UInt(SMCR_EL3.LEN));
20
21 vl = (vl + 1) * 128;
22 vl = ImplementedSMEVectorLength(vl);
23
24 return vl;

E2.35 VL

1 // VL - non-assignment form
2 // ========================
3
4 integer VL
5 return if HaveSME() && PSTATE.SM == '1' then SVL else NVL;

E2.36 ZAhslice

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

183

Chapter E2. SME Shared pseudocode
E2.37. ZAslice

1 // ZAhslice[] - non-assignment form
2 // ================================
3
4 bits(width) ZAhslice[integer tile, integer esize, integer slice]
5 assert esize IN {8, 16, 32, 64, 128};
6 integer tiles = esize DIV 8;
7 assert tile >= 0 && tile < tiles;
8 integer slices = SVL DIV esize;
9 assert slice >= 0 && slice < slices;

10
11 return ZAvector[tile + slice * tiles];
12
13 // ZAhslice[] - assignment form
14 // ============================
15
16 ZAhslice[integer tile, integer esize, integer slice] = bits(width) value
17 assert esize IN {8, 16, 32, 64, 128};
18 integer tiles = esize DIV 8;
19 assert tile >= 0 && tile < tiles;
20 integer slices = SVL DIV esize;
21 assert slice >= 0 && slice < slices;
22
23 ZAvector[tile + slice * tiles] = value;

E2.37 ZAslice

1 // ZAslice[] - non-assignment form
2 // ===============================
3
4 bits(width) ZAslice[integer tile, integer esize, boolean vertical, integer slice]
5 bits(width) result;
6
7 if vertical then
8 result = ZAvslice[tile, esize, slice];
9 else

10 result = ZAhslice[tile, esize, slice];
11
12 return result;
13
14 // ZAslice[] - assignment form
15 // ===========================
16
17 ZAslice[integer tile, integer esize, boolean vertical, integer slice] = bits(width) value
18 if vertical then
19 ZAvslice[tile, esize, slice] = value;
20 else
21 ZAhslice[tile, esize, slice] = value;

E2.38 ZAtile

1 // ZAtile[] - non-assignment form
2 // ==============================
3
4 bits(width) ZAtile[integer tile, integer esize]
5 integer slices = SVL DIV esize;
6 assert width == SVL * slices;
7 bits(width) result;
8
9 for slice = 0 to slices-1

10 Elem[result, slice, SVL] = ZAhslice[tile, esize, slice];
11
12 return result;
13
14 // ZAtile[] - assignment form
15 // ==========================
16
17 ZAtile[integer tile, integer esize] = bits(width) value
18 integer slices = SVL DIV esize;
19 assert width == SVL * slices;
20
21 for slice = 0 to slices-1
22 ZAhslice[tile, esize, slice] = Elem[value, slice, SVL];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

184

Chapter E2. SME Shared pseudocode
E2.39. ZAvector

E2.39 ZAvector

1 // ZAvector[] - non-assignment form
2 // ================================
3
4 bits(width) ZAvector[integer index]
5 assert width == SVL;
6 assert index >= 0 && index < (width DIV 8);
7
8 return _ZA[index]<width-1:0>;
9

10 // ZAvector[] - assignment form
11 // ============================
12
13 ZAvector[integer index] = bits(width) value
14 assert width == SVL;
15 assert index >= 0 && index < (width DIV 8);
16
17 if ConstrainUnpredictableBool(Unpredictable_SMEZEROUPPER) then
18 _ZA[index] = ZeroExtend(value);
19 else
20 _ZA[index]<width-1:0> = value;

E2.40 ZAvslice

1 // ZAvslice[] - non-assignment form
2 // ================================
3
4 bits(width) ZAvslice[integer tile, integer esize, integer slice]
5 integer slices = SVL DIV esize;
6 bits(width) result;
7
8 for s = 0 to slices-1
9 bits(width) hslice = ZAhslice[tile, esize, s];

10 Elem[result, s, esize] = Elem[hslice, slice, esize];
11
12 return result;
13
14 // ZAvslice[] - assignment form
15 // ============================
16
17 ZAvslice[integer tile, integer esize, integer slice] = bits(width) value
18 integer slices = SVL DIV esize;
19
20 for s = 0 to slices-1
21 bits(width) hslice = ZAhslice[tile, esize, s];
22 Elem[hslice, slice, esize] = Elem[value, s, esize];
23 ZAhslice[tile, esize, s] = hslice;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

185

Chapter E3
System registers affected by SME

This section provides the full information for System registers added or modified by SME.

This content is from the 2021-12 version of Arm® Architecture Registers Armv9, for Armv9-A architecture profile
[2], which contains the definitive version of the register information.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

186

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1 SME-Specific System registers

System registers that are added to support SME architecture.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

187

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.1 ID_AA64SMFR0_EL1, SME Feature ID register 0

The ID_AA64SMFR0_EL1 characteristics are:

Purpose

Provides information about the implemented features of the AArch64 Scalable Matrix Extension.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for
fields in ID registers .

Attributes

ID_AA64SMFR0_EL1 is a 64-bit register.

Configuration

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Field descriptions

The ID_AA64SMFR0_EL1 bit assignments are:

63

RES0

62 60

SMEver

59 56

I16I64

55 52

RES0

51 49 48

RES0

47 40

I8I32

39 36 35 34 33 32

FA64 F64F64 F16F32
B16F32

F32F32
RES0

RES0

31 0

FA64, bit [63]

Indicates support for execution of the full A64 instruction set when the PE is in Streaming SVE mode. Defined
values are:

FA64 Meaning

0b0 Only those A64 instructions defined as being legal can be
executed in Streaming SVE mode.

0b1 All implemented A64 instructions can be executed in
Streaming SVE mode, when enabled at the current
Exception level by SMCR_EL1.FA64, SMCR_EL2.FA64,
and SMCR_EL3.FA64.

FEAT_SME_FA64 implements the functionality identified by the value 0b1.

Bits [62:60]

Reserved, RES0.

SMEver, bits [59:56]

Indicates support for SME instructions when ID_AA64PFR1_EL1.SME is not zero. Defined values are:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

188

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

SMEver Meaning

0b0000 The non-optional SME instructions are implemented.

All other values are reserved.

FEAT_SME implements the functionality identified by the value 0b0000, when ID_AA64PFR1_EL1.SME is not
zero.

From Armv9.2, the only permitted value is 0b0000.

I16I64, bits [55:52]

Indicates SME support for instructions that accumulate into 64-bit integer elements in the ZA array. Defined values
are:

I16I64 Meaning

0b0000 Instructions that accumulate into 64-bit integer elements in
the ZA array are not implemented.

0b1111 The variants of the ADDHA, ADDVA, SMOPA, SMOPS,
SUMOPA, SUMOPS, UMOPA, UMOPS, USMOPA, and
USMOPS instructions that accumulate into 64-bit integer
tiles are implemented.

All other values are reserved.

FEAT_SME_I16I64 implements the functionality identified by the value 0b1111.

The only permitted values are 0b0000 and 0b1111.

Bits [51:49]

Reserved, RES0.

F64F64, bit [48]

Indicates SME support for instructions that accumulate into FP64 double-precision floating-point elements in the
ZA array. Defined values are:

F64F64 Meaning

0b0 Instructions that accumulate into double-precision
floating-point elements in the ZA array are not implemented.

0b1 The variants of the FMOPA and FMOPS instructions that
accumulate into double-precision tiles are implemented.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

189

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

FEAT_SME_F64F64 implements the functionality identified by the value 0b1111.

Bits [47:40]

Reserved, RES0.

I8I32, bits [39:36]

Indicates SME support for instructions that accumulate 8-bit integer outer products into 32-bit integer tiles. Defined
values are:

I8I32 Meaning

0b0000 Instructions that accumulate 8-bit outer products into 32-bit
tiles are not implemented.

0b1111 The SMOPA, SMOPS, SUMOPA, SUMOPS, UMOPA,
UMOPS, USMOPA, and USMOPS instructions that
accumulate 8-bit outer products into 32-bit tiles are
implemented.

All other values are reserved.

If FEAT_SME is implemented, the only permitted value is 0b1111.

F16F32, bit [35]

Indicates SME support for instructions that accumulate FP16 half-precision floating-point outer products into FP32
single-precision floating-point tiles. Defined values are:

F16F32 Meaning

0b0 Instructions that accumulate half-precision outer products
into single-precision tiles are not implemented.

0b1 The FMOPA and FMOPS instructions that accumulate
half-precision outer products into single-precision tiles are
implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

B16F32, bit [34]

Indicates SME support for instructions that accumulate BFloat16 outer products into FP32 single-precision
floating-point tiles. Defined values are:

B16F32 Meaning

0b0 Instructions that accumulate BFloat16 outer products into
single-precision tiles are not implemented.

0b1 The BFMOPA and BFMOPS instructions that accumulate
BFloat16 outer products into single-precision tiles are
implemented.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

190

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

If FEAT_SME is implemented, the only permitted value is 0b1.

Bit [33]

Reserved, RES0.

F32F32, bit [32]

Indicates SME support for instructions that accumulate FP32 single-precision floating-point outer products into
single-precision floating-point tiles. Defined values are:

F32F32 Meaning

0b0 Instructions that accumulate single-precision outer products
into single-precision tiles are not implemented.

0b1 The FMOPA and FMOPS instructions that accumulate
single-precision outer products into single-precision tiles are
implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

Bits [31:0]

Reserved, RES0.

Accessing the ID_AA64SMFR0_EL1

This register is read-only and can be accessed from EL1 and higher.

This register is only accessible from the AArch64 state.

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, ID_AA64SMFR0_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b101

1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented(FEAT_IDST) then
3 if EL2Enabled() && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x18);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 else
8 UNDEFINED;
9 elsif PSTATE.EL == EL1 then

10 if EL2Enabled() && HCR_EL2.TID3 == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 X[t, 64] = ID_AA64SMFR0_EL1;
14 elsif PSTATE.EL == EL2 then
15 X[t, 64] = ID_AA64SMFR0_EL1;
16 elsif PSTATE.EL == EL3 then
17 X[t, 64] = ID_AA64SMFR0_EL1;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

191

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.2 MPAMSM_EL1, MPAM Streaming Mode Register

The MPAMSM_EL1 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests that are:

• Issued due to the execution of SME load and store instructions.
• Issued when the PE is in Streaming SVE mode due to the execution of SVE and SIMD&FP load

and store instructions and SVE prefetch instructions.

If an implementation uses a shared SMCU, then the MPAM labels in this register have precedence over
the labels in MPAM0_EL1, MPAM1_EL1, MPAM2_EL2, and MPAM3_EL3.

If an implementation includes an SMCU that is not shared with other PEs, then it is IMPLEMENTATION
DEFINED whether the MPAM labels in this register have precedence over the labels in MPAM0_EL1,
MPAM1_EL1, MPAM2_EL2, and MPAM3_EL3.

The MPAM labels in this register are only used if MPAM1_EL1.MPAMEN is 1.

For memory requests issued from EL0, the MPAM PARTID in this register is virtual and mapped into a
physical PARTID when all of the following are true:

• EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H, TGE} is not
{1, 1}.

• The MPAM virtualization option is implemented and MPAMHCR_EL2.EL0_VPMEN is 1.

For memory requests issued from EL1, the MPAM PARTID in this register is virtual and mapped into a
physical PARTID when all of the following are true:

• EL2 is implemented and enabled in the current Security state.
• The MPAM virtualization option is implemented and MPAMHCR_EL2.EL1_VPMEN is 1.

Attributes

MPAMSM_EL1 is a 64-bit register.

Configuration

This register is present only when FEAT_MPAM is implemented and FEAT_SME is implemented.
Otherwise, direct accesses to MPAMSM_EL1 are UNDEFINED.

Field descriptions

The MPAMSM_EL1 bit assignments are:

RES0

63 48

PMG_D

47 40

RES0

39 32

PARTID_D

31 16

RES0

15 0

Bits [63:48]

Reserved, RES0.

PMG_D, bits [47:40]

Performance monitoring group property for PARTID_D.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

192

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

Bits [39:32]

Reserved, RES0.

PARTID_D, bits [31:16]

Partition ID for requests issued due to the execution at any Exception level of SME load and store instructions
and, when the PE is in Streaming SVE mode, SVE and SIMD&FP load and store instructions and SVE prefetch
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:0]

Reserved, RES0.

Accessing the MPAMSM_EL1

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, MPAMSM_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b011

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
5 if Halted() && EDSCR.SDD == '1' then
6 UNDEFINED;
7 else
8 AArch64.SystemAccessTrap(EL3, 0x18);
9 elsif EL2Enabled() && MPAM2_EL2.EnMPAMSM == '0' then

10 AArch64.SystemAccessTrap(EL2, 0x18);
11 else
12 X[t, 64] = MPAMSM_EL1;
13 elsif PSTATE.EL == EL2 then
14 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
15 if Halted() && EDSCR.SDD == '1' then
16 UNDEFINED;
17 else
18 AArch64.SystemAccessTrap(EL3, 0x18);
19 else
20 X[t, 64] = MPAMSM_EL1;
21 elsif PSTATE.EL == EL3 then
22 X[t, 64] = MPAMSM_EL1;

MSR MPAMSM_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b011

1 if PSTATE.EL == EL0 then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

193

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
5 if Halted() && EDSCR.SDD == '1' then
6 UNDEFINED;
7 else
8 AArch64.SystemAccessTrap(EL3, 0x18);
9 elsif EL2Enabled() && MPAM2_EL2.EnMPAMSM == '0' then

10 AArch64.SystemAccessTrap(EL2, 0x18);
11 else
12 MPAMSM_EL1 = X[t, 64];
13 elsif PSTATE.EL == EL2 then
14 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
15 if Halted() && EDSCR.SDD == '1' then
16 UNDEFINED;
17 else
18 AArch64.SystemAccessTrap(EL3, 0x18);
19 else
20 MPAMSM_EL1 = X[t, 64];
21 elsif PSTATE.EL == EL3 then
22 MPAMSM_EL1 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

194

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.3 SMCR_EL1, SME Control Register (EL1)

The SMCR_EL1 characteristics are:

Purpose

This register controls aspects of Streaming SVE that are visible at Exception levels EL1 and EL0.

Attributes

SMCR_EL1 is a 64-bit register.

Configuration

This register has no effect if the PE is not in Streaming SVE mode.

When HCR_EL2.{E2H, TGE} == {1, 1} and EL2 is enabled in the current Security state, this register
has no effect on execution at EL0 and EL1.

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMCR_EL1 are UNDEFINED.

Field descriptions

The SMCR_EL1 bit assignments are:

RES0

63 32

31

RES0

30 9

RAZ/WI

8 4

LEN

3 0

FA64

Bits [63:32]

Reserved, RES0.

FA64, bit [31]

When FEAT_SME_FA64 is implemented:

Controls whether execution of an A64 instruction is considered legal when the PE is in Streaming SVE mode.

FA64 Meaning

0b0 This control does not cause any instruction to be treated as
legal in Streaming SVE mode.

0b1 This control causes all implemented A64 instructions to be
treated as legal in Streaming SVE mode at EL1 and EL0, if
they are treated as legal at more privileged Exception levels
in the current Security state.

Arm recommends that portable SME software should not rely on this optional feature, and that operating systems
should provide a means to test for compliance with this recommendation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

195

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

RES0

Bits [30:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Effective Streaming SVE Vector Length (SVL).

Constrains the effective Streaming SVE vector register length for EL1 and EL0 to (LEN+1)*128 bits. SVL only
takes effect when the PE is in Streaming SVE mode.

An implementation is permitted to include any set of Streaming SVE vector lengths that are powers of two, from
128 bits to 2048 bits inclusive.

For all purposes other than returning the result of a direct read of SMCR_EL1, this field selects the effective vector
length as follows:

• If the requested length is smaller than the minimum implemented Streaming SVE vector length, then the
minimum implemented Streaming SVE vector length is used.

• If the requested length is larger than the effective vector length at the next more privileged Exception level in
the current Security state, if any, then the effective vector length at the more privileged Exception level is
used.

• If the requested length is not implemented, then the requested length rounded down to the nearest implemented
Streaming SVE vector length is used.

• Otherwise, the requested length is used.

An indirect read of SMCR_EL1.LEN appears to occur in program order relative to a direct write of the same
register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SMCR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SMCR_EL1
or SMCR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, SMCR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
5 UNDEFINED;
6 elsif CPACR_EL1.SMEN == 'x0' then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

196

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

7 AArch64.SystemAccessTrap(EL1, 0x1D);
8 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x1D);

10 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
11 AArch64.SystemAccessTrap(EL2, 0x1D);
12 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
13 if Halted() && EDSCR.SDD == '1' then
14 UNDEFINED;
15 else
16 AArch64.SystemAccessTrap(EL3, 0x1D);
17 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
18 X[t, 64] = NVMem[0x1F0];
19 else
20 X[t, 64] = SMCR_EL1;
21 elsif PSTATE.EL == EL2 then
22 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
23 UNDEFINED;
24 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x1D);
26 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x1D);
28 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
29 if Halted() && EDSCR.SDD == '1' then
30 UNDEFINED;
31 else
32 AArch64.SystemAccessTrap(EL3, 0x1D);
33 elsif HCR_EL2.E2H == '1' then
34 X[t, 64] = SMCR_EL2;
35 else
36 X[t, 64] = SMCR_EL1;
37 elsif PSTATE.EL == EL3 then
38 if CPTR_EL3.ESM == '0' then
39 AArch64.SystemAccessTrap(EL3, 0x1D);
40 else
41 X[t, 64] = SMCR_EL1;

MSR SMCR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
5 UNDEFINED;
6 elsif CPACR_EL1.SMEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x1D);
8 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x1D);

10 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
11 AArch64.SystemAccessTrap(EL2, 0x1D);
12 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
13 if Halted() && EDSCR.SDD == '1' then
14 UNDEFINED;
15 else
16 AArch64.SystemAccessTrap(EL3, 0x1D);
17 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
18 NVMem[0x1F0] = X[t, 64];
19 else
20 SMCR_EL1 = X[t, 64];
21 elsif PSTATE.EL == EL2 then
22 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
23 UNDEFINED;
24 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x1D);
26 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x1D);
28 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

197

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

29 if Halted() && EDSCR.SDD == '1' then
30 UNDEFINED;
31 else
32 AArch64.SystemAccessTrap(EL3, 0x1D);
33 elsif HCR_EL2.E2H == '1' then
34 SMCR_EL2 = X[t, 64];
35 else
36 SMCR_EL1 = X[t, 64];
37 elsif PSTATE.EL == EL3 then
38 if CPTR_EL3.ESM == '0' then
39 AArch64.SystemAccessTrap(EL3, 0x1D);
40 else
41 SMCR_EL1 = X[t, 64];

MRS <Xt>, SMCR_EL12

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 X[t, 64] = NVMem[0x1F0];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

↪→priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
13 UNDEFINED;
14 elsif CPTR_EL2.SMEN == 'x0' then
15 AArch64.SystemAccessTrap(EL2, 0x1D);
16 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
17 if Halted() && EDSCR.SDD == '1' then
18 UNDEFINED;
19 else
20 AArch64.SystemAccessTrap(EL3, 0x1D);
21 else
22 X[t, 64] = SMCR_EL1;
23 else
24 UNDEFINED;
25 elsif PSTATE.EL == EL3 then
26 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
27 if CPTR_EL3.ESM == '0' then
28 AArch64.SystemAccessTrap(EL3, 0x1D);
29 else
30 X[t, 64] = SMCR_EL1;
31 else
32 UNDEFINED;

MSR SMCR_EL12, <Xt>

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

198

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

5 NVMem[0x1F0] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

↪→priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
13 UNDEFINED;
14 elsif CPTR_EL2.SMEN == 'x0' then
15 AArch64.SystemAccessTrap(EL2, 0x1D);
16 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
17 if Halted() && EDSCR.SDD == '1' then
18 UNDEFINED;
19 else
20 AArch64.SystemAccessTrap(EL3, 0x1D);
21 else
22 SMCR_EL1 = X[t, 64];
23 else
24 UNDEFINED;
25 elsif PSTATE.EL == EL3 then
26 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
27 if CPTR_EL3.ESM == '0' then
28 AArch64.SystemAccessTrap(EL3, 0x1D);
29 else
30 SMCR_EL1 = X[t, 64];
31 else
32 UNDEFINED;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

199

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.4 SMCR_EL2, SME Control Register (EL2)

The SMCR_EL2 characteristics are:

Purpose

This register controls aspects of Streaming SVE that are visible at Exception levels EL2, EL1, and EL0.

Attributes

SMCR_EL2 is a 64-bit register.

Configuration

This register has no effect if the PE is not in Streaming SVE mode, or if EL2 is not enabled in the
current Security state.

If EL2 is not implemented, this register is RES0 from EL3.

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMCR_EL2 are UNDEFINED.

Field descriptions

The SMCR_EL2 bit assignments are:

RES0

63 32

31

RES0

30 9

RAZ/WI

8 4

LEN

3 0

FA64

Bits [63:32]

Reserved, RES0.

FA64, bit [31]

When FEAT_SME_FA64 is implemented:

Controls whether execution of an A64 instruction is considered legal when the PE is in Streaming SVE mode.

FA64 Meaning

0b0 This control does not cause any instruction to be treated as
legal in Streaming SVE mode.

0b1 This control causes all implemented A64 instructions to be
treated as legal in Streaming SVE mode at EL2, if they are
treated as legal at EL3.

Arm recommends that portable SME software should not rely on this optional feature, and that operating systems
should provide a means to test for compliance with this recommendation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

200

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

Bits [30:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Effective Streaming SVE Vector Length (SVL).

Constrains the effective Streaming SVE vector register length for EL2, EL1, and EL0 to (LEN+1)*128 bits when
EL2 is enabled in the current Security state. SVL only takes effect when the PE is in Streaming SVE mode.

An implementation is permitted to include any set of Streaming SVE vector lengths that are powers of two, from
128 bits to 2048 bits inclusive.

For all purposes other than returning the result of a direct read of SMCR_EL2, this field selects the effective vector
length as follows:

• If the requested length is smaller than the minimum implemented Streaming SVE vector length, then the
minimum implemented Streaming SVE vector length is used.

• If the requested length is larger than the effective vector length at the next more privileged Exception level in
the current Security state, if any, then the effective vector length at the more privileged Exception level is
used.

• If the requested length is not implemented, then the requested length rounded down to the nearest implemented
Streaming SVE vector length is used.

• Otherwise, the requested length is used.

An indirect read of SMCR_EL2.LEN appears to occur in program order relative to a direct write of the same
register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SMCR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SMCR_EL2
or SMCR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, SMCR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 else
7 UNDEFINED;
8 elsif PSTATE.EL == EL2 then
9 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

201

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

10 UNDEFINED;
11 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x1D);
13 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
14 AArch64.SystemAccessTrap(EL2, 0x1D);
15 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x1D);
20 else
21 X[t, 64] = SMCR_EL2;
22 elsif PSTATE.EL == EL3 then
23 if CPTR_EL3.ESM == '0' then
24 AArch64.SystemAccessTrap(EL3, 0x1D);
25 else
26 X[t, 64] = SMCR_EL2;

MSR SMCR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 else
7 UNDEFINED;
8 elsif PSTATE.EL == EL2 then
9 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
10 UNDEFINED;
11 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x1D);
13 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
14 AArch64.SystemAccessTrap(EL2, 0x1D);
15 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x1D);
20 else
21 SMCR_EL2 = X[t, 64];
22 elsif PSTATE.EL == EL3 then
23 if CPTR_EL3.ESM == '0' then
24 AArch64.SystemAccessTrap(EL3, 0x1D);
25 else
26 SMCR_EL2 = X[t, 64];

MRS <Xt>, SMCR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
5 UNDEFINED;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

202

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

6 elsif CPACR_EL1.SMEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x1D);
8 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x1D);

10 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
11 AArch64.SystemAccessTrap(EL2, 0x1D);
12 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
13 if Halted() && EDSCR.SDD == '1' then
14 UNDEFINED;
15 else
16 AArch64.SystemAccessTrap(EL3, 0x1D);
17 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
18 X[t, 64] = NVMem[0x1F0];
19 else
20 X[t, 64] = SMCR_EL1;
21 elsif PSTATE.EL == EL2 then
22 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
23 UNDEFINED;
24 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x1D);
26 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x1D);
28 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
29 if Halted() && EDSCR.SDD == '1' then
30 UNDEFINED;
31 else
32 AArch64.SystemAccessTrap(EL3, 0x1D);
33 elsif HCR_EL2.E2H == '1' then
34 X[t, 64] = SMCR_EL2;
35 else
36 X[t, 64] = SMCR_EL1;
37 elsif PSTATE.EL == EL3 then
38 if CPTR_EL3.ESM == '0' then
39 AArch64.SystemAccessTrap(EL3, 0x1D);
40 else
41 X[t, 64] = SMCR_EL1;

MSR SMCR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
5 UNDEFINED;
6 elsif CPACR_EL1.SMEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x1D);
8 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x1D);

10 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
11 AArch64.SystemAccessTrap(EL2, 0x1D);
12 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
13 if Halted() && EDSCR.SDD == '1' then
14 UNDEFINED;
15 else
16 AArch64.SystemAccessTrap(EL3, 0x1D);
17 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
18 NVMem[0x1F0] = X[t, 64];
19 else
20 SMCR_EL1 = X[t, 64];
21 elsif PSTATE.EL == EL2 then
22 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
23 UNDEFINED;
24 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x1D);
26 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x1D);

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

203

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

28 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
29 if Halted() && EDSCR.SDD == '1' then
30 UNDEFINED;
31 else
32 AArch64.SystemAccessTrap(EL3, 0x1D);
33 elsif HCR_EL2.E2H == '1' then
34 SMCR_EL2 = X[t, 64];
35 else
36 SMCR_EL1 = X[t, 64];
37 elsif PSTATE.EL == EL3 then
38 if CPTR_EL3.ESM == '0' then
39 AArch64.SystemAccessTrap(EL3, 0x1D);
40 else
41 SMCR_EL1 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

204

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.5 SMCR_EL3, SME Control Register (EL3)

The SMCR_EL3 characteristics are:

Purpose

This register controls aspects of Streaming SVE that are visible at all Exception levels.

Attributes

SMCR_EL3 is a 64-bit register.

Configuration

This register has no effect if the PE is not in Streaming SVE mode.

This register is present only when FEAT_SME is implemented and EL3 is implemented. Otherwise,
direct accesses to SMCR_EL3 are UNDEFINED.

Field descriptions

The SMCR_EL3 bit assignments are:

RES0

63 32

31

RES0

30 9

RAZ/WI

8 4

LEN

3 0

FA64

Bits [63:32]

Reserved, RES0.

FA64, bit [31]

When FEAT_SME_FA64 is implemented:

Controls whether execution of an A64 instruction is considered legal when the PE is in Streaming SVE mode.

FA64 Meaning

0b0 This control does not cause any instruction to be treated as
legal in Streaming SVE mode.

0b1 This control causes all implemented A64 instructions to be
treated as legal in Streaming SVE mode at EL3.

Arm recommends that portable SME software should not rely on this optional feature, and that operating systems
should provide a means to test for compliance with this recommendation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

205

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

Bits [30:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Effective Streaming SVE Vector Length (SVL).

Constrains the effective Streaming SVE vector register length for all Exception levels to (LEN+1)*128 bits. SVL
only takes effect when the PE is in Streaming SVE mode.

An implementation is permitted to include any set of Streaming SVE vector lengths that are powers of two, from
128 bits to 2048 bits inclusive.

For all purposes other than returning the result of a direct read of SMCR_EL3, this field selects the effective vector
length as follows:

• If the requested length is smaller than the minimum implemented Streaming SVE vector length, then the
minimum implemented Streaming SVE vector length is used.

• If the requested length is not implemented, then the requested length rounded down to the nearest implemented
Streaming SVE vector length is used.

• Otherwise, the requested length is used.

An indirect read of SMCR_EL3.LEN appears to occur in program order relative to a direct write of the same
register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SMCR_EL3

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, SMCR_EL3

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if CPTR_EL3.ESM == '0' then
9 AArch64.SystemAccessTrap(EL3, 0x1D);

10 else
11 X[t, 64] = SMCR_EL3;

MSR SMCR_EL3, <Xt>

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

206

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if CPTR_EL3.ESM == '0' then
9 AArch64.SystemAccessTrap(EL3, 0x1D);

10 else
11 SMCR_EL3 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

207

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.6 SMIDR_EL1, Streaming Mode Identification Register

The SMIDR_EL1 characteristics are:

Purpose

Provides additional identification mechanisms for scheduling purposes, for a PE that supports Streaming
SVE mode.

Attributes

SMIDR_EL1 is a 64-bit register.

Configuration

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMIDR_EL1 are UNDEFINED.

Field descriptions

The SMIDR_EL1 bit assignments are:

RES0

63 32

Implementer

31 24

Revision

23 16 15

RES0

14 12

Affinity

11 0

SMPS

Bits [63:32]

Reserved, RES0.

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes
include the following:

Implementer Meaning

0x00 Reserved for software use.

0x41 Arm Limited.

0x42 Broadcom Corporation.

0x43 Cavium Inc.

0x44 Digital Equipment Corporation.

0x46 Fujitsu Ltd.

0x49 Infineon Technologies AG.

0x4D Motorola or Freescale Semiconductor Inc.

0x4E NVIDIA Corporation.

0x50 Applied Micro Circuits Corporation.

0x51 Qualcomm Inc.

0x56 Marvell International Ltd.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

208

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

Implementer Meaning

0x69 Intel Corporation.

0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must
not be used.

It is not required that this value is the same as the value of MIDR_EL1.Implementer.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [23:16]

Revision number for the Streaming Mode Compute Unit (SMCU).

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SMPS, bit [15]

Indicates support for Streaming SVE mode execution priority.

SMPS Meaning

0b0 Priority control not supported.

0b1 Priority control supported.

Bits [14:12]

Reserved, RES0.

Affinity, bits [11:0]

The SMCU affinity of the accessing PE.

• A value of zero indicates that the PE’s implementation of Streaming SVE mode is not shared with other PEs.

• Otherwise, the value identifies which SMCU is associated with this PE. The Affinity value associated with
each SMCU is unique within the system as a whole.

Accessing the SMIDR_EL1

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, SMIDR_EL1

op0 op1 CRn CRm op2

0b11 0b001 0b0000 0b0000 0b110

1 if PSTATE.EL == EL0 then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

209

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

2 if IsFeatureImplemented(FEAT_IDST) then
3 if EL2Enabled() && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x18);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 else
8 UNDEFINED;
9 elsif PSTATE.EL == EL1 then

10 if EL2Enabled() && HCR_EL2.TID1 == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 X[t, 64] = SMIDR_EL1;
14 elsif PSTATE.EL == EL2 then
15 X[t, 64] = SMIDR_EL1;
16 elsif PSTATE.EL == EL3 then
17 X[t, 64] = SMIDR_EL1;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

210

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.7 SMPRI_EL1, Streaming Mode Priority Register

The SMPRI_EL1 characteristics are:

Purpose

Configures the streaming execution priority for instructions executed on a shared Streaming Mode
Compute Unit (SMCU) when the PE is in Streaming SVE mode at any Exception Level.

Attributes

SMPRI_EL1 is a 64-bit register.

Configuration

When SMIDR_EL1.SMPS is ‘0’, this register is RES0.

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMPRI_EL1 are UNDEFINED.

Field descriptions

The SMPRI_EL1 bit assignments are:

RES0

63 32

RES0

31 4

Priority

3 0

Bits [63:4]

Reserved, RES0.

Priority, bits [3:0]

Streaming execution priority value.

Either this value is used directly, or it is mapped into an effective priority value using SMPRIMAP_EL2.

This value is used directly when any of the following are true:

• The current Exception level is EL3 or EL2.
• The current Exception level is EL1 or EL0, if EL2 is implemented and enabled in the current Security state

and HCRX_EL2.SMPME is ‘0’.
• The current Exception level is EL1 or EL0, if EL2 is either not implemented or not enabled in the current

Security state.

The precise meaning and behavior of each streaming execution priority value is IMPLEMENTATION DEFINED.

In an implementation that shares execution resources between PEs, higher priority values are allocated more
processing resource than other PEs configured with lower priority values in the same Priority domain.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SMPRI_EL1

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, SMPRI_EL1

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

211

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b100

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
5 UNDEFINED;
6 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.nSMPRI_EL1 == '0' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
9 if Halted() && EDSCR.SDD == '1' then

10 UNDEFINED;
11 else
12 AArch64.SystemAccessTrap(EL3, 0x18);
13 else
14 X[t, 64] = SMPRI_EL1;
15 elsif PSTATE.EL == EL2 then
16 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
17 UNDEFINED;
18 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
19 if Halted() && EDSCR.SDD == '1' then
20 UNDEFINED;
21 else
22 AArch64.SystemAccessTrap(EL3, 0x18);
23 else
24 X[t, 64] = SMPRI_EL1;
25 elsif PSTATE.EL == EL3 then
26 if CPTR_EL3.ESM == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x18);
28 else
29 X[t, 64] = SMPRI_EL1;

MSR SMPRI_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b100

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
5 UNDEFINED;
6 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.nSMPRI_EL1 == '0' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
9 if Halted() && EDSCR.SDD == '1' then

10 UNDEFINED;
11 else
12 AArch64.SystemAccessTrap(EL3, 0x18);
13 else
14 SMPRI_EL1 = X[t, 64];
15 elsif PSTATE.EL == EL2 then
16 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
17 UNDEFINED;
18 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
19 if Halted() && EDSCR.SDD == '1' then
20 UNDEFINED;
21 else
22 AArch64.SystemAccessTrap(EL3, 0x18);
23 else
24 SMPRI_EL1 = X[t, 64];
25 elsif PSTATE.EL == EL3 then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

212

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

26 if CPTR_EL3.ESM == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x18);
28 else
29 SMPRI_EL1 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

213

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.8 SMPRIMAP_EL2, Streaming Mode Priority Mapping Register

The SMPRIMAP_EL2 characteristics are:

Purpose

Maps the value in SMPRI_EL1 to a streaming execution priority value for instructions executed at EL1
and EL0 in the same Security states as EL2.

Attributes

SMPRIMAP_EL2 is a 64-bit register.

Configuration

When SMIDR_EL1.SMPS is ‘0’, this register is RES0.

If EL2 is not implemented, this register is RES0 from EL3.

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMPRIMAP_EL2 are UNDEFINED.

Field descriptions

The SMPRIMAP_EL2 bit assignments are:

P15

63 60

P14

59 56

P13

55 52

P12

51 48

P11

47 44

P10

43 40

P9

39 36

P8

35 32

P7

31 28

P6

27 24

P5

23 20

P4

19 16

P3

15 12

P2

11 8

P1

7 4

P0

3 0

When all of the following are true, the value in SMPRI_EL1 is mapped to a streaming execution priority using this
register:

• The current Exception level is EL1 or EL0.
• EL2 is implemented and enabled in the current Security state.
• HCRX_EL2.SMPME is ‘1’.

Otherwise, SMPRI_EL1 holds the streaming execution priority value.

P15, bits [63:60]

Priority Mapping Entry 15. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘15’.

This value is the highest streaming execution priority.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P14, bits [59:56]

Priority Mapping Entry 14. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘14’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

214

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

P13, bits [55:52]

Priority Mapping Entry 13. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘13’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P12, bits [51:48]

Priority Mapping Entry 12. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘12’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P11, bits [47:44]

Priority Mapping Entry 11. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘11’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P10, bits [43:40]

Priority Mapping Entry 10. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘10’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P9, bits [39:36]

Priority Mapping Entry 9. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘9’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P8, bits [35:32]

Priority Mapping Entry 8. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘8’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P7, bits [31:28]

Priority Mapping Entry 7. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘7’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

215

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

P6, bits [27:24]

Priority Mapping Entry 6. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘6’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P5, bits [23:20]

Priority Mapping Entry 5. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘5’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P4, bits [19:16]

Priority Mapping Entry 4. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘4’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P3, bits [15:12]

Priority Mapping Entry 3. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘3’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P2, bits [11:8]

Priority Mapping Entry 2. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘2’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P1, bits [7:4]

Priority Mapping Entry 1. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘1’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

216

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

P0, bits [3:0]

Priority Mapping Entry 0. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘0’.

This value is the lowest streaming execution priority.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SMPRIMAP_EL2

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, SMPRIMAP_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b101

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 X[t, 64] = NVMem[0x1E8];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 X[t, 64] = SMPRIMAP_EL2;
20 elsif PSTATE.EL == EL3 then
21 if CPTR_EL3.ESM == '0' then
22 AArch64.SystemAccessTrap(EL3, 0x18);
23 else
24 X[t, 64] = SMPRIMAP_EL2;

MSR SMPRIMAP_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b101

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 NVMem[0x1E8] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

217

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority
↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then

12 UNDEFINED;
13 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 SMPRIMAP_EL2 = X[t, 64];
20 elsif PSTATE.EL == EL3 then
21 if CPTR_EL3.ESM == '0' then
22 AArch64.SystemAccessTrap(EL3, 0x18);
23 else
24 SMPRIMAP_EL2 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

218

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.9 SVCR, Streaming Vector Control Register

The SVCR characteristics are:

Purpose

Controls Streaming SVE mode and SME behavior.

Attributes

SVCR is a 64-bit register.

Configuration

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to SVCR
are UNDEFINED.

Field descriptions

The SVCR bit assignments are:

RES0

63 32

RES0

31 2

ZA

1

SM

0

Bits [63:2]

Reserved, RES0.

ZA, bit [1]

Enables SME ZA storage.

When this storage is disabled, execution of an instruction which can access it is trapped. The exception is reported
using an ESR_ELx.{EC, SMTC} value of {0x1D, 0x3}.

The possible values of this bit are:

ZA Meaning

0b0 ZA storage is invalid and not accessible.
This control causes execution at any Exception level of
instructions that can access this storage to be trapped.

0b1 ZA storage is valid and accessible.
This control does not cause execution of any instructions to
be trapped.

When a write to SVCR.ZA changes the value of PSTATE.ZA, the following applies:

• When changed from 0 to 1, all implemented bits of the storage are set to zero.
• When changed from 1 to 0, there is no observable change to the storage.

Changes to this field do not have an affect on the SVE vector and predicate registers and FPSR.

A direct or indirect read of ZA appears to occur in program order relative to a direct write of SVCR, and to
MSR SVCRZA and MSR SVCRSMZA instructions, without the need for explicit synchronization.

The reset behavior of this field is:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

219

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

• On a Warm reset, this field resets to 0b0.

SM, bit [0]

Enables Streaming SVE mode.

When the PE is in Streaming SVE mode, the Streaming SVE vector length (SVL) applies to SVE instructions,
and execution at any Exception level of an instruction which is illegal in that mode is trapped. The exception is
reported using an ESR_ELx.{EC, SMTC} value of {0x1D, 0x1}.

When the PE is not in Streaming SVE mode, the SVE vector length (VL) applies to SVE instructions, and execution
at any Exception level of an instruction which is only legal in that mode is trapped. The exception is reported using
an ESR_ELx.{EC, SMTC} value of {0x1D, 0x2}.

The possible values of this bit are:

SM Meaning

0b0 The PE is not in Streaming SVE mode.

0b1 The PE is in Streaming SVE mode.

When a write to SVCR.SM changes the value of PSTATE.SM, the following applies:

• When changed from 0 to 1, an entry to Streaming SVE mode is performed.
• When changed from 1 to 0, an exit from Streaming SVE mode is performed.
• All implemented bits of the SVE registers Z0-Z31, P0-P15, and FFR in the new mode are set to zero.
• FPSR in the new mode is set to 0x0000_0000_0800_009f, in which all cumulative status bits are set to 1.

Changes to this field do not have an affect on ZA storage.

A direct or indirect read of SM appears to occur in program order relative to a direct write of SVCR, and to
MSR SVCRSM and MSR SVCRSMZA instructions, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Accessing the SVCR

SVCR is read/write and can be accessed from any Exception level.

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, SVCR

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b010

1 if PSTATE.EL == EL0 then
2 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
3 UNDEFINED;
4 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.SMEN != '11' then
5 if EL2Enabled() && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x1D);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x1D);
9 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.SMEN != '11' then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

220

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

10 AArch64.SystemAccessTrap(EL2, 0x1D);
11 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x1D);
13 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x1D);
15 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x1D);
20 else
21 X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;
22 elsif PSTATE.EL == EL1 then
23 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
24 UNDEFINED;
25 elsif CPACR_EL1.SMEN == 'x0' then
26 AArch64.SystemAccessTrap(EL1, 0x1D);
27 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x1D);
29 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x1D);
31 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
32 if Halted() && EDSCR.SDD == '1' then
33 UNDEFINED;
34 else
35 AArch64.SystemAccessTrap(EL3, 0x1D);
36 else
37 X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;
38 elsif PSTATE.EL == EL2 then
39 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
40 UNDEFINED;
41 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
42 AArch64.SystemAccessTrap(EL2, 0x1D);
43 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
44 AArch64.SystemAccessTrap(EL2, 0x1D);
45 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
46 if Halted() && EDSCR.SDD == '1' then
47 UNDEFINED;
48 else
49 AArch64.SystemAccessTrap(EL3, 0x1D);
50 else
51 X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;
52 elsif PSTATE.EL == EL3 then
53 if CPTR_EL3.ESM == '0' then
54 AArch64.SystemAccessTrap(EL3, 0x1D);
55 else
56 X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;

MSR SVCR, <Xt>

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b010

1 if PSTATE.EL == EL0 then
2 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
3 UNDEFINED;
4 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.SMEN != '11' then
5 if EL2Enabled() && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x1D);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x1D);
9 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.SMEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x1D);
11 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x1D);
13 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x1D);
15 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
16 if Halted() && EDSCR.SDD == '1' then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

221

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x1D);
20 else
21 SetPSTATE_SVCR(X[t, 32]);
22 elsif PSTATE.EL == EL1 then
23 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
24 UNDEFINED;
25 elsif CPACR_EL1.SMEN == 'x0' then
26 AArch64.SystemAccessTrap(EL1, 0x1D);
27 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x1D);
29 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x1D);
31 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
32 if Halted() && EDSCR.SDD == '1' then
33 UNDEFINED;
34 else
35 AArch64.SystemAccessTrap(EL3, 0x1D);
36 else
37 SetPSTATE_SVCR(X[t, 32]);
38 elsif PSTATE.EL == EL2 then
39 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.ESM == '0' then
40 UNDEFINED;
41 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
42 AArch64.SystemAccessTrap(EL2, 0x1D);
43 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
44 AArch64.SystemAccessTrap(EL2, 0x1D);
45 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
46 if Halted() && EDSCR.SDD == '1' then
47 UNDEFINED;
48 else
49 AArch64.SystemAccessTrap(EL3, 0x1D);
50 else
51 SetPSTATE_SVCR(X[t, 32]);
52 elsif PSTATE.EL == EL3 then
53 if CPTR_EL3.ESM == '0' then
54 AArch64.SystemAccessTrap(EL3, 0x1D);
55 else
56 SetPSTATE_SVCR(X[t, 32]);

MSR SVCRSM, #<imm>

op0 op1 CRn CRm op2

0b00 0b011 0b0100 0b001x 0b011

MSR SVCRZA, #<imm>

op0 op1 CRn CRm op2

0b00 0b011 0b0100 0b010x 0b011

MSR SVCRSMZA, #<imm>

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

222

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

op0 op1 CRn CRm op2

0b00 0b011 0b0100 0b011x 0b011

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

223

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.10 TPIDR2_EL0, EL0 Read/Write Software Thread ID Register 2

The TPIDR2_EL0 characteristics are:

Purpose

Provides a location where SME-aware software executing at EL0 can store thread identifying
information, for context management purposes.

The PE makes no use of this register.

Attributes

TPIDR2_EL0 is a 64-bit register.

Configuration

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
TPIDR2_EL0 are UNDEFINED.

Field descriptions

The TPIDR2_EL0 bit assignments are:

Thread ID

63 32

Thread ID

31 0

Bits [63:0]

Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the TPIDR2_EL0

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, TPIDR2_EL0

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b101

1 if PSTATE.EL == EL0 then
2 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && SCR_EL3.EnTP2 == '0' then
3 UNDEFINED;
4 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnTP2 == '0' then
5 if EL2Enabled() && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x18);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x18);
9 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnTP2 == '0' then

10 AArch64.SystemAccessTrap(EL2, 0x18);
11 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

↪→HFGRTR_EL2.nTPIDR2_EL0 == '0' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

224

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 X[t, 64] = TPIDR2_EL0;
20 elsif PSTATE.EL == EL1 then
21 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && SCR_EL3.EnTP2 == '0' then
22 UNDEFINED;
23 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.nTPIDR2_EL0 == '0' then
24 AArch64.SystemAccessTrap(EL2, 0x18);
25 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
26 if Halted() && EDSCR.SDD == '1' then
27 UNDEFINED;
28 else
29 AArch64.SystemAccessTrap(EL3, 0x18);
30 else
31 X[t, 64] = TPIDR2_EL0;
32 elsif PSTATE.EL == EL2 then
33 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && SCR_EL3.EnTP2 == '0' then
34 UNDEFINED;
35 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
36 if Halted() && EDSCR.SDD == '1' then
37 UNDEFINED;
38 else
39 AArch64.SystemAccessTrap(EL3, 0x18);
40 else
41 X[t, 64] = TPIDR2_EL0;
42 elsif PSTATE.EL == EL3 then
43 X[t, 64] = TPIDR2_EL0;

MSR TPIDR2_EL0, <Xt>

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b101

1 if PSTATE.EL == EL0 then
2 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && SCR_EL3.EnTP2 == '0' then
3 UNDEFINED;
4 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnTP2 == '0' then
5 if EL2Enabled() && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x18);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x18);
9 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnTP2 == '0' then

10 AArch64.SystemAccessTrap(EL2, 0x18);
11 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

↪→HFGWTR_EL2.nTPIDR2_EL0 == '0' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 TPIDR2_EL0 = X[t, 64];
20 elsif PSTATE.EL == EL1 then
21 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && SCR_EL3.EnTP2 == '0' then
22 UNDEFINED;
23 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.nTPIDR2_EL0 == '0' then
24 AArch64.SystemAccessTrap(EL2, 0x18);
25 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
26 if Halted() && EDSCR.SDD == '1' then
27 UNDEFINED;
28 else
29 AArch64.SystemAccessTrap(EL3, 0x18);
30 else
31 TPIDR2_EL0 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

225

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

32 elsif PSTATE.EL == EL2 then
33 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && SCR_EL3.EnTP2 == '0' then
34 UNDEFINED;
35 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
36 if Halted() && EDSCR.SDD == '1' then
37 UNDEFINED;
38 else
39 AArch64.SystemAccessTrap(EL3, 0x18);
40 else
41 TPIDR2_EL0 = X[t, 64];
42 elsif PSTATE.EL == EL3 then
43 TPIDR2_EL0 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

226

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.11 EDHSR, External Debug Halt Status Register

The EDHSR characteristics are:

Purpose

Provides Debug Halt Status information.

Attributes

EDHSR is a 64-bit register.

Configuration

This register is only valid when the PE is in Debug state and EDSCR.STATUS is 0b101011, indicating
a Watchpoint debug event. Otherwise, it has an UNKNOWN value.

The field EDDEVID1.HSR indicates support for this register.

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to EDHSR
are RES0.

Field descriptions

The EDHSR bit assignments are:

RES0

63 32

RES0

31 24

WPT

23 18 17 16 15

RES0

14 11 10

RES0

9 0

WPTV FnP
WPF

FnV

Bits [63:24]

Reserved, RES0.

WPT, bits [23:18]

Watchpoint number, 0 to 15 inclusive.

All other values are reserved.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

WPTV, bit [17]

Watchpoint number Valid.

WPTV Meaning

0b0 The WPT field is invalid, and holds an UNKNOWN value.

0b1 The WPT field is valid, and holds the number of a
watchpoint that triggered a Watchpoint exception.

The reset behavior of this field is:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

227

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

WPF, bit [16]

Watchpoint might be false-positive.

WPF Meaning

0b0 The watchpoint matched the original access or set of
contiguous accesses.

0b1 The watchpoint matched an access or set of contiguous
accesses where the lowest accessed address was rounded
down to the nearest multiple of 16 bytes and the highest
accessed address was rounded up to the nearest multiple of
16 bytes minus 1, but the watchpoint might not have
matched the original access or set of contiguous accesses.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

FnP, bit [15]

FAR not Precise.

This field only has meaning if the EDWAR is valid; that is, when the FnV field is 0. If the FnV field is 1, the FnP
field is 0.

FnP Meaning

0b0 If the FnV field is 0, the EDWAR holds the virtual address
of an access or set of contiguous accesses that triggered a
Watchpoint exception.

0b1 The EDWAR holds any address within the smallest
implemented translation granule that contains the virtual
address of an access or set of contiguous accesses that
triggered a Watchpoint exception.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [14:11]

Reserved, RES0.

FnV, bit [10]

FAR not Valid.

FnV Meaning

0b0 The EDWAR is valid, and its value is as described by the
FnP field.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

228

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

FnV Meaning

0b1 The EDWAR is invalid, and holds an UNKNOWN value.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

Accessing the EDHSR

Accesses to this register use the following encodings in the instruction encoding space:

EDHSR can be accessed through the external debug interface:

Component Offset Instance Range

Debug 0x038 EDHSR 31:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() access to this register is RO.
• Otherwise access to this register returns an ERROR.

EDHSR can be accessed through the external debug interface:

Component Offset Instance Range

Debug 0x03C EDHSR 63:32

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() access to this register is RO.
• Otherwise access to this register returns an ERROR.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

229

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2 Changes to existing System registers

System registers that are updated with additional fields, values, or description changes, to support SME
functionality.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

230

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.1 CPACR_EL1, Architectural Feature Access Control Register

The CPACR_EL1 characteristics are:

Purpose

Controls access to trace, SME, Streaming SVE, SVE, and Advanced SIMD and floating-point
functionality.

Attributes

CPACR_EL1 is a 64-bit register.

Configuration

When EL2 is implemented and enabled in the current Security state and HCR_EL2.{E2H, TGE} ==
{1, 1}, the fields in this register have no effect on execution at EL0 and EL1. In this case, the controls
provided by CPTR_EL2 are used.

AArch64 system register CPACR_EL1 bits [31:0] are architecturally mapped to AArch32 system
register CPACR[31:0].

Field descriptions

The CPACR_EL1 bit assignments are:

RES0

63 32

RES0

31 29 28

RES0

27 26

SMEN

25 24

RES0

23 22

FPEN

21 20

RES0

19 18

ZEN

17 16

RES0

15 0

TTA

Bits [63:29]

Reserved, RES0.

TTA, bit [28]

Traps EL0 and EL1 System register accesses to all implemented trace registers from both Execution states to EL1,
or to EL2 when it is implemented and enabled in the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to trace registers are trapped, reported using ESR_ELx.EC value 0x18.

• In AArch32 state, MRC and MCR accesses to trace registers are trapped, reported using ESR_ELx.EC value
0x05.

• In AArch32 state, MRRC and MCRR accesses to trace registers are trapped, reported using ESR_ELx.EC
value 0x0C.

TTA Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 This control causes EL0 and EL1 System register accesses
to all implemented trace registers to be trapped.

• The ETMv4 architecture and ETE do not permit EL0 to access the trace registers. If the PE trace unit
implements FEAT_ETMv4 or FEAT_ETE, EL0 accesses to the trace registers are UNDEFINED, and any
resulting exception is higher priority than an exception that would be generated because the value of
CPACR_EL1.TTA is 1.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

231

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• The Arm architecture does not provide traps on trace register accesses through the optional memory-mapped
interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not implemented, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

SMEN, bits [25:24]

When FEAT_SME is implemented:

Traps execution at EL1 and EL0 of SME instructions, SVE instructions when FEAT_SVE is not implemented or
the PE is in Streaming SVE mode, and instructions that directly access the SVCR or SMCR_EL1 System registers
to EL1, or to EL2 when EL2 is implemented and enabled in the current Security state and HCR_EL2.TGE is 1.

When instructions that directly access the SVCR System register are trapped with reference to this control, the
MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are also trapped.

The exception is reported using ESR_ELx.EC value of 0x1D, with an ISS code of 0x0000000.

This field does not affect whether Streaming SVE or SME register values are valid.

A trap taken as a result of CPACR_EL1.SMEN has precedence over a trap taken as a result of CPACR_EL1.FPEN.

SMEN Meaning

0b00 This control causes execution of these instructions at EL1
and EL0 to be trapped.

0b01 This control causes execution of these instructions at EL0 to
be trapped, but does not cause execution of any instructions
at EL1 to be trapped.

0b10 This control causes execution of these instructions at EL1
and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to
be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [23:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps execution at EL1 and EL0 of instructions that access the Advanced SIMD and floating-point registers from

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

232

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

both Execution states to EL1, reported using ESR_ELx.EC value 0x07, or to EL2 reported using ESR_ELx.EC
value 0x00 when EL2 is implemented and enabled in the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to FPCR, FPSR, any of the SIMD and floating-point registers V0-V31, including
their views as D0-D31 registers or S0-31 registers.

• In AArch32 state, FPSCR, and any of the SIMD and floating-point registers Q0-15, including their views as
D0-D31 registers or S0-31 registers.

Traps execution at EL1 and EL0 of SME and SVE instructions to EL1, or to EL2 when EL2 is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1. The exception is reported using ESR_ELx.EC
value 0x07.

A trap taken as a result of CPACR_EL1.SMEN has precedence over a trap taken as a result of CPACR_EL1.FPEN.

A trap taken as a result of CPACR_EL1.ZEN has precedence over a trap taken as a result of CPACR_EL1.FPEN.

FPEN Meaning

0b00 This control causes execution of these instructions at EL1
and EL0 to be trapped.

0b01 This control causes execution of these instructions at EL0 to
be trapped, but does not cause execution of any instructions
at EL1 to be trapped.

0b10 This control causes execution of these instructions at EL1
and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to
be trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether
these accesses can be trapped by this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

• Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.
• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and any

resulting exception is higher priority than an exception that would be generated because the value of
CPACR_EL1.FPEN is not 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:18]

Reserved, RES0.

ZEN, bits [17:16]

When FEAT_SVE is implemented:

Traps execution at EL1 and EL0 of SVE instructions when the PE is not in Streaming SVE mode, and instructions
that directly access the ZCR_EL1 System register to EL1, or to EL2 when EL2 is implemented and enabled in the
current Security state and HCR_EL2.TGE is 1.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPACR_EL1.ZEN has precedence over a trap taken as a result of CPACR_EL1.FPEN.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

233

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ZEN Meaning

0b00 This control causes execution of these instructions at EL1
and EL0 to be trapped.

0b01 This control causes execution of these instructions at EL0 to
be trapped, but does not cause execution of any instructions
at EL1 to be trapped.

0b10 This control causes execution of these instructions at EL1
and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to
be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [15:0]

Reserved, RES0.

Accessing the CPACR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CPACR_EL1
or CPACR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, CPACR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
5 UNDEFINED;
6 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CPACR_EL1 == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
11 if Halted() && EDSCR.SDD == '1' then
12 UNDEFINED;
13 else
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
16 X[t, 64] = NVMem[0x100];
17 else
18 X[t, 64] = CPACR_EL1;
19 elsif PSTATE.EL == EL2 then
20 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
21 UNDEFINED;
22 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
23 if Halted() && EDSCR.SDD == '1' then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

234

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

24 UNDEFINED;
25 else
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HCR_EL2.E2H == '1' then
28 X[t, 64] = CPTR_EL2;
29 else
30 X[t, 64] = CPACR_EL1;
31 elsif PSTATE.EL == EL3 then
32 X[t, 64] = CPACR_EL1;

MSR CPACR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
5 UNDEFINED;
6 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.CPACR_EL1 == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
11 if Halted() && EDSCR.SDD == '1' then
12 UNDEFINED;
13 else
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
16 NVMem[0x100] = X[t, 64];
17 else
18 CPACR_EL1 = X[t, 64];
19 elsif PSTATE.EL == EL2 then
20 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
21 UNDEFINED;
22 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
23 if Halted() && EDSCR.SDD == '1' then
24 UNDEFINED;
25 else
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HCR_EL2.E2H == '1' then
28 CPTR_EL2 = X[t, 64];
29 else
30 CPACR_EL1 = X[t, 64];
31 elsif PSTATE.EL == EL3 then
32 CPACR_EL1 = X[t, 64];

MRS <Xt>, CPACR_EL12

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 X[t, 64] = NVMem[0x100];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

235

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

↪→priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
13 UNDEFINED;
14 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
15 if Halted() && EDSCR.SDD == '1' then
16 UNDEFINED;
17 else
18 AArch64.SystemAccessTrap(EL3, 0x18);
19 else
20 X[t, 64] = CPACR_EL1;
21 else
22 UNDEFINED;
23 elsif PSTATE.EL == EL3 then
24 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
25 X[t, 64] = CPACR_EL1;
26 else
27 UNDEFINED;

MSR CPACR_EL12, <Xt>

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 NVMem[0x100] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

↪→priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
13 UNDEFINED;
14 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
15 if Halted() && EDSCR.SDD == '1' then
16 UNDEFINED;
17 else
18 AArch64.SystemAccessTrap(EL3, 0x18);
19 else
20 CPACR_EL1 = X[t, 64];
21 else
22 UNDEFINED;
23 elsif PSTATE.EL == EL3 then
24 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
25 CPACR_EL1 = X[t, 64];
26 else
27 UNDEFINED;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

236

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.2 CPTR_EL2, Architectural Feature Trap Register (EL2)

The CPTR_EL2 characteristics are:

Purpose

Controls trapping to EL2 of accesses to CPACR, CPACR_EL1, trace, Activity Monitor, SME, Streaming
SVE, SVE, and Advanced SIMD and floating-point functionality.

Attributes

CPTR_EL2 is a 64-bit register.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

AArch64 system register CPTR_EL2 bits [31:0] are architecturally mapped to AArch32 system register
HCPTR[31:0].

Field descriptions

The CPTR_EL2 bit assignments are:

When FEAT_VHE is implemented and HCR_EL2.E2H == 1:

RES0

63 32

31 30 29 28

RES0

27 26

SMEN

25 24

RES0

23 22

FPEN

21 20

RES0

19 18

ZEN

17 16

RES0

15 0

TCPAC
TAM

TTA
RES0

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

In AArch64 state, traps accesses to CPACR_EL1 from EL1 to EL2, when EL2 is enabled in the current Security
state. The exception is reported using ESR_ELx.EC value 0x18.

In AArch32 state, traps accesses to CPACR from EL1 to EL2, when EL2 is enabled in the current Security state.
The exception is reported using ESR_ELx.EC value 0x03.

TCPAC Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to CPACR_EL1 and CPACR are trapped to
EL2, when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

CPACR_EL1 and CPACR are not accessible at EL0.

The reset behavior of this field is:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

237

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using ESR_ELx.EC value
0x18:

– AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0,
AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0,
AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and
AMEVTYPER1<n>_EL0.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 and reported using
ESR_ELx.EC value 0x03:

– AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVTYPER0<n>, and AMEVTYPER1<n>.

• In AArch32 state, MRRC or MCRR accesses to AMEVCNTR0<n> and AMEVCNTR1<n>, are trapped to
EL2, reported using ESR_ELx.EC value 0x04.

TAM Meaning

0b0 Accesses from EL1 and EL0 to Activity Monitor registers
are not trapped.

0b1 Accesses from EL1 and EL0 to Activity Monitor registers
are trapped to EL2, when EL2 is enabled in the current
Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [29]

Reserved, RES0.

TTA, bit [28]

Traps System register accesses to all implemented trace registers from both Execution states to EL2, when EL2 is
enabled in the current Security state, as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1, and CRn<0b1000 are trapped to EL2,
reported using EC syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1, and CRn<0b1000 are
trapped to EL2, reported using EC syndrome value 0x05.

TTA Meaning

0b0 This control does not cause any instructions to be trapped.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

238

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TTA Meaning

0b1 Any attempt at EL0, EL1 or EL2, to execute a System
register access to an implemented trace register is trapped to
EL2, when EL2 is enabled in the current Security state,
unless HCR_EL2.TGE is 0 and it is trapped by
CPACR.NSTRCDIS or CPACR_EL1.TTA.
When HCR_EL2.TGE is 1, any attempt at EL0 or EL2 to
execute a System register access to an implemented trace
register is trapped to EL2, when EL2 is enabled in the
current Security state.

The ETMv4 architecture and ETE do not permit EL0 to access the trace registers. If the PE trace unit implements
FEAT_ETMv4 or ETE, EL0 accesses to the trace registers are UNDEFINED, and any resulting exception is higher
priority than an exception that would be generated because the value of CPTR_EL2.TTA is 1.

EL2 does not provide traps on trace register accesses through the optional Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

SMEN, bits [25:24]

When FEAT_SME is implemented:

Traps execution at EL2, EL1, and EL0 of SME instructions, SVE instructions when FEAT_SVE is not implemented
or the PE is in Streaming SVE mode, and instructions that directly access the SVCR, SMCR_EL1, or SMCR_EL2
System registers to EL2, when EL2 is enabled in the current Security state.

When instructions that directly access the SVCR System register are trapped with reference to this control, the
MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are also trapped.

The exception is reported using ESR_EL2.EC value of 0x1D, with an ISS code of 0x0000000.

This field does not affect whether Streaming SVE or SME register values are valid.

A trap taken as a result of CPTR_EL2.SMEN has precedence over a trap taken as a result of CPTR_EL2.FPEN.

SMEN Meaning

0b00 This control causes execution of these instructions at EL2,
EL1, and EL0 to be trapped.

0b01 When HCR_EL2.TGE is 0, this control does not cause
execution of any instructions to be trapped.
When HCR_EL2.TGE is 1, this control causes execution of
these instructions at EL0 to be trapped, but does not cause
execution of any instructions at EL2 to be trapped.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

239

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SMEN Meaning

0b10 This control causes execution of these instructions at EL2,
EL1, and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to
be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [23:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps execution at EL2, EL1, and EL0 of instructions that access the Advanced SIMD and floating-point registers
from both Execution states to EL2, when EL2 is enabled in the current Security state. The exception is reported
using ESR_ELx.EC value 0x07.

Traps execution at EL2, EL1, and EL0 of SME and SVE instructions to EL2, when EL2 is enabled in the current
Security state. The exception is reported using ESR_ELx.EC value 0x07.

A trap taken as a result of CPTR_EL2.SMEN has precedence over a trap taken as a result of CPTR_EL2.FPEN.

A trap taken as a result of CPTR_EL2.ZEN has precedence over a trap taken as a result of CPTR_EL2.FPEN.

FPEN Meaning

0b00 This control causes execution of these instructions at EL2,
EL1, and EL0 to be trapped.

0b01 When HCR_EL2.TGE is 0, this control does not cause
execution of any instructions to be trapped.
When HCR_EL2.TGE is 1, this control causes execution of
these instructions at EL0 to be trapped, but does not cause
execution of any instructions at EL2 to be trapped.

0b10 This control causes execution of these instructions at EL2,
EL1, and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to
be trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether
these accesses can be trapped by this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

• Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.
• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and any resulting

exception is higher priority than an exception that would be generated because the value of CPTR_EL2.FPEN
is not 0b11.

The reset behavior of this field is:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

240

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:18]

Reserved, RES0.

ZEN, bits [17:16]

When FEAT_SVE is implemented:

Traps execution at EL2, EL1, and EL0 of SVE instructions when the PE is not in Streaming SVE mode, and
instructions that directly access the ZCR_EL1 or ZCR_EL2 System registers to EL2, when EL2 is enabled in the
current Security state.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPTR_EL2.ZEN has precedence over a trap taken as a result of CPTR_EL2.FPEN.

ZEN Meaning

0b00 This control causes execution of these instructions at EL2,
EL1, and EL0 to be trapped.

0b01 When HCR_EL2.TGE is 0, this control does not cause
execution of any instructions to be trapped.
When HCR_EL2.TGE is 1, this control causes execution of
these instructions at EL0 to be trapped, but does not cause
execution of any instructions at EL2 to be trapped.

0b10 This control causes execution of these instructions at EL2,
EL1, and EL0 to be trapped.

0b11 This control does not cause execution of any instructions to
be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [15:0]

Reserved, RES0.

Otherwise:

RES0

63 32

31 30

RES0

29 21 20

RES0

19 14 13 12 11 10 9

TZ

8

RES1

7 0

TCPAC TAM TTA RES1
TSM

RES1
TFP

RES0

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

241

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

This format applies in all Armv8.0 implementations.

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

In AArch64 state, traps accesses to CPACR_EL1 from EL1 to EL2, when EL2 is enabled in the current Security
state. The exception is reported using ESR_ELx.EC value 0x18.

In AArch32 state, traps accesses to CPACR from EL1 to EL2, when EL2 is enabled in the current Security state.
The exception is reported using ESR_ELx.EC value 0x03.

TCPAC Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to CPACR_EL1 and CPACR are trapped to
EL2, when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

CPACR_EL1 and CPACR are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using ESR_ELx.EC value
0x18:

– AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0,
AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0,
AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and
AMEVTYPER1<n>_EL0.

• In AArch32 state, MCR or MRC accesses to the following registers are trapped to EL2 and reported using
ESR_ELx.EC value 0x03:

– AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVTYPER0<n>, and AMEVTYPER1<n>.

• In AArch32 state, MCRR or MRRC accesses to AMEVCNTR0<n> and AMEVCNTR1<n>, are trapped to
EL2, reported using ESR_ELx.EC value 0x04.

TAM Meaning

0b0 Accesses from EL1 and EL0 to Activity Monitor registers
are not trapped.

0b1 Accesses from EL1 and EL0 to Activity Monitor registers
are trapped to EL2, when EL2 is enabled in the current
Security state.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

242

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses to all implemented trace registers from both Execution states to EL2, when EL2 is
enabled in the current Security state, as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1, and CRn<0b1000 are trapped to EL2,
reported using EC syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1, and CRn<0b1000 are
trapped to EL2, reported using EC syndrome value 0x05.

TTA Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt at EL0, EL1, or EL2, to execute a System
register access to an implemented trace register is trapped to
EL2, when EL2 is enabled in the current Security state,
unless it is trapped by CPACR.TRCDIS or
CPACR_EL1.TTA.

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the PE trace unit implements
FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and any resulting exception is higher
priority than an exception that would be generated because the value of CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:14]

Reserved, RES0.

Bit [13]

Reserved, RES1.

TSM, bit [12]

When FEAT_SME is implemented:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

243

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Traps execution at EL2, EL1, and EL0 of SME instructions, SVE instructions when FEAT_SVE is not implemented
or the PE is in Streaming SVE mode, and instructions that directly access the SVCR, SMCR_EL1, or SMCR_EL2
System registers to EL2, when EL2 is enabled in the current Security state.

When instructions that directly access the SVCR System register are trapped with reference to this control, the
MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are also trapped.

The exception is reported using ESR_EL2.EC value of 0x1D, with an ISS code of 0x0000000.

This field does not affect whether Streaming SVE or SME register values are valid.

A trap taken as a result of CPTR_EL2.TSM has precedence over a trap taken as a result of CPTR_EL2.TFP.

TSM Meaning

0b0 This control does not cause execution of any instructions to
be trapped.

0b1 This control causes execution of these instructions at EL2,
EL1, and EL0 to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

Bit [11]

Reserved, RES0.

TFP, bit [10]

Traps execution of instructions which access the Advanced SIMD and floating-point functionality, from both
Execution states to EL2, when EL2 is enabled in the current Security state, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using ESR_ELx.EC value
0x07:

– FPCR, FPSR, FPEXC32_EL2, any of the SIMD and floating-point registers V0-V31, including their
views as D0-D31 registers or S0-31 registers.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using ESR_ELx.EC value
0x07:

– MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers Q0-15,
including their views as D0-D31 registers or S0-31 registers. For the purposes of this trap, the architecture
defines a VMSR access to FPSID from EL1 or higher as an access to a SIMD and floating-point register.
Otherwise, permitted VMSR accesses to FPSID are ignored.

Traps execution at the same Exception levels of SME and SVE instructions to EL2, when EL2 is enabled in the
current Security state. The exception is reported using ESR_ELx.EC value 0x07.

A trap taken as a result of CPTR_EL2.TSM has precedence over a trap taken as a result of CPTR_EL2.TFP.

A trap taken as a result of CPTR_EL2.TZ has precedence over a trap taken as a result of CPTR_EL2.TFP.

TFP Meaning

0b0 This control does not cause execution of any instructions to
be trapped.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

244

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TFP Meaning

0b1 This control causes execution of these instructions at EL2,
EL1, and EL0 to be trapped.

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES1.

TZ, bit [8]

When FEAT_SVE is implemented:

Traps execution at EL2, EL1, and EL0 of SVE instructions when the PE is not in Streaming SVE mode, and
instructions that directly access the ZCR_EL2 or ZCR_EL1 System registers to EL2, when EL2 is enabled in the
current Security state.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPTR_EL2.TZ has precedence over a trap taken as a result of CPTR_EL2.TFP.

TZ Meaning

0b0 This control does not cause execution of any instructions to
be trapped.

0b1 This control causes execution of these instructions at EL2,
EL1, and EL0 to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

Bits [7:0]

Reserved, RES1.

Accessing the CPTR_EL2

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, CPTR_EL2

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

245

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 else
7 UNDEFINED;
8 elsif PSTATE.EL == EL2 then
9 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
10 UNDEFINED;
11 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
12 if Halted() && EDSCR.SDD == '1' then
13 UNDEFINED;
14 else
15 AArch64.SystemAccessTrap(EL3, 0x18);
16 else
17 X[t, 64] = CPTR_EL2;
18 elsif PSTATE.EL == EL3 then
19 X[t, 64] = CPTR_EL2;

MSR CPTR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 else
7 UNDEFINED;
8 elsif PSTATE.EL == EL2 then
9 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
10 UNDEFINED;
11 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
12 if Halted() && EDSCR.SDD == '1' then
13 UNDEFINED;
14 else
15 AArch64.SystemAccessTrap(EL3, 0x18);
16 else
17 CPTR_EL2 = X[t, 64];
18 elsif PSTATE.EL == EL3 then
19 CPTR_EL2 = X[t, 64];

MRS <Xt>, CPACR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

246

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
5 UNDEFINED;
6 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CPACR_EL1 == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
11 if Halted() && EDSCR.SDD == '1' then
12 UNDEFINED;
13 else
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
16 X[t, 64] = NVMem[0x100];
17 else
18 X[t, 64] = CPACR_EL1;
19 elsif PSTATE.EL == EL2 then
20 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
21 UNDEFINED;
22 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
23 if Halted() && EDSCR.SDD == '1' then
24 UNDEFINED;
25 else
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HCR_EL2.E2H == '1' then
28 X[t, 64] = CPTR_EL2;
29 else
30 X[t, 64] = CPACR_EL1;
31 elsif PSTATE.EL == EL3 then
32 X[t, 64] = CPACR_EL1;

MSR CPACR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
5 UNDEFINED;
6 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.CPACR_EL1 == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
11 if Halted() && EDSCR.SDD == '1' then
12 UNDEFINED;
13 else
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
16 NVMem[0x100] = X[t, 64];
17 else
18 CPACR_EL1 = X[t, 64];
19 elsif PSTATE.EL == EL2 then
20 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
21 UNDEFINED;
22 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
23 if Halted() && EDSCR.SDD == '1' then
24 UNDEFINED;
25 else
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HCR_EL2.E2H == '1' then
28 CPTR_EL2 = X[t, 64];
29 else
30 CPACR_EL1 = X[t, 64];
31 elsif PSTATE.EL == EL3 then
32 CPACR_EL1 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

247

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

248

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.3 CPTR_EL3, Architectural Feature Trap Register (EL3)

The CPTR_EL3 characteristics are:

Purpose

Controls trapping to EL3 of accesses to CPACR, CPACR_EL1, HCPTR, CPTR_EL2, trace, Activity
Monitor, SME, Streaming SVE, SVE, and Advanced SIMD and floating-point functionality.

Attributes

CPTR_EL3 is a 64-bit register.

Configuration

This register is present only when EL3 is implemented. Otherwise, direct accesses to CPTR_EL3 are
UNDEFINED.

Field descriptions

The CPTR_EL3 bit assignments are:

RES0

63 32

31 30

RES0

29 21 20

RES0

19 13 12 11 10 9

EZ

8

RES0

7 0

TCPAC TAM TTA ESM
RES0

RES0
TFP

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

Traps all of the following to EL3, from both Execution states and any Security state.

• EL2 accesses to CPTR_EL2, reported using ESR_ELx.EC value 0x18, or HCPTR, reported using
ESR_ELx.EC value 0x03.

• EL2 and EL1 accesses to CPACR_EL1 reported using ESR_ELx.EC value 0x18, or CPACR reported using
ESR_ELx.EC value 0x03.

When CPTR_EL3.TCPAC is:

TCPAC Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and
EL1 accesses to the CPACR_EL1 or CPACR, are trapped to
EL3, unless they are trapped by CPTR_EL2.TCPAC.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

249

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Trap Activity Monitor access. Traps EL2, EL1, and EL0 accesses to all Activity Monitor registers to EL3.

Accesses to the Activity Monitors registers are trapped as follows:

• In AArch64 state, the following registers are trapped to EL3 and reported with ESR_ELx.EC value 0x18:

– AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0,
AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0,
AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and
AMEVTYPER1<n>_EL0.

• In AArch32 state, accesses with MRC or MCR to the following registers reported with ESR_ELx.EC value
0x03:

– AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVTYPER0<n>, and AMEVTYPER1<n>.

• In AArch32 state, accesses with MRRC or MCRR to the following registers, reported with ESR_ELx.EC
value 0x04:

– AMEVCNTR0<n>, AMEVCNTR1<n>.

TAM Meaning

0b0 Accesses from EL2, EL1, and EL0 to Activity Monitor
registers are not trapped.

0b1 Accesses from EL2, EL1, and EL0 to Activity Monitor
registers are trapped to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses. Accesses to the trace registers, from all Exception levels, any Security state, and
both Execution states are trapped to EL3 as follows:

• In AArch64 state, Trace registers with op0=2, op1=1, and CRn<0b1000 are trapped to EL3 and reported
using EC syndrome value 0x18.

• In AArch32 state, accesses using MCR or MRC to the Trace registers with cpnum=14, opc1=1, and
CRn<0b1000 are reported using EC syndrome value 0x05.

TTA Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 Any System register access to the trace registers is trapped
to EL3, unless it is trapped by CPACR.TRCDIS,
CPACR_EL1.TTA, or CPTR_EL2.TTA.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

250

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

If System register access to trace functionality is not supported, this bit is RES0.

The ETMv4 architecture and ETE do not permit EL0 to access the trace registers. If the PE trace unit implements
FEAT_ETMv4 or FEAT_ETE, EL0 accesses to the trace registers are UNDEFINED, and any resulting exception is
higher priority than this trap exception.

EL3 does not provide traps on trace register accesses through the Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no
side-effects occur before the exception is taken, see ‘Traps on instructions’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

ESM, bit [12]

When FEAT_SME is implemented:

Traps execution of SME instructions, SVE instructions when FEAT_SVE is not implemented or the PE is
in Streaming SVE mode, and instructions that directly access the SMCR_EL1, SMCR_EL2, SMCR_EL3,
SMPRI_EL1, SMPRIMAP_EL2, or SVCR System registers, from all Exception levels and any Security state, to
EL3.

When instructions that directly access the SVCR System register are trapped with reference to this control, the
MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are also trapped.

When direct accesses to SMPRI_EL1 and SMPRIMAP_EL2 are trapped, the exception is reported using an
ESR_EL3.EC value of 0x18. Otherwise, the exception is reported using an ESR_EL3.EC value of 0x1D, with an
ISS code of 0x0000000.

This field does not affect whether Streaming SVE or SME register values are valid.

A trap taken as a result of CPTR_EL3.ESM has precedence over a trap taken as a result of CPTR_EL3.TFP.

ESM Meaning

0b0 This control causes execution of these instructions at all
Exception levels to be trapped.

0b1 This control does not cause execution of any instructions to
be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [11]

Reserved, RES0.

TFP, bit [10]

Traps execution of instructions which access the Advanced SIMD and floating-point functionality, from all

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

251

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Exception levels, any Security state, and both Execution states, to EL3.

This includes the following registers, all reported using ESR_ELx.EC value 0x07:

• FPCR, FPSR, FPEXC32_EL2, and any of the SIMD and floating-point registers V0-V31, including their
views as D0-D31 registers or S0-S31 registers.

• MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers Q0-Q15,
including their views as D0-D31 registers or S0-S31 registers.

• VMSR accesses to FPSID.

Permitted VMSR accesses to FPSID are ignored, but for the purposes of this trap the architecture defines a VMSR
access to the FPSID from EL1 or higher as an access to a SIMD and floating-point register.

Traps execution at all Exception levels of SME and SVE instructions to EL3 from any Security state. The exception
is reported using ESR_ELx.EC value 0x07.

A trap taken as a result of CPTR_EL3.ESM has precedence over a trap taken as a result of CPTR_EL3.TFP.

A trap taken as a result of CPTR_EL3.EZ has precedence over a trap taken as a result of CPTR_EL3.TFP.

Defined values are:

TFP Meaning

0b0 This control does not cause execution of any instructions to
be trapped.

0b1 This control causes execution of these instructions at all
Exception levels to be trapped.

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

EZ, bit [8]

When FEAT_SVE is implemented:

Traps execution of SVE instructions when the PE is not in Streaming SVE mode, and instructions that directly
access the ZCR_EL3, ZCR_EL2, or ZCR_EL1 System registers, from all Exception levels and any Security state,
to EL3.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPTR_EL3.EZ has precedence over a trap taken as a result of CPTR_EL3.TFP.

EZ Meaning

0b0 This control causes execution of these instructions at all
Exception levels to be trapped.

0b1 This control does not cause execution of any instructions to
be trapped.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

252

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [7:0]

Reserved, RES0.

Accessing the CPTR_EL3

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, CPTR_EL3

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 X[t, 64] = CPTR_EL3;

MSR CPTR_EL3, <Xt>

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 CPTR_EL3 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

253

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.4 FAR_EL1, Fault Address Register (EL1)

The FAR_EL1 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault
and Watchpoint exceptions that are taken to EL1.

Attributes

FAR_EL1 is a 64-bit register.

Configuration

AArch64 system register FAR_EL1 bits [31:0] are architecturally mapped to AArch32 system register
DFAR31:0.

AArch64 system register FAR_EL1 bits [63:32] are architecturally mapped to AArch32 system register
IFAR31:0.

Field descriptions

The FAR_EL1 bit assignments are:

Faulting Virtual Address for synchronous exceptions taken to EL1

63 32

Faulting Virtual Address for synchronous exceptions taken to EL1

31 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL1. Exceptions that set the FAR_EL1 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC
0x34 or 0x35). ESR_EL1.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits
of FAR_EL1 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL1.FnV is 0, and FAR_EL1 is UNKNOWN if ESR_EL1.FnV is 1.

If a memory fault that sets FAR_EL1, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the address
held in FAR_EL1 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by

DC ZVA.

If the exception that updates FAR_EL1 is taken from an Exception level using AArch32, the top 32 bits are all
zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

254

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When FEAT_SME is implemented, and the PE sets ESR_EL1.ISV to 0 and ESR_EL1.FnP to 1 on taking a Data
Abort exception or Watchpoint exception, the PE sets FAR_EL1 to any address within the naturally-aligned
fault granule that contains the virtual address of the memory access that generated the Data Abort or Watchpoint
exception.

The naturally-aligned fault granule is one of:

• When ESR_EL1.DFSC is 0b010001, indicating a Synchronous Tag Check fault, it is a 16-byte tag granule.
• When ESR_EL1.DFSC is 0b11010x, indicating an IMPLEMENTATION DEFINED fault, it is an IMPLEMENTA-

TION DEFINED granule.
• Otherwise, it is the smallest implemented translation granule.

When FEAT_MOPS is implemented, the value in FAR_EL1 on a synchronous exception from any of the Memory
Copy and Memory Set instructions represents the first element that has not been copied or set, and is determined as
follows:

• For a Data Abort generated by the MMU, the value is within the address range of the current translation
granule, aligned to the size of the current translation granule of the address that generated the Data Abort.
Bits [n-1:0] of the value are UNKNOWN, where 2n is the translation granule size in bytes.

• For a Data Abort generated by a Tag Check failure, the value is the lowest address that failed the Tag Check
within the block size of the load or store.

• For a Watchpoint exception, the value is an address range of the size defined by the DCZID_EL0.BS field.
This address does not need to be the element with a watchpoint, but can be some earlier element.

• Otherwise, the value is the lowest address in the block size of the load or store.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data
access that caused the exception, then this field includes the tag. For more information about address tagging, see
‘Address tagging in AArch64 state’.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL0 makes FAR_EL1 become UNKNOWN.

The address held in this field is an address accessed by the instruction fetch or data access that caused the exception
that actually gave rise to the instruction or data abort. It is the lower address that gave rise to the fault. Where
different faults from different addresses arise from the same instruction, such as for an instruction that loads
or stores an unaligned address that crosses a page boundary, the architecture does not prioritize between those
different faults.

For all other exceptions taken to EL1, FAR_EL1 is UNKNOWN.

FAR_EL1 is made UNKNOWN on an exception return from EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the FAR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic FAR_EL1 or
FAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, FAR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

255

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TRVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.FAR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 X[t, 64] = NVMem[0x220];

10 else
11 X[t, 64] = FAR_EL1;
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 X[t, 64] = FAR_EL2;
15 else
16 X[t, 64] = FAR_EL1;
17 elsif PSTATE.EL == EL3 then
18 X[t, 64] = FAR_EL1;

MSR FAR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.FAR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 NVMem[0x220] = X[t, 64];

10 else
11 FAR_EL1 = X[t, 64];
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 FAR_EL2 = X[t, 64];
15 else
16 FAR_EL1 = X[t, 64];
17 elsif PSTATE.EL == EL3 then
18 FAR_EL1 = X[t, 64];

MRS <Xt>, FAR_EL12

op0 op1 CRn CRm op2

0b11 0b101 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 X[t, 64] = NVMem[0x220];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 X[t, 64] = FAR_EL1;
13 else
14 UNDEFINED;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

256

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

15 elsif PSTATE.EL == EL3 then
16 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
17 X[t, 64] = FAR_EL1;
18 else
19 UNDEFINED;

MSR FAR_EL12, <Xt>

op0 op1 CRn CRm op2

0b11 0b101 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 NVMem[0x220] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 FAR_EL1 = X[t, 64];
13 else
14 UNDEFINED;
15 elsif PSTATE.EL == EL3 then
16 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
17 FAR_EL1 = X[t, 64];
18 else
19 UNDEFINED;

MRS <Xt>, FAR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 X[t, 64] = FAR_EL1;
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 X[t, 64] = FAR_EL2;
12 elsif PSTATE.EL == EL3 then
13 X[t, 64] = FAR_EL2;

MSR FAR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

257

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 FAR_EL1 = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 FAR_EL2 = X[t, 64];
12 elsif PSTATE.EL == EL3 then
13 FAR_EL2 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

258

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.5 FAR_EL2, Fault Address Register (EL2)

The FAR_EL2 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault
and Watchpoint exceptions that are taken to EL2.

Attributes

FAR_EL2 is a 64-bit register.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

AArch64 system register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 system register
HDFAR[31:0].

AArch64 system register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 system register
HIFAR[31:0].

When EL2 is implemented, AArch64 system register FAR_EL2 bits [31:0] are architecturally mapped
to AArch32 system register DFAR31:0.

When EL2 is implemented, AArch64 system register FAR_EL2 bits [63:32] are architecturally mapped
to AArch32 system register IFAR31:0.

Field descriptions

The FAR_EL2 bit assignments are:

Faulting Virtual Address for synchronous exceptions taken to EL2

63 32

Faulting Virtual Address for synchronous exceptions taken to EL2

31 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL2. Exceptions that set the FAR_EL2 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC
0x34 or 0x35). ESR_EL2.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits
of FAR_EL2 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL2.FnV is 0, and FAR_EL2 is UNKNOWN if ESR_EL2.FnV is 1.

If a memory fault that sets FAR_EL2, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the address
held in FAR_EL2 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by

DC ZVA.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

259

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

If the exception that updates FAR_EL2 is taken from an Exception level using AArch32, the top 32 bits are all
zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

When FEAT_SME is implemented, and the PE sets ESR_EL2.ISV to 0 and ESR_EL2.FnP to 1 on taking a Data
Abort exception or Watchpoint exception, the PE sets FAR_EL2 to any address within the naturally-aligned
fault granule that contains the virtual address of the memory access that generated the Data Abort or Watchpoint
exception.

The naturally-aligned fault granule is one of:

• When ESR_EL2.DFSC is 0b010001, indicating a Synchronous Tag Check fault, it is a 16-byte tag granule.
• When ESR_EL2.DFSC is 0b11010x, indicating an IMPLEMENTATION DEFINED fault, it is an IMPLEMENTA-

TION DEFINED granule.
• Otherwise, it is the smallest implemented translation granule.

When FEAT_MOPS is implemented, the value in FAR_EL2 on a synchronous exception from any of the Memory
Copy and Memory Set instructions represents the first element that has not been copied or set, and is determined as
follows:

• For a Data Abort generated by the MMU, the value is within the address range of the current translation
granule, aligned to the size of the current translation granule of the address that generated the Data Abort.
Bits [n-1:0] of the value are UNKNOWN, where 2n is the translation granule size in bytes.

• For a Data Abort generated by a Tag Check failure, the value is the lowest address that failed the Tag Check
within the block size of the load or store.

• For a Watchpoint exception, the value is an address range of the size defined by the DCZID_EL0.BS field.
This address does not need to be the element with a watchpoint, but can be some earlier element.

• Otherwise, the value is the lowest address in the block size of the load or store.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data
access that caused the exception, then this field includes the tag. For more information about address tagging, see
‘Address tagging in AArch64 state’.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL1 or EL0 makes FAR_EL2 become UNKNOWN.

The address held in this field is an address accessed by the instruction fetch or data access that caused the exception
that actually gave rise to the instruction or data abort. It is the lower address that gave rise to the fault. Where
different faults from different addresses arise from the same instruction, such as for an instruction that loads
or stores an unaligned address that crosses a page boundary, the architecture does not prioritize between those
different faults.

For all other exceptions taken to EL2, FAR_EL2 is UNKNOWN.

FAR_EL2 is made UNKNOWN on an exception return from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the FAR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic FAR_EL2 or
FAR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

260

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, FAR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 X[t, 64] = FAR_EL1;
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 X[t, 64] = FAR_EL2;
12 elsif PSTATE.EL == EL3 then
13 X[t, 64] = FAR_EL2;

MSR FAR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 FAR_EL1 = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 FAR_EL2 = X[t, 64];
12 elsif PSTATE.EL == EL3 then
13 FAR_EL2 = X[t, 64];

MRS <Xt>, FAR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TRVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.FAR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 X[t, 64] = NVMem[0x220];

10 else

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

261

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

11 X[t, 64] = FAR_EL1;
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 X[t, 64] = FAR_EL2;
15 else
16 X[t, 64] = FAR_EL1;
17 elsif PSTATE.EL == EL3 then
18 X[t, 64] = FAR_EL1;

MSR FAR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.FAR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 NVMem[0x220] = X[t, 64];

10 else
11 FAR_EL1 = X[t, 64];
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 FAR_EL2 = X[t, 64];
15 else
16 FAR_EL1 = X[t, 64];
17 elsif PSTATE.EL == EL3 then
18 FAR_EL1 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

262

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.6 FAR_EL3, Fault Address Register (EL3)

The FAR_EL3 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort and PC alignment
fault exceptions that are taken to EL3.

Attributes

FAR_EL3 is a 64-bit register.

Configuration

This register is present only when EL3 is implemented. Otherwise, direct accesses to FAR_EL3 are
UNDEFINED.

Field descriptions

The FAR_EL3 bit assignments are:

Faulting Virtual Address for synchronous exceptions taken to EL3

63 32

Faulting Virtual Address for synchronous exceptions taken to EL3

31 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL3. Exceptions that set the FAR_EL3 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), and PC alignment faults (EC 0x22). ESR_EL3.EC
holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits
of FAR_EL3 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL3.FnV is 0, and FAR_EL3 is UNKNOWN if ESR_EL3.FnV is 1.

If a memory fault that sets FAR_EL3, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the address
held in FAR_EL3 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by

DC ZVA.

If the exception that updates FAR_EL3 is taken from an Exception level using AArch32, the top 32 bits are all
zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

When FEAT_SME is implemented, and the PE sets ESR_EL3.ISV to 0 and ESR_EL3.FnP to 1 on taking a Data
Abort exception, the PE sets FAR_EL3 to any address within the naturally-aligned fault granule that contains the
virtual address of the memory access that generated the Data Abort.

The naturally-aligned fault granule is one of:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

263

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• When ESR_EL3.DFSC is 0b010001, indicating a Synchronous Tag Check fault, it is a 16-byte tag granule.
• When ESR_EL3.DFSC is 0b11010x, indicating an IMPLEMENTATION DEFINED fault, it is an IMPLEMENTA-

TION DEFINED granule.
• Otherwise, it is the smallest implemented translation granule.

When FEAT_MOPS is implemented, the value in FAR_EL3 on a synchronous exception from any of the Memory
Copy and Memory Set instructions represents the first element that has not been copied or set, and is determined as
follows:

• For a Data Abort generated by the MMU, the value is within the address range of the current translation
granule, aligned to the size of the current translation granule of the address that generated the Data Abort.
Bits [n-1:0] of the value are UNKNOWN, where 2n is the translation granule size in bytes.

• For a Data Abort generated by a Tag Check failure, the value is the lowest address that failed the Tag Check
within the block size of the load or store.

• Otherwise, the value is the lowest address in the block size of the load or store.

For a Data Abort exception, if address tagging is enabled for the address accessed by the data access that
caused the exception, then this field includes the tag. For more information about address tagging, see
‘Address tagging in AArch64 state’.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL2, EL1, or EL0 makes FAR_EL3 become UNKNOWN.

The address held in this register is an address accessed by the instruction fetch or data access that caused the
exception that actually gave rise to the instruction or data abort. It is the lowest address that gave rise to the fault.
Where different faults from different addresses arise from the same instruction, such as for an instruction that loads
or stores an unaligned address that crosses a page boundary, the architecture does not prioritize between those
different faults.

For all other exceptions taken to EL3, FAR_EL3 is UNKNOWN.

FAR_EL3 is made UNKNOWN on an exception return from EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the FAR_EL3

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, FAR_EL3

op0 op1 CRn CRm op2

0b11 0b110 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 X[t, 64] = FAR_EL3;

MSR FAR_EL3, <Xt>

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

264

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

op0 op1 CRn CRm op2

0b11 0b110 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 FAR_EL3 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

265

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.7 FPCR, Floating-point Control Register

The FPCR characteristics are:

Purpose

Controls floating-point behavior.

Attributes

FPCR is a 64-bit register.

Configuration

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero
values, which will cause some AArch32 floating-point instruction encodings to be UNDEFINED, or
whether these fields are RAZ.

AArch64 system register FPCR bits [26:15] are architecturally mapped to AArch32 system register
FPSCR[26:15].

AArch64 system register FPCR bits [12:8] are architecturally mapped to AArch32 system register
FPSCR[12:8].

Field descriptions

The FPCR bit assignments are:

RES0

63 32

RES0

31 27 26

DN

25

FZ

24 23 22 21 20 19

Len

18 16 15 14 13 12 11 10 9 8

RES0

7 3 2

AH

1 0

AHP
RMode

Stride
FZ16

IDE
RES0

IOE
DZE

OFE
UFE

IXE
EBF

NEP FIZ

Bits [63:27]

Reserved, RES0.

AHP, bit [26]

Alternative half-precision control bit.

AHP Meaning

0b0 IEEE half-precision format selected.

0b1 Alternative half-precision format selected.

This bit is used only for conversions between half-precision floating-point and other floating-point formats.

The data-processing instructions added as part of the FEAT_FP16 extension always use the IEEE half-precision
format, and ignore the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

266

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

DN, bit [25]

Default NaN use for NaN propagation.

DN Meaning

0b0 NaN operands propagate through to the output of a
floating-point operation.

0b1 Any operation involving one or more NaNs returns the
Default NaN.
This bit has no effect on the output of FABS, FMAX*,
FMIN*, and FNEG instructions, and a default NaN is never
returned as a result of these instructions.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ, bit [24]

Flushing denormalized numbers to zero control bit.

FZ Meaning

0b0 If FPCR.AH is 0, the flushing to zero of single-precision and
double-precision denormalized inputs to, and outputs of,
floating-point instructions not enabled by this control, but
other factors might cause the input denormalized numbers to
be flushed to zero.
If FPCR.AH is 1, the flushing to zero of single-precision and
double-precision denormalized outputs of floating-point
instructions not enabled by this control, but other factors
might cause the input denormalized numbers to be flushed to
zero.

0b1 If FPCR.AH is 0, denormalized single-precision and
double-precision inputs to, and outputs from, floating-point
instructions are flushed to zero.
If FPCR.AH is 1, denormalized single-precision and
double-precision outputs from floating-point instructions are
flushed to zero.

For more information, see ‘Flushing denormalized numbers to zero’ and the pseudocode of the floating-point
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RMode, bits [23:22]

Rounding Mode control field.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

267

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RMode Meaning

0b00 Round to Nearest (RN) mode.

0b01 Round towards Plus Infinity (RP) mode.

0b10 Round towards Minus Infinity (RM) mode.

0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by both scalar and Advanced SIMD floating-point instructions.

If FPCR.AH is 1, then the following instructions use Round to Nearest mode regardless of the value of this bit:

• The FRECPE, FRECPS, FRECPX, FRSQRTE, and FRSQRTS instructions.

• The BFCVT, BFCVTN, BFCVTN2, BFCVTNT, BFMLALB, and BFMLALT instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Stride, bits [21:20]

This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state.

This field is included only for context saving and restoration of the AArch32 FPSCR.Stride field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ16, bit [19]

When FEAT_FP16 is implemented:

Flushing denormalized numbers to zero control bit on half-precision data-processing instructions.

FZ16 Meaning

0b0 For some instructions, this bit disables flushing to zero of
inputs and outputs that are half-precision denormalized
numbers.

0b1 Flushing denormalized numbers to zero enabled.
For some instructions that do not convert a half-precision
input to a higher precision output, this bit enables flushing to
zero of inputs and outputs that are half-precision
denormalized numbers.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations.

For more information, see ‘Flushing denormalized numbers to zero’ and the pseudocode of the floating-point
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

268

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES0

Len, bits [18:16]

This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state.

This field is included only for context saving and restoration of the AArch32 FPSCR.Len field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDE, bit [15]

Input Denormal floating-point exception trap enable.

IDE Meaning

0b0 Untrapped exception handling selected. If the floating-point
exception occurs, the FPSR.IDC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point
exception occurs, the PE does not update the FPSR.IDC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [14]

Reserved, RES0.

EBF, bit [13]

When FEAT_EBF16 is implemented:

The value of this bit controls the numeric behaviors of BFloat16 dot product calculations performed by the BFDOT,
BFMMLA, BFMOPA, and BFMOPS instructions.

When ID_AA64ISAR1_EL1.BF16 and ID_AA64ZFR0_EL1.BF16 are 0b0010, the PE supports the FPCR.EBF
field. Otherwise, FPCR.EBF is RES0.

EBF Meaning

0b0 These instructions use the standard BFloat16 behaviors:
• Ignoring the FPCR.RMode control and using the

rounding mode defined for BFloat16. For more
information, see ‘Round to Odd mode’.

• Flushing denormalized inputs and outputs to zero, as
if the FPCR.FZ and FPCR.FIZ controls had the value
‘1’.

• Performing unfused multiplies and additions with
intermediate rounding of all products and sums.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

269

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EBF Meaning

0b1 These instructions use the extended BFloat16 behaviors:
• Supporting all four IEEE 754 rounding modes

selected by the FPCR.RMode control.
• Optionally, flushing denormalized inputs and outputs

to zero, as governed by the FPCR.FZ and FPCR.FIZ
controls.

• Performing a fused two-way sum-of-products for each
pair of adjacent BFloat16 elements, without
intermediate rounding of the products, but rounding
the single-precision sum before addition to the
accumulator.

• Generating the default NaN as intermediate
sum-of-products when any multiplier input is a NaN,
or any product is infinity × 0.0, or there are infinite
products with differing signs.

• Generating an intermediate sum-of-products of the
same infinity when there are infinite products all with
the same sign.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

IXE, bit [12]

Inexact floating-point exception trap enable.

IXE Meaning

0b0 Untrapped exception handling selected. If the floating-point
exception occurs, the FPSR.IXC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point
exception occurs, the PE does not update the FPSR.IXC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFE, bit [11]

Underflow floating-point exception trap enable.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

270

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

UFE Meaning

0b0 Untrapped exception handling selected. If the floating-point
exception occurs, the FPSR.UFC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point
exception occurs and Flush-to-zero is not enabled, the PE
does not update the FPSR.UFC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFE, bit [10]

Overflow floating-point exception trap enable.

OFE Meaning

0b0 Untrapped exception handling selected. If the floating-point
exception occurs, the FPSR.OFC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point
exception occurs, the PE does not update the FPSR.OFC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZE, bit [9]

Divide by Zero floating-point exception trap enable.

DZE Meaning

0b0 Untrapped exception handling selected. If the floating-point
exception occurs, the FPSR.DZC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point
exception occurs, the PE does not update the FPSR.DZC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

271

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

IOE, bit [8]

Invalid Operation floating-point exception trap enable.

IOE Meaning

0b0 Untrapped exception handling selected. If the floating-point
exception occurs, the FPSR.IOC bit is set to 1.

0b1 Trapped exception handling selected. If the floating-point
exception occurs, the PE does not update the FPSR.IOC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:3]

Reserved, RES0.

NEP, bit [2]

When FEAT_AFP is implemented:

Controls how the output elements other than the lowest element of the vector are determined for Advanced SIMD
scalar instructions.

NEP Meaning

0b0 Does not affect how the output elements other than the
lowest are determined for Advanced SIMD scalar
instructions.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

272

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

NEP Meaning

0b1 The output elements other than the lowest are taken from the
following registers:

• For 3-input scalar versions of the FMLA (by element)
and FMLS (by element) instructions, the <Hd>, <Sd>,
or <Dd> register.

• For 3-input versions of the FMADD, FMSUB,
FNMADD, and FNMSUB instructions, the <Ha>,
<Sa>, or <Da> register.

• For 2-input scalar versions of the FACGE, FACGT,
FCMEQ (register), FCMGE (register), and FCMGT
(register) instructions, the <Hm>, <Sm>, or <Dm>
register.

• For 2-input scalar versions of the FABD, FADD
(scalar), FDIV (scalar), FMAX (scalar), FMAXNM
(scalar), FMIN (scalar), FMINNM (scalar), FMUL
(by element), FMUL (scalar), FMULX (by element),
FMULX, FNMUL (scalar), FRECPS, FRSQRTS, and
FSUB (scalar) instructions, the <Hn>, <Sn>, or <Dn>
register.

• For 1-input scalar versions of the following
instructions, the <Hd>, <Sd>, or <Dd> register:

– The (vector) versions of the FCVTAS, FCVTAU,
FCVTMS, FCVTMU, FCVTNS, FCVTNU,
FCVTPS, and FCVTPU instructions.

– The (vector, fixed-point) and (vector, integer)
versions of the FCVTZS, FCVTZU, SCVTF,
and UCVTF instructions.

– The (scalar) versions of the FABS, FNEG,
FRINT32X, FRINT32Z, FRINT64X,
FRINT64Z, FRINTA, FRINTI, FRINTM,
FRINTN, FRINTP, FRINTX, FRINTZ, and
FSQRT instructions.

– The (scalar, fixed-point) and (scalar, integer)
versions of the SCVTF and UCVTF instructions.

– The BFCVT, FCVT, FCVTXN, FRECPE,
FRECPX, and FRSQRTE instructions.

The value of FPCR.NEP is treated as 0 for all purposes other than a direct read or write of the FPCR when the PE
is in Streaming SVE mode.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

AH, bit [1]

When FEAT_AFP is implemented:

Alternate Handling. Controls alternate handling of floating-point numbers.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

273

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The Arm architecture supports two models for handling some of the corner cases of the floating-point behaviors,
such as the nature of flushing of denormalized numbers, the detection of tininess and other exceptions and a range
of other behaviors. The value of the FPCR.AH bit selects between these models.

For more information on the FPCR.AH bit, see ‘Flushing denormalized numbers to zero’, Floating- point
exceptions and exception traps and the pseudocode of the floating-point instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

FIZ, bit [0]

When FEAT_AFP is implemented:

Flush Inputs to Zero. Controls whether single-precision, double-precision and BFloat16 input operands that are
denormalized numbers are flushed to zero.

FIZ Meaning

0b0 The flushing to zero of single-precision and double-precision
denormalized inputs to floating-point instructions not
enabled by this control, but other factors might cause the
input denormalized numbers to be flushed to zero.

0b1 Denormalized single-precision and double-precision inputs
to most floating-point instructions flushed to zero.

For more information, see ‘Flushing denormalized numbers to zero’ and the pseudocode of the floating-point
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Accessing the FPCR

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, FPCR

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0100 0b000

1 if PSTATE.EL == EL0 then
2 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TFP == '1' then
3 UNDEFINED;
4 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
5 if EL2Enabled() && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x00);

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

274

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

7 else
8 AArch64.SystemAccessTrap(EL1, 0x07);
9 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x07);
11 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x07);
13 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x07);
15 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x07);
20 else
21 X[t, 64] = FPCR;
22 elsif PSTATE.EL == EL1 then
23 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TFP == '1' then
24 UNDEFINED;
25 elsif CPACR_EL1.FPEN == 'x0' then
26 AArch64.SystemAccessTrap(EL1, 0x07);
27 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x07);
29 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x07);
31 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
32 if Halted() && EDSCR.SDD == '1' then
33 UNDEFINED;
34 else
35 AArch64.SystemAccessTrap(EL3, 0x07);
36 else
37 X[t, 64] = FPCR;
38 elsif PSTATE.EL == EL2 then
39 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TFP == '1' then
40 UNDEFINED;
41 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
42 AArch64.SystemAccessTrap(EL2, 0x07);
43 elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
44 AArch64.SystemAccessTrap(EL2, 0x07);
45 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
46 if Halted() && EDSCR.SDD == '1' then
47 UNDEFINED;
48 else
49 AArch64.SystemAccessTrap(EL3, 0x07);
50 else
51 X[t, 64] = FPCR;
52 elsif PSTATE.EL == EL3 then
53 if CPTR_EL3.TFP == '1' then
54 AArch64.SystemAccessTrap(EL3, 0x07);
55 else
56 X[t, 64] = FPCR;

MSR FPCR, <Xt>

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0100 0b000

1 if PSTATE.EL == EL0 then
2 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TFP == '1' then
3 UNDEFINED;
4 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
5 if EL2Enabled() && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x00);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x07);
9 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x07);
11 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x07);
13 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

275

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

14 AArch64.SystemAccessTrap(EL2, 0x07);
15 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x07);
20 else
21 FPCR = X[t, 64];
22 elsif PSTATE.EL == EL1 then
23 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TFP == '1' then
24 UNDEFINED;
25 elsif CPACR_EL1.FPEN == 'x0' then
26 AArch64.SystemAccessTrap(EL1, 0x07);
27 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x07);
29 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x07);
31 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
32 if Halted() && EDSCR.SDD == '1' then
33 UNDEFINED;
34 else
35 AArch64.SystemAccessTrap(EL3, 0x07);
36 else
37 FPCR = X[t, 64];
38 elsif PSTATE.EL == EL2 then
39 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && CPTR_EL3.TFP == '1' then
40 UNDEFINED;
41 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
42 AArch64.SystemAccessTrap(EL2, 0x07);
43 elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
44 AArch64.SystemAccessTrap(EL2, 0x07);
45 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
46 if Halted() && EDSCR.SDD == '1' then
47 UNDEFINED;
48 else
49 AArch64.SystemAccessTrap(EL3, 0x07);
50 else
51 FPCR = X[t, 64];
52 elsif PSTATE.EL == EL3 then
53 if CPTR_EL3.TFP == '1' then
54 AArch64.SystemAccessTrap(EL3, 0x07);
55 else
56 FPCR = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

276

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.8 HCRX_EL2, Extended Hypervisor Configuration Register

The HCRX_EL2 characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various operations are
trapped to EL2.

Attributes

HCRX_EL2 is a 64-bit register.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register if:

• EL2 is not enabled in the current Security state.
• SCR_EL3.HXEn is 0.

This register is present only when FEAT_HCX is implemented. Otherwise, direct accesses to
HCRX_EL2 are UNDEFINED.

Field descriptions

The HCRX_EL2 bit assignments are:

RES0

63 32

RES0

31 12 11 10 9 8 7 6 5 4 3 2 1 0

MSCEn
MCE2

CMOW
VFNMI

VINMI
TALLINT

EnAS0
EnALS

EnASR
FnXS

FGTnXS
SMPME

Bits [63:12]

Reserved, RES0.

MSCEn, bit [11]

When FEAT_MOPS is implemented:

Memory Set and Memory Copy instructions Enable. Enables execution of the CPY*, SETG*, SETP*, SETM*,
and SETE* instructions at EL1 or EL0.

MSCEn Meaning

0b0 Execution of the Memory Copy and Memory Set
instructions is UNDEFINED at EL1 or EL0.

0b1 This control does not cause any instructions to be
UNDEFINED.

This bit behaves as if it is 1 if any of the following are true:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

277

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• EL2 is not implemented or enabled.
• The value of HCR_EL2.{E2H, TGE} is {1, 1}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

MCE2, bit [10]

When FEAT_MOPS is implemented:

Controls Memory Copy and Memory Set exceptions generated as part of attempting to execute the Memory Copy
and Memory Set instructions from EL1.

MCE2 Meaning

0b0 Memory Copy and Memory Set exceptions generated from
EL1 are taken to EL1.

0b1 Memory Copy and Memory Set exceptions generated from
EL1 are taken to EL2.

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, this control does not affect any exceptions due to the higher
priority SCTLR_EL2.MSCEn control.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

CMOW, bit [9]

When FEAT_CMOW is implemented:

Controls cache maintenance instruction permission for the following instructions executed at EL1 or EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.

• ICIMVAU, DCCIMVAC.

CMOW Meaning

0b0 These instructions executed at EL1 or EL0 with stage 2 read
permission, but without stage 2 write permission do not
generate a stage 2 permission fault.

0b1 These instructions executed at EL1 or EL0, if enabled as a
result of SCTLR_EL1.UCI==1, with stage 2 read
permission, but without stage 2 write permission generate a
stage 2 permission fault.

For this control, stage 2 has write permission if S2AP[1] is 1 or DBM is 1 in the stage 2 descriptor. The instructions
do not cause an update to the dirty state.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

278

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

VFNMI, bit [8]

When FEAT_NMI is implemented:

Virtual FIQ Interrupt with Superpriority. Enables signaling of virtual FIQ interrupts with Superpriority.

VFNMI Meaning

0b0 When HCR_EL2.VF is 1, a signaled pending virtual FIQ
interrupt does not have Superpriority.

0b1 When HCR_EL2.VF is 1, a signaled pending virtual FIQ
interrupt has Superpriority.

When HCR_EL2.VF is 0, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0b0.

Otherwise:

RES0

VINMI, bit [7]

When FEAT_NMI is implemented:

Virtual IRQ Interrupt with Superpriority. Enables signaling of virtual IRQ interrupts with Superpriority.

VINMI Meaning

0b0 When HCR_EL2.VI is 1, a signaled pending virtual IRQ
interrupt does not have Superpriority.

0b1 When HCR_EL2.VI is 1, a signaled pending virtual IRQ
interrupt has Superpriority.

When HCR_EL2.VI is 0, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0b0.

Otherwise:

RES0

TALLINT, bit [6]

When FEAT_NMI is implemented:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

279

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Trap MSR writes of ALLINT at EL1 using AArch64 to EL2, when EL2 is implemented and enabled in the current
Security state, reported using EC syndrome value 0x18.

TALLINT Meaning

0b0 MSR writes of ALLINT are not trapped by this mechanism.

0b1 MSR writes of ALLINT at EL1 using AArch64 are trapped to
EL2.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0b0.

Otherwise:

RES0

SMPME, bit [5]

When FEAT_SME is implemented:

Streaming Mode Priority Mapping Enable.

Controls mapping of the value of SMPRI_EL1.Priority for streaming execution priority at EL0 or EL1.

SMPME Meaning

0b0 The effective priority value is taken from
SMPRI_EL1.Priority.

0b1 The effective priority value is:
• When the current Exception level is EL2 or EL3, the

value of SMPRI_EL1.Priority.
• When the current Exception level is EL0 or EL1, the

value of the SMPRIMAP_EL2 field corresponding to
the value of SMPRI_EL1.Priority.

When SMIDR_EL1.SMPS is ‘0’, this field is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

FGTnXS, bit [4]

When FEAT_XS is implemented:

Determines if the fine-grained traps in HFGITR_EL2 that apply to each of the TLBI maintenance instructions that
are accessible at EL1 also apply to the corresponding TLBI maintenance instructions with the nXS qualifier.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

280

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

FGTnXS Meaning

0b0 The fine-grained trap in the HFGITR_EL2 that applies to a
TLBI maintenance instruction at EL1 also applies to the
corresponding TLBI instruction with the nXS qualifier at
EL1.

0b1 The fine-grained trap in the HFGITR_EL2 that applies to a
TLBI maintenance instruction at EL1 does not apply to the
corresponding TLBI instruction with the nXS qualifier at
EL1.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0b0.

Otherwise:

RES0

FnXS, bit [3]

When FEAT_XS is implemented:

Determines the behavior of TLBI instructions affected by the XS attribute.

This control bit also determines whether an AArch64 DSB instruction behaves as a DSB instruction with an nXS
qualifier when executed at EL0 and EL1.

FnXS Meaning

0b0 This control does not have any effect on the behavior of the
TLBI maintenance instructions.

0b1 A TLBI maintenance instruction without the nXS qualifier
executed at EL1 behaves in the same way as the
corresponding TLBI maintenance instruction with the nXS
qualifier.
An AArch64 DSB instruction executed at EL1 or EL0
behaves in the same way as the corresponding DSB
instruction with the nXS qualifier executed at EL1 or EL0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0b0.

Otherwise:

RES0

EnASR, bit [2]

When FEAT_LS64_V is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV instruction at EL0 or EL1 to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

281

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EnASR Meaning

0b0 Execution of an ST64BV instruction at EL0 is trapped to
EL2 if the execution is not trapped by SCTLR_EL1.EnASR.
Execution of an ST64BV instruction at EL1 is trapped to
EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0b0.

Otherwise:

RES0

EnALS, bit [1]

When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an LD64B or ST64B instruction at EL0 or EL1 to
EL2.

EnALS Meaning

0b0 Execution of an LD64B or ST64B instruction at EL0 is
trapped to EL2 if the execution is not trapped by
SCTLR_EL1.EnALS.
Execution of an LD64B or ST64B instruction at EL1 is
trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0b0.

Otherwise:

RES0

EnAS0, bit [0]

When FEAT_LS64_ACCDATA is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV0 instruction at EL0 or EL1 to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

282

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EnAS0 Meaning

0b0 Execution of an ST64BV0 instruction at EL0 is trapped to
EL2 if the execution is not trapped by SCTLR_EL1.EnAS0.
Execution of an ST64BV0 instruction at EL1 is trapped to
EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0b0.

Otherwise:

RES0

Accessing the HCRX_EL2

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, HCRX_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 X[t, 64] = NVMem[0xA0];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && SCR_EL3.HXEn == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && SCR_EL3.HXEn == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 X[t, 64] = HCRX_EL2;
20 elsif PSTATE.EL == EL3 then
21 X[t, 64] = HCRX_EL2;

MSR HCRX_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b010

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

283

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 NVMem[0xA0] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && SCR_EL3.HXEn == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && SCR_EL3.HXEn == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 HCRX_EL2 = X[t, 64];
20 elsif PSTATE.EL == EL3 then
21 HCRX_EL2 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

284

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.9 HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

The HFGRTR_EL2 characteristics are:

Purpose

Provides controls for traps of MRS and MRC reads of System registers.

Attributes

HFGRTR_EL2 is a 64-bit register.

Configuration

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HFGRTR_EL2 are UNDEFINED.

Field descriptions

The HFGRTR_EL2 bit assignments are:

RES0

63 56 55 54

RES0

53 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

nTPIDR2_EL0
nSMPRI_EL1

nACCDATA_EL1
ERXADDR_EL1
ERXPFGCDN_EL1

ERXPFGCTL_EL1
ERXPFGF_EL1
ERXMISCn_EL1
ERXSTATUS_EL1

ERXCTLR_EL1

TCR_EL1
TPIDR_EL1

TPIDRRO_EL0
TPIDR_EL0

TTBR0_EL1
TTBR1_EL1

VBAR_EL1
ICC_IGRPENn_EL1

ERRIDR_EL1
ERRSELR_EL1

ERXFR_EL1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCXTNUM_E
L0

SCXTNUM_EL1
SCTLR_EL1
REVIDR_EL1

PAR_EL1
MPIDR_EL1

MIDR_EL1
MAIR_EL1
LORSA_EL1

LORN_EL1
LORID_EL1

LOREA_EL1
LORC_EL1

ISR_EL1
FAR_EL1

ESR_EL1

AFSR0_EL1
AFSR1_EL1

AIDR_EL1
AMAIR_EL1

APDAKey
APDBKey

APGAKey
APIAKey

APIBKey
CCSIDR_EL1

CLIDR_EL1
CONTEXTIDR_EL1

CPACR_EL1
CSSELR_EL1

CTR_EL0
DCZID_EL0

Bits [63:56]

Reserved, RES0.

nTPIDR2_EL0, bit [55]

When FEAT_SME is implemented:

Trap MRS reads of TPIDR2_EL0 at EL1 and EL0 using AArch64 to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

285

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

nTPIDR2_EL0 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1, then MRS reads
of TPIDR2_EL0 at EL1 and EL0 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

0b1 MRS reads of TPIDR2_EL0 are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

nSMPRI_EL1, bit [54]

When FEAT_SME is implemented:

Trap MRS reads of SMPRI_EL1 at EL1 using AArch64 to EL2.

nSMPRI_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of SMPRI_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

0b1 MRS reads of SMPRI_EL1 are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

Bits [53:51]

Reserved, RES0.

nACCDATA_EL1, bit [50]

When FEAT_LS64_ACCDATA is implemented:

Trap MRS reads of ACCDATA_EL1 at EL1 using AArch64 to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

286

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

nACCDATA_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of ACCDATA_EL1
at EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

0b1 MRS reads of ACCDATA_EL1 are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXADDR_EL1, bit [49]

When FEAT_RAS is implemented:

Trap MRS reads of ERXADDR_EL1 at EL1 using AArch64 to EL2.

ERXADDR_EL1 Meaning

0b0 MRS reads of ERXADDR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of ERXADDR_EL1
at EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXPFGCDN_EL1, bit [48]

When FEAT_RASv1p1 is implemented:

Trap MRS reads of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.

ERXPFGCDN_EL1 Meaning

0b0 MRS reads of ERXPFGCDN_EL1 are not trapped by this
mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

287

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ERXPFGCDN_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of
ERXPFGCDN_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXPFGCTL_EL1, bit [47]

When FEAT_RASv1p1 is implemented:

Trap MRS reads of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.

ERXPFGCTL_EL1 Meaning

0b0 MRS reads of ERXPFGCTL_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of
ERXPFGCTL_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXPFGF_EL1, bit [46]

When FEAT_RAS is implemented:

Trap MRS reads of ERXPFGF_EL1 at EL1 using AArch64 to EL2.

ERXPFGF_EL1 Meaning

0b0 MRS reads of ERXPFGF_EL1 are not trapped by this
mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

288

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ERXPFGF_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of ERXPFGF_EL1
at EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXMISCn_EL1, bit [45]

When FEAT_RAS is implemented:

Trap MRS reads of ERXMISC<n>_EL1 at EL1 using AArch64 to EL2.

ERXMISCn_EL1 Meaning

0b0 MRS reads of ERXMISC<n>_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of
ERXMISC<n>_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXSTATUS_EL1, bit [44]

When FEAT_RAS is implemented:

Trap MRS reads of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

ERXSTATUS_EL1 Meaning

0b0 MRS reads of ERXSTATUS_EL1 are not trapped by this
mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

289

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ERXSTATUS_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of
ERXSTATUS_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXCTLR_EL1, bit [43]

When FEAT_RAS is implemented:

Trap MRS reads of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

ERXCTLR_EL1 Meaning

0b0 MRS reads of ERXCTLR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of ERXCTLR_EL1
at EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXFR_EL1, bit [42]

When FEAT_RAS is implemented:

Trap MRS reads of ERXFR_EL1 at EL1 using AArch64 to EL2.

ERXFR_EL1 Meaning

0b0 MRS reads of ERXFR_EL1 are not trapped by this
mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

290

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ERXFR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of ERXFR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERRSELR_EL1, bit [41]

When FEAT_RAS is implemented:

Trap MRS reads of ERRSELR_EL1 at EL1 using AArch64 to EL2.

ERRSELR_EL1 Meaning

0b0 MRS reads of ERRSELR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of ERRSELR_EL1
at EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERRIDR_EL1, bit [40]

When FEAT_RAS is implemented:

Trap MRS reads of ERRIDR_EL1 at EL1 using AArch64 to EL2.

ERRIDR_EL1 Meaning

0b0 MRS reads of ERRIDR_EL1 are not trapped by this
mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

291

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ERRIDR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of ERRIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ICC_IGRPENn_EL1, bit [39]

When FEAT_GICv3 is implemented:

Trap MRS reads of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.

ICC_IGRPENn_EL1 Meaning

0b0 MRS reads of ICC_IGRPEN<n>_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of
ICC_IGRPEN<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

VBAR_EL1, bit [38]

Trap MRS reads of VBAR_EL1 at EL1 using AArch64 to EL2.

VBAR_EL1 Meaning

0b0 MRS reads of VBAR_EL1 are not trapped by this mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

292

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

VBAR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of VBAR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TTBR1_EL1, bit [37]

Trap MRS reads of TTBR1_EL1 at EL1 using AArch64 to EL2.

TTBR1_EL1 Meaning

0b0 MRS reads of TTBR1_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of TTBR1_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TTBR0_EL1, bit [36]

Trap MRS reads of TTBR0_EL1 at EL1 using AArch64 to EL2.

TTBR0_EL1 Meaning

0b0 MRS reads of TTBR0_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of TTBR0_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

293

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TPIDR_EL0, bit [35]

Trap MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURW at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

TPIDR_EL0 Meaning

0b0 MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64
and MRC reads of TPIDRURW at EL0 using AArch32 are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a
higher priority exception:

• MRS reads of TPIDR_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MRC reads of TPIDRURW at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome value
0x03.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TPIDRRO_EL0, bit [34]

Trap MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURO at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

TPIDRRO_EL0 Meaning

0b0 MRS reads of TPIDRRO_EL0 at EL1 and EL0 using
AArch64 and MRC reads of TPIDRURO at EL0 using
AArch32 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the read generates a
higher priority exception:

• MRS reads of TPIDRRO_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MRC reads of TPIDRURO at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome value
0x03.

The reset behavior of this field is:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

294

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to 0b0.

TPIDR_EL1, bit [33]

Trap MRS reads of TPIDR_EL1 at EL1 using AArch64 to EL2.

TPIDR_EL1 Meaning

0b0 MRS reads of TPIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of TPIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TCR_EL1, bit [32]

Trap MRS reads of TCR_EL1 at EL1 using AArch64 to EL2.

TCR_EL1 Meaning

0b0 MRS reads of TCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of TCR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

SCXTNUM_EL0, bit [31]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap MRS reads of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

SCXTNUM_EL0 Meaning

0b0 MRS reads of SCXTNUM_EL0 are not trapped by this
mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

295

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SCXTNUM_EL0 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1, then MRS reads
of SCXTNUM_EL0 at EL1 and EL0 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

SCXTNUM_EL1, bit [30]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap MRS reads of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

SCXTNUM_EL1 Meaning

0b0 MRS reads of SCXTNUM_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of SCXTNUM_EL1
at EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

SCTLR_EL1, bit [29]

Trap MRS reads of SCTLR_EL1 at EL1 using AArch64 to EL2.

SCTLR_EL1 Meaning

0b0 MRS reads of SCTLR_EL1 are not trapped by this
mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

296

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SCTLR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of SCTLR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

REVIDR_EL1, bit [28]

Trap MRS reads of REVIDR_EL1 at EL1 using AArch64 to EL2.

REVIDR_EL1 Meaning

0b0 MRS reads of REVIDR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of REVIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

PAR_EL1, bit [27]

Trap MRS reads of PAR_EL1 at EL1 using AArch64 to EL2.

PAR_EL1 Meaning

0b0 MRS reads of PAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of PAR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

297

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

MPIDR_EL1, bit [26]

Trap MRS reads of MPIDR_EL1 at EL1 using AArch64 to EL2.

MPIDR_EL1 Meaning

0b0 MRS reads of MPIDR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of MPIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

MIDR_EL1, bit [25]

Trap MRS reads of MIDR_EL1 at EL1 using AArch64 to EL2.

MIDR_EL1 Meaning

0b0 MRS reads of MIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of MIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

MAIR_EL1, bit [24]

Trap MRS reads of MAIR_EL1 at EL1 using AArch64 to EL2.

MAIR_EL1 Meaning

0b0 MRS reads of MAIR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of MAIR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

298

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

LORSA_EL1, bit [23]

When FEAT_LOR is implemented:

Trap MRS reads of LORSA_EL1 at EL1 using AArch64 to EL2.

LORSA_EL1 Meaning

0b0 MRS reads of LORSA_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of LORSA_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

LORN_EL1, bit [22]

When FEAT_LOR is implemented:

Trap MRS reads of LORN_EL1 at EL1 using AArch64 to EL2.

LORN_EL1 Meaning

0b0 MRS reads of LORN_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of LORN_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

LORID_EL1, bit [21]

When FEAT_LOR is implemented:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

299

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Trap MRS reads of LORID_EL1 at EL1 using AArch64 to EL2.

LORID_EL1 Meaning

0b0 MRS reads of LORID_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of LORID_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

LOREA_EL1, bit [20]

When FEAT_LOR is implemented:

Trap MRS reads of LOREA_EL1 at EL1 using AArch64 to EL2.

LOREA_EL1 Meaning

0b0 MRS reads of LOREA_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of LOREA_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

LORC_EL1, bit [19]

When FEAT_LOR is implemented:

Trap MRS reads of LORC_EL1 at EL1 using AArch64 to EL2.

LORC_EL1 Meaning

0b0 MRS reads of LORC_EL1 are not trapped by this mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

300

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

LORC_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of LORC_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ISR_EL1, bit [18]

Trap MRS reads of ISR_EL1 at EL1 using AArch64 to EL2.

ISR_EL1 Meaning

0b0 MRS reads of ISR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of ISR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

FAR_EL1, bit [17]

Trap MRS reads of FAR_EL1 at EL1 using AArch64 to EL2.

FAR_EL1 Meaning

0b0 MRS reads of FAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of FAR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

301

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ESR_EL1, bit [16]

Trap MRS reads of ESR_EL1 at EL1 using AArch64 to EL2.

ESR_EL1 Meaning

0b0 MRS reads of ESR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of ESR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

DCZID_EL0, bit [15]

Trap MRS reads of DCZID_EL0 at EL1 and EL0 using AArch64 to EL2.

DCZID_EL0 Meaning

0b0 MRS reads of DCZID_EL0 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1, then MRS reads
of DCZID_EL0 at EL1 and EL0 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CTR_EL0, bit [14]

Trap MRS reads of CTR_EL0 at EL1 and EL0 using AArch64 to EL2.

CTR_EL0 Meaning

0b0 MRS reads of CTR_EL0 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1, then MRS reads
of CTR_EL0 at EL1 and EL0 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

302

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CSSELR_EL1, bit [13]

Trap MRS reads of CSSELR_EL1 at EL1 using AArch64 to EL2.

CSSELR_EL1 Meaning

0b0 MRS reads of CSSELR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of CSSELR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CPACR_EL1, bit [12]

Trap MRS reads of CPACR_EL1 at EL1 using AArch64 to EL2.

CPACR_EL1 Meaning

0b0 MRS reads of CPACR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of CPACR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CONTEXTIDR_EL1, bit [11]

Trap MRS reads of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.

CONTEXTIDR_EL1 Meaning

0b0 MRS reads of CONTEXTIDR_EL1 are not trapped by this
mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

303

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

CONTEXTIDR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of
CONTEXTIDR_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CLIDR_EL1, bit [10]

Trap MRS reads of CLIDR_EL1 at EL1 using AArch64 to EL2.

CLIDR_EL1 Meaning

0b0 MRS reads of CLIDR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of CLIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CCSIDR_EL1, bit [9]

Trap MRS reads of CCSIDR_EL1 at EL1 using AArch64 to EL2.

CCSIDR_EL1 Meaning

0b0 MRS reads of CCSIDR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of CCSIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

304

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

APIBKey, bit [8]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APIBKeyHi_EL1.
• APIBKeyLo_EL1.

APIBKey Meaning

0b0 MRS reads of the System registers listed above are not trapped
by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APIAKey, bit [7]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APIAKeyHi_EL1.
• APIAKeyLo_EL1.

APIAKey Meaning

0b0 MRS reads of the System registers listed above are not trapped
by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

305

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES0

APGAKey, bit [6]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APGAKeyHi_EL1.
• APGAKeyLo_EL1.

APGAKey Meaning

0b0 MRS reads of the System registers listed above are not trapped
by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APDBKey, bit [5]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APDBKeyHi_EL1.
• APDBKeyLo_EL1.

APDBKey Meaning

0b0 MRS reads of the System registers listed above are not trapped
by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

306

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Otherwise:

RES0

APDAKey, bit [4]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APDAKeyHi_EL1.
• APDAKeyLo_EL1.

APDAKey Meaning

0b0 MRS reads of the System registers listed above are not trapped
by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

AMAIR_EL1, bit [3]

Trap MRS reads of AMAIR_EL1 at EL1 using AArch64 to EL2.

AMAIR_EL1 Meaning

0b0 MRS reads of AMAIR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of AMAIR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

AIDR_EL1, bit [2]

Trap MRS reads of AIDR_EL1 at EL1 using AArch64 to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

307

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

AIDR_EL1 Meaning

0b0 MRS reads of AIDR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of AIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

AFSR1_EL1, bit [1]

Trap MRS reads of AFSR1_EL1 at EL1 using AArch64 to EL2.

AFSR1_EL1 Meaning

0b0 MRS reads of AFSR1_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of AFSR1_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

AFSR0_EL1, bit [0]

Trap MRS reads of AFSR0_EL1 at EL1 using AArch64 to EL2.

AFSR0_EL1 Meaning

0b0 MRS reads of AFSR0_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of AFSR0_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

308

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Accessing the HFGRTR_EL2

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, HFGRTR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b100

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 X[t, 64] = NVMem[0x1B8];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && SCR_EL3.FGTEn == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 X[t, 64] = HFGRTR_EL2;
20 elsif PSTATE.EL == EL3 then
21 X[t, 64] = HFGRTR_EL2;

MSR HFGRTR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b100

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 NVMem[0x1B8] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && SCR_EL3.FGTEn == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 HFGRTR_EL2 = X[t, 64];
20 elsif PSTATE.EL == EL3 then
21 HFGRTR_EL2 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

309

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.10 HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

The HFGWTR_EL2 characteristics are:

Purpose

Provides controls for traps of MSR and MCR writes of System registers.

Attributes

HFGWTR_EL2 is a 64-bit register.

Configuration

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HFGWTR_EL2 are UNDEFINED.

Field descriptions

The HFGWTR_EL2 bit assignments are:

RES0

63 56 55 54

RES0

53 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

nTPIDR2_EL0
nSMPRI_EL1

nACCDATA_EL1
ERXADDR_EL1
ERXPFGCDN_EL1

ERXPFGCTL_EL1
RES0

ERXMISCn_EL1
ERXSTATUS_EL1

ERXCTLR_EL1

TCR_EL1
TPIDR_EL1

TPIDRRO_EL0
TPIDR_EL0

TTBR0_EL1
TTBR1_EL1

VBAR_EL1
ICC_IGRPENn_EL1

RES0
ERRSELR_EL1

RES0
31 30 29 28 27

RES0

26 25 24 23 22 21 20 19 18 17 16

RES0

15 14 13 12 11

RES0

10 9 8 7 6 5 4 3 2 1 0

SCXTNUM_E
L0

SCXTNUM_EL1
SCTLR_EL1

RES0
PAR_EL1

MAIR_EL1
LORSA_EL1

LORN_EL1
RES0

LOREA_EL1
LORC_EL1

RES0
FAR_EL1

AFSR0_EL1
AFSR1_EL1

RES0
AMAIR_EL1

APDAKey
APDBKey

APGAKey
APIAKey

APIBKey
CONTEXTIDR_EL1

CPACR_EL1
CSSELR_EL1

ESR_EL1

Bits [63:56]

Reserved, RES0.

nTPIDR2_EL0, bit [55]

When FEAT_SME is implemented:

Trap MSR writes of TPIDR2_EL0 at EL1 and EL0 using AArch64 to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

310

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

nTPIDR2_EL0 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1, then MSR writes
of TPIDR2_EL0 at EL1 and EL0 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

0b1 MSR writes of TPIDR2_EL0 are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

nSMPRI_EL1, bit [54]

When FEAT_SME is implemented:

Trap MSR writes of SMPRI_EL1 at EL1 using AArch64 to EL2.

nSMPRI_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of SMPRI_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

0b1 MSR writes of SMPRI_EL1 are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

Bits [53:51]

Reserved, RES0.

nACCDATA_EL1, bit [50]

When FEAT_LS64_ACCDATA is implemented:

Trap MSR writes of ACCDATA_EL1 at EL1 using AArch64 to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

311

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

nACCDATA_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of ACCDATA_EL1
at EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

0b1 MSR writes of ACCDATA_EL1 are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXADDR_EL1, bit [49]

When FEAT_RAS is implemented:

Trap MSR writes of ERXADDR_EL1 at EL1 using AArch64 to EL2.

ERXADDR_EL1 Meaning

0b0 MSR writes of ERXADDR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of
ERXADDR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXPFGCDN_EL1, bit [48]

When FEAT_RASv1p1 is implemented:

Trap MSR writes of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.

ERXPFGCDN_EL1 Meaning

0b0 MSR writes of ERXPFGCDN_EL1 are not trapped by this
mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

312

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ERXPFGCDN_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of
ERXPFGCDN_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXPFGCTL_EL1, bit [47]

When FEAT_RASv1p1 is implemented:

Trap MSR writes of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.

ERXPFGCTL_EL1 Meaning

0b0 MSR writes of ERXPFGCTL_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of
ERXPFGCTL_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

Bit [46]

Reserved, RES0.

ERXMISCn_EL1, bit [45]

When FEAT_RAS is implemented:

Trap MSR writes of ERXMISC<n>_EL1 at EL1 using AArch64 to EL2.

ERXMISCn_EL1 Meaning

0b0 MSR writes of ERXMISC<n>_EL1 are not trapped by this
mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

313

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ERXMISCn_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of
ERXMISC<n>_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXSTATUS_EL1, bit [44]

When FEAT_RAS is implemented:

Trap MSR writes of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

ERXSTATUS_EL1 Meaning

0b0 MSR writes of ERXSTATUS_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of
ERXSTATUS_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXCTLR_EL1, bit [43]

When FEAT_RAS is implemented:

Trap MSR writes of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

ERXCTLR_EL1 Meaning

0b0 MSR writes of ERXCTLR_EL1 are not trapped by this
mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

314

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ERXCTLR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of ERXCTLR_EL1
at EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

Bit [42]

Reserved, RES0.

ERRSELR_EL1, bit [41]

When FEAT_RAS is implemented:

Trap MSR writes of ERRSELR_EL1 at EL1 using AArch64 to EL2.

ERRSELR_EL1 Meaning

0b0 MSR writes of ERRSELR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of ERRSELR_EL1
at EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

Bit [40]

Reserved, RES0.

ICC_IGRPENn_EL1, bit [39]

When FEAT_GICv3 is implemented:

Trap MSR writes of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

315

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ICC_IGRPENn_EL1 Meaning

0b0 MSR writes of ICC_IGRPEN<n>_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of
ICC_IGRPEN<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

VBAR_EL1, bit [38]

Trap MSR writes of VBAR_EL1 at EL1 using AArch64 to EL2.

VBAR_EL1 Meaning

0b0 MSR writes of VBAR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of VBAR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TTBR1_EL1, bit [37]

Trap MSR writes of TTBR1_EL1 at EL1 using AArch64 to EL2.

TTBR1_EL1 Meaning

0b0 MSR writes of TTBR1_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of TTBR1_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

316

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TTBR0_EL1, bit [36]

Trap MSR writes of TTBR0_EL1 at EL1 using AArch64 to EL2.

TTBR0_EL1 Meaning

0b0 MSR writes of TTBR0_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of TTBR0_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TPIDR_EL0, bit [35]

Trap MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64 and MCR writes of TPIDRURW at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

TPIDR_EL0 Meaning

0b0 MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64
and MCR writes of TPIDRURW at EL0 using AArch32 are
not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then, unless the write generates a
higher priority exception:

• MSR writes of TPIDR_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MCR writes of TPIDRURW at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome value
0x03.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TPIDRRO_EL0, bit [34]

Trap MSR writes of TPIDRRO_EL0 at EL1 using AArch64 to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

317

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TPIDRRO_EL0 Meaning

0b0 MSR writes of TPIDRRO_EL0 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of TPIDRRO_EL0
at EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TPIDR_EL1, bit [33]

Trap MSR writes of TPIDR_EL1 at EL1 using AArch64 to EL2.

TPIDR_EL1 Meaning

0b0 MSR writes of TPIDR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of TPIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TCR_EL1, bit [32]

Trap MSR writes of TCR_EL1 at EL1 using AArch64 to EL2.

TCR_EL1 Meaning

0b0 MSR writes of TCR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of TCR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

318

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SCXTNUM_EL0, bit [31]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap MSR writes of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

SCXTNUM_EL0 Meaning

0b0 MSR writes of SCXTNUM_EL0 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 1, then MSR writes
of SCXTNUM_EL0 at EL1 and EL0 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

SCXTNUM_EL1, bit [30]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap MSR writes of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

SCXTNUM_EL1 Meaning

0b0 MSR writes of SCXTNUM_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of
SCXTNUM_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

SCTLR_EL1, bit [29]

Trap MSR writes of SCTLR_EL1 at EL1 using AArch64 to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

319

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SCTLR_EL1 Meaning

0b0 MSR writes of SCTLR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of SCTLR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Bit [28]

Reserved, RES0.

PAR_EL1, bit [27]

Trap MSR writes of PAR_EL1 at EL1 using AArch64 to EL2.

PAR_EL1 Meaning

0b0 MSR writes of PAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of PAR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Bits [26:25]

Reserved, RES0.

MAIR_EL1, bit [24]

Trap MSR writes of MAIR_EL1 at EL1 using AArch64 to EL2.

MAIR_EL1 Meaning

0b0 MSR writes of MAIR_EL1 are not trapped by this
mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

320

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

MAIR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of MAIR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

LORSA_EL1, bit [23]

When FEAT_LOR is implemented:

Trap MSR writes of LORSA_EL1 at EL1 using AArch64 to EL2.

LORSA_EL1 Meaning

0b0 MSR writes of LORSA_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of LORSA_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

LORN_EL1, bit [22]

When FEAT_LOR is implemented:

Trap MSR writes of LORN_EL1 at EL1 using AArch64 to EL2.

LORN_EL1 Meaning

0b0 MSR writes of LORN_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of LORN_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

321

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

Bit [21]

Reserved, RES0.

LOREA_EL1, bit [20]

When FEAT_LOR is implemented:

Trap MSR writes of LOREA_EL1 at EL1 using AArch64 to EL2.

LOREA_EL1 Meaning

0b0 MSR writes of LOREA_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of LOREA_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

LORC_EL1, bit [19]

When FEAT_LOR is implemented:

Trap MSR writes of LORC_EL1 at EL1 using AArch64 to EL2.

LORC_EL1 Meaning

0b0 MSR writes of LORC_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of LORC_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

322

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

Bit [18]

Reserved, RES0.

FAR_EL1, bit [17]

Trap MSR writes of FAR_EL1 at EL1 using AArch64 to EL2.

FAR_EL1 Meaning

0b0 MSR writes of FAR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of FAR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

ESR_EL1, bit [16]

Trap MSR writes of ESR_EL1 at EL1 using AArch64 to EL2.

ESR_EL1 Meaning

0b0 MSR writes of ESR_EL1 are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of ESR_EL1 at EL1
using AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Bits [15:14]

Reserved, RES0.

CSSELR_EL1, bit [13]

Trap MSR writes of CSSELR_EL1 at EL1 using AArch64 to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

323

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

CSSELR_EL1 Meaning

0b0 MSR writes of CSSELR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of CSSELR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CPACR_EL1, bit [12]

Trap MSR writes of CPACR_EL1 at EL1 using AArch64 to EL2.

CPACR_EL1 Meaning

0b0 MSR writes of CPACR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of CPACR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CONTEXTIDR_EL1, bit [11]

Trap MSR writes of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.

CONTEXTIDR_EL1 Meaning

0b0 MSR writes of CONTEXTIDR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of
CONTEXTIDR_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

The reset behavior of this field is:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

324

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to 0b0.

Bits [10:9]

Reserved, RES0.

APIBKey, bit [8]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APIBKeyHi_EL1.
• APIBKeyLo_EL1.

APIBKey Meaning

0b0 MSR writes of the System registers listed above are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APIAKey, bit [7]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APIAKeyHi_EL1.
• APIAKeyLo_EL1.

APIAKey Meaning

0b0 MSR writes of the System registers listed above are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

325

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APGAKey, bit [6]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APGAKeyHi_EL1.
• APGAKeyLo_EL1.

APGAKey Meaning

0b0 MSR writes of the System registers listed above are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APDBKey, bit [5]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APDBKeyHi_EL1.
• APDBKeyLo_EL1.

APDBKey Meaning

0b0 MSR writes of the System registers listed above are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

326

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APDAKey, bit [4]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APDAKeyHi_EL1.
• APDAKeyLo_EL1.

APDAKey Meaning

0b0 MSR writes of the System registers listed above are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

AMAIR_EL1, bit [3]

Trap MSR writes of AMAIR_EL1 at EL1 using AArch64 to EL2.

AMAIR_EL1 Meaning

0b0 MSR writes of AMAIR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of AMAIR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

327

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Bit [2]

Reserved, RES0.

AFSR1_EL1, bit [1]

Trap MSR writes of AFSR1_EL1 at EL1 using AArch64 to EL2.

AFSR1_EL1 Meaning

0b0 MSR writes of AFSR1_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of AFSR1_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

AFSR0_EL1, bit [0]

Trap MSR writes of AFSR0_EL1 at EL1 using AArch64 to EL2.

AFSR0_EL1 Meaning

0b0 MSR writes of AFSR0_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current Security
state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of AFSR0_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Accessing the HFGWTR_EL2

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, HFGWTR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b101

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

328

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 X[t, 64] = NVMem[0x1C0];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && SCR_EL3.FGTEn == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 X[t, 64] = HFGWTR_EL2;
20 elsif PSTATE.EL == EL3 then
21 X[t, 64] = HFGWTR_EL2;

MSR HFGWTR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b101

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 NVMem[0x1C0] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority

↪→when SDD == '1'" && SCR_EL3.FGTEn == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 HFGWTR_EL2 = X[t, 64];
20 elsif PSTATE.EL == EL3 then
21 HFGWTR_EL2 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

329

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.11 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

The ID_AA64ISAR1_EL1 characteristics are:

Purpose

Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for
fields in ID registers .

Attributes

ID_AA64ISAR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64ISAR1_EL1 bit assignments are:

LS64

63 60

XS

59 56

I8MM

55 52

DGH

51 48

BF16

47 44

SPECRES

43 40

SB

39 36

FRINTTS

35 32

GPI

31 28

GPA

27 24

LRCPC

23 20

FCMA

19 16

JSCVT

15 12

API

11 8

APA

7 4

DPB

3 0

LS64, bits [63:60]

Indicates support for LD64B and ST64B* instructions, and the ACCDATA_EL1 register. Defined values of this
field are:

LS64 Meaning

0b0000 The LD64B, ST64B, ST64BV, and ST64BV0 instructions,
the ACCDATA_EL1 register, and associated traps are not
supported.

0b0001 The LD64B and ST64B instructions are supported.

0b0010 The LD64B, ST64B, and ST64BV instructions, and their
associated traps are supported.

0b0011 The LD64B, ST64B, ST64BV, and ST64BV0 instructions,
the ACCDATA_EL1 register, and their associated traps are
supported.

All other values are reserved.

FEAT_LS64 implements the functionality identified by 0b0001.

FEAT_LS64_V implements the functionality identified by 0b0010.

FEAT_LS64_ACCDATA implements the functionality identified by 0b0011.

From Armv8.7, the permitted values are 0b0000, 0b0001, 0b0010, and 0b0011.

XS, bits [59:56]

Indicates support for the XS attribute, the TLBI and DSB instructions with the nXS qualifier, and the
HCRX_EL2.{FGTnXS, FnXS} fields in AArch64 state. Defined values are:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

330

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

XS Meaning

0b0000 The XS attribute, the TLBI and DSB instructions with the
nXS qualifier, and the HCRX_EL2.{FGTnXS, FnXS} fields
are not supported.

0b0001 The XS attribute, the TLBI and DSB instructions with the
nXS qualifier, and the HCRX_EL2.{FGTnXS, FnXS} fields
are supported.

All other values are reserved.

FEAT_XS implements the functionality identified by 0b0001.

From Armv8.7, the only permitted value is 0b0001.

I8MM, bits [55:52]

Indicates support for Advanced SIMD and Floating-point Int8 matrix multiplication instructions in AArch64 state.
Defined values are:

I8MM Meaning

0b0000 Int8 matrix multiplication instructions are not implemented.

0b0001 SMMLA, SUDOT, UMMLA, USMMLA, and USDOT
instructions are implemented.

All other values are reserved.

FEAT_I8MM implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ZFR0_EL1.I8MM.

From Armv8.6, the only permitted value is 0b0001.

DGH, bits [51:48]

Indicates support for the Data Gathering Hint instruction. Defined values are:

DGH Meaning

0b0000 Data Gathering Hint is not implemented.

0b0001 Data Gathering Hint is implemented.

All other values are reserved.

FEAT_DGH implements the functionality identified by 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

If the DGH instruction has no effect in preventing the merging of memory accesses, the value of this field is 0b0000.

BF16, bits [47:44]

Indicates support for Advanced SIMD and Floating-point BFloat16 instructions in AArch64 state. Defined values

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

331

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

are:

BF16 Meaning

0b0000 BFloat16 instructions are not implemented.

0b0001 BFCVT, BFCVTN, BFCVTN2, BFDOT, BFMLALB,
BFMLALT, and BFMMLA instructions are implemented.

0b0010 As 0b0001, but the FPCR.EBF field is also supported.

All other values are reserved.

FEAT_BF16 implements the functionality identified by 0b0001.

FEAT_EBF16 implements the functionality identified by 0b0010.

When FEAT_SVE or FEAT_SME are implemented, this field must return the same value as
ID_AA64ZFR0_EL1.BF16.

If FEAT_SME is implemented, the permitted values are 0b0001 and 0b0010.

Otherwise, from Armv8.6, the only permitted value is 0b0001.

SPECRES, bits [43:40]

Indicates support for prediction invalidation instructions in AArch64 state. Defined values are:

SPECRES Meaning

0b0000 CFP RCTX, DVP RCTX, and CPP RCTX instructions are
not implemented.

0b0001 CFP RCTX, DVP RCTX, and CPP RCTX instructions are
implemented.

All other values are reserved.

FEAT_SPECRES implements the functionality identified by 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

SB, bits [39:36]

Indicates support for SB instruction in AArch64 state. Defined values are:

SB Meaning

0b0000 SB instruction is not implemented.

0b0001 SB instruction is implemented.

All other values are reserved.

FEAT_SB implements the functionality identified by 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

332

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

From Armv8.5, the only permitted value is 0b0001.

FRINTTS, bits [35:32]

Indicates support for the FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are implemented.
Defined values are:

FRINTTS Meaning

0b0000 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X
instructions are not implemented.

0b0001 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X
instructions are implemented.

All other values are reserved.

FEAT_FRINTTS implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

GPI, bits [31:28]

Indicates support for an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic code
authentication in AArch64 state. Defined values are:

GPI Meaning

0b0000 Generic Authentication using an IMPLEMENTATION
DEFINED algorithm is not implemented.

0b0001 Generic Authentication using an IMPLEMENTATION
DEFINED algorithm is implemented. This includes the PACGA

instruction.

All other values are reserved.

FEAT_PACIMP implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPA is non-zero, or the value of ID_AA64ISAR2_EL1.GPA3 is non-zero,
this field must have the value 0b0000.

GPA, bits [27:24]

Indicates whether the QARMA5 algorithm is implemented in the PE for generic code authentication in AArch64
state. Defined values are:

GPA Meaning

0b0000 Generic Authentication using the QARMA5 algorithm is not
implemented.

0b0001 Generic Authentication using the QARMA5 algorithm is
implemented. This includes the PACGA instruction.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

333

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

All other values are reserved.

FEAT_PACQARMA5 implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPI is non-zero, or the value of ID_AA64ISAR2_EL1.GPA3 is non-zero,
this field must have the value 0b0000.

LRCPC, bits [23:20]

Indicates support for weaker release consistency, RCpc, based model. Defined values are:

LRCPC Meaning

0b0000 The LDAPR*, LDAPUR*, and STLUR* instructions are not
implemented.

0b0001 The LDAPR* instructions are implemented.
The LDAPUR*, and STLUR* instructions are not
implemented.

0b0010 The LDAPR*, LDAPUR*, and STLUR* instructions are
implemented.

All other values are reserved.

FEAT_LRCPC implements the functionality identified by the value 0b0001.

FEAT_LRCPC2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

In Armv8.3, the permitted values are 0b0001 and 0b0010.

From Armv8.4, the only permitted value is 0b0010.

FCMA, bits [19:16]

Indicates support for complex number addition and multiplication, where numbers are stored in vectors. Defined
values are:

FCMA Meaning

0b0000 The FCMLA and FCADD instructions are not implemented.

0b0001 The FCMLA and FCADD instructions are implemented.

All other values are reserved.

FEAT_FCMA implements the functionality identified by the value 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

JSCVT, bits [15:12]

Indicates support for JavaScript conversion from double precision floating point values to integers in AArch64
state. Defined values are:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

334

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

JSCVT Meaning

0b0000 The FJCVTZS instruction is not implemented.

0b0001 The FJCVTZS instruction is implemented.

All other values are reserved.

FEAT_JSCVT implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

API, bits [11:8]

Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address authentication,
in AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined
values are:

API Meaning

0b0000 Address Authentication using an IMPLEMENTATION
DEFINED algorithm is not implemented.

0b0001 Address Authentication using an IMPLEMENTATION
DEFINED algorithm is implemented, with the
HaveEnhancedPAC() and HaveEnhancedPAC2() functions
returning FALSE.

0b0010 Address Authentication using an IMPLEMENTATION
DEFINED algorithm is implemented, with the
HaveEnhancedPAC() function returning TRUE, and the
HaveEnhancedPAC2() function returning FALSE.

0b0011 Address Authentication using an IMPLEMENTATION
DEFINED algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

0b0100 Address Authentication using an IMPLEMENTATION
DEFINED algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the
HaveFPAC() function returning TRUE, the
HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using an IMPLEMENTATION
DEFINED algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE, the
HaveFPAC() function returning TRUE, the
HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality identified by 0b0001.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

335

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

FEAT_EPAC implements the functionality identified by 0b0010.

FEAT_PAuth2 implements the functionality identified by 0b0011.

FEAT_FPAC implements the functionality identified by 0b0100.

FEAT_FPACCOMBINE implements the functionality identified by 0b0101.

When this field is non-zero, FEAT_PACIMP is implemented.

In Armv8.3, the permitted values are 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.APA is non-zero, or the value of ID_AA64ISAR2_EL1.APA3 is non-zero,
this field must have the value 0b0000.

APA, bits [7:4]

Indicates whether the QARMA5 algorithm is implemented in the PE for address authentication, in AArch64 state.
This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values are:

APA Meaning

0b0000 Address Authentication using the QARMA5 algorithm is
not implemented.

0b0001 Address Authentication using the QARMA5 algorithm is
implemented, with the HaveEnhancedPAC() and
HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using the QARMA5 algorithm is
implemented, with the HaveEnhancedPAC() function
returning TRUE and the HaveEnhancedPAC2() function
returning FALSE.

0b0011 Address Authentication using the QARMA5 algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning FALSE,
the HaveFPACCombined() function returning FALSE, and
the HaveEnhancedPAC() function returning FALSE.

0b0100 Address Authentication using the QARMA5 algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning TRUE,
the HaveFPACCombined() function returning FALSE, and
the HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using the QARMA5 algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning TRUE,
the HaveFPACCombined() function returning TRUE, and
the HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality identified by 0b0001.

FEAT_EPAC implements the functionality identified by 0b0010.

FEAT_PAuth2 implements the functionality identified by 0b0011.

FEAT_FPAC implements the functionality identified by 0b0100.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

336

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

FEAT_FPACCOMBINE implements the functionality identified by 0b0101.

When this field is non-zero, FEAT_PACQARMA5 is implemented.

In Armv8.3, the permitted values are 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.API is non-zero, or the value of ID_AA64ISAR2_EL1.APA3 is non-zero,
this field must have the value 0b0000.

DPB, bits [3:0]

Data Persistence writeback. Indicates support for the DC CVAP and DC CVADP instructions in AArch64 state.
Defined values are:

DPB Meaning

0b0000 DC CVAP not supported.

0b0001 DC CVAP supported.

0b0010 DC CVAP and DC CVADP supported.

All other values are reserved.

FEAT_DPB implements the functionality identified by the value 0b0001.

FEAT_DPB2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0001 and 0b0010.

From Armv8.5, the only permitted value is 0b0010.

Accessing the ID_AA64ISAR1_EL1

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, ID_AA64ISAR1_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0110 0b001

1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented(FEAT_IDST) then
3 if EL2Enabled() && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x18);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 else
8 UNDEFINED;
9 elsif PSTATE.EL == EL1 then

10 if EL2Enabled() && HCR_EL2.TID3 == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 X[t, 64] = ID_AA64ISAR1_EL1;
14 elsif PSTATE.EL == EL2 then
15 X[t, 64] = ID_AA64ISAR1_EL1;
16 elsif PSTATE.EL == EL3 then
17 X[t, 64] = ID_AA64ISAR1_EL1;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

337

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.12 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

The ID_AA64PFR1_EL1 characteristics are:

Purpose

Reserved for future expansion of information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for
fields in ID registers .

Attributes

ID_AA64PFR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64PFR1_EL1 bit assignments are:

RES0

63 40

NMI

39 36 35 32

CSV2_frac
31 28

SME

27 24

RES0

23 20 19 16

RAS_frac

15 12

MTE

11 8

SSBS

7 4

BT

3 0

RNDR_trap MPAM_frac

Bits [63:40]

Reserved, RES0.

NMI, bits [39:36]

Non-maskable Interrupt. Indicates support for Non-maskable interrupts. Defined values are:

NMI Meaning

0b0000 SCTLR_ELx.{SPINTMASK, NMI} and PSTATE.ALLINT
with its associated instructions are not supported.

0b0001 SCTLR_ELx.{SPINTMASK, NMI} and PSTATE.ALLINT
with its associated instructions are supported.

All other values are reserved.

FEAT_NMI implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

CSV2_frac, bits [35:32]

CSV2 fractional field. Defined values are:

CSV2_frac Meaning

0b0000 This PE does not disclose whether branch targets trained in
one hardware-described context can exploitatively control
speculative execution in a different hardware-described
context. The SCXTNUM_ELx registers are not supported.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

338

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

CSV2_frac Meaning

0b0001 If ID_AA64PFR0_EL1.CSV2 is 0b0001, branch targets
trained in one hardware-described context can exploitatively
control speculative execution in a different
hardware-described context only in a hard-to-determine way.
Within a hardware-described context, branch targets trained
for branches situated at one address can control speculative
execution of branches situated at different addresses only in
a hard-to-determine way. The SCXTNUM_ELx registers are
not supported and the contexts do not include the
SCXTNUM_ELx register contexts.

0b0010 If ID_AA64PFR0_EL1.CSV2 is 0b0001, branch targets
trained in one hardware-described context can exploitatively
control speculative execution in a different
hardware-described context only in a hard-to-determine way.
Within a hardware-described context, branch targets trained
for branches situated at one address can control speculative
execution of branches situated at different addresses only in
a hard-to-determine way. The SCXTNUM_ELx registers are
supported, but the contexts do not include the
SCXTNUM_ELx register contexts.

All other values are reserved.

FEAT_CSV2_1p1 implements the functionality identified by the value 0b0001.

FEAT_CSV2_1p2 implements the functionality identified by the value 0b0010.

From Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

This field is valid only if ID_AA64PFR0_EL1.CSV2 is 0b0001.

RNDR_trap, bits [31:28]

Random Number trap to EL3 field. Defined values are:

RNDR_trap Meaning

0b0000 Trapping of RNDR and RNDRRS to EL3 is not supported.

0b0001 Trapping of RNDR and RNDRRS to EL3 is supported.
SCR_EL3.TRNDR is present.

All other values are reserved.

FEAT_RNG_TRAP implements the functionality identified by the value 0b0001.

SME, bits [27:24]

Scalable Matrix Extension field. Defined values are:

SME Meaning

0b0000 SME architectural state and programmers’ model are not
implemented.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

339

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SME Meaning

0b0001 SME architectural state and programmers’ model are
implemented.

All other values are reserved.

FEAT_SME implements the functionality identified by the value 0b0001.

From Armv9.2, the permitted values are 0b0000 and 0b0001.

Bits [23:20]

Reserved, RES0.

MPAM_frac, bits [19:16]

Indicates the minor version number of support for the MPAM Extension.

Defined values are:

MPAM_frac Meaning

0b0000 The minor version number of the MPAM extension is 0.

0b0001 The minor version number of the MPAM extension is 1.

All other values are reserved.

When combined with the major version number from ID_AA64PFR0_EL1.MPAM, The combined “major.minor”
version is:

MPAM Extension version MPAM MPAM_frac

Not implemented. 0b0000 0b0000

v0.1 is implemented. 0b0000 0b0001

v1.0 is implemented. 0b0001 0b0000

v1.1 is implemented. 0b0001 0b0001

For more information, see The Memory Partitioning and Monitoring (MPAM) Extension .

RAS_frac, bits [15:12]

RAS Extension fractional field. Defined values are:

RAS_frac Meaning

0b0000 If ID_AA64PFR0_EL1.RAS == 0b0001, RAS Extension
implemented.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

340

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RAS_frac Meaning

0b0001 If ID_AA64PFR0_EL1.RAS == 0b0001, as 0b0000 and
adds support for:

• Additional ERXMISC<m>_EL1 System registers.
• Additional System registers ERXPFGCDN_EL1,

ERXPFGCTL_EL1, and ERXPFGF_EL1, and the
SCR_EL3.FIEN and HCR_EL2.FIEN trap controls,
to support the optional RAS Common Fault Injection
Model Extension.

Error records accessed through System registers conform to
RAS System Architecture v1.1, which includes
simplifications to ERR<n>STATUS, and support for the
optional RAS Timestamp and RAS Common Fault Injection
Model Extensions.

All other values are reserved.

FEAT_RASv1p1 implements the functionality identified by the value 0b0001.

This field is valid only if ID_AA64PFR0_EL1.RAS == 0b0001.

MTE, bits [11:8]

Support for the Memory Tagging Extension. Defined values are:

MTE Meaning

0b0000 Memory Tagging Extension is not implemented.

0b0001 Instruction-only Memory Tagging Extension is
implemented.

0b0010 Full Memory Tagging Extension is implemented.

0b0011 Memory Tagging Extension is implemented with support for
asymmetric Tag Check Fault handling.

All other values are reserved.

FEAT_MTE implements the functionality identified by the value 0b0001.

FEAT_MTE2 implements the functionality identified by the value 0b0010.

FEAT_MTE3 implements the functionality identified by the value 0b0011.

In Armv8.5, the permitted values are 0b0000, 0b0001 and 0b0010.

From Armv8.7, the value 0b0001 is not permitted.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

SSBS Meaning

0b0000 AArch64 provides no mechanism to control the use of
Speculative Store Bypassing.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

341

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SSBS Meaning

0b0001 AArch64 provides the PSTATE.SSBS mechanism to mark
regions that are Speculative Store Bypass Safe.

0b0010 As 0b0001, and adds the MSR and MRS instructions to
directly read and write the PSTATE.SSBS field.

All other values are reserved.

FEAT_SSBS implements the functionality identified by the value 0b0001.

FEAT_SSBS2 implements the functionality identified by the value 0b0010.

BT, bits [3:0]

Branch Target Identification mechanism support in AArch64 state. Defined values are:

BT Meaning

0b0000 The Branch Target Identification mechanism is not
implemented.

0b0001 The Branch Target Identification mechanism is
implemented.

All other values are reserved.

FEAT_BTI implements the functionality identified by the value 0b0001.

From Armv8.5, the only permitted value is 0b0001.

Accessing the ID_AA64PFR1_EL1

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, ID_AA64PFR1_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b001

1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented(FEAT_IDST) then
3 if EL2Enabled() && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x18);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 else
8 UNDEFINED;
9 elsif PSTATE.EL == EL1 then

10 if EL2Enabled() && HCR_EL2.TID3 == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 X[t, 64] = ID_AA64PFR1_EL1;
14 elsif PSTATE.EL == EL2 then
15 X[t, 64] = ID_AA64PFR1_EL1;
16 elsif PSTATE.EL == EL3 then
17 X[t, 64] = ID_AA64PFR1_EL1;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

342

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

343

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.13 ID_AA64ZFR0_EL1, SVE Feature ID register 0

The ID_AA64ZFR0_EL1 characteristics are:

Purpose

Provides additional information about the implemented features of the AArch64 Scalable
Vector Extension instruction set, when either or both of ID_AA64PFR0_EL1.SVE and
ID_AA64PFR1_EL1.SME are not zero.

For general information about the interpretation of the ID registers see Principles of the ID scheme for
fields in ID registers .

Attributes

ID_AA64ZFR0_EL1 is a 64-bit register.

Configuration

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Field descriptions

The ID_AA64ZFR0_EL1 bit assignments are:

RES0

63 60

F64MM

59 56

F32MM

55 52

RES0

51 48

I8MM

47 44

SM4

43 40

RES0

39 36

SHA3

35 32

RES0

31 24

BF16

23 20

BitPerm

19 16

RES0

15 8

AES

7 4

SVEver

3 0

Bits [63:60]

Reserved, RES0.

F64MM, bits [59:56]

Indicates support for SVE FP64 double-precision floating-point matrix multiplication instructions. Defined values
are:

F64MM Meaning

0b0000 Double-precision matrix multiplication and related
instructions are not implemented.

0b0001 Double-precision variant of the FMMLA instruction, and
the LD1RO* instructions are implemented. The 128-bit
element variations of TRN1, TRN2, UZP1, UZP2, ZIP1,
and ZIP2 are also implemented.

All other values are reserved.

FEAT_F64MM implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

F32MM, bits [55:52]

Indicates support for the SVE FP32 single-precision floating-point matrix multiplication instruction. Defined

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

344

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

values are:

F32MM Meaning

0b0000 Single-precision matrix multiplication instruction is not
implemented.

0b0001 Single-precision variant of the FMMLA instruction is
implemented.

All other values are reserved.

FEAT_F32MM implements the functionality identified by 0b0001.

From Arm v8.2, the permitted values are 0b0000 and 0b0001.

Bits [51:48]

Reserved, RES0.

I8MM, bits [47:44]

Indicates support for SVE Int8 matrix multiplication instructions. Defined values are:

I8MM Meaning

0b0000 Int8 matrix multiplication instructions are not implemented.

0b0001 SMMLA, SUDOT, UMMLA, USMMLA, and USDOT
instructions are implemented.

All other values are reserved.

FEAT_I8MM implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ISAR1_EL1.I8MM.

From Armv8.6, the only permitted value is 0b0001.

SM4, bits [43:40]

Indicates support for SVE SM4 instructions. Defined values are:

SM4 Meaning

0b0000 SVE SM4 instructions are not implemented.

0b0001 SVE SM4E and SM4EKEY instructions are implemented.

All other values are reserved.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

345

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

FEAT_SVE_SM4 implements the functionality identified by 0b0001.

Bits [39:36]

Reserved, RES0.

SHA3, bits [35:32]

Indicates support for the SVE SHA3 instructions. Defined values are:

SHA3 Meaning

0b0000 SVE SHA3 instructions are not implemented.

0b0001 SVE RAX1 instruction is implemented.

All other values are reserved.

FEAT_SVE_SHA3 implements the functionality identified by 0b0001.

Bits [31:24]

Reserved, RES0.

BF16, bits [23:20]

Indicates support for SVE BFloat16 instructions. Defined values are:

BF16 Meaning

0b0000 BFloat16 instructions are not implemented.

0b0001 BFCVT, BFCVTNT, BFDOT, BFMLALB, BFMLALT, and
BFMMLA instructions are implemented.

0b0010 As 0b0001, but the FPCR.EBF field is also supported.

All other values are reserved.

FEAT_BF16 implements the functionality identified by 0b0001.

FEAT_EBF16 implements the functionality identified by 0b0010.

This field must return the same value as ID_AA64ISAR1_EL1.BF16.

If FEAT_SME is implemented, the permitted values are 0b0001 and 0b0010.

Otherwise, from Armv8.6, the only permitted value is 0b0001.

BitPerm, bits [19:16]

Indicates support for SVE bit permute instructions. Defined values are:

BitPerm Meaning

0b0000 SVE bit permute instructions are not implemented.

0b0001 SVE BDEP, BEXT, and BGRP instructions are
implemented.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

346

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

All other values are reserved.

FEAT_SVE_BitPerm implements the functionality identified by 0b0001.

Bits [15:8]

Reserved, RES0.

AES, bits [7:4]

Indicates support for SVE AES instructions. Defined values are:

AES Meaning

0b0000 SVE AES instructions are not implemented.

0b0001 SVE AESE, AESD, AESMC, and AESIMC instructions are
implemented.

0b0010 As 0b0001, plus SVE PMULLB and PMULLT instructions
with 64-bit source.

All other values are reserved.

FEAT_SVE_AES implements the functionality identified by the value 0b0001.

FEAT_SVE_PMULL128 implements the functionality identified by the value 0b0010.

The permitted values are 0b0000 and 0b0010.

SVEver, bits [3:0]

Indicates support for SVE. Defined values are:

SVEver Meaning

0b0000 SVE instructions are implemented.

0b0001 The SVE and non-optional SVE2 instructions are
implemented.

All other values are reserved.

FEAT_SVE2 and FEAT_SME implement the functionality identified by the value 0b0001.

From Armv9, if FEAT_SME is implemented, the only permitted value is 0b0001. This value indicates that SVE
and SVE2 instructions are implemented when the PE is in Streaming SVE mode.

Irrespective of the value of ID_AA64ZFR0_EL1.SVEver, when the PE is in Streaming SVE mode, software should
not attempt to execute any of the SVE and SVE2 instructions that are illegal in Streaming SVE mode.

Accessing the ID_AA64ZFR0_EL1

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, ID_AA64ZFR0_EL1

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

347

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b100

1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented(FEAT_IDST) then
3 if EL2Enabled() && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x18);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 else
8 UNDEFINED;
9 elsif PSTATE.EL == EL1 then

10 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_AA64ZFR0_EL1) || boolean
↪→IMPLEMENTATION_DEFINED "ID_AA64ZFR0_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then

11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 X[t, 64] = ID_AA64ZFR0_EL1;
14 elsif PSTATE.EL == EL2 then
15 X[t, 64] = ID_AA64ZFR0_EL1;
16 elsif PSTATE.EL == EL3 then
17 X[t, 64] = ID_AA64ZFR0_EL1;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

348

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.14 MPAM2_EL2, MPAM2 Register (EL2)

The MPAM2_EL2 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests when executing at EL2.

Attributes

MPAM2_EL2 is a 64-bit register.

Configuration

This register has no effect if EL2 is not enabled in the current Security state.

When EL3 is implemented, AArch64 system register MPAM2_EL2 bit [63] is architecturally mapped
to AArch64 system register MPAM3_EL3[63].

AArch64 system register MPAM2_EL2 bit [63] is architecturally mapped to AArch64 system register
MPAM1_EL1[63].

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAM2_EL2 are UNDEFINED.

Field descriptions

The MPAM2_EL2 bit assignments are:

63

RES0

62 59 58 57 56 55 54

RES0

53 51 50 49 48

PMG_D

47 40

PMG_I

39 32

MPAMEN
TIDR

RES0
ALTSP_HFC

TRAPMPAM1EL1
TRAPMPAM0EL1

EnMPAMSM
ALTSP_FRCD

ALTSP_EL2

PARTID_D

31 16

PARTID_I

15 0

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs are output as
their default value in the corresponding ID space.

MPAMEN Meaning

0b0 The default PARTID and default PMG are output in MPAM
information from all Exception levels.

0b1 MPAM information is output based on the MPAMn_ELx
register for ELn according to the MPAM configuration.

If EL3 is not implemented, this field is read/write.

If EL3 is implemented, this field is read-only and reads the current value of the read/write MPAM3_EL3.MPAMEN
bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

349

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Accessing this field has the following behavior:

• RW if !HaveEL(EL3)
• Otherwise, access to this field is RO

Bits [62:59]

Reserved, RES0.

TIDR, bit [58]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMIDR_EL1.HAS_TIDR == 1:

TIDR traps accesses to MPAMIDR_EL1 from EL1 to EL2.

TIDR Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 Trap accesses to MPAMIDR_EL1 from EL1 to EL2.

MPAMHCR_EL2.TRAP_MPAMIDR_EL1 == 1 also traps MPAMIDR_EL1 accesses from EL1 to EL2. If either
TIDR or TRAP_MPAMIDR_EL1 are 1, accesses are trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [57]

Reserved, RES0.

ALTSP_HFC, bit [56]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Hierarchical force of alternative PARTID space controls. When MPAM3_EL3.ALTSP_HEN is 0, ALTSP controls
in MPAM2_EL2 have no effect. When MPAM3_EL3.ALTSP_HEN is 1, this bit selects whether the PARTIDs in
MPAM1_EL1 and MPAM0_EL1 are in the primary (0) or alternative (1) PARTID space for the security state.

ALTSP_HFC Meaning

0b0 When MPAM3_EL3.ALTSP_HEN is 1, the PARTID space
of MPAM1_EL1.PARTID_I, MPAM1_EL1.PARTID_D,
MPAM0_EL1.PARTID_I, and MPAM0_EL1.PARTID_D
are in the primary PARTID space for the Security state.

0b1 When MPAM3_EL3.ALTSP_HEN is 1, the PARTID space
of MPAM1_EL1.PARTID_I, MPAM1_EL1.PARTID_D,
MPAM0_EL1.PARTID_I, and MPAM0_EL1.PARTID_D
are in the alternative PARTID space for the Security state.

This control has no effect when MPAM3_EL3.ALTSP_HEN is 0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

350

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

For more information, see ‘Alternative PARTID spaces and selection’ in Arm® Architecture Reference Manual
Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ALTSP_EL2, bit [55]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Select alternative PARTID space for PARTIDs in MPAM2_EL2 when MPAM3_EL3.ALTSP_HEN is 1.

ALTSP_EL2 Meaning

0b0 When MPAM3_EL3.ALTSP_HEN is 1, selects the primary
PARTID space for MPAM2_EL2.PARTID_I and
MPAM2_EL2.PARTID_D.

0b1 When MPAM3_EL3.ALTSP_HEN is 1, selects the
alternative PARTID space for MPAM2_EL2.PARTID_I and
MPAM2_EL2.PARTID_D.

For more information, see ‘Alternative PARTID spaces and selection’ in Arm® Architecture Reference Manual
Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ALTSP_FRCD, bit [54]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Alternative PARTID forced for PARTIDs in this register.

ALTSP_FRCD Meaning

0b0 The PARTIDs in this register are using the primary PARTID
space.

0b1 The PARTIDs in this register are using the alternative
PARTID space.

This bit indicates that a higher Exception level has forced the PARTIDs in this register to use the alternative
PARTID space defined for the current Security state. In EL2, it is also 1 when MPAM2_EL2.ALTSP_EL2 is 1.

For more information, see ‘Alternative PARTID spaces and selection’ in Arm® Architecture Reference Manual
Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598).

The reset behavior of this field is:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

351

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

Otherwise:

RES0

Bits [53:51]

Reserved, RES0.

EnMPAMSM, bit [50]

When FEAT_SME is implemented:

Traps execution at EL1 of instructions that directly access the MPAMSM_EL1 register to EL2. The exception is
reported using ESR_ELx.EC value 0x18.

EnMPAMSM Meaning

0b0 This control causes execution of these instructions at EL1 to
be trapped.

0b1 This control does not cause execution of any instructions to
be trapped.

This field has no effect on accesses to MPAMSM_EL1 from EL2 or EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TRAPMPAM0EL1, bit [49]

Trap accesses from EL1 to the MPAM0_EL1 register trap to EL2.

TRAPMPAM0EL1 Meaning

0b0 Accesses to MPAM0_EL1 from EL1 are not trapped.

0b1 Accesses to MPAM0_EL1 from EL1 are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b1.
– When EL3 is implemented, this field resets to an architecturally UNKNOWN value.

TRAPMPAM1EL1, bit [48]

Trap accesses from EL1 to the MPAM1_EL1 register trap to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

352

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TRAPMPAM1EL1 Meaning

0b0 Accesses to MPAM1_EL1 from EL1 are not trapped.

0b1 Accesses to MPAM1_EL1 from EL1 are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b1.
– When EL3 is implemented, this field resets to an architecturally UNKNOWN value.

PMG_D, bits [47:40]

Performance monitoring group for data accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMG_I, bits [39:32]

Performance monitoring group for instruction accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the MPAM2_EL2

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, MPAM2_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0101 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

353

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
6 if Halted() && EDSCR.SDD == '1' then
7 UNDEFINED;
8 else
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 else
11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 UNDEFINED;
14 elsif PSTATE.EL == EL2 then
15 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x18);
20 else
21 X[t, 64] = MPAM2_EL2;
22 elsif PSTATE.EL == EL3 then
23 X[t, 64] = MPAM2_EL2;

MSR MPAM2_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0101 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
6 if Halted() && EDSCR.SDD == '1' then
7 UNDEFINED;
8 else
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 else
11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 UNDEFINED;
14 elsif PSTATE.EL == EL2 then
15 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x18);
20 else
21 MPAM2_EL2 = X[t, 64];
22 elsif PSTATE.EL == EL3 then
23 MPAM2_EL2 = X[t, 64];

MRS <Xt>, MPAM1_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
5 if Halted() && EDSCR.SDD == '1' then
6 UNDEFINED;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

354

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

7 else
8 AArch64.SystemAccessTrap(EL3, 0x18);
9 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 == '1' then

10 AArch64.SystemAccessTrap(EL2, 0x18);
11 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
12 X[t, 64] = NVMem[0x900];
13 else
14 X[t, 64] = MPAM1_EL1;
15 elsif PSTATE.EL == EL2 then
16 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
17 if Halted() && EDSCR.SDD == '1' then
18 UNDEFINED;
19 else
20 AArch64.SystemAccessTrap(EL3, 0x18);
21 elsif HCR_EL2.E2H == '1' then
22 X[t, 64] = MPAM2_EL2;
23 else
24 X[t, 64] = MPAM1_EL1;
25 elsif PSTATE.EL == EL3 then
26 X[t, 64] = MPAM1_EL1;

MSR MPAM1_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
5 if Halted() && EDSCR.SDD == '1' then
6 UNDEFINED;
7 else
8 AArch64.SystemAccessTrap(EL3, 0x18);
9 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 == '1' then

10 AArch64.SystemAccessTrap(EL2, 0x18);
11 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
12 NVMem[0x900] = X[t, 64];
13 else
14 MPAM1_EL1 = X[t, 64];
15 elsif PSTATE.EL == EL2 then
16 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
17 if Halted() && EDSCR.SDD == '1' then
18 UNDEFINED;
19 else
20 AArch64.SystemAccessTrap(EL3, 0x18);
21 elsif HCR_EL2.E2H == '1' then
22 MPAM2_EL2 = X[t, 64];
23 else
24 MPAM1_EL1 = X[t, 64];
25 elsif PSTATE.EL == EL3 then
26 MPAM1_EL1 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

355

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.15 SCR_EL3, Secure Configuration Register

The SCR_EL3 characteristics are:

Purpose

Defines the configuration of the current Security state. It specifies:

• The Security state of EL0, EL1, and EL2. The Security state is Secure, Non-secure, or Realm.
• The Execution state at lower Exception levels.
• Whether IRQ, FIQ, SError interrupts, and External abort exceptions are taken to EL3.
• Whether various operations are trapped to EL3.

Attributes

SCR_EL3 is a 64-bit register.

Configuration

This register is present only when EL3 is implemented. Otherwise, direct accesses to SCR_EL3 are
UNDEFINED.

Field descriptions

The SCR_EL3 bit assignments are:

63 62

RES0

61 49 48

RES0

47 42 41 40 39 38 37 36 35 34 33 32

RES0 NSE GPF EnTP2
TRNDR

RES0
HXEn

TWEDEL
TME

AMVOFFEN
EnAS0

ADEn
31 30 29 28 27 26 25

RES0

24 22 21 20 19 18 17 16 15 14 13 12

ST

11

RW

10 9 8 7 6

RES1

5 4

EA

3 2 1

NS

0

TWEDEL
TWEDEn

ECVEn
FGTEn

ATA
EnSCXT

FIEN
NMEA

EASE
EEL2

API

IRQ
FIQ

RES0
SMD

HCE
SIF

TWI
TWE

TLOR
TERR

APK

Bit [63]

Reserved, RES0.

NSE, bit [62]

When FEAT_RME is implemented:

This field, evaluated with SCR_EL3.NS, selects the Security state of EL2 and lower Exception levels.

For a description of the values derived by evaluating NS and NSE together, see SCR_EL3.NS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

356

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Bits [61:49]

Reserved, RES0.

GPF, bit [48]

When FEAT_RME is implemented:

Controls the reporting of Granule protection faults at EL0, EL1 and EL2.

GPF Meaning

0b0 This control does not cause exceptions to be routed from
EL0, EL1 or EL2 to EL3.

0b1 GPFs at EL0, EL1 and EL2 are routed to EL3 and reported
as Granule Protection Check exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [47:42]

Reserved, RES0.

EnTP2, bit [41]

When FEAT_SME is implemented:

Traps instructions executed at EL2, EL1, and EL0 that access TPIDR2_EL0 to EL3. The exception is reported
using ESR_ELx.EC value 0x18.

EnTP2 Meaning

0b0 This control causes execution of these instructions at EL2,
EL1, and EL0 to be trapped.

0b1 This control does not cause execution of any instructions to
be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TRNDR, bit [40]

When FEAT_RNG_TRAP is implemented:

Controls trapping of reads of RNDR and RNDRRS. The exception is reported using ESR_ELx.EC value 0x18.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

357

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TRNDR Meaning

0b0 This control does not cause RNDR and RNDRRS to be
trapped.
When FEAT_RNG is implemented:

• ID_AA64ISAR0_EL1.RNDR returns the value
0b0001.

When FEAT_RNG is not implemented:
• ID_AA64ISAR0_EL1.RNDR returns the value

0b0000.
• MRS reads of RNDR and RNDRRS are UNDEFINED.

0b1 ID_AA64ISAR0_EL1.RNDR returns the value 0b0001.
Any attempt to read RNDR or RNDRRS is trapped to EL3.

When FEAT_RNG is not implemented, Arm recommends that SCR_EL3.TRNDR is initialized before entering
Exception levels below EL3 and not subsequently changed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

Bit [39]

Reserved, RES0.

HXEn, bit [38]

When FEAT_HCX is implemented:

Enables access to the HCRX_EL2 register at EL2 from EL3.

HXEn Meaning

0b0 Accesses at EL2 to HCRX_EL2 are trapped to EL3. Indirect
reads of HCRX_EL2 return 0.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ADEn, bit [37]

When FEAT_LS64_ACCDATA is implemented:

Enables access to the ACCDATA_EL1 register at EL1 and EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

358

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ADEn Meaning

0b0 Accesses to ACCDATA_EL1 at EL1 and EL2 are trapped to
EL3, unless the accesses are trapped to EL2 by the EL2
fine-grained trap.

0b1 This control does not cause accesses to ACCDATA_EL1 to
be trapped.

If the HFGWTR_EL2.nACCDATA_EL1 or HFGRTR_EL2.nACCDATA_EL1 traps are enabled, they take priority
over this trap.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnAS0, bit [36]

When FEAT_LS64_ACCDATA is implemented:

Traps execution of an ST64BV0 instruction at EL0, EL1, or EL2 to EL3.

EnAS0 Meaning

0b0 EL0 execution of an ST64BV0 instruction is trapped to EL3,
unless it is trapped to EL1 by SCTLR_EL1.EnAS0, or to
EL2 by either HCRX_EL2.EnAS0 or SCTLR_EL2.EnAS0.
EL1 execution of an ST64BV0 instruction is trapped to EL3,
unless it is trapped to EL2 by HCRX_EL2.EnAS0.
EL2 execution of an ST64BV0 instruction is trapped to EL3.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

AMVOFFEN, bit [35]

When FEAT_AMUv1p1 is implemented:

Activity Monitors Virtual Offsets Enable.

AMVOFFEN Meaning

0b0 Accesses to AMEVCNTVOFF0<n>_EL2 and
AMEVCNTVOFF1<n>_EL2 at EL2 are trapped to EL3.
Indirect reads of the virtual offset registers are zero.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

359

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

AMVOFFEN Meaning

0b1 Accesses to AMEVCNTVOFF0<n>_EL2 and
AMEVCNTVOFF1<n>_EL2 are not affected by this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TME, bit [34]

When FEAT_TME is implemented:

Enables access to the TSTART, TCOMMIT, TTEST and TCANCEL instructions at EL0, EL1 and EL2.

TME Meaning

0b0 EL0, EL1 and EL2 accesses to TSTART, TCOMMIT,
TTEST and TCANCEL instructions are UNDEFINED.

0b1 This control does not cause any instruction to be
UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TWEDEL, bits [33:30]

When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCR_EL3.TWEDEn is 1, encodes the minimum delay in taking
a trap of WFE* caused by SCR_EL3.TWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TWEDEn, bit [29]

When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by SCR_EL3.TWE.

Traps are reported using an ESR_ELx.EC value of 0x01.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

360

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TWEDEn Meaning

0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.

0b1 The delay for taking the trap is at least the number of cycles
defined in SCR_EL3.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ECVEn, bit [28]

When FEAT_ECV is implemented:

ECV Enable. Enables access to the CNTPOFF_EL2 register.

ECVEn Meaning

0b0 EL2 accesses to CNTPOFF_EL2 are trapped to EL3, and
the value of CNTPOFF_EL2 is treated as 0 for all purposes
other than direct reads or writes to the register from EL3.

0b1 EL2 accesses to CNTPOFF_EL2 are not trapped to EL3 by
this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

FGTEn, bit [27]

When FEAT_FGT is implemented:

Fine-Grained Traps Enable. When EL2 is implemented, enables the traps to EL2 controlled by HAFGRTR_EL2,
HDFGRTR_EL2, HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2, and HFGWTR_EL2, and controls access to
those registers.

If EL2 is not implemented but EL3 is implemented, FEAT_FGT implements the MDCR_EL3.TDCC traps.

FGTEn Meaning

0b0 EL2 accesses to HAFGRTR_EL2, HDFGRTR_EL2,
HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2 and
HFGWTR_EL2 registers are trapped to EL3, and the traps
to EL2 controlled by those registers are disabled.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

361

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

FGTEn Meaning

0b1 EL2 accesses to HAFGRTR_EL2, HDFGRTR_EL2,
HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2 and
HFGWTR_EL2 registers are not trapped to EL3 by this
mechanism.

Traps caused by accesses to the fine-grained trap registers are reported using an ESR_ELx.EC value of 0x18 and
its associated ISS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ATA, bit [26]

When FEAT_MTE2 is implemented:

Allocation Tag Access. Controls access at EL2, EL1 and EL0 to Allocation Tags.

ATA Meaning

0b0 Access to Allocation Tags is prevented. Accesses at EL1 and
EL2 to GCR_EL1, RGSR_EL1, TFSR_EL1, TFSR_EL2 or
TFSRE0_EL1 that are not UNDEFINED or trapped to a lower
Exception level are trapped to EL3. Accesses at EL2 to
TFSR_EL12 that are not UNDEFINED are trapped to EL3.

0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnSCXT, bit [25]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Enable access to the SCXTNUM_EL2, SCXTNUM_EL1, and SCXTNUM_EL0 registers.

EnSCXT Meaning

0b0 Accesses at EL0, EL1 and EL2 to SCXTNUM_EL0,
SCXTNUM_EL1, or SCXTNUM_EL2 registers are
trapped to EL3 if they are not trapped by a higher priority
exception, and the values of these registers are treated as 0.

0b1 This control does not cause any accesses to be trapped, or
register values to be treated as 0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

362

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [24:22]

Reserved, RES0.

FIEN, bit [21]

When FEAT_RASv1p1 is implemented:

Fault Injection enable. Trap accesses to the registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1 from EL1 and EL2 to EL3, reported using an ESR_ELx.EC value of 0x18.

FIEN Meaning

0b0 Accesses to the specified registers from EL1 and EL2
generate a Trap exception to EL3.

0b1 This control does not cause any instructions to be trapped.

If EL3 is not implemented, the Effective value of SCR_EL3.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record accessible using
System registers is owned by a node that implements the RAS Common Fault Injection Model Extension, then this
bit might be RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

NMEA, bit [20]

When FEAT_DoubleFault is implemented:

Non-maskable External Aborts. When SCR_EL3.EA == 1, controls whether PSTATE.A masks SError interrupts
at EL3.

NMEA Meaning

0b0 If SCR_EL3.EA == 1, asserted SError interrupts are not
taken at EL3 if PSTATE.A == 1.

0b1 If SCR_EL3.EA == 1, asserted SError interrupts are taken
at EL3 regardless of the value of PSTATE.A.

When SCR_EL3.EA == 0:

• Asserted SError interrupts are not taken at EL3 regardless of the value of PSTATE.A and this field.
• This field is ignored and its Effective value is 0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

363

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

EASE, bit [19]

When FEAT_DoubleFault is implemented:

External aborts to SError interrupt vector.

EASE Meaning

0b0 Synchronous External abort exceptions taken to EL3 are
taken to the appropriate synchronous exception vector offset
from VBAR_EL3.

0b1 Synchronous External abort exceptions taken to EL3 are
taken to the appropriate SError interrupt vector offset from
VBAR_EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

EEL2, bit [18]

When FEAT_SEL2 is implemented:

Secure EL2 Enable.

EEL2 Meaning

0b0 All behaviors associated with Secure EL2 are disabled. All
registers, including timer registers, defined by FEAT_SEL2
are UNDEFINED, and those timers are disabled.

0b1 All behaviors associated with Secure EL2 are enabled.

When the value of this bit is 1, then:

• When SCR_EL3.NS == 0, the SCR_EL3.RW bit is treated as 1 for all purposes other than reading or writing
the register.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped to
Secure EL2, using the EC value of ESR_EL2.EC== 0x3 :

– A read or write of the SCR.
– A read or write of the NSACR.
– A read or write of the MVBAR.
– A read or write of the SDCR.
– Execution of an ATS12NSO** instruction.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

364

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped to
Secure EL2 using the EC value of ESR_EL2.EC== 0x0 :

– Execution of an SRS instruction that uses R13_mon.
– Execution of an MRS (Banked register) or MSR (Banked register) instruction that would access

SPSR_mon, R13_mon, or R14_mon.

If the Effective value of SCR_EL3.EEL2 is 0, then these operations executed in Secure EL1 using AArch32 are
trapped to EL3.

A Secure only implementation that does not implement EL3 but implements EL2, behaves as if SCR_EL3.EEL2
== 1.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

API, bit [17]

When FEAT_SEL2 is implemented and FEAT_PAuth is implemented

API, bit [0] of bit [17]

Controls the use of the following instructions related to Pointer Authentication. Traps are reported using an
ESR_ELx.EC value of 0x09:

• PACGA, which is always enabled.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716,

AUTIBSP, AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716,
PACIASP, PACIAZ, PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB, RETAA, RETAB, BRAA,
BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and
LDRAB when:

– In EL0, when HCR_EL2.TGE == 0 or HCR_EL2.E2H == 0, and the associated
SCTLR_EL1.En<N><M> == 1.

– In EL0, when HCR_EL2.TGE == 1 and HCR_EL2.E2H == 1, and the associated
SCTLR_EL2.En<N><M> == 1.

– In EL1, when the associated SCTLR_EL1.En<N><M> == 1.
– In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

API Meaning

0b0 The use of any instruction related to pointer authentication
in any Exception level except EL3 when the instructions are
enabled are trapped to EL3 unless they are trapped to EL2 as
a result of the HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

An instruction is trapped only if Pointer Authentication is enabled for that instruction, for more information, see
System register control of pointer authentication .

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

365

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_SEL2 is not implemented and FEAT_PAuth is implemented

API, bit [0] of bit [17]

Controls the use of instructions related to Pointer Authentication:

• PACGA.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716,

AUTIBSP, AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716,
PACIASP, PACIAZ, PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZ, RETAA, RETAB, BRAA,
BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and
LDRAB when:

– In Non-secure EL0, when HCR_EL2.TGE == 0 or HCR_EL2.E2H == 0, and the associated
SCTLR_EL1.En<N><M>== 1.

– In Non-secure EL0, when HCR_EL2.TGE == 1 and HCR_EL2.E2H == 1, and the associated
SCTLR_EL2.En<N><M> == 1.

– In Secure EL0, when the associated SCTLR_EL1.En<N><M> == 1.
– In Secure or Non-secure EL1, when the associated SCTLR_EL1.En<N><M> == 1.
– In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

API Meaning

0b0 The use of any instruction related to pointer authentication
in any Exception level except EL3 when the instructions are
enabled are trapped to EL3 unless they are trapped to EL2 as
a result of the HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

APK, bit [16]

When FEAT_PAuth is implemented:

Trap registers holding “key” values for Pointer Authentication. Traps accesses to the following registers, using
an ESR_ELx.EC value of 0x18, from EL1 or EL2 to EL3 unless they are trapped to EL2 as a result of the
HCR_EL2.APK bit or other traps:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1.

• APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1, APDBKeyHi_EL1.

• APGAKeyLo_EL1, and APGAKeyHi_EL1.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

366

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

APK Meaning

0b0 Access to the registers holding “key” values for pointer
authentication from EL1 or EL2 are trapped to EL3 unless
they are trapped to EL2 as a result of the HCR_EL2.APK
bit or other traps.

0b1 This control does not cause any instructions to be trapped.

For more information, see System register control of pointer authentication .

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TERR, bit [15]

When FEAT_RAS is implemented:

Trap Error record accesses. Accesses to the RAS ERR* and RAS ERX* registers from EL1 and EL2 to EL3 are
trapped as follows:

• Accesses from EL1 and EL2 using AArch64 to the following registers are trapped and reported using an
ESR_ELx.EC value of 0x18:

– ERRIDR_EL1, ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXFR_EL1,
ERXMISC0_EL1, ERXMISC1_EL1, and ERXSTATUS_EL1.

• If FEAT_RASv1p1 is implemented, accesses from EL1 and EL2 using AArch64 to ERXMISC2_EL1, and
ERXMISC3_EL1, are trapped and reported using an ESR_ELx.EC value of 0x18.

• Accesses from EL1 and EL2 using AArch32, to the following registers are trapped and reported using an
ESR_ELx.EC value of 0x03:

– ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2,
ERXMISC0, ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.

• If FEAT_RASv1p1 is implemented, accesses from EL1 and EL2 using AArch32 to the following registers
are trapped and reported using an ESR_ELx.EC value of 0x03:

– ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.

TERR Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 Accesses to the specified registers from EL1 and EL2
generate a Trap exception to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

367

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES0

TLOR, bit [14]

When FEAT_LOR is implemented:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and
LORID_EL1 registers from EL1 and EL2 to EL3, unless the access has been trapped to EL2.

TLOR Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 and EL2 accesses to the LOR registers that are not
UNDEFINED are trapped to EL3, unless it is trapped
HCR_EL2.TLOR.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TWE, bit [13]

Traps EL2, EL1, and EL0 execution of WFE instructions to EL3, from any Security state and both Execution
states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

TWE Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFE instruction at any Exception
level lower than EL3 is trapped to EL3, if the instruction
would otherwise have caused the PE to enter a low-power
state and it is not trapped by SCTLR.nTWE, HCR.TWE,
SCTLR_EL1.nTWE, SCTLR_EL2.nTWE, or
HCR_EL2.TWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not
guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is
that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about when WFE instructions can cause the PE to enter a low-power state, see
‘Wait for Event mechanism and Send event’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

368

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TWI, bit [12]

Traps EL2, EL1, and EL0 execution of WFI instructions to EL3, from any Security state and both Execution states,
reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

TWI Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt to execute a WFI instruction at any Exception
level lower than EL3 is trapped to EL3, if the instruction
would otherwise have caused the PE to enter a low-power
state and it is not trapped by SCTLR.nTWI, HCR.TWI,
SCTLR_EL1.nTWI, SCTLR_EL2.nTWI, or
HCR_EL2.TWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not
guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is
that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about when WFI instructions can cause the PE to enter a low-power state, see
‘Wait for Interrupt’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ST, bit [11]

Traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3, from AArch64 state only,
reported using an ESR_ELx.EC value of 0x18.

ST Meaning

0b0 Secure EL1 using AArch64 accesses to the
CNTPS_TVAL_EL1, CNTPS_CTL_EL1, and
CNTPS_CVAL_EL1 are trapped to EL3 when Secure EL2
is disabled. If Secure EL2 is enabled, the behavior is as if
the value of this field was 0b1.

0b1 This control does not cause any instructions to be trapped.

Accesses to the Counter-timer Physical Secure timer registers are always enabled at EL3. These registers are not
accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RW, bit [10]

When EL1 is capable of using AArch32 or EL2 is capable of using AArch32:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

369

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Execution state control for lower Exception levels.

RW Meaning

0b0 Lower levels are all AArch32.

0b1 The next lower level is AArch64.
If EL2 is present:

• EL2 is AArch64.
• EL2 controls EL1 and EL0 behaviors.

If EL2 is not present:
• EL1 is AArch64.
• EL0 is determined by the Execution state described in

the current process state when executing at EL0.

If AArch32 state is supported by the implementation at EL1, SCR_EL3.NS == 1 and AArch32 state is not
supported by the implementation at EL2, the Effective value of this bit is 1.

If AArch32 state is supported by the implementation at EL1, FEAT_SEL2 is implemented and SCR_EL3.{EEL2,
NS} == {1, 0}, the Effective value of this bit is 1.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RAO/WI

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from Non-secure
memory.

SIF Meaning

0b0 Secure state instruction fetches from Non-secure memory
are permitted.

0b1 Secure state instruction fetches from Non-secure memory
are not permitted.

When FEAT_PAN3 is implemented, it is IMPLEMENTATION DEFINED whether SCR_EL3.SIF is also used to
determine instruction access permission for the purpose of PAN.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCE, bit [8]

Hypervisor Call instruction enable. Enables HVC instructions at EL3 and, if EL2 is enabled in the current Security
state, at EL2 and EL1, in both Execution states, reported using an ESR_ELx.EC value of 0x00.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

370

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

HCE Meaning

0b0 HVC instructions are UNDEFINED.

0b1 HVC instructions are enabled at EL3, EL2, and EL1.

HVC instructions are always UNDEFINED at EL0 and, if Secure EL2 is disabled, at Secure EL1. Any resulting
exception is taken from the current Exception level to the current Exception level.

If EL2 is not implemented, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SMD, bit [7]

Secure Monitor Call disable. Disables SMC instructions at EL1 and above, from any Security state and both
Execution states, reported using an ESR_ELx.EC value of 0x00.

SMD Meaning

0b0 SMC instructions are enabled at EL3, EL2 and EL1.

0b1 SMC instructions are UNDEFINED.

SMC instructions are always UNDEFINED at EL0. Any resulting exception is taken from the current Exception level
to the current Exception level.

If HCR_EL2.TSC or HCR.TSC traps attempted EL1 execution of SMC instructions to EL2, that trap has priority
over this disable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

EA, bit [3]

External Abort and SError interrupt routing.

EA Meaning

0b0 When executing at Exception levels below EL3, External
aborts and SError interrupts are not taken to EL3.
In addition, when executing at EL3:

• SError interrupts are not taken.
• External aborts are taken to EL3.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

371

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EA Meaning

0b1 When executing at any Exception level, External aborts and
SError interrupts are taken to EL3.

For more information, see ‘Asynchronous exception routing’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FIQ, bit [2]

Physical FIQ Routing.

FIQ Meaning

0b0 When executing at Exception levels below EL3, physical
FIQ interrupts are not taken to EL3.
When executing at EL3, physical FIQ interrupts are not
taken.

0b1 When executing at any Exception level, physical FIQ
interrupts are taken to EL3.

For more information, see ‘Asynchronous exception routing’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRQ, bit [1]

Physical IRQ Routing.

IRQ Meaning

0b0 When executing at Exception levels below EL3, physical
IRQ interrupts are not taken to EL3.
When executing at EL3, physical IRQ interrupts are not
taken.

0b1 When executing at any Exception level, physical IRQ
interrupts are taken to EL3.

For more information, see ‘Asynchronous exception routing’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

372

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

NS, bit [0]

When FEAT_RME is implemented

NS, bit [0] of bit [0]

Non-secure bit. This field is used in combination with SCR_EL3.NSE to select the Security state of EL2 and lower
Exception levels.

NSE NS Meaning

0b0 0b0 Secure.

0b0 0b1 Non-secure.

0b1 0b0 Reserved.

0b1 0b1 Realm.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise

NS, bit [0] of bit [0]

Non-secure bit.

NS Meaning

0b0 Indicates that EL0 and EL1 are in Secure state.

0b1 Indicates that Exception levels lower than EL3 are in
Non-secure state, so memory accesses from those Exception
levels cannot access Secure memory.

When SCR_EL3.{EEL2, NS} == {1, 0}, then EL2 is using AArch64 and in Secure state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SCR_EL3

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, SCR_EL3

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

373

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 X[t, 64] = SCR_EL3;

MSR SCR_EL3, <Xt>

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 SCR_EL3 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

374

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.16 SCTLR_EL1, System Control Register (EL1)

The SCTLR_EL1 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL1 and EL0.

Attributes

SCTLR_EL1 is a 64-bit register.

Configuration

AArch64 system register SCTLR_EL1 bits [31:0] are architecturally mapped to AArch32 system
register SCTLR[31:0].

Field descriptions

The SCTLR_EL1 bit assignments are:

63 62 61 60

RES0

59 58 57 56 55 54 53 52 51 50

TWEDEL

49 46 45 44 43 42

TCF

41 40

TCF0

39 38 37 36 35 34 33 32

TIDCP
SPINTMASK

NMI
EnTP2

EPAN
EnALS

EnAS0
EnASR

TME
TME0

TMT

CMOW
MSCEn

RES0
BT0

BT1
ITFSB

ATA0
ATA

DSSBS
TWEDEn

TMT0
31 30 29 28 27 26

EE

25 24 23 22 21 20 19 18 17 16 15 14 13

I

12 11 10 9 8 7 6 5 4

SA

3

C

2

A

1

M

0

EnIA
EnIB
LSMAOE

nTLSMD
EnDA

UCI
E0E
SPAN

EIS
IESB
TSCXT

WXN
nTWE

SA0
CP15BEN

nAA
ITD

SED
UMA

EnRCTX
EOS

EnDB
DZE

UCT
nTWI

RES0

TIDCP, bit [63]

When FEAT_TIDCP1 is implemented:

Trap IMPLEMENTATION DEFINED functionality. When HCR_EL2.{E2H, TGE} != {1, 1}, traps EL0 accesses to
the encodings reserved for IMPLEMENTATION DEFINED functionality to EL1.

TIDCP Meaning

0b0 No instructions accessing the System register or System
instruction spaces are trapped by this mechanism.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

375

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TIDCP Meaning

0b1 Instructions accessing the following System register or
System instruction spaces are trapped to EL1 by this
mechanism:

• In AArch64 state, EL0 access to the encodings in the
following reserved encoding spaces are trapped and
reported using EC syndrome 0x18:

– IMPLEMENTATION DEFINED System
instructions, which are accessed using SYS and
SYSL, with CRn == {11, 15}.

– IMPLEMENTATION DEFINED System registers,
which are accessed using MRS and MSR with
the S3_<op1>_<Cn>_<Cm>_<op2> register
name.

• In AArch32 state, EL0 MCR and MRC access to the
following encodings are trapped and reported using
EC syndrome 0x03:

– All coproc==p15, CRn==c9, opc1 == {0-7},
CRm == {c0-c2, c5-c8}, opc2 == {0-7}.

– All coproc==p15, CRn==c10, opc1 =={0-7},
CRm == {c0, c1, c4, c8}, opc2 == {0-7}.

– All coproc==p15, CRn==c11, opc1=={0-7},
CRm == {c0-c8, c15}, opc2 == {0-7}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

SPINTMASK, bit [62]

When FEAT_NMI is implemented:

SP Interrupt Mask enable. When SCTLR_EL1.NMI is 1, controls whether PSTATE.SP acts as an interrupt mask,
and controls the value of PSTATE.ALLINT on taking an exception to EL1.

SPINTMASK Meaning

0b0 Does not cause PSTATE.SP to mask interrupts.
PSTATE.ALLINT is set to 1 on taking an exception to EL1.

0b1 When PSTATE.SP is 1 and execution is at EL1, an IRQ or
FIQ interrupt that is targeted to EL1 is masked regardless of
any denotion of Superpriority.
PSTATE.ALLINT is set to 0 on taking an exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

376

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES0

NMI, bit [61]

When FEAT_NMI is implemented:

Non-maskable Interrupt enable.

NMI Meaning

0b0 This control does not affect interrupt masking behavior.

0b1 This control enables all of the following:
• The use of the PSTATE.ALLINT interrupt mask.
• IRQ and FIQ interrupts to have Superpriority as an

additional attribute.
• PSTATE.SP to be used as an interrupt mask.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

EnTP2, bit [60]

When FEAT_SME is implemented:

Traps instructions executed at EL0 that access TPIDR2_EL0 to EL1, or to EL2 when EL2 is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1. The exception is reported using ESR_ELx.EC
value 0x18.

EnTP2 Meaning

0b0 This control causes execution of these instructions at EL0 to
be trapped.

0b1 This control does not cause execution of any instructions to
be trapped.

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

377

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Bits [59:58]

Reserved, RES0.

EPAN, bit [57]

When FEAT_PAN3 is implemented:

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL1 data access to a page
with stage 1 EL0 instruction access permission generates a Permission fault as a result of the Privileged Access
Never mechanism.

EPAN Meaning

0b0 No additional Permission faults are generated by this
mechanism.

0b1 An EL1 data access to a page with stage 1 EL0 data access
permission or stage 1 EL0 instruction access permission
generates a Permission fault.
Any speculative data accesses that would generate a
Permission fault if the accesses were not speculative will not
cause an allocation into a cache.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnALS, bit [56]

When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an LD64B or ST64B instruction at EL0 to EL1.

EnALS Meaning

0b0 Execution of an LD64B or ST64B instruction at EL0 is
trapped to EL1.

0b1 This control does not cause any instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

378

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EnAS0, bit [55]

When FEAT_LS64_ACCDATA is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV0 instruction at EL0 to EL1.

EnAS0 Meaning

0b0 Execution of an ST64BV0 instruction at EL0 is trapped to
EL1.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnASR, bit [54]

When FEAT_LS64_V is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV instruction at EL0 to EL1.

EnASR Meaning

0b0 Execution of an ST64BV instruction at EL0 is trapped to
EL1.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TME, bit [53]

When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL1.

TME Meaning

0b0 Any attempt to execute a TSTART instruction at EL1 is
trapped to EL1, unless HCR_EL2.TME or SCR_EL3.TME
causes TSTART instructions to be UNDEFINED at EL1.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

379

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TME Meaning

0b1 This control does not cause any TSTART instruction to be
trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TME0, bit [52]

When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL0.

TME0 Meaning

0b0 Any attempt to execute a TSTART instruction at EL0 is
trapped to EL1, unless HCR_EL2.TME or SCR_EL3.TME
causes TSTART instructions to be UNDEFINED at EL0.

0b1 This control does not cause any TSTART instruction to be
trapped.

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TMT, bit [51]

When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL1.

TMT Meaning

0b0 This control does not cause any TSTART instruction to fail.

0b1 When the TSTART instruction is executed at EL1, the
transaction fails with a TRIVIAL failure cause.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

380

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES0

TMT0, bit [50]

When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL0.

TMT0 Meaning

0b0 This control does not cause any TSTART instruction to fail.

0b1 When the TSTART instruction is executed at EL0, the
transaction fails with a TRIVIAL failure cause.

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TWEDEL, bits [49:46]

When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL1.TWEDEn is 1, encodes the minimum delay in
taking a trap of WFE* caused by SCTLR_EL1.nTWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TWEDEn, bit [45]

When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by SCTLR_EL1.nTWE.

TWEDEn Meaning

0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.

0b1 The delay for taking the trap is at least the number of cycles
defined in SCTLR_EL1.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

381

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES0

DSSBS, bit [44]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning

0b0 PSTATE.SSBS is set to 0 on an exception to EL1.

0b1 PSTATE.SSBS is set to 1 on an exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

RES0

ATA, bit [43]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL1. When SCR_EL3.ATA=1 and HCR_EL2.ATA=1, controls EL1 access to Allocation
Tags.

ATA Meaning

0b0 Access to Allocation Tags is prevented.

0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ATA0, bit [42]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL0. When SCR_EL3.ATA=1, HCR_EL2.ATA=1, and HCR_EL2.{E2H, TGE} != {1,
1}, controls EL0 access to Allocation Tags.

ATA0 Meaning

0b0 Access to Allocation Tags is prevented.

0b1 This control does not prevent access to Allocation Tags.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

382

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL1. Controls the effect of Tag Check Faults due to Loads and Stores in EL1.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

TCF Meaning Applies

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.

0b11 Tag Check Faults cause a synchronous exception on reads,
and are asynchronously accumulated on writes.

When FEAT_MTE3 is
implemented

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TCF0, bits [39:38]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL0. When HCR_EL2.{E2H,TGE} != {1,1}, controls the effect of Tag Check Faults due to
Loads and Stores in EL0.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

Software may change this control bit on a context switch.

TCF0 Meaning Applies

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.

0b11 Tag Check Faults cause a synchronous exception on reads,
and are asynchronously accumulated on writes.

When FEAT_MTE3 is
implemented

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

383

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Otherwise:

RES0

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on
exception entry into EL1, all Tag Check Faults due to instructions executed before exception entry, that are reported
asynchronously, are synchronized into TFSRE0_EL1 and TFSR_EL1 registers.

ITFSB Meaning

0b0 Tag Check Faults are not synchronized on entry to EL1.

0b1 Tag Check Faults are synchronized on entry to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

BT1, bit [36]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL1.

BT1 Meaning

0b0 When the PE is executing at EL1, PACIASP and PACIBSP
are compatible with PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL1, PACIASP and PACIBSP
are not compatible with PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

BT0, bit [35]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL0.

BT0 Meaning

0b0 When the PE is executing at EL0, PACIASP and PACIBSP
are compatible with PSTATE.BTYPE == 0b11.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

384

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

BT0 Meaning

0b1 When the PE is executing at EL0, PACIASP and PACIBSP
are not compatible with PSTATE.BTYPE == 0b11.

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, the value of SCTLR_EL1.BT0 has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [34]

Reserved, RES0.

MSCEn, bit [33]

When FEAT_MOPS is implemented and (HCR_EL2.E2H == 0 or HCR_EL2.TGE == 0):

Memory Copy and Memory Set instructions Enable. Enables execution of the Memory Copy and Memory Set
instructions at EL0.

MSCEn Meaning

0b0 Execution of the Memory Copy and Memory Set
instructions is UNDEFINED at EL0.

0b1 This control does not cause any instructions to be
UNDEFINED.

When FEAT_MOPS is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

CMOW, bit [32]

When FEAT_CMOW is implemented:

Controls cache maintenance instruction permission for the following instructions executed at EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.

CMOW Meaning

0b0 These instructions executed at EL0 with stage 1 read
permission, but without stage 1 write permission, do not
generate a stage 1 permission fault.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

385

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

CMOW Meaning

0b1 If enabled as a result of SCTLR_EL1.UCI==1, these
instructions executed at EL0 with stage 1 read permission,
but without stage 1 write permission, generate a stage 1
permission fault.

When AArch64.HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

For this control, stage 1 has write permission if all of the following apply:

• AP[2] is 0 or DBM is 1 in the stage 1 descriptor.
• Where APTable is in use, APTable[1] is 0 for all levels of the translation table.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnIA, bit [31]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see System register control of pointer authentication .

EnIA Meaning

0b0 Pointer authentication (using the APIAKey_EL1 key) of
instruction addresses is not enabled.

0b1 Pointer authentication (using the APIAKey_EL1 key) of
instruction addresses is enabled.

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically, when the field
is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnIB, bit [30]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

386

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

For more information, see System register control of pointer authentication .

EnIB Meaning

0b0 Pointer authentication (using the APIBKey_EL1 key) of
instruction addresses is not enabled.

0b1 Pointer authentication (using the APIBKey_EL1 key) of
instruction addresses is enabled.

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically, when the field
is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

LSMAOE, bit [29]

When FEAT_LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning

0b0 For all memory accesses at EL0, A32 and T32 Load
Multiple and Store Multiple can have an interrupt taken
during the sequence memory accesses, and the memory
accesses are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL0 is as defined for
Armv8.0.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

nTLSMD, bit [28]

When FEAT_LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

387

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

nTLSMD Meaning

0b0 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
not trapped.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

EnDA, bit [27]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see System register control of pointer authentication .

EnDA Meaning

0b0 Pointer authentication (using the APDAKey_EL1 key) of
data addresses is not enabled.

0b1 Pointer authentication (using the APDAKey_EL1 key) of
data addresses is enabled.

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically, when the field
is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions, to EL1, or to EL2 when it is implemented and enabled
for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC
value of 0x18.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

388

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

This applies to DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC CGDVAC,
DC CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

UCI Meaning

0b0 Execution of the specified instructions at EL0 using
AArch64 is trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution
of any data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency
can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution
of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of
this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the
value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation regime.

EE Meaning

0b0 Explicit data accesses at EL1, and stage 1 translation table
walks in the EL1&0 translation regime are little-endian.

0b1 Explicit data accesses at EL1, and stage 1 translation table
walks in the EL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

389

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E0E, bit [24]

Endianness of data accesses at EL0.

E0E Meaning

0b0 Explicit data accesses at EL0 are little-endian.

0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0, then this bit is RES0. This option is not permitted
when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0, then this bit is RES1. This option is not permitted
when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPAN, bit [23]

When FEAT_PAN is implemented:

Set Privileged Access Never, on taking an exception to EL1.

SPAN Meaning

0b0 PSTATE.PAN is set to 1 on taking an exception to EL1.

0b1 The value of PSTATE.PAN is left unchanged on taking an
exception to EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

EIS, bit [22]

When FEAT_ExS is implemented:

Exception Entry is Context Synchronizing.

EIS Meaning

0b0 The taking of an exception to EL1 is not a context
synchronizing event.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

390

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EIS Meaning

0b1 The taking of an exception to EL1 is a context
synchronizing event.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

If SCTLR_EL1.EIS is set to 0b0:

• Indirect writes to ESR_EL1, FAR_EL1, SPSR_EL1, ELR_EL1 are synchronized on exception entry to EL1,
so that a direct read of the register after exception entry sees the indirectly written value caused by the
exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EIS:

• Changes to the PSTATE information on entry to EL1.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and

data processing instructions.
• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

IESB, bit [21]

When FEAT_IESB is implemented:

Implicit Error Synchronization event enable. Possible values are:

IESB Meaning

0b0 Disabled.

0b1 An implicit error synchronization event is added:
• At each exception taken to EL1.
• Before the operational pseudocode of each ERET

instruction executed at EL1.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value
might be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error
synchronization event is added after each DCPSX instruction taken to EL1 and before each DRPS instruction executed
at EL1, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

391

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES0

TSCXT, bit [20]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

TSCXT Meaning

0b0 EL0 access to SCXTNUM_EL0 is not disabled by this
mechanism.

0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an
exception to EL1, or to EL2 when it is implemented and
enabled for the current Security state and HCR_EL2.TGE is
1.
The value of SCXTNUM_EL0 is treated as 0.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force all memory
regions that are writable to be treated as XN.

WXN Meaning

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the EL1&0 translation regime
is forced to XN for accesses from software executing at EL1
or EL0.

This bit applies only when SCTLR_EL1.M bit is set.

The WXN bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an ESR_ELx.EC value of 0x01.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

392

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

nTWE Meaning

0b0 Any attempt to execute a WFE instruction at EL0 is trapped,
if the instruction would otherwise have caused the PE to
enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not
guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is
that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

nTWI Meaning

0b0 Any attempt to execute a WFI instruction at EL0 is trapped,
if the instruction would otherwise have caused the PE to
enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not
guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is
that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

393

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL1, or to EL2 when it is implemented and enabled for the current Security
state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

UCT Meaning

0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are
trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

DZE Meaning

0b0 Any attempt to execute an instruction that this trap applies to
at EL0 using AArch64 is trapped.
Reading DCZID_EL0.DZP from EL0 returns 1, indicating
that the instructions this trap applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EnDB, bit [13]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see System register control of pointer authentication .

EnDB Meaning

0b0 Pointer authentication (using the APDBKey_EL1 key) of
data addresses is not enabled.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

394

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EnDB Meaning

0b1 Pointer authentication (using the APDBKey_EL1 key) of
data addresses is enabled.

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically, when the field
is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

I, bit [12]

Stage 1 instruction access Cacheability control, for accesses at EL0 and EL1:

I Meaning

0b0 All instruction access to Stage 1 Normal memory from EL0
and EL1 are Stage 1 Non-cacheable.
If the value of SCTLR_EL1.M is 0, instruction accesses
from stage 1 of the EL1&0 translation regime are to Normal,
Outer Shareable, Inner Non-cacheable, Outer
Non-cacheable memory.

0b1 This control has no effect on the Stage 1 Cacheability of
instruction access to Stage 1 Normal memory from EL0 and
EL1.
If the value of SCTLR_EL1.M is 0, instruction accesses
from stage 1 of the EL1&0 translation regime are to Normal,
Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from EL0 and EL1 are
Cacheable regardless of the value of the SCTLR_EL1.I bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

EOS, bit [11]

When FEAT_ExS is implemented:

Exception Exit is Context Synchronizing.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

395

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EOS Meaning

0b0 An exception return from EL1 is not a context synchronizing
event

0b1 An exception return from EL1 is a context synchronizing
event

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

If SCTLR_EL1.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL1 and ELR_EL1 on exception return is
synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and
data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

EnRCTX, bit [10]

When FEAT_SPECRES is implemented:

Enable EL0 Access to the following instructions:

• AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.

• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

EnRCTX Meaning

0b0 EL0 access to these instructions is disabled, and these
instructions are trapped to EL1, or to EL2 when it is
implemented and enabled for the current Security state and
HCR_EL2.TGE is 1.

0b1 EL0 access to these instructions is enabled.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

396

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Otherwise:

RES0

UMA, bit [9]

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D, A, I, F}
masks to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is
1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

UMA Meaning

0b0 Any attempt at EL0 using AArch64 to execute an MRS,
MSR(REGISTER), or MSR(IMMEDIATE) instruction that accesses
the DAIF is trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SED, bit [8]

When EL0 is capable of using AArch32:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning

0b0 SETEND instruction execution is enabled at EL0 using
AArch32.

0b1 SETEND instructions are UNDEFINED at EL0 using
AArch32 and any attempt at EL0 to access a SETEND
instruction generates an exception to EL1, or to EL2 when it
is implemented and enabled for the current Security state
and HCR_EL2.TGE is 1, reported using an ESR_ELx.EC
value of 0x00.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

397

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ITD, bit [7]

When EL0 is capable of using AArch32:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

ITD Meaning

0b0 All IT instruction functionality is enabled at EL0 using
AArch32.

0b1 Any attempt at EL0 using AArch32 to execute any of the
following is UNDEFINED and generates an exception,
reported using an ESR_ELx.EC value of 0x00, to EL1 or to
EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1:

• All encodings of the IT instruction with
hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the
following values for hw1:

– 0b11xxxxxxxxxxxxxx: All 32-bit instructions,
and the 16-bit instructions B, UDF, SVC, LDM,
and STM.

– 0b1011xxxxxxxxxxxx: All instructions in
‘Miscellaneous 16-bit instructions’ in the Arm®
Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section F3.2.5.

– 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm
– 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
– 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP

Rn, PC; MOV Rd, PC; BX PC; BLX PC.
– 0b010001xx1xxxx111: ADD PC, Rm; CMP PC,

Rm; MOV PC, Rm. This pattern also covers
unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of
whether they would pass or fail the condition code check
that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction
is treated as:

• A 16-bit instruction, that can only be followed by
another 16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED,
either the second 16-bit instruction or the 32-bit instruction
is UNDEFINED.
An implementation might vary dynamically as to whether IT
is treated as a 16-bit instruction or the first half of a 32-bit
instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information, see Changes to an ITD control by an instruction in an IT
block .

ITD is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented in the SCTLR_EL2,
HSCTLR, and SCTLR.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

398

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

Otherwise:

RES1

nAA, bit [6]

When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL1 and EL0 under certain conditions.

nAA Meaning

0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH,
LDAPURSW, LDAR, LDARH, LDLAR, LDLARH,
STLLR, STLLRH, STLR, STLRH, STLUR, and STLURH
generate an Alignment fault if all bytes being accessed are
not within a single 16-byte quantity, aligned to 16 bytes for
accesses.

0b1 This control bit does not cause LDAPR, LDAPRH,
LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR,
LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR,
STLRH, STLUR, or STLURH to generate an Alignment
fault if all bytes being accessed are not within a single
16-byte quantity, aligned to 16 bytes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

CP15BEN, bit [5]

When EL0 is capable of using AArch32:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in
the (coproc==0b1111) encoding space from EL0:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

399

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

CP15BEN Meaning

0b0 EL0 using AArch32: EL0 execution of the CP15DMB,
CP15DSB, and CP15ISB instructions is UNDEFINED and
generates an exception to EL1, or to EL2 when it is
implemented and enabled for the current Security state and
HCR_EL2.TGE is 1. The exception is reported using an
ESR_ELx.EC value of 0x00.

0b1 EL0 using AArch32: EL0 execution of the CP15DMB,
CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented in the
SCTLR_EL2, HSCTLR, and SCTLR.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

Otherwise:

RES0

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as
the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated.
For more information, see ‘SP alignment checking’.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For
more information, see ‘SP alignment checking’.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Stage 1 Cacheability control, for data accesses.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

400

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

C Meaning

0b0 All data access to Stage 1 Normal memory from EL0 and
EL1, and all Normal memory accesses from unified cache to
the EL1&0 Stage 1 translation tables, are treated as Stage 1
Non-cacheable.

0b1 This control has no effect on the Stage 1 Cacheability of:
• Data access to Normal memory from EL0 and EL1.
• Normal memory accesses to the EL1&0 Stage 1

translation tables.

When the value of the HCR_EL2.DC bit is 1, the PE ignores SCTLR.C. This means that Non-secure EL0 and
Non-secure EL1 data accesses to Normal memory are Cacheable.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0.

A Meaning

0b0 Alignment fault checking disabled when executing at EL1 or
EL0.
Instructions that load or store one or more registers, other
than load/store exclusive and load-acquire/store-release, do
not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL1 or
EL0.
All instructions that load or store one or more registers have
an alignment check that the address being accessed is
aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken
as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

If FEAT_MOPS is implemented, SETG* instructions have an alignment check regardless of the value of the A bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

401

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

M, bit [0]

MMU enable for EL1&0 stage 1 address translation.

M Meaning

0b0 EL1&0 stage 1 address translation disabled.
See the SCTLR_EL1.I field for the behavior of instruction
accesses to Normal memory.

0b1 EL1&0 stage 1 address translation enabled.

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then in Non-secure state the PE behaves as if the value of the
SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct read of the field.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Accessing the SCTLR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SCTLR_EL1
or SCTLR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, SCTLR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TRVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCTLR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 X[t, 64] = NVMem[0x110];

10 else
11 X[t, 64] = SCTLR_EL1;
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 X[t, 64] = SCTLR_EL2;
15 else
16 X[t, 64] = SCTLR_EL1;
17 elsif PSTATE.EL == EL3 then
18 X[t, 64] = SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

402

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 NVMem[0x110] = X[t, 64];

10 else
11 SCTLR_EL1 = X[t, 64];
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 SCTLR_EL2 = X[t, 64];
15 else
16 SCTLR_EL1 = X[t, 64];
17 elsif PSTATE.EL == EL3 then
18 SCTLR_EL1 = X[t, 64];

MRS <Xt>, SCTLR_EL12

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 X[t, 64] = NVMem[0x110];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 X[t, 64] = SCTLR_EL1;
13 else
14 UNDEFINED;
15 elsif PSTATE.EL == EL3 then
16 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
17 X[t, 64] = SCTLR_EL1;
18 else
19 UNDEFINED;

MSR SCTLR_EL12, <Xt>

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 NVMem[0x110] = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

403

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 SCTLR_EL1 = X[t, 64];
13 else
14 UNDEFINED;
15 elsif PSTATE.EL == EL3 then
16 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
17 SCTLR_EL1 = X[t, 64];
18 else
19 UNDEFINED;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

404

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.17 SCTLR_EL2, System Control Register (EL2)

The SCTLR_EL2 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, these controls
apply also to execution at EL0.

Attributes

SCTLR_EL2 is a 64-bit register.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

AArch64 system register SCTLR_EL2 bits [31:0] are architecturally mapped to AArch32 system
register HSCTLR[31:0].

Field descriptions

The SCTLR_EL2 bit assignments are:

63 62 61 60

RES0

59 58 57 56 55 54 53 52 51 50

TWEDEL

49 46 45 44 43 42

TCF

41 40

TCF0

39 38 37

BT

36 35 34 33 32

TIDCP
SPINTMASK

NMI
EnTP2

EPAN
EnALS

EnAS0
EnASR

TME
TME0

CMOW
MSCEn

RES0
BT0

ITFSB
ATA0

ATA
DSSBS

TWEDEn
TMT0

TMT
31 30 29 28 27 26

EE

25 24 23 22 21 20 19 18 17 16 15 14 13

I

12 11 10 9 8 7 6 5 4

SA

3

C

2

A

1

M

0

EnIA
EnIB
LSMAOE

nTLSMD
EnDA

UCI
E0E
SPAN

EIS
IESB
TSCXT

WXN
nTWE

SA0
CP15BEN

nAA
ITD

SED
RES0

EnRCTX
EOS

EnDB
DZE

UCT
nTWI

RES0

TIDCP, bit [63]

When FEAT_TIDCP1 is implemented and HCR_EL2.E2H == 1:

Trap IMPLEMENTATION DEFINED functionality. Traps EL0 accesses to the encodings reserved for IMPLEMENTA-
TION DEFINED functionality to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

405

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TIDCP Meaning

0b0 No instructions accessing the System register or System
instruction spaces are trapped by this mechanism.

0b1 If HCR_EL2.TGE==0, no instructions accessing the System
register or System instruction spaces are trapped by this
mechanism.
If HCR_EL2.TGE==1, instructions accessing the following
System register or System instruction spaces are trapped to
EL2 by this mechanism:

• In AArch64 state, EL0 access to the encodings in the
following reserved encoding spaces are trapped and
reported using EC syndrome 0x18:

– IMPLEMENTATION DEFINED System
instructions, which are accessed using SYS and
SYSL, with CRn == {11, 15}.

– IMPLEMENTATION DEFINED System registers,
which are accessed using MRS and MSR with
the S3_<op1>_<Cn>_<Cm>_<op2> register
name.

• In AArch32 state, EL0 MCR and MRC access to the
following encodings are trapped and reported using
EC syndrome 0x03:

– All coproc==p15, CRn==c9, opc1 == {0-7},
CRm == {c0-c2, c5-c8}, opc2 == {0-7}.

– All coproc==p15, CRn==c10, opc1 =={0-7},
CRm == {c0, c1, c4, c8}, opc2 == {0-7}.

– All coproc==p15, CRn==c11, opc1=={0-7},
CRm == {c0-c8, c15}, opc2 == {0-7}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

SPINTMASK, bit [62]

When FEAT_NMI is implemented:

SP Interrupt Mask enable. When SCTLR_EL2.NMI is 1, controls whether PSTATE.SP acts as an interrupt mask,
and controls the value of PSTATE.ALLINT on taking an exception to EL2.

SPINTMASK Meaning

0b0 Does not cause PSTATE.SP to mask interrupts.
PSTATE.ALLINT is set to 1 on taking an exception to EL2.

0b1 When PSTATE.SP is 1 and execution is at EL2, an IRQ or
FIQ interrupt that is targeted to EL2 is masked regardless of
any denotion of Superpriority.
PSTATE.ALLINT is set to 0 on taking an exception to EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

406

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

NMI, bit [61]

When FEAT_NMI is implemented:

Non-maskable Interrupt enable.

NMI Meaning

0b0 This control does not affect interrupt masking behavior.

0b1 This control enables all of the following:
• The use of the PSTATE.ALLINT interrupt mask.
• IRQ and FIQ interrupts to have Superpriority as an

additional attribute.
• PSTATE.SP to be used as an interrupt mask.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

EnTP2, bit [60]

When FEAT_SME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

EnTP2, bit [0] of bit [60]

Traps instructions executed at EL0 that access TPIDR2_EL0 to EL2 when EL2 is implemented and enabled for
the current Security state. The exception is reported using ESR_ELx.EC value 0x18.

EnTP2 Meaning

0b0 This control causes execution of these instructions at EL0 to
be trapped.

0b1 This control does not cause execution of any instructions to
be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_SME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

407

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Otherwise:

RES0

Bits [59:58]

Reserved, RES0.

EPAN, bit [57]

When FEAT_PAN3 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

EPAN, bit [0] of bit [57]

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL2 data access to a page
with EL0 instruction access permission generates a Permission fault as a result of the Privileged Access Never
mechanism.

EPAN Meaning

0b0 No additional Permission faults are generated by this
mechanism.

0b1 An EL2 data access to a page with stage 1 EL0 data access
permission or stage 1 EL0 instruction access permission
generates a Permission fault.
Any speculative data accesses that would generate a
Permission fault if the accesses were not speculative will not
cause an allocation into a cache.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_PAN3 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

EnALS, bit [56]

When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

EnALS, bit [0] of bit [56]

Traps execution of an LD64B or ST64B instruction at EL0 to EL2.

EnALS Meaning

0b0 Execution of an LD64B or ST64B instruction at EL0 is
trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

408

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

EnAS0, bit [55]

When FEAT_LS64_ACCDATA is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

EnAS0, bit [0] of bit [55]

Traps execution of an ST64BV0 instruction at EL0 to EL2.

EnAS0 Meaning

0b0 Execution of an ST64BV0 instruction at EL0 is trapped to
EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64_ACCDATA is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

EnASR, bit [54]

When FEAT_LS64_V is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

EnASR, bit [0] of bit [54]

Traps execution of an ST64BV instruction at EL0 to EL2.

EnASR Meaning

0b0 Execution of an ST64BV instruction at EL0 is trapped to
EL2.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

409

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EnASR Meaning

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64_V is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

TME, bit [53]

When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL2.

TME Meaning

0b0 Any attempt to execute a TSTART instruction at EL2 is
trapped, unless HCR_EL2.TME or SCR_EL3.TME causes
TSTART instructions to be UNDEFINED at EL2.

0b1 This control does not cause any TSTART instruction to be
trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TME0, bit [52]

When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

TME0, bit [0] of bit [52]

Enables the Transactional Memory Extension at EL0.

TME0 Meaning

0b0 Any attempt to execute a TSTART instruction at EL0 is
trapped to EL2, unless HCR_EL2.TME or SCR_EL3.TME
causes TSTART instructions to be UNDEFINED at EL0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

410

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TME0 Meaning

0b1 This control does not cause any TSTART instruction to be
trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

TMT, bit [51]

When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL2.

TMT Meaning

0b0 This control does not cause any TSTART instruction to fail.

0b1 When the TSTART instruction is executed at EL2, the
transaction fails with a TRIVIAL failure cause.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TMT0, bit [50]

When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

TMT0, bit [0] of bit [50]

Forces a trivial implementation of the Transactional Memory Extension at EL0.

TMT0 Meaning

0b0 This control does not cause any TSTART instruction to fail.

0b1 When the TSTART instruction is executed at EL0, the
transaction fails with a TRIVIAL failure cause.

The reset behavior of this field is:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

411

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

TWEDEL, bits [49:46]

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

TWEDEL, bits [3:0] of bits [49:46]

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL2.TWEDEn is 1, encodes the minimum delay in
taking a trap of WFE caused by SCTLR_EL2.nTWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bits [3:0]

Reserved, RAZ/WI.

Otherwise:

RES0

TWEDEn, bit [45]

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

TWEDEn, bit [0] of bit [45]

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by SCTLR_EL2.nTWE.

TWEDEn Meaning

0b0 The delay for taking a WFE trap is IMPLEMENTATION
DEFINED.

0b1 The delay for taking a WFE trap is at least the number of
cycles defined in SCTLR_EL2.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

412

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES0

DSSBS, bit [44]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning

0b0 PSTATE.SSBS is set to 0 on an exception to EL2.

0b1 PSTATE.SSBS is set to 1 on an exception to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

RES0

ATA, bit [43]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL2. When SCR_EL3.ATA is 1, controls EL2 access to Allocation Tags.

ATA Meaning

0b0 Access to Allocation Tags is prevented.

0b1 This control does not prevent access to Allocation Tags.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ATA0, bit [42]

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

ATA0, bit [0] of bit [42]

Allocation Tag Access in EL0. When SCR_EL3.ATA is 1, controls EL0 access to Allocation Tags.

ATA0 Meaning

0b0 Access to Allocation Tags is prevented.

0b1 This control does not prevent access to Allocation Tags.

Software may change this control bit on a context switch.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

413

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL2. Controls the effect of Tag Check Faults due to Loads and Stores in EL2.

TCF Meaning Applies

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.

0b11 Tag Check Faults cause a synchronous exception on reads,
and are asynchronously accumulated on writes.

When FEAT_MTE3 is
implemented

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TCF0, bits [39:38]

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

TCF0, bits [1:0] of bits [39:38]

Tag Check Fault in EL0. Controls the effect of Tag Check Faults due to Loads and Stores in EL0.

TCF0 Meaning Applies

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous exception.

0b10 Tag Check Faults are asynchronously accumulated.

0b11 Tag Check Faults cause a synchronous exception on reads,
and are asynchronously accumulated on writes.

When FEAT_MTE3 is
implemented

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

414

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bits [1:0]

Reserved, RAZ/WI.

Otherwise:

RES0

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on
exception entry into EL2, all Tag Check Faults due to instructions executed before exception entry, that are reported
asynchronously, are synchronized into TFSRE0_EL1, TFSR_EL1 and TFSR_EL2 registers.

ITFSB Meaning

0b0 Tag Check Faults are not synchronized on entry to EL2.

0b1 Tag Check Faults are synchronized on entry to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

BT, bit [36]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL2.

When HCR_EL2.{E2H, TGE} == {1, 1}, this bit is named BT1.

BT Meaning

0b0 When the PE is executing at EL2, PACIASP and PACIBSP
are compatible with PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL2, PACIASP and PACIBSP
are not compatible with PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

415

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

BT0, bit [35]

When FEAT_BTI is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

BT0, bit [0] of bit [35]

PAC Branch Type compatibility at EL0.

BT0 Meaning

0b0 When the PE is executing at EL0, PACIASP and PACIBSP
are compatible with PSTATE.BTYPE == 0b11.

0b1 When the PE is executing at EL0, PACIASP and PACIBSP
are not compatible with PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_BTI is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

Bit [34]

Reserved, RES0.

MSCEn, bit [33]

When FEAT_MOPS is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

MSCEn, bit [0] of bit [33]

Memory Copy and Memory Set instructions Enable. Enables execution of the Memory Copy and Memory Set
instructions at EL0.

MSCEn Meaning

0b0 Execution of the Memory Copy and Memory Set
instructions is UNDEFINED at EL0.

0b1 This control does not cause any instructions to be
UNDEFINED.

When FEAT_MOPS is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the Effective value of this bit is
0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_MOPS is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

416

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

CMOW, bit [32]

When FEAT_CMOW is implemented and HCR_EL2.E2H == 1:

Controls cache maintenance instruction permission for the following instructions executed at EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.

CMOW Meaning

0b0 These instructions executed at EL0 with stage 1 read
permission, but without stage 1 write permission, do not
generate a stage 1 permission fault.

0b1 If enabled as a result of SCTLR_EL2.UCI==1, these
instructions executed at EL0 with stage 1 read permission,
but without stage 1 write permission, generate a stage 1
permission fault.

When HCR_EL2.TGE is 0, this bit has no effect on execution at EL0.

For this control, stage 1 has write permission if all of the following apply:

• AP[2] is 0 or DBM is 1 in the stage 1 descriptor.
• Where APTable is in use, APTable[1] is 0 for all levels of the translation table.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnIA, bit [31]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see System register control of pointer authentication .

EnIA Meaning

0b0 Pointer authentication (using the APIAKey_EL1 key) of
instruction addresses is not enabled.

0b1 Pointer authentication (using the APIAKey_EL1 key) of
instruction addresses is enabled.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

417

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically, when the field
is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnIB, bit [30]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see System register control of pointer authentication .

EnIB Meaning

0b0 Pointer authentication (using the APIBKey_EL1 key) of
instruction addresses is not enabled.

0b1 Pointer authentication (using the APIBKey_EL1 key) of
instruction addresses is enabled.

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically, when the field
is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

LSMAOE, bit [29]

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

LSMAOE, bit [0] of bit [29]

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning

0b0 For all memory accesses at EL0, A32 and T32 Load
Multiple and Store Multiple can have an interrupt taken
during the sequence memory accesses, and the memory
accesses are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL0 is as defined for
Armv8.0.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

418

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES1

nTLSMD, bit [28]

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

nTLSMD, bit [0] of bit [28]

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning

0b0 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
not trapped.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES1

EnDA, bit [27]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see System register control of pointer authentication .

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

419

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EnDA Meaning

0b0 Pointer authentication (using the APDAKey_EL1 key) of
data addresses is not enabled.

0b1 Pointer authentication (using the APDAKey_EL1 key) of
data addresses is enabled.

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically, when the field
is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

UCI, bit [26]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

UCI, bit [0] of bit [26]

Traps execution of cache maintenance instructions at EL0 to EL2, from AArch64 state only. This applies to
DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC CGDVAC,
DC CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

UCI Meaning

0b0 Any attempt to execute an instruction that this trap applies to
at EL0 using AArch64 is trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution
of any data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency
can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution
of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of
this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the
value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

420

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and
stage 2 translation table walks in the EL1&0 translation regime.

EE Meaning

0b0 Explicit data accesses at EL2, stage 1 translation table walks
in the EL2 or EL2&0 translation regime, and stage 2
translation table walks in the EL1&0 translation regime are
little-endian.

0b1 Explicit data accesses at EL2, stage 1 translation table walks
in the EL2 or EL2&0 translation regime, and stage 2
translation table walks in the EL1&0 translation regime are
big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

E0E, bit [0] of bit [24]

Endianness of data accesses at EL0.

E0E Meaning

0b0 Explicit data accesses at EL0 are little-endian.

0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0, then this bit is RES0. This option is not permitted
when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0, then this bit is RES1. This option is not permitted
when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

The reset behavior of this field is:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

421

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

SPAN, bit [23]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

SPAN, bit [0] of bit [23]

Set Privileged Access Never, on taking an exception to EL2.

SPAN Meaning

0b0 PSTATE.PAN is set to 1 on taking an exception to EL2.

0b1 The value of PSTATE.PAN is left unchanged on taking an
exception to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES1

EIS, bit [22]

When FEAT_ExS is implemented:

Exception entry is a context synchronization event.

EIS Meaning

0b0 The taking of an exception to EL2 is not a context
synchronization event.

0b1 The taking of an exception to EL2 is a context
synchronization event.

If SCTLR_EL2.EIS is set to 0b0:

• Indirect writes to ESR_EL2, FAR_EL2, SPSR_EL2, ELR_EL2, and HPFAR_EL2 are synchronized on
exception entry to EL2, so that a direct read of the register after exception entry sees the indirectly written

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

422

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

value caused by the exception entry.
• Memory transactions, including instruction fetches, from an Exception level always use the translation

resources associated with that translation regime.
• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EIS:

• Changes to the PSTATE information on entry to EL2.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and

data processing instructions.
• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

IESB, bit [21]

When FEAT_IESB is implemented:

Implicit Error Synchronization event enable.

IESB Meaning

0b0 Disabled.

0b1 An implicit error synchronization event is added:
• At each exception taken to EL2.
• Before the operational pseudocode of each ERET

instruction executed at EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value
might be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error
synchronization event is added after each DCPSX instruction taken to EL2 and before each DRPS instruction executed
at EL2, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TSCXT, bit [20]

When (FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented), HCR_EL2.E2H == 1 and
HCR_EL2.TGE == 1

TSCXT, bit [0] of bit [20]

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

423

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TSCXT Meaning

0b0 EL0 access to SCXTNUM_EL0 is not disabled by this
mechanism.

0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an
exception to EL2, and the SCXTNUM_EL0 value is treated
as 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_CSV2_2 is not implemented, FEAT_CSV2_1p2 is not implemented, HCR_EL2.E2H == 1 and
HCR_EL2.TGE == 1

Bit [0]

Reserved, RES1.

When (FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented), HCR_EL2.E2H == 1 and
HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all
memory regions that are writable to be treated as XN.

WXN Meaning

0b0 This control has no effect on memory access permissions.

0b1 Any region that is writable in the EL2 or EL2&0 translation
regime is forced to XN for accesses from software executing
at EL2.

This bit applies only when SCTLR_EL2.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

nTWE, bit [18]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

nTWE, bit [0] of bit [18]

Traps execution of WFE instructions at EL0 to EL2, from both Execution states.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

424

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

nTWE Meaning

0b0 Any attempt to execute a WFE instruction at EL0 is trapped
to EL2, if the instruction would otherwise have caused the
PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not
guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is
that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES1

Bit [17]

Reserved, RES0.

nTWI, bit [16]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

nTWI, bit [0] of bit [16]

Traps execution of WFI instructions at EL0 to EL2, from both Execution states.

nTWI Meaning

0b0 Any attempt to execute a WFI instruction at EL0 is trapped
EL2, if the instruction would otherwise have caused the PE
to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not
guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is
that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

425

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES1

UCT, bit [15]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

UCT, bit [0] of bit [15]

Traps EL0 accesses to the CTR_EL0 to EL2, from AArch64 state only.

UCT Meaning

0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are
trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

DZE, bit [14]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

DZE, bit [0] of bit [14]

Traps execution of DC ZVA instructions at EL0 to EL2, from AArch64 state only.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

DZE Meaning

0b0 Any attempt to execute an instruction that this trap applies to
at EL0 using AArch64 is trapped to EL2. Reading
DCZID_EL0.DZP from EL0 returns 1, indicating that the
instructions that this trap applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

The reset behavior of this field is:

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

426

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

EnDB, bit [13]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see System register control of pointer authentication .

EnDB Meaning

0b0 Pointer authentication (using the APDBKey_EL1 key) of
data addresses is not enabled.

0b1 Pointer authentication (using the APDBKey_EL1 key) of
data addresses is enabled.

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically, when the field
is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and, when EL2 is enabled in the current Security state
and HCR_EL2.{E2H,TGE} == {1,1}, EL0.

I Meaning

0b0 All instruction accesses to Normal memory from EL2 are
Non-cacheable for all levels of instruction and unified cache.
When EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, all instruction accesses
to Normal memory from EL0 are Non-cacheable for all
levels of instruction and unified cache.
If SCTLR_EL2.M is 0, instruction accesses from stage 1 of
the EL2 or EL2&0 translation regime are to Normal, Outer
Shareable, Inner Non-cacheable, Outer Non-cacheable
memory.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

427

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

I Meaning

0b1 This control has no effect on the Cacheability of instruction
access to Normal memory from EL2 and, when EL2 is
enabled in the current Security state and HCR_EL2.{E2H,
TGE} == {1, 1}, instruction access to Normal memory from
EL0.
If the value of SCTLR_EL2.M is 0, instruction accesses
from stage 1 of the EL2 or EL2&0 translation regime are to
Normal, Outer Shareable, Inner Write-Through, Outer
Write-Through memory.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or HCR_EL2.{E2H,TGE} != {1,1}, this bit has no effect on the
EL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

EOS, bit [11]

When FEAT_ExS is implemented:

Exception exit is a context synchronization event.

EOS Meaning

0b0 An exception return from EL2 is not a context
synchronization event.

0b1 An exception return from EL2 is a context synchronization
event.

If SCTLR_EL2.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL2 and ELR_EL2 on exception return is
synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and
data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

428

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EnRCTX, bit [10]

When FEAT_SPECRES is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

EnRCTX, bit [0] of bit [10]

Enable EL0 Access to the following instructions:

• AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.

• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

EnRCTX Meaning

0b0 EL0 access to these instructions is disabled, and these
instructions are trapped to EL1.

0b1 EL0 access to these instructions is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_SPECRES is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

Bit [9]

Reserved, RES0.

SED, bit [8]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

SED, bit [0] of bit [8]

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning

0b0 SETEND instruction execution is enabled at EL0 using
AArch32.

0b1 SETEND instructions are UNDEFINED at EL0 using
AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

429

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Bit [0]

Reserved, RES1.

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

ITD, bit [7]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

ITD, bit [0] of bit [7]

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

ITD Meaning

0b0 All IT instruction functionality is enabled at EL0 using
AArch32.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

430

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ITD Meaning

0b1 Any attempt at EL0 using AArch32 to execute any of the
following is UNDEFINED:

• All encodings of the IT instruction with
hw1[3:0]!=1000.

• All encodings of the subsequent instruction with the
following values for hw1:

– 0b11xxxxxxxxxxxxxx: All 32-bit instructions,
and the 16-bit instructions B, UDF, SVC, LDM,
and STM.

– 0b1011xxxxxxxxxxxx: All instructions in
‘Miscellaneous 16-bit instructions’ in the Arm®
Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section F3.2.5.

– 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm
– 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
– 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP

Rn, PC; MOV Rd, PC; BX PC; BLX PC.
– 0b010001xx1xxxx111: ADD PC, Rm; CMP PC,

Rm; MOV PC, Rm. This pattern also covers
UNPREDICTABLE cases with BLX Rn.

These instructions are always UNDEFINED, regardless of
whether they would pass or fail the condition code check
that applies to them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction
is treated as:

• A 16-bit instruction, that can only be followed by
another 16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED,
either the second 16-bit instruction or the 32-bit instruction
is UNDEFINED.
An implementation might vary dynamically as to whether IT
is treated as a 16-bit instruction or the first half of a 32-bit
instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information see Changes to an ITD control by an instruction in an IT
block .

ITD is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented in the SCTLR_EL1,
HSCTLR, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

Bit [0]

Reserved, RES1.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

431

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES0

nAA, bit [6]

When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults under certain conditions at EL2, and, when
EL2 is enabled in the current Security state and HCR_EL2.{E2H, TGE} == {1, 1}, EL0.

nAA Meaning

0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH,
LDAPURSW, LDAR, LDARH, LDLAR, LDLARH,
STLLR, STLLRH, STLR, STLRH, STLUR, and STLURH
generate an Alignment fault if all bytes being accessed are
not within a single 16-byte quantity, aligned to 16 bytes for
accesses.

0b1 This control bit does not cause LDAPR, LDAPRH,
LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR,
LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR,
STLRH, STLUR, or STLURH to generate an Alignment
fault if all bytes being accessed are not within a single
16-byte quantity, aligned to 16 bytes.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

CP15BEN, bit [5]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

CP15BEN, bit [0] of bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in
the (coproc==0b1111) encoding space from EL0:

CP15BEN Meaning

0b0 EL0 using AArch32: EL0 execution of the CP15DMB,
CP15DSB, and CP15ISB instructions is UNDEFINED.

0b1 EL0 using AArch32: EL0 execution of the CP15DMB,
CP15DSB, and CP15ISB instructions is enabled.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

432

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

CP15BEN is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented in the
SCTLR_EL1, HSCTLR, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

Bit [0]

Reserved, RES0.

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

Bit [0]

Reserved, RAZ/WI.

Otherwise:

RES1

SA0, bit [4]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as
the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated.
For more information, see ‘SP alignment checking’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For
more information, see ‘SP alignment checking’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Data access Cacheability control, for accesses at EL2 and, when EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, EL0

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

433

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

C Meaning

0b0 The following are Non-cacheable for all levels of data and
unified cache:

• Data accesses to Normal memory from EL2.
• When HCR_EL2.{E2H, TGE} != {1, 1}, Normal

memory accesses to the EL2 translation tables.
• When EL2 is enabled in the current Security state and

HCR_EL2.{E2H, TGE} == {1, 1}:
– Data accesses to Normal memory from EL0.
– Normal memory accesses to the EL2&0

translation tables.

0b1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL2.
• When HCR_EL2.{E2H, TGE} != {1, 1}, Normal

memory accesses to the EL2 translation tables.
• When EL2 is enabled in the current Security state and

HCR_EL2.{E2H, TGE} == {1, 1}:
– Data accesses to Normal memory from EL0.
– Normal memory accesses to the EL2&0

translation tables.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or HCR_EL2.{E2H, TGE} != {1, 1}, this bit has no effect on
the EL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and, when EL2 is enabled in
the current Security state and HCR_EL2.{E2H, TGE} == {1, 1}, EL0.

A Meaning

0b0 Alignment fault checking disabled when executing at EL2.
When EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, alignment fault
checking disabled when executing at EL0.
Instructions that load or store one or more registers, other
than load/store exclusive and load-acquire/store-release, do
not check that the address being accessed is aligned to the
size of the data element(s) being accessed.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

434

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

A Meaning

0b1 Alignment fault checking enabled when executing at EL2.
When EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, alignment fault
checking enabled when executing at EL0.
All instructions that load or store one or more registers have
an alignment check that the address being accessed is
aligned to the size of the data element(s) being accessed. If
this check fails it causes an Alignment fault, which is taken
as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

If FEAT_MOPS is implemented, SETG* instructions have an alignment check regardless of the value of the A bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL2 or EL2&0 stage 1 address translation.

M Meaning

0b0 When HCR_EL2.{E2H, TGE} != {1, 1}, EL2 stage 1
address translation disabled.
When HCR_EL2.{E2H, TGE} == {1, 1}, EL2&0 stage 1
address translation disabled.
See the SCTLR_EL2.I field for the behavior of instruction
accesses to Normal memory.

0b1 When HCR_EL2.{E2H, TGE} != {1, 1}, EL2 stage 1
address translation enabled.
When HCR_EL2.{E2H, TGE} == {1, 1}, EL2&0 stage 1
address translation enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Accessing the SCTLR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCTLR_EL2
or SCTLR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the instruction encoding space:

MRS <Xt>, SCTLR_EL2

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

435

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 else
7 UNDEFINED;
8 elsif PSTATE.EL == EL2 then
9 X[t, 64] = SCTLR_EL2;

10 elsif PSTATE.EL == EL3 then
11 X[t, 64] = SCTLR_EL2;

MSR SCTLR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 else
7 UNDEFINED;
8 elsif PSTATE.EL == EL2 then
9 SCTLR_EL2 = X[t, 64];

10 elsif PSTATE.EL == EL3 then
11 SCTLR_EL2 = X[t, 64];

MRS <Xt>, SCTLR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TRVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCTLR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 X[t, 64] = NVMem[0x110];

10 else
11 X[t, 64] = SCTLR_EL1;
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 X[t, 64] = SCTLR_EL2;
15 else
16 X[t, 64] = SCTLR_EL1;
17 elsif PSTATE.EL == EL3 then
18 X[t, 64] = SCTLR_EL1;

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

436

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

MSR SCTLR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 NVMem[0x110] = X[t, 64];

10 else
11 SCTLR_EL1 = X[t, 64];
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 SCTLR_EL2 = X[t, 64];
15 else
16 SCTLR_EL1 = X[t, 64];
17 elsif PSTATE.EL == EL3 then
18 SCTLR_EL1 = X[t, 64];

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

437

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.18 EDDEVID1, External Debug Device ID register 1

The EDDEVID1 characteristics are:

Purpose

Provides extra information for external debuggers about features of the debug implementation.

Attributes

EDDEVID1 is a 32-bit register.

Configuration

If FEAT_DoPD is implemented, this register is in the Core power domain.

If FEAT_DoPD is not implemented, this register is in the Debug power domain.

Field descriptions

The EDDEVID1 bit assignments are:

RES0

31 8

HSR

7 4 3 0

PCSROffset

Bits [31:8]

Reserved, RES0.

HSR, bits [7:4]

Indicates support for the External Debug Halt Status Register (EDHSR). Defined values are:

HSR Meaning

0b0000 EDHSR is not implemented. The PE follows behaviors
consistent with the EDHSR fields having a zero value.

0b0001 EDHSR is implemented.

All other values are reserved.

If FEAT_SME is implemented, the permitted values are 0b0000 and 0b0001.

If FEAT_SME is not implemented, the only permitted value is 0b0000.

PCSROffset, bits [3:0]

Indicates the offset applied to PC samples returned by reads of EDPCSR. Permitted values of this field in Armv8
are:

PCSROffset Meaning

0b0000 EDPCSR not implemented.

0b0010 EDPCSR implemented, and samples have no offset applied
and do not sample the instruction set state in AArch32 state.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

438

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When FEAT_PCSRv8p2 is implemented, the only permitted value is 0b0000.

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance Monitors register
space, as indicated by the value of PMDEVID.PCSample.

Accessing the EDDEVID1

Accesses to this register use the following encodings in the instruction encoding space:

EDDEVID1 can be accessed through the external debug interface:

Component Offset Instance

Debug 0xFC4 EDDEVID1

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() access to this register is RO.
• Otherwise access to this register returns an ERROR.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

439

Chapter E4
Glossary terms

Effective Non-streaming SVE vector length

The Non-streaming SVE vector length in bits at the current Exception level, is an implementation-supported
multiple of 128 bits up to the Maximum implemented Non-streaming SVE vector length, further constrained by
ZCR_ELx at the current and higher Exception levels.

Effective Streaming SVE vector length

The Streaming SVE vector length in bits at the current Exception level is an implementation-supported power of
two from 128 up to the Maximum implemented Streaming SVE vector length, further constrained by SMCR_ELx
at the current and higher Exception levels.

Effective SVE vector length

The vector length in bits that applies to the execution of SVE instructions at the current Exception level is the
Effective Streaming SVE vector length when the PE is in Streaming SVE mode, otherwise it is the Effective
Non-streaming SVE vector length.

Maximum implemented Non-streaming SVE vector length

The maximum Non-streaming SVE vector length in bits supported by the implementation.

Maximum implemented Streaming SVE vector length

The maximum Streaming SVE vector length in bits supported by the implementation.

Scalable Matrix Extension

Defines architectural state capable of holding two-dimensional matrix tiles, and a Streaming SVE mode which
supports execution of SVE2 instructions with a vector length that matches the tile width, along with instructions
that accumulate the outer product of two vectors into a tile, as well as load, store, and move instructions that

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

440

Chapter E4. Glossary terms

transfer a vector to or from from a tile row or column. The extension also defines System registers and fields that
identify the presence and capabilities of SME, and enable and control its behavior at each Exception level.

SMCU

Streaming Mode Compute Unit.

SME

Scalable Matrix Extension.

Streaming execution

Execution of instructions by a PE when that PE is in Streaming SVE mode.

Streaming Mode Compute Unit

Where more than one PE shares resources for Streaming execution of SVE and SME instructions, those shared
resources are called a Streaming Mode Compute Unit (SMCU).

Streaming SVE mode

An execution mode that supports a substantial subset of the SVE2 instruction set and architectural state with a
vector length that matches the width of SME tiles, which may be different from the vector length when the PE is
not in Streaming SVE.

Streaming SVE register state

The registers Z0-Z31, P0-P15, and FFR that are accessed by SVE and SME instructions when the PE is in
Streaming SVE mode.

SVL

Effective Streaming SVE vector length.

VL

Effective SVE vector length.

DDI0616
A.a

Copyright © 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

441

	Arm® Architecture Reference Manual Supplement, The Scalable Matrix Extension (SME), for Armv9-A
	Release information
	Non-Confidential Proprietary Notice
	Product Status

	Contents
	Preface
	About this supplement
	Conventions
	Typographical conventions
	Numbers
	Pseudocode descriptions
	Asterisks in instruction mnemonics
	Assembler syntax descriptions

	Rules-based writing
	Identifiers
	Examples

	Additional reading
	Feedback
	Feedback on this book

	Progressive terminology commitment

	A Introduction
	A1 SME Introduction
	A1.1 About the Scalable Matrix Extension (SME)

	A2 Architecture Features and Extensions
	A2.1 Extensions and features defined by SME
	A2.2 Changes to existing features and extension requirements

	B SME application level programmers' model
	B1 Application processing modes
	B1.1 Overview
	B1.1.1 Process state
	B1.1.1.1 PSTATE.SM
	B1.1.1.2 PSTATE.ZA
	B1.1.1.3 Changing PSTATE.SM and PSTATE.ZA

	B2 Architectural state
	B2.1 Architectural state summary
	B2.2 SME ZA storage
	B2.2.1 ZA array vector access
	B2.2.2 ZA tile access
	B2.2.3 Accessing an 8-bit element ZA tile
	B2.2.4 Accessing a 16-bit element ZA tile
	B2.2.5 Accessing a 32-bit element ZA tile
	B2.2.6 Accessing a 64-bit element ZA tile
	B2.2.7 Accessing a 128-bit element ZA tile

	B2.3 ZA storage layout
	B2.3.1 ZA array vector and tile slice mappings
	B2.3.2 Tile mappings
	B2.3.3 Horizontal tile slice mappings
	B2.3.4 Vertical tile slice mappings
	B2.3.5 Mixed horizontal and vertical tile slice mappings

	B3 Floating-point behaviors
	B3.1 Overview
	B3.1.1 Extended BFloat16
	B3.1.2 BFloat16 behaviors
	B3.1.2.1 Common BFloat16 behaviors
	B3.1.2.2 Standard BFloat16 behaviors
	B3.1.2.3 Extended BFloat16 behaviors

	B3.1.3 Floating-point behaviors in Streaming SVE mode
	B3.1.4 ZA-targeting floating-point behaviors

	C SME system level programmers' model
	C1 Introduction
	C2 System management
	C2.1 Overview
	C2.1.1 Identification
	C2.1.2 Traps and exceptions
	C2.1.3 Vector lengths
	C2.1.4 Streaming execution priority

	C2.2 Processor behavior
	C2.2.1 Exception priorities
	C2.2.2 Synchronous Data Abort
	C2.2.3 Validity of SME and SVE state
	C2.2.4 Streaming execution priority for shared implementations
	C2.2.4.1 Streaming execution context management
	C2.2.4.2 Streaming execution priority control
	C2.2.4.3 Streaming execution priority virtualization

	C2.2.5 Security considerations

	C2.3 Changes to existing System registers
	C2.3.1 ID_AA64PFR1_EL1
	C2.3.2 ID_AA64ZFR0_EL1
	C2.3.3 CPACR_EL1
	C2.3.4 CPTR_EL2
	C2.3.5 CPTR_EL3
	C2.3.6 HCR_EL2
	C2.3.7 HCRX_EL2
	C2.3.8 SCR_EL3
	C2.3.9 SCTLR_EL1
	C2.3.10 SCTLR_EL2
	C2.3.11 HFGRTR_EL2
	C2.3.12 HFGWTR_EL2
	C2.3.13 ESR_EL1, ESR_EL2, and ESR_EL3
	C2.3.14 ZCR_EL1, ZCR_EL2, and ZCR_EL3

	C2.4 SME-specific System registers
	C2.4.1 ID_AA64SMFR0_EL1
	C2.4.2 SMCR_EL1
	C2.4.3 SMCR_EL2
	C2.4.4 SMCR_EL3
	C2.4.5 SVCR
	C2.4.6 SMPRI_EL1
	C2.4.7 SMPRIMAP_EL2
	C2.4.8 SMIDR_EL1
	C2.4.9 TPIDR2_EL0

	C3 Interaction with other Armv9-A architectural features
	C3.1 Overview
	C3.2 Other architectural features
	C3.2.1 Watchpoints
	C3.2.1.1 Reporting watchpoints

	C3.2.2 Self-hosted debug
	C3.2.3 External debug
	C3.2.4 Memory Tagging Extension (MTE)
	C3.2.5 Reliability, Availability, and Serviceability (RAS)
	C3.2.6 Memory Partitioning and Monitoring (MPAM)
	C3.2.6.1 MPAMSM_EL1
	C3.2.6.2 MPAM2_EL2

	C3.2.7 Transactional Memory Extension (TME)
	C3.2.8 Memory consistency model

	D SME instruction set
	D1 SME instructions
	D1.1 SME data-processing instructions
	D1.1.1 ADDHA
	D1.1.2 ADDSPL
	D1.1.3 ADDSVL
	D1.1.4 ADDVA
	D1.1.5 BFMOPA
	D1.1.6 BFMOPS
	D1.1.7 FMOPA (non-widening)
	D1.1.8 FMOPA (widening)
	D1.1.9 FMOPS (non-widening)
	D1.1.10 FMOPS (widening)
	D1.1.11 LD1B
	D1.1.12 LD1D
	D1.1.13 LD1H
	D1.1.14 LD1Q
	D1.1.15 LD1W
	D1.1.16 LDR
	D1.1.17 MOV (tile to vector)
	D1.1.18 MOV (vector to tile)
	D1.1.19 MOVA (tile to vector)
	D1.1.20 MOVA (vector to tile)
	D1.1.21 RDSVL
	D1.1.22 SMOPA
	D1.1.23 SMOPS
	D1.1.24 ST1B
	D1.1.25 ST1D
	D1.1.26 ST1H
	D1.1.27 ST1Q
	D1.1.28 ST1W
	D1.1.29 STR
	D1.1.30 SUMOPA
	D1.1.31 SUMOPS
	D1.1.32 UMOPA
	D1.1.33 UMOPS
	D1.1.34 USMOPA
	D1.1.35 USMOPS
	D1.1.36 ZERO

	D1.2 Base A64 instructions
	D1.2.1 MSR (immediate)
	D1.2.2 SMSTART
	D1.2.3 SMSTOP

	D1.3 SVE2 instructions
	D1.3.1 PSEL
	D1.3.2 REVD
	D1.3.3 SCLAMP
	D1.3.4 UCLAMP

	E Appendices
	E1 Instructions affected by SME
	E1.1 Illegal instructions in Streaming SVE mode
	E1.1.1 Illegal Advanced SIMD instructions
	E1.1.1.1 Vector instructions
	E1.1.1.2 Single-element instructions
	E1.1.1.3 Element move to general register

	E1.1.2 Illegal SVE instructions

	E1.2 Unimplemented SVE instructions
	E1.3 Reduced performance in Streaming SVE mode
	E1.3.1 Scalar floating-point instructions
	E1.3.2 SVE instructions

	E2 SME Shared pseudocode
	E2.1 AArch64.CheckFPAdvSIMDEnabled
	E2.2 BFDotAdd
	E2.3 CheckFPAdvSIMDEnabled64
	E2.4 CheckNonStreamingSVEEnabled
	E2.5 CheckSMEAccess
	E2.6 CheckSMEAndZAEnabled
	E2.7 CheckSMEEnabled
	E2.8 CheckStreamingSVEAndZAEnabled
	E2.9 CheckStreamingSVEEnabled
	E2.10 FPDot
	E2.11 FPDotAdd_ZA
	E2.12 FPMulAdd_ZA
	E2.13 FPProcessDenorms4
	E2.14 FPProcessNaNs4
	E2.15 HaveEBF16
	E2.16 HaveSME
	E2.17 HaveSMEF64F64
	E2.18 HaveSMEI16I64
	E2.19 ImplementedSMEVectorLength
	E2.20 InStreamingMode
	E2.21 IsFullA64Enabled
	E2.22 IsMerging
	E2.23 IsNormalSVEEnabled
	E2.24 IsStreamingSVEEnabled
	E2.25 IsSVEEnabled
	E2.26 MaybeZeroSVEUppers
	E2.27 NVL
	E2.28 ResetSMEState
	E2.29 ResetSVEState
	E2.30 SetPSTATE_SM
	E2.31 SetPSTATE_SVCR
	E2.32 SetPSTATE_ZA
	E2.33 SMEAccessTrap
	E2.34 SVL
	E2.35 VL
	E2.36 ZAhslice
	E2.37 ZAslice
	E2.38 ZAtile
	E2.39 ZAvector
	E2.40 ZAvslice

	E3 System registers affected by SME
	E3.1 SME-Specific System registers
	E3.1.1 ID_AA64SMFR0_EL1, SME Feature ID register 0
	Field descriptions
	FA64, bit [63]
	Bits [62:60]
	SMEver, bits [59:56]
	I16I64, bits [55:52]
	Bits [51:49]
	F64F64, bit [48]
	Bits [47:40]
	I8I32, bits [39:36]
	F16F32, bit [35]
	B16F32, bit [34]
	Bit [33]
	F32F32, bit [32]
	Bits [31:0]

	Accessing the ID_AA64SMFR0_EL1
	MRS <Xt>, ID_AA64SMFR0_EL1

	E3.1.2 MPAMSM_EL1, MPAM Streaming Mode Register
	Field descriptions
	Bits [63:48]
	PMG_D, bits [47:40]
	Bits [39:32]
	PARTID_D, bits [31:16]
	Bits [15:0]

	Accessing the MPAMSM_EL1
	MRS <Xt>, MPAMSM_EL1
	MSR MPAMSM_EL1, <Xt>

	E3.1.3 SMCR_EL1, SME Control Register (EL1)
	Field descriptions
	Bits [63:32]
	FA64, bit [31]
	Bits [30:9]
	Bits [8:4]
	LEN, bits [3:0]

	Accessing the SMCR_EL1
	MRS <Xt>, SMCR_EL1
	MSR SMCR_EL1, <Xt>
	MRS <Xt>, SMCR_EL12
	MSR SMCR_EL12, <Xt>

	E3.1.4 SMCR_EL2, SME Control Register (EL2)
	Field descriptions
	Bits [63:32]
	FA64, bit [31]
	Bits [30:9]
	Bits [8:4]
	LEN, bits [3:0]

	Accessing the SMCR_EL2
	MRS <Xt>, SMCR_EL2
	MSR SMCR_EL2, <Xt>
	MRS <Xt>, SMCR_EL1
	MSR SMCR_EL1, <Xt>

	E3.1.5 SMCR_EL3, SME Control Register (EL3)
	Field descriptions
	Bits [63:32]
	FA64, bit [31]
	Bits [30:9]
	Bits [8:4]
	LEN, bits [3:0]

	Accessing the SMCR_EL3
	MRS <Xt>, SMCR_EL3
	MSR SMCR_EL3, <Xt>

	E3.1.6 SMIDR_EL1, Streaming Mode Identification Register
	Field descriptions
	Bits [63:32]
	Implementer, bits [31:24]
	Revision, bits [23:16]
	SMPS, bit [15]
	Bits [14:12]
	Affinity, bits [11:0]

	Accessing the SMIDR_EL1
	MRS <Xt>, SMIDR_EL1

	E3.1.7 SMPRI_EL1, Streaming Mode Priority Register
	Field descriptions
	Bits [63:4]
	Priority, bits [3:0]

	Accessing the SMPRI_EL1
	MRS <Xt>, SMPRI_EL1
	MSR SMPRI_EL1, <Xt>

	E3.1.8 SMPRIMAP_EL2, Streaming Mode Priority Mapping Register
	Field descriptions
	P15, bits [63:60]
	P14, bits [59:56]
	P13, bits [55:52]
	P12, bits [51:48]
	P11, bits [47:44]
	P10, bits [43:40]
	P9, bits [39:36]
	P8, bits [35:32]
	P7, bits [31:28]
	P6, bits [27:24]
	P5, bits [23:20]
	P4, bits [19:16]
	P3, bits [15:12]
	P2, bits [11:8]
	P1, bits [7:4]
	P0, bits [3:0]

	Accessing the SMPRIMAP_EL2
	MRS <Xt>, SMPRIMAP_EL2
	MSR SMPRIMAP_EL2, <Xt>

	E3.1.9 SVCR, Streaming Vector Control Register
	Field descriptions
	Bits [63:2]
	ZA, bit [1]
	SM, bit [0]

	Accessing the SVCR
	MRS <Xt>, SVCR
	MSR SVCR, <Xt>
	MSR SVCRSM, #<imm>
	MSR SVCRZA, #<imm>
	MSR SVCRSMZA, #<imm>

	E3.1.10 TPIDR2_EL0, EL0 Read/Write Software Thread ID Register 2
	Field descriptions
	Bits [63:0]

	Accessing the TPIDR2_EL0
	MRS <Xt>, TPIDR2_EL0
	MSR TPIDR2_EL0, <Xt>

	E3.1.11 EDHSR, External Debug Halt Status Register
	Field descriptions
	Bits [63:24]
	WPT, bits [23:18]
	WPTV, bit [17]
	WPF, bit [16]
	FnP, bit [15]
	Bits [14:11]
	FnV, bit [10]
	Bits [9:0]

	Accessing the EDHSR

	E3.2 Changes to existing System registers
	E3.2.1 CPACR_EL1, Architectural Feature Access Control Register
	Field descriptions
	Bits [63:29]
	TTA, bit [28]
	Bits [27:26]
	SMEN, bits [25:24]
	Bits [23:22]
	FPEN, bits [21:20]
	Bits [19:18]
	ZEN, bits [17:16]
	Bits [15:0]

	Accessing the CPACR_EL1
	MRS <Xt>, CPACR_EL1
	MSR CPACR_EL1, <Xt>
	MRS <Xt>, CPACR_EL12
	MSR CPACR_EL12, <Xt>

	E3.2.2 CPTR_EL2, Architectural Feature Trap Register (EL2)
	Field descriptions
	When FEAT_VHE is implemented and HCR_EL2.E2H == 1:
	Bits [63:32]
	TCPAC, bit [31]
	TAM, bit [30]
	Bit [29]
	TTA, bit [28]
	Bits [27:26]
	SMEN, bits [25:24]
	Bits [23:22]
	FPEN, bits [21:20]
	Bits [19:18]
	ZEN, bits [17:16]
	Bits [15:0]

	Otherwise:
	Bits [63:32]
	TCPAC, bit [31]
	TAM, bit [30]
	Bits [29:21]
	TTA, bit [20]
	Bits [19:14]
	Bit [13]
	TSM, bit [12]
	Bit [11]
	TFP, bit [10]
	Bit [9]
	TZ, bit [8]
	Bits [7:0]

	Accessing the CPTR_EL2
	MRS <Xt>, CPTR_EL2
	MSR CPTR_EL2, <Xt>
	MRS <Xt>, CPACR_EL1
	MSR CPACR_EL1, <Xt>

	E3.2.3 CPTR_EL3, Architectural Feature Trap Register (EL3)
	Field descriptions
	Bits [63:32]
	TCPAC, bit [31]
	TAM, bit [30]
	Bits [29:21]
	TTA, bit [20]
	Bits [19:13]
	ESM, bit [12]
	Bit [11]
	TFP, bit [10]
	Bit [9]
	EZ, bit [8]
	Bits [7:0]

	Accessing the CPTR_EL3
	MRS <Xt>, CPTR_EL3
	MSR CPTR_EL3, <Xt>

	E3.2.4 FAR_EL1, Fault Address Register (EL1)
	Field descriptions
	Bits [63:0]

	Accessing the FAR_EL1
	MRS <Xt>, FAR_EL1
	MSR FAR_EL1, <Xt>
	MRS <Xt>, FAR_EL12
	MSR FAR_EL12, <Xt>
	MRS <Xt>, FAR_EL2
	MSR FAR_EL2, <Xt>

	E3.2.5 FAR_EL2, Fault Address Register (EL2)
	Field descriptions
	Bits [63:0]

	Accessing the FAR_EL2
	MRS <Xt>, FAR_EL2
	MSR FAR_EL2, <Xt>
	MRS <Xt>, FAR_EL1
	MSR FAR_EL1, <Xt>

	E3.2.6 FAR_EL3, Fault Address Register (EL3)
	Field descriptions
	Bits [63:0]

	Accessing the FAR_EL3
	MRS <Xt>, FAR_EL3
	MSR FAR_EL3, <Xt>

	E3.2.7 FPCR, Floating-point Control Register
	Field descriptions
	Bits [63:27]
	AHP, bit [26]
	DN, bit [25]
	FZ, bit [24]
	RMode, bits [23:22]
	Stride, bits [21:20]
	FZ16, bit [19]
	Len, bits [18:16]
	IDE, bit [15]
	Bit [14]
	EBF, bit [13]
	IXE, bit [12]
	UFE, bit [11]
	OFE, bit [10]
	DZE, bit [9]
	IOE, bit [8]
	Bits [7:3]
	NEP, bit [2]
	AH, bit [1]
	FIZ, bit [0]

	Accessing the FPCR
	MRS <Xt>, FPCR
	MSR FPCR, <Xt>

	E3.2.8 HCRX_EL2, Extended Hypervisor Configuration Register
	Field descriptions
	Bits [63:12]
	MSCEn, bit [11]
	MCE2, bit [10]
	CMOW, bit [9]
	VFNMI, bit [8]
	VINMI, bit [7]
	TALLINT, bit [6]
	SMPME, bit [5]
	FGTnXS, bit [4]
	FnXS, bit [3]
	EnASR, bit [2]
	EnALS, bit [1]
	EnAS0, bit [0]

	Accessing the HCRX_EL2
	MRS <Xt>, HCRX_EL2
	MSR HCRX_EL2, <Xt>

	E3.2.9 HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register
	Field descriptions
	Bits [63:56]
	nTPIDR2_EL0, bit [55]
	nSMPRI_EL1, bit [54]
	Bits [53:51]
	nACCDATA_EL1, bit [50]
	ERXADDR_EL1, bit [49]
	ERXPFGCDN_EL1, bit [48]
	ERXPFGCTL_EL1, bit [47]
	ERXPFGF_EL1, bit [46]
	ERXMISCn_EL1, bit [45]
	ERXSTATUS_EL1, bit [44]
	ERXCTLR_EL1, bit [43]
	ERXFR_EL1, bit [42]
	ERRSELR_EL1, bit [41]
	ERRIDR_EL1, bit [40]
	ICC_IGRPENn_EL1, bit [39]
	VBAR_EL1, bit [38]
	TTBR1_EL1, bit [37]
	TTBR0_EL1, bit [36]
	TPIDR_EL0, bit [35]
	TPIDRRO_EL0, bit [34]
	TPIDR_EL1, bit [33]
	TCR_EL1, bit [32]
	SCXTNUM_EL0, bit [31]
	SCXTNUM_EL1, bit [30]
	SCTLR_EL1, bit [29]
	REVIDR_EL1, bit [28]
	PAR_EL1, bit [27]
	MPIDR_EL1, bit [26]
	MIDR_EL1, bit [25]
	MAIR_EL1, bit [24]
	LORSA_EL1, bit [23]
	LORN_EL1, bit [22]
	LORID_EL1, bit [21]
	LOREA_EL1, bit [20]
	LORC_EL1, bit [19]
	ISR_EL1, bit [18]
	FAR_EL1, bit [17]
	ESR_EL1, bit [16]
	DCZID_EL0, bit [15]
	CTR_EL0, bit [14]
	CSSELR_EL1, bit [13]
	CPACR_EL1, bit [12]
	CONTEXTIDR_EL1, bit [11]
	CLIDR_EL1, bit [10]
	CCSIDR_EL1, bit [9]
	APIBKey, bit [8]
	APIAKey, bit [7]
	APGAKey, bit [6]
	APDBKey, bit [5]
	APDAKey, bit [4]
	AMAIR_EL1, bit [3]
	AIDR_EL1, bit [2]
	AFSR1_EL1, bit [1]
	AFSR0_EL1, bit [0]

	Accessing the HFGRTR_EL2
	MRS <Xt>, HFGRTR_EL2
	MSR HFGRTR_EL2, <Xt>

	E3.2.10 HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register
	Field descriptions
	Bits [63:56]
	nTPIDR2_EL0, bit [55]
	nSMPRI_EL1, bit [54]
	Bits [53:51]
	nACCDATA_EL1, bit [50]
	ERXADDR_EL1, bit [49]
	ERXPFGCDN_EL1, bit [48]
	ERXPFGCTL_EL1, bit [47]
	Bit [46]
	ERXMISCn_EL1, bit [45]
	ERXSTATUS_EL1, bit [44]
	ERXCTLR_EL1, bit [43]
	Bit [42]
	ERRSELR_EL1, bit [41]
	Bit [40]
	ICC_IGRPENn_EL1, bit [39]
	VBAR_EL1, bit [38]
	TTBR1_EL1, bit [37]
	TTBR0_EL1, bit [36]
	TPIDR_EL0, bit [35]
	TPIDRRO_EL0, bit [34]
	TPIDR_EL1, bit [33]
	TCR_EL1, bit [32]
	SCXTNUM_EL0, bit [31]
	SCXTNUM_EL1, bit [30]
	SCTLR_EL1, bit [29]
	Bit [28]
	PAR_EL1, bit [27]
	Bits [26:25]
	MAIR_EL1, bit [24]
	LORSA_EL1, bit [23]
	LORN_EL1, bit [22]
	Bit [21]
	LOREA_EL1, bit [20]
	LORC_EL1, bit [19]
	Bit [18]
	FAR_EL1, bit [17]
	ESR_EL1, bit [16]
	Bits [15:14]
	CSSELR_EL1, bit [13]
	CPACR_EL1, bit [12]
	CONTEXTIDR_EL1, bit [11]
	Bits [10:9]
	APIBKey, bit [8]
	APIAKey, bit [7]
	APGAKey, bit [6]
	APDBKey, bit [5]
	APDAKey, bit [4]
	AMAIR_EL1, bit [3]
	Bit [2]
	AFSR1_EL1, bit [1]
	AFSR0_EL1, bit [0]

	Accessing the HFGWTR_EL2
	MRS <Xt>, HFGWTR_EL2
	MSR HFGWTR_EL2, <Xt>

	E3.2.11 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1
	Field descriptions
	LS64, bits [63:60]
	XS, bits [59:56]
	I8MM, bits [55:52]
	DGH, bits [51:48]
	BF16, bits [47:44]
	SPECRES, bits [43:40]
	SB, bits [39:36]
	FRINTTS, bits [35:32]
	GPI, bits [31:28]
	GPA, bits [27:24]
	LRCPC, bits [23:20]
	FCMA, bits [19:16]
	JSCVT, bits [15:12]
	API, bits [11:8]
	APA, bits [7:4]
	DPB, bits [3:0]

	Accessing the ID_AA64ISAR1_EL1
	MRS <Xt>, ID_AA64ISAR1_EL1

	E3.2.12 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1
	Field descriptions
	Bits [63:40]
	NMI, bits [39:36]
	CSV2_frac, bits [35:32]
	RNDR_trap, bits [31:28]
	SME, bits [27:24]
	Bits [23:20]
	MPAM_frac, bits [19:16]
	RAS_frac, bits [15:12]
	MTE, bits [11:8]
	SSBS, bits [7:4]
	BT, bits [3:0]

	Accessing the ID_AA64PFR1_EL1
	MRS <Xt>, ID_AA64PFR1_EL1

	E3.2.13 ID_AA64ZFR0_EL1, SVE Feature ID register 0
	Field descriptions
	Bits [63:60]
	F64MM, bits [59:56]
	F32MM, bits [55:52]
	Bits [51:48]
	I8MM, bits [47:44]
	SM4, bits [43:40]
	Bits [39:36]
	SHA3, bits [35:32]
	Bits [31:24]
	BF16, bits [23:20]
	BitPerm, bits [19:16]
	Bits [15:8]
	AES, bits [7:4]
	SVEver, bits [3:0]

	Accessing the ID_AA64ZFR0_EL1
	MRS <Xt>, ID_AA64ZFR0_EL1

	E3.2.14 MPAM2_EL2, MPAM2 Register (EL2)
	Field descriptions
	MPAMEN, bit [63]
	Bits [62:59]
	TIDR, bit [58]
	Bit [57]
	ALTSP_HFC, bit [56]
	ALTSP_EL2, bit [55]
	ALTSP_FRCD, bit [54]
	Bits [53:51]
	EnMPAMSM, bit [50]
	TRAPMPAM0EL1, bit [49]
	TRAPMPAM1EL1, bit [48]
	PMG_D, bits [47:40]
	PMG_I, bits [39:32]
	PARTID_D, bits [31:16]
	PARTID_I, bits [15:0]

	Accessing the MPAM2_EL2
	MRS <Xt>, MPAM2_EL2
	MSR MPAM2_EL2, <Xt>
	MRS <Xt>, MPAM1_EL1
	MSR MPAM1_EL1, <Xt>

	E3.2.15 SCR_EL3, Secure Configuration Register
	Field descriptions
	Bit [63]
	NSE, bit [62]
	Bits [61:49]
	GPF, bit [48]
	Bits [47:42]
	EnTP2, bit [41]
	TRNDR, bit [40]
	Bit [39]
	HXEn, bit [38]
	ADEn, bit [37]
	EnAS0, bit [36]
	AMVOFFEN, bit [35]
	TME, bit [34]
	TWEDEL, bits [33:30]
	TWEDEn, bit [29]
	ECVEn, bit [28]
	FGTEn, bit [27]
	ATA, bit [26]
	EnSCXT, bit [25]
	Bits [24:22]
	FIEN, bit [21]
	NMEA, bit [20]
	EASE, bit [19]
	EEL2, bit [18]
	API, bit [17]
	API, bit [0] of bit [17]
	API, bit [0] of bit [17]

	APK, bit [16]
	TERR, bit [15]
	TLOR, bit [14]
	TWE, bit [13]
	TWI, bit [12]
	ST, bit [11]
	RW, bit [10]
	SIF, bit [9]
	HCE, bit [8]
	SMD, bit [7]
	Bit [6]
	Bits [5:4]
	EA, bit [3]
	FIQ, bit [2]
	IRQ, bit [1]
	NS, bit [0]
	NS, bit [0] of bit [0]
	NS, bit [0] of bit [0]

	Accessing the SCR_EL3
	MRS <Xt>, SCR_EL3
	MSR SCR_EL3, <Xt>

	E3.2.16 SCTLR_EL1, System Control Register (EL1)
	Field descriptions
	TIDCP, bit [63]
	SPINTMASK, bit [62]
	NMI, bit [61]
	EnTP2, bit [60]
	Bits [59:58]
	EPAN, bit [57]
	EnALS, bit [56]
	EnAS0, bit [55]
	EnASR, bit [54]
	TME, bit [53]
	TME0, bit [52]
	TMT, bit [51]
	TMT0, bit [50]
	TWEDEL, bits [49:46]
	TWEDEn, bit [45]
	DSSBS, bit [44]
	ATA, bit [43]
	ATA0, bit [42]
	TCF, bits [41:40]
	TCF0, bits [39:38]
	ITFSB, bit [37]
	BT1, bit [36]
	BT0, bit [35]
	Bit [34]
	MSCEn, bit [33]
	CMOW, bit [32]
	EnIA, bit [31]
	EnIB, bit [30]
	LSMAOE, bit [29]
	nTLSMD, bit [28]
	EnDA, bit [27]
	UCI, bit [26]
	EE, bit [25]
	E0E, bit [24]
	SPAN, bit [23]
	EIS, bit [22]
	IESB, bit [21]
	TSCXT, bit [20]
	WXN, bit [19]
	nTWE, bit [18]
	Bit [17]
	nTWI, bit [16]
	UCT, bit [15]
	DZE, bit [14]
	EnDB, bit [13]
	I, bit [12]
	EOS, bit [11]
	EnRCTX, bit [10]
	UMA, bit [9]
	SED, bit [8]
	ITD, bit [7]
	nAA, bit [6]
	CP15BEN, bit [5]
	SA0, bit [4]
	SA, bit [3]
	C, bit [2]
	A, bit [1]
	M, bit [0]

	Accessing the SCTLR_EL1
	MRS <Xt>, SCTLR_EL1
	MSR SCTLR_EL1, <Xt>
	MRS <Xt>, SCTLR_EL12
	MSR SCTLR_EL12, <Xt>

	E3.2.17 SCTLR_EL2, System Control Register (EL2)
	Field descriptions
	TIDCP, bit [63]
	SPINTMASK, bit [62]
	NMI, bit [61]
	EnTP2, bit [60]
	EnTP2, bit [0] of bit [60]
	Bit [0]

	Bits [59:58]
	EPAN, bit [57]
	EPAN, bit [0] of bit [57]
	Bit [0]

	EnALS, bit [56]
	EnALS, bit [0] of bit [56]
	Bit [0]

	EnAS0, bit [55]
	EnAS0, bit [0] of bit [55]
	Bit [0]

	EnASR, bit [54]
	EnASR, bit [0] of bit [54]
	Bit [0]

	TME, bit [53]
	TME0, bit [52]
	TME0, bit [0] of bit [52]
	Bit [0]

	TMT, bit [51]
	TMT0, bit [50]
	TMT0, bit [0] of bit [50]
	Bit [0]

	TWEDEL, bits [49:46]
	TWEDEL, bits [3:0] of bits [49:46]
	Bits [3:0]

	TWEDEn, bit [45]
	TWEDEn, bit [0] of bit [45]
	Bit [0]

	DSSBS, bit [44]
	ATA, bit [43]
	ATA0, bit [42]
	ATA0, bit [0] of bit [42]
	Bit [0]

	TCF, bits [41:40]
	TCF0, bits [39:38]
	TCF0, bits [1:0] of bits [39:38]
	Bits [1:0]

	ITFSB, bit [37]
	BT, bit [36]
	BT0, bit [35]
	BT0, bit [0] of bit [35]
	Bit [0]

	Bit [34]
	MSCEn, bit [33]
	MSCEn, bit [0] of bit [33]
	Bit [0]

	CMOW, bit [32]
	EnIA, bit [31]
	EnIB, bit [30]
	LSMAOE, bit [29]
	LSMAOE, bit [0] of bit [29]
	Bit [0]

	nTLSMD, bit [28]
	nTLSMD, bit [0] of bit [28]
	Bit [0]

	EnDA, bit [27]
	UCI, bit [26]
	UCI, bit [0] of bit [26]
	Bit [0]

	EE, bit [25]
	E0E, bit [24]
	E0E, bit [0] of bit [24]
	Bit [0]

	SPAN, bit [23]
	SPAN, bit [0] of bit [23]
	Bit [0]

	EIS, bit [22]
	IESB, bit [21]
	TSCXT, bit [20]
	TSCXT, bit [0] of bit [20]
	Bit [0]
	Bit [0]

	WXN, bit [19]
	nTWE, bit [18]
	nTWE, bit [0] of bit [18]
	Bit [0]

	Bit [17]
	nTWI, bit [16]
	nTWI, bit [0] of bit [16]
	Bit [0]

	UCT, bit [15]
	UCT, bit [0] of bit [15]
	Bit [0]

	DZE, bit [14]
	DZE, bit [0] of bit [14]
	Bit [0]

	EnDB, bit [13]
	I, bit [12]
	EOS, bit [11]
	EnRCTX, bit [10]
	EnRCTX, bit [0] of bit [10]
	Bit [0]

	Bit [9]
	SED, bit [8]
	SED, bit [0] of bit [8]
	Bit [0]
	Bit [0]

	ITD, bit [7]
	ITD, bit [0] of bit [7]
	Bit [0]
	Bit [0]

	nAA, bit [6]
	CP15BEN, bit [5]
	CP15BEN, bit [0] of bit [5]
	Bit [0]
	Bit [0]

	SA0, bit [4]
	SA, bit [3]
	C, bit [2]
	A, bit [1]
	M, bit [0]

	Accessing the SCTLR_EL2
	MRS <Xt>, SCTLR_EL2
	MSR SCTLR_EL2, <Xt>
	MRS <Xt>, SCTLR_EL1
	MSR SCTLR_EL1, <Xt>

	E3.2.18 EDDEVID1, External Debug Device ID register 1
	Field descriptions
	Bits [31:8]
	HSR, bits [7:4]
	PCSROffset, bits [3:0]

	Accessing the EDDEVID1

	E4 Glossary terms

