

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 1 of 443

 Non-Confidential

ARM® System Memory
Management Unit Architecture

Specification, SMMU
architecture version 3.0 and

version 3.1

Copyright © 2016 ARM Limited or its affiliates. All rights reserved.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 2 of 443

 Non-Confidential

 PROPRIETARY NOTICE

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent applications.
No part of this document may be reproduced in any form by any means without the express prior written
permission of ARM. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information: (i) for the purposes of determining whether implementations infringe any third party
patents; (ii) for developing technology or products which avoid any of ARM’s intellectual property; or (iii) as a
basis for a patent application or as a reference for modifying existing patents or patent applications or creating any
continuation, continuation in part, or extension of existing patents or patent applications; or (iv) for generating data
for publication or disclosure to third parties, which compares the performance or functionality of the ARM
technology described in this document with any other products created by you or a third party, without obtaining
ARM’s prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation
with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party
patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication
or disclosure of this document complies fully with any relevant export laws and regulations to assure that this
document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the
word “partner” in reference to ARM’s customers is not intended to create or refer to any partnership relationship
with any other company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written
agreement or click through End User Agreement covering this document with ARM, then the signed written

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 3 of 443

 Non-Confidential

agreement or End User Agreement prevails over and supersedes the conflicting provisions of these terms. This
document may be translated into other languages for convenience, and you agree that if there is any conflict
between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in
the EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow ARM’s trademark usage guidelines at
http://www.arm.com/about/trademark-usage-guidelines.php.

Copyright © 2016, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as
appropriate”.

Confidentiality Status
This document is Non-Confidential. The rights to use, copy, and disclose this document may be subject to licence
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered
this document to.

Product Status
The information in this document is final, that is for a developed product.

Web Address
http://www.arm.com

http://www.arm.com/about/trademark-usage-guidelines.php

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 4 of 443

 Non-Confidential

CONTENTS

PROPRIETARY NOTICE 2

1 ABOUT THIS DOCUMENT 14

1.1 Change history 14

1.2 References 14

1.3 Terms and abbreviations 14

1.4 Document Scope 18

2 INTRODUCTION 19

2.1 History 19

2.2 SMMUv3.0 features 20

2.3 SMMUv3.1 features 21

2.4 System placement 22

3 OPERATION 25

3.1 Software interface 25

3.2 Stream numbering 25

3.3 Data structures and translation procedure 27
3.3.1 Stream Table lookup 27
3.3.2 StreamIDs to Context Descriptors 29
3.3.3 Configuration and Translation lookup 34
3.3.4 Transaction attributes: incoming, two-stage translation and overrides 36

3.4 Address sizes 37
3.4.1 Input address size and Virtual Address size 40
3.4.2 Address alignment checks 41
3.4.3 Address sizes of SMMU-originated accesses 41

3.5 Command and Event queues 43
3.5.1 SMMU circular queues 44
3.5.2 Queue entry visibility semantics 47
3.5.3 Event queue behavior 47
3.5.4 Definition of event record write “Commit” 48

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 5 of 443

 Non-Confidential

3.5.5 Event merging 49

3.6 Structure and queue ownership 49

3.7 Programming registers 50

3.8 Virtualization 50

3.9 Support for PCI Express, PASIDs, PRI and ATS 51
3.9.1 ATS Interface 51
3.9.2 Changing ATS configuration 58

3.10 Support for two Security states 60
3.10.1 Secure State Determination (SSD) 61
3.10.2 Secure commands, events and configuration 61

3.11 Reset, Enable and initialization 63

3.12 Fault models, recording and reporting 66
3.12.1 Terminate model 69
3.12.2 Stall model 69
3.12.3 Considerations for client devices using the Stall fault model 73
3.12.4 Virtual Memory paging with SMMU 73
3.12.5 Combinations of fault configuration with two stages 74

3.13 Translation table entries and Access/Dirty flags 76
3.13.1 Software update of flags 76
3.13.2 Access flag hardware update 78
3.13.3 Dirty flag hardware update 78
3.13.4 HTTU behavior summary 79
3.13.5 HTTU with two stages of translation 79
3.13.6 ATS, PRI and translation table flag update 80

3.14 Speculative accesses 81

3.15 Coherency considerations and memory access types 82
3.15.1 Client devices 83

3.16 Embedded implementations 84
3.16.1 Changes to structure and queue storage behavior when fixed/preset 84

3.17 TLB tagging, VMIDs, ASIDs and participation in broadcast TLB maintenance 85
3.17.1 The Global flag in the Translation Table Descriptor 88
3.17.2 TLB maintenance from ARMv8-A PEs with EL3 in AArch64 89
3.17.3 TLB maintenance from ARMv7-A PEs or ARMv8-A PEs with EL3 using AArch32 state 89
3.17.4 Broadcast TLB maintenance in mixed AArch32 and AArch64 systems and with mixed ASID or VMID
sizes 90
3.17.5 EL2 ASIDs in EL2 Host (E2H) mode 91

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 6 of 443

 Non-Confidential

3.17.6 VMID Wildcards 92

3.18 Interrupts and notifications 92
3.18.1 MSI synchronisation 94
3.18.2 Interrupt sources 94

3.19 Power control 95
3.19.1 Dormant state 96

3.20 TLB and configuration cache conflict 96
3.20.1 TLB conflict 96
3.20.2 Configuration cache conflicts 97

3.21 Structure access rules and update procedures 98
3.21.1 Translation tables and TLB invalidation completion behavior 98
3.21.2 Queues 99
3.21.3 Configuration structures and configuration invalidation completion 100

3.22 Destructive reads and directed cache prefetch transactions 104
3.22.1 SMMUv3.1 control of transaction downgrade 106
3.22.2 SMMUv3.1 permissions model 106
3.22.3 SMMUv3.1 memory types and Shareability 108

4 COMMANDS 109
4.1.1 Command opcodes 109
4.1.2 Submitting commands to the Command queue 110
4.1.3 Command errors 111
4.1.4 Consumption of commands from the Command queue 111
4.1.5 Reserved fields 112
4.1.6 Common fields 112
4.1.7 Out-of-range parameters 112

4.2 Prefetch 113
4.2.1 CMD_PREFETCH_CONFIG(StreamID, SSec, SubstreamID, SSV) 114
4.2.2 CMD_PREFETCH_ADDR(StreamID, SSec, SubstreamID, SSV, Addr, Size, Stride) 114

4.3 Configuration structure invalidation 115
4.3.1 CMD_CFGI_STE(StreamID, SSec, Leaf) 116
4.3.2 CMD_CFGI_STE_RANGE(StreamID, SSec, Range) 117
4.3.3 CMD_CFGI_CD(StreamID, SSec, SubstreamID, Leaf) 117
4.3.4 CMD_CFGI_CD_ALL(StreamID, SSec) 119
4.3.5 CMD_CFGI_ALL(World) 119
4.3.6 Action of VM guest OS structure invalidations by hypervisor 120
4.3.7 Configuration structure invalidation semantics/rules 121

4.4 TLB invalidation 121
4.4.1 TLB invalidation of stage 1 122

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 7 of 443

 Non-Confidential

4.4.2 TLB invalidation of stage 2 126
4.4.3 Common TLB invalidation 127

4.5 ATS and PRI 128
4.5.1 CMD_ATC_INV(StreamID, SubstreamID, SSV, Global, Address, Size) 129
4.5.2 CMD_PRI_RESP(StreamID, SubstreamID, SSV, GroupID, Resp) 130

4.6 Fault response and synchronisation commands 131
4.6.1 CMD_RESUME(StreamID, SSec, STAG, Action, Abort) 131
4.6.2 CMD_STALL_TERM(StreamID, SSec) 134
4.6.3 CMD_SYNC(ComplSignal, MSIAddress, MSIData, MSIWriteAttributes) 136

4.7 Command Consumption summary 141

5 DATA STRUCTURE FORMATS 142

5.1 Level 1 Stream Table Descriptor 143

5.2 Stream Table Entry 145
5.2.1 Validity of STE 171

5.3 Level 1 Context Descriptor 174

5.4 Context Descriptor 175
5.4.1 CD notes 188
5.4.2 Validity of CD 192

5.5 Fault configuration (A,R,S bits) 194

6 MEMORY MAP AND REGISTERS 198

6.1 Memory map 198

6.2 Register overview 198

6.3 Register formats 204
6.3.1 SMMU_IDR0 204
6.3.2 SMMU_IDR1 208
6.3.3 SMMU_IDR2 210
6.3.4 SMMU_IDR3 210
6.3.5 SMMU_IDR4 211
6.3.6 SMMU_IDR5 211
6.3.7 SMMU_IIDR 212
6.3.8 SMMU_AIDR 213
6.3.9 SMMU_CR0 213
6.3.10 SMMU_CR0ACK 219
6.3.11 SMMU_CR1 219

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 8 of 443

 Non-Confidential

6.3.12 SMMU_CR2 221
6.3.13 SMMU_GBPA 223
6.3.14 SMMU_AGBPA 226
6.3.15 SMMU_STATUSR 226
6.3.16 SMMU_IRQ_CTRL 226
6.3.17 SMMU_IRQ_CTRLACK 227
6.3.18 SMMU_GERROR 227
6.3.19 SMMU_GERRORN 229
6.3.20 SMMU_GERROR_IRQ_CFG0 229
6.3.21 SMMU_GERROR_IRQ_CFG1 230
6.3.22 SMMU_GERROR_IRQ_CFG2 230
6.3.23 SMMU_STRTAB_BASE 231
6.3.24 SMMU_STRTAB_BASE_CFG 232
6.3.25 SMMU_CMDQ_BASE 233
6.3.26 SMMU_CMDQ_CONS 234
6.3.27 SMMU_CMDQ_PROD 236
6.3.28 SMMU_EVENTQ_BASE 236
6.3.29 SMMU_EVENTQ_CONS 238
6.3.30 SMMU_EVENTQ_PROD 238
6.3.31 SMMU_EVENTQ_IRQ_CFG0, SMMU_EVENTQ_IRQ_CFG1, SMMU_EVENTQ_IRQ_CFG2 239
6.3.32 SMMU_PRIQ_BASE 239
6.3.33 SMMU_PRIQ_CONS 240
6.3.34 SMMU_PRIQ_PROD 241
6.3.35 SMMU_PRIQ_IRQ_CFG0, SMMU_PRIQ_IRQ_CFG1 242
6.3.36 SMMU_PRIQ_IRQ_CFG2 242
6.3.37 SMMU_GATOS_CTRL 243
6.3.38 SMMU_GATOS_SID 244
6.3.39 SMMU_GATOS_ADDR 244
6.3.40 SMMU_GATOS_PAR 245
6.3.41 SMMU_VATOS_SEL 247
6.3.42 SMMU_S_IDR0 248
6.3.43 SMMU_S_IDR1 248
6.3.44 SMMU_S_IDR2 249
6.3.45 SMMU_S_IDR3 249
6.3.46 SMMU_S_IDR4 249
6.3.47 SMMU_S_CR0 249
6.3.48 SMMU_S_CR0ACK 251
6.3.49 SMMU_S_CR1 252
6.3.50 SMMU_S_CR2 253
6.3.51 SMMU_S_GBPA 254
6.3.52 SMMU_S_AGBPA 256
6.3.53 SMMU_S_INIT 256
6.3.54 SMMU_S_IRQ_CTRL 257
6.3.55 SMMU_S_IRQ_CTRLACK 257
6.3.56 SMMU_S_GERROR 258
6.3.57 SMMU_S_GERRORN 259

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 9 of 443

 Non-Confidential

6.3.58 SMMU_S_GERROR_IRQ_CFG0, SMMU_S_GERROR_IRQ_CFG1,
SMMU_S_GERROR_IRQ_CFG2 259
6.3.59 SMMU_S_STRTAB_BASE 259
6.3.60 SMMU_S_STRTAB_BASE_CFG 260
6.3.61 SMMU_S_CMDQ_BASE 262
6.3.62 SMMU_S_CMDQ_CONS 263
6.3.63 SMMU_S_CMDQ_PROD 264
6.3.64 SMMU_S_EVENTQ_BASE 265
6.3.65 SMMU_S_EVENTQ_CONS 266
6.3.66 SMMU_S_EVENTQ_PROD 267
6.3.67 SMMU_S_EVENTQ_IRQ_CFG0, SMMU_S_EVENTQ_IRQ_CFG1, SMMU_S_EVENTQ_IRQ_CFG2268
6.3.68 SMMU_S_GATOS_CTRL 268
6.3.69 SMMU_S_GATOS_SID 269
6.3.70 SMMU_S_GATOS_ADDR 270
6.3.71 SMMU_S_GATOS_PAR 271
6.3.72 ID_REGS 273
6.3.73 SMMU_VATOS_CTRL, SMMU_VATOS_SID, SMMU_VATOS_ADDR, SMMU_VATOS_PAR 274

7 EVENT QUEUE, FAULTS AND ERRORS 275

7.1 Command queue errors 275

7.2 Event queue recorded faults and events 276
7.2.1 Recording of events and conditions for writing to the Event queue 277
7.2.2 Event queue access external abort 278
7.2.3 Secure and Non-secure Event queues 279

7.3 Event records 279
7.3.1 Event record merging 280
7.3.2 F_UUT 281
7.3.3 C_BAD_STREAMID 282
7.3.4 F_STE_FETCH 283
7.3.5 C_BAD_STE 283
7.3.6 F_BAD_ATS_TREQ 284
7.3.7 F_STREAM_DISABLED 285
7.3.8 F_TRANSL_FORBIDDEN 285
7.3.9 C_BAD_SUBSTREAMID 286
7.3.10 F_CD_FETCH 287
7.3.11 C_BAD_CD 288
7.3.12 F_WALK_EABT 288
7.3.13 F_TRANSLATION 290
7.3.14 F_ADDR_SIZE 291
7.3.15 F_ACCESS 292
7.3.16 F_PERMISSION 292
7.3.17 F_TLB_CONFLICT 293
7.3.18 F_CFG_CONFLICT 294
7.3.19 E_PAGE_REQUEST 295

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 10 of 443

 Non-Confidential

7.3.20 IMPDEF_EVENTn 295
7.3.21 Event queue record priorities 296

7.4 Event queue overflow 298

7.5 Global error recording 299
7.5.1 GERROR interrupt notification 300

8 PAGE REQUEST QUEUE 302

8.1 PRI queue overflow 304
8.1.1 Recovery procedure 305

8.2 Miscellaneous 305

8.3 PRG Response Message codes 306

9 ADDRESS TRANSLATION OPERATIONS 308

9.1 Register usage 311
9.1.1 ATOS_CTRL 311
9.1.2 ATOS_SID 311
9.1.3 ATOS_ADDR 311
9.1.4 ATOS_PAR 313
9.1.5 ATOS_PAR.FAULTCODE encodings 315
9.1.6 SMMU_VATOS_SEL 317

10 PERFORMANCE MONITOR EXTENSION 318

10.1 Support and discovery 318

10.2 Overview of counters and groups 318
10.2.1 Overflow, interrupts and capture 319

10.3 Monitor events 320

10.4 StreamIDs and filtering 322
10.4.1 Counter Group StreamID size 324

10.5 Registers 325
10.5.1 SMMU_PMCGn address map 325
10.5.2 Register details 327

10.6 Support for two Security states 340

11 DEBUG/TRACE 342

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 11 of 443

 Non-Confidential

12 RELIABILITY, AVAILABILITY AND SERVICEABILITY (RAS) 343

12.1 Error propagation, consumption and containment in the SMMU 343

12.2 Error consumption visible through the SMMU programming interface 344

12.3 Service Failure Mode (SFM) 345

12.4 RAS fault handling/reporting 345

13 ATTRIBUTE TRANSFORMATION 347

13.1 SMMU handling of attributes 348
13.1.1 Attribute definitions 348
13.1.2 Attribute support 349
13.1.3 Default input attributes 351
13.1.4 Replace 351
13.1.5 Combine 352
13.1.6 Ensuring consistent output attributes 353

13.2 SMMU disabled global bypass attributes 355

13.3 Translation flow, STE bypasses stage 1 and stage 2 357

13.4 Normal translation flow 358
13.4.1 Stage 1 page permissions 359
13.4.2 Stage 1 memory attributes 359
13.4.3 Stage 2 360
13.4.4 Output 360

13.5 Summary of attribute/permission configuration fields 365

13.6 PCIe and ATS attribute/permissions handling 366
13.6.1 PCIe memory type attributes 366
13.6.2 ATS attribute overview 367
13.6.3 Split-stage (STE.EATS=0b10) ATS behavior and responses 368
13.6.4 Full ATS skipping Stage 1 369
13.6.5 Split-stage ATS skipping Stage 1 370

13.7 PCIe permission attribute interpretation 371
13.7.1 Permission attributes granted in ATS Translation Completions 373

14 EXTERNAL INTERFACES 376

14.1 Data path ingress/egress ports 376

14.2 ATS Interface, packets, protocol 376

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 12 of 443

 Non-Confidential

14.3 SMMU-originated transactions 376

15 TRANSLATION PROCEDURE 378

15.1 Translation procedure charts 378

15.2 Notes on translation procedure charts 385

16 SYSTEM AND IMPLEMENTATION CONSIDERATIONS 386

16.1 Stages 386

16.2 Caching 386
16.2.1 Caching combined structures 387
16.2.2 Data dependencies between structures 388

16.3 Programming implications of bus address sizing 389

16.4 System integration 389

16.5 System software 390

16.6 Implementation-defined features 390
16.6.1 Configuration and translation cache locking 390

16.7 Interconnect-specific features 391
16.7.1 Reporting of Unsupported Client Transactions 391
16.7.2 Non-data transfer transactions 391
16.7.3 Treatment of AMBA Exclusives from client devices 393
16.7.4 Treatment of downstream aborts 394
16.7.5 SMMU and AMBA attribute differences 394
16.7.6 Far Atomic operations 397
16.7.7 AMBA DVM messages with respect to CD.ASET=1 TLB entries 398

17 APPENDIX - THE ARM RAS ARCHITECTURE 399

17.1 Faults, errors, and failures 399

17.2 Error handling and recovery 401

17.3 Fault handling 402

17.4 Nodes 402
17.4.1 Synchronization and error record accesses 403

17.5 Standard error record 404
17.5.1 Security and virtualization 405

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 13 of 443

 Non-Confidential

17.5.2 Multiple records per node 406
17.5.3 Error types in the error record 406
17.5.4 Writing the error record 407
17.5.5 Prioritizing errors 407
17.5.6 Overwriting the error syndrome 409
17.5.7 Keeping the previous error syndrome 410
17.5.8 Detecting multiple errors 410
17.5.9 Standard format Corrected error counter 410

17.6 Error recovery interrupt 411

17.7 Fault handling interrupt 411

17.8 In-band error signaling 412

17.9 Error recovery and fault handling signaling 413

17.10 Error recovery reset 414

17.11 Memory-mapped view of an error record 415
17.11.1 Supported access sizes 415

17.12 Reset values 416
17.12.1 Writes to ERR<n>STATUS 416

17.13 Register index 417

18 APPENDIX - THE ARM RAS REGISTERS 420
18.1.1 ERR<n>ADDR, Error Record Address Register 420
18.1.2 ERR<n>CTLR, Error Record Control Register 421
18.1.3 ERR<n>FR, Error Record Feature Register 425
18.1.4 ERR<n>MISC0, Error Record Miscellaneous Register 0 428
18.1.5 ERR<n>MISC1, Error Record Miscellaneous Register 1 432
18.1.6 ERR<n>STATUS, Error Record Primary Status Register 433
18.1.7 ERRDEVARCH, Device Architecture Register 439
18.1.8 ERRGSR<n>, Error Group Status Register 441
18.1.9 ERRIDR, Error Record ID Register 442
18.1.10 ERRIRQCR<n>, Error Interrupt Configuration Register 442

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 14 of 443

 Non-Confidential

1 ABOUT THIS DOCUMENT

1.1 Change history
This is the first release of this document.

1.2 References
This document refers to the following documents:

[1] PCI-SIG, PCI Express Base Specification Revision 3.0.

[2] PCI-SIG, Process Address Space ID (PASID).

[3] PCI-SIG, Address Translation Services Revision 1.1.

[4] ARM, DDI0487 ARM® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.

[5] ARM, DDI0557 ARM® Architecture Reference Manual, ARMv8.1, for ARMv8-A architecture profile.

[6] ARM, IHI0062 ARM® System Memory Management, SMMU architecture version 2.0.

[7] ARM, IHI0069 ARM® Generic Interrupt Controller, GIC architecture version 3.0 and version 4.0.

[8] ARM, IHI0029 ARM® CoreSight™ Architecture Specification 2.0.

[9] PCI-SIG, PASID Translation.

[10] ARM, ARM-DEN-0029 Server Base System Architecture.

[11] ARM, IHI 0022 AMBA® AXI™ and ACE™ Protocol Specification AXI3™, AXI4™, and AXI4-Lite™, ACE™
and ACE Lite™.

1.3 Terms and abbreviations
This document uses the following terms and abbreviations.

Term Meaning

ASID Address Space ID, distinguishing TLB entries for separate address spaces. For
example, address spaces of PE processes are distinguished by ASID.

VMID Virtual Machine ID, distinguishing TLB entries for addresses from separate virtual
machines

DVM Distributed Virtual Memory, a protocol for interconnect messages to provide
broadcast TLB maintenance operations (among other things).

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 15 of 443

 Non-Confidential

VM Virtual Machine. In this document, VM never means Virtual Memory except when
used as part of an existing acronym.

VA Virtual Address

IPA Intermediate Physical Address

PA Physical Address

RC PCI Express Root Complex [1]

Endpoint (EP) A PCI Express [1] function, used in the context of a device that is a client of the
SMMU.

PASID PCI Express term [2], a Process Address Space ID. Note: a PASID is an endpoint-
local ID so there might be many distinct uses of a specific PASID value in a
system. Despite the similarity in name, a PCIe PASID is not the same as a PE
ASID, which is intended to be unique within the realm of an Operating System.

ATS PCI Express term for Address Translation Services [3] provided for remote
endpoint TLBs

PRI PCI Express term for Page Request Interface, an extension to ATS allowing an
endpoint to request an OS to make a paged virtual memory mapping present for
DMA.

SMMU System MMU. Unless otherwise specified, this term is used to mean SMMUv3.
Any reference to prior versions of the SMMU specifications is explicitly suffixed
with the architecture version number, for example SMMUv1.

ATOS SMMU facility providing VA-to-IPA/PA translations using system-accessible
registers. In addition, VATOS provides a second set of registers for direct use
from a virtual machine, with the added constraint that only VA-to-IPA translations
can be returned.

PTE Page Table Entry (typically implies the final or leaf entry of a walk).

Processing Element (PE) The abstract machine defined in the ARM architecture, as documented in an ARM
Architecture Reference Manual [4].
A PE implementation compliant with the ARM architecture must conform with the
behaviors described in the corresponding ARM Architecture Reference Manual.

TT Translation table, synonymous with Page Table, as used by ARM architecture.

TTD Translation table descriptor, synonymous with Page Table Entry, as used by the
ARM architecture

HTTU Hardware Translation Table Update. The act of updating the Access flag or Dirty
state of a page in a given TTD which is automatically done in hardware, on an
access or write to the corresponding page.

IMPLEMENTATION DEFINED Means that the behavior is not architecturally defined, but must be defined and
documented by individual implementations. For more information, see [4].
In body text, the term IMPLEMENTATION DEFINED is shown in SMALL CAPITALS.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 16 of 443

 Non-Confidential

Implementation specific Behavior that is not defined by the SMMU architecture, and might not be
documented by individual implementations. Used where one of a number of
implementation options might be chosen and the option chosen does not affect
software compatibility. Software cannot rely on any implementation-specific
behavior.

IGNORED Indicates that the architecture guarantees that the bit or field is not interpreted or
modified by hardware.
In body text, the term IGNORED is shown in SMALL CAPITALS.

LPAE Large Physical Address Extension: The ARMv7 ‘Long’ translation table format,
supporting 40-bit output addresses (and 40-bit IPAs) and having 64-bit TTDs –
identical to the ARMv8 AArch32 translation table format.

TTW Translation Table Walk. This is the act of performing a translation by traversing
the in-memory tables.

SSD Secure State Determination. The concept of associating a stream of data from a
client device with being under Secure or Non-secure control, and determining a
specific Secure or Non-secure configuration for the stream.

STE Stream table entry.

L1STD Level-1 Stream Table Descriptor. Used in a 2-level Stream Table.

CD Context descriptor.

L1CD Level-1 Context descriptor. Used in a 2-level CD table.

Client device A device whose incoming traffic to the system is controlled by an SMMU.

Stage 1
Stage 2

One of the two steps of nested translation whereby the output of one set of
translation tables is fed into a second set of translation tables. In sequence, stage
1 is the first table indexed, stage 2 is the second.

Bypass A configuration that passes through a stage of translation without any addresses
transformation is using bypass. If an SMMU does not implement a translation
stage, that stage is considered equivalent to a bypass configuration.

Stage N-only A translation configuration for a stream of data in which one of two translation
stages is configured to translate and the other is in bypass (whether by
configuration or fixed by SMMU implementation).

E2H EL2 Host Mode. The Virtualization Host Extensions in ARMv8.1 [5] extend the
EL2 translation regime providing ASID-tagged translations. In this document, EL2-
E2H mode is the abbreviation that is used.

TR Translation Request, used in the context of a PCIe ATS request to the SMMU, or
another distributed implementation making translation requests to a central unit.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 17 of 443

 Non-Confidential

UNPREDICTABLE Means the behavior cannot be relied upon. UNPREDICTABLE behavior must not
perform any function that cannot be performed at the current or a lower level of
privilege using instructions that are not UNPREDICTABLE.

UNPREDICTABLE behavior must not be documented or promoted as having a
defined effect.

In body text, the term UNPREDICTABLE is shown in SMALL CAPITALS.

CONSTRAINED
UNPREDICTABLE

Where an instruction can result in UNPREDICTABLE behavior, the architecture
specifies a narrow range of permitted behaviors. This range is the range of
CONSTRAINED UNPREDICTABLE behavior. All implementations that are compliant with
the architecture must follow the CONSTRAINED UNPREDICTABLE behavior.

In body text, the term CONSTRAINED UNPREDICTABLE is shown in SMALL CAPITALS.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to
moment and implementation to implementation. An UNKNOWN value must not
return information that cannot be accessed at the current or a lower level of
privilege of operating software using accesses that are not UNPREDICTABLE and do
not return UNKNOWN values.
An UNKNOWN value must not be documented or promoted as having a defined
value or effect.
In body text, the term UNKNOWN is shown in SMALL CAPITALS.

Reserved Unless otherwise specified, a Reserved field behaves as RES0. For an
identification, or otherwise read-only register field, a reserved encoding is never
given by the SMMU. For a field that is provided to the SMMU, reserved values
must not be used and their behavior must not be relied upon.

RES0 A reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior, or
equivalent read-only or write-only behavior. Used for fields in register descriptions,
and for fields in architecturally-defined data structures that are held in memory, for
example in translation table descriptors. For a full description see [4].

RES1

Terminate

A reserved bit or field with Should-Be-One-or-Preserved (SBZP) behavior. Used
for fields in register descriptions, and for fields in architecturally-defined data
structures that are held in memory, for example in translation table descriptors.
For a full description see [4].

To complete a transaction with a negative status/abort response; the exact details
depend on an implementation’s interconnect behaviour. When a client transaction
is said to have been “terminated” by the SMMU, it has been prevented from
progressing into the system and an abort response has been issued to the client (if
appropriate for the interconnect in use).

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 18 of 443

 Non-Confidential

ILLEGAL A set of conditions that make an STE or CD structure illegal. These conditions
differ for the individual CDs and STEs, and are described in detail in the relevant
CD and STE descriptions. A field in a structure can make the structure ILLEGAL,
for example when it contains an incorrect value, only if the field was not IGNORED
for other reasons. Attempts to use an ILLEGAL structure generate an error that is
specific to the type of structure.

1.4 Document Scope
This document is the specification for a System Memory Management Unit version 3 following on from the
previous SMMUv2 architecture [6].

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 19 of 443

 Non-Confidential

2 INTRODUCTION

A System Memory Management Unit (SMMU) performs a task that is analogous to that of an MMU in a PE,
translating addresses for DMA requests from system I/O devices before the requests are passed into the system
interconnect. It is active for DMA only. Traffic in the other direction, from the system or PE to the device, is
managed by other means – for example, the PE MMUs.

SMMU

Device PE

Memory

MMU

Figure 1: System MMU in DMA traffic

Translation of DMA addresses might be performed for reasons of isolation or convenience.

In order to associate device traffic with translations and to differentiate different devices behind an SMMU,
requests have an extra property, alongside address, read/write, permissions, to identify a stream. Different
streams are logically associated with different devices and the SMMU can perform different translations or checks
for each stream. In systems with exactly one client device served by an SMMU the concept still stands, but might
have only one stream.

A number of SMMUs might exist within a system. An SMMU might translate traffic from just one device or a set of
devices.

The SMMU supports two stages of translation in a similar way to PEs supporting the Virtualization Extensions [4].
An incoming address is logically translated from VA to IPA in stage 1, then the IPA is input to stage 2 which
translates the IPA to the output PA. Stage 1 is intended to be used by a software entity to provide isolation or
translation to buffers within the entity, for example DMA isolation within an OS. Stage 2 is intended to be available
in systems supporting the Virtualization Extensions and is intended to virtualize device DMA to guest VM address
spaces.

2.1 History
• SMMUv1 supports a modest number of contexts/streams configured using registers, limiting scalability.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 20 of 443

 Non-Confidential

• SMMUv2 extends SMMUv1 with ARMv8-A translation table formats, large addresses, with the same
limited number of contexts and streams.

SMMUv1 and SMMUv2 map an incoming data stream onto one of many register-based context banks which
indicate translation tables and translation configuration to use. The context bank might also indicate a second
context bank for nested translation of a second stage (stage 1 and stage 2). The stream is identified using an
externally-generated ID supplied with each transaction. A second ID might be supplied to determine the Security
state of a stream or group of streams. The use of register-based configuration limits the number of context banks
and support of thousands of concurrent contexts is not possible.

Because live data streams might potentially present transactions at any time, the available number of contexts
limits the number of streams that might be concurrently enabled. For example, a system might have 1000
network interfaces that might all be idle but whose DMA might be triggered by incoming traffic at any time. The
streams must be constantly available in order to function correctly. It is usually not possible to time-division
multiplex a context between many devices requiring service.

2.2 SMMUv3.0 features
SMMUv3 provides feature to complement PCI Express [1] Root Complexes and other potentially large I/O
systems by supporting large numbers of concurrent translation contexts.

• Memory-based configuration structures to support large numbers of streams.
• Implementations might support only stage 1, only stage 2 or both stages of translation. This capability,

and other implementation-specific options, can be discovered from the register interface.
• Up to 16-bit ASIDs.
• Up to 16-bit VMIDs [5].
• Address translation and protection according to ARMv8.1 [5] Virtual Memory System Architecture [5].

SMMU translation tables shareable with PEs, allowing software the choice of sharing an existing table or
creating an SMMU-private table.

• 49 bit VA (matching ARMv8-A’s 2×48-bit translation table input sizes).

Support for the following is optional in an implementation:

• Either stage 1 or stage 2.
• Stage 1 and 2 support for the AArch32 (LPAE) and AArch64 translation table format.
• Secure stream support.
• Broadcast TLB invalidation.
• Hardware Translation Table Update (HTTU) of Access flag and Dirty state of a page. An implementation

might support update of the Access flag only, update of both the Access flag and the Dirty state of the
page, or no HTTU.

• PCIe ATS [3] and PRI, when used with compatible Root Complex.
• 16KB and 64KB page granules. However, the presence of 64KB page granules at both stage 1 and stage

2 is suggested to align with the PE requirements in the Server Base System Architecture.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 21 of 443

 Non-Confidential

Because the support of large numbers of streams using in-memory configuration causes the SMMUv3
programming interface to be significantly different to that of SMMUv2, SMMUv3 is not designed to be backward-
compatible with SMMUv2.

2.3 SMMUv3.1 features
SMMUv3.1 extends the base SMMUv3.0 architecture with the following features:

• Support for PEs implementing ARMv8.2-A:
o Support for 52-bit VA, IPA and PA.

 Note: An SMMUv3.1 implementation is not required to support 52-bit addressing, but the
SMMUv3.1 architecture extends fields to allow an implementation the option of doing so.

o Page-Based Hardware Attributes (PBHA).
o EL0 vs EL1 execute never controls in stage 2 translation tables.

o Note: ARMv8.2 introduces a Common not Private (CnP) concept to the PE which does not apply
to the SMMU architecture, because all SMMU translations are treated as common.

• Support for transactions that perform cache-stash or destructive read side-effects.
• Performance Monitor Counter Group (PMCG) error status.

The SMMU programming interface contains a register, SMMU_AIDR, that indicates whether the SMMU
implements SMMUv3.0 or SMMUv3.1, where:

• References to SMMUv3 are synonymous with SMMU_AIDR [7:0]=0x0000 or 0x0001.
o That is, behaviors which are common to SMMUv3.0 and SMMUv3.1.

• References to SMMUv3.0 are synonymous with SMMU_AIDR [7:0]=0x0000.
• References to SMMUv3.1 are synonymous with SMMU_AIDR [7:0]=0x0001.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 22 of 443

 Non-Confidential

2.4 System placement

PCIe
Root

Complex

System
interconnect

M

M

S
SMMU

M S

S
ATS

M

S

Incoming
PCIe
traffic

Prog I/F

Prog I/F

S

M Outgoing PCIe traffic

SMMU

M S

S

M

I/O
 ‘in’

 interconnect

M

R
oo

t p
or

t

Outgoing device traffic

S

S

 Device
1

S

M

 Device
2

S

MI/O
 ‘out’

 interconnect

S M

M

ATS

Addr reqs/responses

EP 1

EP 2
ATC

ATC

Incoming
device
traffic

StreamID

StreamID

S

M Memory

PEs StreamID

RequesterID

S

M

Figure 2: SMMU placement in an example system

Two example uses of an SMMU are shown in Figure 2. One SMMU interfaces incoming traffic from two client
devices to the system interconnect. The devices can perform DMA using virtual, IPA or other bus address
schemes and the SMMU translates these addresses to PAs. The second example SMMU interfaces one to one
to a PCIe Root Complex (which itself hosts a network of endpoints). This illustrates an additional interface
specified in this document, an ATS port to support PCIe ATS and PRI (or similar functionality for compatible non-
PCIe devices).

Outgoing accesses to slave devices do not pass through an additional SMMU. In general, masters are behind an
SMMU (or, in the case of PEs, have an inbuilt MMU), so outgoing accesses to slave devices are mediated by the
MMU of the master. If a master has no MMU, it has full-system access. Therefore, its DMA must be mediated by
software, and in this case only the most privileged system software can program it.

The SMMU has a programming interface that receives accesses from system software for setup and
maintenance. The SMMU also makes accesses of its own (as a master) to configuration structures, for example
to perform translation table walks. Whether the traffic originating from the SMMU itself shares the same
interconnect resources as traffic passed through from device clients is implementation specific.

Each SMMU is configured separately to any others that might exist in the system.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 23 of 443

 Non-Confidential

Note: ARM recommends that SMMUs bridge I/O device DMA addresses onto system or physical addresses.
ARM recommends that SMMUs are placed between a device master port (or I/O interconnect) and system
interconnect. Generally, ARM recommends that SMMUs are not placed in series and that the path of an SMMU to
memory or other slave devices does not pass through another SMMU, whether for fetch of SMMU configuration
data or client transactions.

Note: Interconnect-specific channels to support cache coherency are not shown in Figure 2.

The SMMU master interface to the system is intended to be IO-coherent, thereby providing IO-coherent access for
the client devices of the SMMU. The SMMU slave interface for incoming device traffic does not require any
coherency support. In addition, because there is no address translation in the outgoing direction, snoop traffic
cannot be forwarded from the system towards the client devices so fully-coherent device caches cannot be placed
behind an SMMU.

Note: It is feasible to implement an SMMU as part of a complex device containing fully-coherent caches in the
same way that the MMU of a PE is paired to fully-coherent PE caches. Practically, this means the caches must
be tagged with physical addresses.

Complex device
with embedded

MMU
‘Smart’
device

PCIe
Root

Complex

System interconnect

Monolithic
SMMU B

Device
0

Device
1

ATS

Switch

EP 0 EP 1
ATCATC

Memory

Distributed SMMU C

Control &
translation
table walk

TLB TLB TLB

I/O interconnect

Device
0

Device
1

Device
2

I/O interconnect

Embedded
SMMU A

Figure 3: Example SMMU implementations

Figure 3 shows three example implementations of SMMU.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 24 of 443

 Non-Confidential

• SMMU A is implemented as part of a complex device, providing translation for accesses from that device
only. ARM expects this implementation to have an SMMU programming interface in addition to device-
specific control. This design can provide dedicated contention-free translation and TLBs.

• SMMU B is a monolithic block that combines translation, programming interface and translation table walk
facilities. Two client devices use this SMMU as their path for DMA into the system.

• SMMU C is distributed and provides multiple paths into the system for higher bandwidth. It comprises:
o A central translation table walker, which has its own master interface to fetch translation and

configuration structures and queues and a slave interface to receive programming accesses.
This unit might contain a macro-TLB and caches of configuration.

o Remote TLB units which, on a miss, make translation requests to the central unit and cache the
results locally. Two units are shown, supporting a set of three devices through one port, and a
PCIe Root Complex through another.

 The second TLB unit also provides an ATS interface to the Root Complex, so that the
PCIe Endpoints can use ATS to make translation requests through to the central unit.

• Finally, a smart device is shown, which embeds a TLB and makes translation requests to the central unit
of SMMU C. To software, this looks identical to a simple device connected behind a discrete TLB unit.
This design provides a dedicated TLB for the device, but uses the programming interface and translation
facilities of the central unit, reducing complexity of the device.

In all cases, it appears to software as though a device is connected behind a logically-separate SMMU (similar to
Device 0/1 on SMMU B). All implementations give the illusion of simple read/write transactions arriving from a
client device to a discrete SMMU, even if physically it is the device performing the read/write transactions directly
into the system, using translations provided by an SMMU.
Note: This allows a single SMMU driver to be used for radically different SMMU implementations.

Note: Devices might integrate a TLB, or whole SMMU, for performance reasons, but a closely-coupled TLB might
also be used to provide physical addresses suitable for fully-coherent device caches.

Regardless of the implementation style, this document uses the abstraction of client device transactions arriving at
an SMMU. The boundary of SMMU might contain a single module or several distributed sub-components but
these must all behave consistently.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 25 of 443

 Non-Confidential

3 OPERATION

3.1 Software interface
The SMMU has three interfaces that software uses:

1. Memory-based data structures to map devices to translation tables which are used to translate client
device addresses.

2. Memory-based circular buffer queues. These are a Command queue for commands to the SMMU, an
Event queue for event/fault reports from the SMMU, and a PRI queue for receipt of PCIe page requests.
Note: The PRI queue is only present on SMMUs supporting PRI services. This additional queue allows
processing of PRI requests from devices separate from event or fault reports.

3. A set of registers, some of which are secure-only, for discovery and SMMU-global configuration

The registers indicate the base addresses of the structures and queues, provide feature detection and
identification registers and a global control register to enable queue processing and translation of traffic. When
security is supported, an additional register set exists to allow Secure software to maintain Secure device
structures, issue commands on a second Secure Command queue and read Secure events from a Secure Event
queue.

In virtualization scenarios allowing stage 1 translation, a guest OS is presented with exactly the same
programming interface and therefore believes it is in control of a real SMMU (albeit stage 1-only) with the same
format of Command, Event, and optionally PRI, queues, and in-memory data structures.

Certain fields in architected SMMU registers and structures are marked as IMPLEMENTATION DEFINED. The content
of these fields is specific to the SMMU implementation, but implementers must not use these fields in such a way
that a generic SMMUv3 driver becomes unusable. Unless a driver has extended knowledge of particular
IMPLEMENTATION DEFINED fields or features, the driver must treat all such fields as reserved and set them to 0. An
implementation only uses IMPLEMENTATION DEFINED fields to enable extended functionality or features, and remains
compatible with generic driver software by maintaining architected behavior when these fields are set to 0.

3.2 Stream numbering
An incoming transaction has an address, size, and attributes such as read/write, Secure/Non-secure, Shareability,
Cacheability. If more than one client device uses the SMMU traffic must also have a sideband StreamID so the
sources can be differentiated. How a StreamID is constructed and carried through the system is IMPLEMENTATION
DEFINED. Logically, a StreamID corresponds to a device that initiated a transaction.
Note: The mapping of a physical device to StreamID must be described to system software.
ARM recommends that StreamID be a dense namespace starting at 0. The StreamID namespace is per-SMMU.
Devices assigned the same StreamID but behind different SMMUs are seen to be different sources. A device
might emit traffic with more than one StreamID, representing data streams differentiated by device-specific state.

StreamID is of IMPLEMENTATION DEFINED size, between 0 and 32 bits.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 26 of 443

 Non-Confidential

The StreamID is used to select a Stream Table Entry (STE) in a Stream table, which contains per-device
configuration. The maximum size of in-memory configuration structures relates to the maximum StreamID span
(see 3.3 below), with a maximum of 2StreamIDSize entries in the Stream table.

Another property, SubstreamID, might optionally be provided to an SMMU implementing stage 1 translation. The
SubstreamID is of IMPLEMENTATION DEFINED size, between 0 and 20 bits, and differentiates streams of traffic
originating from the same logical block in order to associate different application address translations to each.
Note: An example would be a compute accelerator with 8 contexts that might each map to a different user
process, but where the single device has common configuration meaning it must be assigned to a VM whole.
Note: The SubstreamID is equivalent to a PCIe PASID. Because the concept can be applied to non-PCIe
systems, it has been given a more generic name in the SMMU. The maximum size of SubstreamID, 20 bits,
matches the maximum size of a PCIe PASID.

The incoming transaction flags whether or not a SubstreamID is supplied and this might differ on a per-transaction
basis.

Both of these properties and sizes are discoverable through the SMMU_IDR1 register. See section 16.4 for
recommendations on StreamID and SubstreamID sizing.

The StreamID is the key that identifies all configuration for a transaction. A StreamID is configured to bypass or be
subject to translation and such configuration determines which stage 1 or stage 2 translation to apply. The
SubstreamID provides a modifier that selects between a set of stage 1 translations indicated by the StreamID but
has no effect on the stage 2 translation which is selected by the StreamID only.

A stage 2-only implementation does not take a SubstreamID input. An implementation with stage 1 is not required
to support substreams, therefore is not required to take a SubstreamID input.

The SMMU optionally supports two Security states and, if supported, the StreamID input to the SMMU is qualified
by a SEC_SID flag that determines whether the input StreamID value refers to the Secure or Non-secure
StreamID namespace. A Non-secure StreamID identifies an STE within the Non-secure Stream table and a
Secure StreamID identifies an STE within the Secure Stream table. In this document, the term StreamID implicitly
refers to the StreamID disambiguated by SEC_SID (if present) and does not refer solely to a literal StreamID input
value (which would be associated with two STEs when security is supported) unless explicitly stated otherwise.
See section 3.10.

ARM expects that, for PCI, StreamID is generated from the PCI RequesterID so that
StreamID[15:0]==RequesterID[15:0]. When more than one Root Complex is hosted by one SMMU, ARM
recommends that the 16-bit RequesterID namespaces are arranged into a larger StreamID namespace by using
upper bits of StreamID to differentiate the contiguous RequesterID namespaces, so that StreamID[N:16] indicates
which Root Complex (PCIe domain/segment) is the source of the stream source. In PCIe systems, the
SubstreamID is intended to be directly provided from the PASID [2] in a one to one fashion.

Therefore, for SMMU implementations intended for use with PCI clients, supported StreamID size must be at least
16 bits.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 27 of 443

 Non-Confidential

3.3 Data structures and translation procedure
The SMMU uses a set of data structures in memory to locate translation data. Registers hold the base addresses
of the initial root structure, the Stream Table. A Stream table entry (STE) contains stage 2 translation table base
pointers, and also locates stage 1 configuration structures, which contain translation table base pointers. A
Context descriptor (CD) represents stage 1 translation, and a Stream table entry represents stage 2 translation.

Therefore, there are two distinct groups of structures used by the SMMU:

• Configuration structures, which map from the StreamID of a transaction (a device originator identifier) to
the translation table base pointers, configuration, and context under which the translation tables are
accessed.

• Translation table structures that are used to perform the VA to IPA and IPA to PA translation of addresses
for stage 1 and stage 2, respectively.

The procedure for translation of an incoming transaction is to first locate configuration appropriate for that
transaction, (identified by its StreamID and, optionally, SubstreamID, and then to use that configuration to locate
translations for the address used.

The first step in dealing with an incoming transaction is to locate the STE, which tells the SMMU what other
configuration it requires.

Conceptually, an STE describes configuration for a client device in terms of whether it is subject to stage 1 or
stage 2 translation or both. Multiple devices can be associated with a single Virtual Machine, so multiple STEs
can share common stage 2 translation tables. Similarly, multiple devices (strictly, streams) might share common
stage 1 configuration, therefore multiple STEs could share common CDs.

3.3.1 Stream Table lookup
The StreamID of an incoming transaction locates an STE. Two formats of Stream table are supported. The
format is set by the Stream table base registers. The incoming StreamID is range-checked against the
programmed table size, and a transaction is terminated if its StreamID would otherwise select an entry outside the
configured Stream table extent (or outside a level 2 span). See section 6.3.24 and C_BAD_STREAMID. When
two Security states are supported, as indicated by SMMU_S_IDR1.SECURE_IMPL==1, a transaction is identified,
using the SEC_SID flag, as associated with the Secure or Non-secure SMMU programming interfaces, see
section 3.10.1. This determines whether the Secure or Non-secure Stream table (or caches of) is used.

3.3.1.1 Linear Stream Table

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 28 of 443

 Non-Confidential

STRTAB_BASE

S
tre

am
ID

[n
:0

]

STE 2

STE 0

STE 1

STE 3

Figure 4: Linear Stream Table

A linear Stream table is a contiguous array of STEs, indexed from 0 by StreamID. The size is configurable as a 2n
multiple of STE size up to the maximum number of StreamID bits supported in hardware by the SMMU. The
linear Stream Table format is supported by all SMMU implementations.

3.3.1.2 2-level Stream Table

STRTAB_BASE

Desc 3

Desc 0

Desc 1

S
tre

am
ID

[9
:8

]

S
tre

am
ID

[7
:0

]

S
tre

am
ID

[1
:0

]

STE 0x300

STE 0x000

STE 0x001

STE 0x002

STE 0x0fd

STE 0x0ff

STE 0x100

STE 0x101

STE 0x102

STE 0x103

Addr 0x1000

Addr 0x2f20

Addr 0x4000

Figure 5: Example Two-level Stream Table with SPLIT=8

A 2-level Stream table is a structure consisting of one top-level table that contains descriptors that point to multiple
second-level tables that contain linear arrays of STEs. The span of StreamIDs covered by the entire structure is
configurable up to the maximum number supported by the SMMU but the second-level tables do not have to be
fully populated and might vary in size. This saves memory and avoids the requirement of large physically-
contiguous allocations for very large StreamID spaces.

The top-level table is indexed by StreamID[n:SPT], where n = the uppermost StreamID bit covered, and SPT is a
configurable Split point given by SMMU_(S_)STRTAB_BASE_CFG.SPLIT. The second-level tables are indexed
by up to StreamID[SPT-1:0], depending on the span of each table.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 29 of 443

 Non-Confidential

Support for the 2-level Stream table format is discoverable using the SMMU_IDR0.ST_LEVEL field. Where 2-
level Stream Tables are supported, split points of 6, 8 and 10 bits can be used. Implementations support either a
linear Stream Table format, or both linear and 2-level formats.

SMMUs supporting more than 64 StreamIDs (6 bits of StreamID) must also support 2-level Stream tables.
Note: Implementations supporting fewer than 64 StreamIDs might support 2-level Stream Tables, but doing so is
not generally useful as all streams would fit within a single second-level table.
Note: This rule means that an implementation supports two-level tables when the maximum size of linear Stream
table would be too big to fit in a 4KB page.

The top-level descriptors contain a pointer to the second-level table along with the StreamID span that the table
represents. Each descriptor can also be marked as invalid.

This example top-level table is depicted in Figure 5, where the split point is set to 8:

Level 1
index

Valid Level 2
pointer

Level 2 span

0 Y 0x1000 28

1 Y 0x2f20 22

2 N – –

3 Y 0x4000 20

In this example:
• StreamIDs 0-1023 (4 × 8-bit level 2 tables) are represented, though not all are valid.
• StreamIDs 0-255 are configured by the array of STEs at 0x1000 (each of which separately enables the

relevant StreamID).
• StreamIDs 256-259 are configured by the array of STEs at 0x2F20.

• StreamIDs 512-767 are all invalid.

• The STE of StreamID 768 is at 0x4000.

A two-level table with a split point of 8 can reduce the memory usage compared to a large and sparse linear table
used with PCIe. If the full 256 PCIe bus numbers are supported, the RequesterID or StreamID space is 16-bits.
However, because there is usually one PCIe bus for each physical link and potentially one device for each bus, in
the worst case a valid StreamID might only appear once every 256 StreamIDs.

Alternatively, a split point of 6 provides 64 bottom-level STEs, enabling use of a 4KB page for each bottom-level
table.

3.3.2 StreamIDs to Context Descriptors
The STE contains the configuration for each stream indicating:

• Whether traffic from the device is enabled.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 30 of 443

 Non-Confidential

• Whether it is subject to stage 1 translation
• Whether it is subject to stage 2 translation, and the relevant translation tables.
• Which data structures locate translation tables for stage 1.

If stage 1 is used, the STE indicates the address of one or more CDs in memory.

The CD associates the StreamID with stage 1 translation table base pointers (to translate VA into IPA), per-stream
configuration, and ASID. If substreams are in use, multiple CDs indicate multiple stage 1 translations, one for
each substream. Transactions provided with a SubstreamID are terminated when stage 1 translation is not
enabled.

If stage 2 is used, the STE contains the stage 2 translation table base pointer (to translate IPA to PA) and VMID.
If multiple devices are associated with a particular virtual machine, meaning they share stage 2 translation tables,
then multiple STEs might map to one stage 2 translation table.

Note: ARM expects that, where hypervisor software is present, the Stream table and stage 2 translation table are
managed by the hypervisor and the CDs and stage 1 translation tables associated with devices under guest
control are managed by the guest OS. Additionally, the hypervisor can make use of separate hypervisor stage 1
translations for its own internal purposes. Where a hypervisor is not used, a bare-metal OS manages the Stream
table and CDs. For more information, see section 3.6.

When a SubstreamID is supplied with a transaction and the configuration enables substreams, the SubstreamID
indexes the CDs to select a stage 1 translation context. In this configuration, if a SubstreamID is not supplied,
behavior depends on the STE.S1DSS flag:

• When STE.S1DSS==0b00, all traffic is expected to have a SubstreamID and the lack of SubstreamID is
an error. A transaction without a SubstreamID is aborted and an event recorded.

• When STE.S1DSS==0b01, a transaction without a SubstreamID is accepted but is treated exactly as if its
configuration were stage 1-bypass, stage 2-translation. The stage 1 translations are enabled only for
transactions with SubstreamIDs.

• When STE.S1DSS==0b10, a transaction without a SubstreamID is accepted and uses the CD of
Substream 0. Under this configuration, transactions that arrive with SubstreamID 0 are aborted and an
event recorded.

The ASID and VMID values provided by the CD and STE structures tag TLB entries created from translation
lookups performed through configuration from the CD and STEs. These tags are used on lookup to differentiate
translation address spaces between different streams, or to match entries for invalidation on receipt of broadcast
TLB maintenance operations. Implementations might also use these tags to efficiently allow sharing of identical
translation tables between different streams.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 31 of 443

 Non-Confidential

SMMU_(S_)STRTAB_BASEStreamID

Configuration

TTB1

TTB0

ASID

MAIR

Stage 1 translation tables

Stage 2 translation tables

Context Descriptor (CD)

Stream Table Entry (STE)
Config S1ContextPtr

Other attributes, configuration

S2TTBVMID

Figure 6: Configuration structure example

Figure 6 shows an example configuration in which a StreamID selects an STE from a linear Stream table, the STE
points to a translation table for stage 2 and points to a single CD for stage 1 configuration, and then the CD points
to translation tables for stage 1.

CD

SubstreamID

CD
Stage 1

Translation
tables

Stage 2
Translation

tables

Config S1ContextPtr

Other attributes, configuration

S2TTBVMID

Stream Table Entry (STE)
...

Figure 7: Multiple Context Descriptors for Substreams

Figure 7 shows a configuration in which an STE points to an array of several CDs. An incoming SubstreamID
selects one of the CDs and therefore the SubstreamID determines which stage 1 translations are used by a
transaction.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 32 of 443

 Non-Confidential

L1 ST ptr

SMMU_(S_)STRTAB_BASE

L1 ST ptr

STE

STE

CD

L1 CD ptr

L1 CD ptr

CD

CD

CD

STE

CD

Stage 1
Translation

tables

Figure 8: Multi-level Stream and CD tables

Figure 8 shows a more complex layout in which a multi-level Stream table is used. Two of the STEs point to a
single CD, or a flat array of CDs, whereas the third STE points to a multi-level CD table. With multiple levels,
many streams and many substreams might be supported without large physically-contiguous tables.

Stage 1 translation
VA  IPA

Stage 2 translation
IPA  PA

Bypass
Bypass

VA (BA)

IPA

PA

Figure 9: Translation stages and addresses

An incoming transaction is dealt with in a number of logical steps:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 33 of 443

 Non-Confidential

1. If the SMMU is globally disabled (for example when it has just come out of reset with
SMMU_CR0.SMMUEN == 0), the transaction passes through the SMMU without any address
modification. Global attributes, such as memory type or Shareability, might be applied from the
SMMU_GBPA register of the SMMU. Or, the SMMU_GBPA register might be configured to abort all
transactions.

2. If the global bypass described in (1) does not apply, the configuration is determined:
a. An STE is located.
b. If the STE enables stage 2 translation, the STE contains the stage 2 translation table base.
c. If the STE enables stage 1 translation, a CD is located. If stage 2 translation is also enabled by

the STE, the CD is fetched from IPA space which uses the stage 2 translations. Otherwise, the
CD is fetched from PA space.

3. Translations are performed, if the configuration is valid.
a. If stage 1 is configured to translate, the CD contains a translation table base which is walked.

This might require stage 2 translations, if stage 2 is enabled for the STE. Otherwise, stage 1
bypasses translation and the input address is provided directly to stage 2.

b. If stage 2 is configured to translate, the STE contains a translation table base that performs a
nested walk of a stage 1 translation table if enabled, or a normal walk of an incoming IPA.
Otherwise, stage 2 bypasses translation and the stage 2 input address is provided as the output
address.

4. A transaction with a valid configuration that does not experience a fault on translation has the output
address (and memory attributes, as appropriate) applied and is forwarded.

Note: This sequence illustrates the path of a transaction on a Non-secure stream. If two Security states are
supported, the path of a transaction on a Secure stream is similar except SMMU_S_CR0.SMMUEN and
SMMU_S_GBPA control bypass, and stage 2 is not supported.

An implementation might cache data as required for any of these steps. Section 16.2 describes caching of
configuration and translation structures.

Furthermore, events might occur at several stages in the process that prevent the transaction from progressing
any further. If a transaction fails to locate valid configuration or is of an unsupported type, it is terminated with an
abort, and an event might be recorded. If the transaction progresses as far as translation, faults can arise at
either stage of translation. The configuration that is specific to the CD and STEs that are used determines
whether the transaction is terminated or whether it is stalled, pending software fault resolution, see section 3.12.

The two translation stages are described using the VA to IPA and IPA to PA stages of the ARMv8-A Virtualization
terminology.
Note: Some systems refer to the SMMU input as a Bus Address (BA). The term VA emphasises that the input
address to the SMMU can potentially be from the same virtual address space as a PE process (using VAs).

Unless otherwise specified, translation tables and their configuration fields act exactly the same way as their
equivalents specified in the ARMv8-A Translation System for PEs [4].

If an SMMU does not implement one of the two stages of translation, it behaves as though that stage is configured
to permanently bypass translation. Other restrictions are also relevant, for example it is not valid to configure a
non-present stage to translate. An SMMU must support at least one stage of translation.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 34 of 443

 Non-Confidential

3.3.3 Configuration and Translation lookup

O
ut

pu
t t

ra
ns

ac
tio

n

Translation lookupConfiguration lookup

In

pu
t t

ra
ns

ac
tio

n

StreamID

Get Stream
Table Entry

Get Context
DescriptorSubstreamID ASID, translation table

VMID, Stage 2 translation table

StreamWorld (translation regime)

Input address

TLB

{Security,
StreamWorld,

VMID,
ASID,

Address}



{PA,
Permissions}

Miss Walk
translation

tables

Data

Fill

Output address (PA)

Figure 10: Configuration and translation lookup sequence

Figure 10 illustrates the concepts that are used in this document when referring to a configuration lookup and
translation lookup.

As described in 3.3.2 above, an incoming transaction is first subject to a configuration lookup, and the SMMU
determines how to begin to translate the transaction. This involves locating the appropriate STE then, if required,
a CD.

The configuration lookup stage does not depend on the input address and is a function of the:

• SMMU global register configuration.
• Incoming transaction StreamID.
• Incoming transaction SubstreamID (if supplied).

The result of the configuration lookup is the stream or substream-specific configuration that locates the translation,
including:

• Stage 1 translation table base pointers, ASID, and properties modifying the interpretation or walk of the
translation tables (such as translation granule).

• Stage 2 translation table base pointer, VMID and properties modifying the interpretation or walk of the
translation table.

• Stream-specific properties, such as the StreamWorld (the Exception Level, or translation regime, in PE
terms) to which the stream is assigned.

The translation lookup stage logically works the same way as a PE memory address translation system. The
output is the final physical address provided to the system, which is a function of the:

• Input address.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 35 of 443

 Non-Confidential

• StreamWorld (Stream Security state and Exception level), ASID and VMID (which are provided from the
previous step).

Figure 10 shows a PE-style TLB used in the translation lookup step. ARM expects the SMMU to use a TLB to
cache translations instead of performing translation table walks for each transaction, but this is not mandatory.

Note: For clarity, Figure 10 does not show error reporting paths or CD fetch through stage 2 translation (which
would also access the TLB or translation table walk facilities). An implementation might choose to flatten or
combine some of the steps shown, while maintaining the same behavior.

A translation has a StreamWorld property that denotes the translation regime and is directly equivalent to an
Exception level on a PE. All caches of translations are tagged with a StreamWorld which is matched on lookup
and invalidation. The StreamWorld is defined by the configuration that inserts or looks up a translation. The
StreamWorld is defined by the combination of the Security state of an STE, its STE.Config field, its STE.STRW
field and SMMU_CR2.E2H. See the STE.STRW field in section 5.2. In addition to insertion and lookup, the
StreamWorld/Exception level/translation regime affects the scope of different types of TLB invalidations. See
section 3.17.

A translation is tagged with one of the following StreamWorlds:

NS-EL1 On a PE, equivalent to Non-secure EL1

EL2 Equivalent to EL2 when E2H==0 (has no ASID)

EL2-E2H Equivalent to EL2 when E2H==1 (has ASID tag)

Secure Equivalent to either:
• Secure EL1 and Secure EL3 when Secure EL3 is running in AArch32 (in the PE,

a single translation regime is present for Secure).
• Secure EL1 when Secure EL3 is running in AArch64 (EL3 has a separate

translation regime).
See section 3.10.2.

EL3 Equivalent to EL3 when EL3 is running in AArch64

Note: StreamWorld can differentiate multiple translation regimes in the SMMU that are associated with different
bodies of software at different Exception levels. For example, a Secure Monitor EL3 translation for address
0x1000 is different to (and unaffected by) a hypervisor EL2 translation for address 0x1000, as are NS-EL1
translations for address 0x1000. In general, ARM expects that the StreamWorld configured for a stream in the
SMMU will match the Exception level of the software that controls the stream or device.

In the same way as in an ARMv8-A MMU, a translation is architecturally unique if it is identified by a unique set of
{StreamWorld, VMID, ASID, Address} input parameters.

For example, the following are unique and can all co-exist in a translation cache:

• Entries with the same address, but different ASIDs.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 36 of 443

 Non-Confidential

• Entries with the same address and ASID, but different VMIDs.
• Entries with the same address and ASID but a different StreamWorld.

Architecturally, a translation is not uniquely identified by a StreamID and SubstreamID. This results in two
properties:

• A translation is not required to be unique for a set of transaction input parameters (StreamID,
SubstreamID).

o Two streams can be configured to use the same translation configuration and the resulting
ASID/VMID from their configuration lookup will identify a single set of shared translation cache
entries.

• Multiple StreamID/SubstreamID configurations that result in identical ASID/VMID/StreamWorld
configuration must maintain exactly the same configuration where configuration can affect TLB lookup.

o For example, two streams configured for a stage 1, NS-EL1 with ASID=3 must both use the same
translation table base addresses and translation granule.

In this document, the term TLB is used to mean the concept of a translation cache, indexed by
StreamWorld/VMID/ASID and VA.

SMMU cache maintenance commands therefore fall into two groups:

• Configuration cache maintenance, acting upon StreamIDs and SubstreamIDs.
• Translation cache maintenance (or TLB maintenance), acting on addresses, ASIDs, VMIDs and

StreamWorld.
The second set of commands directly matches broadcast TLB maintenance operations that might be available
from PEs in some systems.

3.3.4 Transaction attributes: incoming, two-stage translation and overrides
In addition to an address, size and read/write attributes, an incoming transaction might be presented to the SMMU
with other attributes, such as an access type (for example Device, WB-cached Normal memory), Shareability (for
example Outer Shareable), cache allocation hints, and permissions-related attributes, instruction/data,
privileged/unprivileged, Secure/Non-secure. Some of these attributes are used to check the access against the
page permissions that are determined from the translation tables. After passing through the SMMU, a transaction
presented to the system might also have a set of attributes, which might have been affected by the SMMU.

The details of how input attributes affect the attributes output into the system, in combination with translation table
attributes and other configuration, is described in detail in section 13.

The input attributes are conceptually provided from the system, either conveyed from a client device that defines
the transaction attributes in a device-specific way, or set in a system-specific way by the interconnect before the
transaction is input to the SMMU.

As an overview:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 37 of 443

 Non-Confidential

• Permission-related attributes (instruction/data, privileged/unprivileged) and read/write properties are used
for checking against translation table permissions, which might deny the access. The permission-related
attributes input into the SMMU might be overridden on a per-device basis before the permission checks
are performed, using the INSTCFG, PRIVCFG and NSCFG STE fields. The SMMU might output these
attributes.
Note: The overrides might be useful if a device is not able to express a particular kind of traffic.

• Other attributes (memory type, Shareability, cache hints) are intended to have an effect on the memory
system rather than the SMMU, for example, control cache lookup for the transaction. The attributes
output into the memory system are a function of the attributes specified by the translation table descriptors
(at stage 1, stage 2, or stage 1 and stage 2) used to translate the input address. The SMMU might
convey attributes input from a device through this process, so that the device might influence the final
transaction access, and input attributes might be overridden on a per-device basis using the
MTCFG/MemAttr, SHCFG, ALLOCCFG STE fields. The input attribute, modified by these fields, is
primarily useful for setting the resulting output access attribute when both stage 1 and stage 2 translation
is bypassed (no translation table descriptors to determine attribute) but can also be useful for stage 2-only
configurations in which a device stream might have finer knowledge about the required access behavior
than the general virtual machine-global stage 2 translation tables.

The STE attribute and permission override fields, MTCFG/MemAttr, SHCFG, ALLOCCFG, INSTCFG, PRIVCFG
and NSCFG, allow an incoming value to be used or, for each field, a specific override value to be selected. For
example, INSTCFG can configure a stream as Always Data, replacing an incoming INST property that might be in
either state. However, in SMMU implementations that are closely-coupled to, or embedded in, a device, the
incoming attribute can always be considered to be the most appropriate. When an SMMU and device guarantee
that the incoming attributes are correct, it is permissible for an SMMU to always use the incoming value for each
attribute value. See SMMU_IDR1.ATTR_TYPES_OVR and SMMU_IDR1.ATTR_PERMS_OVR for more
information. For an SMMU that cannot guarantee that these attributes are always provided correctly from the
client device, for example a discrete SMMU design, ARM strongly recommends supporting overrides of incoming
attributes.

3.4 Address sizes
There are three address size concepts to consider in the SMMU, the input address size from the system, the
Intermediate Address Size (IAS), and the Output Address Size (OAS):

• The SMMU input address size is 64 bits.
o Note: See section 3.4.1 for recommendations on how a smaller interconnect or device address

capability is presented to the SMMU.
• IAS reflects the maximum usable IPA of an implementation that is generated by stage 1 and input to stage

2:
o This term is defined to illustrate the handling of intermediate addresses in this section and is not a

configurable parameter.
o The maximum usable IPA size of an SMMU is defined in terms of other SMMU implementation

choices, as:
IAS = MAX((SMMU_IDR0.TTF[0]==1 ? 40 : 0), (SMMU_IDR0.TTF[1]==1 ? OAS : 0));

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 38 of 443

 Non-Confidential

o An IPA of 40 bits is required to support of AArch32 LPAE translations, and AArch64 limits the
maximum IPA size to the maximum PA size. Otherwise, when AArch32 LPAE is not
implemented, the IPA size equals OAS, the PA size, and might be smaller than 40 bits.

o The purpose of definition of the IAS term is to abstract away from these implementation variables.
• OAS reflects the maximum usable PA output from the last stage of AArch64 translations, and must match

the system physical address size. The OAS is discoverable from SMMU_IDR5.OAS. Final-stage
AArch32 translations always output 40 bits which are zero-extended into a larger OAS, or truncated to a
smaller OAS.

Note: Except where explicitly noted, all address translation and fault checking behavior is consistent with
ARMv8-A [4].

If the SMMU is disabled (with SMMU_(S_)CR0.SMMUEN==0, and SMMU_(S_)GBPA.ABORT==0 allows traffic
bypass), the input address is presented directly to the output PA. If the input address of a transaction exceeds the
size of the OAS, the transaction is terminated with an abort and no event is recorded. Otherwise, when
SMMU_(S_)CR0.SMMUEN==1, transactions are treated as described in the rest of this section.

When a stream selects an STE with STE.Config[2:0]==0b100, transactions bypass all stages of translation. If the
input address of a transaction exceeds the size of the OAS, the transaction is terminated with an abort and a
stage 1 Address Size fault (F_ADDR_SIZE) is recorded.

Note: In ARMv8-A PEs, when both stages of translation bypass, a (stage 1) Address Size fault might be
generated where an (input) address is greater than the PA size, depending on whether a PE is in AArch32 or
AArch64 state. This behavior does not directly translate to the SMMU because no configuration is available to
select translation system when in bypass or disabled, therefore the address size is always tested.

When a stream selects an STE with one or more stages of translation present:

For input to stage 1, the input address is treated as a VA (see section 3.4.1) and if stage 1 is not bypassed the
following stage 1 address checks are performed:

1. On input, a stage 1 Translation fault (F_TRANSLATION) occurs if the VA is outside the range specified by
the relevant CD:

a. For a CD configured as AArch32 LPAE, the maximum input range is fixed at 32 bits, and the
range of the address input into a given TTB0 or TTB1 translation table is determined by the T0SZ
and T1SZ fields.
Note: The arrangement of the TTB0/TTB1 translation table input spans might be such that there
is a range of 32-bit addresses that is outside both of the TTB0 and TTB1 spans and will always
cause a Translation fault.

b. For a CD configured as AArch64, the range is determined by the T0SZ and T1SZ fields.
i. For SMMUv3.0, up to a maximum of 49 bits (two 48-bit TTB0/TTB1).
ii. For SMMUv3.1, when SMMU_IDR5.VAX==1, each TTBx that is configured for a 64KB

granule using CD.TGx has a maximum input size of 52 bits. When SMMU_IDR5.VAX==0
or a TTBx is configured for a 4KB or 16KB granule, the maximum input size of the TTBx
is 48 bits.

A VA is inside the range only if it is correctly sign-extended from the top bit of the range size upwards,
although an exception is made for Top Byte Ignore (TBI) configurations.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 39 of 443

 Non-Confidential

Note: For example, with a 49-bit VA range and TBI disabled, addresses 0x0000FFFFFFFFFFFF and
0xFFFF000000000000 are within the range but 0x0001000000000000 and 0xFFFE000000000000
are not. See 3.4.1 below for details.

2. The address output from the translation causes a stage 1 Address Size fault if it exceeds the range of the
effective IPA size for the given CD:

a. For AArch32 LPAE CDs, the IPA size is fixed at 40 bits (the IPS field of the CD is IGNORED).
b. For AArch64 CDs, the IPA size is given by the effective value of the IPS field of the CD, which is

capped to the OAS.
If bypassing stage 1 (because STE.Config[0]==0, STE.S1DSS==0b01 or if unimplemented), the input address is
passed directly to stage 2 as the IPA. If the input address of a transaction exceeds the size of the IAS, a stage 1
Address Size fault occurs, the transaction is terminated with an abort and F_ADDR_SIZE is recorded. Otherwise,
the address might still lie outside the range that stage 2 will accept. In this case, the stage 2 check 1 described in
this section causes a stage 2 Translation fault.
Note: The TBI configuration can only be enabled when a CD is used (that is when stage 1 translates) and is
always disabled when stage 1 is bypassed or disabled.

Note: The SMMU stage 1 bypass behavior is analogous to a PE with stage 1 disabled but stage 2 translating.
The SMMU checks stage 1 bypassed addresses against the IAS, which (when AArch32 LPAE support is
implemented) might be greater than the PA. This supports stage 2-only assignment of devices to guest VMs
expecting to program 40-bit DMA addresses, which are input to stage 2 translation.

Note: This also means that an SMMU implementing only stage 2, or implementing both stages but translating
through stage 2 only, can still produce a fault marked as coming from stage 1.

Stage 2 receives an IPA, and if not bypassing, the following stage 2 address size checks are performed:

1. On input, a stage 2 Translation fault occurs if the IPA is outside the range configured by the relevant
S2T0SZ field of the STE.

a. For an STE configured as AArch32 LPAE (see STE.S2AA64), the input range is capped at 40 bits
(and cannot exceed 40 bits) regardless of the IAS size.

b. For a STE configured as AArch64, the input range is capped by the IAS.
c. For SMMUv3.1, when OAS==IAS==52, the stage 2 input range is further limited to 48 bits unless

STE.S2TG indicates a 64KB granule.
Note: This ensures, for a system having OAS < 40, that an AArch64 stage 2 can accept a 40-bit
IPA from an AArch32 stage 1, if the SMMU supports AArch32.

2. The address output from the translation causes a stage 2 Address Size fault if it exceeds the effective PA
output range:

a. For an AArch64 STE, this is the effective value configured in the S2PS field of the STE (which is
capped to the OAS).
Note: For SMMUv3.1, the effective size can be 52 only if OAS==52 and 64KB granules are used.

b. For an AArch32 STE, this output range is fixed at 40 bits and the STE.S2PS field is IGNORED. If
the OAS is less than 40, and if the output address is outside the range of the OAS, the address is
silently truncated to fit the OAS.

After this check, if the output address of stage 2 is smaller than the OAS, the address is zero-
extended to match the OAS.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 40 of 443

 Non-Confidential

If bypassing stage 2 (because STE.Config[1]==0 or if unimplemented), the IPA is presented directly as the PA
output address. If the IPA is outside the range of the OAS, the address is silently truncated to fit the OAS. If the
IPA is smaller than the OAS, it is zero-extended.

Note: Because the SMMU contains configuration structures that are checked for validity before beginning
translation table walks, certain configuration errors are detected as an invalid structure configuration. This
includes STE.S2TTB being out of range of the effective stage 2 output address size, or CD.TTBx being out of
range of the effective stage 1 output address size. These invoke C_BAD_STE or C_BAD_CD configuration faults,
respectively, instead of an Address Size fault.

3.4.1 Input address size and Virtual Address size
The architectural input address size of the SMMU is 64 bits. If a client device outputs an address smaller than 64
bits, or if the interconnect between a client device and the SMMU input supports fewer than 64 bits of address, the
smaller address is converted to a 64-bit SMMU input address in a system-specific manner. This conversion is
outside of the scope of this specification.

ARMv8.0 [4] and ARMv8.1 [5] support a maximum of a 49-bit VA in AArch64, meaning there are up to 49
significant lower bits sign-extended to a 64-bit address. ARMv8.2 supports a maximum of a 53-bit VA or 49-bit VA
in AArch64, meaning there are up to 53 or 49 significant lower bits sign-extended to a 64-bit address. Stage 1
translation contexts configured as AArch64 have input VA ranges configurable up to the maximum (arranged as
two halves and translated through TTB0 and TTB1).

The term VAS represents the VA size chosen for a given SMMU implementation. When SMMU_IDR5.VAX==0,
this is 49 bits (2 x 48 bits). When SMMU_IDR5.VAX==1, this is 53 bits (2 x 52 bits).

Note: In SMMUv3.0, SMMU_IDR5.VAX is RES0 and therefore VAS is always 49 bits.

Stage 1’s high translation table, TTB1, can only be selected if VAS significant bits of address are presented to the
SMMU sign-extended. If applications require use of both TTB0 and TTB1 then the system design must transmit
addresses of at least VAS bits end-to-end, from device address registers through the interconnect to the SMMU,
and that sign-extension occurs from the input MSB upwards as described in this section.

Stage 1 translation contexts configured as AArch32 have a 32-bit VA. In this case, bits [31:0] of the input address
are used directly as the VA. A Translation fault is raised if the upper 32 bits of the input address are not all zero.
The TxSZ fields are used to select TTB0 or TTB1 from the upper bits [31:n] in the input range.

Input range checks made for a stage 1 AArch64 translation table configured (with TxSZ) for an input range of N
significant bits fail unless bits VA[AddrTop:N-1] are identical.

• When Top Byte Ignore (TBI) is not used, AddrTop==63.
• When Top Byte Ignore is enabled, AddrTop==55, which means that VA[63:56] are ignored.

When TBI is enabled, only VA[55:N-1] must be identical and the effective VA[63:56] bits are taken to be a sign-
extension of VA[55] for translation purposes.
Note: TBI configuration is part of the CD, so it can only be enabled when stage 1 translates. When stage 1 is
bypassed or disabled, no CD is used and TBI is always disabled.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 41 of 443

 Non-Confidential

The term Upstream Address Size (UAS) represents the number of effective bits of address presented to the
SMMU from a client device:

1. If 57 ≤ UAS < 64, TBI has meaning as there are bits supplied in VA[63:56] that might differ from
VA[55:(VAS-1)]. TBI determines whether a Translation fault is invoked if they differ.

2. If VAS ≤ UAS < 57, TBI is meaningless as the input sign-extension means VA[63:56] cannot differ from
VA[55].

3. If UAS ≤ VAS, the range checks can only fail if translation table range is configured with a T0SZ, or T1SZ,
if UAS=49, smaller than the presented address. That is, the maximum configuration of stage 1 translation
tables covers any presented input address.

For AArch64, the stage 1 translation table, TTB0 or TTB1, is selected from the uppermost address bit. This is
given by VA[63] when TBI==0, or by VA[55] when TBI==1. Therefore, because an address size from the client
device that is less than or equal to the VAS bits is zero-extended to 64, this means VA[63]==VA[55]==0 and TTB1
is never selected.

If any upper address bits of a 64-bit address programmed into a peripheral are not available to the SMMU sign-
checking logic, whether by truncation in the interconnect or peripheral, software must not rely on mis-programmed
upper bits to cause a Translation fault in the SMMU. If such checking is required within such a system, software
must check the validity of upper bits of DMA addresses programmed into such a device.

All input address bits are recorded unmodified in SMMU fault event records.

3.4.2 Address alignment checks
The SMMU architecture does not check the alignment of incoming transaction addresses.
Note: For a PE, the alignment check is based on the size of an access. This semantic is not directly applicable to
client device accesses.

3.4.3 Address sizes of SMMU-originated accesses
Distinct from client device accesses forwarded into the system, the SMMU originates accesses to the system for
the purposes of:

• Configuration structure access (STE, CD).
• Queue access (Command, Event, PRI).
• MSI interrupt writes.
• Last-stage translation table walks:

o Note: Addresses output from stage 1 walks in a nested configuration are input to stage 2 and
translated in the expected manner (including causing stage 1 Address Size faults, or stage 2
Translation faults from IPAs outside the stage 2 translation range), rather than being output into
the system directly.

An access address can be out of range if it relates to a base address that is already greater than an allowed
address size, or if an index is applied to a base address so that the result is greater than an allowed address size.
If an access address is calculated to be a PA value greater than the SMMU OAS or physical address size, or an
IPA value greater than the IAS or intermediate address size, behavior is as follows:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 42 of 443

 Non-Confidential

Access type Configured by Address type Behaviour when address too large

CD fetch or
L1CD fetch

STE.S1ContextPtr If stage 1-only, PA Truncate to OAS or F_CD_FETCH or
C_BAD_STE (1)

If stage 2 present, IPA Truncate to IAS or C_BAD_STE or
Stage 2 Translation fault (2)

CD fetch L1CD.L2Ptr If stage 1-only, PA Truncate to OAS or F_CD_FETCH or
C_BAD_SUBSTREAMID (3)

If stage 2 present, IPA Truncate to IAS or
C_BAD_SUBSTREAMID or stage 2
Translation fault (4)

STE fetch SMMU_(S_)STRTAB_BASE
or L1STD.L2Ptr

PA Truncate to OAS or F_STE_FETCH
(5)

Queue access SMMU_(S_)*Q_BASE PA Truncate to OAS (6)

MSI write SMMU_(S_)*_IRQ_CFG{0,1,2}
or CMD_SYNC arguments

PA Truncate to OAS (6)

Last-stage
translation
table walk

Addresses derived from
intermediate translation table
descriptors located using
STE.S2TTB or CD.TTB{0,1},
after the first level TTD fetch.

PA Stage 1/2 Address Size fault

Starting-level TTD address in
STE.S2TTB or CD.TTB{0,1},

PA CD or STE ILLEGAL (see
CD.TTB{0,1} and STE.S2TTB
description)

In the context of these respective access types:
1. An SMMUv3.1 implementation generates C_BAD_STE and terminates the transaction. It is CONSTRAINED

UNPREDICTABLE whether an SMMUv3.0 implementation:

a. Generates an F_CD_FETCH and terminates the transaction. The event contains the non-
truncated fetch address.

b. Generates a C_BAD_STE and terminates the transaction.
c. Truncates STE.S1ContextPtr to the OAS and initiates a read of a CD/L1CD from this address

(translation continues).
2. It is CONSTRAINED UNPREDICTABLE whether an implementation:

a. Generates a C_BAD_STE and terminates the transaction.
b. Inputs the IPA to stage 2 without truncation, generating a stage 2 Translation fault that reports a

non-truncated fault address.
c. SMMUv3.0 only, inputs the IPA to stage 2 with truncation to the IAS. If translation is successful,

initiates a read of a CD/L1CD from the result otherwise generates a stage 2 fault that reports a
truncated fault address.

3. An SMMUv3.1 implementation generates C_BAD_SUBSTREAMID and terminates the transaction. It is
CONSTRAINED UNPREDICTABLE whether an SMMUv3.0 implementation:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 43 of 443

 Non-Confidential

a. Generates an F_CD_FETCH and terminates the transaction. The event contains the non-
truncated fetch address.

b. Generates a C_BAD_SUBSTREAMID and terminates the transaction.
c. Truncates L1CD.L2Ptr to the OAS and initiates a read of a CD from this address (translation

continues).
4. It is CONSTRAINED UNPREDICTABLE whether an implementation:

a. Generates a C_BAD_SUBSTREAMID and terminates the transaction.
b. Inputs the IPA to stage 2 without truncation, generating a stage 2 Translation fault that reports a

non-truncated fault address.
c. SMMUv3.0 only, inputs the IPA to stage 2 with truncation to the IAS. If translation is successful,

initiates a read of a CD from the result otherwise generates a stage 2 fault that reports a truncated
fault address.

5. It is CONSTRAINED UNPREDICTABLE whether an implementation truncates an STE fetch address (and
continues translation) or generates an F_STE_FETCH condition which terminates the transaction and
might deliver an error event.

6. Note: When hypervisor software presents an emulated SMMU interface to a guest, ARM recommends
that guest-provided addresses are correctly masked to the IPA size to ensure consistent SMMU behavior
from the perspective of the guest driver.

In all cases where a non-truncated address is reported in a fault (for instance, a stage 2 Translation fault), the
reported address is the calculated address of the structure being accessed, for example an L1CD address
calculated from a base address of STE.S1ContextPtr indexed by the incoming SubstreamID to locate a L1CD
structure.

The address of an L1CD or CD, given by STE.S1ContextPtr or L1CD.L2Ptr, is not subject to a stage 1 Address
Size fault check.

In summary, configuration registers, command fields and structure fields programmed with out-of-range physical
addresses might truncate the addresses to the OAS or PA size.
Note: This behavior in part arises from the fact that register address fields are not required to provide storage for
high-order physical address bits beyond the OAS. See section 6.3 for details.
Note: Commands, register and structure fields taking IPA addresses store the entire field width so that a potential
stage 2 fault can be correctly raised (providing a full non-truncated IPA in a fault record).

3.5 Command and Event queues
All SMMU queues for both input to, and output from the SMMU are arranged as circular buffers in memory. A
programming interface has one Command queue for input and one Event queue (and optionally one PRI queue)
for output. Each queue is used in a producer-consumer fashion so that an output queue contains data produced
by the SMMU and consumed by software. An input queue contains data produced by software, consumed by the
SMMU.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 44 of 443

 Non-Confidential

3.5.1 SMMU circular queues
A queue is arranged as a 2n-items sized circular FIFO with a base pointer and two index registers, PROD and
CONS indicating the producer and consumer current positions in the queue. In each of the output and input roles,
only one index is maintained by the SMMU, with the other is maintained by software.

For an input queue (Command queue), the PROD index is updated by software after inserting an item into the
queue, and is read by the SMMU to determine new items. The CONS index is updated by the SMMU as items
are consumed, and is read by software to determine that items are consumed and space is free. An output queue
is the exact opposite.

PROD indicates the index of the location that can be written next, if the queue is not full, by the producer. CONS
indicates the index of the location that can be read next, if the queue is not empty. The indexes must always
increment and wrap to the bottom when they pass the top entry of the queue.

The queues use the mirrored circular buffer arrangement that allows all entries to be valid simultaneously (rather
than N-1 valid entries in other circular buffer schemes). Each index has a wrap flag, represented by the next
higher bit adjacent to the index value contained in PROD and CONS. This bit must toggle each time the index
wraps off the high end and back onto the low end of the buffer. It is the responsibility of the owner of each index,
producer or consumer, to toggle this bit when the owner updates the index after wrapping. It is intended that
software reads the register, increments or wraps the index (toggling wrap when required) and writes back both
wrap and index fields at the same time. This single update prevents inconsistency between index and wrap state.

• If the two indexes are equal and their wrap bits are equal, the queue is empty and nothing can be
consumed from it.

• If the two indexes are equal and their wrap bits are different, the queue is full and nothing can be
produced to it.

• If the two indexes differ or the wrap bits differ, the consumer consumes entries, incrementing the CONS
index until the queue is empty (both indices and wrap bits are equal).

Therefore, the wrap bits differentiate the cases of an empty buffer and a full buffer where otherwise both indexes
would indicate the same location in both full and empty cases.

On initialization, the queue indexes are written by the agent controlling the SMMU before enabling the queue. The
queue indexes must be initialized into one of the following consistent states:

• PROD.WR == CONS.RD and PROD.WR_WRAP == CONS.RD_WRAP, representing an empty queue.
o Note: ARM expects this to be the state on normal initialization.

• PROD.WR == CONS.RD and PROD.WR_WRAP != CONS.RD_WRAP, representing a full queue.
• PROD.WR > CONS.RD and PROD.WR_WRAP == CONS.RD_WRAP, representing a partially-full queue.
• PROD.WR < CONS.RD and PROD.WR_WRAP != CONS.RD_WRAP, representing a partially-full queue.

The agent controlling the SMMU must not write queue indexes to any of the following inconsistent states whether
at initialization or after the queue is enabled:

• PROD.WR > CONS.RD and PROD.WR_WRAP != CONS.RD_WRAP
• PROD.WR < CONS.RD and PROD.WR_WRAP == CONS.RD_WRAP

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 45 of 443

 Non-Confidential

If the queue indexes are written to an inconsistent state, one of the following CONSTRAINED UNPREDICTABLE
behaviors is permitted:

• The SMMU consumes, or produces as appropriate to the given queue, queue entries at UNKNOWN
locations in the queue.

• The SMMU does not consume, or produce as appropriate, queue entries while the queue indexes are in
an inconsistent state.

Each circular buffer is 2n-items in size, where 0 ≤ n ≤ 19. An implementation might support fewer than 19 bits of
index. Each PROD and CONS register is 20 bits in size to accommodate the maximum 19-bit index plus the wrap
bit. The actual buffer size is determined by software, up to the discoverable SMMU implementation-defined limit.
The position of the wrap bit depends on the configured index size.

Note: For example, when a queue is configured with 128 entries it means:

• The queue indices are 7-bit.
• PROD.WR and CONS.RD fields are 7 bits large. The queue indexes are bits [6:0] of PROD and CONS.
• The wrap bit [7] of PROD and CONS registers. Bits [19:8] are ignored.

The lifecycle of a circular buffer is shown in Figure 11.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 46 of 443

 Non-Confidential

Producer

Consumer

Starts empty

A B CNew entries

Entries
consumed:

queue
empty

Entries
added:

queue full
E

D

F G HI J K

Producer
wraps E F G HI

Entries
consumed,
consumer

wraps
J K

Prod. wrap = 0

Cons. wrap = 0

Prod. wrap = 1

L

Entries
consumed:

queue
empty

Cons. wrap = 1

Wrap bits same

Wrap bits same

Wrap bits differ

Figure 11: Circular buffer/queue operation

When producing or consuming entries, software must only increment an index (except when an increment will
cause a wrap to the start). The index must never otherwise be moved backwards. The SMMU makes the same
guarantee, only incrementing or wrapping its index values.

There is one Command queue per implemented Security state. The SMMU commands are consumed in order
from this queue.

The Event queues receive asynchronous events such as faults recorded from device traffic or configuration errors
(which might be discovered only when device traffic causes the SMMU to traverse the structures). On the Non-

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 47 of 443

 Non-Confidential

secure side, there is one global Event queue which receives events from all Non-secure streams and
configuration.

When SMMU_S_IDR1.SECURE_IMPL==1 , there is also one Secure Event queue which receives events from all
Secure streams and configuration, see section 3.10.2.

All output queues are appended to sequentially.

3.5.2 Queue entry visibility semantics
Any producer (whether the SMMU or software) must ensure that if an update to the PROD index value is
observable by the consumer, all new queue entries are observable by the consumer. For output queues from the
SMMU (Event and PRI queues), the SMMU writes queue data to memory and, when that data becomes visible
with respect to the rest of the Shareability domain, the SMMU allows the updated PROD index value to be
observed. This is the first point that a new queue entry is visible to the consumer.

A consumer must not assume presence of a new valid entry in a queue through any mechanism other than having
first observed an updated PROD index that covers the entry position. If a consumer reads a queue entry beyond
the point indicated by the last read of the PROD index, the entry contains UNKNOWN data.

Note: Interrupt ordering rules also exist, see section 3.18. The SMMU makes queue updates observable through
the PROD index no later than at the point where it asserts the queue interrupt.

Note: Software must not assume a new queue item is present when an interrupt arrives, without first reading the
PROD index. If, for example, a prior interrupt handler consumed all events including those of a second batch
(with a second interrupt), the next interrupt handler invocation might find no new queue entries.

3.5.3 Event queue behavior
The SMMU might support configurable behavior on Translation-related faults, which enable a faulting transaction
to be stalled, pending later resolution, or terminated which immediately aborts the transaction. See section 3.12
for details on fault behavior.

Events are recorded into the Event queue in response to a configuration error or translation-related fault
associated with an incoming transaction. A sequence of faults or errors caused by incoming transactions could fill
the Event queue and cause it to overflow if the events are not consumed fast enough. Events resulting from
stalled faulting transactions are never discarded if the Event queue is full, but are recorded when entries are
consumed from the Event queue and space next becomes available. Other types of events are discarded if the
Event queue is full.
Note: ARM expects that the classes of events that might be discarded are generally used for debug.
Section 7.4 covers the exact queue behavior upon overflow.

ARM recommends that system software consumes entries from the Event queue in a timely manner to avoid
overflow during normal operation.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 48 of 443

 Non-Confidential

In all cases in this document, when it is stated that an event is recorded, the meaning is that the event is recorded
if room is available for a new entry in the Event queue and the queue is writable. A queue is writable if it is
enabled, has no global error flagged and would not otherwise overflow, see section 7.2. Events that are not
reported in response to a stalled transaction (for example where there is no Stall field, or Stall==0) are permitted
to be discarded if they cannot be recorded. Stall events are generally not discarded and are recorded when the
Event queue is next writable, see section 7.2 for details of exceptions to this rule. Software must consume events
from the queue to free up space, otherwise the pending stall events will not be recorded. Stall events are
otherwise no different to any other event. The queue is filled in the same circular order and such events do not
overwrite existing, unconsumed, events.

Where multiple pending events contend for a write to the Event queue, ARM recommends that an implementation
does not unfairly prioritise non-stall events above events with Stall==1, if it is possible to do so. This helps avoid
the case of a steady stream of terminated transactions from a misbehaving device holding back the events of
stalled transactions for an indeterminate time.

If an event is generated in response to a transaction that is terminated, there is no requirement for the event to be
made visible in the Event queue before a transaction response is returned to the client. See CMD_SYNC, section
4.6.3, which enforces visibility of events relating to terminated transactions.
Note: This means that an event generated in response to a terminated transaction might be visible as an SMMU
event before the point that the transaction termination is reported at the client device.

3.5.4 Definition of event record write “Commit”
Generation of an event record can be abstracted into these steps:

1. A situation that triggers an event occurs, for example a translation fault.
2. An event record is assembled internally in the SMMU.
3. It is determined that it is possible to write a new queue entry.
4. The final event record is committed to be written to the Event queue entry.
5. The event record becomes visible in the Event queue:

a. The update to the record data location is visible to the required Shareability domain.
b. The PROD.WR index is updated to publish the new record to software. In terms of queue

semantics, the record is not visible (even if it has been written to memory) until the write index is
updated to cover the new entry.

The commit point, 4, represents the conceptual point after which the event will definitely be written to the queue
and eventually become visible. Until commit, the event write might not happen (for example, if the queue is full
and software never consumes any entries, the event write will never commit).

An event write that has committed is guaranteed to become visible in the Event queue, if the subsequent write
does not experience an external abort, see section 7.2.

The write of a stall event record must not commit until the queue entry is deemed writable (the queue is enabled
and not full). If it is not writable, the stall record is buffered until the queue is next writable, unless one of the
exceptions in section 7.2 causes the record to be discarded.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 49 of 443

 Non-Confidential

3.5.5 Event merging
Implementations are permitted to merge some event records together. This might happen where multiple identical
events occurred, and can be used to reduce the volume of events recorded into the Event queue where individual
events do not supply additional useful information.

Events can be merged where all of the following conditions are upheld:

• The event types and all fields are identical, except fields explicitly indicated in section 7.3.
• If present, the Stall field is 0. Stall fault records are not merged, see section 3.12.2.

An implementation is not required to merge any events, but one that does is required to support the STE.MEV flag
to enable or inhibit merging of events relating to a given stream.

Note: For debugging purposes, merging of some events can be disabled on a per-stream basis using the
STE.MEV flag.

Software implementations (for example a virtual emulation of an SMMU) are not required to respect STE.MEV. A
hypervisor might cause events to continue to be merged after a guest requests merging to be disabled, for
example if it determines a misbehaving guest to be causing too many debug events.

See section 7.3.1 for details.

3.6 Structure and queue ownership
ARM expects that the Non-secure Stream table, Command queue, Event queue and PRI queue are controlled by
the most privileged Non-secure system software.

If present, ARM expects that the Secure Stream table, Secure Command queue and Secure Event queue are
controlled by Secure software. For example, these would be controlled by software in EL3 if a separation in
control between Secure EL1 and EL3 is required.

ARM expects that the stage 2 translation tables indicated by all STEs are controlled by a hypervisor.

The ownership of stage 1 CDs and translation tables depends on the configuration in use. If pointed to by a
Secure STE, they are controlled by Secure software (either EL3 or EL1). If pointed to by a Non-secure STE, the
context might be:

• Used by a bare metal OS which controls the descriptor and translation tables and is addressed by PA.
• Used by a hypervisor internally which controls the descriptor and translation tables and is addressed by

PA.
• Used by a guest, in which case ARM expects that the CD and translation tables are controlled by the

guest, addressed by IPA.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 50 of 443

 Non-Confidential

Note: ARM expects that the Non-secure Event queue is managed by the hypervisor, which forwards events into
guest VMs as appropriate. StreamIDs might be mapped from physical to virtual equivalents during this process.

In virtualized scenarios, ARM expects a hypervisor to:

• Convert guest STEs into physical SMMU STEs, controlling permissions and features as required.
Note: The physical StreamIDs might be hidden from the guest, which would be given virtual StreamIDs,
so a mapping between virtual and physical StreamIDs must be maintained.

• Read and interpret commands from the guest Command queue. These might result in commands being
issued to the SMMU or invalidation of internal shadowed data structures.

• Consume new entries from the PRI and Event queues, mapping from host StreamIDs to guest, and
deliver appropriate entries to guest Event and PRI queues.

3.7 Programming registers
The SMMU registers occupy a set of contiguous 64K pages of system address space that contain mechanisms for
discovering capabilities and configuring pointers to in-memory structures and queues. After initialization, runtime
access to the registers is generally limited to maintenance of the Command, Event and PRI queue pointers and
interaction with the SMMU is performed using these in-memory queues.

Optional regions of IMPLEMENTATION DEFINED register space are supported in the memory map.

See section 6.1 for register definitions and layout.

3.8 Virtualization
Devices can be put under direct guest control with stage 2-only mappings, without requiring guest interaction with
the SMMU. To the guest OS, they appear as though the device is directly connected and might request DMA to
PAs (IPAs) directly.

The SMMU does not provide programming interfaces for use directly by virtual machines. ARM expects that,
where stage 1 facilities are required for use by a guest in virtualization scenarios, this is supported using
hypervisor emulation of a virtual SMMU, or a similar interface for use by a virtual machine.

Implementations might provide an IMPLEMENTATION DEFINED number of extra hardware interfaces that are located
in an IMPLEMENTATION DEFINED manner but are otherwise compatible with the SMMUv3 programming interface.
Each interface might be mapped through to a guest VM for it to use directly, for example appearing as a stage 1-
only interface to the guest while the hypervisor interface appears as stage 2-only. The management of such an
implementation is beyond the scope of this document.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 51 of 443

 Non-Confidential

3.9 Support for PCI Express, PASIDs, PRI and ATS
A PCI RequesterID maps directly to the low-order bits of a StreamID, therefore maps to one STE, see section 3.2.
A PCIe Function is then the minimum granularity that can be assigned to a VM. The PCIe PASID prefix allows a
Function to be subdivided into parts, each of which is intended to be assigned to a different user space process at
stage 1. The prefix is optional. Transactions from one StreamID might be supplied with a SubstreamID or not, on
a per-transaction basis. Because the prefix just identifies a portion of a Function, the Function remains otherwise
indivisible and remains the granularity at which assignments to VMs are made. Therefore, in PCI terms:

• Stage 2 is associated with a RequesterID (identifying a Function). The Function is assigned to a VM.
• Stage 1 is associated with a (RequesterID, PASID) tuple. That is, the PASID differentiates between

different stage 1 translation contexts.
• The PASID identifies which of the parts or contexts of the Function are assigned to which process or

driver at stage 1.
• If transactions from a Function are translated using stage 2 but stage 1 is unused and in bypass, there are

no stage 1 translation contexts to differentiate with a PASID. Supply of a PASID or SubstreamID to a
configuration without stage 1 translation causes the translation to fail. Such transactions are terminated
with an abort and C_BAD_SUBSTREAMID is recorded.

PASIDs can be up to 20 bits in size. PASIDs are optional, configurable, and of a size determined by the minimum
of the endpoint, system software, PCIe Root Complex and the individually-supported substream width of the
SMMU.

The SMMU is not required to report an error in the case where an endpoint and Root Complex emit a PASID with
a value greater than can be expressed in the SubstreamID width supported by the SMMU. In this scenario, the
PASID might be truncated to the SubstreamID size on arrival at the SMMU.

In order to minimise PCIe-specific terms, a RequesterID is referred to using a StreamID (to which the RequesterID
maps in a hardware-specific manner). In the SMMU, a PASID is referred to as a SubstreamID. Even when a
client device supports SubstreamIDs, it is not mandatory to supply a SubstreamID with all transactions from that
device. PCIe permits a PASID to be supplied, or not, on a per-transaction basis. Therefore, where a
SubstreamID is input to the SMMU, a validity flag is also provided and this is asserted when a PASID is present.

The PASID tag provides additional permission attributes on top of the standard PCIe read/write attribute. The tag
can express an Execute and Privileged state that correspond to the SMMU INST and PRIV attributes. A PCIe
transaction without a PASID is considered Data, unprivileged. The mapping between PCIe and SMMU
permissions is described in section 13.7.

3.9.1 ATS Interface
An optional extra hardware interface might be provided by an SMMU implementation to support PCIe ATS [3] and
PRI. This interface conveys translation and paging requests and responses to and from the PCIe Root Complex,
which bridges requests and responses into the PCIe domain.

Whether the SMMU implements ATS can be discovered from SMMU_IDR0.ATS. If ATS is implemented, whether
the SMMU also implements PRI can be discovered from SMMU_IDR0.PRI. This support determines the behavior
of SMMU-local configuration and commands but does not guarantee that the rest of the system, and all clients of

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 52 of 443

 Non-Confidential

an SMMU, also support ATS and PRI. The ATS and PRI capabilities of dependent PCIe Root Complexes and
endpoints thereof are discovered through other means.

PCIe ATS has the following properties:

• Note: ATS aims to improve the performance of a system using an SMMU, known as a Translation Agent
in PCIe terminology, by caching translations within the endpoint or requester. This can remove contention
on a shared TLB, or reduce latency by helping the device to request translation ahead of time.

• The remote endpoint Address Translation Cache (ATC, which is equivalent to a TLB) is filled on-demand
by making a Translation Request to the Root Complex which forwards it to the SMMU. If the translation
exists and permission checks pass, a Translation Completion response is given with a Physical Address
and the ATC caches this response.

• The return of a translated, physical address to an endpoint grants the endpoint permission to access the
physical address. The endpoint can now make direct access to PAs, which it does by tagging outgoing
traffic as Translated. The Root Complex is expected to provide this tag to the SMMU. The SMMU might
then allow such transactions to bypass translation and progress directly into the system.

• If a Translation Request would result in a fault or error, a negative response is returned and the endpoint
is not able to access the address using ATS. This denial might be fatal to the endpoint, reported in a
device-specific manner, or when PRI is used, initiate a page-in request.

• Page access permission checking is performed at the time of the Translation Request, and takes the form
of a request for permission to read, read/write (and optionally, execute). The response grants the device
access for read, or read/write (and optionally, execute). The response might return a subset of the
requested permissions, for example, request to read and write a page might grant permission only to
read. The endpoint does not write pages it has not been granted write access to.

• ATS translation failures are reported to the endpoint, which might make an error software-visible, but the
SMMU does not record fault events for ATS translation failures.

• Invalidation of the ATC translations is required whenever a translation changes in the SMMU. This is
done in software. Broadcast invalidation operations might affect the internal translation caches of the
SMMU, but these operations are not forwarded into the PCIe domain.

o Note: An ARM broadcast TLB invalidation provides an address, ASID and VMID. The SMMU
does not map this information back to the RequesterID of an endpoint in hardware.

o Note: When CD.TBI0 or CD.TBI1 are used to enable use of tagged pointers with an endpoint that
uses ATS, system software must assume that a given virtual address has been cached by the
endpoint's ATC with any value of address bits [63:56]. This means that invalidation of a given
virtual address VA[55:12] requires either 256 ATC invalidation operations to invalidate all possible
aliases that the ATC might have cached, or an ATC invalidate-all operation.

• ATC invalidation is performed using SMMU commands which the SMMU forwards to the Root Complex.
The invalidation responses are collected, and the SMMU maintains the ordering semantics upheld by the
Root Complex in which a transaction that might be affected by an ATC invalidate must be visible before
the ATC invalidation completes.

• ATS must be disabled at all endpoints before SMMU translation is disabled by clearing
SMMU_CR0.SMMUEN.

• An ATS Translation Request might be fulfilled using SMMU TLB entries, or cause SMMU TLB entries to
be inserted. Therefore, after a change of translation configuration, an ATC invalidate must be preceded
by SMMU TLB invalidation. Software must ensure that the SMMU TLB invalidation is complete before
initiating the ATC invalidation.

Note: This order ensures that an ATS Translation Request performed after an ATC invalidate
cannot observe stale cached translations.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 53 of 443

 Non-Confidential

• ATS and PRI are not supported from Secure streams.
o In Secure STEs, the EATS field is RES0.
o CMD_ATC_INV and CMD_PRI_RESP are not able to target Secure StreamIDs.
o The SMMU terminates any incoming traffic marked Translated on a Secure StreamID, aborting

the transaction and recording F_TRANSL_FORBIDDEN.
o If it is possible for an implementation to receive an ATS Translation Request from a Secure

StreamID, the request is aborted with a UR response and F_BAD_ATS_TREQ is recorded into
the Secure Event queue. The check for a secure ATS Translation Request takes place prior to
checking of StreamID or configuration lookup.

• The Smallest Translation Unit, (STU, as programmed into the ATS Control Register of the Endpoint) is
defined as the smallest granule that the SMMU implements, as discovered from SMMU_IDR5. Software
must program the same STU size for all devices serviced by an SMMU, and must not assume all SMMUs
in the system are identical in this respect.

The Page Request Interface (PRI) adds the ability for PCIe functions to target DMA at unpinned dynamically-
paged memory. PRI depends on ATS, but ATS does not mandate PRI. Like ATS, PRI can be enabled on a per-
function basis. When enabled:

• If an ATS request fails with a not-present result, the endpoint issues a PRI page request to ask software
to make the requested pages resident.

• Software receives these PRI Page Requests (PPRs) on the PRI queue and issues a positive PRI
response command to the SMMU after making pages present. If a requested address is unavailable, a
programming failure has caused the device to request an illegal address, and software must issue a
negative PRI response command.

• The net effect is that a hypervisor or OS can use unpinned, dynamically-paged memory for DMA.
• The PRI queue is of a fixed size and PPRs must not be lost. To ensure this, page request credits are

issued by the most privileged system software (that which controls the PRI queue) to each PCIe endpoint
using the PRI capability in its configuration space.

• If a guest is allowed to use PRI, it enables PRI (through the configuration space) and sets up its own PRI
queue. The hypervisor needs to proxy PPRs from the host PRI queue to the guest PRI queue. However,
the total system number of PRI queue entries is limited by the PRI queue size of the hypervisor.

• The PRI queue size is limited up to a per-SMMU maximum, indicated by SMMU_IDR1.PRIQS. ARM
expects that where PRI is used with virtualization then each guest discovers how many PRI queue entries
its emulated SMMU supports. The host allocates N from its allocation of L, and ensures that the guest
gives out a maximum of N credits (using configuration space) to devices controlled by the guest. L is the
total number of PRI queue entries in the PRI queue of the host and is the maximum number of credits
actually given out to devices.

• If the PRI queue becomes full because of erroneous behaviour in a client device, the SMMU and Root
Complex will respond to further incoming Page Request messages by returning a successful PRG
response. This will not fatally terminate device traffic and a device will simply try ATS, fail, and try PRI
again. ARM expects that a system employing this technique would remain functional and free-flowing, if
requests were consumed from the PRI queue and space for new requests created, see section 8.1.

Note: ATS operation enables an endpoint to issue Translated requests that bypass the SMMU in some
configurations. In these cases use of ATS could be a security issue, particularly when considering untrusted,
subverted or non-compliant ATS devices. For example, a custom FPGA-based device might mark requests as
Translated despite the ATS protocol and translation tables not having granted access.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 54 of 443

 Non-Confidential

SMMU_CR0.ATSCHK controls whether the SMMU allows Translated traffic to bypass with no further checks. If
configured as requiring further checks, Translated requests from an endpoint are controlled by the associated
STE.EATS field, which provides a per-device control of whether ATS traffic is allowed. When allowed, Translated
requests are accepted, otherwise, an abort is reported and a F_TRANSL_FORBIDDEN event recorded.
Note: An implementation might perform this traffic interception and checking in a manner that is much quicker
than performing full translation, thereby retaining a performance advantage of using ATS while achieving greater
safety than permitting all ATS traffic.

STE.EATS also allows a mode in which ATS responses are returned with IPAs, the output from the stage 1 of a
stage 1 and stage 2 configuration, so that later Translated requests from the endpoint are considered IPAs and
further translated by the SMMU using the stage 2 configuration of the stream. This allows ATS to be used (for
example with PRI) while maintaining stage 2 isolation. This mode is optional in an implementation, and support is
discovered through SMMU_IDR0.NS1ATS. When implemented, this mode can only be used when
SMMU_CR0.ATSCHK forces traffic not to bypass the SMMU, as stage 2 translation needs to be applied.

Note: When ATS is used with nested stage 1 and stage 2 translation, any modification to stage 1 or stage 2
requires an invalidation of ATC entries, which cache information derived from both stages. This also applies to
the EATS==0b10 Split-stage ATS case.

When Translated transactions bypass the SMMU, an incoming address greater than the output address size
(OAS) has one of the following CONSTRAINED UNPREDICTABLE behaviors:

• The incoming address is truncated to the OAS. The SMMU does not provide address size error-checking
on Translated transactions.

• The transaction is terminated with an abort. No event is recorded.
Note: This situation would not normally arise outside of incorrect ATC invalidation when transitioning between
Split-stage ATS mode and regular ATS mode.

ARM expects that a typical implementation connects an SMMU to a PCIe Root Complex so that incoming
StreamIDs are generated directly from PCIe RequesterIDs. The ATS Interface requires a simple transformation
between RequesterID and StreamID, so that StreamID[15:0] == RequesterID[15:0]. Where multiple Root
Complexes are connected to one SMMU, the upper bits of StreamID, StreamID[N:16], correspond to the Root
Complex supporting a given endpoint.

ARM expects that most highly-integrated non-PCIe devices requiring translation and paging facilities will use
implementation-specific distributed SMMU TLB facilities, rather than using ATS and PRI. Using SMMU facilities
allows such devices to participate in broadcast TLB invalidation and use the Stall fault model.

If the translation requested by an ATS request is valid and HTTU is enabled, the SMMU must update Translation
Table Dirty/Access flags on receipt of the ATS translation request, see 3.13 below An ATS request is either for a
read-only translation (in which case the NW flag of the request is set) so only the Access flag is updated, or for a
read-write translation (in which case the NW flag of the request is clear) for which both the Access flag and the
Dirty state of the page are updated.
Note: Because the intention is for the actual traffic to bypass the SMMU, the ATS request is the only opportunity
the SMMU will have to note the access in the flags.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 55 of 443

 Non-Confidential

A PASID tag can also be applied to an ATS Translation Request to select translation under a specific
SubstreamID. A PASID-tagged ATS TR requests that the endpoint be granted access to a given address,
according to the Execute and Privileged attributes of the PASID in addition to the existing NW write intention.

When the SMMU returns an ATS Translation Completion for a request that had a PASID, the Global bit of the
Translation Completion Data Entry must be zero.
Note: The SMMU differentiates translation contexts intended to be shared with the PE from those not shared,
using the CD.ASET mechanism. Whether a global translation matches is also a function of ASET. However, no
mechanism exists to indicate that all possible global translations (from all contexts used by an endpoint) share an
identical address space layout so that global translations can be used. The ATS Global flag must be cleared
because a non-shared context must not match global translations from a shared context (and vice-versa).

Note: ARM expects that general-purpose software will require HTTU for use with PRI. See section 3.13.6 for
more information on flag updates with ATS.

Note: PRI requires ATS to be implemented, but ATS does not require PRI to be implemented.

Note: An SMMU that does not support HTTU can support paged DMA mappings for non-PCI devices using the
Stall fault model, see section 3.12. PCIe cannot be used with the Stall fault model, so a requirement for paged
DMA with PCIe implies a requirement for PRI, which implies a requirement for HTTU.

Transactions that make use of ATS might differ from ordinary PCIe non-ATS transactions in several ways:

• Translation Requests that do not successfully translate, including those that would ordinarily have
CD.A==0 RAZ/WI behavior, cause an error in the endpoint (recorded in an endpoint-defined manner) or a
PRI request, instead of an error or fault being recorded using the SMMU Event queue.

• Changes to translations require use of CMD_ATC_INV in addition to SMMU TLB invalidation.
• ATS Translated transactions might not represent Instruction/Data and/or Privileged/User marking on the

interconnect to memory in the same way as Untranslated transactions.
• Pages with execute-only and no read, writable executable permissions cannot be represented, and are

inaccessible when using ATS, see section 13.7.

3.9.1.1 Responses to ATS Translation Requests and Translated transactions
A Translation Request made from a StreamID for which ATS is explicitly or implicitly disabled (because of
SMMU_CR0.SMMUEN==0, or the effective EATS=0b00 including where this is because of a Secure STE, or
STE.Config==0b000) results in an ATS Translation Completion with Unsupported Request (UR) status.

Configuration or scenario For an ATS Translation Request, leads to

SMMUEN==0 Terminated with UR status and F_BAD_ATS_TREQ generated

Using a Secure StreamID Terminated with UR status and F_BAD_ATS_TREQ generated

STE.Config==0b000 Terminated with UR status

STE.Config==0b100 Terminated with UR status and F_BAD_ATS_TREQ generated

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 56 of 443

 Non-Confidential

Effective STE.EATS==0b00 (Note:
Includes EATS==0b10 when
ATSCHK==0)

Terminated with UR status and F_BAD_ATS_TREQ is generated

A Translation Request that encounters an Address Size, Access or Translation fault arising from the translation
process for a page, at either stage, results in an ATS Translation Completion Data with Success status and
R=W=0 for that page and no fault is recorded in the SMMU. If the R=W=0 Translation Completion Data Entry is
the first or only entry in the Translation Completion, its translation size is equal to the STU size. A Permission
fault can also lead to this response, but other cases that would cause a Permission fault for an ordinary
transaction might result in some, but not all, permissions being granted to the endpoint. See 13.7 for information
on permission calculation for ATS.

A Translation Request that encounters any configuration error (for example ILLEGAL structure contents, or
external abort on structure fetch) results in an ATS Translation Completion with Completer Abort (CA) status:

If an ordinary transaction were to
trigger a…

…an ATS Translation Request with the same properties leads
to:

C_BAD_STREAMID
F_STE_FETCH
C_BAD_STE
F_CFG_CONFLICT
F_TLB_CONFLICT
C_BAD_SUBSTREAMID
F_STREAM_DISABLED
F_WALK_EABT
F_CD_FETCH
C_BAD_CD

Terminate with CA status

F_ADDR_SIZE
F_ACCESS
F_TRANSLATION

Success: R=W=0 (access denied)
This includes stage 2 faults for a CD fetch or stage 1 translation
table walk.

F_PERMISSION Success. R, W and Exe permission is granted, where requested,
from available translation table permissions. In the extreme case,
a translation with no access permission gives R=W=0.
Where F_PERMISSION arises at stage 2 for a CD fetch or stage
1 translation table walk, the response of Success and R=W=0 is
given.

Translated transactions generally pass through the SMMU unless the Non-secure SMMUEN is disabled, a Secure
stream is used, or if ATSCHK==1 and therefore additional configuration checks are performed.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 57 of 443

 Non-Confidential

Configuration/scenario For a Translated Transaction, leads to:

SMMUEN==0 F_TRANSL_FORBIDDEN and aborted

Using a Secure StreamID F_TRANSL_FORBIDDEN and aborted

STE.Config==0b000 If ATSCHK==1 Aborted

STE.Config==0b100 F_TRANSL_FORBIDDEN and aborted

Effective STE.EATS==0b00 F_TRANSL_FORBIDDEN and aborted

If an ordinary transaction were to trigger a… …a Translated transaction with the same properties
is:

F_UUT Aborted

C_BAD_STREAMID
F_STE_FETCH
C_BAD_STE
F_CFG_CONFLICT

If ATSCHK==1, aborted.

Note: If ATSCHK=0, the SMMU does not check
configuration for Translated transactions, so does not
detect these conditions.

If a Translated transaction experiences a second stage 2 translation because of an STE.EATS=0b10
configuration, the transaction is terminated with an abort the same way as any ordinary transaction when a fault
occurs during stage 2 translation (F_WALK_EABT, F_TLB_CONFLICT, F_ADDR_SIZE, F_ACCESS,
F_TRANSLATION, F_PERMISSION).

Note: Since a Translated transaction does not have a PASID, it is presented to the SMMU with PnU=0, InD=0 and
SSV=0. A resulting fault is reported as Stage 2, with the input address as given by the Translated transaction.

If STE.S1DSS causes a stage 1 skip, and STE.Config==0b101 (stage 1-only), the response is Success, U=0,
R=W=1, identity-mapping (see 13.6).

3.9.1.2 ATC invalidation timeout
A CMD_ATC_INV causes an ATS Invalidate Request to be sent to an endpoint and, in the case that a response is
not received within the timeout period specified by ATS, ARM strongly recommends the following behavior:

• The Root Complex isolates the endpoint in a PCI-specific manner, if it is possible to do so.
• A CMD_SYNC that waits for completion of one or more prior CMD_ATC_INV operations causes a

CERROR_ATC_INV_SYNC command error if any of the CMD_ATC_INV operations have not
successfully completed. See 7.1.

o Note: Command processing stops and this situation is differentiated from a normal completion of
a CMD_SYNC, which avoids the potential re-use and corruption of a page that has been
unmapped but whose translation was incorrectly invalidated.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 58 of 443

 Non-Confidential

• If it is not possible for an implementation to cause CERROR_ATC_INV_SYNC for a CMD_SYNC that
waits for the completion of failed CMD_ATC_INV operations, ARM recommends that the CMD_SYNC
does not complete.

o Note: This scenario is not recoverable but prevents the invalidation from appearing to have
completed, leading to potential data corruption (the error is contained and propagation is
avoided).

• In the event of a failed CMD_ATC_INV, ARM strongly recommends that a related CMD_SYNC does not
complete without raising a command error. An IMPLEMENTATION DEFINED error mechanism asynchronous
to the completion of the CMD_SYNC must record information of the failure.

o Note: A completion of a CMD_SYNC without completing an invalidation might lead to corruption
of a page that is subsequently re-used by different mappings.

3.9.1.3 ATC invalidation errors
A CMD_ATC_INV that generates an ATS Invalidate Request that causes a UR response from an endpoint
completes without error in the SMMU. An invalidation might not have been performed in response to the
command.

Note: A UR response to an invalidation can occur in several circumstances as specified by [3], including where an
invalidation is sent with an out-of-range PASID value.

3.9.2 Changing ATS configuration
The ATS behavior of an endpoint is dependent on the STE.EATS field that is associated with the endpoint and on
SMMU_CR0.ATSCHK. In addition to enabling extra checks on Translated transactions, ATSCHK changes the
interpretation of the EATS==0b10 encoding, and because ATSCHK is permitted to be cached in configuration
caches, this means that a change to ATSCHK must be followed by invalidation of any STEs that are required to
heed the new value.

Note: The EATS encodings of 0b01 and 0b10 will respond to Translation Requests and interpret Translated
transactions using different address spaces. A direct transition between these encodings might cause IPAs to be
interpreted as PAs or vice-versa, which might lead to data corruption.

To enable ATS on an existing valid STE with EATS==0b00:

1. EATS is set to 0b01 or 0b10 and caches of the STE are invalidated (including CMD_SYNC to ensure
completion of the invalidation)

2. ATS is enabled at the endpoint.

To disable ATS on an existing STE with EATS!==0b00:

1. ATS must be disabled at the endpoint, the ATCs invalidated, and CMD_SYNC used to ensure visibility of
prior transactions using ATS that are in progress.

2. EATS is then set to 0b00.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 59 of 443

 Non-Confidential

3. Caches of the STE are then invalidated.

EATS must not be transitioned between 0b01 and 0b10 (in either direction) without first disabling ATS with the
procedure described in this section, transitioning through EATS==0b00.

EATS==0b10 is valid only when SMMU_CR0.ATSCHK==1. ATSCHK must not be cleared while STE
configurations (and the possibility of caches thereof) exist with EATS==0b10. Before clearing ATSCHK, all STE
configurations with EATS==0b10 must be re-configured to use EATS==0b00 or EATS==0b01, using the
procedures described in this section.
Note: This ensures that Translated traffic using IPA addressing (originating from Translation Requests handled by
a stage 1-only EATS==0b10 configuration) does not encounter an SMMU with ATSCHK==0, which would pass
the traffic into the system with a PA.

Although ATSCHK==0 causes EATS==0b10 to be interpreted as 0b00 (ATS disabled), ATSCHK must not be
used as a global ATS disable.

To set ATSCHK to 1:

1. Set SMMU_CR0.ATSCHK==1 and wait for Update procedure to complete.
2. STEs (pre)fetched after this point will interpret STE.EATS according to the new ATSCHK value.
3. Unexpected Translated traffic that is associated with an STE with EATS==0b00 will now be terminated.
4. ATS can be enabled on an STE as described here:

a. Note: The STE update procedure invalidates the STE, which will invalidate any old ATSCHK
value cached with it.

To clear ATSCHK to 0:

1. Ensure that the ATS is disabled for all STEs that were using EATS==0b10, flushing ATCs and
transitioning through EATS==0b00.

a. Note: After this point, there will be no relevant caches of ATSCHK.
2. Set SMMU_CR0.ATSCHK==0 and wait for the Update procedure to complete.
3. STEs (pre)fetched after this point will interpret STE.EATS according to the new ATSCHK value.
4. Translated traffic now bypasses the SMMU without additional checks.
5. Split-stage ATS cannot be enabled on an STE, meaning EATS==0b10 must not be used.

Referring to section 13.6.3 and 13.6.4, it is possible to configure ATS for a stream where only requests made from
substreams (PASIDs) return actual translations, and non-substream Translation Requests return an identity-
mapped response that might be cached at the endpoint. Substream configuration (STE.S1DSS and
STE.S1CDMax) therefore affects the contents of ATS Translation Completion responses and any change of this
configuration must also invalidate endpoint ATCs.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 60 of 443

 Non-Confidential

3.10 Support for two Security states
The ARM architecture provides support for two Security states, each with an associated physical memory address
space:

• Secure state (NS==0).
• Non-secure state (NS==1).

SMMU_S_IDR1.SECURE_IMPL indicates whether an SMMU has been configured to support the ARM Security
model.

When SMMU_S_IDR1.SECURE_IMPL==0:

• The SMMU supports only a single Security state.
• SMMU_S_* registers are RAZ/WI to all accesses.
• The SMMU can only generate Non-secure (NS==1) transactions to the memory system.
• Support for stage 1 translation is OPTIONAL.

When SMMU_S_IDR1.SECURE_IMPL==1:

• The SMMU supports two Security states, Secure state and Non-secure state.
• SMMU_S_* registers configure a Secure Command queue, Secure Event queue and a Secure Stream

table.
• The SMMU supports stage 1 translation.
• The SMMU can generate both Secure (NS==0) and Non-secure (NS==1) transactions to the memory

system, where permitted by SMMU configuration.

With the exception of SMMU_S_INIT, SMMU_S_* registers are Secure access only, and RAZ/WI to Non-secure
accesses.

Note: ARM does not expect a single software driver to be responsible for programming both the Secure and Non-
secure interface. However, the two programming interfaces are intentionally similar.

When a stream is identified as being under Secure control by the Secure State Determination process (see 3.10.1
below, its configuration is taken from the Secure Stream table or from the global bypass attributes that are
determined by SMMU_S_GBPA. Otherwise, its configuration is taken from the Non-secure Stream table or from
the global bypass attributes that are determined by SMMU_GBPA. The Secure programming interface and Non-
secure programming interface have separate global SMMUEN translation-enable controls that determine whether
bypass occurs. See section 3.10.1 below for more information about the Secure State Determination process.

A transaction that belongs to a Stream that is under Secure control can generate Secure (NS==0) and Non-secure
(NS==1) transactions to the memory system. A transaction that belongs to a Stream that is under Non-secure
control can only generate Non-secure (NS==1) transactions to the memory system.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 61 of 443

 Non-Confidential

3.10.1 Secure State Determination (SSD)
Secure State Determination (SSD) determines whether a given transaction stream is under the control of the
Secure or the Non-secure programming interface.

The association between a device and the Secure or Non-secure programming interface is a system-defined
property.

When SMMU_S_IDR1.SECURE_IMPL==1, incoming transactions have a StreamID and a SEC_SID flag:

• When SEC_SID==1, the stream is a Secure stream, and indexes into the Secure Stream table.
• When SEC_SID==0, the stream is a Non-secure stream, and indexes into the Non-secure Stream table.

The system contains two StreamID namespaces, one for Non-secure StreamIDs and one for Secure StreamIDs.
As indicated in this section, the assignment of a client device to either a Secure StreamID or a Non-secure
StreamID, and moving StreamID namespaces, is system-defined.

In this document, the terms Secure StreamID and Secure stream refer to a stream that is associated with the
Secure programming interface, as determined by the SSD. The terms Non-secure StreamID and Non-secure
stream refer to a stream that is associated with the Non-secure programming interface, as determined by the
SSD.

Note: Whether a stream is under Secure control or not is a different property to the NS attribute of a transaction if
a stream is Secure, it means that it is controlled by Secure software through the Secure Stream table. Whether a
transaction on that stream results in a transaction with NS==0 depends on the translation table attributes of the
configured translation, or, for bypass, the incoming NS attribute.

3.10.2 Secure commands, events and configuration
In this document, the term Event queue and the term Command queue refer to the queue that is appropriate to the
Security state of the relevant stream. Similarly, the term Stream table and Stream table entry (STE) refer to the
table or table entry that is appropriate to the Security state of the stream as indicated by SSD.

For instance:

• An event that originates from a Secure StreamID is written to the Secure Event queue.
• An event that originates from a Non-secure StreamID is written to the Non-secure Event queue.
• Commands that are issued on the Non-secure Command queue only affect streams that are configured

as Non-secure.
• Some commands that are issued on the Secure Command queue can affect any stream or data in the

system.
• The stream configuration for a Non-secure StreamID X is taken from the Xth entry in the Non-secure

Stream table.
• Stream configuration for a Secure StreamID Y is taken from the Yth entry in the Secure Stream table.

The Non-secure programming interface of an SMMU with SMMU_S_IDR1.SECURE_IMPL==1 is identical to the
interface of an SMMU with SMMU_S_IDR1.SECURE_IMPL==0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 62 of 443

 Non-Confidential

Note: To simplify descriptions of commands and programming, this document refers to the Non-secure
programming interface registers, Stream table, Command queue and Event queue even when
SMMU_S_IDR1.SECURE_IMPL==0.

The register names associated with the Non-secure programming interface are of the form SMMU_x. The register
names associated with the Secure programming interface are of the form SMMU_S_x. In this document, where
reference is made to a register but the description applies equally to the Secure or Non-secure version, the
register name is given as SMMU_(S_)x. Where an association exists between multiple Non-secure, or multiple
Secure registers and reference is made using the SMMU_(S_)x syntax, the registers all relate to the same
Security state unless otherwise specified.

The two programming interfaces operate independently as though two logical and separate SMMUs are present,
with the exception that some commands issued on the Secure Command queue and some Secure registers might
affect Non-secure state, as indicated in this document. This independence means that:

• The Command and Event queues that are associated with a programming interface operate
independently of the Command and Event queues that are associated with the other programming
interface. The operation of one does not affect the other programming interface, for example when:

o The queues are full.
o The queues overflow.
o The queues experience an error condition, for example a Command queue that stops processing

because of a command error, or an abort on queue access.
• Translation through each programming interface can be separately enabled and disabled using the

SMMUEN field that is associated with the particular programming interface. This means that one
interface might bypass transactions in which case the behavior is governed by the respective
SMMU_(S_)GBPA and the other programming interface might translate transactions.

• Error conditions in SMMU_(S_)GERROR apply only to the programming interface with which the register
is associated.

• Each interface has its own ATOS interface, where ATOS is implemented.
• Interrupts are configured and enabled separately for the Secure and Non-secure programming interface

interrupt sources.

When SMMU_S_IDR1.SECURE_IMPL==1, ARM expects that the SMMU will be hosted by a PE implementing
two Security states. The host PE might:

• Implement ARMv7-A.
• Implement ARMv8-A, with EL3 using AArch64 state.
• Implement ARMv8-A, with EL3 using AArch32 state.

StreamWorld differentiates the Secure EL1 translation regime from the EL3 translation regime, allowing TLB
entries to be maintained separately for each of these two translation regimes. Secure EL1 TLB entries might be
tagged with an ASID, whereas EL3 TLB entries are not. In this case, ARM expects that the Secure MMU interface
is either:

• Managed by Secure EL1, with no SMMU usage by EL3.
• Managed by EL3 with any EL1 usage brokered to EL3 using a software interface, which is outside the

scope of this document.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 63 of 443

 Non-Confidential

ARM recommends that Secure EL1 and EL3 do not attempt to both access the Secure Command queue. ARM
further recommends that Secure EL1 does not configure streams to cause TLB entries to be marked as EL3.

When the SMMU is controlled by a PE that implements ARMv8-A and uses AArch32 in EL3 or a PE that
implements ARMv7-A, there is only one privileged Secure translation regime. No separation is made between
Secure OS and Secure monitor TLB entries. When used with this type of system, ARM recommends that the
StreamWorld is configured so that TLB entries associated with this Secure translation regime are ASID-tagged.
ARM recommends that StreamWorld is not configured to insert EL3 TLB entries in this case, as broadcast TLB
invalidation from the PE would not be able to affect such TLB entries. See section 3.17.

A client device that is SSD Secure provides an attribute called NSPROT that indicates whether an access is
intended to be Secure or Non-secure. A Secure STE might override the NSPROT attribute of a stream.

In bypass configurations of a Secure stream, overriding the NSPROT attribute allows a client device to issue
Secure accesses even if the device is not able to control its NSPROT attribute. If the NSPROT attribute is not
overridden, the client device can control whether it makes Secure or Non-secure accesses.

When a Secure STE is configured for stage 1 translation, the stage 1 translation table descriptor (in conjunction
with intermediate NSTable bits) determines the output NS attribute if the TTD is fetched from Secure memory, in
the same way as in a PE and in the SMMUv2 architecture. See section 13.

A Non-secure STE does not override NSPROT, which is treated as 1 (Non-secure) for all transactions belonging
to a Non-secure stream.

Access to the Secure Stream table, CDs and L1CDs located through Secure STEs, the Secure Event queue and
the Secure Command queue are made with NS==0.

Some SMMU commands take a StreamID parameter. When issued from the Secure Command queue, an
additional parameter that is equivalent to SEC_SID indicates whether the command interprets the StreamID as
Secure or Non-secure.

The SMMU_S_CR0.SIF flag provides a mechanism to terminate transactions from a Secure stream when they are
marked as an instruction fetch and are assigned an NS attribute of Non-secure.

3.11 Reset, Enable and initialization
The SMMU can reset to a disabled state in which traffic bypasses the SMMU without translation or checking of
any kind. The SMMU appears transparent to transactions from client devices, which are given attributes
according to the disabled bypass configuration (see section 13). The SMMU can also optionally reset to a
disabled state that aborts all transactions for a Security state. This is controlled by the reset state of
SMMU_GBPA.ABORT or SMMU_S_GBPA.ABORT.
Note: When an SMMU resets to a bypass configuration, it enables client devices that are connected to an SMMU
to be used by legacy system software that lacks awareness of the SMMU.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 64 of 443

 Non-Confidential

Translation of Non-secure Streams is enabled using SMMU_CR0.SMMUEN. When
SMMU_S_IDR1.SECURE_IMPL==1, the Secure programming interface also contains an enable flag,
SMMU_S_CR0.SMMUEN, which controls translation of Secure streams.

When translation is not enabled for a Security state, an SMMU:

• When SMMU_(S_)GBPA.ABORT == 1, aborts all transactions:
• When SMMU_(S_)GBPA.ABORT == 0, applies attributes to a transaction as determined by

SMMU_(A)GBPA or SMMU_S_(A)GBPA. See section 13.2.
• Never accesses the Stream table so SMMU_(S_)STRTAB_* register content is ignored.
• Denies PRI Page Requests as though SMMU_CR0.PRIQEN=0, regardless of the value of

SMMU_CR0.PRIQEN. See section 8.
• Does not perform ATOS operations. See 6.3.37.
• Does not perform ATS translations. See 3.9.1.1.
• Allows registers to be accessed and updated in the normal manner.
• Can process commands after the relevant queue pointers are initialized and SMMU_(S_)CR0.CMDQEN

is enabled.
• Does not record new translation events. However, if SMMU_(S_)CR0.EVENTQEN is enabled and the

queue pointers are set up, the SMMU might continue to write out buffered events that were generated by
earlier translations from when translation was still enabled.

See section 6.3.9.6 for a full description of the operation of, and the effect of changes to, the SMMUEN flag.

The SMMU_(S_)STRTAB_BASE register and the SMMU_(S_)CR1 table attributes must be configured before
enabling an SMMU interface using SMMU_(S_)CR0.SMMUEN.
Note: This avoids the possibility of incoming traffic attempting a lookup through uninitialized configuration
structure pointers.

When translation is disabled for a Security state, transactions on streams that are associated with that Security
state are not translated, and take attributes from the appropriate Global Bypass Attribute registers,
SMMU_(A)GBPA or SMMU_S_(A)GBPA.

When translation is enabled for a Security state, transactions on streams that are associated with that Security
state follow the SMMU translation flow determined by the appropriate Stream table entry.

SMMU_CR0.SMMUEN SMMU_S_CR0.SMMUEN

0 Unimplemented All traffic bypasses SMMU/aborts (as determined by
SMMU_GBPA.ABORT).
Always outputs NS==1.

1 Unimplemented Traffic follows the SMMU translation flow.
Always outputs NS==1.

0 0 Secure and Non-secure streams are controlled by
SMMU_(S_)(A)GBPA. SSD determines the Security
state of a given stream. Bypass/abort configuration

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 65 of 443

 Non-Confidential

and attributes, including NS, are provided by the
Global Bypass Attribute register (GBPA) appropriate
to the Security state.

0 1 SSD determines the Security state:
• Secure traffic follows SMMU translation flow
• Non-secure traffic bypasses the SMMU

(attributes taken SMMU_GBPA), or aborts

1 0 SSD determines Security state:
• Secure traffic bypasses the SMMU (attributes

taken from SMMU_S_GBPA), or aborts
• Non-secure traffic follows the SMMU

translation flow

1 1 SSD determines the Security state, follows usual
SMMU translation flow.

The state of the caches and TLBs at reset is implementation specific.

To avoid UNPREDICTABLE behavior, software must perform the following steps before enabling translation:

• Invalidate all configuration and TLB caches
• When SMMU_S_IDR1.SECURE_IMPL==1, ensure Secure software fully invalidates any Secure cached

configuration or TLB entries in the SMMU through the Secure programming interface before handover to
Non-secure software.

The SMMU is not required to invalidate cached configuration or TLB entries when a change to
SMMU_(S_)CR0.SMMUEN occurs.

ARM recommends that software initializing the SMMU performs the following steps:

1. Allocate and initialize Stream table memory and base pointers.
2. Allocate and initialize Command queue and Event queue memory, base pointers and indexes.
3. Enable command processing through SMMU_(S_)CR0.CMDQEN, and if applicable, Event queue through

the relevant EVENTQEN.
4. Issue commands to invalidate all cached configuration and TLB entries (see sections 4.3 and 4.4).
5. Enable translation by setting SMMU_(S_)CR0.SMMUEN.

Note: These steps are a summary, and do not show the required register update procedure or DSB operations
ensuring correct memory and register access ordering.

SMMU_S_INIT invalidates SMMU caches and TLBs without issuing commands using the Command queue.
Caches and TLBs are invalidated using this register with the following sequence:

• Perform a write to SMMU_S_INIT, setting INV_ALL.
• Poll SMMU_S_INIT.INV_ALL until it returns to 0, at which point the invalidation is complete.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 66 of 443

 Non-Confidential

When SMMU_S_IDR1.SECURE_IMPL==1, ARM expects Secure software to initialize the SMMU using the steps
above. If Secure software is not guaranteed to initialize the SMMU in accordance with the steps above, ARM
recommends that the system provides an IMPLEMENTATION DEFINED mechanism to allow Non-secure software to
access SMMU_S_INIT. This is an exception to the general rule that only Secure software can access SMMU_S_*
registers.
Note: For example, a system might allow Non-secure access to SMMU_S_INIT from reset, but might provide a
means for Secure software to disable this access.
Note: ARM expects Non-secure initialization to use SMMU commands to perform configuration cache and TLB
invalidation. The presence of SMMU_S_INIT is not guaranteed and the INV_ALL feature must not be relied on by
the Non-secure state.

If an SMMU implementation creates TLB entries when bypass is selected with SMMUEN==0, these entries are
not visible to software. An implementation does not require TLB entries inserted to support transaction bypass to
be explicitly invalidated by software, such as when SMMUEN is transitioned from 0 to 1.

3.12 Fault models, recording and reporting
An incoming transaction goes through several logical stages before continuing into the system. If the transaction
is of a type or has a property that an SMMU cannot support for IMPLEMENTATION DEFINED reasons, an Unsupported
Upstream Transaction fault event is recorded and the transaction is terminated with an abort.
Otherwise, configuration is located for the transaction, given its StreamID (and SubstreamID, if supplied). If all of
the required STE and CD structures cannot be located or are invalid, a configuration error event is recorded, if
there is a free location in the Event queue, and the transaction is terminated with an abort.
If a valid configuration is located so that the translation tables can be accessed, the translation process begins,
other faults can occur during this phase. See section 7.2 for more information about the individual events that are
recorded for configuration errors and faults.
When a transaction progresses as far as translation, or during the process of fetching a CD from IPA space
through stage 2 translation, the behavior on encountering a fault becomes configurable, if this is supported by the
implementation.

There are four fault types that constitute Translation-related faults when they are generated at either stage 1 or
stage 2:

• F_TRANSLATION
• F_ADDR_SIZE
• F_ACCESS
• F_PERMISSION

Behaviour for these faults can be switched between the Terminate and Stall model as determined by the
CD.{A,R,S} flags for stage 1 and the STE.{S2R,S2S} flags for stage 2.
All other faults (including F_WALK_EABT and F_TLB_CONFLICT) and configuration errors terminate the
transaction with an abort.
Note: An F_ADDR_SIZE can also arise from a transaction that bypassed stage 1 but that has an out-of-range
IPA, see section 3.4. In this case the transaction is always terminated with an abort.
Note: An F_PERMISSION can also arise as a result of an instruction fetch transaction on a Secure stream that
bypasses stage 1, is determined to be Non-secure and that is prevented with SMMU_S_CR0.SIF==1, see section
6.3.47. In this case the transaction is always terminated with an abort.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 67 of 443

 Non-Confidential

The fault behavior configuration at stage 1 is at a per-substream granularity when substreams are used, that is
where an STE points to multiple CDs. When substreams are not configured, that is where an STE points to one
CD, the fault behavior configuration at stage 1 is at a per-stream granularity. Use of the Stall model at stage 1 can
be disabled by setting STE.S1STALLD==1.

The stage 2 fault behavior is configured using STE.{S2R,S2S}; that is, at a per-stream granularity.

When a fault occurs at either stage 1 or stage 2, then when the fault is detected it is known at which stage it
occurred, and the SMMU performs the action configured for that stage. For example:

• A two-stage configuration that encounters a translation fault in the stage 1 translation tables is a stage 1
fault.

• A transaction that progresses through stage 1 to an IPA and then faults when it is translated using the
stage 2 translation tables is a stage 2 fault.

• A stage 2 translation fault that occurs during a stage 1 translation table walk counts as a stage 2 fault.
The event that is recorded differentiates this access from a transaction that access a faulting IPA post-
stage 1 translation table walk, so that hypervisor software can inform the VM of the correct event type (a
simulated external abort on TTD fetch).

• A Stage 2 translation fault that occurs fetching a CD from an IPA address is a stage 2 fault. The event
that is recorded shows that a CD was being fetched.
Note: The Hypervisor might fix the cause of the fault and retry the stalled transaction, or if the transaction
is terminated, inform the VM of the correct event type (a simulated external abort on CD fetch).

After a transaction progresses through the SMMU into the system, certain system-specific transaction aborts
might occur on the path to the memory system. Whether, and how, these are reported to the client device is
interconnect-specific. The SMMU does not record any faults for these events. The SMMU only records fault
events that are generated by its own accesses or by client device accesses that encounter an internal translation
issue.

When an incoming transaction is immediately terminated, for any reason, an order is not enforced between the
response to the client device and the event that is recorded into the Event queue. However, if an event is to be
recorded, a CMD_SYNC ensures that the event record is visible in the Event before the CMD_SYNC is
considered complete. See section 4.6.3.

The SMMU treats a transaction as being independent of all other transactions (regardless of whether the
transaction originates from the same traffic stream or from different streams) and the fault behaviour of one
transaction has no direct effect on any other transaction. Section 3.12.2 below describes interconnect ordering
issues and recommendations for the presentation of grouped fault information to software. Whether an external
agent makes an association between different transactions is outside the scope of the SMMU architecture.

When a transaction causes a Translation related fault at stage 1, the transaction might be:

• Terminated with an abort (CD.S==0 and CD.A==1)
• Terminated with RAZ/WI behavior (CD.S==0 and CD.A==0)
• Stalled (CD.S==1 and STE.S1STALLD does not prevent stalling)

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 68 of 443

 Non-Confidential

When a transaction Translation related fault at stage 2, the transaction might be:
• Terminated with an abort (STE.S2S==0)
• Stalled (STE.S2S==1)

Support for stalling or terminating a transaction is IMPLEMENTATION DEFINED, indicated by
SMMU_(S_)IDR0.STALL_MODEL.

When SMMU_S_IDR1.SECURE_IMPL==1:

• SMMU_S_IDR0.STALL_MODEL indicates the physical capabilities of the SMMU implementation,
• SMMU_IDR0.STALL_MODEL indicates the capabilities that Non-secure software is permitted to use.

o This field is generated from SMMU_S_IDR0.STALL_MODEL and affected by the
SMMU_S_CR0.NSSTALLD flag which, when set on an SMMU implementation supporting both
the Stall model and the Terminate model, prevents Non-secure use of stalling faults.

o Note: This can be used to guarantee Non-secure software cannot stall transactions where doing
so might cause external problems in certain system topologies.

When SMMU_S_IDR1.SECURE_IMPL==0, SMMU_IDR0.STALL_MODEL reflects the physical capabilities of the
SMMU implementation.

SMMU_S_IDR0.
STALL_MODEL

SMMU_S_CR0.
NSSTALLD

SMMU_IDR0.
STALL_MODEL

Notes:

0b00 (Stall and
Terminate models
supported)

0 (do not filter NS use
of stall)

0b00 (Stall and
Terminate model
supported for NS)

NS usage reflects physical reality

0b00 (Stall and
Terminate models
supported)

1 (NS cannot use stall) 0b01 (Terminate
model supported for
NS)

NS usage limited to terminate-only,
even though physically the SMMU
supports stall too.

0b01 (Terminate model
supported)

X (No stall to filter) 0b01 (Terminate
model supported)

NSSTALLD irrelevant, no stall to
prevent

0b10 (Stall model
supported)

X (No alternative to
stall)

0b10 (Stall model
supported)

NSSTALLD irrelevant, no
alternative to stall so cannot disable

The SMMU_IDR0.TERM_MODEL field indicates the termination models provided by an implementation, globally.
An implementation might, for a stage 1 fault, offer the choice of terminate with abort or RAZ/WI behavior, or an
implementation might only allow termination by abort, in which case the CD.A bit must be set.
Note: A transaction faulting at stage 2 is, when terminated, always aborted.

It is IMPLEMENTATION DEFINED whether the SMMU supports the Stall model, the Terminate model, or both. Where
system usage cannot be anticipated, ARM recommends that both fault models
(SMMU_IDR0.STALL_MODEL==0) and both termination models (SMMU_IDR0.TERM_MODEL==0) are
implemented.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 69 of 443

 Non-Confidential

3.12.1 Terminate model
When stage 1 is configured to terminate faults, a transaction that faults at stage 1 is either terminated with an
abort reported to the client device that is making the access, or the transaction completing successfully with reads
returning 0 and writes being ignored (RAZ/WI), depending on the setting of CD.A and
SMMU_IDR0.TERM_MODEL. See section 5.5.

When stage 2 is configured to terminate faults, a transaction that faults at stage 2 is terminated with an abort.

The behavior of the client device after termination is specific to the device.

If a stage that is configured to terminate faults is also configured with CD.R==1 or STE.S2R==1, as appropriate to
the stage of the fault, the SMMU records the details of the access into one Event record in the Event queue,
supplying information including:

• Address
• Syndrome
• Attributes (Read/Write, Inst/Data, Privileged/Unprivileged, NS)
• Type (S1/S2 Translation, Permission, Address Size, Access flag fault)

If the Event queue is full, the event record is lost.
Note: In some interconnects, stalling the transaction until its fault can be recorded might trigger interconnect
timeouts or deadlocks from which it might be more difficult to recover than from a lost fault record. ARM expects
that such fault records arise from programming errors and that software will not implement any mechanism that
depends on the delivery of terminate fault records.

Streams that originate from PCIe subsystems must not stall and must be configured to use the Terminate model
at all enabled stages of translation. This is enforced at stage 1 through the STE.S1STALLD flag, see section
16.4.

3.12.2 Stall model
When a stage is configured to stall transactions on a fault, and a transaction experiences a Translation-related
fault as described in 3.12, the faulting transaction does not progress and no response is reported to the client
device. The transaction is buffered in a stalled state until subsequent resolution. The SMMU always records the
details of the access into the Event queue. A stalled transaction is retried or terminated by issuing a
CMD_RESUME or CMD_STALL_TERM command.
If retry is chosen, the transaction is handled as though it had just arrived at the SMMU. This means that the
transaction will be affected by any configuration or translation changes that occurred since it originally stalled.
Note: This means a transaction can stall and later when it is retried, use a configuration that causes it to
immediately terminate, for example, a change to stall configuration in the meantime. This property can safely
clean up stalled transactions on a stream by ensuring that a new configuration for transactions that are retried
causes them to be terminated.

If a stalled transaction is terminated by a CMD_RESUME command, a command parameter determines whether
an abort is reported, or if SMMU_IDR0.TERM_MODEL==0, whether the transactions completes with RAZ/WI
behavior.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 70 of 443

 Non-Confidential

To ensure that no transaction is stalled indefinitely, software must ensure that every stall event has a
corresponding CMD_RESUME command, is subject to a CMD_STALL_TERM command, or that stalled
transactions are terminated because translation is disabled by clearing SMMU_(S_)CR0.SMMUEN to 0.
When an event record is generated for a stalled transaction, a Stall Tag (STAG) is supplied by the SMMU as part
of the record to uniquely identify the transaction. The SMMU uses the combination of StreamID and STAG
parameters to CMD_RESUME to identify the stalled transaction. A CMD_RESUME command has no effect on
any stalled transaction other than on the transaction that is uniquely identified by the combination of STAG and
StreamID.
Note: This identification is required for virtualization correctness, where a CMD_RESUME from a guest VM is
trapped and reinterpreted by a hypervisor and generates a CMD_RESUME to the SMMU. The hypervisor
validates the correctness of the StreamID parameter, but the STAG parameter is passed directly from the guest,
and cannot be trusted to be correct and cannot be the sole selector of a stalled transaction.

The format of the STAG field is IMPLEMENTATION DEFINED, with the restriction that a value cannot be re-used until
the transaction it was last associated with has been acknowledged through a CMD_RESUME or a
CMD_STALL_TERM command, or translation is disabled by clearing SMMU_(S_)CR0.SMMUEN to 0.
If the Event queue is not writable at the time when the fault record of a stall is to be written, the stalled transaction
is retried as though it had just arrived when the queue is next writeable and a new fault record is generated. For
more information about recording faults and events, see section 7.2.
Software can depend on the delivery of fault records from stalled transactions, see section 3.12.4.
Note: Retrying the stalled transaction when the queue becomes writable might lead to the transaction succeeding
or experiencing a different type of fault, if the configuration or translations were changed before the queue became
writable. Therefore, an event can be written that is different to the originally-attempted event.

If the client device and interconnect rules allow it, a later transaction might pass through the SMMU and complete
before an earlier stalled transaction that is associated with the same stream. The SMMU does not require any
additional ordering between transactions from different streams beyond that required by the interconnect rules.

Note: Two transactions with different StreamIDs or with the same StreamID but different SubstreamIDs, (including
the case where one transaction has a SubstreamID but the other does not) are all considered to be from different
streams.

3.12.2.1 Suppression of duplicate Stall event records
If a transaction faults and then stalls, and a subsequent transaction belonging to the same stream also faults and
then stalls, the SMMU is permitted but not required to suppress the generation of a new stall fault record for the
new transaction if all of the following apply:

• The transactions require access to the same page.
• The transactions have the same privilege.
• The transactions have the same data/instruction attribute.
• The transactions have the same type, that is they are both reads or both writes.
• The transactions are associated with the same SubstreamID, if present.
• The first stalled transaction is still stalled when a subsequent transaction stalls.

ARM recommends that an implementation suppresses additional fault records where possible.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 71 of 443

 Non-Confidential

Note: It is not guaranteed that event records are suppressed in all possible scenarios. Software must ensure
correctness where a transaction records a fault that duplicates a previous fault that was recorded for an earlier
transaction.
When a stall fault record is acknowledged by a CMD_RESUME command, any related suppressed stalled
transaction are retried by the SMMU as though they had just arrived.
Note: A series of faults for one page might result in a single stall fault record, with a single CMD_RESUME
command enabling all stalled transactions for that page to progress. If the CMD_RESUME command terminates
the stalled transaction that is specified by the stall fault record, the re-trying of the other stalled transactions might
cause new fault records to be recorded.
Note: For example, transactions A,B,C,D from the same stream that fault for the same reason might cause a
single stall record for A to be recorded, and those for B,C,D to be suppressed. If software decides that the
address was an error and terminates A, transactions B,C,D retry and fault again. A stall for B is recorded (and
C,D might be suppressed). Software terminates B and the process repeats. Ultimately, A, B, C, D are all visible
to software (rather than some being silently terminated), which can aid debug.

Stall fault records are not merged, see section 7.3.1.

Note: The suppression of identical stall fault records as described in this section is not the same as non-stall
events being merged. When a stall record is suppressed, a stalled transaction still might exist and can affect
future behavior, whereas the act of merging non-stall events completes the delivery of those events.

If a new transaction stalls for a reason that is unrelated to that of an existing stalled transaction, a new fault is
recorded, – that is, it is not suppressed by dissimilar prior stalls even for the same StreamID and SubstreamID.
ARM recommends that the new fault is recorded without being delayed by prior unrelated faults or
CMD_RESUME activities where possible.

The SMMU does not record more than one fault for each incoming transaction, with the exception of the scenario
in which a transaction stalls, and is explicitly retried with CMD_RESUME(Retry). After this command it is
considered to be a new transaction and might again encounter a fault.

3.12.2.2 Early retry of Stalled transactions
The SMMU is permitted to speculatively retry a stalled transaction without first receiving a CMD_RESUME(Retry)
command that matches the stalled transaction, this is referred to as early retry. If this occurs:

• An early retry is similar in function to the retry caused by an explicit CMD_RESUME(Retry). The
transaction undergoes the full translation procedure and does not use any stale cached configuration or
translation data that was invalidated since the time of the stall.

• A recorded stalled transaction causes a single fault record. An early retry of the stalled transaction does
not cause additional faults to be recorded unless the retry is directly caused by a matching
CMD_RESUME(Retry), in keeping with the behavior that an explicit retry command causes the
transaction to be retried as though it had just arrived at the SMMU. If an early retry encounters a fault or
error for any reason the event remains invisible to software. This includes the case where configuration
has been changed to terminate faults after the transaction stalls then, under the new configuration, the
transaction retries successfully by termination. If a retry occurs under stall fault configuration, the
transaction remains stalled.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 72 of 443

 Non-Confidential

• The progress of a transaction and the device-specific behavior are the only indications that an early retry
has occurred that is visible to software.

• A successful early retry does not remove the requirement for software to acknowledge the stall fault
record, see section 3.12.2. A successful early retry does not remove the restriction on re-using STAG
values, see section 3.12.2. If targeted by CMD_RESUME(Terminate) or CMD_STALL_TERM, a stalled
transaction is eventually terminated, if the transaction does not early-retry and successfully progress into
the system before the termination can take place. If the transaction early-retries and fails to successfully
translate, it remains stalled until the termination action takes effect, or a successive early-retry enables the
transaction to progress successfully.

A CMD_RESUME(Retry) guarantees that the stalled transaction will be retried at a future point, unless it is
terminated by CMD_STALL_TERM command or an SMMUEN transition before the retry. A stalled transaction is
only guaranteed to be retried by the use of a CMD_RESUME(Retry) command.

A CMD_RESUME(Terminate) does not prevent a stalled transaction from being retried after the CMD_RESUME
is consumed by the SMMU, but guarantees that the transaction will be terminated if the transaction cannot
successfully early-retry.

Note: For example, if translations have not changed from the time that a fault was generated, a transaction
cannot successfully early-retry.

Note: ARM does not expect software to modify a TTD from a faulting or invalid state into a valid state, and then
terminate a transaction that has previously stalled because of the initial state of the TTD. The transaction could
early-retry, observe the valid state and then progress into the system.

If the SMMU is able to successfully early-retry a stalled faulting transaction before the original stall event is
committed to be written to the Event queue, the SMMU is permitted to discard the fault event or to continue on
and commit to the event write.

Note: To software, this race condition is indistinguishable from a temporally-later transaction that translates
successfully the first time so a stall event record is not required. If an implementation records the event, the
behavior described in this section applies.

If a stalled faulting transaction is early-retried before the original stall event is committed to be written to the event
queue and experiences a fault of a different kind (stalling or terminating), the last fault is recorded (if it is possible
to do so) and the prior fault is invisible.

3.12.2.3 Miscellaneous Stall considerations

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 73 of 443

 Non-Confidential

The number of transactions that can be stalled before the ingress port cannot accept any more transactions, from
the same stream or from other streams, is implementation specific. Stalling traffic can therefore cause
backpressure that affects the flow of traffic for other devices behind the SMMU.
If a stall blocks other traffic and resolving the fault condition that caused the stall involves transferring data using
another device, the system architecture must ensure that the act of fetching the data will not itself stall behind the
original transaction.
Note: STE.S1STALLD==1 prevents a guest VM from using the Stall model. This guarantees that stalled
transactions cannot affect other parts of the system, such as a different guest VM, where stalls could cause
deadlocks. ARM expects that hypervisor software uses the virtualization of SMMU_IDR0.STALL_MODEL to
report to the guest VM that the Stall model was not supported.
If a transaction experiences a fault during an IPA to PA translation of a stage 1 translation table walk or CD fetch,
it is not required to be terminated and might stall, depending on the stage 2 fault configuration provided by
STE.S2S. Software might address the cause of the stage 2 fault and retry the transaction, which will re-fetch the
configuration and translation structures as necessary.

3.12.3 Considerations for client devices using the Stall fault model
If a transaction from a client device experiences a fault that stalls and is terminated by software issuing
CMD_RESUME(Terminate), the transaction is marked and guaranteed to terminate at some point in the future if
translations do not change so as to allow an early-retry to succeed in the meantime. The SMMU does not
guarantee when a stalled transaction is terminated.

Note: A situation might arise in which software is required to reconfigure translations so that a previously-marked
stalled transaction might now succeed if it were to retry. For example, a transaction that is made to an unmapped
address causes an initial fault, and then a terminate operation is performed. Later software creates a legitimate
mapping at that address and, if the original transaction was a write that retries and now succeeds, data corruption
might result. Software might need a mechanism to ensure that previous transactions have all completed, both
terminated stalls and transactions that are progress that the SMMU is not yet aware of.

The system, or client devices, must provide a mechanism to enable software to wait for these previous
transactions to complete before changing configuration to a state that might let them proceed. This might be an
explicit indication from the client device that its outstanding transactions have all been terminated or completed,
an interconnect ordering guarantee that prior transactions are all visible, or another mechanism.

3.12.4 Virtual Memory paging with SMMU
The SMMU architecture supports three models of usage with respect to translation-related faults that occur during
translation of client device accesses:

1. A fault that occurs due to a device access might always be considered to be an error by the system and is
terminated.

Note: This might be the result of a programming error.

2. A fault that occurs due to a device access might be considered permanent due to a programming error, or
temporary due to particular page state resulting from use of virtual memory with the address space, and
one of the following is configured to occur:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 74 of 443

 Non-Confidential

a. The device transaction is stalled, the fault is reported to software and then the transaction is
resumed after the virtual memory system resolves the cause of the fault. Or, if the virtual memory
system determines that the access was invalid, the transaction is terminated. This model can
only be used with a device and interconnect that can support stalls.

b. For PCIe devices, for which transactions cannot safely be stalled, the PCIe specification provides
ATS and PRI. ATS enables an endpoint to ascertain whether a page can be accessed without
causing a fault in the SMMU before accessing it. PRI provides a mechanism for a page fault to
be resolved if the prior ATS step indicates a fault would otherwise occur.

3.12.4.1 Page-in request event
When non-PCIe devices are used with the Stall fault model to access paged virtual memory spaces, the Stall fault
record itself is the notification to software that a page miss occurred and that software intervention is required.

Note: Devices used with, or integrating, an SMMU will generally emit transactions when the access is required.
Although read speculation is permitted, writes cannot be emitted speculatively to trigger a page fault early, see
section 3.14. In particular, stall fault records do not arise from accesses marked speculative.

An optional hint event record, E_PAGE_REQUEST, can be provided by an implementation to request that
software initiates any costly page-in operations early. An implementation might provide an IMPLEMENTATION
DEFINED mechanism to convey this message from client devices. This message:

• Is a hint, and can be ignored or dropped by the SMMU or software.
• Can be issued speculatively.
• Requires no response.

Note: A stall fault record is generated in response to a non-speculative transaction. A speculative transaction
generates no software-visible record. E_PAGE_REQUEST allows a software-visible record to make an early start
on fetch of pages from secondary storage and can be used to hide latency.

3.12.5 Combinations of fault configuration with two stages
When the Stall model and the Terminate model are used differently at different stages of translation, the resulting
behavior of depends on the stage at which the transaction faulted and the type of fault. For Translation-related
faults that can stall the following scenarios arise:

Stage 1
config

Stage 2
config

Fault at Transaction
result

Event
parameters

Hypervisor behavior

Terminate Terminate Stage 1 Terminated VA Event passed to guest as a stage 1-only
event

Stage 2 Terminated VA, IPA Might log IPA of fault for debug purposes.

(1) Might pass event to guest.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 75 of 443

 Non-Confidential

Terminate Stall Stage 1 Terminated VA Event passed to guest as S1-only event

Stage 2 Stalled VA, IPA May terminate with
CMD_RESUME(Terminate) and log IPA of
fault for debug purposes.

Or, correct translation for IPA then
CMD_RESUME(Retry).

(1) Might pass event to guest if
terminated.

Stall Terminate Stage 1 Stalled VA Event passed to guest as stage 1-only
event with stall. Guest must
RESUME(Retry/Terminate)

Stage 2 Terminated VA, IPA Might log IPA of fault for debug purposes.

(1) Might pass event to guest.

Stall Stall Stage 1 Stalled VA Event passed to guest as S1-only event
with stall. Guest must
CMD_RESUME(Retry/Terminate)

Stage 2 Stalled VA, IPA Might terminate with
CMD_RESUME(Terminate) and log IPA of
fault for debug purposes.

Or, correct translation for IPA then
CMD_RESUME(Retry).

(1) Might pass event to guest if
terminated.

1. Might pass event to guest: Anything that is terminated at stage 2 is equivalent to a stage 1 external abort.
A successful stage 1 translation that outputs an incorrect IPA that leads to a stage 2 fault would not
ordinarily be reported to the guest through its SMMU interface, because its stage 1 translation succeeded
and the error arises outside of the (stage 1) domain of the SMMU interface. ARM expects that a stage 1
translation table walk that faults at stage 2 is reported to the guest as F_WALK_EABT by the hypervisor.

All other fault types cause the transaction to be aborted. For example, a failure to locate a valid STE
(F_BAD_STE) or CD (F_BAD_CD) terminate the transaction with an abort.

Note: When both stage 1 and stage 2 are enabled, a CD or stage 1 translation table descriptor fetch might cause
a stage 2 Translation-related fault, and might therefore stall the transaction. Regardless of the reason for making
the IPA access, the fault can be resolved at stage 2 and restarted. This is the same behavior as with a faulting
IPA access for the transaction address after stage 1 translation.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 76 of 443

 Non-Confidential

3.13 Translation table entries and Access/Dirty flags
The SMMU might support hardware translation table update (HTTU) of the Access flag and the Dirty state of the
page for AArch64 translation tables.

Some ARMv8-A PEs might support Hardware Update to Access flag and Dirty state [5]. SMMU support of HTTU
can coexist with both hardware and software flag update from the PEs. The SMMU update of descriptors
behaves in an identical manner to those described in [5], with the additional SMMU-specific behaviour in section
3.13.4, although its configuration method differs.

HTTU increases the efficiency of maintaining Access flag and Dirty state in translation tables. A single translation
table can be shared between any combination of agents that perform software updates of flags, and other agents
that perform HTTU. Agents supporting HTTU update the flags atomically. Software must also use atomic
primitives to perform its own updates on translation tables when they are shared with another agent that performs
HTTU.
Note: In general, an update of the Access flag and the Dirty state of the page in a system is associated with the
use of dynamic paging and, in the context of the SMMU, associated with DMA targeting paged memory. ARM
does not expect applications that constrain DMA access to static, pinned or non-paged mappings to perform or
require dynamic update to the Access or to the Dirty state of the page.

Support for HTTU is indicated by SMMU_IDR0.HTTU, and can be one of the following:

• No flag updates are supported.
• Only Access flag updates are supported.
• Update of both the Access flag and the Dirty state of the page is supported.

If HTTU is supported, separate enable bits in the CDs and STEs determine whether a particular stage 1 or stage 2
translation table (referenced from the CD or STE) is updated in this manner, and the scope of the updates.

Note: It is possible for several CDs to reference the same translation table, or for several STEs to reference the
same CD. Where translation tables are shared between CDs that contain the same ASID (within a translation
regime), the CD HA and HD fields must be identical. See section 5.4.1.

Note: Accessed means a translation to which an access has been made. Software might attempt to detect a
working set by clearing the Access flags and observing which flags are set again. Dirty state of the page means a
writable translation to which a write access or other modification has been made. When reclaiming or re-
purposing a Dirty page, software might preserve the modifications to storage. Clean means a writable translation
to which a modification has not been made. When reclaiming or re-purposing a Clean page, software might simply
discard the page contents (as another up-to-date copy might be available in storage elsewhere).

3.13.1 Software update of flags
Note: In the context of a PE that does not support HTTU, software is generally expected to maintain the Access
flag and the Dirty state of a page, where required, as follows:

• A read or write that fetches a TTD with AF==0 causes an Access fault, if AFFD==0. An exception handler
marks the TTD as AF==1 and retries the instruction that caused the access. Agents are not permitted to
cache such entries in TLBs. No TLB invalidation is required when setting AF to 1.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 77 of 443

 Non-Confidential

• A Dirty flag is usually implemented in software by write-protecting a translation. A write access to such a
translation generates a Permission fault, at which point the exception handler might rewrite the TTD to
mark it writable. The exception handler might use additional software structures or a software-defined
TTD flag to differentiate a genuinely non-writable page from a page that is only temporarily non-writable in
order to generate the Permission fault. In this arrangement, a TTD that has write permission is
considered to be Writable, Dirty and a TTD that has no write permission but is marked as temporarily
unwritable is considered to be Writable, Clean.

• A write to a genuinely non-writable page is an error. A write to a Writable Clean (temporarily non-writable)
page causes the page to become Writable Dirty. A write to a Writable Dirty page causes no additional
state change.

• An Access fault takes priority over a Permission fault. That is, a write to a Writable Clean page with
AF==0 and AFFD==0 causes an Access fault, and only after AF==1 does a Permission fault occur.

When pinned DMA translations are used with an SMMU, software can update the translation flags as appropriate
to the expected access. ARM does not expect faults to be generated when pinned translations are used, and
such faults represent a programming error. ARM expects software to use the Terminate model for such
scenarios, so that faulting transactions are terminated.

An SMMU can operate in a similar manner to the PE example when using unpinned DMA translations, so that
transactions that are translated by the SMMU cause faults to be recorded and the SMMU driver software sets TTD
state in response to these records. For more information about faults, see section 3.12.

Where this is the case, ARM recommends that this is implemented using the Stall model. ARM expects that the
SMMU driver maintains software Access or Dirty state by doing one of the following:

• Responding to an F_ACCESS fault by setting AF to 1 in the relevant TTD.
• Responding to an F_PERMISSION fault for write to a Writable Clean page by marking the page as

Writable Dirty.
• Finally, issuing a CMD_RESUME to the SMMU to retry the transactions held up due to the fault

Note: The AFFD field in a stage 1 and stage 2 configuration modifies the behavior of the AF flag of a TTD. A
TTD, at a translation stage with AFFD==1, and AF==0 does not cause an F_ACCESS to be generated. Instead,
the translation is used as though AF==1. This configuration is only relevant where HTTU is not used.

A translation table can be shared between multiple agents, if all agents that update the Access flag and the Dirty
state of the page use the same semantics to differentiate a TTD marked non-writable from one marked
temporarily non-writable. Usually, this is a software-defined bit that flags a page as potentially writable as
opposed to a page that is intended to always be non-writable.

HTTU removes the fault record and software handling from the path of updating translation table flags. An agent
is permitted to perform HTTU on a translation table that might be shared with an agent performing software
update. The Dirty Bit Modifier field has been added in ARMv8.1-A to differentiate non-writable and Writable Clean
states. For more information about the Dirty Bit Modifier, see section 3.13.3. Software intending to provide
software-updated TTD flags from one agent (for example a PE without HTTU) while sharing translations with
another agent that uses HTTU must use the DBM flag convention, and perform atomic updates.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 78 of 443

 Non-Confidential

3.13.2 Access flag hardware update
When HTTU is supported and enabled for a stream, a translation that causes an SMMU fetch of a descriptor with
AF==0 that would, without HTTU, have caused an Access fault performs an atomic update to set AF==1 in the
descriptor. The SMMU never clears AF.
If access to a descriptor causes a permission fault, it is UNKNOWN whether the AF flag of the descriptor is updated
to 1.

When HTTU is disabled, or not supported by the SMMU, a transaction that leads to access of translations with
AF==0 and AFFD==0 causes F_ACCESS.

If the update of the Dirty state of the page takes place, the final TTD will also have AF==1.

3.13.3 Dirty flag hardware update
In order to coexist with an agent that is not using hardware update, HTTU defines a new flag, at bit[51] of block
and page TTDs, called the Dirty Bit Modifier (DBM). The DBM bit marks the overall intention of a translation as
ultimately writable, to differentiate a non-writable page from a Writable Clean page in the same way as a software-
maintained mechanism would.

Note: The ARMv8-A stage 1 TTD field AP[2:1] has no bit[0]. The stage 2 equivalent is named S2AP[1:0]. Note
that earlier PE architecture referred to HAP[2:1], which is the same field as S2AP[1:0].

When HTTU of the Dirty state of a page is supported and enabled for the stream, a non-writable TTD is
automatically marked as writable by the SMMU when a translation for a write occurs, if it is a TTD with DBM==1.
A Permission Fault is not generated, and the translation continues.

Specifically, if a TTD is read-only only as a result of AP[2:1]==0b1x at stage 1, or non-writable using
S2AP[1:0]==0b0x at stage 2, then if DBM==1 and a translation for write occurs, the SMMU atomically sets AP[2]
to 0/HAP[2] to 1 in the TTD held in memory, in a coherent manner if appropriate. If DBM==0, the page has no
write permission and a write translation results in a Permission fault.
Note: HTTU of the Dirty state of a page is not applicable to a TTD that is made effectively read-only because of
the hierarchical control of access permissions using APTable. All references to page or block permissions in this
section are made on the assumption that the page or block is otherwise accessible, will not generate a Permission
fault for other reasons, such as PAN or the APTable having removed access, and that a page is only read-only (or
otherwise non-writable) because of the page or block AP/S2AP permissions.

When the APTable does not remove write access:

• A read-only stage 1 TTD has DBM==0 and AP[2:1]==0b1x. A non-writable stage 2 TTD has DBM==0
and S2AP[1:0]==0b0x.
A write causes a Permission fault as the page has no write permission.
The software fault handler invokes an error-handling routine. Because DBM==0, the software handler can
determine that the page is not allowed to be written. In the case of an SMMU stalled fault, software can
use CMD_RESUME to terminate an erroneous transaction.

• A Writable Clean TTD has DBM==1 and AP[2:1]==0b1x/S2AP[1:0]==0b0x.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 79 of 443

 Non-Confidential

Without HTTU, this TTD is non-writable and a write causes a Permission fault. Because DBM==1, the
page is intended to be writable and the software fault handler can mark the page as dirty by setting
AP[2]==0/S2AP[1]==1 and performing the appropriate TLB invalidation. The page is now marked
Writable Dirty. In the case of an SMMU stalled fault, software can use CMD_RESUME to retry the
transaction, which might then continue without fault.
When HTTU is enabled, a write transaction causes the SMMU to atomically set AP[2]==0 or S2AP[1]==1
as appropriate, and then allows the write to proceed.

• A Writable Dirty TTD has AP[2]==0/S2AP[1:0]==0b1x.
With or without HTTU, this page is writable and will not generate a Permission fault on a write.
Note: Although DBM is ignored by hardware in this state, it might be useful for software to use the
convention of leaving DBM==1 when a page AP[2] or HAP[2] transitions from non-writable to writable.
This allows the DBM bit to be used as a one-bit flag to indicate that, overall, a page is intended to be
written regardless of its current Clean or Dirty state.

• The SMMU never sets or clears DBM.
• The SMMU never clears S2AP[1].
• The SMMU never sets AP[2]. A TTD is never made writable by the SMMU unless DBM==1.

3.13.4 HTTU behavior summary
SMMU HTTU operation has the same behavior as described in Hardware Updates to Access Flag and Dirty State
in the ARMv8.1-A architecture [5].

The following HTTU behavior is specific to the SMMU:

• A TTD update that occurred because of a completed ATOS translation is made visible to the required
Shareability domain, as specified by the translation table walk attributes, by completion of a CMD_SYNC
that was submitted after the ATOS translation began.

• A TTD update that occurred because of a completed incoming transaction is made visible to the required
Shareability domain (as specified by the translation table walk attributes) by completion of a CMD_SYNC
that was submitted after the completion of the incoming transaction.

o In addition, the completion of a TLB invalidation operation makes TTD updates that were caused
by transactions that are themselves completed by the completion of the TLB invalidation visible.
Both broadcast and explicit CMD_TLBI_* invalidations have this property.
Note: The SMMU HTTU behavior follows the same rules as ARMv8.1-A [5], including all TLB
invalidation completion requirements on HTTU visibility from VMSA.

3.13.5 HTTU with two stages of translation
When two stages of translation exist, multiple TTDs determine the translation, that is the stage 1 TTD, the stage 2
TTDs mapping all steps of the stage 1 walk, and finally the stage 2 TTD mapping the IPA output of stage 1.
Therefore one access might result in several TTD updates. Figure 12 shows an example:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 80 of 443

 Non-Confidential

S1 L1
TTD addr

S1 L2
TTD addr

S1 final
TTD addr

...

Have IPA,
translate to
PA for final

result

Read S2 L1 TTD

Read S2 L2 TTD

RmW S2 final
TTD: update AF

...

Translate IPAPA

Stage 1
config,
TTBx
bases

Stage 2
config,

TT base

...

Translate IPAPA

...

Translate IPAPA

RmW S2 final
TTD: update

AF/D

...

Translate IPAPA

PA for
access/

translation
response

Result

Read S2 L1 TTD

Read S2 L2 TTD

Read S2 L1 TTD

Read S2 L2 TTD

Read S2 L1 TTD

Read S2 L2 TTD

RmW S2 final
TTD: update AF

RmW S2 final
TTD: update

AF/D

Read
L1 TTD

from
PA

Stage 1 TTD has updated
AF/D based on incoming
request (R/W)
(Permitted even if Stage 2
fault on IPA.)

Stage 2 TTD has
updated AF/D
based on incoming
request (R/W)

Read-modify-Write: Fetch data, atomically
updating flag(s).

(Permitted to update D, as well as AF, even
if S1 TTD is not updated.)

Stage 1

Stage 2

Input
addr

Read
L2 TTD

from
PA

RmW final
TTD from

PA: update
AF/D

Stage 2 TTD AF updated as S1TTD will be accessed.
Permitted to also update D before accessing S1TTD

(predict updated)

Figure 12: Example Hardware flag update with nested translation

Note: Figure 12 is an example procedure and does not depict all permitted ways of performing a nested
translation walk with HTTU enabled.

Because a stage 1 TTD hardware update is a write, the stage 2 mapping for its IPA must allow writes for the
update to succeed.

3.13.6 ATS, PRI and translation table flag update
When ATS and PRI are used to support device access to dynamically paged memory, the Access state and the
Dirty state of the page need to be maintained. This section describes the SMMU page flag maintenance behavior
in a system using ATS with PRI targeting dynamically paged memory.

Note: Maintenance of the Access flag and the Dirty state of the page is primarily of importance to DMA to
unpinned or paged memory, because use-cases with DMA to pinned memory would normally statically initialize
page state.

3.13.6.1 Hardware flag update for ATS & PRI
Because the purpose of ATS is to cache translations outside the SMMU and to avoid subsequent translation
interaction with the SMMU, if HTTU is enabled it is performed at the time of the ATS Translation Request (TR).

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 81 of 443

 Non-Confidential

When an ATS TR is made, it must be assumed that a device will subsequently access the page. If the page is
otherwise valid and an ATS response will be returned, AF is set to 1 in the descriptor in the same way as a direct
transaction access through the SMMU.

In addition to the behavior that is described earlier in this section, if hardware-management of Dirty state is
enabled and an ATS request for write access (with NW==0) is made to a page that is marked Writable Clean, the
SMMU assumes a write will be made to that page and marks the page as Writable Dirty before returning the ATS
response that grants write access, so that the modification to the page data by a device cannot be visible before
the page state is visible as Writable Dirty. If HTTU is only enabled for Access, an ATS request for a write to a
Writable Clean or Read Only page results in an ATS Translation Completion with W==0, and write access is
denied.

3.13.6.2 Behaviour with respect to flag maintenance for ATS & PRI without HTTU
If HTTU is not enabled for the Access flag, an ATS request to a page with AF==0 and AFFD==0 is denied. For
this address a response granting R=W=0, that is no access, is returned. The client device might then raise an
error in a device-specific manner, or might issue a PRI page request, if supported and configured, to request that
software makes the page available. Software can manually set AF==1 on receipt of the PRI page request in
anticipation of the device access.

An ATS request to any read-only page does not grant write access, that is it returns W==0, if hardware update of
Dirty state of the page is not enabled. Read access might be granted in the response, if the conditions for the
Access flag set out in this section are satisfied. The client device might raise an error in a device-specific manner,
or might issue a PRI page request to request write access to the address. On receipt of a PRI request, software
could assume that a request issued for write was initiated because data will shortly be written and mark the page
Writable Dirty before responding to the PRI request.

An ATS request for write to a page marked writable might grant write access, that is it returns W==1 in the
response. Software must consider writable pages as potentially dirty.

Note: PCIe PRI requests can be issued speculatively by an Endpoint. This implies speculatively marking the page
as Dirty. This is not permitted by the ARMv8-A architecture [6] and might be problematic for some software
systems.

Because pages cannot speculatively be marked as Dirty, ARM recommends that a system designed for general-
purpose software supports HTTU when PRI is used, so that the state of the page is marked Dirty only when a
request for write access is made using ATS.

3.14 Speculative accesses
An implementation might allow incoming transactions to be marked as speculative in an IMPLEMENTATION DEFINED
manner. Only read transactions are allowed to be marked as speculative. The behavior of a write transaction that

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 82 of 443

 Non-Confidential

is marked as speculative is always to terminate the transaction with an abort, and no event is recorded to
software.

The behavior of a read transaction that is marked as speculative depends on two things:

1. If the translation occurs successfully without faulting, the read transaction continues into the system and
returns data. Otherwise if any kind of fault or configuration error occurs, the transaction is terminated with
an abort; no event is recorded to software for any speculative transaction. The determination of a fault is
no different to non-speculative read transactions, including Access flag faults.

2. If HTTU is enabled and translation succeeds without fault, the read transaction updates the Access flags
of relevant TTDs.

The SMMU HTTU rules match those set out for ARMv8.1-A [5], with respect to hardware update of translation
table descriptor access/dirty flags, including update of stage 2 translation table flags for both speculative accesses
made at stage 1 and writes of stage 1 descriptors due to the setting of Access flags.

An implementation might provide translation services to a client device, and might support speculatively-issued
Translation Requests. An IMPLEMENTATION DEFINED mechanism must be used to differentiate speculative
Translation Requests from non-speculative Translation Requests.
Note: This mechanism might arise as an implementation-specific service provided to another device. PCIe ATS
Translation Requests are always non-speculative.

If a received Translation Request is marked as speculative, behavior is dependent on the read/write property of
the request:

• Translation Requests for an address to be written grant write in the response only if the TTDs that
translate the address are all marked Writable Dirty. If hardware management of the Access flag is
enabled, such a request updates AF. If hardware management of Dirty state is enabled, speculative Write
Translation Requests do not mark any Writable Clean TTD in the first or only stage of translation as
Writable Dirty. If the TTD is marked Writable Clean, the response does not grant write access.

• Translation Requests for an address to be read return a successful response, if appropriate, and if
hardware management of the Access flag is enabled updates AF.

• In both cases, if hardware management of Access flag and Dirty state is enabled in a nested translation
then an update of a stage 1 TTD to set AF or the Dirty state of the page might cause the stage 2 TTDs
related to the updated stage 1 TTD to be marked as Dirty as required.

The response to a Translation Request indicates whether a translation request was denied because of a page
fault or otherwise missing translation, or whether a valid translation existed but the request failed because the
translation was Writable Clean.
Note: A device might use this information to determine whether to stop making requests or whether to
subsequently try again with a non-speculative write.

For speculative accesses of SMMU structures and translations, see section 3.21.1 and 3.21.3.

3.15 Coherency considerations and memory access types
ARM anticipates that the SMMU will access all in-memory structures and queues in a manner that does not
requires software cache maintenance of the PE caches. ARM expects that this be IO-coherent access to normal
shared memory, but in implementations that cannot support cache coherency, this might be non-cached access.
Some embedded implementations might require use of memory mapped as non-cached by the PEs, see section

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 83 of 443

 Non-Confidential

3.16 below. The degree to which the different memory access types and attributes are supported is
IMPLEMENTATION DEFINED.

All in-memory structures and queues are accessed using Normal memory types. Configuration fields exist for
Stream table, Context descriptor and translation table fetches to govern Cacheability and Shareability of such
accesses. MSI writes can be configured to make Device-type accesses.

If hardware update of the Access flag or the Dirty state of a page is supported, atomic access is required to
update translation tables that are shared between the PE and SMMU. Support for atomic access using local
monitors requires a fully-coherent interconnect port.
If the memory system supports ARMv8.1 [5] atomic operations, the SMMU might support atomic updates without
local monitors, and not require a fully-coherent port. Because different SMMU implementations might use
different mechanisms for atomic update of the flags, and because local monitors require coherent cacheable
access, behavior is IMPLEMENTATION DEFINED if hardware flag updates are enabled on translation tables configured
to be accessed as Non-cacheable.

To limit complexity, the SMMU might respond to snoops from the system only as much as required for atomic
updates to translation tables with local monitors, if required. This means that all other memory access by the
SMMU might be IO-coherent. That is, SMMU configuration caches are not required to be snooped by PE
accesses. When configuration data structures are changed, software is required to issue invalidation commands
to the SMMU.

The SMMU respects the same single-copy atomicity rules as PEs regarding 64-bit translation table descriptor
accesses.

When configured by software, that is when not fixed in embedded implementations, ARM recommends that the in-
memory data structures and queues are treated as Normal memory cached by the PE when the SMMU
implementation is able to access them IO-coherently.
Note: This might be useful to avoid explicit cache maintenance on the PE side. When an SMMU is not able to
make IO-coherent access, a similar programming model might be achieved using normal non-cached mappings
from the PE.

Note: The configuration structure invalidation commands might be used by a hypervisor to maintain coherency
between guest and shadow structures that it might use.
When a system supports IO-coherent accesses from the SMMU for access to configuration structures, translation
tables, queues and CMD_SYNC, GERROR, Event queue and PRI queue MSIs, this is presented to software
using SMMU_IDR0.COHACC==1. If a system does not support IO-coherent access from the SMMU,
SMMU_IDR0.COHACC must be 0.

3.15.1 Client devices
SMMU translation of coherency traffic for client devices is not supported. Cache and TLB-maintenance
operations sent from client devices into the system are not supported. These operations terminate in the SMMU.

Devices connected behind an SMMU cannot contain caches that are fully-coherent with the rest of the system
because snoops relate to physical cache lines. Devices might contain caches that do not support hardware
coherency and which might be filled using non-physical addresses through an SMMU.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 84 of 443

 Non-Confidential

However, a client device that contains a TLB filled from the SMMU might maintain a fully-coherent physically-
addressed cache, using the TLBs to translate internal addresses to physical addresses before performing cache
accesses. Such a case might arise where an SMMU is implemented as part of a complex device.

In distributed systems, different client devices might have different paths through the SMMU into the system, and
these can differ in their ability to perform IO-coherent access. These paths might also differ from those used by
the SMMU for its own configuration access, hence SMMU_IDR0.COHACC does not indicate whether client
devices can also make IO-coherent accesses. ARM recommends that whether a given client device is capable of
performing IO-coherent access is described to system software in a system-specific manner.

3.16 Embedded implementations
Some implementations might support the use of on-chip or internal storage for one or more of the Stream table
structure, the Command queue, or the Event queue. This manifests itself as register base pointers and properties
that are hard-wired to point to the on-chip storage. Such queues and structures are of a fixed size and
configuration and in all cases are discoverable by system software. Software must not assume that it is
necessary to allocate tables in RAM and set up pointers. It must initially probe for an existing configuration.
SMMU_IDR1.TABLES_PRESET and SMMU_IDR1.QUEUES_PRESET indicate that the Stream table base
address and queue base addresses are hardwired to indicate pre-existing storage for the tables or queues, or
both. When SMMU_IDR1.REL is set, the base addresses are given relative to the start of the SMMU register
memory map, rather than as absolute addresses.

An implementation using internal storage for configuration and queues is not required to access this storage
through the coherency domain of the PEs. Data accesses from the PE require manual cache maintenance or use
of a non-cached memory type for these addresses.

3.16.1 Changes to structure and queue storage behavior when fixed/preset
Non-preset tables/queues are stored in normal memory. When an embedded implementation contains a preset
structure or queue in internal storage it is not required that all bits of all structures/queue entries are accessible
exactly as they would be in normal memory. For example, an implementation might not provide storage for fields
in structures and queues that would not be used by architected behavior.

3.16.1.1 Event Queue and PRI Queue
All entries in an embedded Event queue or PRI queue, that is where SMMU_IDR1.QUEUES_PRESET==1, are
permitted to have read-only/write-ignored behavior with respect to software accesses.

3.16.1.2 Command Queue
Entries in an embedded Command queue, that is where SMMU_IDR1.QUEUES_PRESET==1, are readable and
writable, but are not required to provide storage outside of the union of all defined fields for all implemented
commands. In addition, referring to the Command encodings in section 4, storage is not required to be provided
for:

• Reserved and undefined fields.
• High-order bits of StreamID fields beyond the implemented range of StreamIDs.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 85 of 443

 Non-Confidential

• High-order bits of SubstreamID fields beyond the implemented range of SubstreamIDs (including the
entire field if SubstreamIDs are not implemented).

• SSV fields, if SubstreamIDs are not implemented.
• STAG bits that are always generated as ‘0’ to software.

Note: An implementation might choose to use fewer than 16 bits of STAG when communicating stalled
faults to software.

• SSec, if Security is not supported.
• CMD_SYNC MSIData, MSIAddress and MSIWriteAttributes if MSIs are not supported by the Security

state of the Command queue.
• ASID[15:8] if SMMU_IDR0.ASID16==0, or VMID[15:8] if SMMU_IDR0.VMID16==0.
• CMD_CFGI_STE Leaf parameter (embedded Stream tables are single-level).
• Fields in any command type that gives rise to CERROR_ILL.

A bit that is not stored due to these rules has RAZ/WI behavior.

Note: An implementation determines the set of required storage bits from implementation-specific configuration
options and values.

Software must not assume that it can write an arbitrary 16-byte sequence to a Command queue entry and read
back the sequence unmodified. However, functional fields that form valid command parameters must be readable
by software for debug and read-modify-write construction of commands (the queue is not considered write-only).

3.16.1.3 Stream Table Entry
Entries in an embedded Stream table are freely read/write accessible, but storage is not required to be provided
for:

• Undefined fields.
• Reserved/ RES0 fields.
• Fields that are IGNORED in all possible configurations that an implementation supports.
• Fields permitted to have RAZ/WI behavior.

As an example, storage is not required for STE.S1ContextPtr on an SMMU that has an embedded Stream table
but does not support stage 1.
Note: Fields reserved for software use do not alter SMMU function but must be stored in their entirety.

3.17 TLB tagging, VMIDs, ASIDs and participation in broadcast TLB
maintenance
Cached translations within the SMMU are tagged with:

• A translation regime, given by the STE’s StreamWorld and derived in part from STE.STRW. This applies
to all cached translations.

• An ASID, if the translation regime supports ASIDs.
• A VMID, if stage 2 is implemented by the SMMU and if the translation regime supports VMIDs)

This is summarized in the table below:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 86 of 443

 Non-Confidential

StreamWorld Address
 type

Tags

ASID ASET VMID

NS-EL1 VA Yes, if TTD.nG==1 Yes (2) Yes(1)

IPA (1) No No(3) Yes(1)

EL2 VA No No(3) No

EL2-E2H VA Yes, if TTD.nG==1 Yes (2) No

Secure VA Yes, if TTD.nG==1 Yes (2) No

EL3 VA No No(3) No
(1) If SMMU_IDR0.S2P==1.
(2) ASET is required to be included in TLB records when TTG.nG==0. ARM expects, but does not require,

ASET to be included in TLB records when TTD.nG==1 to support the limitation of broadcast invalidation
feature of ASET.

(3) ARM permits but does not require the inclusion of ASET in TLB records for EL3 and EL2.

This is consistent with TLB tagging in PEs.

Note: In this document, the term cached translations refers to the contents of a PE-style ASID/VMID/Address
TLB. Any cached configuration structures are considered architecturally separate from the translations that are
located from the configuration. Configuration caches are not required to be tagged as described in this section.

Use of these tags ensures that no aliasing occurs between different translations for the same address within
different ASIDs, or between the same ASID under different VMIDs, or between the same ASID within different
translation regimes, or between different translation regimes without ASIDs (for example EL2 and EL3). For both
lookup and invalidation purposes, ASID values can be considered to be separate namespaces within each VMID
and translation regime. For example, TLB entries tagged as ASID 3 in a Secure stage 1 cannot be matched by
lookups for ASID 3 in an NS-EL1 stage 1 configuration. Similarly, a TLB entry that is tagged as EL2 can never be
matched by a lookup from an EL3 context, even if the address matches.
When SMMU_IDR0.S1P==1, the SMMU supports 16-bit ASIDs if SMMU_IDR0.ASID16==1.
When SMMU_IDR0.S2P==1, the SMMU supports 16-bit VMIDs if SMMU_IDR0.VMID16==1.
Consistent with PEs, all TLB entries inserted using NS-EL1 configurations are tagged with VMIDs when stage 2 is
implemented, regardless of whether configuration is stage 1-only, stage 2-only or stage 1+stage 2 translation.
When stage 2 is configured, with or without stage 1, or if stage 1-only translation is configured, the VMID is taken
from the STE.S2VMID field. When stage 2 is not implemented, no VMID tag is required on TLB entries.

Note: Some implementations and interconnects might support the transmission of VMID value onwards into the
system, so that slave devices might further arbitrate access on a per-transaction basis. Where SMMU bypass is
enabled (SMMU_(S_)CR0.SMMUEN==0) so that STE structures are unused, the SMMU_(S_)GBPA.IMPDEF
field might be used. Otherwise, the STE.S2VMID field might be used. Details of these use cases are outside of
the scope of this specification.

SMMU support for TLB maintenance messages that are broadcast from the PE is optional, but ARM recommends
that support is implemented. These messages convey TLB invalidations from certain TLBI instructions on PEs.
The ARM architecture [4] requires invalidation broadcasts to affect other PEs or agents in the same Inner
Shareable domain. Broadcast TLB invalidate messages convey one or more of an address, an ASID or a VMID

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 87 of 443

 Non-Confidential

as required for a given invalidation operation, the scope defined by a translation stage to be affected and the
translation regime in which the TLB entries are tagged. Support for broadcast invalidation is indicated by
SMMU_IDR0.BTM.

Where SMMU_IDR0.BTM==1, setting SMMU_(S_)CR0.PTM==1 causes the SMMU to ignore broadcast TLB
invalidation operations for the Security state. Broadcast TLB invalidation messages that would invoke an illegal
operation, such as an invalidation that applies to a stage or Security state that is not implemented in the SMMU,
are silently ignored, with the exception that messages that have a combined effect must affect the implemented
stages and ignore any unimplemented stage. When SMMU_IDR0.S2P==0, the SMMU matches VMID 0 for
incoming broadcast TLB invalidation messages.
Note: On PEs that do not implement EL2, or that are running with stage 2 disabled, ARM expects software to
configure VTTBR or VTTBR_EL2.VMID to 0. This ensures that for broadcast TLBI operations that include a VMID
the VMID is set to 0.
Note: If stage 1-only NS-EL1 translations coexist with stage 1 and stage 2 NS-EL1 translations, then this mixed
configuration must use distinct VMIDs in each configuration to avoid the stage 1-only translations matching
lookups that use stage 1 and stage 2 configurations. This is not an issue where stage 1-only configurations are
only present in EL2, EL2-E2H or Secure translation regimes.

Note: ARM expects broadcast invalidation from PEs to be used where address spaces are shared with the
SMMU and common translations are maintained, such as Shared Virtual Memory applications, or stage 2
translations that share a common stage 2 translation table between VMs and the SMMU. When an address
space is not shared with PE processes, broadcast TLB invalidations from the PEs to the SMMU have no useful
effects and might over-invalidate unrelated TLB entries. Non-shared address spaces arise when a custom
address space is set up for a particular device – for example, scatter-gather or DMA isolation use cases. ARM
expects that both shared and non-shared stage 1 translations might be in use simultaneously.

Stage 1 CDs contain an ASET flag, that represents the shared or non-shared nature of the ASID and address
space. The set of ASIDs for non-shared address spaces might opt out of broadcast invalidation.

Note: ARM expects that SMMU stage 2 address spaces are generally shared with their respective PE virtual
machine stage 2 configuration. If a particular SMMU stage 2 is to opt-out, ARM recommends that a hypervisor
configures the STE with a VMID that is not allocated for virtual machine use on the PEs

For a stage 1 configuration with a StreamWorld that has ASIDs, when CD.ASET==1, the address space and ASID
are non-shared. TLB entries that belong to that StreamWorld are not required to be invalidated by the broadcast
invalidation operations that match with an ASID. These operations are VA{L}ExIS and ASIDExIS in the
appropriate translation regime. All other matching broadcast invalidations are required to affect these entries.
Where CD.ASET==0, the ASID is considered shared with PE processes. TLB entries that belong to that
StreamWorld are required to be affected by all matching broadcast invalidates. The definition of matching is
identical to that of ARMv8-A PE TLBs [4]. CD.ASET does not affect the invalidation of stage 2 translation
information.

For translation lookup of non-global TLB entries and command-based invalidation purposes, ASID values with
CD.ASET==0 are considered equivalent to ASID values with CD.ASET==1. CMD_TLBI_* commands invalidate
all matching TLB entries regardless of their ASET value. CD.ASET affects translation lookup of global TLB
entries. For information about global TLB entry matching, see section 3.17.1.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 88 of 443

 Non-Confidential

A stage 1 configuration in a translation regime that does not have ASIDs, that is where StreamWorld==EL2 or
StreamWorld==EL3, ignores the ASID field and is permitted but not required to tag TLB entries using ASETs. An
equivalent semantic applies, in that ASET==0 entries are affected by broadcast invalidation and ASET==1 entries
are not required to be invalidated by certain operations. EL2 TLB entries with ASET==1 are not required to be
invalidated by VA{L}ExIS or VAA{L}ExIS but must be invalidated by ALLE2IS. EL3 TLB entries with ASET==1 are
not required to be invalidated by VA{L}E3IS but must be invalidated by ALLE3IS.
Note: ARM does not anticipate that ASET==1 has an effect on EL2 and EL3 contexts, however the behavior
described here is consistent with other StreamWorld configurations.
Note: A broadcast invalidation operation that originates from a PE in EL2-E2H mode is not required to invalidate
SMMU TLB entries that were inserted with StreamWorld==EL2, see section 3.17.5.
Note: See section 16.7.7 for AMBA interconnect DVM behaviour with respect to ASET==1.

Note: The ASID namespace might be affected by ASID rollover on the PE. These situations might be handled by:

• Refreshing the ASID namespace on the PE side and reallocating free ASIDs to new processes, but
leaving ASIDs that are shared with SMMU contexts untouched.

• Swapping the ASID that is used in a CD, so that the old ASID is removed from the SMMU, and future
traffic uses a freshly-allocated ASID. This can be achieved with an overlap in which both the old ASID
and new ASID are active as the old ASID is updated in the CDs. This is followed by invalidation
commands to the affected CDs (causing the SMMU to use the new ASID), and a CMD_SYNC. These
steps are followed by TLB invalidation commands and a CMD_SYNC to remove all usage of the old ASID.
When the final CMD_SYNC has ensured that these commands are complete, the old ASID can be
considered free and the system can re-use it for a different address space.

3.17.1 The Global flag in the Translation Table Descriptor

For translation regimes that have an ASID, ARMv8-A [4], defines an nG flag in the Translation Table Descriptors
(TTDs) that allows TTDs to be marked as either global or non-global. A translation that is performed for a Secure
stream is treated as non-global, regardless of the value of TTD.nG, if the descriptor is fetched from Non-secure
memory. The EL2 and EL3 StreamWorlds do not support ASIDs, and the TTD.nG flag has no effect on these
regimes.

When entries are global, an ASID is not required to be recorded in any resulting TLB entry. During lookup, a TLB
entry marked as global can match regardless of the ASID that is provided with the lookup.

The TTD.nG flag does not allow a TLB entry to match a lookup from a StreamWorld that is not the same as the
one from which the TLB entry was created.

Note: Global translations are used across address spaces with identical layout conventions, OS kernel addresses
might be common across all process address spaces, and so they might be marked global. However, an SMMU
might be used with many custom address spaces that are laid out in a manner convenient to the client device they
serve, without common mappings.

The SMMU only matches global TLB entries, that is where TTD.nG==0, against lookups from the same
StreamWorld and ASID set (ASET). Global TLB entries with ASET==0 do not match lookups through
configurations with ASET==1. Global TLB entries with ASET==1 do not match lookups through configurations
with ASET==0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 89 of 443

 Non-Confidential

Invalidation rules for non-locked global mappings are identical to those in ARMv8-A, TLBI ASIDE1IS and
ASIDE2IS are not required to invalidate global mappings.

3.17.2 TLB maintenance from ARMv8-A PEs with EL3 in AArch64
When the Secure Stream table is controlled by an ARMv8-A PE where EL3 is using AArch64 state, software has
the option of marking an STE as Secure or EL3 using the StreamWorld field, STE.STRW.

When the StreamWorld is Secure, the stream is configured on behalf of Secure-EL1 software and the resultant
TLB entries are tagged as Secure, including an ASID if non-global. Such entries must be invalidated by:

• PE broadcast TLB invalidations (where supported and if CD.ASET allows) from Secure EL1 instructions.
These instructions are:

o TLBI VA{L}E1IS
o TLBI VAA{L}E1IS
o TLBI ASIDE1IS, for non-global entries
o TLBALLE1IS

• SMMU invalidation commands on the Secure Command queue. These commands are:
o CMD_TLBI_NH_ALL
o CMD_TLBI_NH_ASID, for non-global entries
o CMD_TLBI_NH_VAA
o CMD_TLBI_NH_VA

When StreamWorld is EL3, the stream is configured on behalf of EL3 software and resultant TLB entries are
tagged as EL3, without ASID, which differentiates them from the Secure case above. Such entries are invalidated
by:

• PE broadcast TLB invalidations (where supported and if CD.ASET allows) from EL3 instructions:
TLBI VA{L}E3IS, TLBI ALLE3IS

• SMMU invalidation commands on the Secure Command queue:
CMD_TLBI_EL3_VA, CMD_TLBI_EL3_ALL

3.17.3 TLB maintenance from ARMv7-A PEs or ARMv8-A PEs with EL3 using AArch32
state
When the Secure Stream table is controlled by an ARMv7-A PE or an ARMv8-A PE where EL3 is using AArch32
state, ARM expects software to mark the StreamWorld of an STE as Secure. The resultant TLB entries are
tagged as Secure, including an ASID if non-global. Such entries are invalidated by:

• PE broadcast TLB invalidations (where supported and if CD.ASET allows) from Secure instructions.
These instructions are:

o TLBIMVA{L}IS
o TLBIMVAA{L}IS
o TLBIASIDIS, for non-global entries

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 90 of 443

 Non-Confidential

o TLBIALLIS
o Note: TLBI VA{L}E3IS and TLBI ALLE3IS are AArch64-only and unavailable in this scenario.

• SMMU invalidation commands on the Secure Command queue. These command are:
o CMD_TLBI_NH_ALL
o CMD_TLBI_NH_ASID, for non-global entries
o CMD_TLBI_NH_VAA
o CMD_TLBI_NH_VA

Note: Broadcast invalidations from ARMv7-A PEs or ARMv8 PEs where EL3 is using AArch32 might fail to
invalidate SMMU TLB entries that are tagged with StreamWorld==EL3.

3.17.4 Broadcast TLB maintenance in mixed AArch32 and AArch64 systems and with
mixed ASID or VMID sizes
Broadcast TLB maintenance instructions that are executed from ARMv7-A and ARMv8-A PEs using AArch32 and
AArch64 Exception levels affect SMMU TLB entries (if broadcast TLB invalidation is supported and participation
enabled), when the addresses, ASIDs, VMIDs and StreamWorlds match as appropriate.

The exceptions are:

• If a PE where EL3 uses AArch32 state issues an AArch32 TLBI that affects Secure entries, the TLBI is not
required to affect SMMU TLB entries that were created with StreamWorld==EL3.

• If a PE where EL3 uses AArch64 state issues an AArch64 or AArch32 TLBI that affects Secure EL1
entries, the TLBI is not required to affect SMMU TLB entries created with StreamWorld==EL3.

• If a PE where EL3 uses AArch64 state issues an AArch64 TLBI that affects EL3 entries, the TLBI is not
required to affect SMMU TLB entries created with StreamWorld==Secure.

ARMv7-A PEs have 8-bit ASIDs and VMIDs. ARMv8-A PEs might have 16-bit ASIDs or VMIDs or both. An
SMMU implementation supports 8-bit or 16-bit ASIDs and VMIDs, as indicated by
SMMU_IDR0.{ASID16,VMID16}.

A difference in ASID or VMID size between the originator of the broadcast TLB maintenance instruction and the
SMMU is resolved as follows. For each of ASID and VMID:

• An SMMU that supports a 16-bit ASID or VMID compares the incoming 16-bit broadcast value to its TLB
tags directly and matches if the values are equal.

o The incoming 16-bit value is constructed by the system from an originator with an 8-bit ASID or
VMID by zero-extending the value to 16 bits.

• An SMMU that supports an 8-bit ASID or VMID compares the bottom 8 bits of the incoming broadcast
values to its TLB tags:

o The comparison is required to match if the bottom 8 bits are equal and the top 8 bits are zero.
o The comparison is not required to, but might, match if the bottom 8 bits are equal but the top 8

bits are non-zero.

When the SMMU supports 16-bit ASIDs, that is when SMMU_IDR0.ASID16==1, it does so for all StreamWorlds
that use ASIDs (NS-EL1, Secure, EL2-E2H). The SMMU does not differentiate ASID size by AArch32 contexts,
as does an ARMv8-A PE and, if supported by an implementation, 16-bit ASIDs can be used in CDs where

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 91 of 443

 Non-Confidential

CD.AA64==0. ARM expects that legacy software will continue to write zero-extended 8-bit values in the ASID
field in this case. The same behavior applies for 16-bit VMIDs, when SMMU_IDR0.VMID16=1, the behavior of
which is not modified by STE.S2AA64==0.

3.17.5 EL2 ASIDs in EL2 Host (E2H) mode
The EL2 translation regime consists of a stage 1 translation with one translation table, without user permission
checking, and TLB entries that are not tagged with an ASID.
In E2H mode, the EL2 translation regime remains stage 1-only, but consists of two stage 1 translation tables that
function the same way as those for an EL1 stage 1 translation. The resulting TLB entries are tagged as EL2, and
might include an ASID. EL2-E2H mode can be configured for Non-secure STEs using STE.STRW when
SMMU_IDR0.Hyp==1 and SMMU_CR2.E2H==1.
Note: In the ARMv8.1-A architecture [5], EL2-E2H mode is referred to as the Virtualization Host Extensions.

Broadcast TLB maintenance from a PE affects SMMU TLB entries when the whole system uses EL2 or EL2-E2H
mode. Broadcast messages from a PE running in EL2-E2H supply an EL2 scope, and also supply an ASID to
match. In addition, EL2-E2H mode extends the set of EL2 broadcast invalidations to the following operations:

• Invalidate all, for EL2-tagged entries.
• Invalidate by VA and ASID, for EL2.
• Invalidate by VA in all ASIDs, for EL2.
• Invalidate all by ASID, for EL2.

If a PE running at EL2 uses E2H mode, but an SMMU contains TLB entries that were inserted with
StreamWorld==EL2 configuration, the EL2-E2H broadcast invalidations from the PE are not required to invalidate
these TLB entries.

If a PE running at EL2 does not use E2H mode, but an SMMU contains TLB entries that were inserted with
StreamWorld==EL2-E2H configurations, EL2 broadcast invalidations from the PE are not required to invalidate
these TLB entries.

Note: If broadcast invalidation is required for translations controlled by EL2 software, ARM recommends that
StreamWorld==EL2 is used when host PEs do not use E2H mode, and that SMMU_CR2.E2H==1 and therefore
StreamWorld==EL2-E2H are used when host PEs use the E2H mode.

An implementation is not required to differentiate TLB entries with StreamWorld ==EL2 from those with
StreamWorld==EL2-E2H, because ARM does not expect these TLB entries to ever coexist in translation caches.
Therefore:

• A change to SMMU_CR2.E2H must be accompanied by an invalidation of all TLB entries that were
inserted with StreamWorld==EL2 or StreamWorld==EL2-E2H. See section 6.3.12 for details.

• The implementation of TLB invalidation commands CMD_TLBI_EL2_VAA and CMD_TLBI_EL2_VA might
change depending on SMMU_CR2.E2H, see the individual commands for details.

Note: A TLB lookup through a configuration with StreamWorld==EL2-E2H, that is while SMMU_CR2.E2H==1,
matches the ASID of the configuration with the ASID tag of the EL2 TLB entry, unless the entry is marked global.
A TLB insertion through the same configuration inserts a TLB entry tagged with the ASID of the configuration

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 92 of 443

 Non-Confidential

unless Global. When StreamWorld=EL2, that is while SMMU_CR2.E2H==0, a TLB lookup does not match the
ASID tag of EL2 TLB entries, nor does a TLB insertion tag the entry with a known ASID value. A change to
SMMU_CR2.E2H can cause unexpected TLB entries to match.

3.17.6 VMID Wildcards
Some virtualization use cases involve the presentation of different views of page permissions in the same address
space to different device streams. The mechanism by which one address space is split into more than one view is
outside the scope of this document.

Note: STEs with different translation table pointers must have different VMIDs. TTBs in the same VMID are
considered equivalent.

In the SMMU, SMMU_CR0.VMW controls a VMID wildcard function that enables groups of VMIDs to be
associated with each other for the purposes of invalidation. An incoming broadcast invalidation that matches on
VMID matches one exact VMID or ignores a configured number of VMID LSBs, as configured by
SMMU_CR0.VMW.
Note: For example, SMMU_CR0.VMW might configure 1 LSB of VMID to be ignored so an incoming broadcast
invalidate for VMID 0x0020 matches TLB entries tagged with VMID 0x0020 or 0x0021. This configuration
allows VMIDs to be allocated in groups of adjacent or contiguous values, using one VMID in the PEs for the VM
and one or more of the others to support different IPA address space views in different device stage 2
configurations.

Both broadcast TLB invalidation and explicit SMMU TLB invalidation commands, whether for stage 1 within the
guest or at stage 2, affect all VMIDs that match the group wildcard when SMMU_CR0.VMW != 0.

Note: The broadcast TLB invalidation mechanisms that might exist on a PE and interconnect are not modified by
this feature. The VMW field modifies the internal behavior of the SMMU on receipt of such a broadcast
invalidation.

The VMID wildcard controlled by SMMU_CR0.VMW only affects a VMID that matches on invalidation. The SMMU
continues to store all bits of VMID in the TLB entries that require them, and does not allow dissimilar VMID values
to alias on lookup.

3.18 Interrupts and notifications
Events that are recorded to the Event queues, PRI requests and Global errors have associated interrupts to allow
asynchronous notification to a PE.

An implementation might support Message Signalled Interrupts (MSIs) which take the form of a 32-bit data write of
a configurable value to a configurable location, typically, in GICv3 systems, the GITS_TRANSLATER or
GICD_SETSPI_NSR registers. For more information, see [7]. When SMMU_S_IDR1.SECURE_IMPL==1, ARM
expects notifications that were generated by Secure events to set Secure SPIs using the GICD_SETSPI_SR
register in systems that implement the GICv3 architecture.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 93 of 443

 Non-Confidential

An implementation must support one of, or optionally both of, wired interrupts and MSIs. Whether an
implementation supports MSIs is discoverable from SMMU_IDR0.MSI and SMMU_S_IDR0.MSI. An
implementation might support wired interrupt outputs that are edge-triggered. The discovery of support for wired
interrupts is IMPLEMENTATION DEFINED.

An implementation with support for two Security states, that is where SMMU_S_IDR1.SECURE_IMPL==1, might
implement MSIs for one Security state but not the other ARM recommends that an implementation does not
support Secure MSIs without also supporting Non-secure MSIs.

It is not permitted for an interrupt notification of the presence of new information to be observable before the new
information is also observable. This applies to MSI and wired interrupts, when:

• A Global error condition arises. The change to the Global error register, GERROR, must be observable if
the interrupt is observable.

• New entries are written to an output queue. The presence of the new entries must be observable to reads
of the queue index registers if the interrupt is observable. See section 3.5.2.

• A CMD_SYNC completes. The consumption of the CMD_SYNC must be observable to reads of the
queue index registers if the interrupt is observable.

Each MSI can be independently configured with a memory type and Shareability. This makes it possible to target
a Device MSI target register or a location in Normal memory (that might be cached and shareable). See the
SMMU_IDR0.COHACC field in section 6.3.1, which indicates whether the SMMU and the system support
coherent accesses, including MSI writes.
Note: A PE might poll this location or might, for example in ARMv8-A PEs, wait for loss of an exclusive reservation
that covers an address targeted by the notification. In this example, an ARMv8-A PE with an SMMU that is
capable of making shared cacheable accesses can achieve the same behavior as a WFE wake-up event
notification (see CMD_SYNC) without wired event signals, using MSIs that are directed at a shared memory
location.

Note: If the destination of an MSI write is a register in another device, ARM recommends that it is configured with
Device-nGnRnE or Device-nGnRE attributes.

The SMMU does not output inconsistent attributes as a result of misconfiguration. Outer Shareable is used as the
effective Shareability when Device or Normal Inner Non-cacheable Outer Non-cacheable types are configured.

MSIs that are generated by Secure sources are performed with Secure accesses, that is NS==0. MSIs from Non-
secure sources are performed with Non-secure accesses, that is NS==1. Apart from the memory type,
Shareability and NS attributes of MSIs, all other attributes of the MSI write are IMPLEMENTATION DEFINED.

A GICv3 Interrupt Translation Service (ITS) differentiates interrupt sources using a DeviceID. To support this, the
SMMU does the following:

a) Passes StreamIDs of incoming client device transactions. These generate DeviceIDs in a system-
specific manner.

b) Produces a unique DeviceID of its own, one that does not overlap with those produced for client
devices, for outgoing MSIs that originate from the SMMU. As with any other MSI-producing master,
this is set statically in a system-defined manner.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 94 of 443

 Non-Confidential

SMMU MSIs are configured with several separate pieces of register state. The MSI destination address, data
payload, Shareability, memory type and enables in combination construct the MSI write, onto which the unique
DeviceID of the SMMU is attached.

Edge-triggered interrupts can be coalesced within the system interrupt controller. The SMMU can internally
coalesce events and identical interrupts so that only the latest interrupt is sent, but any coalescence must not
significantly delay the notification. This applies to both MSIs and edge-triggered wired interrupts.

When MSIs are not supported, the interrupt configuration register fields that would configure MSI address and
data are unused. Only the interrupt Enable field is used.

3.18.1 MSI synchronisation
The SMMU ensures that previously-issued MSI writes are completed at the following synchronisation points:

• For register-based MSI configuration, the act of disabling an MSI through SMMU_(S_)IRQ_CTRL, see
section 6.

• A CMD_SYNC ensures completion of MSIs that originate from the completion of prior CMD_SYNC
commands that were consumed from the same Command queue.

Completion of an MSI guarantees that the MSI write is visible to its Shareability domain or, if an abort response
was returned, ensures that the abort is visible in GERROR with the appropriate
SMMU_(S_)GERROR.MSI_*_ABT_ERR flag.
Note: Completion of an MSI terminated with abort sets a GERROR flag but does not guarantee completion of a
subsequent GERROR interrupt that might be raised to signal the setting of the flag.

Earlier MSIs are guaranteed not to become visible after the acknowledgement that the MSI Enable alteration has
completed or after consumption of a CMD_SYNC has completed.

In the case of register-based MSI configurations, the additional guarantee is made that MSIs triggered after the
MSI is re-enabled will use the new configuration.

3.18.2 Interrupt sources
The SMMU has the following interrupt sources. Depending on the implementation, each interrupt source asserts
a wired interrupt output that is unique to the source, or sends an MSI, or both.

Source Trigger reason Notes

Event queue Event queue transitions from empty
to non-empty

-

Secure Event queue -

PRI queue PRI queue interrupt condition, see
section 6.3.36.

-

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 95 of 443

 Non-Confidential

Command queue CMD_SYNC Sync complete, with option of
generated interrupt

MSI configuration (destination,
data) present in command

Secure Command queue
CMD_SYNC

GERROR Global Error activated in
SMMU_GERROR registers

-

S_GERROR Secure Global Error activated in
SMMU_S_GERROR registers

-

Each interrupt source can be enabled individually through SMMU_IRQ_CTRL and SMMU_S_IRQ_CTRL if
present. If enabled, a pulse is asserted on a unique wired interrupt output, if this is implemented. If enabled, an
MSI is sent if MSIs are supported and if the MSI configuration of the source enables the sending of an MSI by
using an ADDR value that is not zero.

This allows an implementation that supports both MSIs and wired interrupts to use both types concurrently. For
example, the Secure programming interface might use wired interrupts (whose source would be enabled, but with
the MSI ADDR==0 to disable MSIs) and the Non-secure programming interface might use MSIs (whose source
would be enabled and have MSI address and data configured).

The conditions that cause an interrupt to be triggered are all transient events and interrupt outputs are effectively
edge-triggered. There is no facility to reset the pending state of the interrupt sources.

Where an implementation supports RAS features, additional interrupts might be present. The operation,
configuration and assertion of these interrupts has no effect on any of the interrupts listed in this section for normal
SMMU usage. See section 12 for more information on RAS features.

3.19 Power control
An implementation might support implementation specific automatic power saving techniques, for example, power
and clock gating, retention states during idle periods of normal operation. All use of these techniques is
functionally invisible to devices and software. If implemented, these automatic powerdown or retention states:

• Might retain all valid cache contents or might cause loss of cached information.
• Do not allow undefined cache contents to become valid, valid cache contents to change, or otherwise

corrupt any SMMU state.
• Seamlessly operate with wake on demand behavior in the event of incoming device transactions.

Alternatively, a system might allow an SMMU to be powered off at the request of system software, in an
IMPLEMENTATION DEFINED manner. This state is requested when no further SMMU operation is required by the
system. Software must not make accesses to the SMMU programming interface in this state. Where two Security
states are supported, this state is not entered unless Non-secure and Secure drivers of an SMMU both request
powerdown.

Because such a power off represents a complete loss of state and functionality, this state must only be used when
all client devices and interconnect are quiescent. Software must disable client device DMA and ensure any

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 96 of 443

 Non-Confidential

SMMU commands, invalidations and transactions from client devices that are in progress are complete before
requesting powerdown. If any existing transactions are in a stalled state at the time of the powerdown, they must
be terminated with an abort. The behavior when a transaction arrives at the SMMU after the powerdown state is
entered is UNPREDICTABLE.

On an IMPLEMENTATION DEFINED wakeup event, the SMMU must be reset and the return of the SMMU to software
control is signalled through an IMPLEMENTATION DEFINED mechanism. The SMMU is then in a state consistent with
a full reset and the SMMU registers are required to be re-initialized before client devices can be enabled.

3.19.1 Dormant state
Implementations might provide automatic powerdown modes during idle periods in which SMMU registers are
accessible but internal structures might be powered down. An implementation might provide a hint to software,
through the SMMU_STATUSR.DORMANT flag, that it contains no cached configuration or translation information,
possibly because of cache powerdown. Software can use this flag to determine that no structure or TLB
invalidation is required and avoid issuing maintenance commands.

When SMMU_STATUSR.DORMANT==1, the SMMU guarantees that:

• No caches of any structures or translations are present.
• Any required configuration or translation information will access the information in the configuration

structures or translation tables in memory.
• No pre-fetch of any configuration or translation data is in progress.
• If any structures or translations were altered in memory, no stale version will be used by the SMMU.

Software can make use of this flag by:

1. Altering translations or configuration structure data.
2. Testing the flag

o If the flag is 0, issuing invalidation commands or broadcast invalidation messages to invalidate
any potentially-cached copies.

o If the flag is 1, avoiding invalidation of the altered structure.

An implementation is not required to support this hint, and software is not required to take note of this hint.

3.20 TLB and configuration cache conflict

3.20.1 TLB conflict
A programming error might cause overlapping or otherwise conflicting TLB entries to be generated in the SMMU.
When an incoming transaction matches more than one TLB entry, this is an error. An implementation is not
required to detect any or all TLB conflict conditions, but ARM recommends that an implementation detects TLB
conflict conditions wherever possible.

If an implementation detects a TLB conflict, all of the following apply:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 97 of 443

 Non-Confidential

• It aborts the transaction that caused the lookup that resulted in conflict.
• It attempts to record a F_TLB_CONFLICT event. The F_TLB_CONFLICT event contains IMPLEMENTATION

DEFINED fields that might include diagnostic information that exposes implementation specific TLB layout.

If an implementation does not detect a TLB conflict experienced by a transaction, behavior is UNPREDICTABLE, with
the restriction that a transaction cannot access a physical address to which the configuration of a stream does not
explicitly grant access.

A TLB conflict never enables transactions to do any of the following:

• Match a TLB entry tagged with a different VMID to that under which the lookup is performed.
• Match a TLB entry tagged with a different Security state to that under which the lookup is performed.
• Match a TLB entry tagged with a different StreamWorld to that under which the lookup is performed.
• When stage 2 is enabled, access any physical address outside of the set of PAs configured in the stage 2

translation tables that a given transaction is configured to use.

Any failure to invalidate the TLB by code running at a particular level of privilege does not give rise to the
possibility of a device under control of that level of privilege accessing regions of memory with permissions or
attributes that could not be achieved at that same level of privilege.

Note: For example, a stream configured with StreamWorld==NS-EL1 must never be able to access addresses
using TLB entries tagged with a different VMID, or tagged as EL2, EL3 or Secure.

A TLB conflict caused by a transaction from one stream must not cause traffic for different streams with other
VMID, StreamWorld, or Security configurations to be terminated. ARM recommends that an implementation does
not cause a TLB conflict to affect traffic for other ASIDs within the same VMID configuration.

3.20.2 Configuration cache conflicts
All configuration structures match a fixed-size lookup span of one entry with the exception of the STE, which
contains a CONT field allowing a contiguous span of STEs to be represented by one cache entry.

A programming error might cause an STE to be cached with a span that covers an existing cached STE, which
results in an STE lookup matching more than one STE.

An implementation is not required to detect any or all configuration cache conflict conditions but ARM
recommends that an implementation detects conflict conditions wherever possible.

If an implementation detects a configuration cache conflict, all of the following apply:

• The transaction that caused the lookup that resulted in conflict is aborted.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 98 of 443

 Non-Confidential

• The SMMU attempts to record a F_CFG_CONFLICT event. The F_CFG_CONFLICT event contains
IMPLEMENTATION DEFINED fields that might include diagnostic information that exposes implementation-
specific cache layout.

If an implementation does not detect a conflict experienced by a transaction, behaviour is UNPREDICTABLE.

3.21 Structure access rules and update procedures

3.21.1 Translation tables and TLB invalidation completion behavior
Translation table walks, caching, TLB invalidation, and invalidation completion semantics match those of ARMv8-
A [4], including rules on prefetch and caching of valid translations only. If intermediate translation table data is
cached in the SMMU (a walk cache) this is invalidated during appropriate TLB maintenance operations in the
same way as it would be on a PE.
Explicit TLB invalidation maintains TLB entries when the translation configuration has changed, to ensure visibility
of the new configuration. Translation configuration is the collective term for translation table descriptors and the
set of SMMU configuration information that is permitted to be cached in the TLB. This maintenance is performed
from a PE using TLBI broadcast invalidation or using explicit CMD_TLBI_* commands.

A broadcast TLB invalidation operation becomes visible to the SMMU after an Inner Shareable TLBI instruction is
executed by a PE. A command TLB invalidation operation becomes visible to the SMMU after it is consumed
from the Command queue.

A TLB invalidation operation is complete after all of the following become true:

• All TLB entries targeted by the scope of the invalidation have been invalidated.
• Any relevant HTTUs are globally visible to their Shareability domain as set out in section 3.13.4.
• No accesses can become visible to their Shareability domain using addresses or attributes that are not

described by the translation configuration, as observed after the invalidation operation became visible.
This means that invalidation completes after:

o All translation table walks that could, prior to the start of the invalidation, have formed TLB entries
that were targeted by the invalidation are complete, so that all accesses to any fetched levels of
the translation table are globally visible to their Shareability domain. This applies to a translation
table walk performed for any reason, including:

 A translation table walk that makes use of walk caches that are targeted by the
invalidation.

 A stage 2 translation table walk that are performed because of a stage 1 TTD fetch, CD
fetch or L1CD fetch.
Note: To achieve this, a translation table walk might be stopped early and the partial
result discarded.

o SMMU-originated accesses that were translated using TLB entries that were targeted by the
invalidation are globally visible to their Shareability domain. These accesses are stage 1 TTD
accesses, CD fetches or L1CD fetches.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 99 of 443

 Non-Confidential

o Where a stage 2 invalidation targets TLB entries that might have translated a stage 1 TTD
access, the stage 1 TTD access is required to be globally visible by the time of the invalidation
completion, but neither the overall stage 1 translation table walk or the operation that caused the
stage 1 translation table walk are required to be globally visible. Otherwise, for stage 1 and stage
1and stage 2 scopes of invalidation, all client device transactions that were translated using any
of the TLB entries that were targeted by the invalidation are globally visible to their Shareability
domain.

o The result of an ATOS operation cannot be based on addresses or attributes that are not
described by translation configuration that could have been observed after the invalidation
operation became visible.

Note: An in-progress translation table walk (performed for any reason, including prefetch) can be affected by a
TLB invalidation, if the TLB invalidation could have invalidated a cached intermediate descriptor that was
previously referenced as part of the walk. The completion of a TLB invalidation ensures that a translation table
walk that could have been affected by the TLB invalidate is either:

• Fully complete by the time the TLB invalidation completes.
• Stopped and restarted from the beginning.

Note: This ensures that old or invalid pointers to translation sub-tables are never followed after a TLB invalidation
(whether broadcast or CMD_TLBI_*) is complete. Completion of a TLB invalidation means the point at which a
broadcast invalidation sync completion is returned to the system (for example, on AMBA interconnect, completion
of a DVM Synch), or, for CMD_TLBI_* invalidations, the completion of a later CMD_SYNC command.
Note: The architecture states that where a translation table walk is affected by a TLB invalidation, one option is
that the walk is stopped by the completion of the invalidation. An implementation must give this appearance,
which means no observable side-effects of doing otherwise could ever be observed. However, after an
invalidation completion that affects prior translation table reads made before the invalidation, an implementation is
permitted to make further fetches of a translation table walk if, and only if, it is guaranteed that these reads have
no effect on the SMMU or the rest of the system, are not made to addresses with read side-effects and will not
affect the architectural behavior of the system.

Translation cache entries (pertinent to a Security state) are not inserted when SMMU_(S_)CR0.SMMUEN==0.

3.21.2 Queues
The SMMU does not write to the Command queue. The SMMU writes to the PRI and Event queues. ARM
expects the PRI queue and Event queue to be read but not modified by the agent controlling the SMMU. Writes to
the Command queue do not require any SMMU action to ensure that the SMMU observes the values written,
other than a write of the PROD register of the Command that causes the written command entries to be
considered valid for SMMU consumption. If the SMMU internally caches Command queue entries, no other
explicit maintenance of this cache is required. ARM expects that the SMMU is configured to read the queue from
the required Shareability domain in at least an IO-coherent manner, or that both the SMMU and other entities
make non-cached accesses to the queue so that cache maintenance operations are not required.

To issue commands to the SMMU, the agent submitting the commands:

1. Determines (using PROD/CONS indexes) that there is space to insert commands.
2. Writes one or more commands to the appropriate location in the queue.
3. Performs a DSB operation to ensure observability of data written in step (2) before the update in step (4).
4. Updates the Command queue’s PROD index register to publish the new commands to the SMMU.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 100 of 443

 Non-Confidential

Software is permitted to write any entry of the Command queue that is in an empty location between CONS and
PROD indexes.

The SMMU might read and internally cache any command that is in a full location between PROD and CONS
indexes If a command is cached, the cache is not required to be coherent with PE caches but if it is not coherent
the following rules apply:

• When the SMMU stops processing commands because of a Command queue error, or when the queue is
disabled, the SMMU invalidates all commands that it might have cached.

• A cached command must only be consumed one time and no stale cached value can be used instead of a
new value when the queue location is later reused for a new command.

Note: The first rule means software can fix up or replace commands in the queue after an error, or while the
queue is disabled, without performing any other synchronisation other than re-starting command processing.

Software must not alter memory locations representing commands previously submitted to the queue until those
commands have been consumed, as indicated by the CONS index, and must not assume that any alteration to a
command in a full location will be observed by the SMMU.

Software must only write the CONS index of an output queue (Event queue or PRI queue) in a consistent manner,
with the appropriate incrementing and wrapping, unless the queue is disabled. If this rule is broken, for example
by writing the CONS index with a smaller value, or incorrectly-wrapped index, the queue contents are UNKNOWN.

Software must only write the PROD index of the Command queue in a consistent manner, with the appropriate
incrementing and wrapping, unless the queue is disabled or a command error is active, see section 7.1. If this
rule is broken, one of the following CONSTRAINED UNPREDICTABLE behaviours occurs:

• The SMMU executes one or more UNPREDICTABLE commands.
• The SMMU stops consuming commands from the Command queue until the queue is disabled and re-

enabled.

3.21.3 Configuration structures and configuration invalidation completion
The entries of the configuration structures, the Stream table and Context descriptors, all contain fields that
determine their validity. An SMMU might read any entry at any time, for any reason.

STEs and CDs contain a valid flag, V. A structure is considered valid only when the SMMU observes it contains
V==1 and no configuration inconsistency in its fields causes it to be considered ILLEGAL.

Some structures contain pointers to subsequent tables of structures (STE.S1ContextPtr, L1ST.L2Ptr and
L1CD.L2Ptr). If a structure is invalid, the pointers within it are invalid. The SMMU does not follow invalid pointers,
whether speculatively or in response to an incoming transaction.

STEs in a linear Stream table and L1ST descriptors in a multi-level Stream table are located through the
SMMU_(S_)STRTAB_BASE address. Entries in these tables are not fetched if SMMU_(S_)CR0.SMMUEN==0,
because the base pointer is not guaranteed to be valid. These base pointers must be valid when the

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 101 of 443

 Non-Confidential

corresponding SMMUEN==1. Configuration cache entries associated with a Security state are not inserted when,
for that Security state, SMMU_(S_)CR0.SMMUEN==0.

Similarly, CDs or L1CDs are located through the STE.S1ContextPtr and L1CD.L2Ptr pointers. A CD must never
be fetched or prefetched unless indicated from a valid STE, meaning that the STE S1ContextPtr is valid and
therefore the STE enables stage 1.

Note: A particular area of memory is only considered to be an STE or CD because a valid pointer of a certain type
points to it (the SMMU_(S_)STRTAB_BASE or L1STD.L2Ptr or STE.S1ContextPtr or L1CD.L2Ptr pointers
respectively). A CD cannot be prefetched from an address that is not derived directly from the CD table
configuration in a valid STE, as an area of memory is not a CD unless a valid STE or L1CD.L2Ptr points to it.
Similarly, an L1CD is not actually an L1CD structure unless a valid STE points to it.

A structure is said to be reachable if a valid pointer is available to locate the structure. Depending on the structure
type, the pointer might be a register base address or a pointer within a precursor structure (either in memory or
cached). When SMMUEN==0, no configuration structures are reachable. Otherwise:

• An STE is reachable if it is within the table given by the base and size indicated in the
SMMU_(S_)STRTAB_BASE_* registers for a linear Stream table, or if it is within the 2nd-level table
indicated by a valid L1STD base and span for a two-level Stream table.

• A L1ST descriptor in a two-level Stream table is reachable if it is within the first-level table indicated by the
base and size set in the SMMU_(S_)STRTAB_BASE_* registers.

• A CD is reachable if it is within the table given by the base and size indicated by a valid stage 1
S1ContextPtr and S1CDMax of a valid STE for a linear CD table, or if it is within the 2nd-level table
indicated by a valid L1CD base and span for a two-level CD table.

An implementation does not fetch an unreachable structure. Walk of the tree of configuration tables does not
progress beyond any invalid structure.

An implementation is permitted to fetch or prefetch any reachable structure at any time, as long as the generated
address lies within the bounds of the table containing the structure. An implementation is permitted to cache any
successfully fetched or prefetched configuration structure, whether marked as valid or not, in its entirety or
partially. That is:

• Any STE or L1STD within the STE table (given by the base, size and intermediate table spans if
appropriate) can be fetched and cached.

• Any CD or L1CD within a CD table can be fetched and cached.

When fetching a structure in response to a transaction, an implementation might read and cache more data than
the required structures, as long as the limits of the tables are respected.

Note: Any change to a structure must be followed by the appropriate structure invalidation command to the
SMMU, even if the structure was initially marked invalid.

Note: An unreachable structure cannot be fetched, because there is no valid pointer to it. However, a structure
might be cached if it was fetched while the structure was reachable, even if it is subsequently made unreachable.
For example, a valid STE could remain cached and later used after the SMMU_(S_)STRTAB_BASE* registers are

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 102 of 443

 Non-Confidential

altered. Software must perform configuration cache maintenance upon changing configuration that might make
structures unreachable.

A structure that is not actually fetched, such as a CD/L1CD or STE/L1STD that experiences an external abort
(F_CD_FETCH or F_STE_FETCH) or a CD/L1CD that fails stage 2 translation, does not cause knowledge of the
failure to be cached. A future access of the structure must attempt to re-fetch the structure without requiring an
explicit configuration structure invalidation command before retrying the operation that caused the initial structure
fetch.
Note: For example, where stage 2 is configured to stall, to progress a transaction that causes a CD fetch that in
turn causes a stage 2 Translation-related fault (an event with Stall==1), it is sufficient to:

1. Resolve the cause of the translation fault, for example by writing a Translation table entry.
2. Issue a TLB invalidation operation, if required by the translation table alteration.
3. Issue a CMD_RESUME, giving the StreamID and STAG appropriate to the event record.

An implementation must not:

• Read any address outside of the configured range of any table.
o Speculative access of reachable structures is permitted, but address speculation outside of

configured structures is not permitted.
• Cache any structure under a different type to the table from which it was read. For example, it must not

follow the pointer of an STE to a CD and cache that CD (or any adjacent CD in the CD table) as anything
non-CD, for example a TTD.

Software must ensure it only configures tables that are wholly contained in Normal memory.

A configuration invalidation operation completes after all of the following become true:

• All configuration cache entries targeted by the invalidation have been invalidated.
• No accesses can become visible to their Shareability domain using addresses or attributes that could not

result from the configuration structures as observed after the invalidation operation became visible. This
means that invalidation completes after:

o Any client device transactions that used configuration cache entries that were targeted by the
invalidation are globally visible to their Shareability domain.

o Any configuration structure walks that used configuration cache entries that were targeted by the
invalidation are complete so that all accesses to any fetched levels of the structures are globally
visible to their Shareability domain. This applies to a configuration structure walk performed for
any reason, including a configuration structure walk performed because of a prefetch, command,
incoming transaction, ATOS or Translation Request.

An in-progress configuration structure walk (performed for any reason, including prefetch) can be affected by a
configuration invalidation command (CMD_CFGI_*) if a cached intermediate structure that was previously
referenced as part of the walk could have been invalidated. The completion of a configuration invalidation
command (as determined by the completion of a subsequent CMD_SYNC) ensures that any configuration
structure walk that could be affected by the invalidate is either:

• Fully completed by the time the CMD_SYNC completes.
• Stopped and restarted from the beginning after the CMD_SYNC completes.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 103 of 443

 Non-Confidential

Note: This ensures that old or invalid pointers to subsequent configuration structures are never followed after an
invalidation is complete. For example, when an SMMU has an STE pointing to a two-stage CD table and is
prefetching a CD, then on reading the L1CD pointer, a CMD_CFGI_STE is processed that invalidates the STE
that located the L1CD table. If the STE is made invalid, the pointer to the CD table is no longer valid and the
SMMU must not continue to fetch the second-level CD after acknowledging to software that it considers the STE
invalid. Software is free to re-use the memory used for the CD tables after receiving this acknowledgement, so
continuing the prefetch after this point risks loading now-unrelated data. The SMMU must abort the fetch and not
read the second-level CD, or must read the second-level CD before signalling the CMD_CFGI_STE/CMD_SYNC
as complete to software.

Note: Refer to the note in section 3.21.1 regarding observability of whether a translation table walk is stopped.
For a configuration table walk that is stopped by an affected invalidation completion, an implementation is
permitted to perform further fetches of a configuration structure walk after the completion, based on affected prior
configuration structure reads that were made before the invalidation if, and only if, it is guaranteed that these
reads have no effect on the SMMU or the rest of the system, are not made to addresses with read side-effects,
and will thus not affect the architectural behavior of the system

The size of single-copy atomic reads made by the SMMU is IMPLEMENTATION DEFINED but must be at least 64 bits.
Any single field within an aligned 64-bit span of a structure can be altered without first making the structure invalid.
For example, to change the ASID in a CD, the ASID field can be written directly, followed by CMD_CFGI_CD and
CMD_SYNC. However, if there are two fields separated so that one single 64-bit write cannot atomically alter
both at the same time, the structure cannot be modified in this way. Non-single copy atomic writes might be
visible to the SMMU separately and an inconsistent state might be cached (in which one field update has been
read but another missed). The structure must, in this case, be made invalid, modified, then made valid, using the
procedures described in section 3.21.3.1.

Note: In some systems, 64-bit single-copy atomicity is only guaranteed to addresses backed by certain memories.
If software requires such atomicity, it must locate SMMU configuration structures in these memories. For
example, in LPAE ARMv7 systems, main memory is expected to be used to contain translation tables, and is
therefore required to support 64-bit single-copy atomicity.

When a structure is fetched, the constituent 64-bit double-words of a structure are permitted to be accessed by
the SMMU non-atomically with respect to the structure as a whole and in any temporal sequence (maintaining the
relative address sequence of the read portions).

3.21.3.1 Configuration structure update procedure
Note: The SMMU is not required to observe the structure word that contains the V flag in a particular order with
respect to the other data in the structure. This gives rise to a requirement for an additional invalidation when
transitioning a structure from V==0 to V==1.

Because the SMMU can read any reachable structure at any time, and is not required to read the double-words of
the structure in order, ARM recommends that the following procedures is used to initialize structures:

1. Structure starts invalid, having V==0.
2. Fill in all fields, leaving V==0, then perform a DSB operation to ensure written data is observable from the

SMMU.
3. Issue a CMD_CFGI_<STRUCT>, as appropriate.
4. Issue a CMD_SYNC, and wait for completion.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 104 of 443

 Non-Confidential

5. Set V==1, then perform a DSB operation to ensure write is observable by the SMMU.
6. Issue CMD_CFGI_<STRUCT>, as appropriate.
7. Optionally issue a CMD_SYNC, and wait for completion. This must be done if a subsequent software

operation, such as enabling device DMA, depends on the SMMU using the new structure.

To make a structure invalid, ARM recommends that this procedure is used:

1. Structure starts valid, having V==1.
2. Set V==0, then perform a DSB operation to ensure write is observable from the SMMU.
3. Issue a CMD_CFGI_<STRUCT>, as appropriate.
4. Issue a CMD_SYNC, and wait for completion.

If software modifies the structure while it is valid, it must not allow the structure to enter an invalid intermediate
state.

Note: Because the rules in section 3.21.3 disallow prefetch of a structure that is not directly reachable using a
valid pointer, structures might be fully initialized (including with V==1) prior to a pointer to the structure becoming
observable by the SMMU. For example, a stage 1 translation can be set up with this procedure:

1. Allocate memory for a CD, initialize all fields including setting CD.V==1.
2. Select an STE, initialize all fields and point to the CD, but leave STE.V==0.
3. Perform a DSB operation to ensure writes are observable from the SMMU.
4. Issue a CMD_CFGI_STE and a CMD_SYNC and wait for completion.
5. Set STE.V==1, then perform a DSB operation to ensure write is observable from the SMMU.
6. Issue a CMD_CFGI_STE and CMD_SYNC and wait for completion.

Note: No CMD_CFGI_CD is required because it is impossible for the CD to have been prefetched in an invalid
state. However, a CMD_CFGI_CD must be issued as part of a procedure that subsequently makes the CD
invalid.

3.22 Destructive reads and directed cache prefetch transactions
Some interconnect architectures might support the following types of transaction input to the SMMU:

1. RCI: Read with clean and invalidate:
o A read transaction containing a hint side effect of clean and invalidate.
o Note: The AMBA AXI-E interface ReadOnceCleanInvalidate transaction is an example of this

class of transaction.
2. DR: Destructive read:

o A read transaction with a data-destructive side-effect that intentionally causes addressed cache
lines to be invalidated, without writeback, even if they are dirty.

o Note: The AMBA AXI-E interface ReadOnceMakeInvalid transaction is an example of this class
of transaction.

3. W-DCP: Write with directed cache prefetch:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 105 of 443

 Non-Confidential

o A write transaction containing a hint that changes the cache allocation in a part of the cache
hierarchy that is not on the direct path to memory. This class of operation does not include those
with data-destructive side-effects.

o Note: The following AMBA AXI-E interface transactions are examples of this class of transaction:
WriteUniquePtlStash, WriteUniqueFullStash.

4. NW-DCP: A directed cache prefetch without write data:
o As for write with directed cache prefetch, except without the written data.
o Note: The following AMBA AXI-E interface transactions are examples of this class of transaction:

StashOnceShared, StashOnceUnique.

The side-effects of these transactions are hints and are therefore distinct from, and treated differently to, Cache
Maintenance Operations. See section 16.7.2.

In SMMUv3.0, the architecture does not support these transactions, which are unconditionally converted on output
as specified by the interconnect architecture.

In SMMUv3.1, these transactions are permitted to pass into the system unmodified when the transaction
bypasses all implemented stages of translation, see section 3.22.3 for permitted memory types. This happens
when:

• SMMU_(S_)CR0.SMMUEN==0 for the Security state of the stream:
o These transactions are affected by SMMU_(S_)GBPA overrides in the same way as the

implementation treats ordinary transactions.
• SMMU_(S_)CR0.SMMUEN==1 for the Security state of the stream, but the valid STE of the stream has

STE.Config==0b100.

• The valid STE for the transaction has STE.S1DSS==0b01 and STE.Config==0b101, and the
transaction is supplied without a SubstreamID,

When the output interconnect does not support these types of transaction, or when the conditions described in
sections 3.22.1, 3.22.2 and 3.22.3 apply, these classes of transaction are downgraded with the following
transformations:

Input transaction class Output/downgraded transaction class

Read with clean and invalidate (RCI) No downgrade, or downgrade to ordinary read transaction (1)

Destructive read (DR) Non-destructive read
An ordinary read transaction, or a read with a clean and
invalidate side-effect. (2)

Write with directed cache prefetch
(W-DCP)

Ordinary write transaction

Directed cache prefetch without write data
(NW-DCP)

No-op
Transaction completes successfully with no effect on
the memory system.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 106 of 443

 Non-Confidential

 (1): It is IMPLEMENTATION DEFINED whether an implementation downgrades a RCI into a read, or
whether this transaction remains unchanged. An implementation might only downgrade the RCI into a read if the
output interconnect supports read but not RCI transactions.

(2): It is IMPLEMENTATION DEFINED whether a downgrade of a destructive read to a non-destructive read
chooses to downgrade to an ordinary read or a RCI.

3.22.1 SMMUv3.1 control of transaction downgrade
An SMMUv3.1 implementation supporting these classes of transactions provides STE.{DRE,DCP} controls to
permit these classes of transaction to pass into the system without transformation when one or more stages of
translation are applied. This does not include the case where the only stage of translation is skipped because of
the value of STE.S1DSS.

When these controls are disabled, the respective class of transactions is downgraded as described in the previous
section:

Input transaction class Requirement to be eligible to pass into the system without
class downgrade

Read with clean and invalidate No additional requirements

Destructive read STE.DRE==1.
If STE.DRE==0, downgraded into non-destructive read
(read, or read with clean and invalidate).

Write with directed cache prefetch STE.DCP==1.
If STE.DCP==0, downgraded into ordinary write.

Directed cache prefetch without write data STE.DCP==1.
If STE.DCP==0, downgraded into no-op.

A read with clean and invalidate is non-destructive and is not required to be transformed into a different class of
transaction by the SMMU. The SMMU evaluates permissions for this type of transaction the same way it does for
an ordinary read, see section 3.22.3. A read with clean and invalidate might be transformed as required by the
final memory type or Shareability.

If a transaction is enabled to progress without downgrade, it can only progress if the required translation table
permissions are present, as described in the next section. If the required permissions are not present, the
transaction might still be downgraded or cause a fault.

3.22.2 SMMUv3.1 permissions model
When one or more stages of translation are applied to these transactions, the interaction with the permissions
determined from translations is shown below. The behaviors listed here assume that translation for the given
address has progressed as far as permission checking and that no higher-priority fault (such as a Translation
fault) as occurred.

Transaction type Required permissions Behaviour if permissions not met

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 107 of 443

 Non-Confidential

Read with clean and
invalidate (1)

Identical to ordinary read:
Requires Read or Execute permission,
(depending on input InD and INSTCFG) at a
privilege appropriate to PnU input and
STE.PRIVCFG.

Identical to ordinary read:
Read/Exec permission
fault.

Destructive read Requires Read or Execute permission
(depending on input InD and INSTCFG),
and Write, at a privilege appropriate to PnU
input and STE.PRIVCFG.

If no Write permission,
downgraded as above into a read
or read with clean and invalidate.
(2)

If no Read/Execute permission
(as appropriate), identical to
ordinary read:

Read/Exec permission
fault.

When HTTU of Dirty state is
enabled, and conditions are such
that a write transaction
equivalent to the DR would
require HTTU to set Dirty state,
Dirty update does not occur for a
DR. In this case, the translation
is treated as though it does not
have write permission and the
transaction is downgraded as
above. This rule does not affect
HTTU of the Access flag, which
might occur if required.

Write with directed cache
prefetch

Identical to ordinary write:
Requires Write permission at privilege
appropriate to PnU input and
STE.PRIVCFG.
Always ‘Data’. (3)

Identical to ordinary write:
Write permission fault.

Directed cache prefetch
without write data

Read or Write or Execute at privilege
appropriate to PnU input and
STE.PRIVCFG.

Transaction become a no-op
(completes successfully with no
effect on the memory system).

Note(1): This includes the case where a destructive read is downgraded to a read with clean and
invalidate because STE.DRE==0.
Note(2): Though a DR requires write permission to progress into the system as a DR, it does not
cause a Permission fault for write.
Note(3): The SMMU treats all writes as Data regardless of InD input and STE.INSTCFG.

A directed cache prefetch without write data (NW-DCP) does not cause faults in the SMMU.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 108 of 443

 Non-Confidential

If RCI or DR ultimately lead to a fault, they are recorded as reads (data or instruction, as appropriate to input
InD/INSTCFG).
If W-DCP ultimately leads to a fault, it is recorded as a write.

If the RCI, DR and W-DCP transactions lead to a fault, they stall in the same way as an ordinary read or write
transaction if the SMMU is configured for stalling fault behavior. Retry and termination behave the same as for an
ordinary read or write transaction.

3.22.3 SMMUv3.1 memory types and Shareability
The interconnect architecture of an implementation might impose constraints on the memory type or Shareability
that output DR, RCI, W-DCP and NW-DCP operations can take.

At the point of final output the SMMU downgrades these operations, as described in 3.22, if the operations are not
valid for output with the determined output attribute.

This rule applies to all such operations in all translation and bypass configurations, including:

• Global bypass (attribute set from GBPA).
• STE bypass (the only stage of translation is skipped because of STE.Config==0b100 or

STE.S1DSS==0b01 and STE.Config==0b101).

• Translation.

Note: On AMBA AXI-E interfaces, the W-DCP operations (WriteUniquePtlStash, WriteUniqueFullStash) are not
permitted to be emitted with a Non-shareable or Sys Shareability. The NW-DCP operations (StashOnceShared,
StashOnceUnique) are not permitted to be emitted with Sys Shareability. RCI and DR operations
(ReadOnceCleanInvalid and ReadOnceMakeInvalid) are not permitted to be emitted with NSH or Sys Shareability.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 109 of 443

 Non-Confidential

4 COMMANDS

This section describes the behavior of commands given to the SMMU through the Command queue.

4.1.1 Command opcodes
All entries in the Command queue are 16 bytes long. Each command begins with an 8-bit command opcode,
defined as follows:

Command
opcode

Command name

0x00 Reserved

0x01 CMD_PREFETCH_CONFIG

0x02 CMD_PREFETCH_ADDR

0x03 CMD_CFGI_STE

0x04 CMD_CFGI_STE_RANGE
Note: CMD_CFGI_ALL is an alias for a specific encoding of this command.

0x05 CMD_CFGI_CD

0x06 CMD_CFGI_CD_ALL

0x07-0x0A Reserved

0x10 CMD_TLBI_NH_ALL

0x11 CMD_TLBI_NH_ASID

0x12 CMD_TLBI_NH_VA

0x13 CMD_TLBI_NH_VAA

0x14-0x17 Reserved

0x18 CMD_TLBI_EL3_ALL

0x19 Reserved

0x1A CMD_TLBI_EL3_VA

0x1B-0x1F Reserved

0x20 CMD_TLBI_EL2_ALL

0x21 CMD_TLBI_EL2_ASID

0x22 CMD_TLBI_EL2_VA

0x23 CMD_TLBI_EL2_VAA

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 110 of 443

 Non-Confidential

0x24-0x27 Reserved

0x28 CMD_TLBI_S12_VMALL

0x29 Reserved

0x2A CMD_TLBI_S2_IPA

0x2B-0x2F Reserved

0x30 CMD_TLBI_NSNH_ALL

0x31-0x3F Reserved

0x40 CMD_ATC_INV

0x41 CMD_PRI_RESP

0x42-0x43 Reserved

0x44 CMD_RESUME

0x45 CMD_STALL_TERM

0x46 CMD_SYNC

0x47-0x7F Reserved

0x80-0x8F IMPLEMENTATION DEFINED

0x90-0xFF Reserved

4.1.2 Submitting commands to the Command queue
Commands are submitted to the SMMU by writing them to the Command queue then, after ensuring their visibility
to the SMMU, updating the SMMU_(S_)CMDQ_PROD.WR index which notifies the SMMU that there are
commands to process. The SMMU does not execute commands beyond the CMDQ_PROD.WR index and, when
commands are able to be processed as described in this chapter, a write to SMMU_(S_)CMDQ_PROD.WR is all
that is required from software to cause the SMMU to consider newly-produced commands. See section 3.21.2.

Commands are able to be processed from the Command queue when all of the following conditions are met:

• The Command queue CONS and PROD indexes indicate that the queue is not empty.
• The Command queue is enabled through SMMU_(S_)CR0.CMDQEN.
• No Command queue error is active for the given Command queue.

The SMMU processes commands in a timely manner until all commands are consumed, or a command queue
error occurs, or the queue is disabled.

When SMMU_IDR0.SEV==1, the SMMU triggers a WFE wake-up event when a Command queue becomes non-
full and an agent external to the SMMU could have observed that the queue was previously full. This applies to
the Non-secure Command queue and, if implemented, the Secure Command queue.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 111 of 443

 Non-Confidential

Note: ARM expects that an attempt to insert a command into the queue will first observe from
SMMU_(S_)CMDQ_CONS whether the queue has space, and if it is full might then poll the
SMMU_(S_)CMDQ_CONS index in a loop until the queue becomes non-full. Such a loop can be throttled using
the WFE instruction when the SMMU and system supports sending of WFE wake-up events.

The behaviors of some commands are dependent on SMMU register state. Register state must not be altered
between such a command having been submitted to the Command queue and the command completion. If a
register field is changed while a dependent command could be being processed, it is UNPREDICTABLE whether the
command is interpreted under the new or old register field value.

4.1.3 Command errors
A Command queue CERROR_ILL error occurs when:

• A Reserved command opcode is encountered.
• A valid command opcode is used with invalid parameters, see the individual command descriptions,
• A valid command opcode is used and a Reserved or undefined field is optionally detected as non-zero,

which results in the command being treated as malformed,

Some commands, where specified, are IGNORED in certain circumstances. If a command causes a CERROR_ILL
this takes precedence over whether the command is IGNORED or not.

A command queue CERROR_ABT error occurs when:

• An external abort is encountered upon accessing memory

The SMMU stops command consumption immediately upon the first occurrence of an error, so that the
SMMU_(S_)CMDQ_CONS.RD index indicates the command that could not be correctly consumed, and the error
code is reported. See section 7.1 for details on Command queue error reporting and recovery.

4.1.4 Consumption of commands from the Command queue
A command is Consumed when the value observed in the SMMU_(S_)CMDQ_CONS.RD index register passes
beyond the location of the command in the queue. This means that:

• As defined by the normal circular queue semantics, the location has been read by the SMMU and the
producer might later re-use the location for a different command.

• Where explicitly noted in a command description, certain side-effects or guarantees have occurred.
o Where not noted, no conclusions can be drawn from the Consumption of a command.

The SMMU_(S_)CMDQ_CONS index can be polled to determine whether a specific command has been
Consumed. See section 4.7 for a summary of Consumption behavior.

A CMD_SYNC command is provided as a mechanism to ensure completion of commands submitted to the same
queue at a location before the CMD_SYNC, including side-effects. A CMD_SYNC is not required to be issued in
order to start the processing of earlier commands.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 112 of 443

 Non-Confidential

Note: A CMD_SYNC is used where it is necessary to determine completion of prior commands, such as a TLB
invalidation, but commands are able to complete without depending on a CMD_SYNC.

4.1.5 Reserved fields
All non-specified fields in the commands are RES0. An implementation is permitted to check whether these fields
are zero. An implementation does one of the following:

• Detects non-zero use of a reserved field as a malformed command, resulting in CERROR_ILL.
• Ignores the entirety of any reserved fields.

Some combinations or ranges of parameter values are defined in this section to be ILLEGAL and use of these
values results in a CERROR_ILL command error.

4.1.6 Common fields
These fields are common to more than one command and have the following behavior:

• SubstreamID and Substream Valid (SSV)
o SSV indicates whether a SubstreamID is provided.
SSV 0: SubstreamID not supplied.

1: SubstreamID supplied.
• When SMMU_S_IDR1.SECURE_IMPL==1, SSec is used by commands on the Secure Command queue

to indicate whether the given StreamID parameter is Secure or Non-secure, in a similar way to SEC_SID
for an input transaction (see section 3.10.1):

SSec 0: StreamID is Non-secure
 1: StreamID is Secure

o Commands on the Non-secure Command queue must set SSec==0, where present, and cannot
affect Secure streams. A command on the Non-secure Command queue with SSec==1 is
ILLEGAL, regardless of whether security is supported, and raises CERROR_ILL.

• Virtual address fields are Address[63:12], with [11:0] taken as zero.
• Physical, or IPA address fields are Address[51:12], or [51:2] for the case of MSIAddr, with other bits taken

as zero.
o Note: Bits[41:48] of these fields are RES0 in SMMUv3.0.

4.1.7 Out-of-range parameters
Providing an out-of-range parameter to a command has one of the following CONSTRAINED UNPREDICTABLE
behaviors:

• The command has no effect
• The command has an effect, taking an UNPREDICTABLE value for the parameter that is out-of-range.

o Note: For example, an implementation might truncate an out-of-range StreamID parameter to
another in-range StreamID which might then be affected by the command.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 113 of 443

 Non-Confidential

See section 3.16.1.2. Some implementations might not provide the ability to express out-of-range values in certain
fields.

A StreamID parameter for a command on the Non-secure Command queue is out of range if the value exceeds
the implemented Non-secure StreamID size, as reported by SMMU_IDR1.SIDSIZE. For a command on the
Secure Command queue, a Non-secure StreamID is out of range if the value exceeds the Non-secure
SMMU_IDR1.SIDSIZE and a Secure StreamID is out of range if the value exceeds the Secure
SMMU_S_IDR1.S_SIDSIZE.

A SubstreamID parameter is out of range if the value exceeds the implemented SubstreamID size, as reported by
SMMU_IDR1.SSIDSIZE.

Address parameter ranges are described for each command type that takes an address parameter.

The allowed range of ASID and VMID parameters is covered in section 4.4.

4.2 Prefetch
Two forms of prefetch command are available which can prefetch the configuration or translation data associated
with a stream.

Valid prefetch commands with out of range parameters do not generate command errors. A request to prefetch an
address that is out of range with respect to the translation table configuration for the StreamID or SubstreamID is
IGNORED and does not record any kind of fault or error.

An implementation is not required to check the range of an Address parameter, but if it does then the parameter is
considered out of range if:

• When the stream configuration enables stage 1 translation, the parameter has bits at Address[VAS-1] and
upwards that are not all equal in value. TBI is permitted but not required to apply to the parameter.

• When the stream configuration enables stage 2 translation, the parameter has bits at Address[IAS] and
upwards that are not zero.

If either SMMU_IDR1.SSIDSIZE==0 or STE.S1CDMax==0, then:

• Prefetch commands must be submitted with SSV==0 and the SubstreamID parameter is IGNORED.
• Setting SSV==1 is CONSTRAINED UNPREDICTABLE and has one of the following behaviors:

o The command behaves as though SSV==0.
o The command has no effect.

Prefetch commands directed to invalid configuration, for example, an STE or CD with V==0 or out of range of the
Stream table (or level-2 sub-table), fail silently and do not record error events. Similarly, prefetch commands
directed to addresses that cause translation-related faults for any reason do not record error events.

When SMMU_(S_)CR0.SMMUEN==0, valid prefetch commands are consumed but do not trigger a prefetch.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 114 of 443

 Non-Confidential

4.2.1 CMD_PREFETCH_CONFIG(StreamID, SSec, SubstreamID, SSV)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV SSec 0x01

+4 StreamID

+8

+12

Prefetch any STE and CD configuration structures that are required to process traffic from the given StreamID,
and SubstreamID if SSV==1. An implementation is not required to prefetch any, or all, of the configuration
requested.

If the STE of a StreamID configures both stage 1 and stage 2 translation, stage 2 HTTU is enabled, and if a CD
or L1CD is fetched, then this command sets AF==1 in the stage 2 TTD that is used to fetch the CD or L1CD.
Note: The CD might not be fetched if it is already cached.

When issued from the Secure Command queue, SSec controls whether StreamID is Secure or Non-secure.
When issued from the Non-secure Command queue, StreamID is Non-secure and SSec must be zero. SSec==1
is ILLEGAL on the Non-secure Command queue and results in CERROR_ILL.

4.2.2 CMD_PREFETCH_ADDR(StreamID, SSec, SubstreamID, SSV, Addr, Size, Stride)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV SSec 0x02

+4 StreamID

+8  Address[63:12] Stride Size

+12 Address[63:12] 

Prefetch any STE and CD configuration structures and TLB entries for the given span of addresses as though
accessed by transactions associated with StreamID, and SubstreamID if SSV==1. An implementation is not
required to prefetch any, or all, entries requested.

This command performs a prefetch of one or more TLB entries associated with a sequence of addresses given by:

Addr+(n*212+Stride) where 0≤n<2Size.

The Stride parameter expresses the expected size of each resulting TLB entry, for the intended span. It controls
the gap between successive addresses for which translations are prefetched. This parameter is encoded so that
prefetches occur at a stride of 212+Stride bytes. For SMMUv3.0 implementations, Stride is RES0, must be set to 0,
and the effective prefetch stride is 4KB. Use of a non-zero value either ignores the value or results in a
CERROR_ILL.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 115 of 443

 Non-Confidential

The Size parameter expresses the desired number of prefetched translations, made for addresses at the effective
Stride size, encoded as a 2Size multiple of the stride size.

An implementation internally limits the number of translation operations performed so that the overall prefetch
operation completes in a reasonable time.
Note: An implementation might achieve this by ceasing prefetch at a point after which further prefetch would
overwrite TLB entries prefetched earlier in the same operation.
Note: If translation table entries have been created for a range of addresses with a consistent page or block size,
a prefetch operation can be optimised by setting Stride to align with the page or block size of the range.
Note: In some configurations, particularly those with smaller page sizes, it might negatively impact performance to
request a prefetch of a span that results in insertion of a large number of TLB entries.

When HTTU is enabled, this command:

• Marks a stage 2 TTD as accessed for a CD fetch through stage 2 as described in 4.2.1 above.
• Performs HTTU in a manner consistent with that of a speculative read. See sections 3.14 and 3.13.

When issued from the Secure Command queue, SSec controls whether StreamID is Secure or Non-secure.
When issued from the Non-secure Command queue, StreamID is Non-secure and setting SSec==1 is ILLEGAL
and results in CERROR_ILL.

4.3 Configuration structure invalidation
After an SMMU configuration structure is altered in any way, an invalidation command must be issued to ensure
that any cached copies of stale configuration are discarded. The following commands allow invalidation of
L1STDs, Stream table entries, L1CDs and CDs by StreamID and by StreamID and SubstreamID. All configuration
structures must be considered to be individually cached and the agent controlling the SMMU cannot assume that
invalidation of one type of structure affects those of another type unless explicitly specified, regardless of the
implementation properties of a particular SMMU. See section 16.2.

Modifications of translation tables require separate invalidation of SMMU TLBs, using broadcast TLB invalidation
or explicit TLB invalidation commands. See section 4.4.

Where a StreamID parameter is provided, it corresponds directly with an STE or L1STD. The StreamID
parameter indicates that an STE is to be invalidated, or a CD that has been located directly via the indicated STE.
The SSec parameter indicates the whether the invalidation applies to configuration related to the Secure or Non-
secure Stream table.

A structure invalidation command, at a minimum, invalidates all cached copies of structures directly indicated by
the command parameters. The commands are permitted to over-invalidate by invalidating other entries.
Note: ARM recommends that implementations limit over-invalidation to avoid a negative performance impact.

When issued from the Secure Command queue, a command might indicate a Secure or Non-secure Stream table
entry and associated CD, using SSec. If over-invalidation occurs, it is permitted to affect either Security state.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 116 of 443

 Non-Confidential

Over-invalidation is permitted for non-locked configuration cache entries, but when issued from the Non-secure
Command queue, ARM strongly recommends that a command only causes invalidation of cached copies of
structures associated with Non-secure streams. Where IMPLEMENTATION DEFINED configuration cache locking is
used, the IMPLEMENTATION DEFINED configuration cache invalidation semantics might restrict the effects of over-
invalidation on locked configuration cache entries.
Note: ARM recommends that implementations choosing to allow over-invalidation consider the impact of Non-
secure software being able to invalidate structures for Secure streams.

4.3.1 CMD_CFGI_STE(StreamID, SSec, Leaf)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SSec 0x03

+4 StreamID

+8 Leaf

+12

Invalidate the STE indicated by StreamID and SSec.

This might be used for:

• Stream became invalid or valid.
• Enabling ATS.
• Enabling PASIDs.
• Changing stage 1 between bypass and translate.

Note: This command is not required to affect TLB contents. Separate TLB invalidation must be performed to clean
up TLB entries resulting from a prior configuration.
When Leaf==0, this command invalidates all caching of the intermediate L1ST descriptor structures walked to
locate the specified STE (as might be cached when multi-level Stream tables are used). When Leaf==1, only the
STE is invalidated and the intermediate L1ST descriptors are not required to be invalidated. An implementation is
permitted to always invalidate the intermediate L1ST descriptors. STEs cached from linear Stream tables are
invalidated with any value of Leaf.

This command invalidates all Context descriptors (including L1CD) that were cached using the given StreamID.

ARM recommends the use of the Leaf==1 form of this command unless Leaf==0 behavior is explicitly required.
When a linear (single-level) Stream table is in use, the extra scope of the Leaf==0 form is not required to be used.
Note: By avoiding Leaf==0 invalidations unless cached intermediate pointers might exist from multi-level walks,
invalidations might be faster and more power-efficient, depending on the implementation of STE caching.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 117 of 443

 Non-Confidential

4.3.2 CMD_CFGI_STE_RANGE(StreamID, SSec, Range)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SSec 0x04

+4 StreamID

+8 Range

+12

Invalidate more than one STE, falling into the range of StreamIDs given by (inclusive):
 Start = (StreamID & ~(2Range+1 - 1);
 End = Start + 2(Range+1) - 1;

Invalidation is performed for an aligned range of 2(Range+1) StreamIDs. The Range parameter encodes a value 0-31
corresponding to a range of 21 - 232 StreamIDs. The bottom Range+1 bits of the StreamID parameter are
IGNORED, aligning the range to its size.

Note: ARM expects this command to be used for mass-invalidation when large sections of the Stream table are
updated at the same time.

This command invalidates all caching of intermediate L1ST descriptors walked to locate the STEs in the given
range (as might be cached when multi-level Stream tables are used). An implementation is permitted to over-
invalidate these L1ST descriptors if required.

This command invalidates any Context descriptors (including L1CD) that were cached using all StreamIDs in the
given range.

Note: CMD_CFGI_STE_RANGE(n, S, 31) invalidates all 232 STEs, L1ST descriptors, CDs and L1CDs associated
with the Security state given by S (where S==0 is Non-secure and S==1 is Secure). This encoding is used for
CMD_CFGI_ALL. The value of n is unimportant, as when Range=31, all bits of StreamID are IGNORED.

4.3.3 CMD_CFGI_CD(StreamID, SSec, SubstreamID, Leaf)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSec 0x05

+4 StreamID

+8 Leaf

+12

Invalidate one CD.
This might be used when:

• Changing TTBRx/ASID (software must also invalidate TLBs using the old ASID).

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 118 of 443

 Non-Confidential

• Enabling TBI.

The SubstreamID parameter indicates the Context descriptor to be invalidated. When a cached Context
descriptor was fetched from index x of the CD table indicated by StreamID, then it is invalidated by this command
when issued with SubstreamID==x. This includes the case where the STE indicates one CD which is equivalent
to a CD table with one entry at index 0.
Note:

• Where substreams have been used with StreamID, that is when the STE located a CD table with
multiple entries, the SubstreamID parameter indicates the CD to be invalidated as an index into the CD
table.

o STE.S1DSS might alter the translation behavior of the CD at index 0 (which might be used with
SubstreamID 0, or transactions without a SubstreamID) but when issued with SubstreamID==0,
this command invalidates caching of the CD read from index 0 independent of its role in
translation through S1DSS.

• Where substreams are not used with the given StreamID, this command invalidates the CD when it is
issued with SubstreamID==0.

When the SubstreamID parameter is outside of the range of implemented SubstreamIDs, including the case
where SMMU_IDR1.SSIDSIZE==0 and the SubstreamID parameter is greater than 0, the behavior is consistent
with the out-of-range parameter CONSTRAINED UNPREDICTABLE behavior described in section 4.1.7.
Note: An out-of-range SubstreamID parameter might cause this command to have no effect, or to operate on a
different SubstreamID. In the case that SMMU_IDR1.SSIDSIZE==0, a non-zero SubstreamID parameter might
invalidate the single cached CD or have no effect.
Note: In the case where STE.S1DSS=0b10, non-SubstreamID traffic uses CD table entry 0, which would be
invalidated using this command with the SubstreamID parameter equal to 0, although SubstreamID==0 traffic is
terminated (therefore is not associated with CD table entry 0), see STE.S1DSS for more information.
Note: The SubstreamID parameter is interpreted as a CD table index to invalidate. As such, a configuration with
one CD can be thought of as a one-entry table. To invalidate the CD cached from this configuration, the
SubstreamID parameter to this command would be 0.

When Leaf==0, this command invalidates all caching of an intermediate L1CD descriptor that locates the CD in a
2-level CD table (see STE.S1Fmt). When Leaf==1, intermediate L1CD descriptors are not required to be
invalidated. An implementation is permitted to always invalidate the intermediate descriptors.

This command raises CERROR_ILL when stage 1 is not implemented.

A cached copy of CD data is treated as being local to the StreamID that locates the CD, because the CDs are
indexed using SubstreamIDs whose scope is local to the StreamID. If multiple StreamIDs use a shared CD or
table of CDs, the CD might be cached multiple times, having been fetched through any of the STEs. An
invalidation command must be performed that affects all StreamIDs whose STEs point to the CD to be invalidated.
Note: This means that, when cached, CDs do not have to be located by address and might be indexed by
StreamID and SubstreamID.
Note: For example, multiple CMD_CFGI_CD or CMD_CFGI_STE commands for each StreamID can be
performed, or a wider-scope CMD_CFGI_STE_RANGE or CMD_CFGI_ALL covering all StreamIDs.

ARM recommends the use of the Leaf==1 form of this command unless Leaf==0 behavior is explicitly required.
When a linear (single-level) CD Table is in use, the extra scope of the Leaf==0 form is not required to be used.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 119 of 443

 Non-Confidential

Note: Avoiding Leaf==0 invalidations unless cached intermediate pointers might exist from multi-level walks might
have power and performance benefits.

4.3.4 CMD_CFGI_CD_ALL(StreamID, SSec)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SSec 0x06

+4 StreamID

+8

+12

Invalidate all CDs referenced by StreamID, for example when decommissioning a device. A separate command
must also be issued to invalidate TLB entries for any ASIDs used, either by ASID or all.
Note: When STE configuration has enabled substreams, this command affects all CDs cached for the StreamID
substreams. When STE configuration has disabled substreams and used a single CD for stage 1, this command
affects that single CD.

This command must also invalidate caches of all intermediate L1CD descriptors that locate CDs using the given
StreamID.

This command raises CERROR_ILL when stage 1 is not implemented.

See 4.3.3, when a CD table is shared by multiple STEs this can give rise to multiple caches of each CD table
entry. This command, or similar for STE or ALL scope, must be performed for all StreamIDs that could have
cached the CD table contents.

4.3.5 CMD_CFGI_ALL(World)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 W 0x04

+4 0

+8 31

+12

This command is an alias for CMD_CFGI_STE_RANGE with Range=31 (a range of 232, or all, StreamIDs). The
StreamID parameter is IGNORED. The World parameter is encoded as follows, and is equivalent to SSec:
W (World) 0: Non-secure
 1: Secure (only valid from Secure Command queue, otherwise the command is ignored)

This command is an alias for CMD_CFGI_STE_RANGE(n, World, 31), which performs invalidation on a range of
232 StreamIDs, that is for all possible StreamIDs. The single World parameter to this alias is identical to the SSec
parameter of CMD_CFGI_STE_RANGE. The value of n for StreamID is IGNORED.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 120 of 443

 Non-Confidential

Note: Use of W==1 from the Non-secure Command queue raises CERROR_ILL, consistent with SSec.

Note: Behavior is as described in CMD_CFGI_STE_RANGE and invalidates caches of all configuration structures
relevant to the Security state indicated in the command. This includes caches of:

• Stream table entries.
• Intermediate or L1ST descriptor multi-level Stream table entries.
• Context descriptors.
• Intermediate or L1CD multi-level Context descriptor table entries.

Note: ARM recommends that an implementation explicitly detects this case and performs an invalidate-all
operation instead of using an invalidate-range, if invalidate-all would be faster or more efficient.

Note: If it is required that TLB entries are also invalidated (such as reset-time initialization of the SMMU), ARM
recommends that this command is followed by a command sequence to invalidate all TLB entries. A sequence in
which TLB invalidations precede a CMD_CFGI_ALL might lead to a race in which TLB entries are pre-loaded
using prefetch with possibly-stale cached configuration structures.

4.3.6 Action of VM guest OS structure invalidations by hypervisor
Note: When a guest issues structure invalidation commands on its Command queue, the hypervisor must perform
maintenance on its behalf. In particular, StreamIDs might need to be mapped from the guest view into real
system StreamIDs. ARM recommends the following behaviour:

Guest S1 command Hypervisor action Notes

CMD_CFGI_STE Re-shadow STE, CMD_CFGI_STE Map guest StreamID to host
StreamID. Note: SubstreamID is the
same in guest and host CMD_CFGI_STE_RANGE Re-shadow STEs, CMD_CFGI_STE

or CMD_CFGI_STE_RANGE as
appropriate.

CMD_CFGI_CD CMD_CFGI_CD

CMD_CFGI_CD_ALL CMD_CFGI_CD_ALL

CMD_CFGI_ALL CMD_CFGI_ALL, or,
For each S in (GUEST_STREAMS) {
 CMD_CFGI_STE (S);
}

CMD_CFGI_ALL might over-
invalidate and affect performance of
other guests.

An alternative is to explicitly invalidate
structures for each StreamID
assigned to the guest in question.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 121 of 443

 Non-Confidential

4.3.7 Configuration structure invalidation semantics/rules
Stalled transactions are unaffected by structure or TLB invalidation commands and must be dealt with either by
using CMD_RESUME to retry or terminate them individually, or flushed using CMD_STALL_TERM for affected
StreamIDs.
Note: When a stalled transaction is retried, it is re-translated as though it had just arrived, using newly-updated
structures that might have been made visible to the SMMU with prior structure or TLB invalidation operations.

Translation of a transaction through the SMMU might not be a single atomic step and an invalidation command
might be received while the transaction is in progress inside the SMMU. An invalidation of a structure that is used
by a transaction that is in progress is not required to affect the transaction, if the transaction looked up the
structure before it was invalidated. However, invalidation of any given structure must be seen as atomic so that a
transaction must never see a partially-valid structure. A subsequent CMD_SYNC ensures that the transaction,
having used a structure that was affected by an invalidation command, is visible to the system before the
CMD_SYNC completes.

The consumption of structure and TLB invalidation commands does not guarantee invalidation completion. A
subsequent CMD_SYNC is consumed when all prior invalidations of both structure and TLB have completed.

Refer to section 3.21 for structure update procedure and information about invalidation completion.

4.4 TLB invalidation
The TLB invalidation commands are similar to the ARMv8-A broadcast TLB invalidation messages originating
from PE TLB invalidation operations. These commands only affect the SMMU TLB and do not generate any
broadcast operations to other agents in the system.

Note: SMMU TLB invalidate commands might be required because:

• The SMMU or interconnect does not support broadcast TLB invalidation messages.
• The ASET flag in a Context descriptor might cause a TLB entry to be marked as not participating in

certain types of broadcast TLB invalidation, see section 3.17.

The ARMv8-A Last Level (leaf) scope is supported, to only invalidate an indicated TLB entry and last level cache.

Entries in this section show the PE TLB invalidation instructions that have the same scope as the SMMU
command being described. Broadcast TLB invalidation messages from these PE operations trigger the equivalent
operation on the SMMU. The scope of broadcast TLB invalidation and SMMU TLB invalidation commands are
affected by VMID Wildcards, if enabled, see section 3.17.6 and SMMU_CR0.VMW.

ASID and VMID parameters to TLB invalidation commands are either 8-bit or 16-bit values, as appropriate,
depending on whether the SMMU implementation supports 8-bit or 16-bit ASIDs and VMIDs
(SMMU_IDR0.{ASID16,VMID16}). When support for either ASIDs or VMIDs is 8 bits, the upper 8 bits of the
corresponding 16-bit parameter field are RES0. In this case, if the upper 8 bits are non-zero, the command is not
required to affect TLB entries.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 122 of 443

 Non-Confidential

Commands matching TLB entries on ASID disregard the ASET value with which TLB entries were inserted.

Each command specifies the minimum required scope of TLB invalidation that must be performed. An
implementation is permitted to invalidate more non-locked entries than this required scope (over-invalidation) but
doing so can adversely affect performance and is not recommended by ARM. Where IMPLEMENTATION DEFINED
TLB locking is used, invalidation semantics set out in section 16.6.1 must be observed.

Note: As described in section 4.3.7 above, a CMD_SYNC completes when prior TLB invalidations have
completed. A sequence of CMD_TLBI_* commands followed by a CMD_SYNC is analogous to a sequence of
TLBI instructions followed by a DSB on the PE, where the DSB ensures TLB invalidation completion.

4.4.1 TLB invalidation of stage 1
The following commands are available on a stage 1-only and a stage 1 and stage 2 SMMU. On a stage 2-only
SMMU, they result in CERROR_ILL.

Stage 1 command Stage 1 not
supported

From Non-secure
Command queue

From Secure Command queue,
if present

CMD_TLBI_NH_ALL CERROR_ILL Invalidate NS EL1
stage 1 mappings

Invalidate Secure stage 1
mappings (inserted with
StreamWorld==Secure)
Note: EL3 entries are not required
to be affected.

CMD_TLBI_NH_ASID

CMD_TLBI_NH_VAA

CMD_TLBI_NH_VA

CMD_TLBI_EL3_ALL CERROR_ILL Invalidate EL3 stage 1 mappings
(inserted via StreamWorld==EL3)

CMD_TLBI_EL3_VA

CMD_TLBI_EL2_ALL Invalidate EL2/EL2-E2H (depending on SMMU_CR2.E2H,
see text) stage 1 mappings if SMMU_IDR0.Hyp==1, else
CERROR_ILL. CMD_TLBI_EL2_VA

CMD_TLBI_EL2_VAA

CMD_TLBI_EL2_ASID

Note: ARM expects that software controlling a stage 1-only SMMU will use the first four commands. This
includes driver software operating in a virtual machine controlling a stage 1-only SMMU interface.
In the following CMD_TLBI_NH_* commands, VMID is only matched when stage 2 is supported and the command
is issued from the Non-secure Command queue, otherwise the VMID parameter is RES0 and if it has a non-zero
value, the SMMU is permitted to perform the invalidation on an UNKNOWN VMID value or to not perform an
invalidation.
Note: A stage 1-only implementation is not required to check that the VMID parameter of CMD_TLBI_NH_* is
zero.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 123 of 443

 Non-Confidential

The Address parameters of these commands are VAs. An implementation is permitted but not required to treat
the parameter as out of range if bits at Address[VAS-1] and upwards are not all equal in value. TBI is permitted
but not required to apply to the parameter.

4.4.1.1 CMD_TLBI_NH_ALL(VMID)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x10

+4 VMID

+8

+12

When issued from the Non-secure Command queue, the invalidation scope is equivalent to that of TLBI
VMALLE1{IS}, invalidates all stage 1 NS-EL1 (non-Hypervisor, non-EL2 or EL2-E2H) entries for VMID, including
global entries.
When issued from the Secure Command queue, the invalidation scope is equivalent to that of a secure TLBI
ALLE1{IS}, invalidates all Secure entries, including global entries.
For an equivalent to Non-secure TLBI ALLE1{IS}, see CMD_TLBI_NSNH_ALL.

4.4.1.2 CMD_TLBI_NH_ASID(VMID, ASID)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x11

+4 ASID VMID

+8

+12

The invalidation scope is equivalent to that of TLBI ASIDE1{IS}:

When issued from the Non-secure Command queue, invalidates stage 1 NS-EL1 non-global entries by ASID and
VMID.

When issued from the Secure Command queue, invalidates stage 1 Secure non-global entries by ASID.

4.4.1.3 CMD_TLBI_NH_VAA(VMID, Addr, Leaf)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x13

+4 VMID

+8  Address[63:12] Leaf

+12 Address[63:12] 

The invalidation scope is equivalent to that of TLBI VAA{L}E1{IS}:

When issued from the Non-secure Command queue, invalidates stage 1 NS-EL1 entries by VA for all ASIDs in
VMID, including global entries.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 124 of 443

 Non-Confidential

When issued from the Secure Command queue, invalidates stage 1 Secure entries by VA for all ASIDs, including
global entries.

When Leaf==1, only cached entries for the last level of translation table walk are required to be invalidated.

4.4.1.4 CMD_TLBI_NH_VA(VMID, ASID, Addr, Leaf)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x12

+4 ASID VMID

+8  Address[63:12] Leaf

+12 Address[63:12] 

The invalidation scope is equivalent to that of TLBI VA{L}E1{IS}:
When issued from the Non-secure Command queue, invalidates stage 1 NS-EL1 entries by VMID, ASID and VA,
including global entries.
When issued from the Secure Command queue, invalidates stage 1 Secure entries by ASID and VA, including
global entries.
When Leaf==1, only cached entries for the last level of translation table walk are required to be invalidated.

4.4.1.5 CMD_TLBI_EL3_ALL
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x18

+4

+8

+12

The invalidation scope is equivalent to that of TLBI ALLE3{IS}, invalidates all stage 1 EL3 entries.
This command is valid only on the Secure Command queue, otherwise a CERROR_ILL is raised.

4.4.1.6 CMD_TLBI_EL3_VA(Addr, Leaf)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x1a

+4

+8  Address[63:12] Leaf

+12 Address[63:12] 

The invalidation scope is equivalent to that of TLBI VA{L}E3{IS}, invalidates stage 1 EL3 by VA. When Leaf==1,
only cached entries for the last level of translation table walk are required to be invalidated.
This command is valid only on the Secure Command queue, otherwise a CERROR_ILL is raised.

4.4.1.7 CMD_TLBI_EL2_ALL

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 125 of 443

 Non-Confidential

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x20

+4

+8

+12

Invalidates all stage 1 EL2/Hyp entries, whether ASID-tagged (inserted in EL2-E2H mode when
SMMU_CR2.E2H=1) or not.
The invalidation scope is equivalent to that of TLBI ALLE2{IS}, and when HCR_EL2.TGE==1 &&
HCR_EL2.E2H==1, TLBI VMALLE1{IS}.
When SMMU_IDR0.Hyp==0, this command causes a CERROR_ILL.

4.4.1.8 CMD_TLBI_EL2_VA(ASID, Addr, Leaf)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x22

+4 ASID

+8  Address[63:12] Leaf

+12 Address[63:12] 

Invalidates stage 1 EL2/Hyp entries by VA, including global.
When Leaf==1, only cached entries for the last level of translation table walk are required to be invalidated.
This behavior of the command is governed by SMMU_CR2.E2H:

• When E2H==1, TLB entries inserted with a StreamWorld=EL2-E2H configuration are invalidated if ASID
matches (or global) and VA matches. TLB entries inserted with StreamWorld=EL2 are not required to be
invalidated.

• When E2H==0, TLB entries inserted with a StreamWorld=EL2 configuration are invalidated if VA
matches, and the ASID parameter is ignored. TLB entries inserted with StreamWorld=EL2-E2H are not
required to be invalidated.

This command must not be submitted to a Command queue when the effective value of E2H is UNKNOWN.
Otherwise, it is UNPREDICTABLE whether any EL2 or EL2-E2H entries that match Addr and ASID are invalidated.
See 6.3.12.3.

The invalidation scope is equivalent to that of TLBI VA{L}E2{IS}, (and when HCR_EL2.TGE==1 &&
HCR_EL2.E2H==1, TLBI VA{L}E1{IS.

When SMMU_IDR0.Hyp==0, this command causes a CERROR_ILL.

4.4.1.9 CMD_TLBI_EL2_VAA(Addr, Leaf)

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 126 of 443

 Non-Confidential

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x23

+4

+8  Address[63:12] Leaf

+12 Address[63:12] 

Invalidates stage 1 EL2/Hyp entries by VA for all ASIDs, including global.

When Leaf==1, only cached entries for the last level of translation table walk are required to be invalidated.

This behavior of this command is governed by SMMU_CR2.E2H:
• When E2H==1, TLB entries inserted with a StreamWorld=EL2-E2H configuration are invalidated if the VA

matches, for all ASIDs. TLB entries inserted with StreamWorld=EL2 are not required to be invalidated.
• When E2H==0, TLB entries inserted with a StreamWorld=EL2 configuration are invalidated if the VA

matches. TLB entries inserted with StreamWorld=EL2-E2H are not required to be invalidated.

This command must not be submitted to a Command queue when the effective value of E2H is UNKNOWN.
Otherwise, it is UNPREDICTABLE whether any EL2 or EL2-E2H entries that match Addr and ASID are invalidated.
See section 6.3.12.3.

Note: An implementation might choose to optimise search of a TLB given this information, and access a single
location for the given VA.

The invalidation scope is equivalent to that of TLBI VAA{L}E1{IS} when HCR_EL2.TGE==1 &&
HCR_EL2.E2H==1. When a PE is not in EL2-E2H mode, it does not have an equivalent.
When SMMU_IDR0.Hyp==0, this command causes CERROR_ILL.

4.4.1.10 CMD_TLBI_EL2_ASID(ASID)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x21

+4 ASID

+8

+12

Invalidates stage 1 EL2/Hyp non-global entries by ASID.

Non-global TLB entries inserted with a StreamWorld=EL2-E2H configuration are invalidated if ASID matches.
EL2 (non-ASID-tagged) entries are not required to be invalidated.

The invalidation scope is equivalent to that of TLBI ASIDE1{IS} when HCR_EL2.TGE==1 && HCR_EL2.E2H==1.
When a PE is not in EL2-E2H mode, it does not have an equivalent.
When SMMU_IDR0.Hyp==0, this command causes a CERROR_ILL.

4.4.2 TLB invalidation of stage 2
These commands allow a hypervisor to perform stage 2 invalidations on behalf of a VM, and are valid from both
the Non-secure and Secure Command queue:

4.4.2.1 CMD_TLBI_S2_IPA(VMID, Addr, Leaf)

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 127 of 443

 Non-Confidential

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x2a

+4 VMID

+8  Address[51:12] Leaf

+12 Address[51:12] 

The invalidation scope is equivalent to that of TLBI IPAS2{L}E1{IS}, invalidates stage 2 by VMID and IPA.
When Leaf==1, only cached entries for the last level of translation table walk are required to be invalidated.
When issued on an SMMU without stage 2 support, a CERROR_ILL is raised.
The Address parameter is an IPA. An implementation is permitted but not required to treat the parameter as out
of range if bits at Address[IAS] and upwards are not all zero. Address bits [11:0] are treated as 0s.
In SMMUv3.0, Address bits [51:48] are RES0.
Consistent with ARMv8-A [4], this command is not required to invalidate structures containing combined stage 1
and stage 2 information (from nested stage 1 and 2 translation configuration). Where combined Stage 1 and
stage 2 mappings are possible, this command is expected to be used with CMD_TLBI_NH_ALL or
CMD_TLBI_NH_VAA. However, this command is sufficient to invalidate translations resulting from stage 2-only
configuration.
Note: An implementation choosing to combine all stages of translation into one TLB must distinguish whether an
entry represents a VA or an IPA (inserted from stage 1, stage 1 and 2 configuration or stage 2-only) so that
invalidation by IPA is able to locate entries inserted from stage 2-only configurations.

4.4.2.2 CMD_TLBI_S12_VMALL(VMID)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x28

+4 VMID

+8

+12

The invalidation scope is equivalent to that of TLBI VMALLS12E1{IS}, invalidates all Non-secure (and non-Hyp)
entries at all implemented stages for VMID. When issued on an SMMU without stage 2 support, a CERROR_ILL
is raised.

4.4.3 Common TLB invalidation
This command is valid whether the SMMU supports only stage 1, only stage 2 or both stages:

4.4.3.1 CMD_TLBI_NSNH_ALL

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 128 of 443

 Non-Confidential

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x30

+4

+8

+12

The invalidation scope is equivalent to that of Non-secure TLBI ALLE1{IS}, valid from both the Non-secure and
Secure Command queue, this command invalidates all Non-secure non-Hyp, non-EL2,non-EL2-E2H TLB entries
at all implemented stages.

Note: A full TLB invalidate would be achieved by:

• (S) CMD_TLBI_EL3_ALL (Clear EL3 stage 1)
• (S) CMD_TLBI_NH_ALL (Clear Secure stage 1)
• (NS) CMD_TLBI_EL2_ALL (Clear EL2/Hyp stage 1)
• (NS) CMD_TLBI_NSNH_ALL (Clear EL1/Non-secure stage 1 and stage 2)

On reset, ARM recommends that the Secure driver issues CMD_TLBI_EL3_ALL and CMD_TLBI_NH_ALL, and
that the Non-secure driver issues CMD_TLBI_EL2_ALL and CMD_TLBI_NSNH_ALL. Non-secure software must
not assume Secure software has invalidated Non-secure configuration caches or TLB contents.

Note: A stage 1-only Non-secure SMMU with SMMU_IDR0.Hyp==0 can also be initialized with
CMD_TLBI_NH_ALL.

4.5 ATS and PRI
These commands issue outgoing requests on the SMMU ATS port, to a connected Root Complex.

Software must not use these commands if ATS and PRI are not fully supported by all system components beyond
the SMMU, such as a Root Complex or Endpoint, even if SMMU ID registers indicate support within the SMMU.
An SMMU and system remain fully functional even if these commands are used without full system ATS and PRI
support and do not deadlock. In this scenario these commands behave as a NOP.

Note: StreamID is considered Non-secure, because ATS and PRI are supported only for Non-secure streams.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 129 of 443

 Non-Confidential

4.5.1 CMD_ATC_INV(StreamID, SubstreamID, SSV, Global, Address, Size)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV G 0x40

+4 StreamID

+8  Address[63:12] Size[5:0]

+12 Address[63:12] 

Sends an invalidation request to StreamID, and SubstreamID when SSV==1, for translations spanned by Address
plus span of 4096 * 2Size. The Address span is aligned to its size by the SMMU. The effective value of
Address[11+Size:0] is taken as zero.
All bits of Address[63:N] are conveyed to the endpoint, where N = 12 + Size.

A Size value of 52 corresponds to a 264 byte span, meaning invalidate all. Use of values greater than 52 in an
otherwise valid CMD_ATC_INV are permitted, but not required, to raise a CERROR_ILL, or might cause an
UNKNOWN span to be used, which might mean no invalidation occurs.

In systems that do not support PASIDs, SubstreamID is IGNORED and SSV must be 0. If SSV==1, one of the
following CONSTRAINED UNPREDICTABLE behaviors occurs:

• The command behaves as though SSV==0, issuing an invalidate to the given StreamID without a PASID
TLP prefix.

• The command has no effect.

In systems that support PASIDs, a PCIe PASID TLP prefix containing SubstreamID is used on the ATC
Invalidation Request message when SSV is set to 1. In addition, setting the Global (G) parameter to 1 when
SSV==1 sets the Global Invalidate flag in the Invalidation Request. The Global parameter is IGNORED when
SSV==0.
Note: In the PCIe ATS protocol, the Global Invalidate flag in the Invalidation Request message is reserved when
no PASID prefix is used.
Note: When SSV==1, SubstreamID is always used as the PASID in the PASID TLP prefix. Global has no effect
on this property.
Note: If the SMMU is configured, through STE.S1DSS==0b10, to treat non-PASID (non-SubstreamID) Translation
Requests as using the CD at index 0 of a table of CDs, the request is internally treated similar to a request with
Substream 0 in an STE.S1DSS==0b00 configuration, but as with the request, the response is given without
PASID. An invalidation of a translation in this situation has SSV==0.

This command is permitted on either Non-secure or Secure Command queues, but the StreamID is always
considered Non-secure.

If SMMU_IDR0.ATS==0, a CERROR_ILL is raised. If SMMU_IDR0.ATS==1, but unsupported by the rest of the
system, this command behaves as a NOP. If ATS is supported but the SMMUEN associated with a given
Command Queue is zero, this command behaves as a NOP.

The Consumption of CMD_ATC_INV does not guarantee invalidation completion. Completion is ensured by the
completion of a subsequent CMD_SYNC. In a similar way to a TLBI operation, transactions that could have been

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 130 of 443

 Non-Confidential

translated using TLB entries targeted by the invalidation must all be visible to their Shareability domain before the
ATC invalidation is considered complete.
Note: In a system with separate Root Complex and SMMU components, the protocol between the two must
enforce this ordering, for example, the Root Complex signals that an ATC invalidation is complete only when
affected transactions have been pushed to the SMMU and the SMMU then ensures this ordering is maintained, so
that the completion signal is not observed before the affected transactions can be observed.

To invalidate a translation from an ATC, software must first invalidate SMMU caches of the translation (whether by
explicit command or using broadcast invalidation) and then, after ensuring completion of the SMMU translation
invalidate, issue a CMD_ATC_INV to invalidate ATC translations.
Note: For example, to alter and invalidate the last-level (leaf) translation table descriptor for a Non-secure EL1
translation of address VA using explicit SMMU operations:

1. Change translation table entry (and barrier to make visible to Shareability domain).
2. CMD_TLBI_NH_VA(VMID, ASID, VA, Leaf==1).
3. CMD_SYNC.
4. CMD_ATC_INV(SID, SSID, SSV, Global==0, VA).
5. CMD_SYNC (and wait for completion)
6. The new translation table entry at VA is guaranteed to be in use.

Note: System software is expected to associate a device with a translation context and translation table and,
when changes to the translation table are made, perform SMMU TLB maintenance using the translation table’s
associated ASID/VMID and ATC maintenance of all devices associated with that translation table using the
StreamID/SubstreamIDs of the devices.

Note: Software must not provide a Size parameter that is lower than the system STU, as invalidation is not
guaranteed if this is done. If a request is made with a span smaller than the STU, the PCIe ATS specification [3]
permits an endpoint to respond using a UR, or to round up the span and perform the invalidate with STU size.

Note: If this command results in a UR response from the endpoint, the command completes without error but
invalidation is not guaranteed, see section 3.9.1.3.

4.5.2 CMD_PRI_RESP(StreamID, SubstreamID, SSV, GroupID, Resp)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x41

+4 StreamID

+8 Resp GroupID

+12

Notifies a device corresponding to StreamID, and SubstreamID when SSV==1, that page request group GroupID
has completed with given response, Resp.

GroupID: PRI GroupID from page requests
Resp: 0b00: Deny: Permanent non-paging error (for example ATS or PRI is disabled for the device)

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 131 of 443

 Non-Confidential

 0b01: Fail: Page-in unsuccessful for one or more pages in the group
 0b10: Success: Page request group was paged in successfully
 0b11: Reserved ILLEGAL

In systems that do not support PASIDs, SubstreamID is IGNORED and SSV must be 0. If SSV==1, one of the
following CONSTRAINED UNPREDICTABLE behaviors occurs:

• The command behaves as though SSV==0, issuing a response to the given StreamID without a PASID
TLP prefix.

• The command has no effect.

In systems that support PASIDs, SSV==1 results in a PCIe PASID TLP prefix.

This command is permitted on either Non-secure or Secure Command queues, but StreamID is always
considered Non-secure.

If PRI is not supported by an implementation (SMMU_IDR0.PRI==0), or if a reserved parameter value is used, a
CERROR_ILL is raised. Otherwise, if PRI is supported by an SMMU but unsupported by the rest of the system,
this command behaves as a NOP. If PRI is supported but SMMUEN==0, this command behaves as a NOP.

4.6 Fault response and synchronisation commands

4.6.1 CMD_RESUME(StreamID, SSec, STAG, Action, Abort)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 Ab Ac SSec 0x44

+4 StreamID

+8 STAG

+12

Resumes processing of the stalled transaction identified with the given StreamID and STAG parameter, with the
given action parameter, Ac:

Action (Ac) Result

1
(Retry)

Transaction is retried as though it had just arrived at the SMMU. Configuration and translations
are looked up, it might then progress into the system or fault again.
The Abort parameter, Ab, is IGNORED.

0: (Terminate) Transaction is terminated in the manner given by the Abort parameter, Ab. When Ab==0, the
transaction is completed successfully with RAZ/WI semantics. When Ab==1, an abort/bus error
is reported to client.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 132 of 443

 Non-Confidential

If SMMU_IDR0.TERM_MODEL==1, the Ab parameter is IGNORED: transaction is terminated with
abort.
Note: The Abort parameter is analogous to the CD.A configuration for non-stalled terminated
transactions.
In response to a transaction experiencing a stage 2 fault, the STE configuration provides only
two behaviors, whether the transaction is terminated by abort or becomes stalled, but a
subsequent CMD_RESUME for the stall will (if supported, as indicated by
SMMU_IDR0.TERM_MODEL) allow the stalled transaction to be terminated with RAZ/WI
behavior. There is no dependency between STE.S2S and the behavior of the CMD_RESUME,
and the Terminate parameter is not limited by STE configuration.

When issued on an SMMU implementation that does not support the Stall model (or where the Stall model has
been disabled with NSSTALLD for the Security state of the Command queue), indicated by
SMMU_(S_)IDR0.STALL_MODEL==0b01, a CERROR_ILL is raised.

The STAG parameter is an opaque token that must be supplied exactly as provided in the corresponding fault
event record from which the existence of the stalled transaction is determined.

When issued from the Secure Command queue, SSec controls whether the command is being issued in response
to the stall of a Secure or Non-secure StreamID. When issued from the Non-secure Command queue, StreamID
is Non-secure, SSec must be zero, because SSec=1 is ILLEGAL and results in a CERROR_ILL. A
CMD_RESUME issued from the Non-secure Command queue does not affect a stalled transaction that originated
from a Secure StreamID.

An SMMU must:

• Use the StreamID, SSec and STAG to locate the specific stalled transaction to be resumed.
• Differentiate individual transactions in the case of multiple stalled transactions from the same StreamID.
• Verify that a STAG value corresponds to the given StreamID.

If this command is issued with a STAG value that does not correspond to any stalled transaction, or if the
transaction does not match the given StreamID, this command has no effect on any transaction (it is effectively a
no-op). This can occur in any of these cases:

• There are no stalled transactions from the given StreamID.
• STAG indicates an SMMU resource that is not holding a stalled transaction.
• The STAG indicates an SMMU resource that does hold a stalled transaction, but it is not associated with

the given StreamID.

Note: When SMMU_S_IDR1.SECURE_IMPL==1, the SMMU might be presented with transactions from a Secure
stream and a Non-secure stream that have the same StreamID value. The Secure and Non-secure StreamID
namespaces are independent so the streams and transactions are unrelated. It is therefore possible for two
stalled transactions to exist, one from a Secure stream and the other from a Non-secure stream, which cause an
event to be recorded in both Secure and Non-secure Event queues that coincidentally have the same StreamID
and STAG value. Despite having the same numeric values, the two stall event records represent independent
transactions, as the Security states of the streams are different.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 133 of 443

 Non-Confidential

Note: Event records from stalled transactions indicate the StreamID and SubstreamID of the transaction, the
SubstreamID is not required to be supplied for this command as STAG locates the specific transaction.

Stalled transactions might be retried with CMD_RESUME in any order, but IMPLEMENTATION DEFINED interconnect
ordering rules must still be observed and these might not allow a retried transaction to progress into the system
unless a prior stalled transaction is also resumed. For example, two stalled reads from the same StreamID might
not be allowed to cross. If the later read is resumed with retry it might still stall until the first read is resumed with
retry or terminated, at which point the later read might progress.
ARM expects software to respond to every recorded event record indicating a stall using a CMD_RESUME or a
CMD_STALL_TERM, and expects that a CMD_RESUME is only issued in response to a stall event record visible
in an Event queue. Software must only issue CMD_RESUME with StreamID and STAG values that have directly
been supplied in a stall event record that has not already been subject to a matching CMD_RESUME or
CMD_STALL_TERM operation.

The STAG value of a stall event record matched by CMD_RESUME is returned to the set of values that the
SMMU might use in future stall event records.

It is CONSTRAINED UNPREDICTABLE whether a matching transaction is affected by this command in the following
cases:

• The indicated stalled transaction exists in the SMMU but, at the time of the CMD_RESUME, an event has
not yet been made visible to software.

• The encoding of STAG in an implementation allows a CMD_RESUME to target a stalled transaction for
which an event was not recorded because it was suppressed as a duplicate, see section 3.12.2.

• The stalled transaction has already been subject to a prior CMD_RESUME or CMD_STALL_TERM.
Note: ARM does not expect software to issue a CMD_RESUME in these circumstances, but an implementation is
not required to explicitly prevent an effect.

Consumption of CMD_RESUME(Retry) does not guarantee that the given stalled transaction has already been
retried, but does guarantee that, if it has not, it will be retried at a later time. The SMMU will retry the transaction
in finite time.
Note: A stalled transaction that has no matching CMD_RESUME response might never be retried.

A retried transaction behaves as though the transaction had just arrived at the SMMU.
Note: The transaction must respect configuration and translation cache invalidations and structure updates that
occurred between the time of its original arrival and the retry.

Consumption of CMD_RESUME(Terminate) does not guarantee that the given stalled transaction has already
been terminated, but does guarantee that, if it has not, it will be terminated at a later time unless it retries
(completing successfully) before being terminated. An implementation ensures that a transaction marked for
termination with a CMD_RESUME(Terminate) is terminated in finite time without unbounded delay, if it is not
successfully retried before the termination occurs.
Note: If configuration remains in a state that would cause retries of the transaction to continue to fault, the
transaction is guaranteed to be terminated. This also guarantees that a client device might wait for completion of
the transaction, and will always eventually make forward progress.
Note: If the transaction is retried before the point of termination, it might complete successfully if its initial fault
reason was resolved in the intervening time.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 134 of 443

 Non-Confidential

The SMMU does not guarantee response visibility by the client device.
Note: This means that software cannot guarantee that a given transaction has terminated without performing a
synchronisation involving the originating device originator or interconnect. This would need to be performed in a
device- and system-specific manner before changing device configuration or translations in order to ensure that
the transaction will not retry successfully with the new configuration. A similar scenario can exist where a system
would need to ensure all transactions that are in progress that are buffered arrive at the SMMU (for termination)
so that they do not later appear after new configuration or new translation state is applied.

4.6.2 CMD_STALL_TERM(StreamID, SSec)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SSec 0x45

+4 StreamID

+8

+12

This command provides a mechanism to mark all stalled transactions originating from StreamID for termination.

Note: This command is equivalent to tracking individual stalls and issuing CMD_RESUME(Terminate) separately.

This command must only be issued after the STE for the StreamID is updated to cause all new incoming
transactions to immediately terminate with abort, including any required configuration cache invalidation for the
STE update. When issued in this condition, any transactions that are outstanding on the stream at the time that
this command is observed by the SMMU are guaranteed to terminate with an abort, including the set of
transactions that might have become stalled under a previous stream configuration, if the agent controlling the
SMMU waits for outstanding transactions to complete before altering the STE of the StreamID to a non-
terminating configuration. The mechanism for this wait operation is IMPLEMENTATION DEFINED.

If no stalled transactions from the given stream exist before the command is observed and no transactions
become stalled before the command is consumed, this command has no effect.

If this command is issued when the STE is not configured to immediately terminate new transactions, or if the STE
configuration is modified away from such a configuration before all outstanding transactions have completed, it is
UNPREDICTABLE whether either of the following occur:

• Stalled transactions related to the StreamID are terminated.
• Pending stall fault event records are prevented from being recorded.

The STAG values in stall event records associated with stalled transactions affected by CMD_STALL_TERM are
returned to the set of values that the SMMU might use in future stall event records.

When issued on an SMMU implementation that does not support the Stall model, or where the Stall model has
been disabled with NSSTALLD for the Non-secure Command queue, indicated by
SMMU_(S_)IDR0.STALLMODEL=0b01, a CERROR_ILL is raised.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 135 of 443

 Non-Confidential

A CMD_STALL_TERM issued from the Secure Command queue can terminate transactions originating from
either Security state, and SSec indicates the Security state of the StreamID. When issued from the Non-secure
Command queue, CMD_STALL_TERM only terminates a stalled transaction if the transaction originated from a
StreamID with Non-secure configuration, SSec must be zero. Issuing a CMD_STALL_TERM with SSec==1 on
the Non-secure Command queue is ILLEGAL and results in a CERROR_ILL.

Consumption of a CMD_STALL_TERM does not guarantee that matching stalled transactions have been
terminated. When used as described in this section, consumption guarantees that the set of matching stalled
transactions will be terminated at a future time. Transactions for the matching StreamID are not affected by this
command if they become stalled after the command is consumed.

Note: This behavior matches CMD_RESUME(Terminate).

Note: Early-retry cannot cause stalled transactions to complete successfully before termination occurs, because
the STE configuration will terminate such early-retries, and therefore termination is guaranteed.

4.6.2.1 Notes and usage
Some matching stalled transactions might not record events because the events are suppressed, as described in
3.12.2.1. Event queue record visibility semantics are covered in section 3.5.2.

This command is not intended to be used on a stream for which incoming transactions might become stalled
during processing of this command because, in this scenario, the point in an ongoing sequence of transactions at
which newly-faulting stalling transactions would no longer be matched by an ongoing CMD_STALL_TERM is
UNPREDICTABLE. In addition, stall fault events might become visible to software for transactions that were matched
and marked for termination by this command.

This command is intended to be used when forcibly de-commissioning or reclaiming a stream controlled by
untrusted or unreliable software. It is intended to be issued after the stream has been explicitly configured to
immediately terminate future incoming transactions without creating new stalled transactions.

Note: This sequence will shut down a device stream, including removal of stalled transactions:

1. Software stops the device from issuing transactions.
2. Transactions are terminated using:

a. Set STE[i].Config==0b000 and keep STE[i].V==1
b. Issuing a CMD_CFGI_STE(i, j, k) (or other configuration invalidation that covers relevant

STE(s)).
c. Issuing a CMD_SYNC.
d. At this point, any incoming transactions will terminate and no new transactions will enter stalled

state. In addition, the completion of CMD_SYNC ensures visibility of all stall fault event records
related to STE[i], see 4.6.3. If a stall event record cannot be written (for example, the queue is
full), the transaction is either retried when the queue becomes writable and terminates given the
new configuration or is marked for termination, if a retry does not happen before the
CMD_STALL_TERM in the next step.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 136 of 443

 Non-Confidential

Note: A stall record (STALL=1) is not written after this point. Any record that is written relates to
new STE configuration, which terminates.

3. CMD_STALL_TERM (i, j)
a. At this point, remaining stalled transactions are marked for termination, but might not have

terminated yet.
4. Software waits for outstanding device transactions to complete.

a. How this is achieved is IMPLEMENTATION DEFINED.
b. This step waits for the stalled transactions to terminate and for transactions that are in progress to

reach the SMMU and be terminated on arrival.
5. [Optional] CMD_SYNC

a. If the STE configuration causes incoming transactions to terminate in a non-silent manner (for
example, if STE[i].V==0 instead of STE[i].Config==0b000), terminated fault events might have
been generated because of the arrival of in-progress transactions during this procedure. This
CMD_SYNC ensures visibility (if the Event queue is writable) of the events related to terminated
transactions for which an abort has been returned to the client device (see section 4.6.3). If the
Event queue is not writable, the completion of the CMD_SYNC means that events for terminated
transactions will not become visible after this point.

6. Software discards all event records relating to StreamID ‘i’ in the current set of Event queue records.
Thereafter, all events relating to StreamID ‘i’ are from subsequent or newly-created configuration.

This sequence ensures that the Event queue will not subsequently receive any further stall event records
associated with the stream and that there are no incomplete transactions still stalled in the SMMU.

4.6.3 CMD_SYNC(ComplSignal, MSIAddress, MSIData, MSIWriteAttributes)
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 MSIAttr MSH CS 0x46

+4 MSIData

+8  MSIAddress[51:2]

+12 MSIAddress[51:2] 

This command provides a synchronisation mechanism for preceding commands. When this command completes,
it can raise a completion signal as an optional interrupt and an optional WFE wakeup event. The interrupt might
take the form of an MSI (if supported by the implementation). Any operations made observable by the completion
of the synchronisation operation are observable before the interrupt or event is observable, and before the
SMMU_CMDQ_CONS index indicates that the CMD_SYNC has been consumed. Observation of the interrupt or
event means that the consumption of the CMD_SYNC is observable.

The ComplSignal parameter, CS, determines the signalling mechanism that notifies host software of the
completion of a CMD_SYNC, and can take the following values:

• 0b00: SIG_NONE: The command takes no further action on its completion. The MSIAddress,
MSIData, MSIWriteAttributes parameters are IGNORED.

• 0b01: SIG_IRQ: The command signals its completion by raising an interrupt. On implementations
supporting MSIs, a write containing MSIData is made to the physical address given by MSIAddress, if

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 137 of 443

 Non-Confidential

MSIAddress is non-zero, using memory type attributes from MSIAttr. On implementations that do not
support MSIs, MSIAddress and MSIData are IGNORED. On implementations that support wired interrupts,
an event on a unique wired interrupt output is asserted on this signal, regardless of the value of
MSIAddress.
Note: This allows the choice of wired or MSIs on implementations that support both. Software can
configure an MSI and ignore a wired output, or can disable MSIs and configure an interrupt controller for
the wired output.
Note: See section 3.18. The MSI write might be directed towards an interrupt controller to generate an
interrupt, or towards a shared memory location so that the PE can poll, or wait, on the location until the
notification appears.
Note: Where an SMMU can send an MSI and the system allows the MSI write to coherently affect shared
cached memory locations, an ARMv8-A PE might use the loss of a reservation on a location as a WFE
wakeup event, providing the same semantics as SIG_SEV with SIG_IRQ.

• 0b10: SIG_SEV: The command sends an Event to the PE similar to SEV.
o Use of SIG_SEV only sends an event when SMMU_IDR0.SEV is set, otherwise, no event is

available to a PE and SIG_SEV is equivalent to SIG_NONE, that is no completion signal is
generated.

o Note: The PE might poll on the SMMU_CMDQ_CONS.RD register in a loop throttled by WFE.

• 0b11: Reserved: Causes a CERROR_ILL.

The MSI configuration is given by the following parameters:
MSIAttr: Write attribute for MSI, encoded the same as the STE.MemAttr field
MSH: Shareability attribute for MSI write, encoded as:

o 0b00: Non-shareable
o 0b01: Reserved, treated as 0b00.
o 0b10: Outer Shareable.
o 0b11: Inner Shareable.

Note: This field is IGNORED if MSIAttr specifies a memory type of any-Device or Normal-
iNC-oNC, and Shareability is effectively Outer Shareable in these cases.

MSIAddress[51:2]: If this field is non-zero, it configures the physical address that an MSI is sent to when
SIG_IRQ is used. Address bits above and below this field are treated as zero. The MSI
is a 32-bit word-aligned write of MSIData.

 The check for zero applies to the entire specified field span and is not limited to the
physical address size (OAS) of an implementation.

An implementation is permitted but not required to treat the parameter as out of range if
bits at MSIAddress[OAS] and upwards are not all zero.
In SMMUv3.0, MSIAddress [51:48] are RES0.

When a cacheable type is specified in MSIAttr, the allocation and transient hints are IMPLEMENTATION DEFINED.

This command waits for completion of all prior commands and ensures observability of any related transactions
through and from the SMMU. Commands in the Command queue that are more recent than a CMD_SYNC do not
begin processing until the CMD_SYNC completes.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 138 of 443

 Non-Confidential

When following a given command submitted to the SMMU, completion of a CMD_SYNC makes the following
guarantees:

Command type Action

TLB and ATC invalidation commands TLB invalidates and ATC invalidations are guaranteed
to be complete (all matching TLB entries are
invalidated) and all transactions in progress that were
translated using any of the TLB entries targeted by the
invalidates are globally observable to their Shareability
domain. The semantics of the completion of TLB
invalidation match those of an ARMv8-A PE.

ATOS translations that were in progress at the time of
the CMD_SYNC and used any of the TLB entries
targeted by the invalidations are complete, or re-start
from the beginning after the CMD_SYNC completes
(see section 3.21.1).

Note: No dependency is required on completion of
received broadcast TLB invalidation operations. The
broadcast invalidation mechanism has its own
synchronisation and completion mechanisms (for
example on AMBA interconnect, a DVM Synch
Operation).

CMD_TLBI_*, CMD_ATC_INV

Configuration invalidation commands Configuration invalidations are guaranteed to be
complete (matching cached configuration entries are
invalidated) and all transactions that are in progress
that were translated using any of the configuration
cache entries targeted by the invalidates are globally
observable to their Shareability domain.

ATOS translations that were in progress at the time of
the CMD_SYNC and used any of the configuration
cache entries targeted by the invalidations are
complete, or re-start from the beginning after the
CMD_SYNC completes (see section 3.21.3).

CMD_CFGI_*

Prefetch commands Translation or configuration table walks initiated by any
kind of prefetch, including CMD_PREFETCH_*, are
affected by TLB or configuration cache invalidates in
the same way as any other table walk and might
therefore be transitively affected by the completion of a
CMD_SYNC of a CMD_TLBI_*/CMD_CFGI_*. See
section 3.21.

CMD_PREFETCH_*

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 139 of 443

 Non-Confidential

PRI responses Nothing. The SMMU cannot guarantee response
visibility by the endpoint.

CMD_PRI_RESP

Stall resume/termination Nothing. The CMD_RESUME and
CMD_STALL_TERM commands complete by the time
they are consumed.

CMD_RESUME, CMD_STALL_TERM

Synchronisation commands The guarantees of the prior CMD_SYNC have been
met. CMD_SYNCs complete in order.

The MSI writes of any prior CMD_SYNC are visible to
their Shareability domain, where the commands are
consumed from the same queue. CMD_SYNC is not
required to affect MSI writes originating from sources
other than prior CMD_SYNC completion signals, or
completion signals for CMD_SYNC commands related
to a different Command queue.

CMD_SYNC

In addition, completion of a CMD_SYNC ensures the following behavior:

• An unrecorded fault event record relating to a client transaction terminated by the SMMU (either
immediately on a fault or after stalling) whose abort or termination response could have been observed by
the client device before the start of the CMD_SYNC, is guaranteed to have either:

o Become visible in the relevant Event queue (given the visibility semantics of section 3.5.2).
o Been discarded, if it could not commit to write to the queue, because the queue is (full or

disabled. In this case the unrecorded fault event record will never become visible.
• Note: This rule ensures that if software performs a CMD_SYNC after notification from a

device that all of its outstanding transactions are complete, it is guaranteed that no
termination fault records will later become visible from the device stream after the
CMD_SYNC completes.

• This rule applies however the termination of the transaction was performed, whether it
was immediate because the Terminate fault model was used or whether the transaction
originally stalled and was later terminated because a retry encountered a new
configuration, or an update of SMMU_(S_)CR0.SMMUEN transitioned the field to 0. In
the case of a retry encountering new configuration, any recorded event relates to the new
configuration not the original stall.

• Where a particular interconnect does not return a response to a terminated client transaction, all
committed unrecorded fault records corresponding to transactions internally terminated before the start of
the CMD_SYNC are made visible. Uncommitted fault records either commit to the Event queue and are
made visible, or if they cannot be committed, are discarded and will not later become visible.

• Event records written to the Event queue after the completion of a CMD_SYNC are guaranteed to be
generated from configurations or translations visible to the SMMU after any invalidation completed by the
CMD_SYNC has taken effect. No events relating to out-of-date configuration will later become visible.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 140 of 443

 Non-Confidential

• When an unrecorded fault event record exists for a stalled transaction affected by TLBI or CFGI
invalidations completed by a CMD_SYNC, the completion also affects the event record in one of the
following ways:

• The record commits to write and is made visible in the relevant Event queue.
• If it cannot commit to write to the queue, because the queue is full or disabled, the transaction is

retried when the queue is next writable, if it has not terminated or otherwise completed before that
time, and this would lead to the generation of a new event record instead of the original one, if the
configuration has changed. If it retries successfully, no event is recorded for the transaction,
because the original event is stale. This adheres to the previous rule. The original event record
pertaining to prior invalidated configuration must not be recorded after the CMD_SYNC
completes.

• HTTU caused by completed client transactions and completed ATOS translations is made visible, to the
extent required to its Shareability domain, by completion of a CMD_SYNC, see section 3.13.4.

There is no requirement for:

• A CMD_SYNC submitted to the Non-secure Command queue to affect Secure traffic or event visibility.
However, a CMD_SYNC submitted to the Secure Command queue affects Non-secure traffic or event
visibility when the CMD_SYNC completes prior commands in the Secure Command queue that operate
on Non-secure structures.

• A CMD_SYNC to affect any recorded stalled transaction, or to cause an unrecorded stalled transaction to
be retried, except where necessary to record an event relating to newly-changed configuration.

Note: A TLB or structure invalidation command has no explicit ordering against prior or subsequent non-
CMD_SYNC commands. If software requires one set of invalidations to be guaranteed complete before beginning
a second set of invalidations, a CMD_SYNC is required to separate the two sets.

If the completion of a prior CMD_ATC_INV cannot be guaranteed by a CMD_SYNC because of a PCIe protocol
error, such as a timeout, the CMD_SYNC might cause a CERROR_ATC_INV_SYNC command error to be raised,
see sections 7.1 and 3.9.1.2. If a CMD_SYNC raises a CERROR_ATC_INV_SYNC error:

• The CMD_SYNC is not complete and has not been consumed, that is, SMMU_(S_)CMDQ_PROD.RD
remains pointing at the CMD_SYNC that raised the error. No completion signals are sent.

• The completion guarantees of the CMD_SYNC have not been met.

• An outstanding CMD_ATC_INV command is one that was submitted to the command queue before the
CMD_SYNC and that has not been completed by a previous successful CMD_SYNC, and:

o An UNKNOWN set of outstanding CMD_ATC_INV commands has timed out and will never
complete.

o An UNKNOWN set of outstanding CMD_ATC_INV commands might be in the process of completing
successfully, but are not guaranteed to have completed successfully.

• All other operations that the CMD_SYNC would otherwise have completed are not guaranteed to have
completed, but will be completed by a new CMD_SYNC that is successfully consumed after being re-
submitted to the queue after the error is resolved and command processing is resumed.

Note: For example, a CMD_TLBI_* command, that was processed prior to the CMD_SYNC that caused the error,
might still be being processed and is guaranteed to still take effect; a CERROR_ATC_INV_SYNC does not cause
such commands to be terminated and there is no requirement for them to be re-submitted after resolving the error.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 141 of 443

 Non-Confidential

4.7 Command Consumption summary

Command type Consumption means:

TLB and ATC invalidation commands Nothing

CMD_TLBI_*, CMD_ATC_INV

Configuration invalidation commands Nothing

CMD_CFGI_*

Prefetch commands Nothing

CMD_PREFETCH_*

PRI responses Nothing

CMD_PRI_RESP

Stall resume/termination CMD_RESUME and CMD_STALL_TERM have
individual completion guarantees that have been met.

CMD_RESUME, CMD_STALL_TERM

Synchronisation commands The completion guarantees of CMD_SYNC have been
met.

CMD_SYNC

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 142 of 443

 Non-Confidential

5 DATA STRUCTURE FORMATS

All SMMU configuration data structures, that is Stream table entries and Context descriptors, are little-endian.
Translation table data might be configured for access in either endianness on some implementations, see
CD.ENDI, STE.S2ENDI and SMMU_IDR0.TTENDIAN.

All non-specified fields are RES0, Reserved, and software must set them to zero. An implementation either:

• Detects non-zero values in non-specified fields and considers the structure invalid.
• Ignores the reserved field entirely.

All specified fields are required to be checked against the defined structure validity rules in each of the STE and
CD sections.

A configuration or programming error or invalid use of any of the fields in these structures might cause the whole
structure to be deemed invalid, where specified. Any transaction from a device that causes the use of an invalid
structure will report an abort back to the device and will log an error event, the nature of which is specific to the
nature of the misconfiguration.

A structure is used when it is indicated by an STE (or in the case of an STE itself, when an incoming transaction
selects it from the Stream table, by StreamID).

The memory attribute set by SMMU_(S_)CR1.TABLE_{SH,OC,IC} is used when fetching the following structures:

• Level 1 Stream table descriptor.
• Stream table entry.

The attribute set by STE.{S1CIR,S1COR,S1CSH} is used when fetching a Level 1 Context descriptor and Context
descriptor.

See section 3.21.3 for information on structure access, caching and invalidation rules.

See section 16.2 for implementation notes on caching and interactions between structures.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 143 of 443

 Non-Confidential

5.1 Level 1 Stream Table Descriptor
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0  L2Ptr Span
+4 L2Ptr 

Figure 13: Level 1 Stream table descriptor

Bits Name Meaning

[4:0] Span 2n size of Level 2 array and validity of L2Ptr:
Span Meaning

0 L2Ptr is invalid. The StreamIDs matching this descriptor are all
invalid.

1-11 Level 2 array contains 2(Span-1) STEs (1)

12-31 Reserved, behaves as 0

[51:6] L2Ptr[51:6] Pointer to start of Level-2 array. Address bits above and below the field range are
treated as 0.
Bits L2Ptr[N:0] are treated as 0 by the SMMU, where N=5+(Span-1)
Note: The Level 2 array is therefore aligned to its size by the SMMU.
In SMMUv3.0, bits [51:48] are RES0.
See section 3.4.3 for behavior of addresses beyond the OAS or physical address
range.

(1) Span must be within the range of 0 to (SMMU_STRTAB_BASE_CFG.SPLIT+1), that is it must stay within
the bounds of the Stream table split point.

Incoming StreamIDs that select a descriptor with Span=0, or a Span set to a reserved value, or a Span set to an
out of bounds value given the split point, or those that select a valid Level 1 descriptor but are outside of the level
2 range described by Span, are deemed invalid. A transaction causing a Stream table lookup that does not reach
a valid STE is terminated with an abort to the client device and optionally records an event, see
SMMU_(S_)CR2.RECINVSID and C_BAD_STREAMID.

When an L1STD is changed, the non-leaf form of CMD_CFGI_STE is the minimum scope of invalidation
command required to invalidate SMMU caches of the L1STD entry. Depending on the change, other STE
invalidations might be required, for example:

• Changing an inactive L1STD with Span=0 to a non-zero active Span (introducing a new section of level-2
Stream table) requires an invalidation of the L1STD only. As no STEs were reachable for StreamIDs
within the span, none require invalidation.

• Changing an active L1STD with Span!=0 to an inactive L1STD (decommissioning a span of Stream table)
requires an invalidation of the L1STD as well as invalidation of cached STEs from the affected span.
Either multiple non-leaf CMD_CFGI_STE commands, or a wider scope such as
CMD_CFGI_STE_RANGE or CMD_CFGI_ALL is required.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 144 of 443

 Non-Confidential

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 145 of 443

 Non-Confidential

5.2 Stream Table Entry
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0
 S1ContextPtr

S1

Fmt
Config V

+4
S1CDMax S1ContextPtr 

+8
STRW EATS S

1
S

TA
LLD

 Reserved
for S/W

M
E

V
P

P
A

R

D
C

P

CONT
D

R
E

S2H
W

U

62

S2H
W

U

61

S2H
W

U

60

S2H
W

U

59

S1

CSH

S1

COR

S1

CIR

S1

DSS
+12

IMPLEMENTATION DEFINED
INST

CFG

PRIV

CFG

NS

CFG

SH

CFG
 ALLOCCFG

M
TC

FG

MemAttr

+16
 IMPLEMENTATION DEFINED S2VMID

+20

S2R

S2S

S
2H

A

S
2H

D

S
2P

TW

S
2A

FFD

S
2E

N
D

I

S
2AA

64
S2PS

S2

TG

S2

SH0

S2

OR0

S2

IR0

S2

SL0
S2T0SZ

+24
 S2TTB

+28
 S2TTB 

+32
 IMPLEMENTATION DEFINED

+36
+40

+44
+48
+52
+56
+60

Figure 14: Stream Table Entry fields

STE fields follow the convention of an S1 prefix for fields related to stage 1 translation, an S2 prefix for fields
relating to stage 2 translation, and neither for fields unrelated to a specific translation stage.

In a valid STE, that is where STE.V==1,

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 146 of 443

 Non-Confidential

• All fields with an S2 prefix (with the exception of S2VMID) are IGNORED when stage 2 bypasses
translation (Config[1]==0).

• All fields with an S1 prefix are IGNORED when stage 1 bypasses translation (Config[0]==0).

The validity conditions in field descriptions are written with the assumption that the field is not IGNORED because of
a disabled stage of translation.

Note: Additionally, the validity check of STE.EATS might assert that STE.S2S==0 even if stage 2 is in bypass.
That is STE.S2S is not IGNORED.

All undefined fields, and some defined fields where explicitly noted, are permitted to take RAZ/WI behavior in an
embedded implementation providing internal storage for Stream table entries, see section 3.16. Permitted
differences for such an embedded implementation that does not store STEs in regular memory are marked EI in
this section.

Note: This allows such implementations to avoid storing bits that do not affect the SMMU behavior.

Invalid or contradictory configurations are marked ILLEGAL in field descriptions. Use of an ILLEGAL STE
behaves as described for STE.V==0.

Bits Name Meaning

[0] V Valid:
0b0: Structure contents are invalid. Other STE fields are IGNORED.
0b1: Structure contents are valid. Other STE fields behave as described.
Care must be taken when updating an STE when V==1 as updates might race
against SMMU fetching the structure, see section 3.21.

Device transactions that select an STE with V==0 are terminated with an abort
reported back to the device and a C_BAD_STE event is recorded.

ATS Translation Requests that select an STE with V==0 are immediately completed
with CA status. No event is recorded.

When SMMU_CR0.ATSCHK==1, ATS Translated transactions are checked against
STE configuration. Those selecting an invalid STE (with ILLEGAL configuration, or
V=0) are terminated with an abort reported back to the device. No event is recorded.
See 3.9.1 for more information on ATS-related transactions.

[3:1] Config[2:0] Stream configuration:
Value Traffic

can
pass?

Stage 1 Stage 2 Notes

0b000 No - - Report abort to device, no

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 147 of 443

 Non-Confidential

event recorded.

0b0xx No - - Reserved (behaves as
0b000)

0b100 Yes Bypass Bypass EATS value effectively
0b00

0b101 Yes Translate Bypass S1* valid

0b110 Yes Bypass Translate S2* valid

0b111 Yes Translate Translate S1* and S2* valid

If stage 1 is not implemented (SMMU_IDR0.S1P==0), it is ILLEGAL to set
Config[2:0]==0b1x1.
If stage 2 is not implemented (SMMU_IDR0.S2P==0), it is ILLEGAL to set
Config[2:0]==0b11x.
If stage 2 is implemented but the STE is reached from the Secure Stream table, it is
ILLEGAL to set Config[2:0]==0b11x because stage 2 is only supported for NS-EL1
configurations.

Note: When stage 1 is configured to translate, see the descriptions for S1DSS and
S1Fmt for substream configuration.

In an EI, Config[0] is permitted to be RAZ/WI if stage 1 is not implemented and
Config[1] is permitted to be RAZ/WI if stage 2 is not implemented.
When no translation stages are enabled (0b100), ATS Translation Requests (and
Translated traffic, if SMMU_CR0.ATSCHK==1) are denied as though EATS==0b00;
the actual value of the EATS field is IGNORED. Such a Translation Request causes
F_BAD_ATS_TREQ and Translated traffic causes F_TRANSL_FORBIDDEN.
When Config[2:0]==0b000, an ATS Translation Request is denied with UR status
and no event is recorded. When Config[2:0]==0b000 and SMMU_CR0.ATSCHK==1,
ATS Translated transactions are terminated with an abort and no event is recorded.

[5:4] S1Fmt S1ContextPtr points to:
S1CDMax S1Fmt

0 xx One Context descriptor (S1Fmt is IGNORED).

Non-zero 0b00 Two or more Context descriptors in a linear table indexed
by SubstreamID[S1CDMax-1:0].

The table is aligned to its
size.S1ContextPtr[(S1CDMax+5):6] are RES0 and these bits
of the address are taken to be zero by the SMMU.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 148 of 443

 Non-Confidential

0b01 2-level table with 4KB L2 leaf tables.

L1 table contains 1-16384 L1CD pointers (128KB
maximum) to 4KB tables of 64 CDs.

If S1CDMax≤6, only index #0 of the L1 table is used.
Otherwise, the L1 table is indexed by
SubstreamID[S1CDMax-1:6].

The L2 table is indexed by SubstreamID[5:0].

L2 tables are 4KB-aligned: L1CD.L2Ptr[11:0] are taken to
be zero by the SMMU.

L1 tables are aligned to their size, or 64 bytes, whichever is
greater. If S1CDMax>9, S1ContextPtr[S1CDMax-4:6] are
RES0 and these bits are taken to be zero by the SMMU.

0b10 2-level table with 64KB L2 leaf tables.

L1 table contains 1-1024 L1CD pointers (8KB maximum) to
64KB tables of 1024 CDs.

If S1CDMax≤10, only index #0 of the L1 table is used.
Otherwise, the L1 table is indexed by SubstreamID[
S1CDMax-1:10].

The L2 table is indexed by SubstreamID[9:0].

L2 tables are 64KB-aligned: L1CD.L2Ptr[15:12] are RES0
and L1CD.L2Ptr[11:0] are taken to be zero by the SMMU.

L1 tables are aligned to their size, or 64 bytes, whichever is
greater. If S1CDMax>13, S1ContextPtr[S1CDMax-8:6] are
RES0 and these bits are taken to be zero by the SMMU.

0b11 Reserved (behaves as 0b00)

When multiple substreams are supported and enabled, the supported range is 2-

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 149 of 443

 Non-Confidential

1024K substreams in all table layouts.

If Config[0]==0 (stage 1 disabled), this field is IGNORED and the supply of a
SubstreamID with a transaction causes the transaction to be terminated with an
abort, recording C_BAD_SUBSTREAMID. This is the case for full stream bypass
(Config[2:0]==0b100), or stage 2-only translation (Config[2:0]==0b110).

If S1CDMax==0 (substreams disabled) or SMMU_IDR1.SSIDSIZE==0 (substreams
unsupported), this field is IGNORED and S1ContextPtr points to one CD.

If substreams are supported and enabled and stage 1 is enabled and
SMMU_IDR0.CD2L==0, it is ILLEGAL to set S1Fmt != 0b00 (as two-stage tables are
not supported).

In an EI, this field is permitted to be RAZ/WI if stage 1 is not implemented or
substreams are unsupported or SMMU_IDR0.CD2L==0.

Note: If stage 2 is configured, S1ContextPtr is an IPA. If S1Fmt indicates a 2-level
table, the pointers in the first-level table are also IPAs. Otherwise, the pointers are
PAs.

Note: S1Fmt==0b00 can be used for a single CD, or to support multiple CDs for
substreams. A 4KB page will hold 64 CDs, and a 64KB page will hold 1024 CDs.

Note: ARM expects that the effective number of CDs in simultaneous use is
practically limited to the number of distinct address spaces which is limited by the
number of ASIDs. With S1Fmt==0b01, 64K CDs can be accommodated with an 8KB
L1 table and multiple 4KB L2 tables.

[51:6] S1ContextPtr
[51:6]

Stage 1 Context descriptor pointer bits [51:6]. S1ContextPtr bits above and below
this range are implied as zero in CD address calculations.

If Config[0]==0 (stage 1 disabled), this field is IGNORED.
In an EI, this field is permitted to be RAZ/WI if stage 1 is not implemented.

If Config[1]==1 (stage 2 enabled), this pointer is an IPA translated by stage 2 and the
programmed value must be within the range of the IAS. Otherwise, this pointer is a
PA, is not translated, and must be within the range of the OAS. See section 3.4.3 for
allowed behavior of an out-of-range value in S1ContextPtr.

In SMMUv3.0, STE[51:48] are RES0.

[63:59] S1CDMax Number of CDs pointed to by S1ContextPtr, 2S1CDMax.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 150 of 443

 Non-Confidential

If SMMU_IDR1.SSIDSIZE==0, this field is IGNORED. A transaction is not permitted to
supply a SubstreamID. If a transaction does so, it will be terminated and a
C_BAD_SUBSTREAMID event recorded.
Note: ARM expects that an implementation that does not support substreams will also
not have a mechanism to supply a SubstreamID, so this situation cannot not occur.

In an EI, this field is permitted to be RAZ/WI if stage 1 is not implemented or if
SMMU_IDR1.SSIDSIZE==0.

If Config[0]==0 (stage 1 disabled), this field is IGNORED,

Otherwise, when this field is 0, the substreams of the STE are disabled and one CD
is available. (The minimum useful number of substreams is 2.) Any transaction with
a SubstreamID will be terminated with an abort and a C_BAD_SUBSTREAMID event
recorded.

When this field is > 0, a specific span of substreams are in use. A transaction with a
SubstreamID will be terminated with an abort and a C_BAD_SUBSTREAMID event
recorded if the SubstreamID is outside of the range specified by this field.

The allowable range is 0 to SMMU_IDR1.SSIDSIZE inclusive. Other values are
ILLEGAL.

The behavior of a transaction without a SubstreamID when S1CDMax > 0 is
governed by the S1DSS field.

[65:64] S1DSS Default Substream:
When substreams are enabled (S1CDMax != 0), this field determines the behavior of
a transaction or translation request that arrives without an associated substream:
0b00 Terminate. An abort is reported to the device and the

F_STREAM_DISABLED event is recorded.

0b01 Bypass stage 1 as though Config[0]==0

The transaction can cause a stage 1 Address Size fault if the
input address size exceeds the IAS, see section 3.4 for details. If
the configuration enables stage 2 translation, the address is then
translated as an IPA if a stage 1 Address Size fault did not occur.

Note: This behavior is identical to a transaction through an STE
with Config[0]==0.

Note: Such a transaction does not fetch a CD, and therefore does
not report F_CD_FETCH, C_BAD_CD or a stage 2 Translation-

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 151 of 443

 Non-Confidential

related fault with CLASS==CD.

0b10 Transactions that do not include a substream are translated using
the CD associated with Substream 0, which becomes unavailable
for use by transactions that include a substream. Transactions
that include a substream and select Substream 0 are terminated.
An abort is reported to the device and the
F_STREAM_DISABLED event is recorded.

System software must associate traffic with non-zero substreams
because Substream 0 is not available for use.

0b11 Reserved (behaves as 0b00)

If Config[0]==0 (stage 1 disabled) or S1CDMax==0 (substreams disabled) or
SMMU_IDR1.SSIDSIZE==0 (substreams unsupported), this field is IGNORED.

In an EI, this field is permitted to be RAZ/WI if stage 1 is not implemented or if
SMMU_IDR1.SSIDSIZE==0.

Note: PCIe traffic might include a PASID TLP prefix, or might be issued without it.
Consequently, it is possible for some transactions to supply a substream while others
from the same endpoint do not.

Note: This field affects ATS Translation Requests, which can be caused to skip
stages of translation as described in section 13.6.3 and 13.6.4. See section 3.9.2 for
information on changing configuration that affects ATS translations that could be
cached in an Endpoint.
For ATS Translation Requests, if the cases described in 0b00 and 0b10 lead to
termination, the Translation Request is terminated with a CA and no event is
recorded.

[67:66] S1CIR S1ContextPtr memory Inner Region attribute:
0b00 Normal, non-cacheable

0b01 Normal, Write-Back cacheable, Read-Allocate

0b10 Normal, Write-Through cacheable

0b11 Normal, Write-Back cacheable, no Read-Allocate

Note: Read allocation is a hint in the same way as in the ARMv8-A architecture, and it
is IMPLEMENTATION DEFINED whether it has any effect.
Note: Because CDs are read-only there is no configuration for cache allocation on
write. The value of the write-allocation hint provided for a CD read is IMPLEMENTATION
DEFINED.

S1CIR, S1COR and S1CSH set the memory access attributes that access the

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 152 of 443

 Non-Confidential

Context descriptor (and Level-1 CD table pointers, if relevant) through S1ContextPtr.
If Config[1]==1 (stage 2 enabled), the CD is loaded from IPA space and the attributes
are combined with those from the stage 2 translation descriptor of the page mapping
the accessed IPA, otherwise, these attributes are used directly.

In an EI, S1CIR, S1COR and S1CSH are permitted to be RAZ/WI if stage 1 is not
implemented.

[69:68] S1COR S1ContextPtr memory Outer Region attribute:
0b00 Normal, Non-cacheable

0b01 Normal, Write-Back cacheable, Read-Allocate

0b10 Normal, Write-Through cacheable

0b11 Normal, Write-Back cacheable, no Read-Allocate

[71:70] S1CSH S1ContextPtr memory Shareability attribute:
0b00 Non-shareable

0b01 Reserved (behaves as 0b00)

0b10 Outer Shareable

0b11 Inner Shareable

Note: If both S1CIR and S1COR == 0b00, selecting normal Non-cacheable access,
the Shareability of access to CDs is taken to be Outer Shareable regardless of the
value of this field.

[72] S2HWU59 When SMMU_IDR3.PBHA==1, this bit controls the interpretation of bit [59] of the
stage 2 translation table final-level (page or block) descriptor:

• 0: Bit [59] is not interpreted by hardware for an IMPLEMENTATION DEFINED
purpose.

• 1: Bit [59] has IMPLEMENTATION DEFINED hardware use.
This bit is IGNORED when PBHA are not supported (SMMU_IDR3.PBHA==0).

This bit is RES0 in SMMUv3.0.
Note: Stage 2 translations do not have the Hierarchical Attribute Disable (HAD)
control present for stage 1 and the stage 2 HWU bits therefore do not have a relation
to HAD in the same way as for stage 1.

[73] S2HWU60 Similar to S2HWU59, but affecting descriptor bit [60].

[74] S2HWU61 Similar to S2HWU59, but affecting descriptor bit [61].

[75] S2HWU62 Similar to S2HWU59, but affecting descriptor bit [62].

[76] DRE Destructive Read Enable.

Some implementations might support transactions with data-destructive effects which
intentionally cause cache lines to be invalidated, without writeback even if they are

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 153 of 443

 Non-Confidential

dirty, such as destructive reads or cache invalidation operations, see section 3.22.
Note: The invalidation side-effect is not required for correctness of this class of
transaction, but if performed might cause stale data to be made visible.

• 0b0: A device request to consume data using a read and invalidate
transaction is transformed to a read without a data-destructive side-effect.
An Invalidate Cache Maintenance Operation is transformed to a
CleanInvalidate operation.

• 0b1: A device request to consume data using a read and invalidate
transaction is permitted to destructively read the requested location. An
Invalidate Cache Maintenance Operation is permitted without transformation.
Both of these behaviors are dependent on the correct page permissions as
described in sections 3.22.2 and 16.7.2.2.

This bit is IGNORED on implementations that do not support this class of transactions.
Otherwise, this bit only applies when at least one stage of translation is applied (if
STE.S1DSS configuration or Config==0b100 causes all stages to be bypassed, a
read and invalidate or Invalidate Cache Maintenance Operation is permitted
regardless of the value of this bit).

This bit is RES0 in SMMUv3.0.

[80:77] CONT Contiguous Hint
This field provides a hint to SMMU caching structures that a fetched STE is identical
to its neighbours within a particular span of StreamIDs, and that a cache of the STE
might be matched for any future lookup of StreamID for translation purposes within
this span. The field is a 4-bit unsigned value specifying the span size. This field does
not affect configuration invalidation. Software must ensure every STE in the required
range is targeted by appropriate CMD_CFGI_* commands, regardless of the value of
the field.

When CONT==0, the STE is an individual STE bordered by STEs not considered
identical. Otherwise, the span is defined as a contiguous block of 2CONT STEs starting
at a StreamID for which StreamID[CONT-1:0]=0.

All defined fields, except for CONT, in all STEs within the stated span must be
identical, otherwise, it is UNPREDICTABLE whether the result of an STE lookup is the
requested STE as it is represented in the Stream table, or whether a neighbouring
STE within the CONT span is used.

Note: When marking STEs as members of a contiguous span (or taking away such
hints), the STEs can differ by their intermediate CONT field values.

A span greater than the size of the Stream table is capped by the SMMU by the size
of the Stream table, and does not allow StreamIDs beyond the Stream table span to
match an STE.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 154 of 443

 Non-Confidential

For a given valid STE in a 2-level Stream table, software must not program
STE.CONT to a span greater than the Span field of the L1STD that locates the STE.

Otherwise, use of a StreamID within the range of the erroneous STE.CONT field is
CONSTRAINED UNPREDICTABLE and gives rise to either one of these behaviors:

• The transaction is terminated and a C_BAD_STREAMID error is raised, if the
StreamID is outside of the range represented by the Span of the
corresponding L1STD. Note: This is the expected behavior when using a
StreamID outside of an L1STD.Span range.

• The transaction uses any STE from the same Security state as the stream.

In an EI, this field is permitted to be RAZ/WI.

[81] DCP Directed Cache Prefetch.

Some implementations might support directed cache prefetch hint operations which
are a standalone hint transaction, or a read/write transaction with hint side-effect, that
changes the cache allocation in a part of the cache hierarchy that is not on the direct
path to memory. This class of operation does not include those with data-destructive
side-effects, see section 3.22.

• 0b0: Directed cache prefetch operations are inhibited. A transaction input
with hint side-effect is stripped of the hint. A standalone hint operation
completes successfully having no effect on the system.

• 0b1: A directed cache prefetch operation is permitted as follows:
o A transaction with hint side-effect is performed if the final translation

permissions permit the transaction.
 Note: This permits a write with side-effect to progress if

permissions grant write access, otherwise a Permission fault
occurs.

o A standalone hint operation is performed if the final permissions grant
either read or write or execute permission for the requested address,
otherwise the hint completes successfully having no effect on the
system.

This bit is IGNORED on implementations that do not support this class of transactions.
Otherwise, this bit only applies when at least one stage of translation is applied (if
STE.S1DSS configuration or Config=0b100 causes all stages to be bypassed, a
directed cache prefetch is permitted regardless of the value of this bit).

This bit is RES0 in SMMUv3.0.

[82] PPAR PRI Page request Auto Responses
0: Auto-generated responses on PRI queue overflow do not include a PASID TLP

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 155 of 443

 Non-Confidential

prefix
1: Auto-generated responses on PRI queue overflow include a PASID TLP prefix
See section 8.1.
If SMMU_IDR0.PRI==0 or SMMU_IDR1.SSIDSIZE==0, this field is RES0.

[83] MEV Merge Events arising from terminated transactions from this stream:
0: Do not merge similar fault records
1: Permit similar fault records to be merged
The SMMU might be able to reduce the usage of the Event queue by coalescing fault
records that share the same page granule of address, access type and SubstreamID.
Setting MEV==1 does not guarantee that faults will be coalesced.
Setting MEV==0 causes a physical SMMU to prevent coalescing of fault records,
however, a hypervisor might not honour this setting if it deems a guest to be too
verbose.
Note: Software must expect, and be able to deal with, coalesced fault records even
when MEV==0.
In an EI, this field is permitted to be RAZ/WI if the implementation does not merge
events.

See section 7.3.1 for details on event merging.

[87:84] Res S/W Reserved for software use, this field is IGNORED by the SMMU. In an EI, storage must
be provided for this field.

[91] S1STALLD Stage 1 Stall Disable:
0: Allow stalling fault model for stage 1 (configured in CD)
1: Disallow stalls to be configured for Stage 1 (faults terminate immediately)
If stage 1 is not implemented (SMMU_IDR0.S1P==0), this bit is RES0.
If stage 1 is not enabled (Config[0]==0), this bit is IGNORED.
Otherwise, if stage 1 is enabled and SMMU_(S_)IDR0.STALL_MODEL is not 0b00, it
is ILLEGAL to set this field to 1 because the Stall model is not supported or not
configurable.
When the Stall model is configurable, this bit must be set for StreamIDs associated
with stall-unsafe system topologies or for PCIe clients.

[93:92] EATS Enable PCIe ATS translation and traffic. This field enables responses to ATS
Translation Requests, and when SMMU_CR0.ATSCHK==1, controls whether ATS
Translated traffic can pass into the system.

0b00 ATS Translation Requests are returned unsuccessful or aborted

(UR) and F_BAD_ATS_TREQ is recorded.

Additionally, when SMMU_CR0.ATSCHK==1, Translated traffic
associated with the StreamID of the STE is prevented from
bypassing the SMMU. Such traffic is terminated with an abort and

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 156 of 443

 Non-Confidential

a F_TRANSL_FORBIDDEN event is recorded.

0b01 Full ATS: ATS Translation Requests are serviced by translating
at all enabled stages of translation.

Translated traffic from the StreamID of the STE is allowed to
bypass (regardless of SMMU_CR0.ATSCHK).

In SMMUv3.1 implementations, this configuration is ILLEGAL if
EATS is not IGNORED and Config[1]==1 and S2S==1.

In SMMUv3.0 implementations, this configuration is ILLEGAL if
EATS is not IGNORED and S2S==1. It is CONSTRAINED
UNPREDICTABLE whether or not this check of S2S occurs when
Config[1]==0. ARM recommends that S2S==1 causes
EATS==0b01 to be ILLEGAL only when Config[1]==1.

0b10 Split-stage ATS:

ATS Translation responses return the IPA output of stage 1
translation to the Endpoint or ATC. Subsequent Translated
transactions are generated by the Endpoint with IPAs and these
undergo stage 2 translation in the SMMU, see section 13.6.3 for
details.

This configuration must only be used when:

• The stream has both stage 1 and stage 2 translation
(Config[2:0]==0b111)

• S2S==0
• SMMU_IDR0.NS1ATS==0
• SMMU_CR0.ATSCHK==1

If any of the following hold, the STE is ILLEGAL (if it is not
IGNORED):

• Config[2:0]!=0b111
• S2S==1.
• SMMU_IDR0.NS1ATS=1.

If Config[2:0]==0b111 && S2S==0 && NS1ATS==0, but
SMMU_CR0.ATSCHK=0 then EATS=0b10 configuration behaves

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 157 of 443

 Non-Confidential

as 0b00.

Note: See section 13.6.3 and 13.6.4 which describes interaction
of this field with STE.S1DSS.

0b11 Reserved (behaves as 0b00)

This field is RES0 if the STE is Secure, and the effective value of EATS is 0b00.

This field is IGNORED if any of the following hold:

• SMMU_IDR0.ATS==0
o ATS is not supported by the SMMU implementation. No ATS

requests can be made, nor Translated traffic passed.
• Config[1:0]==0b00

o When Config[2:0]==0b100, the effective value of EATS is 0b00.The
responses and events recorded for Translation Requests and
Translated transactions are as described in this table for
EATS=0b00.

o When Config[2:0]==0b000, Translation Requests are silently
terminated with UR and, if SMMU_CR0.ATSCHK=1, Translated
transactions are silently aborted.

Incoming PCIe traffic marked Translated is only checked against the effective value
of EATS if SMMU_CR0.ATSCHK==1, otherwise traffic marked Translated bypasses
the SMMU.

Incoming ATS Translation Requests are always checked against the effective value
of EATS.

The behavior of EATS==0b10 configuration is dependent on SMMU_CR0.ATSCHK;
see section 3.9.2 for details on changing ATS configuration. An implementation is
permitted to cache ATSCHK in configuration caches, so if ATSCHK is changed while
STEs exist with EATS==0b10 it is UNPREDICTABLE as to whether the behavior on
receipt of new requests related to those STEs is as though EATS==0b00 or
EATS=0b10.

In an EI, this field is permitted to be RAZ/WI if SMMU_IDR0.ATS==0.

Note: There is no dependency between EATS being non-zero and the ability for a
CD to select the stall fault model with CD.S==1. ARM expects that the Stall model is
not enabled for PCIe-related streams both at stage 2 (STE.S2S==0) and at stage 1
(CD.S==0) and that STE.STALLD==1 is used if necessary to ensure that a CD
cannot use CD.S==1 when the CD configuration is not managed the highest-privilege

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 158 of 443

 Non-Confidential

entity in the system. This expectation is present regardless of whether the stream
uses ATS or not. If STE.STALLD==0 and CD.S==1, the Stall model might (if
supported) cause PCIe traffic to stall upon fault.

[95:94] STRW StreamWorld control: Selects the translation regime and associated Exception level
controlling this stream, in conjunction with the Security state of the STE as defined by
being fetched using the Non-secure Stream table or the Secure Stream table, when
stage 1 translation is used.

This field is RES0 if stage 1 is not implemented (SMMU_IDR0.S1P==0) and the
effective StreamWorld is determined by STE.Config[1].

This field is RES0 if SMMU_IDR0.Hyp==0 and the STE is in the Non-secure Stream
table.

If STE.Config[1]==1 (stage 2 translation enabled), STRW is IGNORED (if it is not
already RES0) and the effective StreamWorld is NS-EL1.
If STE.Config[1]==0 (stage 2 bypass) and STE.Config[0]==0 (stage 1 bypass), STRW
is IGNORED (if it is not already RES0) as no translations are performed.

Note: The STRW field is not the same as the StreamWorld, which is an attribute
whose effective value might be influenced by STRW in some configurations, but not
in others. See section 3.3.3 for a definition of StreamWorld.

When Config[0]==1 and Config[1]==0 (stage 1-only translation), the StreamWorld is
determined as follows.

The StreamWorld affects three things:

• The tagging of resulting TLB entries, that is the translation regime, and ASID
or VMID

• The number of translation tables used in the CD for stage 1
• The Permissions model used in stage 1 translation table descriptors.

Which
Stream
table?

STRW SMMU_

CR2.

E2H

Resulting TLB
entries tagged with

TTBs
used

(c)

TTD perms

(d)

Permitted
Stage 1 TT
formats (e) Stream

World

ASID,
VMID

NS

(a)

0b00 X NS-EL1 ASID+

VMID

TTB0,

TTB1

All AArch32,
AArch64

0b10 0 EL2 None (f) TTB0 Privileged
only

AArch32,
AArch64

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 159 of 443

 Non-Confidential

 1 EL2-E2H ASID TTB0,

TTB1

All AArch64

0bx1 X Reserved, ILLEGAL

S

(b)

0b00 X Secure ASID TTB0,

TTB1

All AArch32,
AArch64

0b01 X EL3 None (f) TTB0 Privileged
only

AArch64

0b1x X Reserved, ILLEGAL

Configuration inputs are the left-hand columns in white. The result of the
configuration is listed in the right-hand shaded columns.

Notes:

(a) The STE is reached using the Non-secure Stream table. When
SMMU_IDR0.Hyp==1, STRW selects NS-EL1, EL2 or EL2-E2H, Reserved
values render the STE ILLEGAL. When SMMU_IDR0.Hyp==0, STRW is
RES0 (because EL2 is not supported and the resulting TLB entries of the STE
are tagged as NS-EL1).

(b) The STE is reached using the Secure Stream table and Config[0]=1 (stage 1
enabled). STRW selects ‘Secure’ or ‘EL3’:

• Secure tags TLB entries as Secure with an ASID and must be selected for
Secure streams used by:

o Secure software on an ARMv7-A host PE, or ARMv8-A host PE
whose EL3 runs in AArch32

o Secure-EL1 software on an ARMv8-A host PE whose EL3 runs in
AArch64

• EL3 tags TLB entries as EL3 without an ASID and must be selected for
Secure streams used by EL3 software on an ARMv8-A host PE whose EL3
runs in AArch64. There are no ASIDs in an AArch64 EL3 translation regime.

(c) EL2 and EL3 regimes use only one translation table. TTB1 is unused in
these configurations.

(d) The format of access permissions in a stage 1 translation table descriptor is
affected when located from a configuration with StreamWorld==EL2 or
StreamWorld==EL3, consistent with the ARMv8 Translation System [4].
Specifically, the AP[1] bit (of the AP[2:1] field) is ignored and treated as if it
were 1 because privilege checks are ignored for EL2 and EL3 (AArch64)
translations. However, EL2-E2H translations maintain privileged/non-
privileged checks in the same manner as EL1.

(e) Only some stage 1 translation table formats are valid in each StreamWorld,
consistent with the PE. Valid combinations are depicted in the table and in
the CD.AA64 description. Selecting an inconsistent combination of
StreamWorld and CD.AA64 (for example, using AArch32 page tables to
represent an AArch64 EL3 translation regime) causes the CD to be ILLEGAL.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 160 of 443

 Non-Confidential

(f) In a regime that lacks ASIDs to differentiate address spaces, all CDs are
considered equivalent (similar to two CDs with the same ASID value) even if
referenced using different STEs. This implies that SubstreamIDs cannot
differentiate address spaces in EL2/EL3 StreamWorlds. See 5.4.1 for
restrictions on permitted differences between CDs in such StreamWorlds.

The StreamWorld tag also determines how TLB entries respond to incoming
broadcast TLB invalidations and TLB invalidation SMMU commands, see section
3.17 for details.

[99:96] MemAttr If MTCFG==1, MemAttr provides memory type override for incoming transactions.
The encoding matches the VMSAv8-64 stage 2 MemAttr[3:0] field, except that the
following encodings are Reserved (not UNPREDICTABLE) and behave as Device-
nGnRnE:

• 0b0100

• 0b1000

• 0b1100

If MTCFG==0 or SMMU_IDR1.ATTR_TYPES_OVR==0, this field is RES0.

[100] MTCFG Memory Type configuration:
0: Use incoming type or Cacheability
1: Replace incoming type or Cacheability with that defined by MemAttr field

When SMMU_IDR1.ATTR_TYPES_OVR==0, this field is RES0 and the incoming
Memory Type is used.
It is IMPLEMENTATION DEFINED whether MTCFG applies to streams associated with
PCIe devices or whether the incoming Memory Type is used for such streams
regardless of the field value.

[104:101] ALLOCCFG Allocation hints override:
0b0xxx Use incoming RA, WA, TR hints

0b1RWT Hints are overridden to given values:

Read Allocate = R

Write Allocate = W

Transient = T

When overridden by this field, for each of RA/WA and TR, both inner and outer hints
are set to the same value. Because it is not architecturally possible to express hints
for types that are any-Device or Normal-Non-cacheable, this field has no effect on
memory types that are not Normal-WB or Normal-WT, whether such types are
provided with transaction from the client device or overridden using MTCFG/MemAttr.
Note: A value of 0b1001 encodes Transient with no-allocate. When the SMMU

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 161 of 443

 Non-Confidential

ensures output attribute consistency (see section 13.1.6), no-allocate is considered to
be non-transient. As there is no value of stage 1/stage 2 attribute with which
Transient-no-allocate could combine to cause an allocating Transient attribute to be
output, 0b1001 is functionally equivalent to 0b1000 (non-Transient, no-allocate).

When SMMU_IDR1.ATTR_TYPES_OVR==0, this field is RES0 and the incoming
Allocation hints are used.

It is IMPLEMENTATION DEFINED whether ALLOCCFG applies to streams associated with
PCIe devices or whether the incoming allocation hints are used for such streams
regardless of the field value.

[109:108] SHCFG Shareability override:
0b00 Non-shareable

0b01 Use incoming Shareability attribute

0b10 Outer shareable

0b11 Inner shareable

Architecturally, any-Device and Normal-iNC-oNC are OSH and Shareability is only
variable where cacheable types are used. This field has no effect on memory types
that do not contain Normal-{i,o}WB or Normal-{i,o}WT, whether such types are
provided with transaction from the client device or overridden using MTCFG/MemAttr.

When SMMU_IDR1.ATTR_TYPES_OVR==0, this field is RES0 and the incoming
Shareability attribute is used.

It is IMPLEMENTATION DEFINED whether SHCFG applies to streams associated with
PCIe devices or whether the incoming Shareability attribute is used for such streams
regardless of the field value.

[111:110] NSCFG Bypass NS attribute configuration:
0b00 Use incoming NS attribute

0b01 Reserved, behaves as 0b00.

0b10 Secure

0b11 Non-secure

NSCFG is IGNORED when the STE is in the Non-secure Stream table.

NSCFG is IGNORED when the STE is in the Secure Stream table and stage 1
translation is enabled. In this case the final NS attribute is determined wholly by the
translation process (see CD.NSCFGx, the TTD.NSTable and TTD.NS bits); the input
NS attribute and STE.NSCFG are not used.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 162 of 443

 Non-Confidential

Otherwise, when the STE is in the Secure Stream table and bypass is selected
(Config[2:0=]=0b100):

• When SMMU_IDR1.ATTR_PERMS_OVR==0, this field is RES0 and the
incoming NS attribute is used.

• When SMMU_IDR1.ATTR_PERMS_OVR==1, this field determines the NS
attribute of bypassing transactions.

Note: The function of this field is not related to the CD.NSCFG{0,1} fields (whose
purpose is to affect the NS property of the page table walk).

[113:112] PRIVCFG User/privileged attribute configuration:
0b00 Use incoming PRIV attribute

0b01 Reserved (behaves as 0b00)

0b10 Unprivileged

0b11 Privileged

When SMMU_IDR1.ATTR_PERMS_OVR==0, this field is RES0 and the incoming
PRIV attribute is used.

[115:114] INSTCFG Inst/Data attribute configuration:
0b00 Use incoming INST attribute

0b01 Reserved (behaves as 0b00)

0b10 Data

0b11 Instruction

When SMMU_IDR1.ATTR_PERMS_OVR==0, this field is RES0 and the incoming
INST attribute is used.
INSTCFG only affects translations for reads, the SMMU considers incoming writes to
be Data regardless of this field. See section 13.1.2.

[127:116] IMPLEMENTATION DEFINED per-stream configuration.
(For example, QoS overrides for configuration access, data streams.)

[143:128] S2VMID Virtual Machine Identifier: Marks TLB entries inserted because of translations located
through this STE, differentiating them from translations belonging to different virtual
machines.

When stage 2 is implemented (SMMU_IDR0.S2P==1), translations resulting from a
StreamWorld==NS-EL1 configuration are VMID-tagged with S2VMID, just as in a PE
TLB, when stage 1 (Config[1:0]==0b01), stage 2 (Config[1:0]==0b10) or both stages
(Config[1:0]==0b11) provide translation.

When an implementation supports only 8-bit VMIDs, that is
whenSMMU_IDR0.VMID16==0, it is ILLEGAL for bits S2VMID[15:8] to be non-zero
unless this field is IGNORED.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 163 of 443

 Non-Confidential

When stage 2 is not implemented (SMMU_IDR0.S2P==0) or when
Config[1:0]==0b00 or StreamWorld!=NS-EL1, no VMID tagging of TLB entries occurs
and S2VMID[15:0] is IGNORED.

In an EI, this field is permitted to be RAZ/WI if stage 2 is not implemented. In an EI
implementing stage 2 with 8-bit VMIDs, S2VMID[15:8] are permitted to be RAZ/WI.

If 16-bit VMIDs are supported by an implementation, the full VMID[15:0] value is used
regardless of AA64. ARM expects that legacy and AArch32 hypervisor software
using 8-bit VMIDs will write zero-extended 8-bit values in the VMID field in this case.

See section 3.17 for more information on ASID and VMID TLB tagging.

Changes to the S2VMID field of an STE are not automatically reflected in cached
translations, which must be subjected to separate TLB maintenance.

Note: This field might be supplied by an implementation in transactions to the
memory system for IMPLEMENTATION DEFINED purposes.

[159:144] IMPLEMENTATION DEFINED.

[165:160] S2T0SZ Size of IPA input region covered by stage 2 translation table.
This field is 4 bits ([3:0]) with bits [5:4] IGNORED when stage 2 translation is AArch32
(S2AA64=0). The input region size is calculated the same as in ARMv8-A
VMSA/AArch32 VTCR. When S2AA64==1, this field is 6 bits and the region size is
calculated the same as for the ARMv8 VTCR_EL2.
If stage 2 translation is enabled (Config[1]==1), legal values of S2SL0 and S2TG
relate to this field as defined by the ARMv8 translation system [4].
Note: This field is IGNORED when stage 2 is implemented but not enabled
(Config[1]==0).

If STE.S2AA64==1:

• The maximum valid value is 39.
• In SMMUv3.0, the minimum valid value for this field is ‘64-IAS’.
• In SMMUv3.1:

o If STE.S2TG selects a 4KB or 16KB granule, the minimum valid
value for this field is MAX(16, 64-IAS).

o if STE.S2TG selects a 64KB granule, the minimum valid value for this
field is ‘64-IAS’.

Note: If AArch32 is implemented, IAS=MAX(40, OAS), otherwise IAS=OAS, see
section 3.4.

If STE.S2AA64==0, this field encodes a value from -8 to 7 as defined by the ARMv8-

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 164 of 443

 Non-Confidential

A translation system [4].
Note: When S2AA64=0 all 4-bit values are valid, therefore it is not possible to use a
value outside the valid range but it is still possible for the S2T0SZ to be inconsistent
with S2SL0.

In SMMUv3.0 implementations, the use of a value out of range of these maximum
and minimum valid values is CONSTRAINED UNPREDICTABLE and has one of the
following behaviors:

• The STE becomes ILLEGAL.
• The STE is not ILLEGAL and the effective value used by the translation is

the maximum permitted value (if the programmed value is greater than the
maximum permitted value) or the minimum permitted value (if the
programmed value is less than the minimum permitted value).

In SMMUv3.1 implementations, an STE is treated as ILLEGAL if it contains a S2T0SZ
value out of range of these maximum and minimum values.

The usable range of values is further constrained by a function of the starting level set
by S2SL0 and, if S2AA64==1, granule size set by S2TG as described by the ARMv8
translation system. Use of a value of S2T0SZ that is inconsistent with the permitted
range (given S2SL0 and S2TG) is ILLEGAL.

Note: The SMMU behavior differs from the PE translation system, in which the legal
range of VTCR_EL2.T0SZ values can also depend on whether EL1/stage 1 uses
AArch32 or AArch64.

This field is RES0 when stage 2 is not implemented, that is when
SMMU_IDR0.S2P==0.

[167:166] S2SL0 Starting level of stage 2 translation table walk.
This field is encoded the same as the ARMv8 VTCR_EL2.SL0 field; the encoding
depends on S2TG.
If stage 2 translation is enabled (Config[1]==1), it is ILLEGAL for this field to be
inconsistent with S2T0SZ and S2TG.
This field is RES0 when stage 2 is not implemented, that is when
SMMU_IDR0.S2P==0.

[169:168] S2IR0 Inner region Cacheability for stage 2 translation table access:
0b00 Non-cacheable

0b01 Write-back Cacheable, Read-Allocate, Write-Allocate

0b10 Write-through cacheable, Read-Allocate

0b11 Write-back cacheable, Read-Allocate, no Write-Allocate

Because the only time a translation table is written by the SMMU is when HTTU is in

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 165 of 443

 Non-Confidential

use, and because the atomic update might require data to be already cached, it is
IMPLEMENTATION DEFINED as to whether 0b01 and 0b11 differ.

HTTU might require TTDs to be cached. It is IMPLEMENTATION DEFINED as to whether
HTTU is performed when 0b00 or 0b10 are in use. ARM recommends that software
uses 0b01 or 0b11 when HTTU is enabled for this translation table unless the
behaviour of an implementation is otherwise known.

This field is RES0 when stage 2 is not implemented, that is when
SMMU_IDR0.S2P==0.

[171:170] S2OR0 Outer region Cacheability for stage 2 translation table access, same as for S2IR0

[173:172] S2SH0 Shareability for stage 2 translation table access:
0b00 Non-shareable

0b01 Reserved, behaves as 00.

0b10 Outer Shareable

0b11 Inner Shareable

Note: If both S2IR0 and S2OR0 = 0b00, selecting normal Non-cacheable access, the
Shareability of translation table access is taken to be OSH regardless of the value of
this field.

This field is RES0 when stage 2 is not implemented, that is when
SMMU_IDR0.S2P==0.

[175:174] S2TG Stage 2 Translation Granule size:
0b00 4KB

0b01 64KB

0b10 16KB

0b11 Reserved

This field is RES0 when stage 2 is not implemented, that is when
SMMU_IDR0.S2P==0.

Otherwise, if stage 2 translation is disabled (Config[1]==0), this field is IGNORED.

Otherwise, if stage 2 translation is enabled (Config[1]==1),

• If S2AA64=0, this field is RES0 and the effective S2TG value is 4KB.
• If S2AA64=1, this field must only select a granule supported by the SMMU,

as described in SMMU_IDR5, and use of an unsupported size or Reserved
value is ILLEGAL.

• It is ILLEGAL for S2T0SZ and S2SL0 to be inconsistent with the effective
value of this field, as described in [4].

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 166 of 443

 Non-Confidential

[178:176] S2PS Physical address Size
0b000 32 bits

0b001 36 bits

0b010 40 bits

0b011 42 bits

0b100 44 bits

0b101 48 bits

0b110 52 bits

In SMMUv3.0 implementations, this value is Reserved and behaves
as 0b101.

0b111 In SMMUv3.0 implementations, this value is Reserved and behaves
as 0b101.

In SMMUv3.1 implementations, this value is Reserved and behaves
as 0b110.

Software must not rely on the behavior of Reserved values.

This field determines the Physical address size for the purpose of Address Size fault
checking the output of stage 2 translation, see section 3.4.

This field is RES0 when stage 2 is not implemented, that is when
SMMU_IDR0.S2P==0.

When S2AA64==0, S2PS is IGNORED and the effective stage 2 output address size is
taken as 40 bits.

When S2AA64=1, the effective stage 2 output address size is given by:
 Effective_S2PS = MIN(STE.S2PS, SMMU_IDR5.OAS);

The effective S2PS size is capped to the OAS, which is a maximum of 52 bits in
SMMUv3.1 and 48 bits in SMMUv3.0.

When S2AA64==1, setting this field to any value greater than the cap defined here
behaves as though this field equals the cap size. Software must not rely on this
behavior.
Note: This includes use of a Reserved value.

An Address Size fault occurs if stage 2 translation outputs an address having bits
[51:Effective_S2PS] non-zero.
An address greater than 48 bits in size can only be output from stage 2 when the

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 167 of 443

 Non-Confidential

effective S2PS is 52 and a 64KB granule is in use for that translation table. In
SMMUv3.0 addresses are limited to 48 bits.
Note: If a granule smaller than 64KB is used, the address output bits [51:48] are
treated as 0b0000, so in this case no Address Size fault can occur if the effective
STE.S2PS is greater than or equal to 48 bits.

[179] S2AA64 0: Stage 2 translation table is AArch32 (LPAE)
1: Stage 2 translation table is AArch64

This field is RES0 when stage 2 is not implemented, that is when
SMMU_IDR0.S2P==0.

If stage 2 translation is enabled (Config[1]==1), it is ILLEGAL to select:

• AArch32 tables when AArch32 tables are not supported
(SMMU_IDR0.TTF[0]==0).

• AArch64 tables when AArch64 tables are not supported
(SMMU_IDR0.TTF[1]==0).

Note: The stage 2 translation table permissions are interpreted slightly differently
between AArch64 and AArch32 (LPAE) format tables, for example, an AArch64 stage
2 table can encode an execute-only page permission whereas an AArch32 stage 2
table cannot, see [4] for more information.

[180] S2ENDI Stage 2 translation table endianness:
0: Little Endian

1: Big Endian
If Stage 2 translation is enabled (Config[1]==1), it is ILLEGAL for this field to select an
unimplemented endianness (as indicated by SMMU_IDR0.TTENDIAN).
This field is RES0 when stage 2 is not implemented, that is when
SMMU_IDR0.S2P==0.

[181] S2AFFD Stage 2 Access Flag Fault Disable:
When HTTU is not in use at stage 2 because S2HA==0 or HTTU is not supported,
this flag determines the behavior on access of a stage 2 page whose descriptor has
AF==0:
0: An Access flag fault occurs (behavior controlled by S2R. S2S bits)
1: An Access flag fault never occurs; the TTD.AF bit is considered to be always 1.
When S2HA==1, this flag is IGNORED.
This field is RES0 when stage 2 is not implemented, that is when
SMMU_IDR0.S2P==0.

[182] S2PTW Protected Table Walk:
For an STE configured for translation at both stages, a stage 1 translation table walk
access or CD fetch access made to a stage 2 page with any Device type is
terminated and recorded as a stage 2 Permission fault if this bit is set. (This might
provide early indication of an errant guest OS.)

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 168 of 443

 Non-Confidential

0: CD fetch and Stage 1 translation table walks allowed to any valid stage 2 address
1: CD fetch or Stage 1 translation table walks to stage 2 addresses mapped as any
Device are terminated. A stage 2 Permission fault is recorded.
If Config[1:0] != 0b11, this field is IGNORED.
This field is RES0 when stage 2 is not implemented, that is when
SMMU_IDR0.S2P==0.

[184:183] S2HA, S2HD Hardware Translation Table Update of stage 2 Access/Dirty flags:
S2
HA

S2
HD

0 0 HTTU disabled

1 0 Update of Access flag enabled

0 1 Reserved – behaves as S2HA==S2HD==0

1 1 Update of Access flag and Dirty state of the page enabled

If stage 2 translation is enabled (Config[1]==1),
• It is ILLEGAL to set S2HA or S2HD if S2AA64==0.
• It is ILLEGAL to set S2HA if SMMU_IDR0.HTTU==0b00.
• It is ILLEGAL to set S2HD if SMMU_IDR0.HTTU==0b00 or 0b01.

These fields are RES0 when stage 2 is not implemented.
In an EI, S2HA is permitted to be RAZ/WI if stage 2 is not implemented or
SMMU_IDR0.HTTU==0b00. In an EI, S2HD is permitted to be RAZ/WI when stage 2
is not implemented or SMMU_IDR0.HTTU==0b0x.

Note: If HTTU is enabled when S2OR0 or S2IR0 indicate Non-cacheable memory,
behavior is IMPLEMENTATION DEFINED, see 3.15 above. A system might only be able to
perform atomic updates using cacheable normal memory, or might implement other
means for doing so.

[186:185] {S2R,S2S} Stage 2 fault behavior: Record and Stall.

See section 5.5 below for a description of fault configuration.

When Config[1]==0 (Stage 2 disabled), {S2R, S2S} are IGNORED.
This field is RES0 when stage 2 is not implemented, that is when
SMMU_IDR0.S2P==0.

[243:196] S2TTB[51:4] Address of Translation Table base. Address bits above and below the field range are
treated as zero.

Bits [(x-1):0] are treated as if all the bits are zero, where x is defined by the required
alignment of the translation table as given by ARMv8-A [4].
Note: The SMMU effectively aligns the value in this field before use.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 169 of 443

 Non-Confidential

In addition, a 64-byte minimum alignment on starting-level translation table addresses
is imposed when S2TG selects 64KB granules and the effective S2PS value indicates
52-bit output. In this case bits [5:0] are treated as zero.
If Stage 2 translation is enabled (Config[1]=1), it is ILLEGAL for the address in S2TTB
to be outside the range described by the effective S2PS value. It is ILLEGAL for the
address in S2TTB to be outside of a 48-bit range when S2TG selects a granule
smaller than 64KB.
Note: Where the effective S2PS<52, an address greater than the effective S2PS that
is still within the defined range of this field (up to bit [51]) causes an ILLEGAL STE.
Additionally, a 52-bit address can only be used in S2TTB when a 64KB granule is
configured for stage 2.
This field is RES0 when stage 2 is not implemented, that is when
SMMU_IDR0.S2P==0.

In an EI, the high-order bits of TTB outside of the PA size (SMMU_IDR5.OAS) are
permitted to be RAZ/WI. If these bits are not implemented as RAZ/WI, they must
store the full address field and correctly support the ILLEGAL address range-check
described above.
In SMMUv3.0, STE[243:240] are RES0.

[271:256] IMPLEMENTATION DEFINED

If V==1 and Config==0b100 (Stream Bypass), the S1* and S2* fields are IGNORED. The following fields are used
to apply attributes to the Bypass transactions:

• MTCFG/MemAttr, ALLOCCFG, SHCFG.
• NSCFG (Ignored unless STE is selected from Secure Stream table).
• PRIVCFG, INSTCFG. Note: it is system-dependent as to whether INST/DATA attributes have any effect

on the path to the memory system.

If V==1 and Config=0b000 (disabled), the CONT field is permitted to be obeyed. The remaining fields contain no
relevant configuration and are IGNORED. Transactions selecting such an STE will be silently terminated with an
abort.

For more details on the memory attribute and permissions overrides (MTCFG, ALLOCCFG, SHCFG, NSCFG,
PRIVCFG, INSTCFG), see section 13.

An STE or L1STD that is successfully fetched might be cached by the SMMU in any state, therefore any
modification, commissioning or decommissioning of an STE must be followed by a CMD_CFGI_STE command. A
failed fetch (F_STE_FETCH) does not cause an STE or L1STD to be cached.

When cached, an STE is uniquely identified by StreamID, and SEC_SID when two Security states are supported.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 170 of 443

 Non-Confidential

Note: An STE from one Stream table index X is unrelated to the STE at index X of the Stream table of the other
Security state.

If an implementation supports bypass transactions (because STE.Config==0b100) by creating ‘identity-mapped’
TLB entries, the presence of these entries is not visible to software. Changing STE.Config does not require
explicit TLB invalidation.
Note: STE configuration invalidation is required for any alteration to an STE.

StreamWorld (as determined from the STRW field, SMMU_CR2.E2H, Config[1:0] and the Security state of the
Stream table that fetches the STE) controls the tagging of TLB entries, so a change of the StreamWorld of a
stream simply makes lookups performed for the stream fail to match TLB entries of a prior StreamWorld or
translation regime. Software must consider the possibility of such TLB entries still being present if a prior
StreamWorld configuration is returned to, unless explicit invalidation has occurred. ARM recommends that TLB
entries that are made unreachable by a change in StreamWorld are invalidated after the change to avoid their
unanticipated use by a future configuration that happens to match the old StreamWorld, ASID and VMID (if
appropriate).

Note: The following STE properties affect the interpretation of a CD located through the STE:

• StreamWorld.
• S1STALLD.
• AArch32 stage 2 translation (STE.Config[1]==1 and STE.S2AA64==0)

When stage 2 translation is enabled (Config[1]==1), the correct setting of the stage 2 table walk starting level,
S2SL0, is dependent on the granule size, S2TG, and the required IPA address size (S2T0SZ). All three fields
must be set in a manner consistent with the equivalent ARMv8-A fields. A mismatch causes the STE to be
considered ILLEGAL. In ARMv8-A, an inconsistency between SL0, TG and T0SZ is reported as a Translation
fault. In addition, a S2TTB base address outside the range indicated by the effective STE.S2PS value makes the
STE ILLEGAL. In ARMv8-A, an inconsistency between TTBR and PS is reported as an Address Size fault.

The following STE fields are permitted to be cached as part of a translation or TLB entry and, when altered,
software must perform explicit invalidation of any TLB entry that might have cached these fields, after performing
STE structure cache invalidation:

• S2TTB.
• S2PTW.
• S2VMID.
• S2T0SZ.
• S2IR0.
• S2OR0.
• S2SH0.
• S2SL0.
• S2TG.
• S2PS.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 171 of 443

 Non-Confidential

• S2AFFD.
• S2HA.
• S2HD.
• S2ENDI.
• S2AA64.

Alteration of other STE fields does not require invalidation of TLB entries. IMPLEMENTATION DEFINED STE fields
might have IMPLEMENTATION DEFINED invalidation requirements.
Note: Invalidation of an STE also implicitly invalidates cached CDs fetched through the STE.

Stage 2 configuration from STEs with the same S2VMID is considered interchangeable by the SMMU. Software
must ensure that all STEs containing the same S2VMID value are identical for non- IGNORED fields permitted to be
cacheable as part of a TLB entry, in the list in this section. Fields that are IGNORED because of a stage 2 bypass
(Config[1]==0) are not covered by this rule.

Note: As the properties of TLB or translation cache entries inserted from an STE depend on the fields listed here,
a difference would cause TLB entries to be cached with different properties. It would be UNPREDICTABLE as to
whether a TLB entry was cached using a particular STE sharing an S2VMID value, therefore the properties
returned by a general TLB lookup under the given VMID become UNPREDICTABLE.

5.2.1 Validity of STE
The following expression indicates whether an STE is considered valid or ILLEGAL, for the purposes of
determining a configuration error (C_BAD_STE). Further checks are required (for example, on the extent of an
incoming SubstreamID with respect to STE.S1CDMax) after an STE is discovered to be valid.

 PA_RANGE = (STE.S2AA64 == 0) ? 40 : MIN(S2PS, SMMU_IDR5.OAS);

// PA range is 40 bits for AA32 tables, else effective PS size

 EFF_S2TG = (STE.S2AA64 == 0) ? 4KB : STE.S2TG;

 // Note: In these cases, the STRW field is ignored or reserved so the

 // value itself cannot contribute to the STE being ILLEGAL. However,

 // writing a non-zero value to a RES0 field might still make the STE

 // ILLEGAL. The logic to check RES0/undefined fields is not depicted here.

 STRW_UNUSED = (SMMU_IDR0.S1P == 0) || (!STE_SECURE && SMMU_IDR0.Hyp == 0) ||

 (STE.Config[1] == 1) || (STE.Config[1:0] == 0b00);

 STE_ILLEGAL = !STE.V || ((Config[2:0] != 0b0XX) && (

(SMMU_IDR0.S1P == 0 && STE.Config[0] == 1) ||

 (SMMU_IDR0.S2P == 0 && STE.Config[1] == 1) ||

 (SMMU_IDR0.S2P == 1 && STE.Config[1] == 1 && STE_SECURE) ||

 (SMMU_IDR1.SSIDSIZE != 0 && STE.S1CDMax != 0 &&

STE.Config[0] == 1 && SMMU_IDR0.CD2L == 0 &&

(STE.S1Fmt == 0b01 || STE.S1Fmt == 0b10)) ||

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 172 of 443

 Non-Confidential

 (!STE_SECURE && SMMU_IDR0.ATS == 1 && Config[1:0] != 0b00 && (

(STE.EATS == 0b10 &&

 (STE.Config[2:0] != 0b111 || STE.S2S == 1 ||

SMMU_IDR0.NS1ATS == 1)) ||

(STE.EATS == 0b01 && STE.S2S == 1 &&

 (STE.Config[1] == 1 || CONSTR_UNPRED_EATS_S2S)))) ||

(!STE_SECURE && !STRW_UNUSED &&

(STE.STRW == 0b01 || STE.STRW == 0b11)) ||

(STE_SECURE && !STRW_UNUSED && STE.STRW > 0b01) ||

(STE.Config[0] == 1 && (

(STE.S1STALLD == 1 && !STE_SECURE &&

EFFECTIVE_SMMU_IDR0_STALL_MODEL != 0b00) ||

(STE.S1STALLD == 1 && STE_SECURE &&

SMMU_S_IDR0.STALL_MODEL != 0b00) ||

(SMMU_IDR1.SSIDSIZE != 0 &&

STE.S1CDMax > SMMU_IDR1.SSIDSIZE) ||

 /* See 3.4.3: */

 CONSTR_UNPRED_CHECK_PTR_SIZE_FAIL(STE.S1ContextPtr))) ||

 (STE.Config[1] == 1 && (

 (SMMU_IDR0.STALL_MODEL == 0b01 && STE.S2S == 1) ||

 (SMMU_IDR0.STALL_MODEL == 0b10 && STE.S2S == 0) ||

(STE.S2AA64 == 1 &&

!GRANULE_SUPPORTED(STE.S2TG, SMMU_IDR5)) ||

 (STE.S2AA64 == 0 && SMMU_IDR0.TTF[0] == 0) ||

(STE.S2AA64 == 1 && SMMU_IDR0.TTF[1] == 0) ||

 ((STE.S2HA || STE.S2HD) && (STE.S2AA64 == 0)) ||

 ((STE.S2HA || STE.S2HD) && (SMMU_IDR0.HTTU == 0b00)) ||

 (STE.S2HD && SMMU_IDR0.HTTU == 0b01) ||

ADDR_OUTSIDE_RANGE(STE.S2TTB, PA_RANGE) ||

(S2T0SZ_OUTSIDE_VALID_RANGE(STE.S2T0SZ, STE.S2AA64) &&

CONSTR_UNPRED_S2T0SZ_OOR_ILLEGAL == YES) ||

!WALK_CONFIG_CONSISTENT(STE.S2SL0, STE.S2T0SZ, STE.S2TG,

STE.S2AA64) ||

(SMMU_IDR0.TTENDIAN == 0b10 && STE.S2ENDI == 1) ||

(SMMU_IDR0.TTENDIAN == 0b11 && STE.S2ENDI == 0))) ||

 (SMMU_IDR0.S2P == 1 && STE.Config[1:0] != 0b00 &&

 STE.Config[2] == 1 && !STE_SECURE &&

 // For a Non-secure STE with translation enabled,

 // STRW_UNUSED implies an effective StreamWorld of NS-EL1.

// This expression is then “is NS-EL1”:

 (STRW_UNUSED || STE.STRW == 0b00) &&

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 173 of 443

 Non-Confidential

SMMU_IDR0.VMID16 == 0 &&

 STE.S2VMID[15:8] != 0x00)

));

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 174 of 443

 Non-Confidential

5.3 Level 1 Context Descriptor
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0  L2Ptr V
+4 L2Ptr 

Figure 15: Level 1 Context Descriptor format

When stage 1 is enabled and substreams are enabled and two-level Context descriptor tables are in use
(STE.S1Fmt!=0b00), the stage 1 context pointer indicates an array of Level 1 Context descriptors which contain
pointers to Level 2 CD tables.

Bits Name Meaning

[0] V 0: L2Ptr invalid:
1: L2Ptr valid – CDs are indexed through to the next level table

[51:12] L2Ptr[51:12] Pointer to next-level table. Address bits above and below the field range are
treated as zero.
The programmed value must be in the range of the IAS if stage 2 is enabled for
the stream causing a CD fetch through this descriptor, or in the range of the OAS
if stage 2 is not enabled for the stream. See section 3.4.3 for behavior of
addresses beyond IPA or PA address range.
In SMMUv3.0, bits [51:48] are RES0.

If a CD fetch for a transaction with SubstreamID encounters an L1CD with V==0, L2Ptr is IGNORED, the transaction
is terminated with abort and a C_BAD_SUBSTREAMID event is recorded.

See the invalidation examples for L1STD in section 5.1. When an L1CD is changed, the non-leaf form of
CMD_CFGI_CD is the minimum scope of invalidation command required to invalidate SMMU caches of the L1CD
entry. Depending on the change, other CD invalidations might be required, for example:

• Changing an inactive L1CD with V==0 to an active V==1 form (introducing a new section of level-2 CD
table) requires an invalidation of the L1CD only. Because no CDs were reachable for SubstreamIDs
within the span, none require invalidation. A CMD_CFGI_CD can be used with Leaf=0 and any
SubstreamID that matches the L1CD entry.

• Changing an active L1CD with V==1 to an inactive L1CD (decommissioning a span of SubstreamIDs)
requires an invalidation of the L1CD as well as invalidation of cached CDs from the affected span. Either
multiple non-leaf CMD_CFGI_CD commands, or a wider scope such as CMD_CFGI_CD_ALL,
CMD_CFGI_STE or CMD_CFGI_ALL is required.

See also the CD notes in Section 5.4.1. An L1CD can be cached multiple times for the same reason as a single
CD can be cached multiple times if accessed through multiple StreamIDs. This situation requires an invalidation
procedure covering multiple StreamIDs.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 175 of 443

 Non-Confidential

5.4 Context Descriptor
The CD structure contains stage 1 translation table pointers and associated fields (such as ASID and table walk
attributes). Translation tables might be interpreted as AArch32 (Long/LPAE) or AArch64 formats (as controlled by
the AA64 field).

Invalid or contradictory CD configurations are marked ILLEGAL. A transaction that attempts to translate through a
CD containing ILLEGAL configuration is terminated with an abort and a C_BAD_CD event is recorded in the Event
queue appropriate to the Security state of the transaction (as determined by SSD).

Note: In accordance with ARMv8-A [4], the interpretation of the translation table descriptor permissions is a
function of the translation table format (from CD.AA64) and the Exception level to which the tables correspond (as
determined by the STE StreamWorld). For example, stage 1 AArch32-format tables maintained for an EL1
StreamWorld cannot encode execute-only, whereas stage 1 AArch64-format tables maintained for an EL1 can.
See [4] for more information.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 176 of 443

 Non-Confidential

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0
V

EPD
1

SH1 OR1 IR1 TG1 T1SZ

EN
D

I
EPD

0

SH0 OR0 IR0 TG0 T0SZ

+4
ASID

AS
ET

A R S

H
A

H
D

AA64
PAN

TBI

U
W

X
N

W
X

N

A
FFD

IPS

+8
 TTB0

H
A

D
0

N
SC

FG
0

+12

H
W

U
0

62

H
W

U
0

61

H
W

U
0

60

H
W

U
0

59 TTB0 

+16
 TTB1

H
A

D
1

N
SC

FG
1

+20 H
W

U
1

62

H
W

U
1

61

H
W

U
1

60

H
W

U
1

59 TTB1 

+24
 MAIR

+28
MAIR 

+32
 AMAIR

+36
AMAIR 

+40
 IMPLEMENTATION DEFINED

+44
+48
+52
+56
+60

Figure 16: Context Descriptor format

Bits Name Meaning

[5:0] T0SZ VA region size covered by TT0.

When AA64==0:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 177 of 443

 Non-Confidential

• This field is 3 bits ([2:0]) with bits [5:3]. The input region size
is calculated the same as in ARMv8 AArch32 TTBCR [4].

• The valid range of values is 0 to 7 inclusive.
o Note: All 3-bit values are valid, therefore it is not

possible to use an out of range value when
AA64==0.

When AA64==1:

• This field is 6 bits and the region size is calculated the same
as in ARMv8-A AArch64 TCR_ELx [4].
• The maximum valid value is 39.
• The minimum valid value is 16 unless all of the following

also hold, in which case the minimum permitted value is
12:

o SMMUv3.1 is supported
o SMMU_IDR5.VAX indicates support for 52-bit

VAs
o The corresponding CD.TGx selects a 64KB

granule.

In SMMUv3.1 implementations, a CD is treated as ILLEGAL if it
contains a TxSZ value outside the range of these maximum and
minimum values.
In SMMUv3.0 implementations, a fetch of a CD containing an out of
range value is CONSTRAINED UNPREDICTABLE and has one of the
following behaviors:

• The CD becomes ILLEGAL.
• The CD is not ILLEGAL and the effective value used by the

translation is 39 if the programmed value is greater than 39,
or 16 if the programmed value is less than 16.

IGNORED if the effective value of EPD0==1.

[7:6] TG0 TT0 Translation Granule size, when AA64==1:
0b00 4KB

0b01 64KB

0b10 16KB

0b11 Reserved

This field must only select a granule supported by the SMMU, as
indicated by SMMU_IDR5. Use of an unsupported size or Reserved
value is ILLEGAL, except this field is IGNORED if the effective value of
EPD0==1.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 178 of 443

 Non-Confidential

Note: The different encoding of TG1 to TG0 is consistent with the
ARMv8 Translation System [4].

When AA64==0 (AArch32), TG0 and TG1 are IGNORED.

[9:8] IR0 Inner region Cacheability for TT0 access:
0b00 Non-cacheable

0b01 Write-back Cacheable, Read-Allocate, Write-Allocate

0b10 Write-through Cacheable, Read-Allocate

0b11 Write-back Cacheable, Read-Allocate, no Write-Allocate

Because the only time a translation table is written by the SMMU is
when HTTU is in use, and because the atomic update might require
data to be already cached, it is IMPLEMENTATION DEFINED as to
whether 0b01 and 0b11 differ.

HTTU might require TTDs to be cached. It is IMPLEMENTATION

DEFINED as to whether HTTU is performed when 0b00 or 0b10 are in
use. ARM recommends that software use 0b01 or 0b11 when
HTTU is enabled for this translation table unless the behaviour of an
implementation is otherwise known.

IGNORED if the effective value of EPD0==1.

[11:10] OR0 Outer region Cacheability for TT0 access, as IR0.

[13:12] SH0 Shareability for TT0 access:
0b00 Non-shareable

0b01 Reserved (behaves as 0b00)

0b10 Outer Shareable

0b11 Inner Shareable

Note: If both IR0 and OR0 == 0b00, selecting normal Non-cacheable
access, the Shareability of TT0 access is taken to be OSH
regardless of the value of this field.
IGNORED if the effective value of EPD0==1.

[14] EPD0 TT0 translation table walk disable:
0: Perform translation table walks using TT0
1: A TLB miss on an address that is translated using TT0 causes a
Translation fault. No translation table walk is performed.
T0SZ/TG0/IR0/OR0/SH0/TTB0 are IGNORED.
Consistent with ARMv8-A translation, the EPD0 and EPD1 fields are
IGNORED (and their effective value is 0) if this CD is located from an

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 179 of 443

 Non-Confidential

STE with StreamWorld of EL2 or EL3. It is only possible for an EL1
(Secure or Non-secure) or EL2-E2H stream to disable translation
table walk using EPD0 or EPD1.

[15] ENDI Translation table endianness:
0: Little Endian
1: Big Endian
If the effective values of both EPD0 and EPD1 are 1, this field is
IGNORED. Otherwise:
If SMMU_IDR0.TTENDIAN==0b10, it is ILLEGAL to set ENDI==1.
If SMMU_IDR0.TTENDIAN==0b11, it is ILLEGAL to set ENDI==0.

[21:16] T1SZ VA region size covered by TT1, as T0SZ. IGNORED if the effective
value of EPD1=1. This field is RES0 if StreamWorld=EL2 or EL3.

[23:22] TG1 TT1 Translation Granule size:
0b10 4KB

0b11 64KB

0b01 16KB

0b00 Reserved

This field must only select a granule supported by the SMMU, as
indicated by SMMU_IDR5. Use of an unsupported size or Reserved
value is ILLEGAL, except this field is IGNORED if the effective value of
EPD1==1.
Note: The different encoding of TG1 to TG0 is consistent with the
ARMv8 Translation System [4].

This field is RES0 if StreamWorld==EL2 or EL3, otherwise when
AA64==0 (AArch32), TG0 and TG1 are IGNORED.

[25:24] IR1 Inner region Cacheability for TT1 access, as IR0. IGNORED if the
effective value of EPD1==1. This field is RES0 if StreamWorld==EL2
or EL3.

[27:26] OR1 Outer region Cacheability for TT1 access, as OR0. IGNORED if the
effective value of EPD1==1. This field is RES0 if StreamWorld==EL2
or EL3.

[29:28] SH1 Shareability for TT1 access, as SH0. IGNORED if the effective value
of EPD1==1. This field is RES0 if StreamWorld==EL2 or EL3.

[30] EPD1 TT1 translation table walk disable, as EPD0, but affects
T1SZ/TG1/IR1/OR1/SH1/TTB1.

[31] V CD Valid.
0: Invalid – use of the CD by an incoming transaction is ILLEGAL
1: Valid

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 180 of 443

 Non-Confidential

If V=0, the entire rest of the structure is IGNORED. An incoming
transaction causing a CD with V==0 to be located from a valid STE is
terminated with an abort and a C_BAD_CD event is recorded.

[34:32] IPS Intermediate Physical Size:
0b000 32 bits

0b001 36 bits

0b010 40 bits

0b011 42 bits

0b100 44 bits

0b101 48 bits

0b110 In SMMUv3.0 implementations, this value is Reserved
and behaves as 0b101.

In SMMUv3.1 implementations, this value selects 52 bits
of IPA.

0b111 In SMMUv3.0 implementations, this value is Reserved
and behaves as 0b101.

In SMMUv3.1 implementations, this value is Reserved
and behaves as 0b110.

Software must not rely on the behavior of Reserved values.

Addresses output from the stage 1 translation table walks through
either TTBx table base are range-checked against the effective value
of this field, causing a stage 1 Address Size fault if out of range. See
section 3.4.

When CD.AA64==0, IPS is IGNORED and effective Stage 1 output
address size of 40 bits is always used. This reflects the 40-bit IPA
used in AArch32 translations. An Address Size fault occurs if the
output address bits [47:40] of an AArch32 stage 1 TTD are
programmed as non-zero.

When CD.AA64==1:

• The effective stage 1 output address size is given by:

Effective_IPS = MIN(CD.IPS, SMMU_IDR5.OAS);

The effective IPS size is capped to the OAS.

• Setting this field to any value greater than the cap behaves

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 181 of 443

 Non-Confidential

as though this field equals the cap size. Software must not
rely on this behavior.

An Address Size fault occurs if stage 1 outputs an address having
bits [51:eff_IPS] non-zero, where eff_IPS is the effective number of
IPA bits.
An address greater than 48 bits in size can only be output from a
TTD when, in SMMUv3.1, the effective IPS is 52 and a 64KB granule
is in use for that translation table. In SMMUv3.0 addresses are
limited to 48 bits.
Note: If the effective IPS is 52 and a granule smaller than 64KB is
used, the address output bits [51:48] are treated as 0b0000 and no
Address Size fault can occur.

Note: Setting IPS=110 on an implementation that supports OAS of
52 bits when a translation granule other than 64KB is in use causes
no error. When a granule other than 64KB is used, the translation
tables cannot encode an address greater than 48 bits and, because
IPS is used to check Address Size fault, an Address Size fault
resulting from an address >48 bits cannot occur. Similarly, an
Address Size fault is only possible when a granule other than 64KB
is in use if the effective IPS is smaller than 48 bits.

[35] AFFD Access Flag Fault Disable:
When HTTU is not in use because HA==0 or HTTU is not supported,
this flag determines the behavior on access of a stage 1 page whose
descriptor has AF==0:
0: An Access flag fault occurs (behavior controlled by ARS bits)
1: An Access flag fault never occurs. The TTD.AF bit is considered
to be always 1.
When HA=1, this flag is IGNORED.
Note: Because AFFD==1 causes a TTD.AF bit to be considered to
be 1, a resulting TLB entry will contain AF==1.

[36] WXN Write eXecute Never:
This flag controls overall permission of an instruction read to any
writable page located using TTB{0,1}:
0: Instruction read is allowed as normal
1: Instruction read to writable page raises a Permission fault

[37] UWXN Unprivileged Write eXecute Never:
This flag controls overall permission of a privileged instruction read to
a page marked writable for user privilege that is located through
TTB{0,1}:
0: Instruction read is allowed as normal
1: Instruction read from user-writable page raises a stage 1

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 182 of 443

 Non-Confidential

Permission Fault

In configurations for which all accesses are considered privileged, for
example StreamWorld==EL2 or StreamWorld==EL3, this bit has no
effect and is IGNORED.

In configurations using AArch64-format stage 1 translation tables
(AA64==1), all EL0-writable regions are treated as being PXN at
EL1, the actual value of this bit is IGNORED and UWXN/PXN are
effectively both 1 for these regions.

[38] TBI0 Top Byte Ignore for TTB0
TBIx affects generation of a Translation fault for addresses having
VA[63:56] dissimilar to a sign-extension of VA[55] in the same way
as TBI in an ARMv8-A.
Note: Refer to section 3.9.1 for additional considerations for use of
TBI with PCIe ATS.

[39] TBI1 Top Byte Ignore for TTB1
This field is RES0 if StreamWorld=EL2 or EL3.

[40] PAN Privileged Access Never:

When 1, this bit disables data read or data write access by privileged
transactions to a virtual address where unprivileged access to the
virtual address is permitted at stage 1 when the AP[2:1]==x1 &&
APTable[0]==0, for all APTable bits associated with that virtual
address.
Note: HADx removes APTable bits from this evaluation.

Privileged transactions are those configured through an STE with
STE.PRIVCFG==Privileged, or an STE with STE.PRIVCFG=’Use
Incoming’ and marked as Privileged by the client device.

This bit is IGNORED when StreamWorld==EL2 or StreamWorld==EL3
and PAN is effectively 0.

[41] AA64 Translation table format:
0: TTB{0,1} point to AArch32-format translation tables
1: TTB{0,1} point to AArch64-format translation tables

It is ILLEGAL to select AArch32 tables when either:
• AArch32 tables are not supported (SMMU_IDR0.TTF[0]==0)
• StreamWorld==EL2-E2H or EL3.

It is ILLEGAL to select AArch64 tables when either:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 183 of 443

 Non-Confidential

• AArch64 tables are not supported (SMMU_IDR0.TTF[1]==0)
• Stage 2 translates (STE.Config[1]==1) and STE.S2AA64==0.

o Note: Consistent with the PE VMSA, a 64-bit stage
1 is not supported on a 32-bit stage 2.

Note: When AArch64 is selected, the IPS field selects a variable
output address size, the translation granule can be altered, HTTU
can be enabled and page permissions are interpreted differently, see
the other fields for details.

[43:42] HA, HD Hardware Translation Table Update of Access/Dirty flags for TT0 and
TT1:

HA HD

0 0 HTTU disabled

1 0 Update of Access flag enabled

0 1 Reserved – behaves as HA=HD=0

1 1 Update of Access flag and Dirty state of the page
enabled

These flags are IGNORED when AA64=0 (that is not AArch64).
Otherwise:

• It is ILLEGAL to set HA if SMMU_IDR0.HTTU==0b00.
• It is ILLEGAL to set HD if SMMU_IDR0.HTTU==0b00 or

0b01.

Note: If HTTU is enabled when ORx or IRx indicate Non-cacheable
memory, behavior is IMPLEMENTATION DEFINED, see 3.15 above.
Some systems might only be able to perform atomic updates using
normal cacheable memory. Incompatible attributes might cause
HTTU not to be performed but system integrity must be maintained
as a CD might be under control of a malicious VM.

[46:44] {A,R,S} Stage 1 fault behavior.

See section 5.5 below for a description of fault configuration.

[47] ASET ASID Set.
Selects type for ASID, between sets shared and non-shared with PE
ASIDs. This flag affects broadcast TLB invalidation participation and
the scope within which Global TLB entries are matched:

0: ASID in shared set: This ASID, and address space described by
TTB0 and TTB1, are shared with that of a process on the PE. All
matching broadcast invalidation messages will invalidate TLB entries
created from this context (where supported and globally enabled),

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 184 of 443

 Non-Confidential

keeping SMMU and PE address spaces synchronised.

1: ASID in non-shared set: TLB entries created from this context are
not expected to be invalidated by some broadcast invalidations as
described in section 3.17.
For invalidation by ASID scope such entries require SMMU
invalidation commands to be issued. This ASID represents an
SMMU-local address space, not shared with PE processes, therefore
broadcast invalidation from a coincidentally matching ASID is
irrelevant to this address space. Use of ASET==1 might avoid over-
invalidation and improve performance.

Note: All other broadcast TLB invalidations, except for those listed
here, are expected to affect matching TLB entries created when
ASET==1, for example, TLBI VMALLE1IS must invalidate all TLB
entries matching a given VMID, regardless of ASET.

ASET must be included in any Global cached translations inserted
using a CD reached through an STE with StreamWorld==NS-EL1 or
Secure or EL2-E2H}. In these StreamWorlds, ASET is also intended
(but not required) to be included in non-Global translations to allow
them to opt-out of broadcast invalidation.

Changes to a the ASET of a CD or the ASID, or both, are not
automatically reflected in cached translations. ARM recommends that
these are subjected to separate TLB maintenance.

ASET is permitted to be included in cached translations inserted
using a CD reached through an STE with StreamWorld==EL2 or
EL3.

[63:48] ASID Address Space Identifier: See ASET field. Tag for TLB entries
inserted due to translations from this CD, differentiating them from
translations with the same VA from different address spaces.

ASID must tag all cached translations inserted using this CD through
an STE with StreamWorld==NS-EL1 or Secure or EL2-E2H. This
field is IGNORED if StreamWorld==EL2 or EL3. Otherwise, when an
implementation supports only 8-bit ASIDs
(SMMU_IDR0.ASID16==0), it is ILLEGAL for ASID[15:8] to be non-
zero.

If 16-bit ASIDs are supported by an implementation, the full
ASID[15:0] value is used regardless of AA64. ARM expects that
legacy/AArch32 software using 8-bit ASIDs will write zero-extended

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 185 of 443

 Non-Confidential

8-bit values in the ASID field in this case.

[64] NSCFG0 Non-secure attribute for the memory associated with the starting-
level translation table to which TTB0 points:
0: Starting-level descriptor of TTB0 is fetched using NS=0 access
1: Starting-level descriptor of TTB0 is fetched using NS=1 access

This field is used only when the CD is reached from a Secure STE
and is otherwise IGNORED.

[65] HAD0 Hierarchical Attribute Disable for the TTB0 region:
0: Hierarchical attributes are enabled
1: Hierarchical attributes are disabled

The presence of this feature can be determined from
SMMU_IDR3.HAD; when SMMU_IDR3.HAD==0, the HAD0 and
HAD1 fields are IGNORED. Otherwise:

When this field is 1, the APTable, PXNTable and XNTable/UXNTable
fields of table descriptors walked through TTB0 become IGNORED,
might be used by software for any purpose and do not affect
translation. When StreamWorld=EL2 or EL3, this effect includes the
APTable[0] and PXNTable bits which are otherwise Reserved by
VMSA in these translation regimes.

HAD0 and HAD1 are supported for both AArch32 and AArch64
translation tables.

[115:68] TTB0[51:4] Address of TT0 base. Address bits above and below the field range
are implied as zero.

Bits [(x-1):0] are treated as if all the bits are zero, where x is defined
by the required alignment of the translation table as given by ARMv8
VMSA.
Note: The SMMU effectively aligns the value in this field before use.
A 64-byte minimum alignment on starting-level translation table
addresses is imposed when TG0 selects 64KB granules and the
effective IPS value indicates 52-bit output. In this case bits [5:0] are
treated as zero.

If the effective value of EPD0==1, TTB0 is IGNORED. Otherwise, it is
ILLEGAL for the address in TTB0 to be outside the range described
by the CD’s effective IPS value. In addition, it is ILLEGAL for the
address in TTB0 to be outside of a 48-bit range when TG0 selects a
granule smaller than 64KB.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 186 of 443

 Non-Confidential

Note: Where the effective IPS<52, an address greater than the
effective IPS that is still within the defined range of this field (up to bit
[51]) causes an ILLEGAL CD. Additionally, a 52-bit address can only
be used in a TTBx when a 64KB granule is configured for the TTBx.

In SMMUv3.0, CD[115:112] are RES0.

[124] HWU059 When SMMU_IDR3.PBHA==1 and CD.HAD0==1, this bit controls
the interpretation of bit [59] of the stage 1 translation table final-level
(page or block) descriptor pointed at by CD.TTB0:

• 0: Bit [59] is not interpreted by hardware for an
IMPLEMENTATION DEFINED purpose.

• 1: Bit [59] has IMPLEMENTATION DEFINED hardware use.
This bit is IGNORED when PBHA are not supported
(SMMU_IDR3.PBHA==0) or when CD.HAD0==0.

This bit is RES0 in SMMUv3.0.

[125] HWU060 Similar to HWU059, but affecting descriptor bit [60].

[126] HWU061 Similar to HWU059, but affecting descriptor bit [61].

[127] HWU062 Similar to HWU059, but affecting descriptor bit [62].

[128] NSCFG1 Non-secure attribute for the memory associated with the starting-
level translation table to which TTB1 points. See NSCFG0.
This field is RES0 if StreamWorld=EL2 or EL3.

[129] HAD1 Hierarchical Attribute Disable for the TTB1 region:
0: Hierarchical attributes are enabled
1: Hierarchical attributes are disabled
When SMMU_IDR3.HAD==1, this field is RES0 if StreamWorld==EL2
or EL3.

[179:132] TTB1[51:4] Address of TT1 base. Address bits above and below the field range
are implied as zero.
See the notes below about when TTB1 might be valid.

Bits [(x-1):0] are treated as if all the bits are zero, where x is defined
by the required alignment of the translation table as given by ARMv8
VMSA [4].
Note: The SMMU effectively aligns the value in this field before use.
A 64-byte minimum alignment on starting-level translation table
addresses is imposed when TG1 selects 64KB granules and the
effective IPS value indicates 52-bit output; bits [5:0] are treated as
zero.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 187 of 443

 Non-Confidential

This field is RES0 if StreamWorld=EL2 or EL3, otherwise if the
effective value of EPD1==1, TTB1 is IGNORED. Otherwise, it is
ILLEGAL for the address in TTB1 to be outside the range described
by the effective IPS value of the CD. In addition, it is ILLEGAL for
the address in TTB1 to be outside of a 48-bit range when TG1
selects a granule smaller than 64KB.

In SMMUv3.0, CD[179:176] are RES0.

[188] HWU159 When SMMU_IDR3.PBHA==1 and CD.HAD1==1, this bit controls
the interpretation of bit [59] of the Stage 1 translation table final-level
(page or block) descriptor pointed at by CD.TTB1:

• 0: Bit [59] is not interpreted by hardware for an
IMPLEMENTATION DEFINED purpose.

• 1: Bit [59] has IMPLEMENTATION DEFINED hardware usage.
This bit is IGNORED when PBHA are not supported
(SMMU_IDR3.PBHA==0) or when CD.HAD1==0.

This bit is RES0 in SMMUv3.0.

[189] HWU160 Similar to HWU159, but affecting descriptor bit [60].

[190] HWU161 Similar to HWU159, but affecting descriptor bit [61].

[191] HWU162 Similar to HWU159, but affecting descriptor bit [62].

[223:192] MAIR0[31:0] Equivalent to ARMv8-A Memory Attribute Indirection Registers, these
fields are indexed by AttrIndx in descriptors fetched from TT0 & TT1
and contain attributes encoded in the same way as in ARM VMSAv8-
64 MAIR registers with the following exceptions:

All encodings defined as UNPREDICTABLE in VMSAv8-64 are
Reserved in this architecture, and behave as follows:

Attr<n>[3:0] If
Attr<n>[7:4]==0b0000

If
Attr<n>[7:4]!=0b0000

0b0000 [same as VMSAv8-64] Reserved, behaves as
Normal-iWT Transient
with RW=0b11

0b00RW
where
RW!=0b00

Reserved, behaves as
Device-nGnRnE

[same as VMSAv8-64]

0b01RW
where
RW!=0b00

Reserved, behaves as
Device-nGnRE

0b10RW
where

Reserved, behaves as
Device-nGRE

[255:224] MAIR1[31:0]

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 188 of 443

 Non-Confidential

RW!=0b00

0b11RW
where
RW!=0b00

Reserved, behaves as
Device-GRE

[287:256] AMAIR0[31:0] Equivalent to PE Auxiliary Memory Attribute Indirection Registers. In
a typical implementation, these fields are split into eight one-byte
fields corresponding to the MAIRn.Attr[n] fields, but this is not
required. The content of these fields is IMPLEMENTATION DEFINED and
might enable extended functionality.
If software has no implementation-specific knowledge it must set the
AMAIR fields to zero. An implementation must remain compatible
with generic driver software by maintaining correct behavior when the
AMAIR is set to zero.

[319:288] AMAIR1[31:0]

[351:320] IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED, for example QoS, allocation, or transient
hints for translation table access.

Note: Consistent with ARMv8.1 [5] PE translation, translation table descriptor bits APTable, PXNTable and
UXNTable control hierarchical permission attributes for lower levels of translation table walks. Not all systems use
this feature, so the CD Hierarchical Attribute Disable flags allow translation table walks using TTB0 and TTB1 to
be performed ignoring these bits. Software is then free to use the APTable, PXNTable and UXNTable fields for
other purposes.

5.4.1 CD notes

When a CD is used from a stream configured with StreamWorld==EL2 or EL3 (but not EL2-E2H):

• Only one translation table is supported (TTB0) and TTB1 is unreachable.
• ASID is IGNORED.

When TTB1 is unreachable:

• The following fields become RES0:
TTB1, TBI[1], TG1, SH1, OR1, IR1, T1SZ, HAD1, NSCFG1.

• T0SZ must cover the required VA input space

A CD must only be configured to be located through a set of multiple STEs when all STEs in the set configure an
identical Exception level (given by the STE StreamWorld).

Note: For example, one STE configuring a stream as EL2 and another STE configuring a stream as NS-EL1 must
not both share the same CD as, in this configuration, TTB1 is both enabled and unused depending on the

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 189 of 443

 Non-Confidential

StreamID that locates the CD. Similarly, a CD with AA64=0 is ILLEGAL if reached from an STE with
StreamWorld=EL2-E2H but not if reached from an STE with StreamWorld=EL1.

The legality of a CD is, in part, affected by following properties of the STE used to locate the CD:

• StreamWorld.
• S1STALLD.
• AA64 and Config[1] (to detect AArch32 stage 2 translation).

When a CD is reached from an STE whose state causes the CD to be considered ILLEGAL, C_BAD_CD is raised
and the transaction causing the configuration lookup is terminated with an abort.

The interpretation of the lower bit of the translation table descriptor AP[2:1] field changes depending on the
translation regime under which the table is walked, Translation tables located from STEs with StreamWorld==EL2
or EL3 are under EL2 or EL3AArch64 ownership and, consistent with ARMv8-A PEs, the AP[1] bit (of AP[2:1]) is
ignored and treated as 1, see section 13.4.1.

Depending on the presentation of an address to the SMMU, TTB1 might never be selected in some
implementations, see section 3.4.1 for details.

In ARMv8-A, an inconsistency between TTBRx and IPS is reported as an Address Size fault. A CD TTBx address
outside the range of IPS makes the CD ILLEGAL, recording a C_BAD_CD error.

A CD or L1CD that is successfully fetched might be cached in any state, therefore any modification,
commissioning or decommissioning of a CD must be followed by a CMD_CFGI_CD command to make the
modification visible to the SMMU. A failed fetch (F_CD_FETCH, or a stage 2 fault where CLASS=CD) does not
cause a CD or L1CD to be cached.

The translation table walks performed from TTB0 or TTB1 are always performed in IPA space if stage 2
translations are enabled (STE.Config[1]==1). If stage 2 translations are not enabled (or if the SMMU does not
implement stage 2), page table walks are always performed in PA space. CDs are fetched from IPA space if
stage 2 translations are enabled, otherwise they are fetched from PA space.

Note: This enables a hypervisor to point directly to guest-managed CD structures and translation tables.

The following CD fields are permitted to be cached as part of a translation or TLB entry, and alteration requires
invalidation of any TLB entry that might have cached these fields, in addition to CD structure cache invalidation:

• HAD{0,1}.
• AFFD.
• ASID+ASET (affect tagging of TLB entries, so a change may not require old entries to be invalidated).

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 190 of 443

 Non-Confidential

• MAIR.
• AMAIR.
• EPD{0,1}.
• TTB{0,1}.
• T{0,1}SZ.
• OR{0,1}.
• IR{0,1}.
• SH{0,1}.
• ENDI.
• TG{0,1}.
• HA, HD.
• WXN, UWXN.
• AA64.
• TBI.
• IPS.
• NSCFG{0,1}.
• PAN.

Alteration of the remaining fields of the CD does not require an explicit invalidation of any structure other than the
CD itself:

• A,R,S

Note: Changes to IMPLEMENTATION DEFINED fields might have IMPLEMENTATION DEFINED invalidation requirements.

When cached in an SMMU, a CD is uniquely identified by the tuple {StreamID, SubstreamID} including SEC_SID,
when security is supported. This means that:

• Multiple CDs are distinguished by StreamID, so CDs located from the same SubstreamID index but
through different StreamIDs are considered separate and can contain different configuration:

o Note: Different devices (StreamIDs) might therefore use the same SubstreamID value to
associate transactions with different process address spaces in an OS. The SubstreamID
namespace is local to the StreamID.

• A common CD (or CD table) shared by different STEs is permitted to be cached as multiple entries that
are specific to each possible {StreamID, SubstreamID} combination.

o A change to such a CD requires invalidation of the CD cache. When CMD_CFGI_CD(_ALL) is
used, it must be issued multiple times for every {StreamID, SubstreamID} combination that the
CD is reachable from.

o Note: The SMMU might prefetch a reachable structure, so even if a CD was not accessed by a
transaction with a particular StreamID, it might have been prefetched through the STE of that
stream, so must still be invalidated using that StreamID.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 191 of 443

 Non-Confidential

It might arise that multiple CDs represent the same address space (therefore TLB entries), as identified by a
combination of Security state, StreamWorld or translation regime, VMID tag (if relevant) and ASID tag (if relevant).
This can happen in any of the following (non-exhaustive list of) cases:

• Several STEs with StreamWorld=Secure each point to their own CD that contains a common ASID value
o Secure translation regime differentiates address spaces by ASID (but not VMID).

• Several STEs with StreamWorld=NS-EL1 contain a common VMID. Each STE points to its own CD that
contains a common ASID value:

o NS-EL1 differentiates address spaces by ASID and VMID.
• An STE with StreamWorld=EL2 points to a table of more than one CD.

o EL2 has no ASIDs, therefore multiple CDs represent the same (single) set of translations.
• An STE with StreamWorld=EL2-E2H points to a CD table where some entries use the same ASID value:

o EL2-E2H differentiates address spaces by ASID only.

If multiple CDs exist in the same translation regime representing the same address space, any of these CDs can
insert TLB entries matching lookup in that address space. All such CDs are considered interchangeable by the
SMMU and must contain identical configuration for fields that are permitted to be cacheable as part of a TLB
entry.

Note: The EL2 and EL3 translation regimes do not differentiate address spaces by ASID, therefore all CDs
referenced from STEs having StreamWorld EL2 or EL3 must be identical for fields permitted to be cacheable in a
TLB. This includes tables of multiple CDs referenced from one STE, or CDs referenced one to one from an STE.
It is not expected that SubstreamIDs (therefore a CD table with multiple entries) will be used with STEs configured
for EL2 or EL3 StreamWorlds.

If a software error causes two CDs representing the same address space to differ, the result of a TLB lookup for
that address space is UNPREDICTABLE. The SMMU must not allow such an error to provide device access to
memory locations outside of the Security state of the stream, or that would not otherwise have been accessible
given a stage 2 configuration, if present.

Note: Fields permitted to be cached as part of a TLB entry modify the properties of the TLB entry. A difference in
CD configuration can cause TLB entries to be cached with different properties in the same address space. It
would be UNPREDICTABLE as to which CD inserted a given TLB entry, therefore the properties returned by a
general TLB lookup become UNPREDICTABLE.

5.4.1.1 EPDx behavior
The CD EPD0 and EPD1 fields disable translation configuration related to TTB0 and TTB1, respectively. Validity
checks are not performed on fields that are disabled or IGNORED by CD.EPDx.
This table shows interaction of CD.TxSZ with EPDx and incoming addresses that select TTB0 or TTB1 translation
configuration:

Virtual Address
(AArch64 example

Effective
EPD0

Effective
EPD1

T0SZ T1SZ Result

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 192 of 443

 Non-Confidential

shown)

0xFFFFXXXXXXXXXXXX 0 0 Valid Valid Translates through TTB1

0x0000XXXXXXXXXXXX 0 0 Valid Valid Translates through TTB0

0xFFFFXXXXXXXXXXXX 0 0 X Invalid (1) C_BAD_CD

0x0000XXXXXXXXXXXX 0 0 X Invalid (1) C_BAD_CD

0xFFFFXXXXXXXXXXXX 0 0 Invalid (1) X C_BAD_CD

0x0000XXXXXXXXXXXX 0 0 Invalid (1) X C_BAD_CD

0xFFFFXXXXXXXXXXXX 0 1 Valid X TLB miss causes F_TRANSLATION
(translation through TTB1 is
disabled)

0x0000XXXXXXXXXXXX 0 1 Valid X Translates through TTB0

0xFFFFXXXXXXXXXXXX 0 1 Invalid (1) X C_BAD_CD

0x0000XXXXXXXXXXXX 0 1 Invalid (1) X C_BAD_CD

0xFFFFXXXXXXXXXXXX 1 0 X Valid Translates through TTB1

0x0000XXXXXXXXXXXX 1 0 X Valid TLB miss causes F_TRANSLATION
(translation through TTB0 is
disabled)

0xFFFFXXXXXXXXXXXX 1 0 X Invalid (1) C_BAD_CD

0x0000XXXXXXXXXXXX 1 0 X Invalid (1) C_BAD_CD

• The high-order bits or bits of the VA determine whether TTB0 or TTB1 is selected, according to ARMv8
VMSA.

• In the cases marked (1), TxSZ is shown as being an invalid value and the SMMU treating this as making
the CD ILLEGAL, for the purposes of illustration. See CD.T0SZ, this is one of the CONSTRAINED
UNPREDICTABLE behaviors for an out-of-range TxSZ.

• EPDx==1 causes TxSZ to be IGNORED and an invalid TxSZ value (or an invalid TTBx or TGx value) does
not lead to C_BAD_CD.

• When EPDx==1, a translation table walk through TTBx causes F_TRANSLATION.
o Note: The ARMv8-A VMSA allows a TLB hit to occur for an input address associated with an

EPD bit set to 1, but the translation table walk is disabled upon miss.

5.4.2 Validity of CD
The following expression indicates whether a CD is considered valid or ILLEGAL, for the purposes of determining
a configuration error (C_BAD_CD). Subsequent checks must be performed as part of the translation process and
further faults might arise, but these are unrelated to the validity of configuration structures.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 193 of 443

 Non-Confidential

IPA_RANGE = (CD.AA64 == 0 /* LPAE */) ?

 40 : MIN(VALUE(CD.IPS), VALUE(SMMU_IDR5.OAS)));

// IPA range is 40 bits for LPAE tables, else effective IPS size

 // Note: The StreamWorld is a function of STE.STRW combined with

 // other properties, e.g. SMMU_CR2.E2H, STE_SECURE, etc. See the

 // STE.STRW description for more information on StreamWorld.

 // This expression assumes SMMU_IDR0.HYP=1 and SMMU_IDR0.E2H=1;

// it also does not illustrate the cases where STE.STRW is

// IGNORED or RES0 and an effective value is used (e.g. where

// SMMU_IDR0.S2P=0 so the effective StreamWorld is NS-EL1):

STE_STREAMWORLD = (STE.STRW == 0b00 && !STE_SECURE) ? NS_EL1 :

 (STE.STRW == 0b10 && !STE_SECURE && SMMU_CR2.E2H == 1) ? EL2-E2H :

 (STE.STRW == 0b10 && !STE_SECURE && SMMU_CR2.E2H == 0) ? EL2 :

 (STE.STRW == 0b00 && STE_SECURE) ? Secure :

 (STE.STRW == 0b01 && STE_SECURE) ? EL3 :

 RESERVED_STRW_VALUE_USED; // Would have caused STE to be ILLEGAL.

N_TRANSL_CFG0 = (STE_STREAMWORLD == EL2 || STE_STREAMWORLD == EL3) ? 0 : CD.EPD0;

N_TRANSL_CFG1 = (STE_STREAMWORLD == EL2 || STE_STREAMWORLD == EL3) ? 1 : CD.EPD1;

CD_ILLEGAL = !CD.V ||

(STE.S1STALLD == 1 && CD.S == 1) ||

 (SMMU_IDR0.TERM_MODEL == 1 && CD.A == 0) ||

 (!STE_SECURE && SMMU_IDR0.STALL_MODEL == 0b01 && CD.S == 1) ||

 (!STE_SECURE && SMMU_IDR0.STALL_MODEL == 0b10 && CD.S == 0) ||

(STE_SECURE && SMMU_S_IDR0.STALL_MODEL == 0b01 && CD.S == 1) ||

 (STE_SECURE && SMMU_S_IDR0.STALL_MODEL == 0b10 && CD.S == 0) ||

 ((!N_TRANSL_CFG0 || !N_TRANSL_CFG1) &&

 ((SMMU_IDR0.TTENDIAN == 0b10 && CD.ENDI == 1) ||

 (SMMU_IDR0.TTENDIAN == 0b11 && CD.ENDI == 0))) ||

 (CD.AA64 == 0 && ((SMMU_IDR0.TTF[0] == 0) ||

(STE_STREAMWORLD == EL3) ||

(STE_STREAMWORLD == EL2-E2H))) ||

 (CD.AA64 == 1 && ((SMMU_IDR0.TTF[1] == 0) ||

 (STE.Config[1] == 1 && STE.S2AA64 == 0))) ||

(CD.AA64 == 1 &&

(((CD.HA || CD.HD) && (SMMU_IDR0.HTTU == 0b00)) ||

 (CD.HD && SMMU_IDR0.HTTU == 0b01))) ||

((STE_STREAMWORLD == NS-EL1 || STE_STREAMWORLD == Secure ||

 STE_STREAMWORLD == EL2-E2H) &&

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 194 of 443

 Non-Confidential

 SMMU_IDR0.ASID16 == 0 && CD.ASID[15:8] != 0x00) ||

((CD.AA64 == 1 && CONSTR_UNPRED_TXSZ_OOR_ILLEGAL == YES) &&

((N_TRANSL_CFG0 == 0 && TXSZ_OUTSIDE_VALID_RANGE(CD.T0SZ))
||

 (N_TRANSL_CFG1 == 0 && TXSZ_OUTSIDE_VALID_RANGE(CD.T1SZ))))
||

(!N_TRANSL_CFG0 &&

((CD.AA64 == 1 && !GRANULE_SUPPORTED(CD.TG0, SMMU_IDR5)) ||

ADDR_OUTSIDE_RANGE(CD.TTB0
 MIN(IPA_RANGE, (CD.TG0 == TG0_64KB) ? 52 : 48))) ||

 (!N_TRANSL_CFG1 &&

((CD.AA64 == 1 && !GRANULE_SUPPORTED(CD.TG1, SMMU_IDR5)) ||

 ADDR_OUTSIDE_RANGE(CD.TTB1,
 MIN(IPA_RANGE, (CD.TG1 == TG1_64KB) ? 52 : 48))));

5.5 Fault configuration (A,R,S bits)
The STE contains fault configuration for faults derived from stage 2 translations (S2R, S2S) and the CD contains
fault configuration for faults derived from stage 1 translations (A, R, S).

A applies to CD.A, R applies to STE.S2R and CD.R, S applies to STE.S2S and CD.S.

The A, R and S flags control fault behavior for transactions experiencing the following Translation-related faults
during stage1 or stage 2 translation, see section 3.12:

• F_TRANSLATION.
• F_ACCESS.
• F_ADDR_SIZE.
• F_PERMISSION.

Transactions are terminated with an abort if they encounter any other fault or configuration error and attempt to
record an event in the relevant Event queue. This case is unaffected by the A, R and S flags.

When a transaction encounters one of the four Translation-related faults, it might be immediately terminated or
stalled (in which case it is later retried, or terminated, according to software command).

The following flags are used to configure fault behavior:

A Abort behavior upon
transaction termination

When set and a transaction experiencing one of the faults listed in this
section is terminated, an abort or bus error is returned to the client device.
When clear, such a transaction is completed successfully with RAZ/WI
behavior so that the client does not receive an error condition.

This configuration exists only for stage 1. The termination behavior of stage
2 is abort, as though an implied A==1.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 195 of 443

 Non-Confidential

An SMMU might only implement abort termination (with no RAZ/WI support)
and indicate this behavior through the SMMU_IDR0.TERM_MODEL flag. For
these implementations, configuring CD.A==0 renders the CD ILLEGAL.

The A flag has no effect on faults arising from ATS Translation Requests,
which do not support RAZ/WI behavior.

R Record event When set, the detection of the fault is recorded in the event log.
When clear, the fault record is suppressed.
This field only suppresses a fault record if S==0 and if the fault is of one of
the four Translation-related faults.

S Stall upon fault When set, an incoming transaction experiencing one of the four Translation-
related faults is stalled. No response is given to the transaction until software
issues a resume or terminate command, whereupon the transaction is either
retried or terminated. The stall is always reported and the R bit is ignored.

Configuration or faults not arising during stage 1 or stage 2 translation cause
the transaction to be terminated, regardless of the setting of this bit.

When clear, an incoming transaction experiencing a fault is terminated
immediately in a manner according to A.

The CD.S flag has no effect on Translation-related faults arising from ATS
Translation Requests, for which a R=W=0 response is given, see section
3.9.1.

Some implementations might not support stalling of eligible transactions and
immediately terminate the transaction (with behavior determined by the A bit).
Other implementations might not support immediate termination of
transactions (that fault in a manner eligible to stall). Such implementations
indicate these behaviors through the SMMU_(S_)IDR0.STALL_MODEL field.

When stage 1 translation is enabled (STE.Config[0]==1), an STE is
considered ILLEGAL if:

• SMMU_(S_)IDR0.STALL_MODEL!=0b00 and STE.S1STALLD==1.

A CD (Stage 1 translation enabled) is considered ILLEGAL if one of the
following applies:

• SMMU_(S_)IDR0.STALL_MODEL==0b00 and STE.S1STALLD==1
and CD.S==1.

• SMMU_(S_)IDR0.STALL_MODEL==0b01 and CD.S==1.

• SMMU_(S_)IDR0.STALL_MODEL==0b10 and CD.S==0.

When stage 2 translation is enabled (STE.Config[1]==1), an STE is

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 196 of 443

 Non-Confidential

considered ILLEGAL if one of the following applies:

• SMMU_IDR0.STALL_MODEL==0b01 and STE.S2S==1.

• SMMU_IDR0.STALL_MODEL==0b10 and STE.S2S==0.

• Note: Stage 2-enabled STEs cannot also be Secure.

Fault detected

Stall
configured? Record fault event Software fixup

Report
configured?

Y

Y

N

Terminate with
abort

Terminate RAZ/WI

Abort
configured?

N

Y

N

Record fault eventY RESUME or
STALL_TERM

Retry transaction
afreshRetry

Terminate

Translation-
related fault N Record fault event

Resume abort
parameterAbt

RAZ/WI

Translation, Permission,
AccessFlag or AddressSize

fault

Figure 17: Fault configuration flow

These flags can be used, in the following combinations, to affect transactions experiencing one of the four
Translation-related faults:

ARS

0b000 Silently terminate transactions at the SMMU, with writes acknowledged successfully and reads returning
zero, RAZ/WI.

0b010 Terminate transactions at the SMMU in a RAZ/WI manner, but record fault event as well.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 197 of 443

 Non-Confidential

0bxx1 Stall transaction and record fault event.

In this case, the effective value of R is assumed to be 1 so that it is impossible for transactions to stall
without an event being recorded.

Only the stalled transaction is held and subsequent non-faulting transactions in the same stream or
substream might complete (subject to interconnect ordering rules) before the stall is resolved, see
section 3.12.2.

Later receipt of a CMD_RESUME or CMD_STALL_TERM ensures that the transaction will be retried or
terminated (with termination behavior given by the CMD_RESUME operation).

0b100 Transaction abort reported to client, silent.

0b110 Transaction abort reported to client, fault event recorded.

Note: Although the STE has no A flag, stage 2 behavior is as though an effective A flag is fixed at 1.

Note: ARS=0bxx1 is ILLEGAL when the SMMU does not support Stall behavior, or when an STE has explicitly
disabled stage 1 stall configuration but stage 1 is configured to use it:

• A CD with CD.S==1 is considered ILLEGAL if either of the following is true:
- SMMU_(S_)IDR0.STALL_MODEL==0b00 and the CD is reached through an STE with

STE.S1STALLD==1.
- SMMU_(S_)IDR0.STALL_MODEL==0b01.

• A STE with STE.S2S==1 is considered ILLEGAL if SMMU_(S_)IDR0.STALL_MODEL==0b01.

Note: ARS=xx0 is ILLEGAL when the SMMU forces Stall behavior:

• A CD with CD.S==0 is considered ILLEGAL if SMMU_(S_)IDR0.STALL_MODEL==0b10.
• A STE with stage 2 translation enabled and STE.S2S==0 is considered ILLEGAL if

SMMU_IDR0.STALL_MODEL==0b10.

Note: There is no separate Hit Under Previous Context Fault configuration as in prior SMMU architectures
because those contain a different concept of in-register context configuration being in a stall state, whereas in
SMMUv3 it is only the transaction that is stalled, separate from the configuration in memory. The treatment of
stalls is therefore a per-stream or per-transaction concept rather than a per-translation context concept.

Where interconnect ordering rules allow, later transactions might overtake a stalled transaction associated with
the same StreamID (and SubstreamID, if supplied with all transactions). A device might restrict ordering further if
required. See section 3.12.2 for more details.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 198 of 443

 Non-Confidential

6 MEMORY MAP AND REGISTERS

6.1 Memory map
SMMU registers occupy two consecutive 64KB pages starting from an at least 64KB-aligned boundary. Other
optional 64KB pages might follow these pages, depending on implemented features:

• If the VATOS interface is supported, one 64KB page is present containing the VATOS registers.
• Any number of IMPLEMENTATION DEFINED pages might be present.

The presence and base addresses of all optional pages are IMPLEMENTATION DEFINED and discoverable:

• The presence of VATOS support can be determined from SMMU_IDR0.VATOS.
o The VATOS page’s base address is given by SMMU_IDR2.BA_VATOS
o This base address is called O_VATOS hereafter.

• The presence of all IMPLEMENTATION DEFINED register pages can be determined through the Peripheral ID
registers and IMPLEMENTATION DEFINED registers, for example SMMU_IDR4.

o The base addresses of IMPLEMENTATION DEFINED pages must be determined from the
IMPLEMENTATION DEFINED registers in the base SMMU register map.

The base address of optional pages is expressed as an offset from the SMMU extension address 0x20000, in
units of a 64KB page.

An SMMU that does not support IMPLEMENTATION DEFINED register pages or VATOS will occupy a 128K span of
addresses, 0x00000-0x1FFFF.

0x00000-0x0FFFF SMMU registers, Page 0

0x10000-0x1FFFF SMMU registers, Page 1

0x20000-END 0 or more optional pages

 O_VATOS + 0x0000-0xFFFF VATOS interface registers

6.2 Register overview
Unless specified otherwise, all registers are 32-bit, little-endian and allow read and write (R/W) accesses.

For all pages except Page 1, undefined register locations are RAZ/WI. For Page 1, access to undefined/Reserved
register locations is CONSTRAINED UNPREDICTABLE and an implementation has one of the following behaviors:

• The access has RAZ/WI behavior.
• The location has the same behavior as RES0.
• The access has the same effect as would an access to the same offset in Page 0, that is Page 0 and 1

are permitted to alias.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 199 of 443

 Non-Confidential

The equivalent Page 0 offsets of registers that are defined on Page 1 are Reserved and ARM recommends that
they are not accessed. Access to these offsets is CONSTRAINED UNPREDICTABLE and (depending on the
implementation of Page 1) has one of the following behaviors:

• The location aliases the corresponding register in Page 1
• The access has RAZ/WI behavior.

When SMMU_S_IDR1.SECURE_IMPL==1, SMMU_S_* registers are RAZ/WI to Non-secure access. See section
3.11 regarding NS access to SMMU_S_INIT. All other registers are accessible to both Secure and Non-secure
accesses.

When SMMU_S_IDR1.SECURE_IMPL==0, SMMU_S_* registers are RAZ/WI.

Reserved or undefined bit positions in defined registers are RES0: they read as zero and must not be written with
non-zero values.

An implementation must support aligned 32-bit word access to 32-bit registers, and to both 32-bit halves of 64-bit
registers. The SMMU supports aligned 64-bit access to 64-bit registers. Support for other access sizes is
IMPLEMENTATION DEFINED.

The following constitute an illegal register access:

• An access of an unsupported size.
• Unaligned accesses, that is an access that does not start on a boundary equal to the access size.

An illegal register access is CONSTRAINED UNPREDICTABLE and has one of the following behaviors:

• The access is RAZ/WI.
• The access is observed by the register or registers spanned by the access and:

o Write access will write any value to this register or registers including to fields of this register or
registers outside of the access.

o Read access returns an UNKNOWN value.
• The access is terminated with an abort.

A 64-bit access to two adjacent 32-bit registers is CONSTRAINED UNPREDICTABLE and has one of the following
behaviors:

• The access is RAZ/WI.
• A read returns the value of both registers and a write updates both registers, as though two 32-bit

accesses were performed in an UNPREDICTABLE order.
• One of the pair of registers is read or written and the other register is RAZ/WI, as though a single 32-bit

access was performed to an UNPREDICTABLE one of the pair of registers.
• The access is terminated with an abort.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 200 of 443

 Non-Confidential

It is IMPLEMENTATION DEFINED whether a 64-bit access to a 64-bit register is single-copy atomic. A n SMMU
implementation might internally observe the access in two 32-bit halves. An aligned 32-bit word access is single-
copy atomic.

All 64-bit fields are composed of two separately-writable 32-bit register halves, with bits[63:32] at offset +4 and
[31:0] at offset +0.

Some register fields have a dependency on another register field, and are described as Guarded by the other
field. A Guarded register field is not permitted to be changed by software unless the field by which it is Guarded is
in a certain state (and is not in the process of being Updated to or from that state). For example,
SMMU_CMDQ_BASE is Guarded by SMMU_CR0.CMDQEN so that software is only permitted to change
SMMU_CMDQ_BASE if SMMU_CR0.CMDQEN==0.

Note: Software must use an appropriate barrier to ensure initialization of Guarded register fields is visible to the
SMMU before the SMMU observes a set of the field by which they are Guarded.

Registers are not required to support being the target of exclusive/atomic update operations.

In this document, read-only means writes are ignored.

Offset Register Access Notes

0x000 SMMU_IDR0 R/O

0x004 SMMU_IDR1

0x008 SMMU_IDR2

0x00C SMMU_IDR3

0x010 SMMU_IDR4

0x014 SMMU_IDR5

0x018 SMMU_IIDR

0x01C SMMU_AIDR

0x020 SMMU_CR0

0x024 SMMU_CR0ACK R/O

0x028 SMMU_CR1

0x02C SMMU_CR2

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 201 of 443

 Non-Confidential

0x040 SMMU_STATUSR R/O

0x044 SMMU_GBPA

0x048 SMMU_AGBPA

0x050 SMMU_IRQ_CTRL

0x054 SMMU_IRQ_CTRLACK R/O

0x060 SMMU_GERROR R/O

0x064 SMMU_GERRORN

0x068 SMMU_GERROR_IRQ_CFG0 64-bit

0x070 SMMU_GERROR_IRQ_CFG1

0x074 SMMU_GERROR_IRQ_CFG2

0x080 SMMU_STRTAB_BASE 64-bit

0x088 SMMU_STRTAB_BASE_CFG

0x090 SMMU_CMDQ_BASE 64-bit

0x098 SMMU_CMDQ_PROD

0x09C SMMU_CMDQ_CONS

0x0A0 SMMU_EVENTQ_BASE 64-bit

0x0A8 – Reserved – Aliases SMMU_EVENTQ_PROD or is RAZ/WI

0x0AC – Reserved – Aliases SMMU_EVENTQ_CONS or is RAZ/WI

0x100A8 SMMU_EVENTQ_PROD Page 1 – see section 3.8

0x100AC SMMU_EVENTQ_CONS Page 1

0x0B0 SMMU_EVENTQ_IRQ_CFG0 64-bit

0x0B8 SMMU_EVENTQ_IRQ_CFG1

0x0BC SMMU_EVENTQ_IRQ_CFG2

0x0C0 SMMU_PRIQ_BASE 64-bit

0x0C8 – Reserved – Aliases PRIQ_PROD or is RAZ/WI

0x0CC – Reserved – Aliases PRIQ_CONS or is RAZ/WI

0x100C8 SMMU_PRIQ_PROD Page 1

0x100CC SMMU_PRIQ_CONS Page 1

0x0D0 SMMU_PRIQ_IRQ_CFG0 64-bit

0x0D8 SMMU_PRIQ_IRQ_CFG1

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 202 of 443

 Non-Confidential

0x0DC SMMU_PRIQ_IRQ_CFG2

0x100 SMMU_GATOS_CTRL

0x108 SMMU_GATOS_SID 64-bit

0x110 SMMU_GATOS_ADDR 64-bit

0x118 SMMU_GATOS_PAR R/O 64-bit

0x180 SMMU_VATOS_SEL

0xE00-
0xEFF

IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED

0xFD0-
0xFFC

ID_REGS R/O IMPLEMENTATION DEFINED identification register
space

0x1000-
0x3FFF

IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED

0x8000 SMMU_S_IDR0 Sec, R/O Secure programming interface

0x8004 SMMU_S_IDR1 Sec, R/O

0x8008 SMMU_S_IDR2 Sec, R/O

0x800C SMMU_S_IDR3 Sec, R/O

0x8010 SMMU_S_IDR4 Sec, R/O

0x8020 SMMU_S_CR0 Sec

0x8024 SMMU_S_CR0ACK Sec, R/O

0x8028 SMMU_S_CR1 Sec

0x802C SMMU_S_CR2 Sec

0x803C SMMU_S_INIT Sec

0x8044 SMMU_S_GBPA Sec

0x8048 SMMU_S_AGBPA Sec

0x8050 SMMU_S_IRQ_CTRL Sec

0x8054 SMMU_S_IRQ_CTRLACK Sec, R/O

0x8060 SMMU_S_GERROR Sec, R/O

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 203 of 443

 Non-Confidential

0x8064 SMMU_S_GERRORN Sec

0x8068 SMMU_S_GERROR_IRQ_CFG0 Sec 64-bit

0x8070 SMMU_S_GERROR_IRQ_CFG1 Sec

0x8074 SMMU_S_GERROR_IRQ_CFG2 Sec

0x8080 SMMU_S_STRTAB_BASE Sec 64-bit

0x8088 SMMU_S_STRTAB_BASE_CFG Sec

0x8090 SMMU_S_CMDQ_BASE Sec 64-bit

0x8098 SMMU_S_CMDQ_PROD Sec

0x809C SMMU_S_CMDQ_CONS Sec

0x80A0 SMMU_S_EVENTQ_BASE Sec 64-bit

0x80A8 SMMU_S_EVENTQ_PROD Sec

0x80AC SMMU_S_EVENTQ_CONS Sec

0x80B0 SMMU_S_EVENTQ_IRQ_CFG0 Sec 64-bit

0x80B8 SMMU_S_EVENTQ_IRQ_CFG1 Sec

0x80BC SMMU_S_EVENTQ_IRQ_CFG2 Sec

0x8100 SMMU_S_GATOS_CTRL Sec

0x8108 SMMU_S_GATOS_SID Sec 64-bit

0x8110 SMMU_S_GATOS_ADDR Sec 64-bit

0x8118 SMMU_S_GATOS_PAR Sec, R/O 64-bit

0x8E00-
0x8EFF

IMPLEMENTATION DEFINED Sec IMPLEMENTATION DEFINED, secure

0x9000-
0xBFFF

IMPLEMENTATION DEFINED Sec IMPLEMENTATION DEFINED, secure

O_VATOS +

0x0A00

SMMU_VATOS_CTRL Optional

O_VATOS +

0x0A08

SMMU_VATOS_SID Optional 64-bit

O_VATOS +

0x0A10

SMMU_VATOS_ADDR Optional 64-bit

O_VATOS + SMMU_VATOS_PAR Optional, 64-bit

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 204 of 443

 Non-Confidential

0x0A18 R/O

O_VATOS +
0xE00-
0xEFF

IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED

6.3 Register formats

6.3.1 SMMU_IDR0
Read-only.

• [31:29] Reserved, RES0.

• [28:27] ST_LEVEL Multi-level Stream table support
o 0b00: Linear Stream table supported.
o 0b01: 2-level Stream Table supported in addition to Linear Stream table.
o 0b1x: Reserved.

• [26] TERM_MODEL Terminate model behavior

o 0b0: CD.A flag determines Abort or RAZ/WI behavior of a terminated transaction.
 The act of terminating a transaction might be configured using the CD.A flag to

successfully complete the transaction with RAZ/WI behavior or abort the transaction.
o 0b1: Terminating a transaction with RAZ/WI behavior is not supported, CD.A must be 1.

 This means that a terminated transaction will always be aborted.

• [25:24] STALL_MODEL Stall model support
o 0b00: Stall and Terminate models supported.
o 0b01: Stall is not supported, all faults terminate transaction and STE.S2S and CD.S must be 0.

 CMD_RESUME and CMD_STALL_TERM are not available.
o 0b10: Stall is forced (all faults eligible to stall cause stall), STE.S2S and CD.S must be 1.
o 0b11: Reserved.

 Note: STE.S2S must be in the states above only if stage 2 translation was enabled.
o When SMMU_S_IDR1.SECURE_IMPL==0, this field reports whether an implementation supports

the Stall model.
When SMMU_S_IDR1.SECURE_IMPL==1, this field reports SMMU_S_IDR0.STALL_MODEL
unless SMMU_S_IDR0.STALL_MODEL==0b00 and SMMU_S_CR0.NSSTALLD==1 in which
case Non-secure use of Stall is prevented and this field’s value is 0b01. See section 3.12.

o Note: When SMMU_S_IDR1.SECURE_IMPL==1, this field is related to
SMMU_S_IDR0.STALL_MODEL and might be modified by SMMU_S_CR0.NSSTALLD. See
section 3.12.

o Note: An SMMU associated with a PCI system must not have STALL_MODEL==0b10.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 205 of 443

 Non-Confidential

• [23] Reserved.

• [22:21] TTENDIAN Endianness support for translation table walks.
o 0b00: Mixed-endian: CD.ENDI and STE.S2ENDI might select either endian
o 0b01: Reserved
o 0b10: Little-endian: CD.ENDI and STE.S2ENDI must select little-endian
o 0b11: Big-endian: CD.ENDI and STE.S2ENDI must select big-endian
o ARM strongly recommends that a general-purpose SMMU implementation supports mixed-endian

translation table walks.

• [20] VATOS Virtual ATOS page interface supported.
o 0b0: Virtual ATOS page interface not supported.
o 0b1: Virtual ATOS page interface supported.

 ATOS must also be supported
 Stage 1 and stage 2 translation must also be supported.

• [19] CD2L 2-level Context descriptor table supported.

o 0b0: 2-level CD table not supported.
o 0b1: 2-level CD table supported.

• [18] VMID16 16-bit VMID supported.

o 0b0: 16-bit VMID not supported.
 VMID[15:8] is RES0 in command parameters and must be zero in STE.S2VMID.

o 0b1: 16-bit VMID supported.
o
o Note: The value of this field is irrelevant to software unless SMMU_IDR0.S2P==1.

• [17] VMW VMID wildcard-matching supported for TLB invalidation.

o 0b0: VMID wildcard-matching not supported for TLB invalidation.
o 0b1: VMID wildcard-matching supported for TLB invalidation.
o When SMMU_IDR0.S2P==0, this field is RES0.

• [16] PRI Page Request Interface supported.

o 0b0: Page Request Interface not supported.
 All SMMU_PRI_* registers are Reserved.

o 0b1: Page Request Interface supported.
o When SMMU_IDR0.ATS==0, this field is RES0.

• [15] ATOS Address Translation Operations supported.

o 0b0: Address Translation Operations not supported.
 SMMU_IDR0.VATOS is RES0 and all SMMU_(S_)GATOS_* registers are Reserved.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 206 of 443

 Non-Confidential

o 0b1: Address Translation Operations supported.

• [14] SEV SMMU, and system, support generation of WFE wake-up events
to PE.

o 0b0: SMMU, and system, do not support generation of WFE wake-up events to PE.
o 0b1: SMMU, and system, support generation of WFE wake-up events to PE.

 Note: WFE might be used on the PE to wait for CMD_SYNC command completion.
o This bit must reflect the ability of the system, and SMMU implementation, to convey events to all

PEs that are expected to run SMMU maintenance software.

• [13] MSI Message Signalled Interrupts are supported.
o 0b0: The implementation supports wired interrupt notifications only.

 The MSI fields in SMMU_EVENTQ_IRQ_CFGn, SMMU_PRIQ_IRQ_CFGn and
SMMU_GERROR_IRQ_CFGn are RES0.


o 0b1: Message Signalled Interrupts are supported
o Note: The SMMU_PRIQ_IRQ_CFG2.LO bit is not affected by whether MSIs are implemented or

not.

• [12] ASID16 16-bit ASID supported.
o 0b0: 16-bit ASID not supported.

 ASID[15:8] is RES0 in command parameters and must be zero in CD.ASID.
o 0b1: 16-bit ASID supported.
o Note: The value of this field is irrelevant to software unless SMMU_IDR0.S1P==1.

• [11] NS1ATS Split-stage (stage 1-only) ATS not supported.

o 0b0: Split-stage (stage 1-only) ATS supported.
o 0b1: Split-stage (stage 1-only) ATS not supported.

 Split-stage ATS set by STE.EATS==0b10 is not supported. See STE.EATS.
o RES0 when SMMU_IDR0.ATS==0 or SMMU_IDR0.S1P==0 or SMMU_IDR0.S2P==0.
o Note: The value of this field is only relevant to software when ATS and both stages of translation

are supported.

• [10] ATS PCIe ATS supported by SMMU.
o 0b0: PCIe ATS not supported by SMMU.
o 0b1: PCIe ATS supported by SMMU.
o The support provided by an implementation for ATS and PRI influences interpretation of

STE.EATS, AT and /PRI-related commands and SMMU_PRIQ_* registers. It does not guarantee
that client devices and intermediate components also support ATS and this must be determined
separately.

• [9] Hyp Hypervisor stage 1 contexts supported.
o This flag indicates whether TLB entries might be tagged as EL2/EL2-E2H – see STE.STRW.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 207 of 443

 Non-Confidential

o 0b0: Hypervisor stage 1 contexts not supported.
o 0b1: Hypervisor stage 1 contexts supported.
o RES0 when SMMU_IDR0.S1P==0 or SMMU_IDR0.S2P==1.
o ARM recommends the implementation of Hyp/EL2 support when SMMU_IDR0.S1P==1 &&

SMMU_IDR0.S2P==1, that is when both stages of translations are supported.

• [8] DORMHINT Dormant hint supported.
o 0b0: Dormant hint not supported.
o 0b1: Dormant hint supported.

• [7:6] HTTU[1:0] H/W translation table Access flag and Dirty state of the page

updates supported.
o 0b00: No flag updates supported.
o 0b01: Access flag update supported.
o 0b10: Access flag and Dirty state of the page update supported.
o 0b11: Reserved.
o This field reflects the ability of the system, and SMMU implementation, to support hardware

update.
o Note: HTTU is a feature of an SMMU implementation, but the system design also bears upon

whether HTTU can be supported. For instance, HTTU requires coherent atomic updates to
translation table data which need to be supported by an external interconnect. An SMMU that
internally supports HTTU but does not have requisite system support must mark HTTU as 0b00
in this field.

• [5] BTM Broadcast TLB Maintenance.
o 0b0: Broadcast TLB maintenance not supported.
o 0b1: Broadcast TLB maintenance supported.
o This bit reflects the ability of the system, and SMMU implementation, to support broadcast

maintenance. If either the SMMU, or the system, or the interconnect cannot fully support
broadcast TLB maintenance, this bit reads as 0.

• [4] COHACC Coherent access supported to translations, structures and
queues.

o 0b0: Coherent access for translations, structures and queues is not supported.
o 0b1: IO-coherent access is supported for:

 Translation table walks.
 Fetches of L1STD, STE, L1CD and CD.
 Command queue, Event queue and PRI queue access.
 GERROR, CMD_SYNC, Event queue and PRI queue MSIs, if supported.
 Whether a specific access is performed in a cacheable shareable manner is dependent

on the access type configured for access to structures, queues and translation table
walks.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 208 of 443

 Non-Confidential

o This bit reflects the ability of the system, and SMMU implementation, to support IO-Coherent
access to memory shared coherently with the PE. If either the SMMU or system cannot fully
support IO-coherent access to SMMU structures/queues/translations, this reads as 0.

o Note: This bit only pertains to accesses made directly by the SMMU in response to internal
operations. It does not indicate that transactions from client devices are also IO-coherent, this
capability must be determined in a system-specific manner.

o Note: For embedded implementations using preset tables or queues, this bit only pertains to
accesses made outside of the preset structures.

• [3:2] TTF[1:0] Translation Table Formats supported at both stage 1 and stage
2.

o 0b00: Reserved
o 0b01: AArch32 (LPAE)
o 0b10: AArch64
o 0b11: AArch32 and AArch64

• [1] S1P Stage1 translation supported.

o 0b0: Stage1 translation not supported.
o 0b1: Stage 1 translation supported.

• [0] S2P Stage2 translation supported.

o 0b0: Stage 2 translation not supported.
o 0b1: Stage 2 translation supported.

6.3.2 SMMU_IDR1
Read-only.

• [31] Reserved

• [30] TABLES_PRESET Table base addresses fixed.
o 0b0: The contents of the SMMU_STRTAB_BASE and SMMU_STRTAB_BASE_CFG are not

fixed. When SMMU_S_IDR1.SECURE_IMPL==1, the contents of SMMU_S_STRTAB_BASE
and SMMU_S_STRTAB_BASE_CFG are not fixed.

o 0b1: The contents of the registers SMMU_(S_)STRTAB_BASE and
SMMU_(S_)STRTAB_BASE_CFG are fixed.

• [29] QUEUES_PRESET Queue base addresses fixed.
o 0b0: The contents of SMMU_CMDQ_BASE, SMMU_EVENTQ_BASE, and if present

SMMU_PRIQ_BASE are not fixed.
o 0b1: The contents of SMMU_CMDQ_BASE, SMMU_EVENTQ_BASE, and if present

SMMU_PRIQ_BASE are fixed.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 209 of 443

 Non-Confidential

• [28] REL Relative base pointers
o 0b0: When the corresponding preset field is set, base address registers report an absolute

address.
o 0b1: When the corresponding preset field is set, base address registers report an address

offset.
 Relative addresses are calculated using an addition of the unsigned ADDR field onto the

base address of Page 0.
o When SMMU_IDR1.TABLES_PRESET==0 and SMMU_IDR1.QUEUES_PRESET==0, this field is

RES0.

• [27] ATTR_TYPES_OVR Incoming MemType, Shareability, allocation/transient hints
override.

o 0b0: Incoming attributes cannot be overridden before translation or by global bypass.
o 0b1: Incoming attributes can be overridden.

• [26] ATTR_PERMS_OVR Incoming Data/Inst, User/Privileged, NS override.

o 0b0: Incoming attributes cannot be overridden before translation or by global bypass.
o 0b1: Incoming attributes can be overridden.

• [25:21] CMDQS[4:0] Maximum number of Command queue entries.

o Maximum number of entries as log2(entries)
 Maximum value 19.

o Note: The index register values include an extra bit for wrap. Therefore, a queue with 2N entries
has indices of N bits, but an index register containing (N+1) bits.

• [20:16] EVENTQS[4:0] Maximum number of Event queue entries.
o Maximum number of entries as log2(entries).

 Maximum value 19.

• [15:11] PRIQS[4:0] Maximum number of PRI queue entries.
o Maximum number of entries as log2(entries).

 Maximum value 19.

• [10:6] SSIDSIZE[4:0] Max bits of SubstreamID.
o Valid range 0 to 20 inclusive, 0 meaning no substreams are supported.
o Reflects physical SubstreamID representation size, that is the SMMU cannot represent or be

presented with SubstreamIDs greater than SSIDSIZE.

• [5:0] SIDSIZE[5:0] Max bits of StreamID.
o This value is between 0 and 32 inclusive.

 Note: 0 is a legal value. In this case the SMMU supports one stream.
o This must reflect the physical StreamID size, that is the SMMU cannot represent or be presented

with StreamIDs greater than SIDSIZE.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 210 of 443

 Non-Confidential

o When SMMU_IDR1.SIDSIZE ≥ 7, SMMU_IDR0.ST_LEVEL != 0b00.

6.3.3 SMMU_IDR2
Read-only.

• [31:10] Reserved, RES0.

• [9:0] BA_VATOS VATOS page base address offset.
o If SMMU_IDR0.VATOS==0, no VATOS page is present and field is RES0.

All BA values are encoded as an unsigned offset from SMMU address 0x20000 in units of 64KB:
 Page_Address = SMMU_BASE + 0x20000 + (BA * 0x10000)

6.3.4 SMMU_IDR3
Read-only.

• [31:5] Reserved, RES0.

• [4] XNX
o 0b0: EL0/EL1 execute control distinction at stage 2 not supported.
o 0b1: EL0/EL1 execute control distinction at stage 2 supported for both AArch64 and AArch32

stage 2 translation tables.
 This feature extends the stage 2 TTD.XN field to 2 bits which are encoded, and behave,

as described in ARMv8.2.
o In SMMUv3.0, this field is RES0.
o IN SMMUV3.1, support for this feature is mandatory when stage 2 is supported, that is when

SMMU_IDR0.S2P==1.

• [3] PBHA Page-Based Hardware Attributes presence
o 0b0: Page-Based Hardware Attributes not supported.

 SMMU_IDR3.HAD determines whether Hierarchical Attribute Disables supported.
o 0b1: Page-Based Hardware Attributes are supported.

 SMMU_IDR3.HAD must be 1.
o In SMMUv3.0, this field is RES0.

• [2] HAD Hierarchical Attribute Disable presence

o 0b0: No Hierarchical Attribute Disable support. CD.HAD0 and CD.HAD1 are IGNORED.
o 0b1: CD.HAD0 and CD.HAD1 control Hierarchical Attribute Disable.
o In SMMUv3.0, support for this feature is optional when stage 1 is supported, that is when

SMMU_IDR0.S1P==1.
o In SMMUv3.1, support for this feature is mandatory when stage 1 is supported, that is when

SMMU_IDR0.S1P==1.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 211 of 443

 Non-Confidential

o When SMMU_IDR0.S1P==0, HAD==0.

• [1:0] Reserved, RES0.

6.3.5 SMMU_IDR4
Read-only.

• [31:0] IMPLEMENTATION DEFINED
The contents of this register are IMPLEMENTATION DEFINED and can be used to identify the presence of other
IMPLEMENTATION DEFINED register regions elsewhere in the memory map.

6.3.6 SMMU_IDR5
Read-only.

• [31:16] STALL_MAX Maximum number of outstanding stalled transactions supported
by SMMU and system

o The SMMU guarantees that the total number of Stall fault records that will be recorded in any
Event queue, without any having been the subject of a resume or terminate command, will not
exceed this number.

o This field is RES0 if SMMU_S_IDR1.SECURE_IMPL==0 and
SMMU_IDR0.STALL_MODEL==0b01, or if SMMU_S_IDR1.SECURE_IMPL==1 and
SMMU_S_IDR0.STALL_MODEL==0b01.

• [15:12] Reserved, RES0.

• [11:10] VAX Virtual Address eXtend
o 0b00: Virtual addresses of up to 48 bits can be translated per CD.TTBx.
o 0b01: Virtual addresses of up to 52 bits can be translated per CD.TTBx.
o Other values reserved.
o In SMMUv3.0, this field is RES0.
o An implementation is permitted to support VAX=0b01 independently of whether OAS=0b110.
o If VAX==0b01, GRAN64K must be 1.

• [9:7] Reserved, RES0.

• [6] GRAN64K 64KB translation granule supported.

o 0b0: 64KB translation granule not supported.
o 0b1: 64KB translation granule supported.

• [5] GRAN16K 16KB translation granule supported.

o 0b0: 16KB translation granule not supported.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 212 of 443

 Non-Confidential

o 0b1: 16KB translation granule supported.

• [4] GRAN4K 4KB translation granule supported.
o 0b0: 4KB translation granule not supported.
o 0b1: 4KB translation granule supported.
o When SMMU_IDR0.TTF[0]==1, that is when AArch32 translation table are supported, this field is

RES1.

• [3] Reserved, RES0.

• [2:0] OAS Output Address Size
o Size of physical address output from SMMU.
o 0b000: 32 bits
o 0b001: 36 bits
o 0b010: 40 bits
o 0b011: 42 bits
o 0b100: 44 bits
o 0b101: 48 bits
o 0b110: 52 bits

 In SMMUv3.0, this value is Reserved.

o 0b111: Reserved.
 Any future use of reserved encodings will ensure that any new encoded size will never be

smaller than those defined in this version of the architecture.
o This value must match the system physical address size, see section 3.4.
o Note: Where reference is made to OAS, it is the size value that is referenced, not the literal value

of this field.
o If OAS indicates 52 bits, GRAN64K must be 1.

Note: ARM recommends that SMMUv3 implementations support at least 4K and 64K granules.

6.3.7 SMMU_IIDR
Read-only.

• [31:20] ProductID
o IMPLEMENTATION DEFINED value identifying the SMMU part, matching the

SMMU_PIDR{0,1}.PART_{0,1} fields, if SMMU_PIDR{0,1} are present.
• [19:16] Variant

o IMPLEMENTATION DEFINED value used to distinguish product variants, or major revisions of the
product

• [15:12] Revision
o IMPLEMENTATION DEFINED value used to distinguish minor revisions of the product

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 213 of 443

 Non-Confidential

• [11:0] Implementer
o Contains the JEP106 code of the company that implemented the SMMU:
o [11:8] The JEP106 continuation code of the implementer.
o [7] Always 0.
o [6:0] The JEP106 identity code of the implementer.
o For an ARM implementation, bits[11:0] are 0x43B.
o Matches the SMMU_PIDR{1,2,4}.DES_{0,1,2} fields, if SMMU_PIDR{1,2,4} are present.

Provides information about the implementation and implementer of the SMMU, and architecture version
supported.

Note: This register duplicates some of the information that might be present in the ID_REGS SMMU_CIDRx/
SMMU_PIDRx fields. However, those fields are not required to be present in all implementations, so this register
provides a way for software to probe this information in a generic way. ARM expects that the
SMMU_CIDRx/SMMU_PIDRx fields are used by ARM CoreSight and related debug mechanisms rather than
primarily being for the use of drivers.

6.3.8 SMMU_AIDR
Read-only.

• [31:8] Reserved, RES0.
• [7:4] ArchMajorRev.
• [3:0] ArchMinorRev.

The following values are defined for bits [7:0]:

• 0x00 = SMMUv3.0

• 0x01 = SMMUv3.1
All other values reserved.

This register identifies the SMMU architecture version to which the implementation conforms.

6.3.9 SMMU_CR0
• [31:9] Reserved.

• [8:6] VMW VMID Wildcard

o 0b000: TLB invalidations match VMID tags exactly.
o 0b001: TLB invalidations match VMID[N:1].
o 0b010: TLB invalidations match VMID[N:2].
o 0b011: TLB invalidations match VMID[N:3].
o 0b100: TLB invalidations match VMID[N:4].
o All other values are reserved, and behave as 0b000.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 214 of 443

 Non-Confidential

 N = upper bit of VMID as determined by SMMU_IDR0.VMID16
o This field has no effect on VMID matching on translation lookup.
o If SMMU_IDR0.VMW==0, this field is RES0.

• [5] Reserved, RES0.

• [4] ATSCHK ATS behavior.
o 0b0: Fast mode, all ATS Translated traffic passes through the SMMU without Stream table or

TLB lookup.
o 0b1: Safe mode, all ATS Translated traffic is checked against the corresponding STE.EATS

field to determine whether the StreamID is allowed to produce Translated transactions.
o If SMMU_IDR0.ATS==0, this field is Reserved

• [3] CMDQEN Enable Command queue processing.

o 0b0: Processing of commands from the Non-secure Command queue is disabled.
o 0b1: Processing of commands from the Non-secure Command queue is enabled.

• [2] EVENTQEN Enable Event queue writes.

o 0b0: Writes to the Non-secure Event queue are disabled.
o 0b1: Writes to the Non-secure Event queue are enabled.

• [1] PRIQEN Enable PRI queue writes.

o 0b0: Writes to the PRI queue are disabled.
o 0b1: Writes to the PRI queue are enabled.
o If SMMU_IDR0.PRI==0, this field is RES0.

• [0] SMMUEN Non-secure SMMU enable

o 0b0: All Non-secure streams bypass SMMU, with attributes determined from SMMU_GBPA.
o 0b1: All Non-secure streams are checked against configuration structures, and might undergo

translation.

All fields reset to zero.

Each field in this register has a corresponding field in SMMU_CR0ACK. An individual field is described as
Updated after the value of the field observed in SMMU_CR0ACK matches the value that was written to the field in
SMMU_CR0. Reserved fields in SMMU_CR0 are not reflected in SMMU_CR0ACK. To ensure a field change has
taken effect, software must poll the equivalent field in SMMU_CR0ACK after writing the field in this register.

Each field in this register is independent and unaffected by ongoing update procedures of adjacent fields.

Update of a field must complete in finite time, but is not required to occur immediately. The Update process has
side-effects which are guaranteed to be complete by the time update completes.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 215 of 443

 Non-Confidential

A field that has been written is considered to be in a transitional state until Update has completed. Any SMMU
function depending on its value observes the old value until the new value takes effect at an UNPREDICTABLE point
before Update completes, whereupon the new value is guaranteed to be used. Therefore:

• A new value written to a field cannot be assumed to have taken effect until Update completes.
• A new value written to a field cannot be assumed not to have taken effect immediately after the write is

observed by the SMMU.
A written value is observable to reads of the register even before Update has completed.

Anywhere this document refers to behavior depending on a field value (for example, a rule of the form “REG must
only be changed if SMMUEN==0”), it is the post-Update value that is referred to. In this example, the rule would
be broken were REG to be changed after the point that SMMU_(S_)SMMUEN has been written to 1 even if
Update has not completed. Similarly, a field that has been written and is still in a transitional state (pre-Update
completion) must be considered to still have the old value for the purposes of constraints the old value places
upon software. For example, SMMU_CMDQ_CONS must not be written when CMDQEN==1, or during an as-yet
incomplete transition to 0 (as CMDQEN must still be considered to be 1).

After altering a field value, software must not alter the value of the field again before the Update of the initial
alteration is complete. Behavior on doing so is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The new value is stored and the Update completes with any of the values written:
o Note: The effective field value in use might not match that read back from this register.

• The new value is ignored and Update completes using the first value (reflected in SMMU_CR0ACK).
• Cease Update if the new value is the same as the original value before the first write. Note: This means

no update side-effects would occur.
Note: A write with the same value (on that is not altered) is permitted. This might occur when altering an unrelated
field in the same register while an earlier field Update is in process.

6.3.9.1 VMW
Update completes after both of the following occur:

• All received broadcast TLB maintenance operations are guaranteed to behave under the new value.
• A fetched CMD_TLBI_* command specifying a VMID is guaranteed to be processed using the new value.

This field is permitted to be cached in a TLB; an Update of this field must be followed by invalidation of all NS-EL1
TLB entries.

This field must not be changed while a CMD_TLBI_* command specifying a VMID, or incoming broadcast TLB
invalidation operations could be being processed. If this is done, the invalidations are not guaranteed to affect
TLB entries with the specified VMIDs.
Note: ARM recommends that software stops issuing invalidation commands and uses CMD_SYNC to ensure any
prior invalidation commands are complete before changing this value. Similarly, ARM recommends that software
completes all relevant broadcast TLBI operations before changing this field, and avoids issuing subsequent
operations until Update is complete.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 216 of 443

 Non-Confidential

6.3.9.2 ATSCHK
Update completes after both of the following occur:

• Newly-fetched configuration is guaranteed to be interpreted with the new value.
• ATS Translated Transactions are guaranteed to be treated with the new value.

This bit is permitted to be cached in configuration caches. Update of this bit must be followed by invalidation of all
STEs associated with ATS traffic.

In addition, this bit must not be cleared when traffic could encounter valid STEs having EATS==0b10. See
STE.EATS and section 3.9.2 for details of this rule. If this is done, ATS Translated transactions through such
STEs have an IPA address and will be presented to the system directly instead of undergoing stage 2 translation.
The point at which this begins to occur is UNPREDICTABLE.

6.3.9.3 CMDQEN
When SMMU_(S_)CR0.CMDQEN completes update from 1 to 0:

• Command processing has stopped.
• Any commands that are in progress have been Consumed in their entirety, and no new commands are

fetched from the Command queue. All previous Command queue reads have completed and no reads
will later become visible to the system that originated from the previous CMDQEN==1 configuration.

• Consumed commands are not guaranteed to be complete unless the last Consumed command was a
CMD_SYNC (whose effects are to force completion of prior commands).

• The index after the last Consumed command or the index of the first unprocessed command, if any, is
observable in SMMU_(S_)CMDQ_CONS.

When CMDQEN has completed Update to 1, the SMMU begins processing commands if the
CMDQ_PROD/CMDQ_CONS indexes indicate the queue is non-empty and no Command queue error is present.
See section 4.

Commands are not fetched when CMDQEN==0.

6.3.9.4 EVENTQEN
When SMMU_(S_)CR0.EVENTQEN is transitioned from 1 to 0, SMMU accesses to the queue stop. EVENTQEN
completes Update when all committed event records that are in progress become visible in the queue and any
Event queue abort conditions are visible in SMMU_(S_)GERROR.EVENTQ_ABT_ERR. Uncommitted events
from terminated faulting transactions are discarded when the queue becomes unwritable. See section 7.2.

6.3.9.5 PRIQEN
The effective value of PRIQEN is dependent on SMMUEN, however the value of SMMU_CR0ACK.PRIQEN is
solely affected by the actual value of the SMMU_CR0.PRIQEN field.
When the effective value of SMMU_CR0.PRIQEN is transitioned from 1 to 0, page request writes into the queue
stop. PRIQEN completes Update when all committed page request records that are in progress become visible in
the queue. When the effective value of PRIQEN==0, incoming requests are discarded; see section 8.2.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 217 of 443

 Non-Confidential

The SMMU_PRIQ_* registers are Guarded by the actual value of the SMMU_CR0.PRIQEN field, not the effective
value.
Note: This means that clearing SMMUEN but leaving PRIQEN==1 is not a permitted method for changing the
SMMU_PRIQ_* register configuration.

6.3.9.6 SMMUEN
SMMU_CR0.SMMUEN controls translation through the Non-secure interface and behavior of transactions on
Non-secure streams. When SMMU_S_IDR1.SECURE_IMPL==1, SMMU_S_CR0.SMMUEN controls transactions
on Secure streams) and the SMMU might be translating Secure transactions, even if SMMU_CR0.SMMUEN==0.
In all cases, the effect of the SMMUEN of one programming interface does not affect transactions or requests
associated with the other programming interface.

When SMMU_(S_)CR0.SMMUEN==0:

• Incoming transactions on streams with Security state matching that of the SMMUEN do not undergo
translation, and their behavior is controlled by SMMU_(S_)GPBA:

o If SMMU_(S_)GPBA.ABORT==0, the transactions bypass the SMMU with attributes determined
by the other fields in SMMU_(S_)GBPA. This includes transactions supplied with a SubstreamID.

o If SMMU_(S_)GPBA.ABORT==1, the transactions are terminated with abort.
• When SMMU_CR0.SMMUEN==0, the ATS interface is not operational:

o Incoming ATS Translation Requests are returned with Unsupported Request status.
o CMD_ATC_INV and CMD_PRI_RESP commands are ignored.
o Invalidation Completion messages are ignored.

o The effective value of PRIQEN is 0 (for SMMU_CR0.SMMUEN) and incoming PRI Page
Requests are discarded.

o All clients of the interface must undergo re-initialization when the SMMU is re-enabled. For PCIe
clients, this will mean the Root Complex and endpoint ATS and PRI facilities need to undergo re-
initialization.

o ATS Translated transactions are terminated with an abort.

• Configuration or translation structures are not accessed:
o The SMMU does not access the Stream table and ignores the contents of SMMU_(S_)STRTAB_*

configuration registers, which might be written by software when in this state.
o Translation and configuration cache entries are not inserted or modified, except for invalidation by

maintenance commands or broadcast operations.
 Note: Maintenance commands issued while SMMUEN==0 can therefore guarantee the

targeted entries do not exist in SMMU caches after the command has completed.
 Note: The ‘other’ Security state might still have SMMUEN==1 and therefore be inserting

cache entries for that Security state. As these entries are not visible to or affected by the
Non-secure programming interface, this is only a consideration for the Secure
programming interface which can maintain Non-secure cache entries.

o Prefetch commands do not access configuration or translations nor insert entries thereof into
caches.

o HTTU is not performed. Speculative setting of Access flag is prohibited.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 218 of 443

 Non-Confidential

• As translation does not occur for bypassing transactions, translation-related events are not recorded. See
section 7.2 for events that are permitted to be recorded when SMMUEN==0.

• ATOS translation requests are not processed, see section 6.3.37.
• Commands and events are still processed, or recorded, as controlled by CMDQEN and EVENTQEN.

Completion of an Update of SMMUEN from 0 to 1 ensures that:

• Configuration written to SMMU_(S_)CR2 has taken effect, see section 6.3.12.
• All new transactions will be treated with STE configuration relevant to their stream, and will not undergo

SMMU bypass.
• All associated ATOS_CTRL.RUN fields are 0, see section 6.3.37.

Completion of an Update of SMMUEN from 1 to 0 ensures that:

• All stalled transactions that might be present and that are associated with the programming interface of
the SMMUEN have been marked to be terminated with an abort and no new transactions can become
stalled.

o The STAG value of a stall event record relating to a stalled transaction affected by this update is
returned to the set of values that the SMMU might use in future stall event records.

o This transition does not guarantee that stalled transactions have already been terminated by the
time of the completion. Software must wait for completion of outstanding transactions in an
IMPLEMENTATION DEFINED manner.

o Note: New transactions cannot stall because SMMU translation is disabled.
• Effective PRIQEN value has transitioned to 0, including PRIQEN side-effects.
• ATOS-specific initialization and termination has completed, see section 6.3.37 for details.
• ATOS translation requests that are underway have either completed or are terminated with a

INTERNAL_ERR fault. The ATOS_CTRL.RUN fields of all affected ATOS register groups have been
cleared, and ATOS_PAR has been updated with the result by the time Update completes.

• All new transactions associated with the programming interface of the SMMUEN will undergo SMMU
bypass (using the SMMU_(S_)GBPA attributes).

Note: At the point of transitioning SMMUEN, there might be transactions that are in progress that are buffered in
the interconnect. The SMMU has no control over these transactions and the system might provide a mechanism
to ensure they are flushed before SMMUEN is cleared, if required.

The path of a transaction through the SMMU is atomic with respect to changes of SMMUEN, the SMMU treats a
transaction as though SMMUEN did not change mid-way during the path of the transaction path through the
SMMU, even if temporally this is not the case. Therefore, when SMMUEN changes, two groups of transactions
that are progress are formed for transactions relevant to the Security state of the SMMUEN in question: those that
behave according to the old SMMUEN value, and those that behave according to the new value, so that it appears
as though the SMMUEN change instantaneously takes effect at some point in time and incoming transactions are
processed in their entirety either before or after this point. There is no requirement for the boundary between
these groups to be predictable when SMMUEN is altered in the middle of a stream of transactions. However,
interconnect ordering guarantees are maintained throughout. The completion of an update to SMMUEN
guarantees that all new transactions arriving at the SMMU will be treated with the new value.

A change to SMMUEN is not required to invalidate cached configuration or TLB entries.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 219 of 443

 Non-Confidential

6.3.10 SMMU_CR0ACK
Read-only.

• Same fields as SMMU_CR0.
Resets to zero. Fields in this register RAZ if their corresponding SMMU_CR0 field is Reserved.

6.3.11 SMMU_CR1
• [31:12] Reserved, RES0.

• [11:10] TABLE_SH[1:0] Table access Shareability.

o 0b00: Non-shareable.
o 0b01: Reserved, treated as 0b00.
o 0b10: Outer Shareable.
o 0b11: Inner Shareable

 Note: When SMMU_CR1.TABLE_OC==0b00 and SMMU_CR1.TABLE_IC==0b00, this
field is IGNORED and behaves as Outer Shareable.

• [9:8] TABLE_OC[1:0] Table access Outer Cacheability.
o 0b00: Non-cacheable.
o 0b01: Write-Back Cacheable.
o 0b10: Write-Through Cacheable.
o 0b11: Reserved, treated as 0b00.

• [7:6] TABLE_IC[1:0] Table access Inner Cacheability.

o 0b00: Non-cacheable.
o 0b01: Write-Back Cacheable.
o 0b10: Write-Through Cacheable.
o 0b11: Reserved, treated as 0b00.

• [5:4] QUEUE_SH[1:0] Queue access Shareability.

o 0b00: Non-shareable.
o 0b01: Reserved, treated as 0b00.
o 0b10: Outer Shareable.
o 0b11: Inner Shareable.

 When SMMU_CR1.QUEUE_OC==0b00 and SMMU_CR1.QUEUE_IC==0b00, this field
is IGNORED and behaves as Outer Shareability.

• [3:2] QUEUE_OC[1:0] Queue access Outer Cacheability.
o 0b00: Non-cacheable.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 220 of 443

 Non-Confidential

o 0b01: Write-Back Cacheable.
o 0b10: Write-Through Cacheable.
o 0b11: Reserved, treated as 0b00.

• [1:0] QUEUE_IC[1:0] Queue access Inner Cacheability.

o 0b00: Non-cacheable
o 0b01: Write-Back Cacheable
o 0b10: Write-Through Cacheable
o 0b11: Reserved, treated as 0b00.

The TABLE_* fields set the attributes for access to memory through the SMMU_STRTAB_BASE.ADDR pointer.
The QUEUE_* fields set the attributes for access to memory through SMMU_CMDQ_BASE.ADDR,
SMMU_EVENTQ_BASE.ADDR and SMMU_PRIQ_BASE.ADDR pointers.

Cache allocation hints are present in each _BASE register and are IGNORED unless a cacheable type is used for
the table or queue to which the register corresponds. The transient attribute is IMPLEMENTATION DEFINED for each
_BASE register. See section 13.1.2; use of an unsupported memory type for structure or queue access might
cause the access to be treated as an external abort. For example, in the case of SMMU_STRTAB_BASE, an
F_STE_FETCH fault is raised.

6.3.11.1 TABLE_* attributes
The TABLE_* fields are preset when SMMU_IDR1.TABLES_PRESET==1 and the effective attribute is
unchangeable. In this case, a write of a different value to these fields is CONSTRAINED UNPREDICTABLE and has one
of the following behaviors:

• The write of the field is ignored.
• The new value is stored, making it visible to future reads of the field, but have no effect on the (fixed)

access type.

Otherwise when not PRESET, the TABLE_* attributes reset to an UNKNOWN value and must be initialized by
software.

These fields are Guarded by SMMU_(S_)CR0.SMMUEN and must only be changed when
SMMU_(S_)CR0.SMMUEN==0. A write to these fields when SMMU_(S_)CR0.SMMUEN==1 is CONSTRAINED
UNPREDICTABLE and has one of the following behaviors:

• The write to the fields is ignored.
• The new attribute is applied, taking effect at an UNPREDICTABLE point before the SMMU is later disabled

(SMMUEN transitioned 1 to 0).

6.3.11.2 QUEUE_* attributes
The QUEUE_* fields are fixed and preset when SMMU_IDR1.QUEUES_PRESET==1 and the effective attribute is
unchangeable. In this case, a write of a different value to these fields is CONSTRAINED UNPREDICTABLE in the same
way as for preset TABLE_* fields.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 221 of 443

 Non-Confidential

Otherwise when not preset, the QUEUE_* attributes reset to an UNKNOWN value and must be initialized by
software.

These fields are Guarded by SMMU_(S_)CR0.EVENTQEN, SMMU_CR0.PRIQEN (for SMMU_CR1) and
SMMU_(S_)CR0.CMDQEN. They must only change when access to all queues is disabled through
SMMU_(S_)CR0.EVENTQEN==0 and SMMU_CR0.PRIQEN==0 and SMMU_(S_)CR0.CMDQEN==0. A write to
these fields when any of these queues are enabled is CONSTRAINED UNPREDICTABLE and has one of the following
behaviors:

• The write to the fields is ignored.
• The new attribute is applied, taking effect, with respect to an enabled queue access, at an UNPREDICTABLE

point before the respective queue is later disabled (the enable flag transitioned from 1 to 0).

6.3.12 SMMU_CR2
• [31:3] Reserved

• [2] PTM Private TLB Maintenance.

o 0b0: The SMMU participates in broadcast TLB maintenance, if implemented. See
SMMU_IDR0.BTM.

o 0b1: The SMMU is not required to invalidate any local TLB entries on receipt of broadcast TLB
maintenance operations for NS-EL1, EL2, or EL2-E2H translation regimes.

o Broadcast invalidation for S-EL1 or EL3 translation regimes are not affected by this flag, see
SMMU_S_CR0.PTM.

o When SMMU_IDR0.BTM==0, this field is RES0.
o Resets to an implementation specific value. ARM recommends PTM is reset to 1 where

supported, software cannot rely on this value.

• [1] RECINVSID Record event C_BAD_STREAMID from invalid input StreamIDs.
o 0b0: C_BAD_STREAMID events are not recorded for the Non-secure programming interface.
o 0b1: C_BAD_STREAMID events are permitted to be recorded for the Non-secure

programming interface.
o Resets to an UNKNOWN value.

• [0] E2H Enable EL2-E2H translation regime
o 0b0: EL2 translation regime, without ASIDs or VMIDs.
o 0b1: EL2-E2H translation regime used, with ASID.
o This field affects the STE.STRW encoding 0b10, which selects a hypervisor translation regime for

the resulting translations. The translations are tagged without ASID in EL2 mode, or with ASID in
EL2-E2H mode. Note: ARM expects software to set this bit to match HCR_EL2.E2H in host PEs.

o This bit is permitted to be cached in configuration caches and TLBs. Changes to this bit must be
accompanied by invalidation of configuration and translations associated with streams configured
with StreamWorld=EL2 or EL2-E2H.

o When SMMU_IDR0.Hyp==0, this field is RES0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 222 of 443

 Non-Confidential

o Resets to an UNKNOWN value.

This register is made read-only when the associated SMMU_(S_)CR0.SMMUEN is Updated to 1. This register
must only be changed when SMMU_(S_)CR0.SMMUEN==0.

A write to this register after SMMU_(S_)CR0.SMMUEN has been changed but before its Update completes is
CONSTRAINED UNPREDICTABLE and has one of the following behaviors:

• Apply the new value.
• Ignore the write.

When this register is changed, the new value takes effect (affects SMMU behavior corresponding to the field
changed) at an UNPREDICTABLE time, bounded by a subsequent Update of SMMUEN to 1. As a side-effect of
SMMUEN completing Update to 1, a prior change to this register is guaranteed to have taken effect.

6.3.12.1 PTM
A change to PTM is permitted to take effect at any time prior to a subsequent Update of SMMUEN to 1. If
incoming broadcast TLB invalidates are received after PTM is changed but before Update of SMMUEN
completes, it is UNPREDICTABLE whether the invalidations take effect.

Broadcast invalidations issued after SMMUEN has Updated to 1 are guaranteed to be treated with the value of
PTM prior to the SMMUEN update, if PTM has not been modified after SMMUEN was written.

6.3.12.2 RECINVSID
This field only has an effect on transactions received when SMMUEN==1, therefore a change cannot affect
transactions in flight.

6.3.12.3 E2H
All EL2/EL2-E2H translation cache entries must be invalidated when E2H is changed. This can be done using the
following procedure:

1. (As SMMU_CR2 is R/O when SMMU_CR0.SMMUEN==1, ensure SMMU_CR0.SMMUEN==0.).
2. Write E2H=new_value.
3. Issue CMD_TLBI_EL2_ALL.
4. Issue CMD_SYNC, and wait for completion.
5. (Here, no EL2/EL2-E2H translation cache entries are present.)
6. Update SMMUEN 0-1, if required.
7. Streams configured with STE.STRW==0b10 take the new value of E2H.

Note: The behavior of the CMD_TLBI_EL2_VAA and CMD_TLBI_EL2_ASID commands depends on the value of
E2H. Because, after write of SMMU_CR2, the effective action of E2H is UNPREDICTABLE until SMMUEN is

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 223 of 443

 Non-Confidential

transitioned to 1, it is UNPREDICTABLE whether these two commands behave according to E2H==0 or E2H==1.
Consequently, CMD_TLBI_EL2_ALL must be used to invalidate EL2 translation cache entries.

6.3.13 SMMU_GBPA
Global ByPass Attribute

• [31] Update Update completion flag, see section 6.3.13.1.
o This field resets to 0.

• [30:21] Reserved, RES0.

• [20] ABORT Abort all incoming transactions.

o 0: Do not abort incoming transactions. Transactions bypass the SMMU with attributes given
by other fields in this register.

o 1: Abort all incoming transactions.
o This field resets to an IMPLEMENTATION DEFINED value.
o Note: An implementation can reset this field to 1, in order to implement a default deny policy on

reset.

• [19:18] INSTCFG Instruction/data override.
o 0b00: Use incoming.
o 0b01: Reserved, behaves as 0b00.
o 0b10: Data.
o 0b11: Instruction.

 INSTCFG only affects reads, writes are always output as Data.
o This field resets to an IMPLEMENTATION DEFINED value.

• [17:16] PRIVCFG User/privileged override.

o 0b00: Use incoming.
o 0b01: Reserved, behaves as 0b00.
o 0b10: Unprivileged.
o 0b11: Privileged.
o This field resets to an IMPLEMENTATION DEFINED value.

• [15:14] Reserved, RES0.

• [13:12] SHCFG Shareability override.

o 0b00: Non-shareable.
o 0b01: Use incoming.
o 0b10: Outer Shareable.
o 0b11: Inner Shareable.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 224 of 443

 Non-Confidential

o This field resets to an IMPLEMENTATION DEFINED value.

• [11:8] ALLOCCFG
o 0b0xxx: Use incoming RA/WA/TR allocation/transient hints
o 0b1RWT: Hints are overridden to given values:

 Read Allocate = R
 Write Allocate = W
 Transient = T

o When overridden by this field, for each of RA, WA and TR, both inner- and outer- hints are set to
the same value. Because it is not architecturally possible to express hints for types that are
Device or Normal Non-cacheable, this field has no effect on memory types that are not Normal-
WB or Normal-WT, whether such types are provided with a transaction or overridden using
MTCFG/MemAttr.

o This field resets to an IMPLEMENTATION DEFINED value.

• [7:5] Reserved, RES0.

• [4] MTCFG Memory type override.
o 0b0: Use incoming memory type.
o 0b1: Override incoming memory type using MemAttr field.
o This field resets to an IMPLEMENTATION DEFINED value.

• [3:0] MemAttr Memory type.

o Encoded the same as the STE.MemAttr field.
o This field resets to an IMPLEMENTATION DEFINED value.

This register controls the global bypass attributes used for transactions from Non-secure StreamIDs (as
determined by SSD, if supported) when SMMU_CR0.SMMUEN==0. Transactions passing through the SMMU
when it is disabled might have their attributes overridden/assigned using this register.

Where Use incoming is selected, the attribute is taken from that supplied on the incoming interconnect, if
supported. If the incoming interconnect does not supply the attribute, the SMMU generates a default attribute,
which is selected for Use incoming. See section 13 for details.

It is IMPLEMENTATION DEFINED whether MTCFG, SHCFG and ALLOCCFG apply to streams associated with PCIe
devices or whether these attributes are treated as Use incoming for such streams regardless of the field values.

If SMMU_IDR1.ATTR_TYPES_OVR==0, MTCFG, SHCFG, ALLOCCFG are effectively fixed as Use incoming and
it is implementation specific whether these fields read as zero or a previously written value.

If SMMU_IDR1.ATTR_PERMS_OVF==0, INSTCFG and PRIVCFG are effectively fixed as Use incoming and it is
implementation specific whether these fields read as zero or a previously written value.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 225 of 443

 Non-Confidential

If the outgoing interconnect does not support a particular attribute, the value written to the corresponding field is
ignored and it is implementation specific whether the field reads as zero or a previously written value.

 Update resets to zero and all other fields reset to an IMPLEMENTATION DEFINED state. This allows an
implementation to provide useful default transaction attributes when software leaves the SMMU uninitialized.

6.3.13.1 Update procedure
This register must be written with a single 32-bit write that simultaneously sets the Update bit to 1. Software must
then poll the Update bit which is cleared when the attribute update has completed.

The Update flag allows software to determine when a change in attributes takes effect. Transactions arriving at
the SMMU after completion of a GPBA update are guaranteed to take the new attributes written.

If GBPA is altered in the middle of a stream of transactions, the exact point in the sequence at which the change
takes effect is UNPREDICTABLE.

Note: It is the responsibility of client devices to ensure that transactions generated prior to an update have
completed, meaning that no more transactions will become globally visible to the required Shareability domain of
the overridden attributes with attributes given by a previous value of the register. This is achieved in an
IMPLEMENTATION DEFINED manner.

This register must only be written when Update==0 (prior updates are complete). A write when an Update==1,
that is when a prior update is underway, is CONSTRAINED UNPREDICTABLE and has one of the following behaviors:

• Update completes with any value.
o Note: The effective attribute in use might not match that read back from this register.

• The write is ignored and update completes using the initial value.

If this register is written without simultaneously setting Update to 1, the effect is CONSTRAINED UNPREDICTABLE and
has one of the following behaviors:

• The write is ignored.
• The written value is stored and is visible to future reads of the register, but does not affect transactions.
• The written value affects transactions at an UNPREDICTABLE update point:

o There is no guarantee that all transactions arriving at the SMMU after the write will take the new
value, or that all transactions prior to the write have completed.

When this register is written (correctly observing the requirements in this section), the new value is observable to
future reads of the register even if they occur before the Update has completed.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 226 of 443

 Non-Confidential

6.3.14 SMMU_AGBPA
Alternate Global ByPass Attribute

• [31:0] IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED attributes to assign
o This register allows an implementation to apply an additional non-architected attributes or tag to

bypassing transactions.
o If this field is unsupported by an implementation, it is RES0.
o Note: ARM does not recommend that this register further modifies existing architected bypass

attributes.

The process used to change contents of this register in relation to SMMU_GPBA.Update is IMPLEMENTATION
DEFINED.

6.3.15 SMMU_STATUSR
Read-only.

• [31:1] Reserved, RES0.

• [0] DORMANT Dormant hint
o 0b0: The SMMU might have cached translation or configuration structure data, or be in the

process of doing so.
o 0b1: The SMMU guarantees that no translation or configuration structure data is cached, and

that no prefetches are in-flight.
o Software might avoid issuing configuration invalidation or TLB invalidation commands for changes

to structures made visible to the SMMU before reading this hint as 1.
o SMMU_IDR0.DORMHINT==0, this bit is RES0.
o See section 3.19.1.

This register resets to zero.

6.3.16 SMMU_IRQ_CTRL
• [31:3] Reserved, RES0.

• [2] EVENTQ_IRQEN.

o 0b0: Interrupts from the Non-Secure Event queue are disabled.
o 0b1: Interrupts from the Non-secure Event queue are enabled.

• [1] PRIQ_IRQEN.

o 0b0: Interrupts from PRI queue are disabled.
o 0b1: Interrupts from PRI queue are enabled.

Reserved if SMMU_IDR0.PRI==0.

• [0] GERROR_IRQEN.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 227 of 443

 Non-Confidential

o 0b0: Interrupts from Non-secure Global errors are disabled.
o 0b1: Interrupts from Non-secure Global errors are enabled.

Resets to zero.

Each field in this register has a corresponding field in SMMU_IRQ_CTRLACK, with the same Update and
observability semantics as fields in SMMU_CR0 versus SMMU_CR0ACK.

This register contains IRQ enable flags for GERROR, PRI queue and Event queue interrupt sources. These
enables allow or inhibit both edge-triggered wired outputs if implemented and MSI writes if implemented.

IRQ enable flags Guard the MSI address and payload registers when MSIs supported, SMMU_IDR0.MSI==1,
which must only be changed when their respective enable flag is 0. See SMMU_GERROR_IRQ_CFG0 for
details.

Completion of Update to IRQ enables guarantees the following side-effects:

• Completion of an Update of x_IRQEN from 0 to 1 guarantees that the MSI configuration in
SMMU_x_IRQ_CFG{0,1,2} will be used for all future MSIs generated from source x.

• An Update of x_IRQEN from 1 to 0 completes when all prior MSIs have become visible to their
Shareability domain (have completed). Completion of this Update guarantees that no new MSI writes or
wired edge events will later become visible from source x.

6.3.17 SMMU_IRQ_CTRLACK
Read-only.

• Same fields as SMMU_IRQ_CTRL.
Resets to zero.

Undefined bits read as zero. Fields in this register are RAZ if their corresponding SMMU_IRQ_CTRL field is
Reserved.

6.3.18 SMMU_GERROR
Read-only.

• [31:9] Reserved, RES0.

• [8] SFM_ERR
o 0b0: The SMMU has not entered Service failure mode.
o 0b1: The SMMU has entered Service failure mode.

 Traffic through the SMMU might be affected. Depending on the origin of the error, the
SMMU might stop processing commands and recording events. The RAS registers
describe the error.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 228 of 443

 Non-Confidential

 Acknowledgement of this error through GERRORN does not clear this error, which is
cleared in an IMPLEMENTATION DEFINED way. See 12.3.

 SFM triggers SFM_ERR in SMMU_GERROR, and when
SMMU_S_IDR1.SECURE_IMPL==1 in SMMU_S_GERROR.

• [7] MSI_GERROR_ABT_ERR
o 0b0: A GERROR MSI was not terminated with an abort.
o 0b1: A GERROR MSI was terminated with abort.

 Activation of this error does not affect future MSIs.
o If SMMU_IDR0.MSI==0, this field is RES0.

• [6] MSI_PRIQ_ABT_ERR

o 0b0: A PRI queue MSI was not terminated with abort.
o 0b1: A PRI queue MSI was terminated with abort.

 Activation of this error does not affect future MSIs.
o If SMMU_IDR0.PRI==0 or SMMU_IDR0.MSI==0, this field is RES0.

• [5] MSI_EVENTQ_ABT_ERR

o 0b0: An Event queue MSI was not terminated with abort.
o 0b1: An Event queue MSI was terminated with abort.

 Activation of this error does not affect future MSIs.
o If SMMU_IDR0.MSI==0, this field is RES0.

• [4] MSI_CMDQ_ABT_ERR

o 0b0: A CMD_SYNC MSI was not terminated with abort.
o 0b1: A CMD_SYNC MSI was terminated with abort.

 Activation of this error does not affect future MSIs.
o If SMMU_IDR0.MSI==0, this field is RES0.

• [3] PRIQ_ABT_ERR

o 0b0: An access to the PRI queue was not terminated with abort.
o 0b1: An access to the PRI queue was terminated with abort.

 Page Request records might have been lost.
o If SMMU_IDR0.PRI==0, this field is RES0.

• [2] EVENTQ_ABT_ERR
o 0b0: An access to the Event queue was not terminated with abort.
o 0b1: An access to the Event queue was terminated with abort.

 Event records might have been lost.

• [1] Reserved, RES0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 229 of 443

 Non-Confidential

• [0] CMDQ_ERR
o 0b0: A command that cannot be processed has not been encountered.
o 0b1: A command has been encountered that cannot be processed.

 SMMU_CMDQ_CONS.ERR has been updated with a reason code and command
processing has stopped.

 Commands are not processed while this error is active.
Resets to zero.

This register, in conjunction with SMMU_(S_)GERRORN, indicates whether global error conditions exist. See
section 7.5.

The SMMU toggles SMMU_(S_)GERROR[x] when an error becomes active. ARM expects software to toggle
SMMU_(S_)GERRORN[x] in response, to acknowledge the error.

The SMMU does not toggle a bit when an error is already active. An error is only activated if it is in an inactive
state.

Note: Software is not intended to trigger interrupts by arranging for GERRORN[x] to differ from GERROR[x]. See
section 6.3.19.

6.3.19 SMMU_GERRORN
• Same fields as SMMU_GERROR

Resets to zero. Fields that are Reserved in SMMU_GERROR are also Reserved in this register.

Software must not toggle fields in this register that correspond to errors that are inactive. It is CONSTRAINED
UNPREDICTABLE whether or not an SMMU activates errors if this is done.

The SMMU does not alter fields in this register. A read of this register returns the values that were last written to
the defined fields of the register.
Note: Software might maintain an internal copy of the last value written to this register, for comparison against
values read from SMMU_GERROR when probing for errors.

6.3.20 SMMU_GERROR_IRQ_CFG0
• [63:52] Reserved, RES0.

• [51:2] ADDR[51:2] PA of MSI target register

o The effective address has ADDR[63:48] == 0 and ADDR[1:0] == 0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 230 of 443

 Non-Confidential

o High-order bits of the ADDR field above the system physical address size, as reported by
SMMU_IDR5.OAS, are RES0.

 Note: An implementation is not required to store these bits.
If ADDR==0, no MSI is sent. This allows a wired IRQ, if implemented, to be used when
SMMU_(S_)IRQ_CTRL.GERROR_IRQEN=1 instead of an MSI.

• [1:0] Reserved, RES0.

This register resets to an UNKNOWN value.

When an implementation does not support Non-secure MSIs, all fields are RES0.

Registers SMMU_(S_)GERROR_IRQ_CFG{0,1,2} are Guarded by the respective
SMMU_(S_)IRQ_CTRL.GERROR_IRQEN and must only be modified when GERROR_IRQEN==0.

A write of either while SMMU_(S_)IRQ_CTRL.GERROR_IRQEN==1 is CONSTRAINED UNPREDICTABLE and has one
of the following behaviors:

• The register takes on any value, which might cause MSIs to be written to UNPREDICTABLE addresses or
with UNPREDICTABLE payload values.

• The write is ignored.
A read following such a write will return an UNKNOWN value.

These update conditions are common for all SMMU_*_IRQ_CFG{0,1,2} register sets in the SMMU with respect to
their corresponding SMMU_(S_)IRQ_CTRL.*_IRQEN flag.

6.3.21 SMMU_GERROR_IRQ_CFG1
• [31:0] DATA MSI data payload.

This register resets to an UNKNOWN value.

When an implementation does not support Non-secure MSIs, all fields are RES0.

6.3.22 SMMU_GERROR_IRQ_CFG2
• [31:6] Reserved, RES0.

• [5:4] SH[1:0] Shareability

o 0b00: Non-shareable.
o 0b01: Reserved, treated as 0b00.
o 0b10: Outer Shareable.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 231 of 443

 Non-Confidential

o 0b11: Inner Sharable.
 When MemAttr specifies a Device memory type, the contents of this field are IGNORED

and the Shareability is effectively Outer Shareable.

• [3:0] MemAttr Memory type.
o Encoded the same as the STE.MemAttr field.

This register resets to an UNKNOWN value.

MemAttr and SH allow the memory type and Shareability of the MSI to be configured, see section 3.18. The
encodings of all SMMU_*_IRQ_CFG2 MemAttr and SH fields are the same. When a cacheable type is specified
in MemAttr, the allocation and transient hints are IMPLEMENTATION DEFINED.

When an implementation does not support Non-secure MSIs, all fields are RES0.

6.3.23 SMMU_STRTAB_BASE
• [63] Reserved, RES0.

• [62] RA Read Allocate hint

o 0b0: No Read-Allocate.
o 0b1: Read-Allocate.

• [61:52] Reserved, RES0.

• [51:6] ADDR[51:6] Physical address of Stream table base

o Address bits above and below this field range are implied as zero.
o High-order bits of the ADDR field above the system physical address size, as reported by

SMMU_IDR5.OAS, are RES0.
 Note: An implementation is not required to store these bits.

o When a Linear Stream table is used, that is when SMMU_STRTAB_BASE_CFG.FMT==0b00,
the effective base address is aligned by the SMMU to the table size, ignoring the least-significant
bits in the ADDR range as required to do so:

ADDR[LOG2SIZE+5:0] = 0.

o When a 2 level Stream table is used, that is when SMMU_STRTAB_BASE_CFG.FMT==0b01,
the effective base address is aligned by the SMMU to the larger of 64 bytes or the first-level table
size:
ADDR[MAX(5, (LOG2SIZE-SPLIT-1+3)):0] = 0.

The alignment of ADDR is affected by the literal value of the respective
SMMU_STRTAB_BASE_CFG.LOG2SIZE field and is not limited by SIDSIZE.
Note: This means that configuring a table that is larger than required by the incoming StreamID
span results in some entries being unreachable, but the table is still aligned to the configured size.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 232 of 443

 Non-Confidential

• [5:0] Reserved, RES0.

When SMMU_IDR1.TABLES_PRESET==1, this register resets to a IMPLEMENTATION DEFINED value. Otherwise
this register resets to an UNKNOWN value.

When SMMU_IDR1.TABLES_PRESET==1, this register is read-only.

Otherwise, SMMU_STRTAB_BASE is guarded by the respective SMMU_CR0.SMMUEN and must only be written
when SMMU_CR0.SMMUEN==0.
A write while SMMU_CR0.SMMUEN==1 is CONSTRAINED UNPREDICTABLE and has one of the following behaviors:

• The register takes on any value, which might cause STEs to be fetched from an UNPREDICTABLE address.
• The write is ignored.

A read following such a write will return an UNKNOWN value.

Access attributes of the Stream table are set using the SMMU_CR1.TABLE_* fields, a Read-Allocate hint is
provided for Stream table accesses with the RA field.

6.3.24 SMMU_STRTAB_BASE_CFG
• [31:18] Reserved, RES0.

• [17:16] FMT Format of Stream table.

o 0b00: Linear ADDR points to an array of STEs.
o 0b01: 2-level ADDR points to an array of Level 1 Stream table descriptors.
o Other values are reserved, behave as 0b00.
o When SMMU_IDR0.ST_LEVEL==0b00, this field is RES0.

• [15:11] Reserved, RES0.

• [10:6] SPLIT StreamID split point for multi-level table.

o This field determines the split point of a 2-level Stream table, selected by the number of bits at the
bottom level.

o This field is IGNORED if FMT=0b00.
o This field is RES0 when SMMU_IDR0.ST_LEVEL==0b00.
o 6 4KB leaf tables.
o 8 16KB leaf tables.
o 10 64KB leaf tables.
o Other values are reserved, behave as 6.
o The upper-level L1STD is located using StreamID[LOG2SIZE-1:SPLIT] and this indicates the

lowest-level table which is indexed by StreamID[SPLIT-1:0].
 For example, selecting SPLIT=6 causes StreamID[5:0] to be used to index the lowest

level Stream table and StreamID[LOG2SIZE-1:6] to index the upper level table.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 233 of 443

 Non-Confidential

o Note: If SPLIT ≥ LOG2SIZE, a single upper-level descriptor indicates one bottom-level Stream
table with 2LOG2SIZE usable entries. The L1STD.Span value’s valid range is up to SPLIT+1, but not
all of this Span is accessible, as it is not possible to use a StreamID ≥ 2LOG2SIZE.
Note: ARM recommends that a Linear table, FMT=0b00, is used instead of programming SPLIT >
LOG2SIZE.

• [5:0] LOG2SIZE[5:0] Table size as log2(entries)
o The maximum StreamID value that can be used to index into the Stream table is 2LOG2SIZE-1. The

StreamID range is equal to the number of STEs in a linear Stream table or the maximum sum of
the STEs in all second-level tables. The number of L1STDs in the upper level of a 2-level table is
MAX(1, 2LOG2SIZE-SPLIT). Except for readback of a written value, the effective LOG2SIZE is ≤
SMMU_IDR1.SIDSIZE for the purposes of input StreamID range checking and upper/lower/linear
Stream table index address calculation.

When SMMU_IDR1.TABLES_PRESET==1 this register resets to an IMPLEMENTATION DEFINED value, otherwise it
resets to an UNKNOWN value.

When SMMU_IDR1.TABLES_PRESET==1, this register is read-only.

Otherwise, SMMU_STRTAB_BASE_CFG is Guarded by SMMU_CR0.SMMUEN and must only be modified when
SMMU_CR0.SMMUEN==0. A write while SMMU_CR0.SMMUEN==1 is CONSTRAINED UNPREDICTABLE and has
one of the following behaviors:

• The register takes on any value, which might cause STEs to be fetched from an UNPREDICTABLE address.
• The write is ignored.

A read following such a write will return an UNKNOWN value.

A transaction having a StreamID ≥ 2LOG2SIZE is out of range. Such a transaction is terminated with abort and a
C_BAD_STREAMID event is recorded if permitted by SMMU_CR2.RECINVSID.

6.3.25 SMMU_CMDQ_BASE
• [63] Reserved, RES0.

• [62] RA Read Allocate hint.

o 0b0: No Read-Allocate.
o 0b1: Read-Allocate.

• [61:52] Reserved, RES0.

• [51:5] ADDR[51:5] Physical address of Command queue base.

o Address bits above and below this field range are treated as zero.
o High-order bits of the ADDR field above the system physical address size, as reported by

SMMU_IDR5.OAS, are RES0.
 Note: An implementation is not required to store these bits.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 234 of 443

 Non-Confidential

o The effective base address is aligned by the SMMU to the larger of the queue size in bytes or 32
bytes, ignoring the least-significant bits of ADDR as required to do so. ADDR bits [4:0] are
treated as zero.

 Note: For example, a queue with 28 entries is 4096 bytes in size so software must align
an allocation, and therefore ADDR, to a 4KB boundary.

• [4:0] LOG2SIZE[4:0] Queue size as log2(entries)

o LOG2SIZE must be less than or equal to SMMU_IDR1.CMDQS. Except for the purposes of
readback of this register, any use of the value of this field is capped at the maximum,
SMMU_IDR1.CMDQS.

o The minimum size is 0, for one entry, but this must be aligned to a 32-byte (2 entry) boundary as
above.

When SMMU_IDR1.QUEUES_PRESET==1, this register resets to an IMPLEMENTATION DEFINED value. Otherwise
it resets to an UNKNOWN value.

When SMMU_IDR1.QUEUES_PRESET==1, this register is read-only.

SMMU_CMDQ_BASE is Guarded by SMMU_CR0.CMDQEN and must only be modified when
SMMU_CR0.CMDQEN==0.

A write while SMMU_CR0.CMDQEN==1 is CONSTRAINED UNPREDICTABLE and has one of the following behaviors:

• The register takes on any value, which might cause commands to be fetched from an UNPREDICTABLE
address.

• The write is ignored.
A read following such a write will return an UNKNOWN value.

Upon initialization, if SMMU_IDR1.QUEUES_PRESET==0 then the SMMU_CMDQ_BASE.LOG2SIZE field might
affect which bits of SMMU_CMDQ_CONS.RD and SMMU_CMDQ_PROD.WR can be written upon initialization.
The registers must be initialized in this order:

1. Write SMMU_CMDQ_BASE to set the queue base and size
2. Write initial values to SMMU_CMDQ_CONS and SMMU_CMDQ_PROD.
3. Enable the queue with an Update of the respective SMMU_CR0.CMDQEN to 1.

This also applies to the initialization of Event queue and PRI queue registers.

Access attributes of the Command queue are set using the SMMU_CR1.QUEUE_* fields. A Read-Allocate hint is
provided for Command queue accesses with the RA field.

6.3.26 SMMU_CMDQ_CONS
• [31] Reserved, RES0.

• [30:24] ERR Error reason code.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 235 of 443

 Non-Confidential

o When a command execution error is detected, ERR is set to a reason code and then the
SMMU_GERROR.CMDQ_ERR global error becomes active.

o The value in this field is UNKNOWN when the CMDQ_ERR global error is not active.

• [23:20] Reserved, RES0.

• [QS] RD_WRAP Queue read index wrap flag.

• [QS-1:0] RD[QS-1:0] Queue read index.
o Updated by the SMMU (consumer) indicating which command entry has just been executed.

QS = SMMU_CMDQ_BASE.LOG2SIZE and SMMU_CMDQ_BASE.LOG2SIZE ≤ SMMU_IDR1.CMDQS ≤ 19.
This gives a configurable-sized index pointer followed immediately by the wrap bit.
If QS < 19, bits [19:QS+1] are RAZ. When incremented by the SMMU, the RD index is always wrapped to the
current queue size given by SMMU_CMDQ_BASE.LOG2SIZE.
If QS = 0 the queue has one entry. Zero bits of RD index are present and RD_WRAP is bit zero.

When SMMU_CMDQ_BASE.LOG2SIZE is increased within its valid range, the value of the bits of this register
that were previously above the old wrap flag position are UNKNOWN and when it is decreased, the value of the bits
from the wrap flag downward are the effective truncation of the value in the old field.

This register resets to an UNKNOWN value. ARM recommends that software initializes the register to a valid value
before SMMU_CR0.CMDQEN is transitioned from 0 to 1.
This register is Guarded by SMMU_CR0.CMDQEN and must only be modified when SMMU_CR0.CMDQEN==0.

A write to this register when SMMU_CR0.CMDQEN==1 is CONSTRAINED UNPREDICTABLE and has one of the
following behaviors:

• The write is ignored.
• The register takes on any value and it is UNPREDICTABLE whether it affects the SMMU Command queue

internal state. The SMMU might consume commands from UNPREDICTABLE locations within the Command
queue.

A read following such a write will return an UNKNOWN value.

Upon a write to this register, when SMMU_CR0.CMDQEN==0, the ERR field is permitted to either take the written
value or ignore the written value.

Note: There is no requirement for the SMMU to update this value after every command consumed. It might be
updated only after an implementation specific number of commands have been consumed. However, an SMMU
must ultimately update RD in finite time to indicate free space to software.

When a command execution error is detected, ERR is set to a reason code and then the respective
SMMU_GERROR.CMDQ_ERR error becomes active. RD remains pointing at the infringing command for debug.
The SMMU resumes processing commands after the CMDQ_ERR error is acknowledged, if the Command queue
is enabled at that time. SMMU_GERROR.CMDQ_ERR has no other interaction with SMMU_CR0.CMDQEN than
that a Command queue error can only be detected when the queue is enabled and therefore consuming

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 236 of 443

 Non-Confidential

commands. A change to SMMU_CR0.CMDQEN does not affect, or acknowledge,
SMMU_GERROR.CMDQ_ERR which must be explicitly acknowledged. See section 7.1.

6.3.27 SMMU_CMDQ_PROD
• [31:20] Reserved, RES0.

• [QS] WR_WRAP Command queue write index wrap flag.

• [QS-1:0] WR[QS-1:0] Command queue write index.

o Updated by the host PE (producer) indicating the next empty space in the queue after new data.

QS = SMMU_CMDQ_BASE.LOG2SIZE, see SMMU_CMDQ_CONS.
If QS < 19, bits [19:QS+1] are RES0. If software writes a non-zero value to these bits, the value might be stored
but has no other effect. In addition, if SMMU_IDR1.CMDQS < 19, bits [19:CMDQS+1] are UNKNOWN on read.
If QS = 0 the queue has one entry. Zero bits of WR index are present and WR_WRAP is bit zero.

When software increments WR, if the index would pass off the end of the queue it must be correctly wrapped to
the queue size given by QS and WR_WRAP toggled.
Note: In the degenerate case of a one-entry queue, an increment of WR consists solely of a toggle of WR_WRAP.

There is space in the queue for additional commands if:
 SMMU_CMDQ_CONS.RD != SMMU_CMDQ_PROD.WR ||

SMMU_CMDQ_CONSRD_WRAP == SMMU_CMDQ_PROD.WR_WRAP
The value written to this register must only move the pointer in a manner consistent with adding N consecutive
entries to the Command queue, updating WR_WRAP when appropriate.

When SMMU_CMDQ_BASE.LOG2SIZE is increased within its valid range, the value of the bits of this register
that were previously above the old wrap flag position are UNKNOWN and when it is decreased, the value of the bits
from the wrap flag downward are the effective truncation of the value in the old field.

This register resets to an UNKNOWN value. ARM recommends that software initializes the register to a valid value
before SMMU_CR0.CMDQEN is transitioned from 0 to 1.

A write to this register causes the SMMU to consider the Command queue for processing if
SMMU_CR0.CMDQEN==1 and SMMU_GERROR.CMDQ_ERR is not active.

6.3.28 SMMU_EVENTQ_BASE
• [63] Reserved, RES0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 237 of 443

 Non-Confidential

• [62] WA Write Allocate hint.
o 0b0: No Write-Allocate.
o 0b1: Write-Allocate.

• [61:52] Reserved, RES0.

• [51:5] ADDR[51:5] PA of queue base.

o Address bits above and below this field range are treated as zero.
o High-order bits of the ADDR field above the system physical address size, as reported by

SMMU_IDR5.OAS, are RES0.
 Note: An implementation is not required to store these bits.

o The effective base address is aligned by the SMMU to the queue size in bytes, ignoring the least-
significant bits of ADDR[as required to do so.

• [4:0] LOG2SIZE[4:0] Queue size as log2(entries)
o LOG2SIZE is less than or equal to SMMU_IDR1.EVENTQS. Except for the purposes of readback

of this register, any use of the value of this field is capped at the maximum,
SMMU_IDR1.EVENTQS.

When SMMU_IDR1.QUEUES_PRESET==1, this register resets to an IMPLEMENTATION DEFINED value. Otherwise
this register resets to an UNKNOWN value.

When SMMU_IDR1.QUEUES_PRESET==1, this register is read-only.

Otherwise, SMMU_EVENTQ_BASE is Guarded by the respective SMMU_CR0.EVENTQEN and must only be
modified when EVENTQEN==0.

A write while SMMU_CR0.EVENTQEN==1 is CONSTRAINED UNPREDICTABLE and has one of the following
behaviors:

• The register takes on any value, which might cause events to be written to UNPREDICTABLE addresses.
• The write is ignored.

A read following such a write will return an UNKNOWN value.

See SMMU_CMDQ_BASE for initialization order with respect to the PROD and CONS registers.

Events destined for an Event queue (for the appropriate Security state, if supported) are delivered into the queue if
SMMU_CR0.EVENTQEN==1 and the queue is writable. If SMMU_CR0.EVENTQEN == 0, no events are
delivered into the queue. See section 7.2; some events might be lost in these situations.

Access attributes of the Event queue are set using the SMMU_CR1.QUEUE_* fields. A Write-Allocate hint is
provided for Event queue accesses with the WA field.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 238 of 443

 Non-Confidential

6.3.29 SMMU_EVENTQ_CONS
• [31] OVACKFLG Overflow acknowledge flag.

o Software must set this flag to the value of SMMU_EVENTQ_PROD.OVFLG when it is safe for the
SMMU to report a future EVENT queue overflow. ARM recommends that this is done on
initialization and after a previous Event queue overflow is handled by software.

o See section 7.4.

• [30:20] Reserved, RES0.

• [QS] RD_WRAP Event queue read index wrap flag

• [QS-1:0] RD[QS-1:0] Event queue read index.
o Entry last read by PE, that is the first empty queue location.

QS = SMMU_EVENTQ_BASE.LOG2SIZE and SMMU_EVENTQ_BASE.LOG2SIZE ≤ SMMU_IDR1.EVENTQS ≤
19.
This gives a configurable-sized index pointer followed immediately by the wrap bit.
If QS < 19, bits [19:QS+1] are RES0. If software writes a non-zero value to these bits, the value might be stored
but has no other effect. In addition, if SMMU_IDR1.EVENTQS < 19, bits [19:EVENTQS+1] are UNKNOWN on read.
If QS = 0 the queue has one entry. Zero bits of RD index are present and RD_WRAP is bit zero.

When software increments RD, if the index would pass off the end of the queue it must be correctly wrapped to
the queue size given by QS and RD_WRAP toggled.

This register resets to an UNKNOWN value. ARM recommends that software initializes the register to a valid value
before SMMU_CR0.EVENTQEN is transitioned from 0 to 1.

When SMMU_EVENTQ_BASE.LOG2SIZE is increased within its valid range, the value of the bits of this register
that were previously above the old wrap flag position are UNKNOWN and when it is decreased, the value of the bits
from the wrap flag downward are the effective truncation of the value in the old field.

6.3.30 SMMU_EVENTQ_PROD
• [31] OVFLG Event queue overflowed

o An Event queue overflow is indicated using this flag. This flag is toggled by the SMMU when a
queue overflow is detected, if OVFLG==SMMU_EVENTQ_CONS.OVACKFLG.

o This flag will not be updated until a prior overflow is acknowledged by setting
SMMU_EVENTQ_CONS.OVACKFLG equal to OVFLG.

• [30:20] Reserved, RES0.

• [QS] WR_WRAP Event queue write index wrap flag.

• [QS-1:0] WR[QS-1:0] Event queue write index.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 239 of 443

 Non-Confidential

o Next space to be written by SMMU

QS = SMMU_EVENTQ_BASE.LOG2SIZE, see SMMU_EVENTQ_CONS.
If QS < 19, bits [19:QS+1] are RAZ. When incremented by the SMMU, the WR index is always wrapped to the
current queue size given by QS.
If QS = 0 the queue has one entry. Zero bits of WR index are present and WR_WRAP is bit zero.

When SMMU_EVENTQ_BASE.LOG2SIZE is increased within its valid range, the value of the bits of this registers
that were previously above the old wrap flag position are UNKNOWN and when it is decreased, the value of the bits
from the wrap flag downward are the effective truncation of the value in the old field.

This register resets to an UNKNOWN value. ARM recommends that software initializes the register to a valid value
before SMMU_CR0.EVENTQEN is transitioned from 0 to 1.
This register is Guarded by SMMU_CR0.EVENTQEN and must only be modified when
SMMU_CR0.EVENTQEN==0.

A write to this register when SMMU_CR0.EVENTQEN==1 is CONSTRAINED UNPREDICTABLE and has one of the
following behaviors:

• The write is ignored.
• The register takes on any value and it is UNPREDICTABLE whether it affects the SMMU Event queue

internal state. The SMMU might write events to UNPREDICTABLE locations within the Event queue.
A read following such a write will return an UNKNOWN value.
Note: See section 7.4 for details on queue overflow. An overflow condition is entered when a record has been
discarded due to a full enabled Event queue. The following conditions do not cause an overflow condition:

• Event records discarded when the Event queue is disabled, that is when SMMU_CR0.EVENTQEN==0.
• A stalled faulting transaction, as stall event records do not get discarded when the Event queue is full or

disabled.

6.3.31 SMMU_EVENTQ_IRQ_CFG0, SMMU_EVENTQ_IRQ_CFG1,
SMMU_EVENTQ_IRQ_CFG2
Similar to SMMU_GERROR_IRQ_CFG{0,1,2}, but for Event queue MSIs and Guarded by
SMMU_(S_)IRQ_CTRL.EVENTQ_IRQEN. See the field details and update conditions described in
SMMU_GERROR_IRQ_CFG{0,1,2} registers.

6.3.32 SMMU_PRIQ_BASE
• [63] Reserved, RES0

• [62] WA Write allocate hint.

o 0b0: No Write-Allocate.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 240 of 443

 Non-Confidential

o 0b1: Write-Allocate.

• [61:52] Reserved, RES0.

• [51:5] ADDR[51:5] PA of queue base
o Address bits above and below this field range are implied as zero.
o High-order bits of the ADDR field above the system physical address size, as reported by

SMMU_IDR5.OAS, are RES0.
 Note: An implementation is not required to store these bits.

o The effective base address is aligned by the SMMU to the queue size in bytes, ignoring the least-
significant bits of ADDR as required to do so.

• [4:0] LOG2SIZE[4:0] Queue size as log2(entries)
o LOG2SIZE ≤ SMMU_IDR1.PRIQS (which has a maximum value of 19). Except for the purposes

of readback of this register, any use of this field’s value is capped at SMMU_IDR1.PRIQS.

This register resets to an UNKNOWN value. SMMU_PRIQ_BASE is Guarded by SMMU_CR0.PRIQEN and must
only be modified when PRIQEN==0.

A write while SMMU_CR0.PRIQEN==1 is CONSTRAINED UNPREDICTABLE and has one of the following behaviors:

• The register takes on any value, which might cause page requests to be written to UNPREDICTABLE
addresses.

• The write is ignored.
A read following such a write will return an UNKNOWN value.

See SMMU_CMDQ_BASE for initialization order with respect to the PROD and CONS registers.

Access attributes of the PRI queue are set using the SMMU_CR1.QUEUE_* fields. A Write-Allocate hint is
provided for PRI queue accesses with the WA field.

All SMMU_PRIQ_{BASE,CONS,PROD,IRQ_CFG0,IRQ_CFG1} registers are Reserved when
SMMU_IDR0.PRI==0.

6.3.33 SMMU_PRIQ_CONS
• [31] OVACKFLG Overflow acknowledge flag

o Software sets this flag to the value of SMMU_PRIQ_PROD.OVFLG when it is safe for the SMMU
to report a PRI queue overflow. ARM expects this to be done on initialization and after a previous
PRI queue overflow has been handled by software.

• [30:20] Reserved, RES0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 241 of 443

 Non-Confidential

• [QS] RD_WRAP Queue read index wrap flag

• [QS-1:0] RD[QS-1:0] Queue read index
o Entry last read by host PE.

QS = SMMU_PRIQ_BASE.LOG2SIZE and SMMU_PRIQ_BASE.LOG2SIZE ≤ SMMU_IDR1.PRIQS ≤ 19. This
gives a configurable-sized index pointer followed immediately by the wrap bit.
If QS < 19, bits [19:QS+1] are RES0. If software writes a non-zero value to these bits, the value might be stored
but has no other effect. In addition, if SMMU_IDR1.PRIQS < 19, bits [19:PRIQS+1] are UNKNOWN on read.
If QS = 0 the queue has one entry: zero bits of RD index are present and RD_WRAP is bit zero.

When software increments RD, if the index would pass off the end of the queue it must be correctly wrapped to
the queue size given by QS and RD_WRAP toggled.

When SMMU_PRIQ_BASE.LOG2SIZE is increased within its valid range, the value of this register’s bits that were
previously above the old wrap flag position are UNKNOWN and when it is decreased, the value of the bits from the
wrap flag downward are the effective truncation of the value in the old field.

This register resets to an UNKNOWN value. ARM recommends that software initializes the register to a valid value
before SMMU_CR0.PRIQEN is transitioned from 0 to 1.

6.3.34 SMMU_PRIQ_PROD
• [31] OVFLG Queue overflowed, one or more requests have been lost

o This flag resets to zero and toggled by the SMMU when a queue overflow is detected.
o An overflow is indicated using this flag. This flag will not be updated until the overflow is

acknowledged by setting SMMU_PRIQ_CONS.OVACKFLG equal to OVFLG.

• [30:20] Reserved, RES0.

• [QS] WR_WRAP Queue write index wrap flag.

• [QS-1:0] WR[QS-1:0] Queue write index
o Next space to be written by SMMU.

QS = SMMU_PRIQ_BASE.LOG2SIZE; see SMMU_PRIQ_CONS.
If QS < 19, bits [19:QS+1] are RAZ. When incremented by the SMMU, the WR index is always wrapped to the
current queue size given by QS.
If QS = 0 the queue has one entry: zero bits of WR index are present and WR_WRAP is bit zero.

When SMMU_PRIQ_BASE.LOG2SIZE is increased within its valid range, the value of the bits of this register that
were previously above the old wrap flag position are UNKNOWN and when it is decreased, the value of the bits from
the wrap flag downward are the effective truncation of the value in the old field.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 242 of 443

 Non-Confidential

The WR_WRAP and WR fields reset to an UNKNOWN value and must be initialized to a valid value before
SMMU_CR0.PRIQEN is transitioned from 0 to 1. SMMU_PRIQ_PROD is Guarded by SMMU_CR0.PRIQEN and
must only be modified when PRIQEN==0.

A write to this register when SMMU_CR0.PRIQEN==1 is CONSTRAINED UNPREDICTABLE and has one of the
following behaviors:

• The write is ignored.
• The register takes on any value and it is UNPREDICTABLE whether it affects the SMMU Event queue

internal state. The SMMU might write page requests to UNPREDICTABLE locations within the PRI queue.
A read following such a write will return an UNKNOWN value.

6.3.35 SMMU_PRIQ_IRQ_CFG0, SMMU_PRIQ_IRQ_CFG1
Similar to SMMU_GERROR_IRQ_CFG{0,1}, but for PRI queue MSIs and Guarded by
SMMU_IRQ_CTRL.PRIQ_IRQEN. See the field details and update conditions described in
SMMU_GERROR_IRQ_CFG{0,1}.

6.3.36 SMMU_PRIQ_IRQ_CFG2
Similar to SMMU_GERROR_IRQ_CFG2, but for PRI queue MSIs and Guarded by
SMMU_(S_)IRQ_CTRL.PRIQ_IRQEN.

• [31] LO ‘L Only’: only interrupt if PRI message received with L bit set
o 0b0: Send PRI queue interrupt when PRI queue transitions from empty to non-empty.
o 0b1: Send PRI queue interrupt when PRI message received with L bit set.

 When the message is written to the PRI queue, the interrupt is visible after the queue
entry becomes visible. See section 3.18.

 When the message is discarded because of a PRI queue overflow, the interrupt is
generated. When the message is discarded for any other reason, the interrupt is not
generated.

• [30:6] Reserved, RES0.

• [5:4] SH[1:0] Shareability.
o 0b00: Non-shareable.
o 0b01: Reserved, treated as 0b00.
o 0b10: Outer Shareable.
o 0b11: Inner Shareable.

• [3:0] MemAttr Memory type.

o Encoded the same as the STE.MemAttr field.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 243 of 443

 Non-Confidential

See the field details and update conditions described in SMMU_GERROR_IRQ_CFG{0,1,2}.

6.3.37 SMMU_GATOS_CTRL
• [31:1] Reserved, RES0.

• [0] RUN Run ATOS translation.

o Software must write this bit to 1 to initiate the translation operation, after initializing the ATOS_SID
and ATOS_ADDR registers.

o The SMMU clears the RUN flag after the translation completes and its result is visible in
ATOS_PAR.

o A write of 0 to this flag might change the value of the flag but has no other effect. Software must
only write 0 to this flag when the flag is zero.

This register resets to zero.

SMMU_GATOS_{CTRL, SID, ADDR, PAR} are only present if SMMU_IDR0.ATOS==1; otherwise, they are
Reserved. See section 9 for more information on the overall behavior of ATOS operations.

RUN is Guarded by SMMU_CR0.SMMUEN and must only be set when SMMUEN==1 and RUN==0.

ATOS_CTRL.RUN must not be set to 1 after SMMU_S_CR0.SMMUEN has been written to 0, including at a point
prior to the completion of an update to SMMUEN. Behavior of doing so is CONSTRAINED UNPREDICTABLE and one
of the following occurs:

• The write is ignored.
• The value is stored and visible for readback, but no other effect occurs and RUN is not cleared by the

SMMU unless SMMUEN is later Updated to 1.

Between software writing ATOS_CTRL.RUN=1 and observing the SMMU having cleared it to 0 again:

• Writes to ATOS_SID, ATOS_ADDR and VATOS_SEL (if appropriate) are CONSTRAINED UNPREDICTABLE
and one of the following occurs:

o The write is ignored.
o Translation is performed with any value of the written register. After completion, ATOS_PAR is

UNKNOWN.
Note: HTTU might have been performed to an UNPREDICTABLE set of TTDs that could otherwise
have been updated using any given value of the written register.

• Writes to ATOS_CTRL are CONSTRAINED UNPREDICTABLE and one of the following occurs:
o The write is ignored.
o The value is stored and visible for readback, but translation is unaffected and completes normally.

Note: If RUN=0 was written, it is not possible to determine that the translation has completed.
• Reads of ATOS_PAR return an UNKNOWN value.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 244 of 443

 Non-Confidential

The completion of an Update of SMMUEN from 1 to 0 while RUN==1 is contingent on the completion of the ATOS
operation, which clears RUN. Clearing SMMUEN while RUN==1 is CONSTRAINED UNPREDICTABLE and the
completion of the SMMUEN==0 update ensures one of the following behaviors:

• The operation has completed normally and a valid translation/fault response is reported.
• The ATOS operation has been aborted, reporting ATOS_PAR.FAULT==1 and

ATOS_PAR.FAULTCODE==INTERNAL_ERR.
o The translation table walks for the ongoing ATOS translation might have been partially performed.

If HTTU was performed during the translation, an UNPREDICTABLE set of the TTDs relevant to the
translation table walks might have been updated.

An Update of SMMUEN from 0 to 1 clears RUN, if RUN was set while SMMUEN==0. Completion of the Update
occurs after RUN has been cleared for all relevant ATOS register groups.

6.3.38 SMMU_GATOS_SID
• [63:53] Reserved, RES0.

• [52] SSID_VALID SubstreamID valid.

o If SMMU_IDR1.SSIDSIZE=0, this field is RES0.

• [51:32] SUBSTREAMID SubstreamID of request.
o If SMMU_IDR1.SSIDSIZE<20, bits [51:32+SMMU_IDR1.SSIDSIZE] are RES0.

• [31:0] STREAMID StreamID of request.

o This is written with the StreamID (used to locate translations/CDs) of the request later submitted
to SMMU_GATOS_ADDR.

o If SMMU_IDR1.SID_SIZE<32, bits [31:SMMU_IDR1.SID_SIZE] are RES0.

This register resets to an UNKNOWN value.

Bits of SubstreamID and StreamID outside of the supported range are RES0.

This register is Guarded by SMMU_GATOS_CTRL.RUN and must only be altered when RUN==0.

6.3.39 SMMU_GATOS_ADDR
• [63:12] ADDR Requested input address

.
• [11:10] TYPE Request type.

o 0b00 Reserved.
o 0b01 Stage 1 (VA to IPA).

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 245 of 443

 Non-Confidential

o 0b10 Stage 2 (IPA to PA).
o 0b11 Stage 1 and stage 2 (VA to PA).
o Use of a Reserved value results in an INV_REQ ATOS error.

• [9] PnU Privileged or User access.

o 0b0: Unprivileged.
o 0b1: Privileged.

• [8] RnW Read/write access.

o 0b0: Write.
o 0b1: Read.

• [7] InD Instruction/data access.

o 0b0: Data.
o 0b1: Instruction.
o This bit is IGNORED if RnW=0, and the effective InD for writes is Data.

• [6] HTTUI Inhibit hardware TTD flag update.

o 0b0: Flag update (HTTU) might occur, where supported by the SMMU, according to HA:HD
configuration fields at stage 1 and stage 2.

o 0b1: HTTU is inhibited, regardless of HA/HD configuration.
 The ATOS operation causes no state change and is passive.

• [5:0] Reserved, RES0.

This register resets to an UNKNOWN value.

This register is Guarded by SMMU_GATOS_CTRL.RUN and must only be altered when RUN==0.

The PnU and InD attributes are not affected by the STE.INSTCFG or STE.PRIVCFG overrides.

6.3.40 SMMU_GATOS_PAR
Read-only.

This result register encodes both successful results and error results, the format is determined by the FAULT field:

• [0] FAULT Fault/error status
o 0b0: No fault.
o 0b1: Fault or translation error.

When FAULT==0, a successful result is present:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 246 of 443

 Non-Confidential

• [63:56] ATTR[7:0] Memory attributes, in MAIR format

• [55:52] Reserved, RES0.

• [51:12] ADDR[51:12] Result address.
o Address bits above and below [51:12] are treated as zero.
o In SMMUv3.0, bits [51:48] are RES0.

• [11] Size Translation page/block size.

• [10] Reserved, RES0.

o Note: This bit is the NS field in SMMU_S_GATOS_PAR.

• [9:8] SH Shareability attribute.
o 0b00: Non-shareable.
o 0b01: Reserved.
o 0b10: Outer Shareable.
o 0b11: Inner Shareable.

 Note: Shareability is returned as Outer Shareable when ATTR selects any Device type.

• [7:1] Reserved, RES0.

The Size field allows the page, block, or section size of the translation to be determined, using an encoding in the
ADDR field. The Size flag indicates that:

• 0b0: Translation is 4KB

• 0b1: Translation is determined by position of lowest 1 bit in ADDR field
The translated address is aligned to the translation size (appropriate number of LSBs zeroed) and then, if the size
is >4KB, a single bit is set such that its position, N, denotes the translation size, where 2(N+1) = size in bytes.

For example, if Size=1 and ADDR[14:12]==0 and ADDR[15]==1, the lowest set bit is 15 so the translation size is
215+1, or 64KB. In this case, the actual output address must be aligned to 64KB by masking out bit 15. Similarly,
an output address with ADDR[13:12]==0b10 denotes a page of size 213+1, or 16KB, and the output address is
taken from ADDR[14] upwards.

An implementation that does not support all of the defined attributes is permitted to return the behavior that the
cache supports, instead of the exact value from the translation table entries. Similarly, an implementation might
return the translation page/block size that is cached rather than the size that is determined from the translation
table entries.

The memory attributes and Shareability that are returned in ATTR and SH are determined from the translation
tables without including STE overrides that might be configured for the given stream:

• When ATOS_ADDR.TYPE==stage 1, the stage 1 translation table attributes are returned.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 247 of 443

 Non-Confidential

• When ATOS_ADDR.TYPE==stage 2, the stage 2 translation table attributes are returned. In this case,
the allocation and transient hints in ATTR are:

o RA = WA = 1
o TR = 0
o Note: The stage 2 TTD.MemAttr[3:0] field does not encode RA/WA/TR.

• When ATOS_ADDR.TYPE==stage 1 and stage 2, the attributes returned are those from stage 1
combined with stage 2 (where combined is as defined in section 13).

When FAULT==1, the translation has failed and a fault syndrome is present:

• [63:60] IMPDEF IMPLEMENTATION DEFINED fault data.

• [59:52] Reserved, RES0.

• [51:12] FADDR[51:12] Stage 2 fault page address.
o The value returned in FADDR depends upon the cause of the fault. See section 9.1.4 for details.
o In SMMUv3.0, bits [51:48] are RES0.

• [11:4] FAULTCODE Fault/error code.

o See section 9.1.4 for details.

• [3] Reserved, RES0.

• [2:1] REASON Class of activity causing fault
o This indicates the stage and reason for the fault. See section 9.1.4 for details.
o 0b00: Stage 1 translation-related fault occurred, or miscellaneous non-translation fault not

attributable to a translation stage (for example, F_BAD_STE).
o 0b01: CD: Stage 2 fault occurred because of a CD fetch
o 0b10: TT: Stage 2 fault occurred because of a stage 1 translation table walk
o 0b11: IN: Stage 2 fault occurred because of the input address to stage 2 (output address

from successful stage 1 translation table walk, or address given in ATOS_ADDR for stage 2-only
translation)

The content of ATOS_PAR registers is UNKNOWN if values in the ATOS register group are modified after a
translation has been initiated by setting ATOS_CTRL.RUN==1. See section 9.1.4.

This register resets to an UNKNOWN value.

This register has an UNKNOWN value if read when ATOS_CTRL.RUN==1.

6.3.41 SMMU_VATOS_SEL
• [31:16] Reserved, RES0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 248 of 443

 Non-Confidential

• [15:0] VMID VMID associated with the VM that is using the VATOS interface
o When SMMU_IDR0.VMID16==0, bits [15:8] of this field are RES0.

When requests are made through VATOS, the VMID field of the STE selected in the request is compared against
this field. The request is denied if the values do not match (indicating a lookup for a StreamID not assigned to the
VM granted the VATOS interface).
This register resets to an UNKNOWN value. This register is Guarded by SMMU_VATOS_CTRL.RUN and must only
be altered when RUN==0.

This register is RES0 when SMMU_IDR0.VATOS==0.

6.3.42 SMMU_S_IDR0
Read-only.

• [31:26] Reserved, RES0.

• [25:24] STALL_MODEL Stalling fault model support.
o Encoded identically to SMMU_IDR0.STALL_MODEL, this field indicates the SMMU support for

the Stall model and the Terminate model.
o For more information, see SMMU_S_CR0.NSSTALLD.

• [23:14] Reserved, RES0.

• [13] MSI Secure Message Signalled Interrupts are supported

o 0b0: The SMMU supports wired interrupt notifications only for Secure events and GERROR.
 The MSI fields in SMMU_S_EVENTQ_IRQ_CFGn and SMMU_S_GERROR_IRQ_CFGn

are RES0.
o 0b1: Message Signalled Interrupts are supported for Secure events and GERROR.

 Note: ARM strongly recommends that an implementation supports Non-secure MSIs
(SMMU_IDR0.MSI==1) if Secure MSIs are supported.

• [12:0] Reserved, RES0.

6.3.43 SMMU_S_IDR1
Read-only.

• [31] SECURE_IMPL Security implemented.
o 0b0: The SMMU implements a single Security state.

 All SMMU_S_* secure registers are RAZ/WI.
o 0b1: The SMMU implements two Security states.

• [30:6] Reserved, RES0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 249 of 443

 Non-Confidential

o Note: If the SMMU implementation supports SubstreamIDs, Secure StreamIDs might use
SubstreamIDs of the same magnitude as the Non-secure interface, therefore there is no separate
Secure SSIDSIZE option.

• [5:0] S_SIDSIZE Max bits of Secure StreamID.
o Equivalent to SMMU_IDR1.SIDSIZE and encoded the same way, this field determines the

maximum Secure StreamID value and therefore the maximum size of the Secure Stream table.

6.3.44 SMMU_S_IDR2
Read-only.

• [31:0] Reserved, RES0.

6.3.45 SMMU_S_IDR3
Read-only.

• [31:0] Reserved, RES0.

6.3.46 SMMU_S_IDR4
Read-only.

• [31:0] IMPLEMENTATION DEFINED.

The contents of this register are IMPLEMENTATION DEFINED and can be used to identify the presence of other
IMPLEMENTATION DEFINED register regions elsewhere in the memory map.

6.3.47 SMMU_S_CR0
• [31:10] Reserved, RES0.

• [9] NSSTALLD Non-secure stall disable

o 0b0: Non-secure programming interface might use Stall model.
o 0b1: Non-secure programming interface prohibited from using Stall model.

 When SMMU_S_IDR0.STALL_MODEL==0b00, setting this bit modifies the Non-secure
behavior so that only the Terminate model is available for Non-secure streams and
SMMU_IDR0.STALL_MODEL reads as 0b01. Otherwise, if NSSTALLD==0,
SMMU_IDR0.STALL_MODEL == SMMU_S_IDR0.STALL_MODEL.

o When SMMU_S_IDR0.STALL_MODEL!=0b00, this bit is RES0 and SMMU_IDR0.STALL_MODEL
== SMMU_S_IDR0.STALL_MODEL.

 Note: A reserved SMMU_S_CR0 bit is not reflected into SMMU_S_CR0ACK.

• [8:6] Reserved, RES0.

• [5] SIF Secure Instruction Fetch.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 250 of 443

 Non-Confidential

o 0b0: Secure transactions might exit the SMMU as a Non-secure instruction fetch.
o 0b1: Secure transactions determined to be Non-secure instruction fetch are treated as a

Permission fault.
This field causes transactions from a Secure stream that are determined to be an instruction
fetch, after INSTCFG fields are applied, to experience a Permission fault if their effective output
NS attribute is Non-secure (NS==1, after NSCFG fields are applied).

• When translation is disabled because SMMUEN==0, the transaction is terminated with
abort and no F_PERMISSION is recorded.

• When SMMUEN is set, one of the following occurs and, if the Event queue is writable, an
F_PERMISSION event is recorded:

o If stream translation is disabled (STE.Config selects bypass, including the case
where Config[2:0]==0b101 and STE.S1DSS causes stage 1 to be skipped,
behaving as though Config[2:0]=0b100), the faulting transaction is terminated
with abort.

o If stream translation is applied (STE.Config enables stage 1 and STE.S1DSS
does not cause stage 1 translation to be skipped), CD.{A,R,S} govern stall and
terminate behavior of the transaction.

Note: The fault event is a stage 1 permission fault as, by definition, a Secure transaction has only
stage 1 configuration.
This bit is permitted to be cached in a TLB or configuration cache and an Update of this bit
requires invalidation of all Secure TLB entries and configuration caches.

• [4] Reserved, RES0.

• [3] CMDQEN Enable Secure Command queue processing.
o 0b0: Processing of commands from the Non-secure Command queue is disabled.
o 0b1: Processing of commands from the Non-secure Command queue is enabled.

• [2] EVENTQEN Enable Secure Event queue writes.

o 0b0: Writes to the Non-secure Event queue are disabled.
o 0b1: Writes to the Non-secure Event queue are enabled.

• [1] Reserved, RES0.

• [0] SMMUEN Secure SMMU enable.

o 0b0: All Secure streams bypasses the SMMU, with attributes determined from SMMU_GBPA.
o 0b1: All Secure streams are checked against configuration structures, and might undergo

translation.

Resets to zero.

The Update procedure, with respect to flags reflected into SMMU_S_CR0ACK, is the same as for SMMU_CR0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 251 of 443

 Non-Confidential

The update side-effects of CMDQEN, EVENTQEN and SMMUEN fields are similar to their respective equivalents
in SMMU_CR0.

6.3.47.1 NSSTALLD
This bit has no Update side-effects. NSSTALLD prevents Non-secure configuration from using the Stall model,
therefore stall-related commands are unavailable and use of STE and CD stall configuration renders the
structures ILLEGAL.

This bit is permitted to be cached in configuration caches.

This bit must not be modified when any of the following could occur:

• Non-secure CMD_STALL_TERM or CMD_RESUME commands have been submitted to the Non-secure
Command queue, therefore might be being processed.

• Non-secure transactions are being translated through structures configured to stall faults.
A change to this bit takes effect at an UNPREDICTABLE point prior to Update completion. If changed while the
above stall-related activities are occurring, it is UNPREDICTABLE whether transactions and commands behave in
manner corresponding to either value of this bit, until Update of this bit completes.

Update completes when it is guaranteed that a new transaction or command will behave in a manner relating to
the new value of this bit.

Note: Secure software is expected to Update this bit before Non-secure software can access the SMMU.

6.3.47.2 SIF
This bit has no Update side-effects.

For a transaction that bypasses translation, a change to SIF is guaranteed to be visible with respect to that
transaction after the new value of SIF is acknowledged in SMMU_S_CR0ACK.SIF.

For a transaction that undergoes translation, a change to SIF is guaranteed to be visible with respect to that
transaction only after the completion of a TLB invalidation of a scope related to that transaction, where the TLB
invalidation is made visible to the SMMU after the new value of SIF is acknowledged in SMMU_S_CR0ACK.SIF.

6.3.48 SMMU_S_CR0ACK
Read-only.

• Same fields as SMMU_S_CR0.

Resets to zero.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 252 of 443

 Non-Confidential

Undefined bits read as zero. Fields in this register are RAZ if their corresponding SMMU_S_CR0 field is IGNORED.

An Update to a field in SMMU_S_CR0 is considered complete, along with any side-effects, when the respective
field in this register is observed to take the new value.

6.3.49 SMMU_S_CR1
• [31:12] Reserved, RES0.

• [11:10] TABLE_SH[1:0] Secure Stream table access Shareability.

o 0b00: Non-shareable.
o 0b01: Reserved, treated as 0b00.
o 0b10: Outer Shareable.
o 0b11: Inner Shareable

 Note: When SMMU_S_CR1.TABLE_OC==0b00 and SMMU_S_CR1.TABLE_IC==0b00,
this field is IGNORED and behaves as Outer Shareable.

• [9:8] TABLE_OC[1:0] Secure Stream table access Outer Cacheability.
o 0b00: Non-cacheable.
o 0b01: Write-Back Cacheable.
o 0b10: Write-Through Cacheable.
o 0b11: Reserved, treated as 0b00.

• [7:6] TABLE_IC[1:0] Secure Stream table access Inner Cacheability.

o 0b00: Non-cacheable.
o 0b01: Write-Back Cacheable.
o 0b10: Write-Through Cacheable.
o 0b11: Reserved, treated as 0b00.

• [5:4] QUEUE_SH[1:0] Secure queue access Shareability.

o 0b00: Non-shareable.
o 0b01: Reserved, treated as 0b00.
o 0b10: Outer Shareable.
o 0b11: Inner Shareable.

 When SMMU_S_CR1.QUEUE_OC==0b00 and SMMU_S_CR1.QUEUE_IC==0b00, this
field is IGNORED and behaves as Outer Shareability.

• [3:2] QUEUE_OC[1:0] Secure queue access Outer Cacheability.
o 0b00: Non-cacheable.
o 0b01: Write-Back Cacheable.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 253 of 443

 Non-Confidential

o 0b10: Write-Through Cacheable.
o 0b11: Reserved, treated as 0b00.

• [1:0] QUEUE_IC[1:0] Secure queue access Inner Cacheability.

o 0b00: Non-cacheable
o 0b01: Write-Back Cacheable
o 0b10: Write-Through Cacheable
o 0b11: Reserved, treated as 0b00.

The TABLE_* fields set the attributes for access to memory through the SMMU_S_STRTAB_BASE.ADDR
pointer. The QUEUE_* fields set the attributes for access to memory through SMMU_S_CMDQ_BASE.ADDR
and SMMU_S_EVENTQ_BASE.ADDR pointers.

Cache allocation hints are present in each BASE register and are IGNORED unless a cacheable type is used for the
table or queue to which the register corresponds. The transient attribute is IMPLEMENTATION DEFINED for each
_BASE register. See section 13.1.2. Use of an unsupported memory type for structure or queue access might
cause the access to be treated as an external abort. For example, in the case of SMMU_S_STRTAB_BASE, a
F_STE_FETCH fault is raised.

6.3.50 SMMU_S_CR2
• [31:3] Reserved, RES0.

• [2] PTM Private TLB Maintenance

o 0b0: The SMMU participates in broadcast TLB maintenance, if implemented.
o 0b1: The SMMU is not required to invalidate any local TLB entries on receipt of broadcast TLB

maintenance operations for S-EL1 or EL3 translation regimes.
o Broadcast invalidation for NS-EL1, EL2 or EL2-E2H translation regimes are not affected by this

flag, see SMMU_CR0.PTM.
o When SMMU_IDR0.BTM==0, this field is RES0.
o Resets to an implementation specific value. ARM recommends PTM is reset to 1, software

cannot rely on this value.

• [1] RECINVSID Record event C_BAD_STREAMID from invalid input StreamIDs

o 0b0: C_BAD_STREAMID events are not recorded for the Secure programming interface.
o 0b1: C_BAD_STREAMID events are permitted to be recorded for the Secure programming

interface.

o Resets to an UNKNOWN value.

• [0] Reserved, RES0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 254 of 443

 Non-Confidential

PTM and RECINVSID are Guarded by SMMU_S_CR0.SMMUEN and must only be changed when
SMMU_S_CR0.SMMUEN==0. A write when SMMU_S_CR0.SMMUEN==1 has the same behavior as stated in
SMMU_CR2.

6.3.51 SMMU_S_GBPA
Secure Global Bypass Attributes.

• [31] Update Update completion flag, see section 6.3.13.1.
o This field resets to 0.

• [30:21] Reserved, RES0.

• [20] ABORT Abort all incoming transactions.

o 0b0: Do not abort incoming transactions. Transactions bypass the SMMU with attributes given
by other fields in this register.

o 0b1: Abort all incoming transactions.
o This field resets to an IMPLEMENTATION DEFINED value.
o Note: An implementation can reset this field to 1, in order to implement a default deny policy on

reset.

• [19:18] INSTCFG Instruction/data override.
o 0b00: Use incoming.
o 0b01: Reserved, behaves as 0b00.
o 0b10: Data.
o 0b11: Instruction.

 INSTCFG only affects reads. Writes are always output as Data.
o This field resets to an IMPLEMENTATION DEFINED value.

• [17:16] PRIVCFG User/privileged override.

o 0b00: Use incoming.
o 0b01: Reserved, behaves as 0b00.
o 0b10: Unprivileged.
o 0b11: Privileged.
o This field resets to an IMPLEMENTATION DEFINED value.

• [15:14] NSCFG NS override

o 0b00: Use incoming.
o 0b01: Reserved, behaves as 0b00.
o 0b10: Secure.
o 0b11: Non-secure.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 255 of 443

 Non-Confidential

o This field resets to an IMPLEMENTATION DEFINED value.

• [13:12] SHCFG Shareability override.
o 0b00: Non-shareable.
o 0b01: Use incoming.
o 0b10: Outer Shareable.
o 0b11: Inner Shareable.
o This field resets to an IMPLEMENTATION DEFINED value.

• [11:8] ALLOCCFG

o 0b0xxx: Use incoming RA, WA, TR allocation and transient hints
o 0b1RWT: Hints are overridden to given values:

 Read Allocate = R
 Write Allocate = W
 Transient = T

o When overridden by this field, for each of RA, WA, and TR, both inner- and outer- hints are set to
the same value. Because it is not architecturally possible to express hints for types that are
Device or Normal Non- cacheable, this field has no effect on memory types that are not Normal-
WB or Normal-WT, whether such types are provided with a transaction or overridden using
MTCFG/MemAttr.

o This field resets to an IMPLEMENTATION DEFINED value.

• [7:5] Reserved, RES0.

• [4] MTCFG Memory type override.
o 0b0: Use incoming memory type.
o 0b1: Override incoming memory type using MemAttr field.
o This field resets to an IMPLEMENTATION DEFINED value.

• [3:0] MemAttr Memory type.

o Encoded the same as the STE.MemAttr field.
o This field resets to an IMPLEMENTATION DEFINED value.

This register controls the Secure global bypass attributes used for transactions from Secure StreamIDs when
SMMU_S_CR0.SMMUEN==0. Transactions passing through the SMMU when it is disabled might have their
attributes overridden or assigned using this register.

If SMMU_IDR1.ATTR_PERMS_OVR==0, NSCFG is fixed as “Use incoming” and it is implementation specific
whether this field reads as zero or a previously written value.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 256 of 443

 Non-Confidential

6.3.52 SMMU_S_AGBPA
Secure Alternate Global ByPass Attribute

• [31:0] IMPLEMENTATION DEFINED IMPLEMENTATION DEFINED attributes to assign
o This register allows an implementation to apply an additional non-architected attributes or tag to

bypassing transactions.
o If this field is unsupported by an implementation, it is RES0.
o Note: ARM does not recommend that this register further modifies existing architected bypass

attributes.

The process used to change contents of this register in relation to SMMU_S_GPBA.Update is IMPLEMENTATION
DEFINED

6.3.53 SMMU_S_INIT
• [31:1] Reserved, RES0.

• [0] INV_ALL Invalidate all cache and TLB contents.

o For writes:
 0b0: If INV_ALL==0, ignored.
 0b1: SMMU-global invalidation is performed for all configuration and translation

caches for all translation regimes and Security states.
o For reads:

 0b0: There is no outstanding global invalidation operation.
 0b1: There is an outstanding global invalidation operation.

o Note: This field can be used to simplify Secure software that otherwise makes no use of the
SMMU but must safely initialize the SMMU for use by Non-secure software. See section 3.11.

o Note: When SMMU_S_IDR1.SECURE_IMPL==1, but no Secure software exists, ARM strongly
recommends this register is exposed for use by Non-secure initialization software.

This register resets to zero.

A write of 1 to INV_ALL when SMMU_CR0.SMMUEN==1 or SMMU_S_CR0.SMMUEN==1, or an update of either
SMMUEN to 1 is in progress, is CONSTRAINED UNPREDICTABLE and has one of the following behaviors:

• The write is ignored.
• The invalidation operation occurs and completes, with INV_ALL reset to 0 on completion.

An update of SMMUEN to 1 while an INV_ALL invalidation operation is underway has a CONSTRAINED
UNPREDICTABLE effect on the invalidation operation and has one of the following behaviors:

• The invalidation operation completes successfully, with INV_ALL reset to 0 after completion.
• The invalidation operation might not affect any cache or TLB entries, and INV_ALL is reset to 0 by the

SMMU.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 257 of 443

 Non-Confidential

After INV_ALL is written to 1, a write of 0 before the invalidation operation is observed to have completed is
CONSTRAINED UNPREDICTABLE has and one of the following behaviors:

• The invalidation operation does not take place.
• The invalidation operation completes successfully but it cannot be determined when this completion

occurs.

When observing the conditions in this section, a write of INV_ALL to 1 causes an invalidation of all cache and TLB
entries that are present before the write and on completion of the invalidation the SMMU resets INV_ALL to 0,
including when an invalidation operation was already underway before the write.
Note: If the conditions regarding SMMUEN are observed correctly, a write of 1 to INV_ALL is guaranteed to
invalidate the SMMU caches and reset INV_ALL to 0 when complete.

The completion of an INV_ALL invalidation is not required to depend on the completion of any outstanding
transactions.

An INV_ALL invalidation operation affects locked configuration and translation cache entries, if an implementation
supports locking of cache entries.

6.3.54 SMMU_S_IRQ_CTRL
• [31:3] Reserved, RES0.

• [2] EVENTQ_IRQEN Secure Event queue interrupt enable

o 0b0: Interrupts from the Secure Event queue are disabled.
o 0b1: Interrupts from the Secure Event queue are enabled.

• [1] Reserved, RES0.

• [0] GERROR_IRQEN Secure GERROR interrupt enable

o 0b0: Interrupts from Secure Global errors are disabled.
o 0b1: Interrupts from Secure Global errors are enabled.

This register is similar to SMMU_IRQ_CTRL, but controls interrupts from the Secure programming interface. It
relates to SMMU_S_IRQ_CTRLACK in the same way as SMMU_IRQ_CTRL relates to SMMU_IRQ_CTRLACK.

6.3.55 SMMU_S_IRQ_CTRLACK
Read-only.

• Same fields as SMMU_S_IRQ_CTRL.
Resets to zero.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 258 of 443

 Non-Confidential

Undefined bits read as zero. Fields in this register are RAZ if the corresponding SMMU_S_IRQ_CTRL field is
Reserved.

6.3.56 SMMU_S_GERROR
Read-only.

• [31:9] Reserved, RES0.

• [8] SFM_ERR
o 0b0: The SMMU has not entered Service fail mode.
o 0b1: The SMMU has entered Service failure mode.

 Traffic through the SMMU might be affected. Depending on the origin of the error, the
SMMU might stop processing commands and recording events. The RAS registers
describe the error.

 Acknowledgement of this error through GERRORN does not clear this error, which is
cleared in an IMPLEMENTATION DEFINED way. See section 12.3.

o SFM triggers SFM_ERR in SMMU_GERROR, and when SMMU_S_IDR1.SECURE_IMPL==1 in
SMMU_S_GERROR.

• [7] MSI_GERROR_ABT_ERR
o 0b0: A Secure GERROR MSI was not terminated with an abort.
o 0b1: A Secure GERROR MSI was terminated with abort.

 Activation of this error does not affect future MSIs.
o If SMMU_S_IDR0.MSI==0, this field is RES0.

• [6] Reserved, RES0.

• [5] MSI_EVENTQ_ABT_ERR

o 0b0: A Secure EVENT queue MSI was not terminated with abort.
o 0b1: A Secure EVENT queue MSI was terminated with abort.

 Activation of this error does not affect future MSIs.
o If SMMU_S_IDR0.MSI==0, this field is RES0.

• [4] MSI_CMDQ_ABT_ERR

o 0b0: A Secure CMD_SYNC MSI was not terminated with abort.
o 0b1: A Secure CMD_SYNC MSI was terminated with abort.

 Activation of this error does not affect future MSIs.
o If SMMU_S_IDR0.MSI==0, this field is RES0.

• [3] Reserved, RES0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 259 of 443

 Non-Confidential

• [2] EVENTQ_ABT_ERR
o 0b0: An access to the Secure Event queue was not terminated with abort.
o 0b1: An access to the Secure Event queue was terminated with abort.
o Event records might have been lost

• [1] Reserved, RES0.

• [0] CMDQ_ERR

o 0b0: A command that cannot be processed has not been encountered on the Secure
Command queue.

o 0b1: A command has been encountered that cannot be processed on the Secure Command
queue.

 SMMU_S_CMDQ_CONS.ERR has been updated with a reason code and command
processing has stopped.

o Commands are not processed while this error is active.

Resets to zero.

6.3.57 SMMU_S_GERRORN
• Same fields as SMMU_S_GERROR

Resets to zero. Fields that are RES0 in SMMU_S_GERROR are also RES0 in this register.

Software must not toggle fields in this register that correspond to errors that are inactive. It is CONSTRAINED
UNPREDICTABLE whether or not an SMMU activates errors if this is done.

6.3.58 SMMU_S_GERROR_IRQ_CFG0, SMMU_S_GERROR_IRQ_CFG1,
SMMU_S_GERROR_IRQ_CFG2
Similar to SMMU_GERROR_IRQ_{0,1,2}, for Secure global error reporting when Secure MSIs are supported.

6.3.59 SMMU_S_STRTAB_BASE
• [63] Reserved, RES0.

• [62] RA Read allocate hint

o 0b0: No Read-Allocate.
o 0b1: Read-Allocate.

• [61:52] Reserved, RES0.

• [51:6] ADDR[51:6] Physical address of Secure Stream table base

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 260 of 443

 Non-Confidential

o Address bits above and below this field range are treated as zero.
o High-order bits of the ADDR field above the system physical address size, as reported by

SMMU_IDR5.OAS, are RES0.
 Note: An implementation is not required to store these bits.

o When a Linear Stream table is used, that is when SMMU_S_STRTAB_BASE_CFG.FMT==0b00,
the effective base address is aligned by the SMMU to the table size, ignoring the least-significant
bits in the ADDR range as required to do so:

ADDR[LOG2SIZE+5:0] = 0.
o When a 2-level Stream table is used, that is when SMMU_S_STRTAB_BASE_CFG.FMT==0b01,

the effective base address is aligned by the SMMU to the larger of 64 bytes or the first-level table
size:
ADDR[MAX(5, (LOG2SIZE-SPLIT-1+3)):0] = 0.
The alignment of ADDR is affected by the literal value of the respective
SMMU_S_STRTAB_BASE_CFG.LOG2SIZE field and is not limited by S_SIDSIZE.
Note: This means that configuring a table that is larger than required by the incoming StreamID
span results in some entries being unreachable, but the table is still aligned to the configured size.

• [5:0] Reserved, RES0.

When SMMU_IDR1.TABLES_PRESET==1, this register resets to a IMPLEMENTATION DEFINED value. Otherwise
this register resets to an UNKNOWN value.

When SMMU_IDR1.TABLES_PRESET==1, this register is read-only.

Otherwise, SMMU_S_STRTAB_BASE is guarded by the respective SMMU_S_CR0.SMMUEN and must only be
written when SMMU_S_CR0.SMMUEN==0.
A write while SMMU_S_CR0.SMMUEN==1 is CONSTRAINED UNPREDICTABLE and has one of the following
behaviors:

• The register takes on any value, which might cause STEs to be fetched from an UNPREDICTABLE address.
• The write is ignored.

A read following such a write will return an UNKNOWN value.

Access attributes of the Stream table are set using the SMMU_S_CR1.TABLE_* fields, a Read-Allocate hint is
provided for Stream table accesses with the RA field.

6.3.60 SMMU_S_STRTAB_BASE_CFG
• [31:18] Reserved, RES0.

• [17:16] FMT Format of Secure Stream table.

o 0b00: Linear ADDR points to an array of STEs
o 0b01: 2-level ADDR points to an array of Level 1 Stream table descriptors
o Other values are reserved, behave as 0b00.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 261 of 443

 Non-Confidential

o When SMMU_IDR0.ST_LEVEL==0b00, this field is RES0.

• [15:11] Reserved, RES0.

• [10:6] SPLIT StreamID split point for multi-level table.
o This field determines the split point of a 2-level Stream table, selected by the number of bits at the

bottom level.
o This field is IGNORED if FMT=0b00.
o This field is RES0 when SMMU_IDR0.ST_LEVEL==0b00.
o 6 4KB leaf tables.
o 8 16KB leaf tables.
o 10 64KB leaf tables.
o Other values are reserved, behave as 6.
o The upper-level L1STD is located using StreamID[LOG2SIZE-1:SPLIT] and this indicates the

lowest-level table which is indexed by StreamID[SPLIT-1:0].
 For example, selecting SPLIT=6 causes StreamID[5:0] to be used to index the lowest

level Stream table and StreamID[LOG2SIZE-1:6] to index the upper level table.
o Note: If SPLIT ≥ LOG2SIZE, a single upper-level descriptor indicates one bottom-level Secure

Stream table with 2LOG2SIZE usable entries. The valid range of the L1STD.Span value is up to
SPLIT+1, but not all of this Span is accessible, because it is not possible to use a StreamID ≥
2LOG2SIZE.
Note: ARM recommends that a Linear table, FMT=0b00, is used instead of programming SPLIT >
LOG2SIZE.

• [5:0] LOG2SIZE[5:0] Table size as log2(entries)
o The maximum Secure StreamID value that can be used to index into the Secure Stream table is

2LOG2SIZE-1. The Secure StreamID range is equal to the number of STEs in a linear Secure Stream
table or the maximum sum of the STEs in all second-level tables. The number of L1STDs in the
upper level of a 2-level table is MAX(1, 2LOG2SIZE-SPLIT). Except for readback of a written value,
the effective LOG2SIZE is ≤ SMMU_S_IDR1.S_SIDSIZE for the purposes of input StreamID
range checking and upper/lower/linear Stream table index address calculation.

When SMMU_IDR1.TABLES_PRESET==1 this register resets to an IMPLEMENTATION DEFINED value, otherwise it
resets to an UNKNOWN value.

When SMMU_IDR1.TABLES_PRESET==1, this register is read-only.

Otherwise, SMMU_S_STRTAB_BASE_CFG is Guarded by SMMU_S_CR0.SMMUEN and must only be modified
when SMMU_S_CR0.SMMUEN==0. A write while SMMU_S_CR0.SMMUEN==1 is CONSTRAINED UNPREDICTABLE
and has one of the following behaviors:

• The register takes on any value, which might cause STEs to be fetched from an UNPREDICTABLE address.
• The write is ignored.

A read following such a write will return an UNKNOWN value.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 262 of 443

 Non-Confidential

A transaction having a StreamID ≥ 2LOG2SIZE is out of range. Such a transaction is terminated with abort and a
C_BAD_STREAMID event is recorded if permitted by SMMU_S_CR2.RECINVSID.

6.3.61 SMMU_S_CMDQ_BASE
• [63] Reserved, RES0.

• [62] RA Read Allocate hint.

o 0b0: No Read-Allocate.
o 0b1: Read-Allocate.

• [61:52] Reserved, RES0.

• [51:5] ADDR[51:5] Physical address of Secure Command queue base.

o Address bits above and below this field range are implied as zero.
o High-order bits of the ADDR field above the system physical address size, as reported by

SMMU_IDR5.OAS, are RES0.
 Note: An implementation is not required to store these bits.

o The effective base address is aligned by the SMMU to the larger of the queue size in bytes or 32
bytes, ignoring the least-significant bits of ADDR as required to do so. ADDR bits [4:0] are
treated as zero.

 Note: For example, a queue with 28 entries is 4096 bytes in size so software must align
an allocation, and therefore ADDR, to a 4KB boundary.

• [4:0] LOG2SIZE[4:0] Queue size as log2(entries)

o LOG2SIZE must be less than or equal to SMMU_IDR1.CMDQS. Except for the purposes of
readback of this register, any use of this field’s value is capped at the maximum,
SMMU_IDR1.CMDQS.

o The minimum size is 0, for one entry, but this must be aligned to a 32-byte (2 entry) boundary as
above.

When SMMU_IDR1.QUEUES_PRESET==1, this register resets to an IMPLEMENTATION DEFINED value. Otherwise
it resets to an UNKNOWN value.

When SMMU_IDR1.QUEUES_PRESET==1, this register is read-only.

SMMU_S_CMDQ_BASE is Guarded by SMMU_S_CR0.CMDQEN and must only be modified when
SMMU_S_CR0.CMDQEN==0.

A write while SMMU_S_CR0.CMDQEN==1 is CONSTRAINED UNPREDICTABLE and has one of the following
behaviors:

• The register takes on any value, which might cause commands to be fetched from an UNPREDICTABLE
address.

• The write is ignored.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 263 of 443

 Non-Confidential

A read following such a write will return an UNKNOWN value.

Upon initialization, if SMMU_IDR1.QUEUES_PRESET==0 then the SMMU_S_CMDQ_BASE.LOG2SIZE field
might affect which bits of SMMU_S_CMDQ_CONS.RD and SMMU_S_CMDQ_PROD.WR can be written upon
initialization. The registers must be initialized in this order:

4. Write SMMU_S_CMDQ_BASE to set the queue base and size
5. Write initial values to SMMU_S_CMDQ_CONS and SMMU_S_CMDQ_PROD.
6. Enable the queue with an Update of the respective SMMU_S_CR0.CMDQEN to 1.

This also applies to the initialization of Secure Event queue registers.

Access attributes of the Secure Command queue are set using the SMMU_S_CR1.QUEUE_* fields. A Read-
Allocate hint is provided for Secure Command queue accesses with the RA field.

6.3.62 SMMU_S_CMDQ_CONS
• [31] Reserved, RES0.

• [30:24] ERR Error reason code.

o When a command execution error is detected, ERR is set to a reason code and then the
SMMU_S_GERROR.CMDQ_ERR global error becomes active.

o The value in this field is UNKNOWN when the CMDQ_ERR global error is not active.

• [23:20] Reserved, RES0.

• [QS] RD_WRAP Secure Command queue read index wrap flag.

• [QS-1:0] RD[QS-1:0] Secure Command queue read index.
o Updated by the SMMU (consumer) indicating which command entry has just been executed.

QS = SMMU_S_CMDQ_BASE.LOG2SIZE and SMMU_S_CMDQ_BASE.LOG2SIZE ≤ SMMU_IDR1.CMDQS ≤ 19.
This gives a configurable-sized index pointer followed immediately by the wrap bit.
If QS < 19, bits [19:QS+1] are RAZ. When incremented by the SMMU, the RD index is always wrapped to the
current queue size given by SMMU_S_CMDQ_BASE.LOG2SIZE.
If QS = 0 the queue has one entry: zero bits of RD index are present and RD_WRAP is bit zero.

When SMMU_S_CMDQ_BASE.LOG2SIZE is increased within its valid range, the value of this register’s bits that
were previously above the old wrap flag position are UNKNOWN and when it is decreased, the value of the bits from
the wrap flag downward are the effective truncation of the value in the old field.

This register resets to an UNKNOWN value. ARM recommends that software initializes the register to a valid value
before SMMU_S_CR0.CMDQEN is transitioned from 0 to 1.
This register is Guarded by SMMU_S_CR0.CMDQEN and must only be modified when
SMMU_S_CR0.CMDQEN==0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 264 of 443

 Non-Confidential

A write to this register when SMMU_S_CR0.CMDQEN==1 is CONSTRAINED UNPREDICTABLE and has one of the
following behaviors:

• The write is ignored.
• The register takes on any value and it is UNPREDICTABLE whether it affects the internal state of the SMMU

Secure Command queue. The SMMU might consume commands from UNPREDICTABLE locations within
the Secure Command queue.

A read following such a write will return an UNKNOWN value.

Upon a write to this register, when SMMU_S_CR0.CMDQEN==0, the ERR field is permitted to either take the
written value or ignore the written value.

Note: There is no requirement for the SMMU to update this value after every command consumed, it might be
updated only after an implementation specific number of commands have been consumed. However, an SMMU
must ultimately update RD in finite time to indicate free space to software.

When a command execution error is detected, ERR is set to a reason code and then the respective
SMMU_S_GERROR.CMDQ_ERR error becomes active. RD remains pointing at the infringing command for
debug. The SMMU resumes processing commands after the CMDQ_ERR error is acknowledged, if the Secure
Command queue is enabled at that time. SMMU_S_GERROR.CMDQ_ERR has no other interaction with
SMMU_S_CR0.CMDQEN than that a Secure Command queue error can only be detected when the queue is
enabled and therefore consuming commands. A change to CMDQEN does not affect, or acknowledge,
SMMU_S_GERROR.CMDQ_ERR which must be explicitly acknowledged. See section 7.1.

6.3.63 SMMU_S_CMDQ_PROD
• [31:20] Reserved, RES0.

• [QS] WR_WRAP Secure Command queue write index wrap flag.

• [QS-1:0] WR[QS-1:0] Secure Command queue write index.

o Updated by the host PE (producer) indicating the next empty space in the queue after the new
data.

QS = SMMU_S_CMDQ_BASE.LOG2SIZE, see SMMU_S_CMDQ_CONS.
If QS < 19, bits [19:QS+1] are RES0. If software writes a non-zero value to these bits, the value might be stored
but has no other effect. In addition, if SMMU_IDR1.CMDQS < 19, bits [19:CMDQS+1] are UNKNOWN on read.
If QS = 0 the queue has one entry: zero bits of WR index are present and WR_WRAP is bit zero.

When software increments WR, if the index would pass off the end of the queue it must be correctly wrapped to
the queue size given by QS and WR_WRAP toggled.
Note: In the limit case of a one-entry queue, an increment of WR consists solely of a toggle of WR_WRAP.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 265 of 443

 Non-Confidential

There is space in the queue for additional commands if:
 SMMU_S_CMDQ_CONS.RD != SMMU_S_CMDQ_PROD.WR ||

 SMMU_S_CMDQ_CONS.RD_WRAP == SMMU_S_CMDQ_PROD.WR_WRAP
The value written to this register must only move the pointer in a manner consistent with adding N consecutive
entries to the command queue, updating WR_WRAP when appropriate.

When SMMU_S_CMDQ_BASE.LOG2SIZE is increased within its valid range, the value of the bits of this register
that were previously above the old wrap flag position are UNKNOWN and when it is decreased, the value of the bits
from the wrap flag downward are the effective truncation of the value in the old field.

This register resets to an UNKNOWN value. ARM recommends that software initializes the register to a valid value
before SMMU_S_CR0.CMDQEN is transitioned from 0 to 1.

A write to this register causes the SMMU to consider the Command queue for processing if
SMMU_S_CR0.CMDQEN==1 and SMMU_S_GERROR.CMDQ_ERR is not active.

6.3.64 SMMU_S_EVENTQ_BASE
• [63] Reserved, RES0.

• [62] WA Write Allocate hint.

o 0b0: No Write-Allocate.
o 0b1: Write-Allocate.

• [61:52] Reserved, RES0.

• [51:5] ADDR[51:5] Physical address of Secure Event queue base.

o Address bits above and below this field range are treated as zero.
o High-order bits of the ADDR field above the system physical address size, as reported by

SMMU_IDR5.OAS, are RES0.
 Note: An implementation is not required to store these bits.

o The effective base address is aligned by the SMMU to the queue size in bytes, ignoring the least-
significant bits of ADDR as required to do so.

• [4:0] LOG2SIZE[4:0] Queue size as log2(entries)
o LOG2SIZE is less than or equal to SMMU_IDR1.EVENTQS. Except for the purposes of readback

of this register, any use of the value of this field is capped at the maximum,
SMMU_IDR1.EVENTQS.

When SMMU_IDR1.QUEUES_PRESET==1, this register resets to an IMPLEMENTATION DEFINED value. Otherwise
this register resets to an UNKNOWN value.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 266 of 443

 Non-Confidential

When SMMU_IDR1.QUEUES_PRESET==1, this register is read-only.

Otherwise, SMMU_S_EVENTQ_BASE is Guarded by the respective SMMU_S_CR0.EVENTQEN and must only
be modified when EVENTQEN==0.

A write while SMMU_S_CR0.EVENTQEN==1 is CONSTRAINED UNPREDICTABLE and has one of the following
behaviors:

• The register takes on any value, which might cause events to be written to UNPREDICTABLE addresses.
• The write is ignored.

A read following such a write will return an UNKNOWN value.

See SMMU_S_CMDQ_BASE for initialization order with respect to the PROD and CONS registers.

Events destined for an Event queue (for the appropriate Security state, if supported) are delivered into the queue if
SMMU_S_CR0.EVENTQEN==1 and the queue is writable. If SMMU_S_CR0.EVENTQEN == 0, no events are
delivered into the queue. See section 7.2, some events might be lost in these situations.

Access attributes of the Secure Event queue are set using the SMMU_S_CR1.QUEUE_* fields. A Write-Allocate
hint is provided for Secure Event queue accesses with the WA field.

6.3.65 SMMU_S_EVENTQ_CONS
• [31] OVACKFLG Overflow acknowledge flag.

o Software must set this flag to the value of SMMU_S_EVENTQ_PROD.OVFLG when it is safe for
the SMMU to report a future Event queue overflow. ARM recommends that this is be done on
initialization and after a previous Event queue overflow is handled by software.

o See section 7.4.

• [30:20] Reserved, RES0.

• [QS] RD_WRAP Secure Event queue read index wrap flag

• [QS-1:0] RD[QS-1:0] Secure Event queue read index.
o Entry last read by PE, that is the first empty queue location.

QS = SMMU_S_EVENTQ_BASE.LOG2SIZE and SMMU_S_EVENTQ_BASE.LOG2SIZE ≤
SMMU_IDR1.EVENTQS ≤ 19.
This gives a configurable-sized index pointer followed immediately by the wrap bit.
If QS < 19, bits [19:QS+1] are RES0. If software writes a non-zero value to these bits, the value might be stored
but has no other effect. In addition, if SMMU_IDR1.EVENTQS < 19, bits [19:EVENTQS+1] are UNKNOWN on read.
If QS = 0 the queue has one entry: zero bits of RD index are present and RD_WRAP is bit zero.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 267 of 443

 Non-Confidential

When software increments RD, if the index would pass off the end of the queue it must be correctly wrapped to
the queue size given by QS and RD_WRAP toggled.

This register resets to an UNKNOWN value. ARM recommends that software initializes the register to a valid value
before SMMU_S_CR0.EVENTQEN is transitioned from 0 to 1.

When SMMU_S_EVENTQ_BASE.LOG2SIZE is increased within its valid range, the value of the bits of this
register that were previously above the old wrap flag position are UNKNOWN and when it is decreased, the value of
the bits from the wrap flag downward are the effective truncation of the value in the old field.

6.3.66 SMMU_S_EVENTQ_PROD
• [31] OVFLG Secure Event queue overflowed

o An Secure Event queue overflow is indicated using this flag. This flag is toggled by the SMMU
when a queue overflow is detected, if OVFLG==SMMU_EVENTQ_CONS.OVACKFLG.

o This flag will not be updated until a prior overflow is acknowledged by setting
SMMU_EVENTQ_CONS.OVACKFLG equal to OVFLG.

• [30:20] Reserved, RES0.

• [QS] WR_WRAP Secure Event queue write index wrap flag.

• [QS-1:0] WR[QS-1:0] Secure Event queue write index.
o This bit indicates the next space to be written by SMMU.

QS = SMMU_S_EVENTQ_BASE.LOG2SIZE, see SMMU_S_EVENTQ_CONS.
If QS < 19, bits [19:QS+1] are RAZ. When incremented by the SMMU, the WR index is always wrapped to the
current queue size given by QS.
If QS = 0 the queue has one entry: zero bits of WR index are present and WR_WRAP is bit zero.

When SMMU_S_EVENTQ_BASE.LOG2SIZE is increased within its valid range, the value of the bits of this
register that were previously above the old wrap flag position are UNKNOWN and when it is decreased, the value of
the bits from the wrap flag downward are the effective truncation of the value in the old field.

This register resets to an UNKNOWN value. ARM recommends that software initializes the register to a valid value
before SMMU_S_CR0.EVENTQEN is transitioned from 0 to 1.
This register is Guarded by SMMU_S_CR0.EVENTQEN and must only be modified when
SMMU_S_CR0.EVENTQEN==0.

A write to this register when SMMU_S_CR0.EVENTQEN==1 is CONSTRAINED UNPREDICTABLE and has one of the
following behaviors:

• The write is ignored.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 268 of 443

 Non-Confidential

• The register takes on any value and it is UNPREDICTABLE whether it affects the internal state of the SMMU
Secure Event queue. The SMMU might write events to UNPREDICTABLE locations within the Secure Event
queue.

A read following such a write will return an UNKNOWN value.
Note: See section 7.4 for details on queue overflow. An overflow condition is entered when a record has been
discarded due to a full enabled Secure Event queue. The following conditions do not cause an overflow condition:

• Event records discarded when the Secure Event queue is disabled, that is when
SMMU_S_CR0.EVENTQEN==0.

• A stalled faulting transaction, as stall event records do not get discarded when the queue is full or
disabled.

6.3.67 SMMU_S_EVENTQ_IRQ_CFG0, SMMU_S_EVENTQ_IRQ_CFG1,
SMMU_S_EVENTQ_IRQ_CFG2
Similar to SMMU_EVENTQ_IRQ_CFG{0,1,2}, for Secure Event queue interrupts when Secure MSIs are
supported.

6.3.68 SMMU_S_GATOS_CTRL
• [31:1] Reserved, RES0.

• [0] RUN Run ATOS translation.

o ARM recommends that software writes this bit to 1 to initiate the translation operation, after
initializing the ATOS_SID and ATOS_ADDR registers.

o The SMMU clears the RUN flag after the translation completes and its result is visible in
ATOS_PAR.

o A write of 0 to this flag might change the value of the flag but has no other effect. Software must
only write 0 to this flag when the flag is zero.

This register resets to zero.

SMMU_S_GATOS_{CTRL, SID, ADDR, PAR} are only present if SMMU_IDR0.ATOS==1, otherwise they are
Reserved. See section 9 for more information on the overall behavior of ATOS operations.

RUN is Guarded by SMMU_S_CR0.SMMUEN and must only be set when SMMUEN==1 and RUN==0.

ATOS_CTRL.RUN must not be set to 1 after SMMU_S_CR0.SMMUEN has been written to 0, including at a point
prior to the completion of an update to SMMUEN. Behavior of doing so is CONSTRAINED UNPREDICTABLE and one
of the following occurs:

• The write is ignored.
• The value is stored and visible for readback, but no other effect occurs and RUN is not cleared by the

SMMU unless SMMUEN is later Updated to 1.

Between software writing ATOS_CTRL.RUN=1 and observing the SMMU having cleared it to 0 again,

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 269 of 443

 Non-Confidential

• Writes to ATOS_SID, ATOS_ADDR and VATOS_SEL (if appropriate) are CONSTRAINED UNPREDICTABLE
and one of the following occurs:

o The write is ignored.
o Translation is performed with any value of the written register. After completion, ATOS_PAR is

UNKNOWN.
Note: HTTU might have been performed to an UNPREDICTABLE set of TTDs that could otherwise
have been updated using any given value of the written register.

• Writes to ATOS_CTRL are CONSTRAINED UNPREDICTABLE and one of the following occurs:
o The write is ignored.
o The value is stored and visible for readback, but translation is unaffected and completes normally.

Note: If RUN=0 was written, it is not possible to determine that the translation has completed.
• Reads of ATOS_PAR return an UNKNOWN value.

The completion of an Update of SMMUEN from 1 to 0 while RUN==1 is contingent on the completion of the ATOS
operation, which clears RUN. Clearing SMMUEN while RUN==1 is CONSTRAINED UNPREDICTABLE and the
completion of the SMMUEN==0 update ensures one of the following behaviors:

• The operation has completed normally and a valid translation or fault response is reported.
• The ATOS operation has been aborted, reporting ATOS_PAR.FAULT==1 and

ATOS_PAR.FAULTCODE==INTERNAL_ERR.
o The translation table walks for the ongoing ATOS translation might have been partially performed.

If HTTU was performed during the translation, an UNPREDICTABLE set of the TTDs relevant to the
translation table walks might have been updated.

An Update of SMMUEN from 0 to 1 clears RUN, if RUN was set while SMMUEN==0. Completion of the Update
occurs after RUN has been cleared for all relevant ATOS register groups.

6.3.69 SMMU_S_GATOS_SID
• [63:53] Reserved, RES0.

• [52] SSEC Secure stream lookup

o 0b0: Non-secure stream lookup: STREAMID field is a Non-secure StreamID.
o 0b1: Secure stream lookup: STREAMID field is a Secure StreamID.

• [52] SSID_VALID SubstreamID valid.

o If SMMU_IDR1.SSIDSIZE=0, this field is RES0.

• [51:32] SUBSTREAMID SubstreamID of request.
o If SMMU_IDR1.SSIDSIZE<20, bits [51:32+SMMU_IDR1.SSIDSIZE] are RES0.

• [31:0] STREAMID StreamID of request.

o This is written with the StreamID (used to locate translations/CDs) of the request later submitted
to SMMU_S_GATOS_ADDR.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 270 of 443

 Non-Confidential

o If SMMU_IDR1.SID_SIZE<32 and SMMU_S_IDR1.S_SIDSIZE<32, bits
[31:MAX(SMMU_IDR1.SID_SIZE, SMMU_S_IDR1.S_SID_SIZE)] are RES0.

This register resets to an UNKNOWN value.

Bits of SUBSTREAMID and STREAMID outside of the supported range are RES0.

This register is Guarded by SMMU_S_GATOS_CTRL.RUN and must only be altered when RUN==0.

6.3.70 SMMU_S_GATOS_ADDR
• [63:12] ADDR Requested input address

.
• [11:10] TYPE Request type.

o 0b00 Reserved.
o 0b01 Stage 1 (VA to IPA).
o 0b10 Stage 2 (IPA to PA).
o 0b11 Stage 1 and stage 2 (VA to PA).
o Use of a Reserved value results in an INV_REQ ATOS error.

• [9] PnU Privileged or User access.

o 0b0: Unprivileged.
o 0b1: Privileged.

• [8] RnW Read/Write access.

o 0b0: Write.
o 0b1: Read.

• [7] InD Instruction/Data access.

o 0b0: Data.
o 0b1: Instruction.
o This bit is IGNORED if RnW=0, and the effective InD for writes is Data.

• [6] HTTUI Inhibit hardware TTD flag update.

o 0b0: Flag update (HTTU) might occur, where supported by the SMMU, according to the HA
and HD configuration fields at stage 1 and stage 2.

o 0b1: HTTU is inhibited, regardless of HA and HD configuration.
 The ATOS operation causes no state change.

• [5:0] Reserved, RES0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 271 of 443

 Non-Confidential

This register resets to an UNKNOWN value.

This register is Guarded by SMMU_S_GATOS_CTRL.RUN and must only be altered when RUN==0.

6.3.71 SMMU_S_GATOS_PAR
Read-only.

This result register encodes both successful results and error results, the format is determined by the FAULT field:

• [0] FAULT Fault/error status
o 0b0: No fault.
o 0b1: Fault/translation error.

When FAULT==0, a successful result is present:

• [63:56] ATTR[7:0] Memory attributes, in MAIR format

• [55:52] Reserved, RES0.

• [51:12] ADDR[51:12] Result address.
o Address bits above and below [51:12] are treated as zero.
o In SMMUv3.0, bits [51:48] are RES0.

• [11] Size Translation page/block size.

• [10] NS NS attribute determined from translation table.

o Note: This bit is RES0 in SMM_GATOS_PAR and SMMU_VATOS_PAR.

• [9:8] SH Shareability attribute.
o 0b00: Non-shareable.
o 0b01: Reserved.
o 0b10: Outer Shareable.
o 0b11: Inner Shareable.

 Note: Shareability is returned as Outer Shareable when ATTR selects any Device type.

• [7:1] Reserved, RES0.

The Size field allows the page, block, or section size of the translation to be determined, using an encoding in the
ADDR field. The Size flag indicates that:

• 0: Translation is 4KB
• 1: Translation is determined by position of lowest 1 bit in ADDR field

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 272 of 443

 Non-Confidential

The translated address is aligned to the translation size (appropriate number of LSBs zeroed) and then, if the size
is >4KB, a single bit is set such that its position, N, denotes the translation size, where 2(N+1) = size in bytes.

For example, if Size=1 and ADDR[14:12]==0 and ADDR[15]==1, the lowest set bit is 15 so the translation size is
215+1, or 64KB. In this case, ARM expects software to align the actual output address to 64KB by masking out bit
15. Similarly, an output address with ADDR[13:12]==0b10 denotes a page of size 213+1, or 16KB, and the output
address is taken from ADDR[47] upwards.

An implementation that does not support all of the defined attributes is permitted to return the behavior that the
cache supports, instead of the exact value from the translation table entries. Similarly, an implementation might
return the translation page or block size that is cached rather than the size that is determined from the translation
table entries.

The returned memory attributes and Shareability are determined from the translation tables without including STE
overrides that might be configured for the given stream.

• When ATOS_ADDR.TYPE==stage 1, the stage 1 translation table attributes are returned.
• When ATOS_ADDR.TYPE==stage 2, the stage 2 translation table attributes are returned. In this case,

the allocation and transient hints in ATTR are:
o RA = WA = 1
o TR = 0
o Note: The stage 2 TTD.MemAttr[3:0] field does not encode RA/WA/TR.

• When ATOS_ADDR.TYPE== stage 1 and stage 2, the attributes returned are those from stage 1
combined with stage 2 (where combined is as defined in Section 13).

When FAULT==1, the translation has failed and a fault syndrome is present:

• [63:60] IMPDEF IMPLEMENTATION DEFINED fault data

• [59:52] Reserved, RES0.

• [51:12] FADDR[51:12] Stage 2 fault page address.
o The value returned in FADDR depends upon the cause of the fault. See section 9.1.4 for details.
o In SMMUv3.0, bits [51:48] are RES0.

• [11:4] FAULTCODE Fault/error code.

o See section 9.1.4 for details.

• [3] Reserved, RES0.

• [2:1] REASON Class of activity causing fault
o This indicates the stage and reason for the fault. See section 9.1.4 for details.
o 0b00: Stage 1 translation-related fault occurred, or miscellaneous non-translation fault not

attributable to a translation stage (for example F_BAD_STE).
o 0b01: CD: Stage 2 fault occurred because of a CD fetch

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 273 of 443

 Non-Confidential

o 0b10: TT: Stage 2 fault occurred because of a stage 1 translation table walk
o 0b11: IN: Stage 2 fault occurred because of the input address to stage 2 (output address

from successful stage 1 translation table walk, or address given in ATOS_ADDR for stage 2-only
translation)

The content of ATOS_PAR registers is UNKNOWN if values in the ATOS register group are modified after a
translation has been initiated by setting ATOS_CTRL.RUN==1. See section 9.1.4.

This register resets to an UNKNOWN value.

This register has an UNKNOWN value if read when ATOS_CTRL.RUN==1.

6.3.72 ID_REGS
Register offsets 0xFD0-0xFFC are defined as a read-only identification register space. For ARM implementations
of the SMMU architecture the assignment of this register space, and naming of registers in this space, is
consistent with the ARM identification scheme for ARM CoreLink and ARM CoreSight components. ARM strongly
recommends that other implementers also use this scheme to provide a consistent software discovery model.

For ARM implementations, the following assignment of fields, consistent with CoreSight ID registers [8], is used:

Offset Name Field Value Meaning

0xFF0 SMMU_CIDR0, Component ID0 [7:0] 0x0D Preamble

0xFF4 SMMU_CIDR1, Component ID1 [7:4] 0xF CLASS

 [3:0] 0x0 Preamble

0xFF8 SMMU_CIDR2, Component ID2 [7:0] 0x05 Preamble

0xFFC SMMU_CIDR3, Component ID3 [7:0] 0xB1 Preamble

0xFE0 SMMU_PIDR0, Peripheral ID0 [7:0] IMPDEF PART_0: bits [7:0] of the Part number

0xFE4 SMMU_PIDR1, Peripheral ID1 [7:4] IMPDEF DES_0: bits [3:0] of the JEP106 Designer code

 [3:0] IMPDEF PART_1: bits [11:8] of the Part number

0xFE8 SMMU_PIDR2, Peripheral ID2 [7:4] IMPDEF REVISION

 [3] 1 JEDEC-assigned value for DES always used

 [2:0] IMPDEF DES_1: bits [6:4] bits of the JEP106 Designer
code

0xFEC SMMU_PIDR3, Peripheral ID3 [7:4] IMPDEF REVAND

 [3:0] IMPDEF CMOD

0xFD0 SMMU_PIDR4, Peripheral ID4 [7:4] 0 SIZE

 [3:0] IMPDEF DES_2: JEP106 Designer continuation code

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 274 of 443

 Non-Confidential

0xFD4 SMMU_PIDR5, Peripheral ID5 RES0 Reserved

0xFD8 SMMU_PIDR6, Peripheral ID6 RES0 Reserved

0xFDC SMMU_PIDR7, Peripheral ID7 RES0 Reserved

Fields outside of those defined in this table are RES0.

Note: The Designer code fields (DES_*) fields for ARM-designed implementations use continuation code 0x4 and
Designer code 0x3B.

Note: Non-ARM implementations that follow this CoreSight ID register layout must set the Designer fields
appropriate to the implementer.

6.3.73 SMMU_VATOS_CTRL, SMMU_VATOS_SID, SMMU_VATOS_ADDR,
SMMU_VATOS_PAR
SMMU_VATOS_CTRL, SMMU_VATOS_SID, SMMU_VATOS_ADDR and SMMU_VATOS_PAR are present only
if SMMU_IDR0.VATOS==1.
See section 9 for more information on the behavior of ATOS operations.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 275 of 443

 Non-Confidential

7 EVENT QUEUE, FAULTS AND ERRORS
There are three ways that unexpected or erroneous events can be reported to software:

1. Commands given to the SMMU might be in some way incorrect and the Command queue has a
mechanism to report such problems.

2. A set of configuration errors and faults are recorded in the Event queue. These include events that arise
from incoming device traffic, such as a configuration error (discovered when configuration is fetched on
receipt of device traffic) or a page fault arising from the device traffic address.

3. A global register-based SMMU_GERROR mechanism reports events arising from a failure to record into
the Event or PRI queues and other catastrophic events that cannot be written to memory. This might
happen when the Event queue base pointer incorrectly indicates non-existent memory, or queue overflow.

7.1 Command queue errors
The Command queue entry formats are described in chapter 4, which defines what is considered to be a valid
command. Commands are consumed in-order and when a command error or command fetch abort is detected:

• Command consumption stops.
• Older commands (prior to the erroneous command in the queue) fully complete their execution and can

be observed to have been Consumed.
Note: By definition, earlier commands must have been Consumed for a later invalid command to be
indicated using CMDQ_CONS.

• SMMU_(S_)CMDQ_CONS.RD remains pointing to the erroneous command in the Command queue. The
CONS index is not permitted to increment in the case where a command fetch experiences an external
abort, meaning that external aborts on command read are synchronous.

• The SMMU_(S_)CMDQ_CONS.ERR field is updated to provide an error code.
• The global Command queue Error is triggered: SMMU_(S_)GERROR.CMDQ_ERR is activated

(indicating that SMMU_(S_)CMDQ_CONS.ERR has been updated). Commands are not consumed from
the affected queue while this error is active, see 7.5 and 6.3.18.

• Commands newer than the erroneous command have no effect, and if they have been fetched they are
discarded.

ARM recommends that software rectifies the cause of the command error, then restarts command processing by
acknowledging the CMDQ_ERR by writing an appropriate value to SMMU_(S_)GERRORN. Software is not
required to write SMMU_(S_)CMDQ_PROD to re-trigger command processing.
While the error is active, additional commands might be submitted and CMDQ_PROD might be moved backwards
as far as the CMDQ_CONS position so that previously-submitted but non-consumed commands are removed
from the queue. This is the only condition in which it is permissible to change CMDQ_PROD in a manner that is
not an increment/wrap while the queue is enabled, see section 3.21.2.

Commands at or after the CMDQ_CONS.RD position are fetched or re-fetched after command processing is
restarted by acknowledging CMDQ_ERR.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 276 of 443

 Non-Confidential

Note: A Command queue error is completely recoverable and, when the erroneous command is fixed or replaced
with a valid command, consumption can be restarted. Older commands are unaffected by a later Command
queue error. It is acceptable for software to change the contents of the erroneous command and newer
commands while the error is active, as such commands are re-fetched when command processing is restarted.

The SMMU_(S_)CMDQ_CONS.ERR field is updated with the error reason code after detecting a command error.
The error reason code is made visible to software before the SMMU makes the global error visible.
Note: It is not possible for software to observe that an error has occurred through GERROR without being able to
observe the error code.

Note: If software polls SMMU_(S_)CMDQ_CONS waiting for prior commands to complete, ARM recommends
that GERROR.CMDQ_ERR is also be checked to avoid an infinite loop in the event of a command error.

A Command queue error can be raised for the following reasons:

SMMU_(S_)CMDQ_CONS.
ERR value

Error name Cause

0x00 CERROR_NONE No error
This value is defined for completeness only, and is
not provided by the SMMU in any error case.

0x01 CERROR_ILL Command illegal and cannot be correctly consumed
because of an:

• Unknown command opcode, including
architecture-defined commands irrelevant to
an implementation without a certain feature
or Security state. For example, stage 1
invalidation commands on an SMMU without
stage 1, secure invalidation commands from
the Non-secure command queue or stage 2
invalidation commands from the Secure
Command queue.

• Command valid but reserved field or invalid
value used.

0x02 CERROR_ABT Abort on command fetch: an external abort was
returned for a read of the command queue, if an
interconnect can detect and report such an event.

0x03 CERROR_ATC_INV_SYNC A CMD_SYNC failed to successfully complete one or
more previous CMD_ATC_INV commands. This is
the result of an ATS Invalidation Completion timeout.
See section 3.9.1.2.

7.2 Event queue recorded faults and events
Three categories of events might be recorded into the Event queue:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 277 of 443

 Non-Confidential

• Configuration errors.
• Faults from the translation process.
• Miscellaneous.

Configuration errors result from improper register, STE or CD contents and are associated with the translation of
an incoming transaction. An improper configuration in memory is not reported until the data structures are used in
response to a transaction. A fault from translation is reported only when a transaction attempts a translation. Any
incoming transaction might cause at most one event report which might be a configuration error or, if
configuration is all valid, one of several kinds of translation fault (which might be applicable to stage 1 or stage 2).

An SMMU implementation might prefetch configuration and TLB entries in an implementation specific manner. A
prefetched erroneous configuration does not record a configuration error (even if prefetched in response to an
explicit CMD_PREFETCH_* command). A translation fault or configuration error is recorded only on receipt of a
transaction.

Miscellaneous events are recorded asynchronously to incoming data transactions, for example
E_PAGE_REQUEST.

7.2.1 Recording of events and conditions for writing to the Event queue
Events are delivered into an Event queue if the queue is “writable”. The Event queue is writable when all of the
following are true:

• The queue is enabled, through SMMU_(S_)CR0.EVENTQEN for the Security state of the queue.
• The queue is not full (see section 7.4 regarding overflow).
• No unacknowledged GERROR.EVENTQ_ABT_ERR condition exists for the queue.

When the queue is not writable, events not associated with stalled faults are silently discarded. In addition, a
queue overflow condition is triggered when events are discarded because the queue is unwritable because it is
full, see section 7.4.

Events caused by stalled transactions are not discarded. A stalled faulting transaction that has not recorded an
event because the queue is unwritable has one of the following behaviors:

• If the stalled transaction is affected by a configuration or translation invalidation and CMD_SYNC, the
transaction must be retried after the queue becomes writable again (non-full, enabled and without a queue
abort condition). This either results in the transaction succeeding (because of a new configuration or
translation) in which case no event is recorded for the transaction, or the generation of a new fault
(reflecting new configuration or translation) which attempts to record an event into the queue, see section
4.6.3.

o A transaction that was not affected by an invalidation or CMD_SYNC is permitted (but not
required) to be retried in the same way as a transaction that is affected. The transaction might be
retried at the point that the queue becomes writable.

• Alternatively, the transaction retries while the queue is unwritable and translates successfully. The
original event might or might not be recorded in this case. If the retry leads to termination of the
transaction, the terminated fault record is lost if the queue is still unwritable.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 278 of 443

 Non-Confidential

• If the transaction is not retried, the original fault event record is recorded into the queue when it becomes
writable.

Refer also to the event delivery effects of CMD_STALL_TERM (4.6.2), CMD_SYNC (4.6.3) and SMMUEN
(6.3.9.6).

An external abort on write of the Event queue might cause written event data to be lost, including stall event
records. See section 7.2.2.

An event is permitted, but not required, to be recorded for a stalled faulting transaction when:

• The stalled transaction has early-retried and translated successfully before the SMMU has attempted to
write out its event record, see section 3.12.2.2.
Note: As the transaction has completed, there is no benefit in recording the original stall to software
because software intervention is not required to progress the transaction.

Events arising from terminated faulting transactions commit to being recorded into the Event queue if it is writable.
When EVENTQEN is transitioned to 0, committed events are written out and guaranteed to be visible by the time
the update completes and all uncommitted events from terminated faulting transactions are discarded. If
accesses to the Event queue aborted (see section 7.2.2 below), the condition is made visible in GERROR by the
time the EVENTQEN update completes. See sections 6.3.9.4 and 6.3.9.6.
Note: There is no dependency required between EVENTQEN and visibility of any GERROR MSI that might arise
from completion of outstanding queue writes that abort.

Some events are permitted to be recorded when SMMU_(S_)CR0.SMMUEN==0 where explicitly stated in the
event descriptions in this section. The remainder of events are related to the translation process and are not
generated when translation is disabled with SMMUEN==0.
Note: This means that SMMUEN==0 does not imply EVENTQEN==0.

7.2.2 Event queue access external abort
An external abort detected while accessing the Event queue, for example when writing a record, activates the
SMMU_(S_)GERROR.EVENTQ_ABT_ERR Global Error. It is IMPLEMENTATION DEFINED as to whether the
interconnect to the memory system can report transaction aborts. If EVENTQ_ABT_ERR is triggered, one or
more events might have been lost, including stall fault event records.

An implementation is permitted to read any address within the bounds of the Event queue when the queue is
enabled. In addition to writes of new records to the queue, such reads might also lead to an external abort.

The SMMU only writes to the Event queue when the queue is both enabled and writable, see section 7.2.1.

It is IMPLEMENTATION DEFINED whether an external abort on write is synchronous or asynchronous:

• If a queue write abort is synchronous, queue entry validity semantics are maintained so that all entries up
to the SMMU_(S_)EVENTQ_PROD index are valid successfully-written event records. All outstanding
queue writes are completed before the error is flagged in GERROR.EVENTQ_ABT_ERR. Where multiple

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 279 of 443

 Non-Confidential

outstanding record writes are performed simultaneously, records written at and beyond the queue location
of the aborting record location are not visible to software even if they are written successfully, and are lost.
The PROD index is not incremented for entries that caused a synchronous abort. In the scenario where a
write of an event to an empty Event queue causes a synchronous abort, the PROD index is not
incremented, the queue remains empty and the queue non-empty IRQ therefore is not triggered.

o Note: Software can consume and process all valid entries in the Event queue.
• If a queue write abort is asynchronous, queue validity semantics are broken. The PROD index is

permitted to be incremented for entries that caused an asynchronous abort. Software must assume all
Event queue entries are invalid at the point of receiving the Global Error, and ARM strongly recommends
that the queue is made empty either by re-initialization or by the consumption or discarding of all (invalid)
entries.

o Note: An IRQ might be observed for the activation of the
SMMU_(S_)GERROR.EVENTQ_ABT_ERR condition in any order relative to an IRQ relating to
the Event queue going non-empty as a result of the SMMU incrementing the PROD index for a
queue entry that experiences an asynchronous external abort.

If the stalling fault model is implemented and enabled, software must terminate all stalling transactions that could
be present in the SMMU by using CMD_STALL_TERM or a transition of SMMU_(S_)CR0.SMMUEN through 0.

See section 8.2 for similar PRI queue write abort behavior.

7.2.3 Secure and Non-secure Event queues
If two Security states are implemented, the Secure Event queue receives events relating to transactions from
Secure streams. The Non-secure Event queue receives events relating to transactions from Non-secure streams.
The Secure and Non-secure Event queues are independent. Non-secure faults or errors do not cause Secure
event records and Secure faults or errors do not cause Non-secure event records.

7.3 Event records
Event records are 32 bytes in size, and are defined later in this section. Event records are recorded into the Event
queue appropriate to the Security status of the StreamID causing the event, unless otherwise specified.

Common fields provided in events are:

• RnW: The Read/Write nature of the incoming transaction that led to the event
o 0: Write
o 1: Read

• PnU: Privileged/Unprivileged (post-STE override)
o 0: Unprivileged
o 1: Privileged

• InD: Instruction/Data (post-STE override)
o 0: Data
o 1: Instruction

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 280 of 443

 Non-Confidential

• InputAddr: The 64-bit address input to the SMMU for the transaction that led to the event. The
address includes any sign-extension that might occur before the SMMU input, as described in section
3.4.1. TBI does not affect the InputAddr field, which includes bits [63:56] in the same form as they were
supplied to the SMMU.

o Note: This field might be interpreted as a VA or an IPA depending on whether stage 1 translation
is enabled.

• SSV: The SubstreamID validity flag
o 0: No SubstreamID was provided with the transaction and the SubstreamID field is

UNKNOWN.
o 1: A SubstreamID was provided and the SubstreamID field is valid.

• S2: Stage of fault
o 0: Stage 1 fault occurred
o 1: Stage 2 fault occurred

• CLASS: The class of the operation that caused the fault
o 0b00 CD CD fetch.
o 0b01 TTD Stage 1 translation table fetch.
o 0b10 IN Input address caused fault.
o 0b11 Reserved.

Note: ARM recommends that software treats receipt of any event that is not architected here as a non-fatal
occurrence.

The F_STE_FETCH, F_CD_FETCH and F_WALK_EABT events contain fields that report a fetch address, which
is the address of a specific structure or descriptor that an aborting transaction was originally initiated to access.
This STE, CD, or TTD address is as was calculated by a Stream table or CD table access or translation table
walk.

Portions of event records that are not explicitly defined in this section are RES0.

7.3.1 Event record merging
Events originating from a stream are permitted to be merged when the stream has not been configured to
explicitly inhibit merging with STE.MEV==0. A merged event record is a single record written to the Event queue
representing more than one occurrence of an event.

Two or more events are permitted but not required to be merged by an implementation when:

• The events are identical, or differ only as explicitly stated in event record definitions, and
• If the event type has a Stall field, Stall==0. Events with a Stall parameter are never merged if Stall==1.
• The events are not separated by a significant amount of time.

o Note: The merging feature is intended to rate-limit events occurring at an unusually high
frequency. ARM strongly recommends that an implementation writes separate records for events
that do not occur in quick succession.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 281 of 443

 Non-Confidential

For the purposes of merging events, events are considered identical if all defined fields are the same except
where explicitly indicated by an event definition.

The STE.MEV flag controls whether events resulting from a particular stream are merged. When STE.MEV==0,
events (other than listed below) are not merged; this can be useful for debug visibility where one transaction can
be matched to one fault event. As STE.MEV is contained in an STE, it can only control the merging of events that
are generated after a valid STE is located. The following events might occur before an STE is located, so might
always be merged:

• F_UUT.
• C_BAD_STREAMID.
• F_STE_FETCH.
• C_BAD_STE.

Hardware implementations are required to respect STE.MEV==0, so that (other than the four events listed in this
section) no events are merged. ARM recommends that software expects that event records might be merged
even if STE.MEV==0.

Note: In particular, software running in a virtual machine might set STE.MEV==0 but a hypervisor might deem
merging to remain valuable and cause it to remain enabled.

Note: An event that is recorded when STE.MEV==1 and where Stall==0 can therefore be interpreted as
representing one or more transactions that faulted for the same reason.

7.3.2 F_UUT
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x01

+4 StreamID

+8 Reason (IMPLEMENTATION DEFINED)

+12 RnW InD PnU

+16  InputAddr[63:0]

+20 InputAddr[63:0] 

+24

+28

Event
number

Reason

0x01 Unsupported Upstream Transaction.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 282 of 443

 Non-Confidential

This event is caused for IMPLEMENTATION DEFINED reasons, depending on the bus system, a
client device might express an unsupported or illegal transaction type. See section 16.7.1. An
IMPLEMENTATION DEFINED cause is provided in Reason.

The InD/PnU/NS attributes provided in this event are the incoming attributes, not the post-STE
override versions.

This event is permitted to be recorded when SMMUEN==0.

7.3.3 C_BAD_STREAMID
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x02

+4 StreamID

+8

+12

+16

+20

+24

+28

Event
number

Reason

0x02 Transaction StreamID out of range.
Recorded when SMMU_(S_)CR2.RECINVSID=1 and any of the following conditions arises:
1) Incoming StreamID ≥ 2SMMU_(S_)STRTAB_BASE.LOG2SIZE

2) When SMMU_(S_)STRTAB_BASE.FMT = 2-level, given StreamID reaches a level 1
descriptor where:
a) L1STD.Span=0
b) L1STD.Span=Reserved
c) L1STD.Span > SMMU_(S_)STRTAB_BASE_CFG.SPLIT+1
d) The given StreamID[SPLIT-1:0] ≥ 2(L1STD.Span-1).

For out-of-range Secure StreamIDs, this event is recorded on the Secure Event queue and for Non-secure
StreamIDs, the Non-secure Event queue. Each Security state might have a different number of StreamIDs
(controlled by SMMU_STRTAB_BASE or SMMU_S_STRTAB_BASE).

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 283 of 443

 Non-Confidential

7.3.4 F_STE_FETCH
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x03

+4 StreamID

+8 Reason (IMPLEMENTATION DEFINED)

+12

+16

+20

+24  FetchAddr[51:3]

+28 FetchAddr[51:3] 

Event
number

Reason

0x03 Fetch of STE caused external abort (access aborted by system/interconnect/slave, or consumed
external error where RAS features available).

An IMPLEMENTATION DEFINED cause is provided in Reason.

Note: This event might be injected into a guest VM, as though from a virtual SMMU, when a hypervisor detects
invalid guest configuration that would cause a guest STE fetch from an illegal IPA.
ARM recommends that an implementation with RAS features differentiates a failure that arose because of the
consumption of an error from a failure caused by the use of an illegal address.

In SMMUv3.0, FetchAddr bits [51:48] are RES0.

7.3.5 C_BAD_STE
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x04

+4 StreamID

+8

+12

+16

+20

+24

+28

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 284 of 443

 Non-Confidential

Event
number

Reason

0x04 Used STE invalid (V=0, reserved field, incorrect configuration).

7.3.6 F_BAD_ATS_TREQ
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x05

+4 StreamID

+8 R W X P Span

+12

+16  InputAddr[63:12]

+20 InputAddr[63:12] 

+24

+28

Event
number

Reason

0x05 Address Translation Request disallowed for a StreamID and a PCIe ATS Translation Request
received.

R/W/X/PRIV are the Read/Write/Execute/Privilege permissions requested in the ATS Translation
Request, before STE.{INSTCFG/PRIVCFG} overrides are applied:

Write = !NW.
For PCIe ATS, R (Read) is always 1 in a request.

Span equals the number of STUs requested.

Reported in response to an ATS Translation Request in any of the following conditions:
• SMMU_CR0.SMMUEN==0

• STE.V==1 and effective STE.EATS==0b00
o Note: See STE.EATS for details. The effective value of EATS is treated as 0b00 in some

situations including if STE.Config==0b100, or STE is Secure.

• If it is possible for an implementation to observe a Secure ATS Translation Request, this event is
recorded.

Note: This event is intended to provide visibility of situations where an ATS Translation Request is prohibited, but
an ordinary transaction to the same address from the same StreamID or SubstreamID might complete
successfully (where a failure of a TR might otherwise be difficult to debug by issuing an ordinary transaction).
Translation Requests do not cause other events (such as C_BAD_STE) to be recorded.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 285 of 443

 Non-Confidential

A UR response is made for an ATS Translation Request that causes this event.

7.3.7 F_STREAM_DISABLED
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x06

+4 StreamID

+8

+12

+16

+20

+24

+28

Event
number

Reason

0x06 The STE of a transaction marks non-substream transactions disabled (when STE.Config[0] ==1
and STE.S1CDMax > 0 and STE.S1DSS=0b00) and the transaction was presented without a
SubstreamID.

Or, a transaction was presented with SubstreamID 0 when STE.Config[0] ==1 and
STE.S1CDMax > 0 and STE.S1DSS==0b10 (CD 0 is reserved for non-substream traffic).

If STE.V==1 and STE.Config=0b000, incoming traffic is terminated without recording an event.

7.3.8 F_TRANSL_FORBIDDEN
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 0x07

+4 StreamID

+8

+12 RnW

+16  InputAddr[63:0]

+20 InputAddr[63:0] 

+24

+28

Event Reason

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 286 of 443

 Non-Confidential

number

0x07 An incoming PCIe transaction is marked Translated but SMMU bypass is disallowed for this
StreamID.

This event is permitted to be recorded when SMMUEN==0.
Reported in response to an ATS Translated transaction in any of the following conditions:

• SMMU_CR0.ATSCHK==1, STE is valid and either:
o STE disallows ATS in STE.EATS.
o STE selects stage 1 & stage 2 bypass (STE.Config==0b100).

• StreamID is Secure (SEC_SID==1).
• SMMUEN==0.

Note: This event is intended to provide visibility of situations where an ATS Translated transaction is prohibited,
but an ordinary (Untranslated) transaction from the same StreamID or SubstreamID might complete successfully,
that is where behavior differs from an ordinary transaction because of the Translated nature of the transaction.

InputAddr[11:0] are IGNORED for the purposes of determining identical events for merging.

7.3.9 C_BAD_SUBSTREAMID
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID 0x08

+4 StreamID

+8

+12

+16

+20

+24

+28

Event
number

Reason

0x08 Incoming SubstreamID present and one of the following is true:
• Stage 1 translation disabled (STE.Config[0]==0)
• Substreams disabled (STE.S1CDMax==0)
• SubstreamID ≥ STE.S1CDMax
• A two-level CD fetch encounters an L1CD structure with V==0, or an L1CD structure that

contains an L2Ptr that is out of range (see 3.4.3).

When caused by supply of a SubstreamID without stage 1 translation (STE.Config[0]==0), this behavior arises
independent of whether stage 2 translation is enabled.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 287 of 443

 Non-Confidential

When this event is generated because of an L1CD.L2Ptr that is out of range, the SubstreamID field indicates the
index of the CD that was intended to be fetched when the erroneous L1CD.L2Ptr was used. In the case that an
incoming transaction without a SubstreamID caused (through use of STE.S1DSS==0b10) an erroneous
L1CD.L2Ptr to be encountered during fetch of the CD at index 0, the SubstreamID is recorded as 0. Otherwise,
the SubstreamID that was input with the transaction is recorded.
Note: In this event, SubstreamID is always valid (there is no SSV qualifier).

7.3.10 F_CD_FETCH
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x09

+4 StreamID

+8 Reason (IMPLEMENTATION DEFINED)

+12

+16

+20

+24  FetchAddr[51:3]

+28 FetchAddr[51:3] 

Event
number

Reason

0x09 Fetch of CD caused external abort (access aborted by system/interconnect/slave, or consumed
external error where RAS features available).

An IMPLEMENTATION DEFINED cause is provided in Reason.
FetchAddr is the Physical Address used for the fetch.

Note: This event might be injected into a guest VM, as though from a virtual SMMU, when a hypervisor receives a
stage 2 Translation-related fault indicating CD fetch as a cause (with CLASS=CD).
In SMMUv3.0, FetchAddr bits [51:48] are RES0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 288 of 443

 Non-Confidential

7.3.11 C_BAD_CD
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x0a

+4 StreamID

+8

+12

+16

+20

+24

+28

Event
number

Reason

0x0A Fetched CD invalid (V==0, or V==1 but ILLEGAL configuration).

7.3.12 F_WALK_EABT
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x0b

+4 StreamID

+8 Reason (IMPLEMENTATION DEFINED)

+12 CLASS S2 RnW InD PnU

+16  InputAddr[63:0]

+20 InputAddr[63:0] 

+24  FetchAddr[51:3]

+28 FetchAddr[51:3] 

Event
number

Reason

0x0B An external abort occurred fetching (or updating) a translation table descriptor (access aborted
by system/interconnect/slave, or consumed external error where RAS features available).

The InD/PnU attributes are the post-STE override values. RnW pertains to the input transaction
(InputAddr), not the access causing the abort. InD==0 when RnW==0 (see section 13.1.2).

A stage 1-only table walk that encounters EABT on physical access to a descriptor is reported as
S2==0 (stage 1), CLASS=TT. The SMMU input transaction address (InputAddr) and descriptor

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 289 of 443

 Non-Confidential

fetch PA (FetchAddr) are provided.
Note: This behavior of CLASS==TT when S2==0 differs from other F_TRANSLATION,
F_ADDR_SIZE, F_ACCESS, F_PERMISSION events relating to a stage 1 fault.

A stage 2 table walk can encounter EABT accessing the physical address of a stage 2
descriptor, because of a:

• Translation of an IPA for CD fetch
o S2==1 (stage 2), CLASS=CD
o The SMMU input address (InputAddr) and S2 descriptor fetch PA (FetchAddr)

are provided
• Translation of an IPA for Stage 1 descriptor fetch

o S2==1 (stage 2), CLASS=TT
o The SMMU input address (InputAddr) and S2 descriptor fetch PA (FetchAddr)

are provided
• Translation of an IPA after successful stage 1 translation (or, in stage 2-only

configuration, an input IPA)
o S2==1 (stage 2), CLASS=IN (Input to stage)
o The SMMU input address (InputAddr) and S2 descriptor fetch PA (FetchAddr)

are provided.

A stage 1 walk (nested with stage 2) can encounter EABT accessing the physical address of a
stage 1 descriptors having successfully translated the IPA of the descriptor to a PA through
stage 2:

• S2==0 (stage 1), CLASS=TT
• This is equivalent to the stage 1-only case.
• The SMMU input address (InputAddr) and S1 descriptor fetch PA (FetchAddr) are

provided.

An IMPLEMENTATION DEFINED cause is provided in Reason.

Note: This event occurs because of an incorrect configuration or, for systems supporting RAS
features, consumption of an external error. A stage 1-only translation failing to walk a translation
table might result from use of an incorrect or out of range PA in the table. When virtualization is
in use, stage 2 translations would normally be fetched correctly. In addition, ARM recommends
that hypervisor software does not allow a stage 1 walk to fetch a descriptor from an IPA that
successfully translates to PA that causes an abort on access.

When an AArch32 TTD fetch leads to an F_WALK_EABT on a system that has OAS<40, a 40-
bit descriptor address was truncated to the OAS to make the fetch. In this case, bits
FetchAddr[47:OAS] are UNKNOWN.

Note: To create the illusion of a guest VM having a stage 1-only virtual SMMU, this event can be injected into the
guest if a stage 2 Translation, Access flag, Permission or Address Size fault occurs because of an access made
by a stage 1 translation table walk (CLASS=TT).

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 290 of 443

 Non-Confidential

InputAddr[11:0] are IGNORED for the purposes of determining identical events for merging.

In SMMUv3.0, FetchAddr bits [51:48] are RES0.

7.3.13 F_TRANSLATION
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x10

+4 StreamID

+8 Stall STAG

+12 IMPLEMENTATION DEFINED CLASS S2 RnW InD PnU

+16  InputAddr[63:0]

+20 InputAddr[63:0] 

+24  IPA[51:12]

+28 IPA[51:12] 

Event
number

Reason

0x10 Translation fault: The address provided to a stage of translation failed the range check defined
by TxSZ/SLx, the address was within a disabled TTBx, or a valid translation table descriptor was
not found for the address.

The RnW, InD and PnU fields provide the access attributes of the input transaction. The
InD/PnU attributes are the post-STE override values. InD==0 when RnW==0.

If fault occurs at stage 1, S2==0 and:

• CLASS=IN, IPA is UNKNOWN.
If fault occurs at stage 2, S2==1 and:

• If fetching a CD, CLASS=CD, IPA is CD address
• If walking stage 1 translation table, CLASS=TT, IPA is the stage 1 TTD address
• If translating an IPA for a transaction (whether by input to stage 2-only configuration, or

after successful stage 1 translation), CLASS=IN, and IPA is provided.

If Stall=1, not merged. InputAddr[11:0] are IGNORED for the purposes of determining identical events for merging.
In SMMUv3.0, IPA bits [51:48] are RES0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 291 of 443

 Non-Confidential

7.3.14 F_ADDR_SIZE
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x11

+4 StreamID

+8 Stall STAG

+12 IMPLEMENTATION DEFINED CLASS S2 RnW InD PnU

+16  InputAddr[63:0]

+20 InputAddr[63:0] 

+24  IPA[51:12]

+28 IPA[51:12] 

Event
number

Reason

0x11 Address Size fault: Output address of a translation stage caused Address Size fault. When the
stage performs translation, this fault occurs when an intermediate or leaf TTD outputs an
address outside of the effective xPS associated with the translation table (see CD.IPS and
STE.S2PS). This does not include a TTB address out of range before the TTW begins as, in this
condition, the CD or STE is invalid which results in C_BAD_CD or C_BAD_STE. When stage 1
bypasses translation, this fault occurs when the output address (identical to the input address) is
outside the address range implemented, see section 3.4.

Refer to F_TRANSLATION for the definition of the CLASS, IPA and S2 fields.

The RnW, InD and PnU fields provide the access attributes of the input transaction. The
InD/PnU attributes are the post-STE override values. InD==0 when RnW==0.

If caused by stage 1 translation bypass (because of stage 1 being disabled, unimplemented, or
bypassed when STE.S1DSS==0b01), CLASS==IN and S2==0 (stage 2 bypass does not cause
this fault).

If Stall==1, not merged. InputAddr[11:0] are IGNORED for the purposes of determining identical events for merging.

In SMMUv3.0, IPA bits [51:48] are RES0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 292 of 443

 Non-Confidential

7.3.15 F_ACCESS
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x12

+4 StreamID

+8 Stall STAG

+12 IMPLEMENTATION DEFINED CLASS S2 RnW InD PnU

+16  InputAddr[63:0]

+20 InputAddr[63:0] 

+24  IPA[51:12]

+28 IPA[51:12] 

Event
number

Reason

0x12 Access flag fault due to AF==0 in a page or block TTD.
If HTTU is supported and enabled, a TTD with AF==0 is modified such that AF==1 and this fault
is not recorded.

Refer to F_TRANSLATION for the definition of the CLASS, IPA and S2 fields.
The RnW, InD and PnU fields provide the access attributes of the input transaction. The
InD/PnU attributes are the post-STE override values. InD==0 when RnW==0.

If Stall==1, not merged. InputAddr[11:0] are IGNORED for the purposes of determining identical events for merging.
In SMMUv3.0, IPA bits [51:48] are RES0.

7.3.16 F_PERMISSION
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x13

+4 StreamID

+8 Stall STAG

+12 IMPLEMENTATION DEFINED
TT

RnW
 CLASS S2 RnW InD PnU

+16  InputAddr[63:0]

+20 InputAddr[63:0] 

+24  IPA[51:12]

+28 IPA[51:12] 

Event
number

Reason

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 293 of 443

 Non-Confidential

0x13 Permission fault occurred on page access.
S2 indicates the stage at which fault occurred.

The RnW, InD and PnU fields provide the access attributes of the input transaction. The
InD/PnU attributes are the post-STE override values. InD==0 when RnW==0.

Refer to F_TRANSLATION for the definition of the CLASS, IPA and S2 fields.

The TTRnW field is valid when CLASS=TT, that is, a stage 1 TTD access causes a Permission
fault at stage 2. TTRnW is UNKNOWN when CLASS is not TT.
TTRnW indicates the read/write property that actually caused the fault as follows:
 0 TTD Write caused S2 Permission fault.

1 TTD Read caused S2 Permission fault.

Note: For example, an input read might end up causing a TTD write permissions fault at stage 2,
when HTTU updates a stage 1 Access flag.
Note: When CLASS=TT, the IPA field indicates the stage 1 TTD address.

Note: ARM recommends that CLASS is used to determine the access properties causing the
Permission fault. When CLASS=IN, RnW/InD/PnU were inappropriate for the access at the
faulting stage. When CLASS=TT, the access is implicitly Data (regardless of the input property)
and the faulting R/W property is given by TTRnW. When CLASS=CD, the access is implicitly
Data and a read.

If Stall=1, not merged. InputAddr[11:0] are IGNORED for the purposes of determining identical events for merging.
In SMMUv3.0, IPA bits [51:48] are RES0.

7.3.17 F_TLB_CONFLICT
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x20

+4 StreamID

+8 Reason (IMPLEMENTATION DEFINED)

+12 S2 RnW InD PnU

+16  InputAddr[63:0]

+20 InputAddr[63:0] 

+24  IPA[51:12]

+28 IPA[51:12] 

Event
number

Reason

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 294 of 443

 Non-Confidential

0x20 A TLB conflict occurred because of the transaction. The nature of this is IMPLEMENTATION
DEFINED, defined by the TLB geometry of the implementation. The input address might not be
the address that causes the issue, for example an IPA to PA TLB entry might experience the
problem, so both addresses are provided.

The RnW, InD and PnU fields provide the access attributes of the input transaction. The
InD/PnU attributes are the post-STE override values. InD==0 when RnW==0.

An IMPLEMENTATION DEFINED conflict reason is provided in Reason. This information might be
specific to the TLB geometry of the implementation.

IPA is valid when S2==1, otherwise it is UNKNOWN.

InputAddr[11:0] are IGNORED for the purposes of determining identical events for merging.
In SMMUv3.0, IPA bits [51:48] are RES0.

7.3.18 F_CFG_CONFLICT
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x21

+4 StreamID

+8 Reason (IMPLEMENTATION DEFINED)

+12

+16

+20

+24

+28

Event
number

Reason

0x21 A configuration cache conflict occurred due to the transaction. The nature of this is
IMPLEMENTATION DEFINED, defined by the configuration cache geometry of the implementation.

An STE cache entry with STE.CONT causing an overlap of a different entry has caused a
multiple-match on lookup.

An IMPLEMENTATION DEFINED conflict reason is provided in Reason. This information might be
specific to the configuration cache geometry of the implementation.

It is not possible to cause this error by any CD misconfiguration.
Note: A guest VM cannot arrange configuration that would affect any other streams.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 295 of 443

 Non-Confidential

7.3.19 E_PAGE_REQUEST
 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 SubstreamID SSV 0x24

+4 StreamID

+8

+12 Span pR pW pX uR uW uX

+16  InputAddr[63:12]

+20 InputAddr[63:12] 

+24

+28

Event
number

Reason

0x24 Speculative page request hint from a client device to system software, hinting that the given
address span will be accessed by a device in the near future. The access is expected to require
the read/write/execute properties provided for user/kernel privilege levels.

No response or action is required, but system software might use this hint to begin a (potentially long-running)
page-in of the given address, to decrease the chance of a subsequent access from the device experiencing a
page miss.

Flag field Access anticipated

pR Privileged Read

pW Privileged Write

pX Privileged Execute

uR Unprivileged Read

uW Unprivileged Write

uX Unprivileged Execute

Span is encoded as a positive integer where the size of the intended access span in bytes is (Span*4096).

7.3.20 IMPDEF_EVENTn

Event
number

Reason

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 296 of 443

 Non-Confidential

0xE0-EF IMPLEMENTATION DEFINED event allocation

Notes: ARM recommends that software treats receipt of these events as a non-fatal occurrence even if the exact
nature of the event is not recognised.

All other event numbers are Reserved.

Events with a Stall parameter (F_TRANSLATION, F_ADDR_SIZE, F_ACCESS, F_PERMISSION) indicate
whether a transaction is stalling as a result of the event. When a transaction causes any other event, the
transaction is terminated and an abort returned to the client. If a transaction is stalled, the STAG parameter
provides a token used to uniquely identify the transaction.
Note: The StreamID and STAG must be provided to a subsequent CMD_RESUME. Every stall event must have
either one associated CMD_RESUME or a CMD_STALL_TERM.

A configuration error always terminates the instigating transaction with an abort to the device.

Multiple addresses might be reported in one event record:

• InputAddr is the address input with the transaction to the SMMU.
• IPA is the post-stage 1 address of the transaction, valid only if the fault occurred at stage 2
• Fetch PA is the physical address accessed causing the fault to be raised

The input address is the 64-bit address presented to the SMMU, see section 3.4.1.

7.3.21 Event queue record priorities
Events arising from an ordinary incoming transaction are recorded in the following order, listed from the first that
might occur when a transaction is processed to the last that might occur before the transaction is deemed
successful, unless otherwise specified. This means that if any event occurs, events prior to that event in this list
cannot have occurred:

1. C_BAD_STREAMID
2. F_STE_FETCH
3. C_BAD_STE
4. C_BAD_SUBSTREAMID
5. F_STREAM_DISABLED
6. Faults from translation (stage 2, for fetch of CD)
7. F_CD_FETCH
8. C_BAD_CD
9. Faults from translation (stage 1 or stage 2, for data access of a transaction)

Faults from translation can occur because of a fetch of a CD or stage 1 translation requiring a stage 2 translation,
or the final translation for the given transaction address.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 297 of 443

 Non-Confidential

A single stage of translation table walk might experience faults in this order:

1. F_TRANSLATION (for input address outside range defined by TxSZ/SL0, or EPDx=1)
2. For each level of translation table walked:

a. F_WALK_EABT (on fetch of TTD)
b. F_TRANSLATION (from fetched TTD)
c. F_ADDR_SIZE (for output of TTD, indicating next TTD or walk output address)

3. F_ACCESS (On the final-level TTD)
4. F_PERMISSION (On the final-level TTD)

A nested Stage 1 + Stage 2 translation table walk might experience faults in this order:

1. F_TRANSLATION (For stage 1 input address outside range defined by stage 1 TxSZ/SL0,
or EPDx=1)

2. For each level of stage 1 translation table walked, the stage 2 translation for the TTD of the stage 1s IPA
might experience:

a. F_TRANSLATION (For stage 2 input address outside range defined by stage 2 T0SZ/SL0)
b. F_WALK_EABT (For stage 2 TTD fetch)
c. F_TRANSLATION (From fetched stage 2 TTD)
d. F_ADDR_SIZE (For output of stage 2 TTD, indicating next TTD or walk output address)
e. F_ACCESS (On the final-level stage 2 TTD)
f. F_PERMISSION (On the final-level stage 2 TTD)

3. For each level of stage 1 translation table walked, after the PA of the TTD is determined the following
might occur:

a. F_WALK_EABT (For stage 1 TTD fetch)
b. F_TRANSLATION (From fetched stage 1 TTD)
c. F_ADDR_SIZE (For output of stage 1 TTD)

4. For the final level stage 1 TTD, the following might then occur:
a. F_ACCESS
b. F_PERMISSION

5. The IPA relating to the input VA has been determined and permissions have been checked, but the
following might occur for each level of the stage 2 translation of that final IPA:

a. F_TRANSLATION (For stage 2 input address outside range defined by stage 2 T0SZ/SL0)
b. F_WALK_EABT (For stage 2 TTD fetch)
c. F_TRANSLATION (From fetched stage 2 TTD)
d. F_ADDR_SIZE (For output of stage 2 TTD, indicating next TTD or walk output address)
e. F_ACCESS (On the final-level stage 2 TTD)
f. F_PERMISSION (On the final-level stage 2 TTD)

Note: F_TLB_CONFLICT, F_CFG_CONFLICT and F_UUT are raised with implementation specific prioritisation.

The flow of events that an incoming ordinary transaction might raise can be characterised as:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 298 of 443

 Non-Confidential

• An unsupported transaction fault from the client device might be raised on input.
• Configuration is fetched, in the order of STE then (if relevant) CD:

o If a CD is fetched, it uses stage 2 translations to do so, if stage 2 is enabled.
o Stage 2 walk occurs, which might experience an external abort on fetch.
o Stage 2 page fault on the CD address might occur when the walk completes.
o External abort on CD fetch might occur.

• When a CD is successfully fetched, start walking stage 1 TT. Stage 2 page faults (or external aborts)
might arise from walking stage 1, in the same way as for the initial CD fetch

• When a S1 translation is determined, stage 1 might fault.
• Stage 2 walk occurs for a successful output of stage 1 translation, and this might also fault.

ATS Translation Requests do not lead to the same set of possible errors as, in general, ATS translation errors are
reported to the requesting device using the ATS Translation Response rather than to software through the Event
queue. The only Event queue record that can be generated is F_BAD_ATS_TREQ, which can be raised at
several points in the translation process.

ATS Translated transactions also differ from ordinary transactions and one of the following behaviors can occur:

• F_TRANSL_FORBIDDEN can be raised on input when ATS is disabled/invalid (see section 7.3.8 for
reasons).

• Otherwise, ATS Translated transactions that locate correct configuration and then encounter stage 2
translation (through STE.EATS==0b10 configuration) can raise stage 2 Translation-related faults.

• Otherwise, any other error on receipt of an ATS Translated transaction (for example, an invalid STE)
causes the transaction to be silently terminated.

See section 15 for more details on the translation procedure and possible events at each step.

7.4 Event queue overflow
An SMMU output queue is full if the consumer can observe that there are no free entries for the producer to add
new entries to, see section 3.5.2. The Event queue is full if it can be observed that
SMMU_(S_)EVENTQ_PROD.WR == SMMU_(S_)EVENTQ_CONS.RD and WRAP bits differ.

Note: If the SMMU can observe that a write it made for a new queue entry is visible in memory, but PROD.WR
has not yet been updated to pass the position of the new entry, the new entry is not yet visible to software in terms
of the queue visibility semantics.

Event queue overflow occurs when the Event queue is enabled (EVENTQEN==1), the queue is full, and a pending
event record is discarded because the queue is full. An Event queue overflow condition is entered to indicate that
one or more event records have been lost:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 299 of 443

 Non-Confidential

• Fault information.
• Configuration errors.

It is not possible for an external agent to observe an Event queue overflow condition if it could not first observe the
Event queue being full.

Note: An implementation must therefore prevent the overflow condition from being observable by software before
an update to the PROD index is observable.

A configuration error record or fault record from a terminated transaction is discarded when the SMMU attempts to
insert it into a full Event queue. However, a fault record from a stalled transaction is not discarded and an event is
reported for the stalled transaction when the queue is next writable. In addition, as stall fault records are not
discarded, stall fault records do not cause an overflow condition. Only discarded events cause overflow.
When EVENTQEN==0, events are not delivered and non-stall event records might be discarded but do not cause
an overflow condition.

The Event queue overflow condition is present when:
 SMMU_EVENTQ_PROD.OVFLG != SMMU_EVENTQ_CONS.OVACKFLG
When an overflow occurs, the SMMU toggles the SMMU_EVENTQ_PROD.OVFLG flag if the overflow condition is
not already present.

Note: ARM recommends that whenever software reads SMMU_EVENTQ_PROD, it checks OVFLG against its
own copy. If different, the overflow condition arose. ARM recommends that software then updates its copy with
the value of OVFLG, and processes the Event queue entries as quickly as possible, updating
SMMU_EVENTQ_CONS in order to move on the RD pointer but also to acknowledge receipt of the overflow
condition by setting OVACKFLG to the same value read from OVFLG.

Note: In terms of delivering events, a queue in an unacknowledged overflow state does not behave any differently
to normal queue state. If software were to consume events and free space but leave overflow unacknowledged,
new events could be recorded. Because a second overflow condition cannot be indicated, a subsequent queue
overflow would be invisible therefore ARM expects software to acknowledge overflow upon the first consumption
of events after the condition arose.

7.5 Global error recording
Global Errors pertaining to a programming interface are reported into the appropriate SMMU_(S_)GERROR
register instead of into the memory-based Event queue.

SMMU_(S_)GERROR provides a one-bit flag for each of the following error conditions:

Error flag Meaning

CMDQ_ERR Command queue error

EVENTQ_ABT_ERR Event queue access aborted
Delivery into the Event queue stops when an abort is flagged, see section 7.2.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 300 of 443

 Non-Confidential

PRIQ_ABT_ERR PRI queue access aborted
Delivery into the PRI queue stops when an abort is flagged, see section 8.2.

MSI_CMDQ_ABT_ERR CMD_SYNC MSI write aborted

MSI_EVENTQ_ABT_ERR Event queue MSI write aborted

MSI_PRIQ_ABT_ERR PRI queue MSI write aborted (Non-secure GERROR only)

MSI_GERROR_ABT_ERR GERROR MSI write aborted

SFM_ERR SMMU entered Service Failure Mode
This error is common to both SMMU_GERROR and SMMU_S_GERROR, so that
both secure and Non-secure software are aware that the SMMU has entered SFM.

When an error condition is triggered, the error is activated by toggling the corresponding flag in GERROR. In
some cases, SMMU behavior changes while the error is active:

• Commands are not consumed from the Command queue while CMDQ_ERR is active.

The presence of a Global Error is acknowledged by the agent controlling the SMMU by toggling the equivalent
field in the GERRORN register.

An error is active when: SMMU_(S_)GERROR[x] != SMMU_(S_)GERRORN[x]

The SMMU does not toggle bit[x] if the error is already active. If one or more new errors occur while a previous
error of the same type is active, the new error is not logged.

Note: This handshake avoids a race condition that could otherwise lead to loss of error events. It follows that an
error flag indicates that one or more of the indicated errors has occurred since the last acknowledgement.

It is IMPLEMENTATION DEFINED whether the interconnect to the memory system of an implementations returns abort
completions for writes, which lead to *_ABT_ERR global errors.

7.5.1 GERROR interrupt notification
A GERROR interrupt is triggered when the SMMU activates an error, with the exception of the following fields:

• MSI_GERROR_ABT_ERR
o Note: This error signifies that a prior attempt to raise a GERROR MSI had been aborted, and

sending another to the same address might cause a second abort.

The GERROR interrupt is triggered only when SMMU_(S_)IRQ_CTRL.GERROR_IRQEN=1. When MSIs are
used, GERROR MSI notification is configured using SMMU_(S_)GERROR_IRQ_CFG{0,1,2}. If multiple errors
activate at the same time, GERROR interrupts are permitted to be coalesced.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 301 of 443

 Non-Confidential

Where a dependency exists between waiting for something to occur and a GERROR flag being set, for example,
an IRQ enable update to 0 completing only after an aborted MSI is recorded as GERROR.MSI_n_ABT_ERR, the
recording into GERROR does not itself depend on the GERROR interrupt having been asserted/sent or visible to
software.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 302 of 443

 Non-Confidential

8 PAGE REQUEST QUEUE

The message format arriving on the PRI queue in response to an incoming PCIe PRI message closely follows the
PCIe packet format. The field names have been generalised for consistency with terminology elsewhere in this
specification. The system must ensure that the mapping between StreamID and RequesterID or Root Complex
is identical whether used in either incoming or outgoing directions for PRI, ATS or normal DMA traffic.

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 StreamID

+4 SSV L W R X Priv SubstreamID

+8  Page Address[63:12] PRGIndex

+12 Page Address[63:12] 

Figure 18: PRI queue entry format

• StreamID[31:0]
o When used with ATS/PRI, StreamID[15:0] must equal PCIe RequesterID[15:0]. Bits

StreamID[n:16] might indicate different Root Complex sources where more than 16 bits of
StreamID are implemented.

• SSV: Substream valid
o When 1, the Page Request was issued with a PASID TLP prefix.
o When 0, the Page Request was not issued with a PASID. This value is also 0 when Substreams

are not supported by the SMMU. When SSV==0, the X and Priv bits are both 0.
• SubstreamID[19:0]

o This value is UNKNOWN when SSV==0.
• Page address[63:12]
• PRGIndex[8:0]
• Last, W, R, X, Priv: Last/Write/Read/eXecute/Privileged:

o These bits encode requested page permissions
o ‘Last’ is set on the last request in a PRG
o The PCIe 'Stop PASID' marker message delimits Page Request message groups as a request

with LWR=0b100.

Several related PRI Page Requests (PPRs) might arrive in batches, named Page Request Groups (PRGs).
Several pages might be requested in a PRG and all arrive with the same PRGIndex value. The last page request
in a PRG is marked by the Endpoint as Last==1 and the PRI queue can be configured to send an interrupt when
Last==1 is received (see 6.3.36). Member requests of a PRG are not guaranteed to be contiguous in the PRI
queue as requests of more than one PRG might be interleaved. PPRs that are members of the PRG are not
guaranteed to appear in the PRI queue in the order that they were issued from an endpoint, with the exception of
the Last==1 entry which is not re-ordered with respect to prior PPRs.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 303 of 443

 Non-Confidential

The SMMU is not required to track and verify that, for a given PRGIndex value, all entries received in a PRG have
identical PASID TLP prefixes.

The CMD_PRI_RESP command causes a PRI response to be sent to an endpoint and takes a success or failure
parameter to inform the endpoint of the overall status of the PRG. When Substreams (PASIDs in this context) are
supported and this command is used with a valid SubstreamID (SSV==1), a PASID tag is present on the
response.

Note: ARM expects this command to be issued after all PPRs in a PRG have been processed, including the
Last==1 entry.

Note: PCIe PASID re-use requires a message indicating all PPRs that have been issued with a particular PASID
have now been seen. This is signalled by the ‘Stop PASID’ marker.

Note: The PRI queue does not overflow with correct software usage and endpoint credit management, because
software grants credits to each device (using PCI configuration space) which sum to the amount of space in the
PRI queue minus an allowance for any ‘Stop PASID’ markers that are required. The device can only issue as
many outstanding PPRs as it has credits for.

The SMMU freely accepts incoming PRI messages and puts them in the PRI queue, if space is free and the
queue is enabled and not in an error condition. If the queue is full a programming error (or protocol failure by
PCIe endpoint) has occurred.

Note: A device is intended to always receive a response to a PRG, whether positive or negative.

Note: A CMD_PRI_RESP returns a credit to the Endpoint that could cause another PPR. This must be
considered when calculating credit capability of a queue. If the number of credits granted to devices equals the
queue capacity, a PPR must be consumed from the queue (freeing an entry) prior to issuing a CMD_PRI_RESP
for that PPR.

The SMMU supports a maximum PRI queue size of 219 entries.

Note: When a guest VM manages a PRI queue for page request service from one or more devices assigned to
that guest, it is up to the guest OS to allocate and size its local PRI queue. It will subsequently give credits to the
devices to allow them to issue PPRs, using configuration space accesses. In this scenario, the hypervisor
manages the actual SMMU PRI queue and the sum of the credits given to all clients of that queue must not be
greater than the size of the queue. For safety, ARM expects that a hypervisor will trap the write of a credit value
of a guest to a device, and substitute its own allocation if necessary. This would ensure that the total number of
credits cannot exceed the PRI queue size, even if a guest OS requests a larger number of credits to be used. The

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 304 of 443

 Non-Confidential

hypervisor is also expected to choose an appropriate PRI queue size which will approximate the sum of credits
reasonably expected to be used by all guest VMs using the PRI facilities of an SMMU.

8.1 PRI queue overflow
The PRI queue enters an overflow condition when one or more PRI messages are received by the SMMU but the
PRI queue is full, as determined by the general queue semantics. The SMMU indicates this has happened by
toggling the SMMU_PRIQ_PROD.OVFLG flag, if an overflow condition is not already present. The overflow
condition is acknowledged or cleared by writing the SMMU_PRIQ_CONS.OVACKFLG flag to the same value as
OVFLG.

An active overflow condition inhibits new entries from being written to the PRI queue.
Note: On detection of overflow, ARM recommends that software processes the received PRI queue entries as
quickly as possible, and follows this with a single write of SMMU_PRIQ_CONS to simultaneously move on the RD
pointer and acknowledge receipt of the overflow condition by setting OVACKFLG to the value read from OVFLG.

When an overflow condition is active, incoming PRI messages are discarded and:

• An automatic PRG Response is generated for Page Request messages having Last==1, including the
PPR that caused the overflow condition to become active. This response is returned to the endpoint that
originated the PPR. The ResponseCode is defined below.
Note: This behavior occurs only for a Page Request message and does not occur when a Stop Marker is
discarded in an overflow condition.

• PPRs having Last==0 are silently ignored.

Note: The auto-response behavior can maintain safe operation in the presence of non-compliant PCIe endpoints.
Note: Although in an overflow condition the system software will not have addressed the cause of the PPR, on
receipt of the automatic successful response ARM expects that the device will gracefully attempts an ATS request
and PRI request again. On subsequent requests, system software might have had time to process the PRI queue
contents and free space for the retries.

When substreams (and therefore PASIDs) are supported, then when automatically returning a PRG Response for
a PPR that arrived with a PASID prefix during a PRI queue overflow condition, the STE.PPAR field associated
with the StreamID of the PPR configures whether the SMMU uses a PASID prefix on the response. The
ResponseCode field in the auto-response is one of:

• Success (ResponseCode==0b0000)
o This code is returned when the associated STE is valid and STE.PPAR is used to control

presence of a PASID on the response.
• Failure (ResponseCode==0b1111)

o This code is returned when the associated STE is inaccessible or invalid such that STE.PPAR
cannot be checked. This occurs in the following scenarios:

 SMMU_CR0.SMMUEN==0
 The StreamID is out of range of the Stream table, or an External Abort was encountered

during the STE fetch, or the STE is ILLEGAL (for a normal transaction, the same
conditions lead to C_BAD_STREAMID, F_STE_FETCH and C_BAD_STE respectively)

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 305 of 443

 Non-Confidential

When PASIDs are not supported, the response is never returned with a PASID prefix and the STE.PPAR field is
not used. An implementation is permitted, but not required, to attempt to locate a valid STE and return either
ResponseCode=Success or Failure in the manner described in this chapter even though STE.PPAR is not
required. If the implementation does not perform this STE check, the ResponseCode=Success.

Note: A PRI-capable endpoint advertises whether it expects a PASID prefix to be present on a PRG response
returned to it in response to a Page Request made with a PASID prefix, through the PRG Response PASID
Required flag in the PRI Status register of the endpoint. ARM expects the STE.PPAR field associated with an
endpoint to be programmed to the same value as this flag in the endpoint.

Stop PASID markers that arrive in an overflow condition are discarded and no auto-response is generated.
Note: The PCIe PRI specifications [3] [9] do not consider Stop PASID markers to be credited in the same way as
PPRs. If endpoints disrespect Page Request allocation and credits, Stop PASID markers cannot be guaranteed
to be visible to the system, given this rule. Software must use other means to determine PASID stop status in the
presence of non-compliant PCIe endpoints.

8.1.1 Recovery procedure
At the time that an overflow is detected, the PRI queue might contain several groups of page requests that are
legitimate, but might contain one or more groups of requests that have been truncated so that their ‘Last’ event
was among those lost when overflow occurred, and these groups have had a ‘Success’ auto-response sent when
the ‘Last’ event was discarded.

Note: To re-synchronise and regain normal processing of page requests, one possible method is:

• Process the entire queue: Entries are read from the SMMU_PRIQ_CONS.RD index up to the
SMMU_PRIQ_PROD.WR index, sending Page Request Group Response commands using the
Command queue as appropriate, when ‘Last’ entries are encountered.

• The PRI queue might contain the start of groups of page requests whose Last requests were lost, having
been received and auto-responded to after overflow. A group must be ignored by software if no Last
event has been found for it up to the point that the SMMU last wrote (the SMMU_PRIQ_PROD.WR
index).

• Update SMMU_PRIQ_CONS.RD, including OVACKFLG, to clear the overflow condition and mark the
entire queue as empty or processed.

Note: After an overflow condition has been resolved, a PRGIndex value might be used in PPRs that later become
visible, associated with a semantically different PRG to that of a PRG with entries in the pre-overflow PRI queue.
This would occur when the queue enters overflow state before the Last PPR of the initial PRG can be recorded.
The Last PPR has a successful auto-response sent, meaning the endpoint is free to re-use the PRGIndex value.

8.2 Miscellaneous
An external abort detected while accessing the PRI queue, for example when writing a record, activates the
SMMU_GERROR.PRIQ_ABT_ERR Global Error. If PRIQ_ABT_ERR becomes active, one or more PRI records
might have been lost. The behavior of PRIQ_ABT_ERR relates to entries written to the PRI queue as the
behavior of EVENTQ_ABT_ERR relates to entries written to the Event queue, as described in section 7.2.2.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 306 of 443

 Non-Confidential

An implementation is permitted to read any address within the bounds of the PRI queue when the queue is
enabled (that is, when the effective value of SMMU_CR0.PRIQEN==1). In addition to writes of new records to the
queue, such reads might also lead to an external abort.

A PPR received from a Secure stream is discarded, is not recorded into the PRI queue and results in a Response
Message having ResponseCode=0b1111.

If an active GERROR.PRIQ_ABT_ERR error condition exists, or if the effective value of SMMU_CR0.PRIQEN==0
(SMMU_CR0.SMMUEN==0 implies PRIQEN==0) both of the following apply:

• No entries are written to the PRI queue.
• All incoming PPRs cause an automatic PRG Response having ResponseCode==0b1111 (‘Response

Failure’) and the messages are discarded.

Note: Incoming PRI Page Requests are not affected by SMMU_CR0.ATSCHK or STE.EATS configuration.

The SMMU does not generate responses to Stop Marker messages.

Automatically-generated PRG responses have the following properties:

• Same StreamID as the PPR that triggered the response so that the message is returned to the originating
RequesterID.

• Same Page Request Group Index as the PPR that triggered the response.
• Response Code depends on the cause of auto-generated response.
• No PASID prefix is used on responses that were auto-generated because the effective value of

PRIQEN=0 or PRIQ_ABT_ERR occurred.
• A PASID prefix is used on responses that were auto-generated because of PRI queue overflow if the

SMMU supports substreams, and if STE.PPAR==1, and if the PPR that triggered the auto-response had a
PASID prefix.

• If a PASID prefix is used, its PASID value matches that of the PPR that triggered the response.

8.3 PRG Response Message codes

ResponseCode Status Returned for

0b0000 Success CMD_PRI_RESP with Response=Success
• Software has paged in all pages successfully.

This response is returned for an auto-response on overflow, where no
error is encountered in checking STE.PPAR.

0b0001 Invalid Request CMD_PRI_RESP with Response=Fail
• Software failed to page-in all pages. It encountered one or more

pages that do not exist or have insufficient privileges

0b1111 Response CMD_PRI_RESP with Response=Deny

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 307 of 443

 Non-Confidential

Failure • Software has determined that ATS is disabled for the stream, or
some other (non-mapping-related) permanent failure.

This response is returned for an auto-response on overflow that is
unable to locate a valid STE when checking STE.PPAR.

This response is also returned for all incoming PPRs when any of the
following conditions exist:

• The effective value of PRIQEN==0 (might be due to
SMMU_CR0.SMMUEN==0),

• A GERROR.PRIQ_ABT_ERR error is active.
• The PPR is received from a Secure stream.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 308 of 443

 Non-Confidential

9 ADDRESS TRANSLATION OPERATIONS

The SMMU optionally supports a software-accessible Address Translation Operations (ATOS) facility. The
presence of this facility is reported by SMMU_IDR0.ATOS. The ATOS facility allows software to perform an
address lookup to determine the output address that a transaction would take, given an input address, stream,
substream and access properties. The requested lookup can be the full end-to-end, with all configured stages, or
only a part of the configuration for the stream. The result of the request is either the output address or a fault
status code, if a translation is unable to complete. Unlike transactions, ATOS requests are not affected by fault
configuration bits in the STE or CD, and do not record fault events or stall.

If ATOS is supported, an optional virtual ATOS (VATOS) page might also be supported. This is reported by
SMMU_IDR0.VATOS. The VATOS page can be mapped through to a chosen software entity so that it might
perform a limited set of stage 1-only ATOS lookups directly. The VATOS interface can make stage 1-only ATOS
lookups for stage 1 and stage 2 nested configurations, or for stage 1-only configurations. The VATOS interface
can only make lookups for configurations associated with the NS-EL1 StreamWorld.
Note: ARM expects VATOS to be used with stage 1 and stage 2 nested configurations.

When ATOS is supported, a group of SMMU_GATOS_SID, SMMU_GATOS_ADDR and SMMU_GATOS_PAR
registers are available in the memory map. When SMMU_S_IDR1.SECURE_IMPL==1, a second group is
present in SMMU_S_GATOS_SID, SMMU_S_GATOS_ADDR, SMMU_S_GATOS_PAR. If VATOS is supported,
a third group, SMMU_VATOS_SID, SMMU_VATOS_ADDR and SMMU_VATOS_PAR, are present in a distinct
VATOS page, see section 6.

Each group of registers might perform one lookup at a time, but all implemented sets of registers might perform
independent lookups simultaneously. Access to a register that affects ATOS behavior only affects the group that
is accessed, and programming of the registers (whether correct or incorrect) does not affect other groups.

Apart from differences in scope the groups of registers are equivalent and are referred to generically using ATOS_
prefixes in this chapter. The difference in scope between the ATOS registers is that the VATOS registers can only
access stage 1 translations, the GATOS registers cannot access Secure stream information, and the S_GATOS
registers can access Secure stream information.

The ATOS registers might perform address lookups with the following properties as though a transaction were
received through a given StreamID and SubstreamID:

• Read/Write.
• Unprivileged/Privileged.
• Instruction/Data.

The types of translations available are:

• VA to PA for a stage 1 and stage 2 configuration.
• VA to IPA for a stage 1 of a stage 1 and stage 2 configuration.
• VA to IPA or PA for a stage 1-only configuration.
• IPA to PA for a configuration with stage 2.

The lookup procedure is:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 309 of 443

 Non-Confidential

1. Ensure the ATOS interface is idle (ATOS_CTRL.RUN==0) and claimed for exclusive use in case several
agents share the interface

2. Ensure ATOS_SID identifies the StreamID and SubstreamID that will be used for the lookup
3. Write the source address and lookup action to ATOS_ADDR.
4. Ensure the prior register writes are observed by the SMMU before the following write.
5. Write ATOS_CTRL.RUN==1 to initiate the lookup.
6. Poll ATOS_CTRL.RUN; the SMMU clears the RUN flag when the result is ready.
7. The result appears in ATOS_PAR. This might be a result address or a fault code, determined in the same

way as for an ordinary input transaction.

The translation process for an ATOS request is not required to begin immediately when ATOS_CTRL.RUN is
written to 1, and will begin in finite time. ARM expects that any delay will be small.

An ATOS translation interacts with configuration and TLB invalidation in the same way as a translation that is
performed for a transaction. The result of an ATOS translation that completes after an invalidation completes is
not based on any stale data that was targeted by the invalidation. See section 3.21 for more information.

Note: A CMD_SYNC depends upon the visibility of HTTU updates performed by completed ATOS translations.

The completion of an invalidation operation is permitted, but not required, to depend on either of the following:

• The completion of an ATOS translation that has been requested by writing RUN to 1 but has not begun
before the invalidation completion operation was observed.

• The completion of an ATOS translation that is unaffected by the invalidation.

The domain of the lookup, in Secure, Non-secure, hypervisor, EL3 or Monitor terms, is determined by the stream
configuration. Translations from a Secure stream are only returned through the S_ATOS interface. A Non-secure
stream might be queried by either interface. The S_ATOS interface contains a SSEC flag to indicate whether the
requested StreamID is to be treated as Secure or Non-secure.

The lookup action provided in the write to ATOS_ADDR determines the read/write, instruction/data and privilege
attributes of the request.

The treatment of the input address that is provided by ATOS_ADDR is governed by the same rules that affect an
ordinary translation, in terms of range checks according to TxSZ, IPS, and PS SMMU properties. See section 3.4.
ATOS_ADDR.ADDR provides an input 64-bit address.
Note: As the full address is provided, a translation lookup could fail with a Translation fault because it is outside
the configured input range for the initial stage or stages of lookup. This includes consideration of the Top Byte
Ignore (TBI) configuration.

ATOS_ADDR indicates the read/write, instruction/data and privileged/unprivileged properties of the translation
request. The permissions model used by an ATOS translation is the same as is used for an ordinary transaction
that has the same effective read/write, instruction/data, privileged/unprivileged attributes after STE overrides are
taken into account for the transaction.
Note: The ATOS permission attributes are not affected by the STE.INSTCFG or STE.PRIVCFG overrides.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 310 of 443

 Non-Confidential

In the case where an ATOS operation explicitly performs translation at only one stage when a stream is
configured for stage 1 and stage 2 translation, only the permission configuration that is applicable to the requested
translation stage is used.
Note: This means that CD-based permission controls such as PAN, UWXN and WXN are not used when an
ATOS translation does not translate using stage 1. When stage 1 is in use, all of the CD-based permission
controls are used by ATOS, in the same way as would be done for an ordinary transaction. These are CD.PAN,
CD.UWXN, CD.WXN and CD.HAD{0,1}.

When ATOS_ADDR.HTTUI==0, ATOS operations perform HTTU when supported by the SMMU and configured
for any of the translation regimes used to perform the lookup, in the same way as would occur for a read or write
transaction to the same address of the same StreamID/SubstreamID, including fetch of CD and Stage 1 TTDs
through stage 2 translations.
When ATOS_ADDR.HTTUI==1, the request inhibits HTTU and the behavior is as follows:

• When an Access flag update is enabled for a stage of translation (STE.S2HA==1 or CD.HA==1), the
SMMU is not permitted but not required to set the Access flags in TTDs for the requested address. It is
IMPLEMENTATION DEFINED whether the ATOS operation reports a fault because an Access flag update is
performed.

• When update of the Dirty state of a page is enabled for a stage of translation (STE.S2HD==1 or
CD.HD==1) a TTD with DBM==1, and without write permission at the required privilege level because of
the value of AP[2]==1 or S2AP[1]==0, is considered to be writable by the ATOS mechanism but the
AP[2]/S2AP[1] bits are not updated.

Setting ATOS_ADDR.HTTUI==1 has no effect when updates to both the Access flag and Dirty state of the page
are disabled.
Note: The behavior of an ATOS operation with HTTUI==1 matches that of address translation operations in the
PE, with respect to AF and Dirty state of the page permissions.

Note: If HTTU is inhibited in order to translate without changing the page table state, this inhibition includes stage
2 translation tables that back the stage 1 page table in nested configurations.

When HTTU is enabled at stage 2 in a nested stage 1 and stage 2 configuration, and ATOS performs a stage 1-
only VA to IPA translation and HTTU is enabled for ATOS, the SMMU does not mark the final IPA’s page as dirty
and is permitted but not required to mark the final IPA’s page as accessed.

ATOS can only be used when SMMUEN==1 for the relevant programming interface, that is
SMMU_CR0.SMMUEN==1 for SMMU_GATOS_*, SMMU_VATOS_* or SMMU_S_CR0.SMMUEN for
SMMU_S_GATOS_*.

An ATOS request is permitted to use and insert cached configuration structures and translations, consistent with
any caches that are provided for transaction translation. An ATOS request where HTTU is enabled, that is when
HTTU==1, does not insert TLB entries that would allow a transaction to avoid correct updates to the Access flag
or Dirty state of the page of the associated TTDs in memory.

When SMMU_S_IDR1.SECURE_IMPL==1, the SMMU does not allow:

• Secure information to be used to form a Non-secure ATOS_PAR result
• A Non-secure ATOS request to affect SMMU_S_GATOS_* register values, including PAR, or active

Secure ATOS translation requests.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 311 of 443

 Non-Confidential

9.1 Register usage

9.1.1 ATOS_CTRL
Software writes ATOS_CTRL.RUN to 1 to request a translation. The bit is cleared back to 0 by the SMMU when
ATOS_PAR has been updated with the result.

Software must not write any register in the ATOS group when ATOS_CTRL.RUN==1.

An ATOS request can only be made when the SMMU_(S_)CR0.SMMUEN field that is relevant to the ATOS
register group in use is 1. The ATOS registers must not be written if SMMUEN==0.

SMMUEN must not be cleared while one or more ATOS requests are in progress for the programming interface,
otherwise ongoing requests might be terminated. ATOS_CTRL.RUN is cleared by an Update of SMMUEN to 0.
Note: An ATOS request that is made through the Secure programming interface for a Non-secure StreamID might
be affected by Non-secure software simultaneously clearing SMMU_CR0.SMMUEN from another PE, so must
accept spurious ATOS translation failures which might result.

See section 6.3.37 for more information on ATOS_CTRL.RUN and alteration of the SMMUEN flags.

9.1.2 ATOS_SID
The StreamID and optional SubstreamID are written to ATOS_SID.STREAMID, ATOS_SID.SUBSTREAMID and
ATOS_SID.SSID_VALID in preparation for a subsequent ATOS lookup. When ATOS_CTRL.RUN is written to 1,
the value of this register is used as input to the process.

The SMMU_S_GATOS_SID register contains a SSEC flag that selects between Secure and Non-secure
StreamID lookup for an ATOS request that is issued from the Secure interface.
Note: Non-secure ATOS interfaces have no SSEC flag, so they can only look up Non-secure StreamIDs.

9.1.3 ATOS_ADDR
The address to be queried is written to ATOS_ADDR.ADDR.
The type of lookup that is required is written to the TYPE field:

ATOS_ADDR.TYPE Lookup
scope

Notes

0b00 Reserved Generates ATOS error INV_REQ

0b01 Stage 1
(Look up
IPA/PA from
VA)

Only format available when SMMU supports only stage 1 translation.
Only format available to VATOS interface.
Note: It is permissible to make a stage 1 request for a StreamID with
either a stage 1-only or a stage 1 and 2 configuration.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 312 of 443

 Non-Confidential

Generates ATOS error INV_REQ when SMMU does not support stage 1
translation.
Generates ATOS error INV_STAGE when stage 1 is supported but not
configured to translate for the given StreamID.
Note: This does not require a stage 1-only configuration for the
StreamID. This lookup returns the top half of a nested stage 1 and stage
2 configuration.

0b10 Stage 2
(Look up PA
from IPA)

Generates ATOS error INV_REQ when used from the
SMMU_VATOS_ADDR interface, or when the SMMU does not support
stage 2 translation.
Generates ATOS error INV_STAGE when stage 2 is supported but not
configured to translate for the given StreamID.
Generates ATOS error INV_STAGE when issued from the Secure ATOS
interface with SMMU_S_GATOS_SID.SSEC==1.
Generates ATOS error INV_REQ if ATOS_SID.SSID_VALID (because
no stage 1 translation is requested).
Note: This does not require a stage 2-only configuration for the
StreamID. This lookup returns the bottom half of a nested stage 1 and
stage 2 configuration.

0b11 Stage 1 and
stage 2
(Look up PA
from VA)

Generates ATOS error INV_REQ when used from
SMMU_VATOS_ADDR interface, or when the SMMU does not support
both stage 1 and stage 2.
Generates ATOS error INV_STAGE when stage 1 and stage 2 are
supported but not both configured to translate for the given StreamID.
Generates ATOS error INV_STAGE when issued from the Secure ATOS
interface with SMMU_S_GATOS_SID.SSEC==1.

When TYPE==0b01 or 0b11 (requesting stage 1), the generation of INV_STAGE is determined from whether
stage 1 is configured to translate by STE.Config[2:0] and is not caused by a STE.S1DSS==0b01 configuration.

A configuration with STE.Config[2:0]==0b0xx or 0b100 results in INV_STAGE.

A request with ATOS_SID.SSID_VALID==0 on a stream with STE.S1DSS==0b01 leads to one of the following:

• A stage 1 lookup (TYPE==0b01) behaves according to stage 1-bypass, which returns the address
provided in ATOS_ADDR.ADDR without translation, or a stage 1 fault.

o Note: It is possible for an Address Size fault to result from stage 1 in bypass.
• A stage 1 and stage 2 lookup (TYPE==0b11) behaves according to stage 1-bypass, and stage 2-

translates, returning the address provided in ATOS_ADDR.ADDR translated at stage 2, or a stage 1 fault
or a stage 2 fault.

The required read/write, instruction/data and privileged/unprivileged properties of the ATOS request are written to
ATOS_ADDR.RnW, ATOS_ADDR.InD and ATOS_ADDR.PnU, respectively. These attributes are not affected by
the STE.INSTCFG or STE.PRIVCFG overrides.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 313 of 443

 Non-Confidential

9.1.4 ATOS_PAR
ATOS_PAR contains the result of the translation request, which provides either a translated address and
attributes or an error result.

The content of ATOS_PAR is only valid when a translation has been both initiated and completed through the
sequence of the corresponding RUN bit having been set to 1 by software, and then cleared to 0 by the SMMU.

The content of ATOS_PAR is UNKNOWN when:

• The SMMU_(S_)CR0.SMMUEN relevant to the ATOS register group is 0.
• RUN=1.

If ATOS_PAR.FAULT==0, the translation was successful and ATOS_PAR.ADDR returns the translated address,
in addition to the page size, and other fields provide the determined access attributes. See section 6.3.40 for
details of the fields.

The attributes that are returned in ATOS_PAR.ATTR and ATOS_PAR.SH are those that are determined from the
translation for a stage 1-only or a stage 2-only request or for a stage 1 and stage 2 request. See section 13.1.5
for definition of attribute combination. Because TTD.SH only encodes a Shareability for Normal memory, a
Shareability of OSH is always provided in ATOS_PAR.SH when a Device memory type is determined from this
procedure. The attributes do not include STE overrides and are permitted to reflect the attributes that are stored
in TLB entries. The attributes that are stored in the TLB entries might be an IMPLEMENTATION DEFINED subset of
the architectural TTD/MAIR attributes/types, see section 6.3.40.

If ATOS_PAR.FAULT==1, an error or fault occurred during translation. In this case, ATOS_PAR.FAULTCODE
reports whether there was:

• An error in invocation (INV_REQ).
• A fault or error during translation, corresponding to a standard SMMU event type, for example

C_BAD_STE or F_TRANSLATION.
• An internal error. For example, a RAS error that caused the translation to terminate, or the case where

SMMUEN was cleared to 0, thereby terminating the translation.

Other fields in ATOS_PAR determine the following:

• REASON. This field determines whether the issue was encountered at stage 1, or at stage 2 because of
the incoming IPA or because fetching a stage 1 translation or a CD through an IPA causing a stage 2 fault

• FADDR. This field determines the IPA that caused a stage 2 fault.

The validity of the REASON and FADDR fields changes depending on the type of request that is made and the
kind of fault encountered. In the following table:

• TRF means any of the Translation Related Faults (F_TRANSLATION, F_ADDR_SIZE, F_ACCESS,
F_PERMISSION).

• MISC means all other faults, with the exception of F_WALK_EABT and F_CD_FETCH (INV_REQ,
INV_STAGE, INTERNAL_ERR, C_BAD_STREAMID, F_STE_FETCH, C_BAD_STE,
F_STREAM_DISABLED, C_BAD_SUBSTREAMID, C_BAD_CD, F_TLB_CONFLICT,
F_CFG_CONFLICT).

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 314 of 443

 Non-Confidential

ATOS_ADDR.
TYPE

Possible FAULTCODE
values

Possible
PAR.
REASON
values

FADDR
contents

Notes

0b00 (Illegal) INV_REQ 0b00 0

0b01 (stage
1) on stage 1-
only stream

F_WALK_EABT 0b00
(S1)

0

TTD fetch abort

F_CD_FETCH CD fetch abort

TRF, MISC

0b01 (stage
1) on stage 1
and 2 stream

F_WALK_EABT 0b00
(S1)

0

Stage 1 TTD fetch abort (actual bus
abort)

F_CD_FETCH CD fetch abort (actual bus abort)

F_CD_FETCH, if
Stage 2 F_WALK_EABT or
stage 2 TRF is caused by
CD fetch.

CD fetch abort (synthetic, because
of a stage 2 translation failure)

F_WALK_EABT, if stage 2
F_WALK_EABT or stage 2
TRF is caused by stage 1
TTD fetch.

Stage 1 TTD fetch abort (synthetic,
because of a stage 2 translation
failure)

TRF, MISC

Configuration or miscellaneous
fault, or stage 1 TRF.
Note: The IPA that is determined
from a stage 1 translation is not
further translated to a PA, therefore
stage 2 TRFs on an illegal IPA do
not occur.

0b10 (stage
2)

Any 0b11
(S2, IN)

0

0b11 (stage 1
and stage 2)

TRF

0b00
(S1)

0 Stage 1 translation-related fault

0b01
(S2, CD
fetch)

IPA input
to stage
2 (CD
address)

Stage 2 fault on CD fetch

0b10
(S2, TT
fetch)

IPA input
to stage
2 (TTD
address)

Stage 2 fault on stage 1 TTD fetch

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 315 of 443

 Non-Confidential

0b11
(S2, IN)

IPA input
to stage
2 (stage
1 output)

Stage 2 fault on IPA

F_WALK_EABT 0b00 0 Stage 1 TTD fetch abort

0b01,
0b10,
0b11

0 Stage 2 TTD fetch abort (for
CD/TT/IN, as indicated by the
REASON field)

F_CD_FETCH 0b00 0 CD fetch abort

MISC 0b00 0

9.1.5 ATOS_PAR.FAULTCODE encodings
ATOS_PAR.FAULTCODE has the following values:

TYPE Meaning Notes

0xFF INV_REQ Malformed ATOS request

0xFE INV_STAGE Request for stage of translation that is not present

0xFD INTERNAL_ERR Translation was terminated for miscellaneous reason.

0x02 C_BAD_STREAMID ATOS_SID.STREAMID out of range of configured Stream
table.
Note: ATOS_SID.STREAMID might not store bits above the
implemented StreamID size. An implementation is permitted
but not required to record this error if ATOS_SID.STREAMID
is greater than the implemented StreamID size, or might
truncate STREAMID to the implemented StreamID size.

0x03 F_STE_FETCH External abort or error on STE fetch

0x04 C_BAD_STE Selected STE invalid or illegal

0x06 F_STREAM_DISABLED Non-substream request was made
(ATOS_SID.SSID_VALID==0) on configuration with
Config[0]==1 and STE.S1CDMax > 0 and
STE.S1DSS==0b00, or a request with SubstreamID 0 was
made on configuration with Config[0]==1 and STE.S1CDMax
> 0 and STE.S1DSS==0b10.

0x08 C_BAD_SUBSTREAMID ATOS_SID.SSID out of range of configured CD table.
Note: ATOS_SID.SUBSTREAMID might not store bits above
the implemented SubstreamID size. An implementation is
permitted but not required to record this error if
ATOS_SID.SUBSTREAMID is greater than the implemented
SubtreamID size, or might truncate SUBSTREAMID to the

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 316 of 443

 Non-Confidential

implemented SubstreamID size.

0x09 F_CD_FETCH External abort or error on CD fetch
For a VATOS (or other stage 1-only) request, this is returned
where the CD fetch caused a stage 2 fault.

0x0A C_BAD_CD Selected CD invalid or illegal

0x0B F_WALK_EABT External abort or error on translation table walk
For a VATOS (or other stage 1-only) request, this is returned
where the stage 1 walk caused a stage 2 fault.

0x10 F_TRANSLATION Translation fault

0x11 F_ADDR_SIZE Address Size fault

0x12 F_ACCESS Access flag fault

0x13 F_PERMISSION Permission fault

0x20 F_TLB_CONFLICT Translation caused TLB conflict condition

0x21 F_CFG_CONLICT Translation caused configuration cache conflict condition

All other values are RESERVED.

The priority order of the C_* and F_* errors and faults follow the same order that is set out for Event queue events
in 7.3.21, with the relative priorities for INV_REQ and INV_STAGE as shown her:

1. INV_REQ
a. Note: Whether INV_REQ is to be reported is determined statically before access of

configuration structures.
2. INV_STAGE (point A)
3. C_BAD_STREAMID
4. F_STE_FETCH
5. C_BAD_STE
6. INV_STAGE (point B)
7. C_BAD_SUBSTREAMID
8. F_STREAM_DISABLED
9. Translation faults (stage 2, for fetch of a CD)
10. F_CD_FETCH
11. C_BAD_CD
12. Translation-related faults (stage 1 or stage 2, for input address)

INV_STAGE is reported after the STE is fetched and valid, at point B, after C_BAD_STREAMID, F_STE_FETCH
and C_BAD_STE are checked, if the enabled set of stages of the STE are determined to be incompatible with the
request. INV_STAGE takes precedence over C_BAD_SUBSTREAMID, F_STREAM_DISABLED, F_CD_FETCH,
C_BAD_CD and all Translation-related faults. INV_STAGE is permitted to be determined statically prior to
checking for C_BAD_STREAMID at point A, in the case where a secure ATOS request is made with
SMMU_S_GATOS_SID.SSEC==1.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 317 of 443

 Non-Confidential

9.1.6 SMMU_VATOS_SEL
ARM expects the VATOS interface to be exposed to a single guest virtual machine at a time. The StreamID
provided by the VM for translation using SMMU_VATOS_SID is verified by comparing it to the selected STE’s
S2VMID field against the SMMU_VATOS_SEL.VMID field. If the values match, the operation completes normally.
If the values do not match, any request for information about that StreamID is denied with C_BAD_STE. The
STE's S2VMID field is only valid, and can only match the SMMU_VATOS_SEL.VMID field, when the STE is
associated with the NS-EL1 StreamWorld. If a VATOS request uses an STE associated with any other
StreamWorld, the request results in C_BAD_STE because STE.S2VMID is not valid and therefore does not
match. This applies even if the configuration does not translate at stage 2.

Note: ARM expects the VATOS interface to be used in scenarios where a guest is able to make queries using a
physical StreamID number and where a system-specific mechanism describes the presence of the VATOS page
in the guest address space.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 318 of 443

 Non-Confidential

10 PERFORMANCE MONITOR EXTENSION

10.1 Support and discovery
Performance monitoring facilities are optional. When implemented, the SMMU has one or more Performance
Monitor Counter Groups (PMCG) associated with it. The discovery and enumeration of a base address for each
group is IMPLEMENTATION DEFINED. The Performance Monitor Counter Groups are standalone monitoring facilities
and, as such, can be implemented in separate components that are all associated with (but not necessarily part
of) an SMMU.
Note: A centralised ID scheme to identify common properties is not currently exploited because PMCGs might be
independently-designed, and contain their own identification facilities.

10.2 Overview of counters and groups
The SMMU performance monitoring facility provides:

• A number of specified events can be detected that correspond to behavior of aspects of the SMMU or the
implementation.

• A number of counters that increment when their configured event occurs.

An implementation has one or more counter groups, and each group contains 1 - 64 counters. Each group has a
discoverable set of supported events which can be counted by the counters within the group. All counters in a
group can be configured to count any of the supported events. Different groups are not required to support the
same set of events.
For example, a particular distributed SMMU implementation might have two groups,

• A group for a unit performing translation table walks and counting translation-related events
• A group for a separate unit containing TLBs and counting TLB-related events.

Some event types are not attributable to one traffic StreamID and are considered to be common to all. Other
events are generated by a specific stream and can be filtered by StreamID so that a counter increment is enabled
when the StreamID filter matches the event’s originating StreamID.

Counters associated with a group are not required to be able to count events that originate from all possible
StreamIDs. A counter group is permitted to be affiliated with a subset of incoming StreamIDs. ARM strongly
recommends that the incoming StreamID namespace is covered by the union of all counter groups, so that events
from any StreamID can be counted using a counter in a group appropriate to the StreamID value. The discovery
of whether a given group counts events from a given StreamID, that is the mapping of a StreamID to supporting
group or groups, is IMPLEMENTATION DEFINED.

Multiple counter groups might count events that originate from the same StreamID or StreamIDs, or from
overlapping sets of StreamIDs.
Note: Because counter groups are not required to support the same kinds of events, events that originate from a
given StreamID might be counted in several groups, if multiple groups are associated with that StreamID.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 319 of 443

 Non-Confidential

Note: Taking the previous example of the distributed implementation, activity from a given StreamID might cause
TLB miss events that can be counted in the group associated with a TLB unit, whereas the same StreamID might
cause translation table fetch events that can only be counted in the other counter group associated with the
translation table walk unit.

 0  StreamID namespace  N

Group 0 Events A,B,C

Group 1 Events D,E

Group 2 Events D,E

Group 3 Events D,E

Group 4 Events D,E
Figure 19: Example counter groups filtered on events from different StreamID spans

Figure 19 illustrates these rules. In this example system, five counter groups exist and any event A, B, C, D or E
can be counted for any StreamID. For events A, B and C, any counter in Group 0 can count events that originate
from any input StreamID. However, events D and E are counted by groups 1-4 and the group that is selected
depends on which services the relevant StreamIDs. For example, to count event D originating from StreamID N, a
counter in Group 4 must be used.
Note: Although a counter can be configured to count an event that is filtered by StreamID N, a counter can also
be configured to count an event without the StreamID filter. In the example in Figure 19, a counter in Group 4
could count an event that occurs from any of the StreamIDs associated with Group 4.
If a counter group exists that is associated with all StreamIDs, ARM recommends that Group 0 is used.

The association between counter groups and ranges of StreamIDs is fixed at design time and no mechanism is
provided to re-configure this mapping.

A counter group is conceptually free-standing and has no interdependency on the behavior of other counter
groups or even on the SMMU configuration itself. This means that:

• A counter group can be dissimilar to other groups, for example if implemented in a different IP block to
another group.

• The capabilities of a given counter group (events captured, number of counters, MSI support) might be
unique in the SMMU

When SMMU_CR0.SMMUEN==0 and (if implemented) SMMU_S_CR0.SMMUEN==0, events are not required to
be generated and counter groups are not required to count any events.

10.2.1 Overflow, interrupts and capture
An individual counter overflows when an increment causes a carry-out to be generated, that is when the counter
wraps beyond its maximum unsigned value to a smaller value. When this happens, a bit is set in the Overflow
Status array that corresponds to the counter that overflowed.
Note: Software can read the Overflow Status (OVS) array using the SMMU_PMCG_OVS{SETn,CLRn} registers to
determine which counters have overflowed.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 320 of 443

 Non-Confidential

A counter can be programmed to assert a common per-counter group interrupt, when enabled, on overflow. In
addition, the counter group interrupt has a per-group overall enable flag.

The counter group interrupt can be implemented as an edge-triggered wired interrupt output. In addition, a
counter group can support an MSI interrupt. Because counter groups might represent distinct IP blocks, MSI
support can differ between counter groups that are associated with one SMMU. However, ARM strongly
recommends that all counter groups support MSIs if the core SMMU supports MSIs.

Note: As with the core SMMU MSI IRQs, an implementation that supports MSIs can still supply a wired IRQ
output, giving the system the choice of using the wired IRQ and leaving the MSI disabled, or using the MSI.

Optionally, a PMCG can allow all counter registers in a group to be simultaneously sampled by a capture
mechanism, that copies the counter values to their respective shadow register. The presence of support for this
mechanism is discovered via SMMU_PMCG_CFGR.CAPTURE==1. The capture mechanism is triggered by one
of the following:

• A write of 1 to SMMU_PMCG_CAPR.CAPTURE.
• Overflow of a counter configured with SMMU_PMCG_EVTYPERn.OVFCAP==1.
• An external IMPLEMENTATION DEFINED mechanism.

Note: One use model for the PMCG might be to program a counter to overflow within a known number of counts
and, on overflow a capture is triggered and an interrupt is sent. The interrupt handler reads out the captured
counter values.

Note: In addition, counter values and their overflow events can be exported in an IMPLEMENTATION DEFINED
manner to external profiling logic. Export and capture of counter values through a mechanism that is invisible to
the SMMU PMCG programming interface are unrelated to the presence of the programmatic capture mechanism
indicated by SMMU_PMCG_CFGR.CAPTURE.

If an MSI is configured with a cacheable, shareable attribute, whether the PMCG is able to perform a cache-
coherent MSI write is IMPLEMENTATION DEFINED. The core SMMU_IDR0.COHACC field does not apply to PMCG
MSI writes.

10.3 Monitor events
Performance events are indicated by a numeric ID, in the following ranges:

• 0x0000 to 0x007F: Architected events

• 0x0080 to 0xFFFF: IMPLEMENTATION DEFINED events

The architecture defines the following event types and their causes:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 321 of 443

 Non-Confidential

Event
ID

Description Notes Mandatory Can filter
on
StreamID

0 Clock cycle The period between these events is
IMPLEMENTATION DEFINED.
It is IMPLEMENTATION DEFINED whether this event is
derived from a continuous time base or an SMMU
clock which might be subject to implementation
specific gating based on SMMU activity.

Y N

1 Transaction For a component accepting upstream client
device transactions, a transaction passed through
the component and issued into system, whether
TLB/cache misses occurred or not. This event
includes:

• Ordinary transactions that bypass
translation for any reason,

• Ordinary transactions that have
undergone translation.

• PCIe ATS Translated transactions
whether subject to further Stage 2
translation (EATS=0b10) or whether
bypassing translation.

This event does not include transactions
terminated by the SMMU.

For a component performing translation services,
a translation request was received from another
component; this includes ATS Translation
Requests.

Y Y

2 TLB miss caused
by incoming
transaction or (ATS
or non-ATS)
translation request

As TLBs have missed, a translation operation
was required using an internal translation table
walker or from another component providing walk
services.
Where multiple levels of TLB are implemented in
a component, this event indicates all TLBs
missed (therefore a lookup was required).

Y Y

3 Configuration
cache miss caused
by transaction or
(ATS or non-ATS)
translation request

As configuration cache has missed, a
configuration structure fetch was required using
an internal structure walker or from another
component providing walk services.
Where multiple levels of configuration cache are
implemented in a component, this event indicates
all caches missed (therefore a lookup was
required).

Y Y

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 322 of 443

 Non-Confidential

4 Translation table
walk access

External transactions performed by a translation
table walker, including accesses performed
speculatively.
This applies to translation table walks performed
for any reason (transactions, non-ATS translation
requests, ATS Translation Requests, ATOS,
HTTU or prefetch operations).

Y Y

5 Configuration
structure access

External transactions performed by a
configuration table walker, including accesses
performed speculatively.
This applies to configuration fetches performed
for any reason.

Y Y

6 PCIe ATS
Translation
Request received

Independent of success/failure of response.
Note: ATS translation failures are visible at the
endpoint, either through an error or because of
the endpoint causing a software-visible PRI Page
Request.

If ATS
supported

Y

7 PCIe ATS
Translated
Transaction passed
through SMMU

Transaction completed translation and issued into
system, whether TLB/cache misses occurred or
not. This event includes both ATS Translated
transactions subject to further Stage 2 translation
(EATS=0b10) and those that bypass translation.
Note: Translated transactions might bypass or be
subject to further translation, as STE.EATS
dictates.

If ATS
supported

Y

When an event is mandatory, the following are both true:

• The event is supported in at least one counter group.
• The event is supported in as many groups as required to make the event countable for all possible

StreamIDs in use.
• Note: In a component that only caches TLB and configuration data in a single combined cache, events 2

and 3 count the same occurrence (a miss of the combined cache is a miss of both configuration and
translation).

Note: As an example, a distributed implementation might have different roles for different components (and
therefore different PMCGs), so that one component might translate transactions from client devices and another
component handles translation requests for the former. The first component has no table walker so it is not
required to count events 4 and 5. These events are instead counted by the second component, which performs
configuration and page table walks. The second component could still include TLBs and configuration caches, in
which case it would also count events 2 and 3.

10.4 StreamIDs and filtering
Some event types might be filtered by StreamID, so that events are only counted if they are associated with
transactions that match the configured StreamID filter. Other event types are considered unrelated to any
particular StreamID and are counted by any counter that is configured to count the event (any StreamID filtering

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 323 of 443

 Non-Confidential

configuration is ignored). An implementation provides a StreamID filter per counter, or one StreamID filter that
applies to all counters in the PMCG. This is identified through the SMMU_PMCG_CFGR.SID_FILTER_TYPE
field.

When per-counter filters are implemented, the StreamID filter configuration is controlled by register fields for each
counter. SMMU_PMCG_EVTYPEn.FILTER_SID_SPAN and SMMU_PMCG_SMRn.STREAMID are associated
with counter n as accessed through SMMU_PMCG_EVCNTRn. Otherwise, the fields
SMMU_PMCG_EVTYPE0.{FILTER_SID_SPAN,FILTER_SEC_SID} and SMMU_PMCG_SMR0.STREAMID apply
to all counters in the group.

When the corresponding counter is configured to count an event type that can be filtered by StreamID, this
configuration allows filtering by:

• Exact StreamID match.
• Partial StreamID match where a variable span of StreamID[N:0] are ignored and only upper StreamID bits

are required to match the given filter.
• Match any StreamID (filtering disabled).

When SMMU_PMCG_EVTYPEn.FILTER_SID_SPAN==0, SMMU_PMCG_SMRn.STREAMID is programmed with
a StreamID that is matched exactly. Events that are associated with other StreamIDs do not cause an increment
of the counter.

When SMMU_PMCG_EVTYPEn.FILTER_SID_SPAN==1:

• To match a partial StreamID where the X most-significant bits must match but the ‘Y’ least-significant bits
might differ, SMMU_PMCG_SMRn.STREAMID is programmed with a value that contains:

o STREAMID[Y-1]==0.
o STREAMID[Y-2:0]==1 (where Y>1).
o The remainder of implemented bits of STREAMID (X bits, from bit Y upwards) contain a value to

match from the corresponding bits of event StreamID.
o Examples (in binary):

 0000:0000:0001:1011:1111:0111:1111:0111 matches
0000:0000:0001:1011:1111:0111:1111:xxxx

 0000:0000:0001:1011:1111:0111:1111:0110 matches
0000:0000:0001:1011:1111:0111:1111:011x

 0000:0000:0001:1011:1111:0101:1111:1111 matches
0000:0000:0001:1011:1111:01xx:xxxx:xxxx

• To match any StreamID, SMMU_PMCG_SMRn.STREAMID is programmed with 1 for all implemented
bits:

o Note: The STREAMID field might implement fewer bits than the SMMU StreamID size. ARM
recommends that 0xFFFFFFFF is written to this field to ensure that all implemented bits are set
without first determining how many bits to write.

o Note: A value with 0 in the most-significant implemented bit and 1 in all bits below that point is an
alternative encoding that matches any StreamID. This is the maximum mask given the encoding
of the variable mask size, but requires knowledge of the implemented field size. When security is
supported, this encoding behaves differently to the ‘all 1’ encoding in terms of the scope of the
security.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 324 of 443

 Non-Confidential

When the PMCG implements support for two Security states (see section 10.6):

• The SMMU_PMCG_EVTYPERn.FILTER_SEC_SID flag determines whether the StreamID filter
configuration (as determined by SMMU_PMCG_EVTYPERn.FILTER_SID_SPAN and
SMMU_PMCG_SMRn.STREAMID) applies to the Secure or the Non-secure StreamID namespace.
Secure observation can be disabled so that StreamID matching can only match events that are
associated with Non-secure StreamIDs, overriding the effective value of this flag.

• When SMMU_PMCG_EVTYPERn.FILTER_SID_SPAN==1 and SMMU_PMCG_SMRn.STREAMID field
is programmed with 1 in all implemented bits, the filter matches all StreamIDs for both Secure and Non-
secure namespaces if Secure observation is enabled, and matches all non-secure StreamIDs if Secure
observation is not enabled. In SMMUv3.0, it is IMPLEMENTATION DEFINED whether:

o The filter matches all StreamIDs in one of the Secure or Non-secure namespaces as determined
by the effective value of the SMMU_PMCG_EVTYPERn.FILTER_SEC_SID flag.

o The filter matches all StreamIDs for both Secure and Non-secure namespaces if Secure
observation is enabled, and matches all Non-secure StreamIDs if Secure observation is not
enabled.

• When SMMU_PMCG_EVTYPERn.FILTER_SID_SPAN==1 and SMMU_PMCG_SMRn.STREAMID is
programmed with 0 in the most-significant implemented bit and 1 in all other implemented bits, the filter
matches all StreamIDs for the Secure or the Non-secure namespace as determined by the effective value
of the SMMU_PMCG_EVTYPERn.FILTER_SEC_SID flag.

When the counter filter configuration is changed, there is an implementation specific delay between the
observation of the register write by the PMCG and the configuration change taking effect. The change is not
required to affect transactions that have already been observed by the SMMU and that might be part-way through
being processed by the SMMU.

10.4.1 Counter Group StreamID size
The StreamID that is handled by a PMCG is not required to be the full SMMU-architectural StreamID as seen by
the SMMU programming interface. This arises from the possibility that a PMCG represents a sub-component of
the SMMU and, in a distributed implementation, the component might only service a subset of the StreamID space
of the SMMU. In such an implementation, the upper bits of StreamID might be considered fixed for a given sub-
component. For example, block 0 serves clients with StreamIDs 0x00 to 0x0F and block 1 serves clients with
StreamIDs 0x10 to 0x1F.

In all cases, the low-order PMCG StreamID bits [N:0] must be equivalent to the SMMU StreamID[N:0]. Where a
PMCG StreamID filter is programmed, SMMU_PMCG_SMRn.STREAMID might implement fewer bits than
indicated by SMMU_IDR1.SIDSIZE in the SMMU with which the PMCG is associated. The implemented size of
the SMMU_PMCG_SMRn.STREAMID field is IMPLEMENTATION DEFINED. The association between the span of
StreamIDs served by a given PMCG and the overall SMMU StreamID namespace is IMPLEMENTATION DEFINED.

For example, an SMMU with a 17-bit StreamID might be composed of two components A and B, which support
client devices with StreamIDs 0 to 0xFFFF and 0x10000 to 0x1FFFF respectively. In order to count events from
the client device with StreamID 0x12345, software programs a counter in the PMCG that is associated with
component B to filter on StreamID 0x12345. However, SMMU_PMCG_SMRn.STREAMID might only implement
16 bits and read back the value 0x02345.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 325 of 443

 Non-Confidential

Software must not depend on readback of SMMU_PMCG_SMRn.STREAMID returning the full SMMU StreamID.
The readback value might be truncated to the PMCG StreamID size.

10.5 Registers
The total number of counter groups that are associated with one SMMU is IMPLEMENTATION DEFINED. Each counter
group is represented by one 4KB page (Page 0) with one optional additional 4KB page (Page 1), both of which are
at IMPLEMENTATION DEFINED base addresses.

If present, Page 1 contains alternate locations for counter values, overflow status and shadow capture control.
Presence is indicated by SMMU_PMCG_CFGR.RELOC_CTRS. ARM recommends that Page 1 is implemented
and, if so, ARM strongly recommends that Page 1 is located within an aligned 64KB system address span that is
otherwise unused.
Note: This permits a hypervisor to use a 64KB stage 2 granule to expose the Page 1 counter values for direct
access by a virtual machine. ARM expects that guest access to stage 1 registers (for counter configuration) will
be trapped and controlled by the hypervisor, rather than accessed directly.

Access behaviors follow the same rules as for the SMMU registers described in section 6.2. In particular:

• Aligned 32-bit access is permitted to 64-bit registers.
• It is IMPLEMENTATION DEFINED whether 64-bit accesses to 64-bit registers are atomic.
• All registers are little-endian.

Unless otherwise specified, software is permitted to read or write a register at any time. Writes to read-only
registers are IGNORED.

10.5.1 SMMU_PMCGn address map
The map of the base PMCG register Page 0 is shown here:

Page 0 offset Name Access Notes

0x000+(n*

 stride)

(0x000 to
0x1FF)

SMMU_PMCG_EVCNTRn 32 or 64
 RW

Counter value, 0 ≤ n < 64.
Registers placed on a 4-byte stride if
SMMU_PMCG_CFGR.SIZE ≤ 31 (counters
32-bit or smaller), otherwise an 8-byte
stride.

0x400+(n*4)

(0x400 to
0x4FF)

SMMU_PMCG_EVTYPERn 32
RW

Counter event type configuration, 0 ≤ n <
64.

0x600+(n*

 stride)

(0x600 to

SMMU_PMCG_SVRn 32 or 64
RO

Shadow value, 0 ≤ n < 64.
Stride same as for
SMMU_PMCG_EVCNTRn.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 326 of 443

 Non-Confidential

0x7FF)

0xA00+(n*4)

(0xA00 to
0xAFF)

SMMU_PMCG_SMRn 32
RW

Counter stream match filter, 0 ≤ n < 64.

0xC00 SMMU_PMCG_CNTENSET0 64
RW

Counter enable SET.

0xC20 SMMU_PMCG_CNTENCLR0 64
RW

Counter enable CLEAR.

0xC40 SMMU_PMCG_INTENSET0 64
RW

Counter interrupt contribution enable SET.

0xC60 SMMU_PMCG_INTENCLR0 64
RW

Counter interrupt contribution enable
CLEAR.

0xC80 SMMU_PMCG_OVSCLR0 64
RW

Overflow status CLEAR.

0xCC0 SMMU_PMCG_OVSSET0 64
RW

Overflow status SET.

0xD88 SMMU_PMCG_CAPR 32
WO

Counter shadow value capture

0xDF8 SMMU_PMCG_SCR 32
RW
Secure

Secure Control Register

0xE00 SMMU_PMCG_CFGR 32
RO

PMCG configuration information

0xE04 SMMU_PMCG_CR 32
RW

Control Register

0xE20 SMMU_PMCG_CEID0 64
RO

Common Event ID bitmap, lower.

0XE28 SMMU_PMCG_CEID1 64
RO

Common Event ID bitmap, upper.

0xE50 SMMU_PMCG_IRQ_CTRL 32
RW

PMCG IRQ enable

0xE54 SMMU_PMCG_IRQ_CTRLACK 32
RO

PMCG IRQ enable acknowledge

0xE58 SMMU_PMCG_IRQ_CFG0 64
RW

PMCG MSI configuration

0xE60 SMMU_PMCG_IRQ_CFG1 32
RW

PMCG MSI configuration

0xE64 SMMU_PMCG_IRQ_CFG2 32
RW

PMCG MSI configuration

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 327 of 443

 Non-Confidential

0xE68 SMMU_PMCG_IRQ_STATUS 32
RO

PMCG MSI status
Note: This location is RES0 in SMMUv3.0.

0xE70 SMMU_PMCG_AIDR 32
RO

Architecture Identification

0xE80 to 0xEFF IMPLEMENTATION DEFINED

0xFB0 to 0xFFF SMMU_PMCG_ID_REGS IMPLEMENTATION DEFINED

When Page 1 is present (SMMU_PMCG_CFGR.RELOC_CTRS==1), the following registers are relocated to Page
1 and their corresponding Page 0 locations become RES0:

Page 1 offset Name Access Notes

0x000+(n*

 stride)

(0x000 to
0x1FF)

SMMU_PMCG_EVCNTRn Same as for corresponding locations in Page 0.

0x600+(n*

 stride)

(0x600 to
0x7FF)

SMMU_PMCG_SVRn

0xC80 SMMU_PMCG_OVSCLR0

0xCC0 SMMU_PMCG_OVSSET0

0xD88 SMMU_PMCG_CAPR

10.5.2 Register details

10.5.2.1 SMMU_PMCG_EVCNTRn
Read-write.
When counter size is ≤ 32 bits (SMMU_PMCG_CFGR.SIZE ≤ 31), these registers are 32 bits in size. Otherwise,
these registers are 64 bits in size. Present in an array of n registers, all of size 32 or 64, each corresponding to
counter n.

• [N:0] Counter Value
R = SMMU_PMCG_CFGR.SIZE+1
If R < 32, bits [31:R] are RES0.
If R > 32 and R < 64, bits [63:R] are RES0.

Resets to an UNKNOWN value.

The counter value is incremented when an event matching SMMU_PMCG_EVTYPERn.EVENT occurs, the
counter is enabled (the respective CNTEN==1) and, if the event type is filterable by StreamID, filters match. See
section 10.4 for information on filtering.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 328 of 443

 Non-Confidential

Registers corresponding to unimplemented counters are RES0.

10.5.2.2 SMMU_PMCG_EVTYPERn
Read-write.

• [31] OVFCAP
o 0b0: An overflow of counter n does not trigger a capture of all counters.
o 0b1: An overflow of counter n triggers a capture of all counters in the same way as by

SMMU_PMCG_CAPR.CAPTURE.
o When SMMU_PMCG_CFGR.CAPTURE==0, this bit is RES0.

• [30] FILTER_SEC_SID

o 0b0: Count events originating from Non-secure StreamIDs.
o 0b1: Count events originating from Secure StreamIDs.
o This bit is RES0 if the PMCG does not implement Security support. Otherwise, this bit is

effectively 0 if Security support is implemented but Secure observation is disabled
(SMMU_PMCG_SCR.SO==0).

o For event types that can be filtered on StreamID, this bit causes the StreamID match determined
by FILTER_SID_SPAN and SMMU_PMCG_SMRn.STREAMID to match Secure or Non-secure
StreamIDs (as determined by SMMU SSD). See section 10.4.

o Where the StreamID match span encodes ALL, this bit selects counting of events associated with
all Non-secure StreamIDs or all Secure StreamIDs.

• [29] FILTER_SID_SPAN
o 0b0: SMMU_PMCG_SMRn.STREAMID filters event on an exact StreamID match, if the event

type can be filtered on StreamID.
o 0b1: The SMMU_PMCG_SMRn.STREAMID field encodes a match span of StreamID values.

See 10.4.
 Note: The span can encode ALL, equivalent to disabling filtering on StreamID.

• [28:16] Reserved, RES0.

• [15:0] EVENT

o Event type that causes this counter to increment.
o An IMPLEMENTATION DEFINED number of low-order bits of this register are implemented,

unimplemented upper bits are RES0.

Resets to an UNKNOWN value.

These registers contain per-counter configuration, in particular the event type counted.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 329 of 443

 Non-Confidential

When an implementation provides per-counter StreamID filtering
(SMMU_PMCG_CFGR.SID_FILTER_TYPE==0), the field FILTER_SID_SPAN (and FILTER_SEC_SID if Security
is supported) is present in every implemented SMMU_PMCG_EVTYPERn register.
Otherwise when an implementation provides one StreamID filter (SMMU_PMCG_CFGR.SID_FILTER_TYPE==1)
these fields are present only in SMMU_PMCG_EVTYPER0 and the FILTER_SID_SPAN and FILTER_SEC_SID
fields in SMMU_PMCG_EVTYPERx, for x≥0, are RES0.
See SMMU_PMCG_SMRn and 10.4.for information on StreamID filtering. When filtering is enabled, an event is
counted only if it matches the filter conditions for the counter.
Note: Event types that cannot be filtered on StreamID are always counted, as they cannot be filtered out using
FILTER_* configuration.

Registers corresponding to unimplemented counters are RES0.

10.5.2.3 SMMU_PMCG_SVRn
Read-only.

When counter size is ≤ 32 bits (SMMU_PMCG_CFGR.SIZE ≤ 31), these registers are 32 bits in size. Otherwise,
these registers are 64 bits in size. Present in an array of registers (all of size 32 or 64) each corresponding to
counter n.

• [N:0] Shadow Counter Value
R = SMMU_PMCG_CFGR.SIZE+1
If R < 32, bits [31:R-1] are RES0.
If R > 32 and R < 64, bits [63:R-1] are RES0.

Resets to an UNKNOWN value.

When counter value capture is implemented (SMMU_PMCG_CFGR.CAPTURE==1), these registers hold the
captured counter values of the corresponding entries in SMMU_PMCG_EVCNTRn. Registers corresponding to
unimplemented counters are RES0.

If counter value capture is not implemented (SMMU_PMCG_CFGR.CAPTURE==0), all SMMU_PMCG_SVRn
registers are RES0.

10.5.2.4 SMMU_PMCG_SMRn
Read-write.

• [31:0] STREAMID
o When the corresponding SMMU_PMCG_EVTYPERn.EVENT indicates an event that cannot be

filtered on StreamID, the value in this register is IGNORED.
o Otherwise:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 330 of 443

 Non-Confidential

 When the corresponding SMMU_PMCG_EVTYPERn.FILTER_ID_SPAN==0, the
respective counter only counts events associated with a StreamID matching this field
exactly.

 When FILTER_ID_SPAN==1, this field encodes a mask value that allows a span of least-
significant StreamID bits to be ignored for the purposes of filtering on a StreamID match.
When all implemented bits of this field are written to 1, any StreamID is matched. See
section 10.4.

 When Secure observation is enabled, SMMU_PMCG_EVTYPERn.FILTER_SEC_SID
determines whether the StreamID is matched from Secure or Non-secure StreamID
spaces (as defined by SMMU SSD), see section 10.4 for the behavior of the match-all
encodings with respect to Secure/Non-secure namespaces.

o This field implements an IMPLEMENTATION DEFINED number of contiguous bits (from 0 upwards)
corresponding to the PMCG StreamID size, see section 10.4.1. Bits outside this range read as
zero, writes ignored (RAZ/WI).

Resets to an UNKNOWN value.

These registers contain StreamID-match configuration for filtering events on StreamID.
When SMMU_PMCG_CFGR.SID_FILTER_TYPE==0, each SMMU_PMCG_SMRn corresponds to counter
SMMU_PMCG_EVCNTRn for all implemented values of n.
When SMMU_PMCG_CFGR.SID_FILTER_TYPE==1, SMMU_PMCG_SMR0 applies to all counters in the group
and registers SMMU_PMCG_SMRx for x≥1 are RES0.
See section 10.4 for more information on StreamIDs in PMCGs.

Note: To count events for a given StreamID, software must choose a counter in the appropriate counter group to
use for the required event type (which is determined in an IMPLEMENTATION DEFINED manner) and then write the full
StreamID value into the STREAMID field of this register.

Registers corresponding to unimplemented counters are RES0.

10.5.2.5 SMMU_PMCG_CNTENSET0
Read-write.

• [63:0] CNTEN

Resets to an UNKNOWN value.

64-bit register containing a bitmap of per-counter enables. Bit CNTEN[n] corresponds to counter n, which is
enabled if CNTEN[n]==1 and SMMU_PMCG_CR.E==1.

Write 1 to a bit location to set the per-counter enable. Reads return the state of enables. High-order bits of the
bitmap beyond the number of implemented counters are RES0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 331 of 443

 Non-Confidential

10.5.2.6 SMMU_PMCG_CNTENCLR0
Read-write.

• [63:0] CNTEN

Resets to an UNKNOWN value.

Bitmap indexed similar to SMMU_PMCG_CNTENSET0.

Write 1 to a bit location to clear the per-counter enable. Reads return the state of enables. High-order bits of the
bitmap beyond the number of implemented counters are RES0.

10.5.2.7 SMMU_PMCG_INTENSET0
Read-write.

• [63:0] INTEN

Resets to an UNKNOWN value.

Bitmap indexed similar to SMMU_PMCG_CNTENSET0.

Write 1 to a bit location to set the per-counter interrupt enable. Reads return the state of interrupt enables. High-
order bits of the bitmap beyond the number of implemented counters are RES0.

Overflow of counter n triggers a PMCG interrupt if, at the time that the OVS[n] bit becomes set, the corresponding
INTEN[n]==1 && SMMU_PMCG_IRQ_CTRL.IRQEN==1.

10.5.2.8 SMMU_PMCG_INTENCLR0
Read-write.

• [63:0] INTEN

Resets to an UNKNOWN value.

Bitmap indexed similar to SMMU_PMCG_CNTENSET0.

Write 1 to a bit location to clear the per-counter interrupt enable. Reads return the state of interrupt enables.
High-order bits of the bitmap beyond the number of implemented counters are RES0.

10.5.2.9 SMMU_PMCG_OVSCLR0
Read-write.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 332 of 443

 Non-Confidential

• [63:0] OVS
Resets to an UNKNOWN value.

Bitmap indexed similar to SMMU_PMCG_CNTENSET0.

Write 1 to a bit location to clear the per-counter overflow status. Reads return the state of overflow status. High-
order bits of the bitmap beyond the number of implemented counters are RES0.

Overflow of counter n (a transition past the maximum unsigned value of the counter causing the value to become,
or pass, zero) sets the corresponding OVS[n] bit. In addition, this event can trigger the PMCG interrupt and cause
a capture of the PMCG counter values (see SMMU_PMCG_EVTYPERn).

10.5.2.10 SMMU_PMCG_OVSSET0
Read-write.

• [63:0] OVS

Resets to an UNKNOWN value.

Bitmap indexed similar to SMMU_PMCG_CNTENSET0.

Write 1 to a bit location to set the per-counter overflow status. Reads return the state of overflow status. High-
order bits of the bitmap beyond the number of implemented counters are RES0.

Software setting an OVS bit is similar to an OVS bit becoming set because of a counter overflow, except it is
implementation specific whether enabled overflow side-effects of triggering the PMCG interrupt or causing a
capture of the PMCG counter values are performed.

10.5.2.11 SMMU_PMCG_CAPR
Write-only.

• [31:1] Reserved, RES0.

• [0] CAPTURE
o When counter capture is supported (SMMU_PMCG_CFGR.CAPTURE==1), a write of 1 to this bit

triggers a capture of all SMMU_PMCG_EVCNTRn values within the PMCG into their respective
SMMU_PMCG_SVRn shadow register.

o When SMMU_PMCG_CFGR.CAPTURE==0, this field is RES0.

This register reads as zero.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 333 of 443

 Non-Confidential

10.5.2.12 SMMU_PMCG_SCR
Read-write, Secure access only. Non-secure access has RAZ/WI behavior.

• [31] Reads as one
o Secure software can use this bit to discover Security support in the PMCG.

• [30:3] Reserved, RES0.

• [2] NSMSI

o 0b0: Generated MSIs have an NS=0 attribute
o 0b1: Generated MSIs have an NS=1 attribute
o This bit is RES0 if SMMU_PMCG_CFGR.MSI==0. Otherwise, this bit resets to 1.

• [1] NSRA

o 0b0: Non-secure Register Access is disabled.
 Non-secure access to any PMCG register is RAZ/WI.

o 0b1: Non-secure Register Access is enabled.
 If the PMCG supports MSIs, generated MSIs have an NS=1 attribute.

o Resets to 1.
• [0] SO

o 0b0: Secure observation is disabled
 SMMU_PMCG_EVTYPERn.FILTER_SEC_SID is effectively 0.

o 0b1: Secure observation is enabled
o See section 10.6.
o Resets to 0.

If the PMCG does not implement support for two Security states, this register is RAZ/WI.

If the PMCG does not implement two Security states but the system does, both Secure and Non-secure accesses
are permitted to PMCG registers. In this case, any MSIs generated from the PMCG must be issued as NS=1.

Note: Software must not write NSMSI=0 and NSRA=1 as this would allow Non-secure software to perform a
Secure MSI write to an arbitrary address. If software transitions control of a PMCG between Non-secure and
Secure realms, ARM recommends following this procedure:

• Set NSRA=0 and NSMSI=1
o Non-secure register access is disabled, but any active MSI configuration remains Non-secure

• Clear SMMU_PMCG_IRQ_CTRL.IRQEN and wait for Update of SMMU_PMCG_IRQ_CTRLACK.
o Outstanding Non-secure MSIs are complete.

• Set NSMSI=0 and reprogram MSI registers as required.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 334 of 443

 Non-Confidential

10.5.2.13 SMMU_PMCG_CFGR
Read-only.

• [31:24] Reserved, RES0.

• [23] SID_FILTER_TYPE
o 0b0: Separate StreamID filtering is supported for each counter in the PMCG.
o 0b1 The StreamID filter configured by SMMU_PMCG_SMR0 and

SMMU_PMCG_EVTYPER0.FILTER_SID_SPAN applies to all counters in the PMCG.

• [22] CAPTURE
o 0b0: Capture of counter values into SVRn registers not supported.

 SMMU_PMCG_SVRn and SMMU_PMCG_CAPR are RES0.
o 0b1: Capture of counter values supported.

• [21] MSI Counter group supports Message Signalled Interrupt.

o 0b0: Group does not support MSI.
o 0b1: Group can send MSI.

• [20] RELOC_CTRS

o When 1, Page 1 is present and the following registers are relocated to the equivalent offset on
Page 1 (their Page 0 locations become RES0):

 SMMU_PMCG_EVCNTRn.
 SMMU_PMCG_SVRn.
 SMMU_PMCG_OVSCLRn.
 SMMU_PMCG_OVSSETn.
 SMMU_PMCG_CAPR.

• [19:14] Reserved, RES0.

• [13:8] SIZE

o Size of PMCG counters in bits, minus one. Valid values are:
 31 (32-bit counters).
 35 (36-bit counters).
 39 (40-bit counters).
 43 (44-bit counters).
 47 (48-bit counters).
 63 (64-bit counters).

o Other values are Reserved.

• [7:6] Reserved, RES0.

• [5:0] NCTR

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 335 of 443

 Non-Confidential

o The number of counters available in the group is given by NCTR+1

The capability of each counter group to send MSIs is specific to the group and is not affected by the core SMMU
MSI capability (SMMU_IDR0.MSI).

10.5.2.14 SMMU_PMCG_CR
Read-write.

• [31:1] Reserved, RES0.

• [0] E
o Global counter enable, where 1 = Enabled. When 0, no events are counted and values in

SMMU_PMCG_EVCNTRn registers do not change. This bit takes precedence over the CNTEN
bits set through SMMU_PMCG_CNTENSET0.

Resets to zero.

10.5.2.15 SMMU_PMCG_CEID{0,1}
Read-only.
128-bit bitmap comprised of two consecutive 64-bit registers. Bit (N & 63) of the 64-bit word at offset 8*(N/64)
relates to event number N. For each bit,

• 0b0: Event N cannot be counted by counters in this group.

• 0b1: Event N can be counted by counters in this group.
See section 10.3 for event numbers.

10.5.2.16 SMMU_PMCG_IRQ_CTRL
Read-write.

• [31:1] Reserved, RES0.

• [0] IRQEN

Resets to zero.

Each field in this register has a corresponding field in SMMU_PMCG_IRQ_CTRLACK, with the same Update
semantic as fields in SMMU_CR0 versus SMMU_CR0ACK.

This register contains the main IRQ enable flag for a per-counter group interrupt source. This enable allows or
inhibits both edge-triggered wired outputs (if implemented) and MSI writes (if supported by the counter group).
When IRQEN==0, no interrupt is triggered regardless of individual per-counter overflow INTEN flags (that is, they
are overridden). IRQEN also controls overall interrupt completion and MSI configuration changes.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 336 of 443

 Non-Confidential

IRQ enable flags Guard the MSI address and payload registers (when MSIs supported,
SMMU_PMCG_CFGR.MSI==1), which must only be changed when their respective enable flag is 0, see
SMMU_GERROR_IRQ_CFG0 for details.

Completion of Update to IRQ enables guarantees the following side-effects:

• Completion of an Update of IRQEN from 0 to 1 guarantees that the MSI configuration in
SMMU_PMCG_IRQ_CFG{0,1,2} will be used for all future MSIs generated from the counter group.

• An Update of IRQEN from 1 to 0 completes when all prior MSIs have become visible to their Shareability
domain (have completed). Completion of this Update guarantees that no new MSI writes or wired edge
events will later become visible from this source.

An IRQ is triggered from the PMCG if all of the following occur:

• SMMU_PMCG_IRQ_CTRL.IRQEN==1
• A counter overflows and sets an OVS bit, whose corresponding INTEN bit was set through

SMMU_PMCG_INTENSET0

10.5.2.17 SMMU_PMCG_IRQ_CTRLACK
Read-only.

• Same fields as SMMU_PMCG_IRQ_CTRL.
Resets to zero.
Undefined bits read as zero. Fields in this register are RES0 if their corresponding SMMU_PMCG_IRQ_CTRL
field is Reserved.

10.5.2.18 SMMU_PMCG_IRQ_CFG0
• [63:52] Reserved, RES0.

• [51:2] ADDR[51:2] Physical address of MSI target register.

o If ADDR==0, no MSI is sent. This allows a wired IRQ, if implemented, to be used instead of an
MSI.

o Address bits above and below this field are treated as zero.
o An IMPLEMENTATION DEFINED number of contiguous low-order bits of ADDR are implemented so

that an address of at least the system PA size (see SMMU_IDR5.OAS) can be represented. The
high-order bits of ADDR above the implemented span are RES0.

o In SMMUv3.0, bits [51:48] are RES0.

• [1:0] Reserved, RES0.

This register resets to an UNKNOWN value and must only be modified when
SMMU_PMCG_IRQ_CTRL.IRQEN==0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 337 of 443

 Non-Confidential

When an implementation does not support MSIs, all fields are RES0.

SMMU_PMCG_IRQ_CFG{0,1,2} are Guarded by SMMU_PMCG_IRQ_CTRL.IRQEN and have the same
behaviors as SMMU_*_IRQ_CFG{0,1,2} with respect to their enables, including the permitted behaviors of writes
when IRQEN==1.

See SMMU_PMCG_SCR.NSMSI for control of the NS attribute of the MSI.

10.5.2.19 SMMU_PMCG_IRQ_CFG1
Read-write.

• [31:0] DATA MSI data payload.

This register resets to an UNKNOWN value and must only be modified when
SMMU_PMCG_IRQ_CTRL.IRQEN==0.

When an implementation does not support MSIs, all fields are RES0.

10.5.2.20 SMMU_PMCG_IRQ_CFG2
Read-write

• [31:6] Reserved, RES0.

• [5:4] SH[1:0] Shareability,
o 0b00: Non-shareable.
o 0b01: Reserved, behaves as 0b00.
o 0b10: Outer Shareable.
o 0b11: Inner Shareable.

 When MemAttr encodes a Device memory type, the value of this field is IGNORED and the
Shareability is effectively Outer Shareable.

• [3:0] MemAttr Memory type.
o Encoded the same as the STE.MemAttr field.

This register resets to an UNKNOWN value and must only be modified when
SMMU_PMCG_IRQ_CTRL.IRQEN==0.

When an implementation does not support MSIs, all fields are RES0.

10.5.2.21 SMMU_PMCG_IRQ_STATUS

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 338 of 443

 Non-Confidential

Read-only.

• [31:1] Reserved, RES0.

• [0] IRQ_ABT

o The SMMU sets this bit to 1 if it detects that an MSI has terminated with an abort.

o This bit is RES0 when SMMU_PMCG_CFGR.MSI==0.

o It is IMPLEMENTATION DEFINED whether an implementation can detect this condition.

o This bit is cleared to 0 when SMMU_PMCG_IRQ_CTRL.IRQEN is Updated from 0 to 1.

 Note: An IRQEN transition from 1 to 0 does not clear this bit, as this transition also
ensures visibility of outstanding MSI writes and clearing IRQ_ABT at this point might
mask possible abort completions of those MSI writes.

In SMMUv3.0, this register location is RES0.

10.5.2.22 SMMU_PMCG_AIDR
Read-only.

• [31:8] Reserved, RES0.

• [7:4] ArchMajorRev

• [3:0] ArchMinorRev
o [7:0] = 0x00 = SMMUv3.0 PMCG.
o [7:0] = 0x01 = SMMUv3.1 PMCG.
o All other values Reserved.

This register identifies the SMMU architecture version to which the PMCG implementation conforms.

10.5.2.23 SMMU_PMCG_ID_REGS
SMMU_PMCG register offsets 0xFB0-0xFFC are defined as a read-only identification register space. For ARM
implementations of the SMMU architecture the assignment of this register space, and naming of registers in this
space, is consistent with the ARM identification scheme for CoreLink and CoreSight components. ARM strongly
recommends that other implementers also use this scheme to provide a consistent software discovery model.

For ARM implementations, the following assignment of fields, consistent with CoreSight ID registers [8], is used:

Offset Name
(SMMU_PMCG_-
prefixed)

Field Value Meaning

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 339 of 443

 Non-Confidential

0xFF0 CIDR0, Component ID0 [7:0] 0x0D Preamble

0xFF4 CIDR1, Component ID1 [7:4] 0x9 CLASS

 [3:0] 0x0 Preamble

0xFF8 CIDR2, Component ID2 [7:0] 0x05 Preamble

0xFFC CIDR3, Component ID3 [7:0] 0xB1 Preamble

0xFE0 PIDR0, Peripheral ID0 [7:0] IMPDEF PART_0: bits [7:0] of the Part number

0xFE4 PIDR1, Peripheral ID1 [7:4] IMPDEF DES_0: bits [3:0] of the JEP106 Designer code

 [3:0] IMPDEF PART_1: bits [11:8] of the Part number

0xFE8 PIDR2, Peripheral ID2 [7:4] IMPDEF REVISION

 [3] 1 JEDEC-assigned value for DES always used

 [2:0] IMPDEF DES_1: bits [6:4] bits of the JEP106 Designer code

0xFEC PIDR3, Peripheral ID3 [7:4] IMPDEF REVAND

 [3:0] IMPDEF CMOD

0xFD0 PIDR4, Peripheral ID4 [7:4] 0 SIZE

 [3:0] IMPDEF DES_2: JEP106 Designer continuation code

0xFD4 PIDR5, Peripheral ID5 RES0 Reserved

0xFD8 PIDR6, Peripheral ID6 RES0 Reserved

0xFDC PIDR7, Peripheral ID7 RES0 Reserved

0xFB8 PMAUTHSTATUS [7:0] — See below

0xFBC PMDEVARCH [31:21] 0x23B ARCHITECT (0x23B is ARM’s JEP106 code)

 [20] 1 PRESENT

 [19:16] 0 REVISION

 [15:0] 0x2A56 ARCHID

0xFCC PMDEVTYPE [7:4] 5 Sub-type: Associated with an SMMU

 [3:0] 6 Class: Performance monitor device type

Fields outside of those defined in this table are RES0.

Note: The Designer code fields (DES_*) fields for ARM-designed implementations use continuation code 0x4 and
Designer code 0x3B.

Note: Non-ARM implementations that follow this CoreSight ID register layout must set the Designer fields
appropriate to the implementer.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 340 of 443

 Non-Confidential

10.5.2.23.1 SMMU_PMCG_PMAUTHSTATUS
SMMU_PMCG_PMAUTHSTATUS is equivalent to the AUTHSTATUS register that is described in the CoreSight
Architecture Specification [8]. It is IMPLEMENTATION DEFINED whether a PMCG supports an authentication interface,
as described in [8].

A PMCG might also provide IMPLEMENTATION DEFINED facilities to limit visibility of PMCG events relating to Secure
and Non-secure streams, independent of the CoreSight authentication interface.

10.6 Support for two Security states
Security support in a PMCG is optional. If supported, it comprises:

• Whether the PMCG registers can be accessed by both Non-secure and Secure accesses, or only Secure
accesses.

• Whether the counters can observe events associated with Secure StreamIDs.
• Whether an MSI is sent with an NS==0 or NS==1 attribute.

The SMMU_PMCG_SCR.NSRA flag controls whether Non-secure accesses can be made to the registers of a
given group. Secure accesses can always be made to the registers.
Note: As counter groups might exist in separate components, the SMMU does not contain a centralised
mechanism for assigning counter groups to a Security state.

The SMMU_PMCG_SCR.SO flag controls whether counters can observe events associated with Secure
StreamIDs. When Secure observation is enabled for a group, counters using events types that can be filtered on
StreamID can count events associated with either a Secure or Non-secure StreamID. This is controlled by the
SMMU_PMCG_EVTYPERn.FILTER_SEC_SID bit.

When Secure observation is disabled, counters using event types able to be filtered by StreamID can only count
events associated with Non-secure StreamIDs.

When a counter uses an event type able to be filtered by StreamID but the StreamID filter matches all, events
from all StreamIDs associated with the Security state selected by the
SMMU_PMCG_EVTYPERn.FILTER_SECSID bit are counted, if permitted by the ‘SO’ flag.

Event types that are not able to be filtered by StreamID count global events that might be related to activity from
either Security state, so are unaffected by the SO flag.

If a counter group supports MSIs, the MSI is sent with NS==1 if SMMU_PMCG_SCR.NSMSI==1 and NS==0 if
SMMU_PMCG_SCR.NSMSI==0.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 341 of 443

 Non-Confidential

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 342 of 443

 Non-Confidential

11 DEBUG/TRACE
The SMMU architecture does not require the provision of debug support features. An implementation might
provide its own debug features, but if such an implementation supports two Security states a Non-secure debug
agent must not be able to access any facilities related to secure transaction handling.

ARM recommends that an implementation provides an IMPLEMENTATION DEFINED mechanism to read the contents
of translation and configuration cache structures. If such a mechanism is provided and an implementation
supports two Security states, a Non-secure agent must not be able to access Secure cache entries.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 343 of 443

 Non-Confidential

12 RELIABILITY, AVAILABILITY AND SERVICEABILITY (RAS)
Note: In this chapter, the term RAS fault is used to distinguish a fault in the sense defined by the RAS
architecture from an SMMU translation fault.

The SMMU might support optional RAS features as part of the overall ARM RAS Architecture, which is described
in Appendix - The ARM RAS architecture. When supported, RAS fault handling registers according to the ARM
RAS Architecture are present, into which errors are recorded.

If the SMMU does not support RAS but the system does, it is possible for the SMMU to consume an external error
which is presented to the SMMU driver software as an external abort.

The SMMU might, but is not required to, record errors that it does not itself consume or detect, such as those
reported directly from the system to a client device, for example, a device reading a memory location that
translates without issue, but ultimately causes the device to consume poisoned data.

12.1 Error propagation, consumption and containment in the SMMU
This guidance section relates SMMU-specific concepts to the RAS architecture.

Generally, SMMU activity can be considered to be driven on demand from incoming transactions from client
devices. Consequently, an external transaction might cause the SMMU to consume errors from:

1. Internal state errors.
2. External state errors, for example reading a translation table entry, configuration structure or command

with an associated error.

If the SMMU consumes an error while performing translation for an external transaction, containment of the error
can be achieved by deferring the error to the source of the transaction. This might involve terminating the
transaction with an abort, or otherwise returning error information to the client. A detected error that is silently
propagated might lead to silent data corruption (SDC). The termination of a transaction that could be affected by
an SMMU error ensures isolation of the error and represents a non-silent error propagation from the SMMU to the
client device.

When the SMMU consumes an error from either internal or external state, ARM expects the implementation to
report the error and enter error recovery in addition to containment by deferring the error.

Note: An example of an error propagation on write is a write of queue records affected by the error. The error
might be propagated with affected data. An implementation might non-silently propagate the error so that the
system can poison the data in memory.

A UE can be consumed by the SMMU in a way that can affect external or internal state. This includes:

1. Reading a register containing a UE in order to calculate an address for access to a queue entry.
2. Reading a register containing a UE in order to write the data of a written queue entry.
3. Consuming a UE from the system when reading from the Command queue.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 344 of 443

 Non-Confidential

4. Reading a cache entry containing a UE in response to an incoming transaction.
5. Reading a register containing a UE in response to an incoming transaction.
6. Consuming a UE from the system when fetching data into a cache in response to an incoming

transaction.

Containment of these errors avoids silently affecting external or internal state. The effect of the error means, for
the corresponding scenarios in the previous list:

1. Internal consistency is lost.
2. The error might be transient (for example, it is overwritten when the queue entry is written), in which case

internal consistency is not lost, The error is deferred into the memory system (error on write) and an
implementation might record the error. If the error is non-transient, internal consistency might be lost.

3. An implementation might have unsuccessfully tried to correct the error, or might accept the error as a UE.
However, internal consistency is not lost.

4. The transaction (and therefore other agents in the system) would be affected, and isolation broken, unless
the transaction is terminated. The UE can therefore be deferred to the client. SMMU internal consistency
might not be lost.

5. An error in a register might not be correctable. The UE can be deferred to the client and recorded.
Internal consistency might have been lost if the register could affect future transactions.

6. The transaction would be affected by the error, unless the transaction is terminated (deferring the UE to
the client). SMMU internal consistency might not be lost.

If internal consistency is lost, invoking a Service Failure Mode (SFM) can isolate further errors from the system.
This might reduce the severity of the error by ceasing subsequent duplicate error reports caused by the same
failure, and by reducing the chance that the loss of internal consistency can silently propagate an error.

12.2 Error consumption visible through the SMMU programming interface
On consumption of an external error, an SMMU supporting RAS is expected to report a RAS event through the
RAS register interface. Alternatively, consumption of an external error by an SMMU that does not support RAS
presents it with an external abort. In both cases, the SMMU records the event through the Event queue
(pertaining to the Security state of the transaction that caused the error to be consumed) or GERROR as
appropriate:

• F_WALK_EABT where a translation table walk consumed an error.
• F_STE_FETCH where an STE fetch consumed an error.
• F_CD_FETCH where a CD fetch consumed an error.
• SMMU_(S_)GERROR errors:

o GERROR.CMDQ_ERR triggered and CERROR_ABT reported in
SMMU_(S_)CMDQ_CONS.ERR, where a command fetch consumed an error.

o GERROR.PRIQ_ABT_ERR triggered when a PRI queue access is aborted because of an
external error.

o GERROR.EVENTQ_ABT_ERR triggered when an Event queue access is aborted because of an
external error.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 345 of 443

 Non-Confidential

12.3 Service Failure Mode (SFM)
If internal consistency is known to have been lost (for example, detection of a UE in internal register state), or
there is a likelihood that it has been lost, and the functionality of the SMMU will be impaired or would risk silent
data corruption or silent propagation of errors, Service Failure Mode must be entered. The SMMU must terminate
client transactions after this mode is entered, and stop accessing its queues. ARM recommends that the SMMU
registers are still be readable in this mode to aid diagnosis. The mechanism to exit or recover from this mode is
IMPLEMENTATION DEFINED, but must include system reset.

Note: An implementation might provide a partial service failure mode, which depends on implementation specific
isolation features or safety guarantees, for example, a partitioning system in which some client devices are
guaranteed to be unaffected by a loss of consistency in a different portion of the SMMU and whose traffic might
still continue to flow.

Entry to Service Failure Mode is signalled by all of the following means:

• The Global Errors SMMU_GERROR.SFM and SMMU_S_GERROR.SFM are triggered for both Non-
secure and Secure programming interfaces (if implemented).

• An IMPLEMENTATION DEFINED notification such as recording syndrome into RAS registers and asserting an
Error Recovery Interrupt or system-wide error interrupt.

Diagnosis of the reason for entering SFM is made through IMPLEMENTATION DEFINED means.

12.4 RAS fault handling/reporting
When RAS facilities are implemented, an implementation must provide at least one group of memory-mapped
error recording registers in accordance with the RAS fault handling register format defined in Appendix - The ARM
RAS registers.

The exact layout and operation of the RAS registers is IMPLEMENTATION DEFINED, including:

• Discovery and identification registers.
• The number of RAS register groups and association to nodes.
• Whether counters are implemented or single errors reported.

Error Recovery Interrupts and Fault Handling Interrupts must be provided.

The mechanism for determining whether RAS facilities are implemented, base addresses for RAS registers and
the extent of RAS register frames is IMPLEMENTATION DEFINED. Note: For example, IMPLEMENTATION DEFINED
identification registers or firmware descriptions.

When Security support is implemented, one RAS register interface might be provided for each of the Secure and
Non-secure programming interfaces, only Secure or only Non-secure. When Security support is not
implemented, a RAS register interface accessible by Non-secure accesses is provided.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 346 of 443

 Non-Confidential

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 347 of 443

 Non-Confidential

13 ATTRIBUTE TRANSFORMATION

The ARM architecture supports a set of attributes that accompanies each external access that is made by a PE.
These attributes map onto attributes carried by the interconnect in an interconnect-specific manner. The SMMU
supports a set of attributes that is identical to that supported by the PE. These attributes govern the behavior of
each client transaction and are presented from the SMMU to the memory system. The interconnect from the
client device might also present attributes to the SMMU. This section describes how the attributes supplied with
an input transaction affect the flow through the SMMU and how the attributes output with a transaction are
determined.

To avoid interconnect-specific language, this section uses attribute terminology and concepts as defined in the
ARM Architecture Reference Manual [4]. The mapping of these attributes onto interconnect implementations that
support a subset of the attributes is IMPLEMENTATION DEFINED.

This section covers the attributes that are applied in the four conditions under which a transaction can pass
through an SMMU:

1. Global bypass. The SMMU is disabled (SMMU_(S_)CR0.SMMUEN==0).
2. STE bypass. The SMMU is enabled but all stages of translation are disabled by an STE.
3. Normal translation flow. An STE configures one or more stages of translation.
4. PCIe ATS Translated. A device requests a ‘pre-translation’, caches the result, and subsequently

presents a transaction with an address that has been translated but has not had SMMU attributes
applied.

This section additionally covers accesses that originate from the SMMU, such as fetching configuration or walking
translation tables.

Depending on the path taken, attributes might be overridden or modified by SMMU configuration registers, STE
fields or translation table entries. Some of the attributes are used when checking access permissions in
translation table entries, others are provided for the memory system.

At the highest level, the attribute determination for the normal translation flow is:

1. Input attributes are obtained from the incoming transaction and any attributes that are not provided are
generated from constant default values.

2. The STE might then override incoming attributes for a specific stream.
3. The stage 1 and stage 2 translation table permissions are checked against the attributes determined from

the previous step, where a stage is enabled.
4. If stage 1 is enabled, the stage 1 translation table attributes replace any input and STE override values.
5. If stage 2 is enabled, the stage 2 translation table attributes are combined with the stage 1 attributes if

stage 1 is enabled, or combined with the overridden input attributes if stage 1 is not enabled.
6. The attribute is output with the translated transaction.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 348 of 443

 Non-Confidential

13.1 SMMU handling of attributes

13.1.1 Attribute definitions
A transaction has the attributes that are defined by the ARM architecture [4]:

Attribute Short
hand

Values

Memory Type MT Normal i{WB, WT, NC}-o{WB, WT, NC} – generally Normal,
Device-{GRE, nGRE, nGnRE, nGnRnE} – generally any-Device.

Shareability SH Non-shareable (NSH),Inner shareable (ISH), Outer shareable (OSH)
Note: Device types and Normal iNC-oNC are considered to be OSH

Read Allocation hint RA Inner read allocate/no-allocate, Outer read allocate/no-allocate

Write Allocation hint WA Inner write allocate/no-allocate, Outer write allocate/no-allocate

Transient hint TR Inner transient/non-transient, Outer transient/non-transient

Read/Write R/W Read, Write

Inst/Data INST Instruction, Data

Privilege PRIV Privileged/Unprivileged

Non-secure NS Secure, Non-secure

Key: i = Inner,
 o = Outer,

WB = Write-Back cacheable,
 WT = Write-Through cacheable,
 NC = Non-Cacheable,

In this document, a Normal memory type is expressed as:

o iNC-oNC, or
o i{ NC, {WB, WT}/[n]RA[n]WA[n]TR }-o{ NC, {WB, WT}/[n]RA[n]WA[n]TR }-{NSH,ISH,OSH}

(Syntax: {a,b} = Choose one of a or b, [x] = x is optional.)
This means that:

• Normal-iWB/RAnWATR-oNC-ISH:
o Is Inner writeback cacheable/Read-Allocate/no-Write-Allocate/transient, outer non-cacheable

inner-shareable.
o The (outer) NC type has no RA/WA or TR attributes.

• Normal-iWB/RAWAnTR-oWB/RAWAnTR-OSH:
o Is inner/outer writeback read/write allocate non-transient, outer-shareable.

• Normal-iNC-oNC

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 349 of 443

 Non-Confidential

o Is architecturally non-cacheable, always OSH
o NC has no RA/WA or TR attributes.

Note: System shareable is an AMBA interconnect term and is not used in this document. Device memory is OSH
according to the ARM architecture, but the AMBA interconnect Device type is System shareable. Similarly, a PE
Normal-iNC-oNC attribute becomes Non-Cacheable System shareable in AMBA interconnect. ARMv8-A memory
attribute terminology is used in this document.

While some interconnects might support an IMPLEMENTATION DEFINED subset of these attributes, R/W is mandatory.

The R/W, INST and PRIV attributes are used to check translation permissions against TTD read/write and execute
access permissions. Some memory systems might also use INST, PRIV, RA, WA and TR attributes to influence
cache allocation or prioritisation policies but such usage is outside the scope of this document.

When the SMMU supports two Security states, NS is used by the memory system to distinguish between Secure
physical addresses and Non-secure physical addresses, and to check against SMMU_S_CR0.SIF.

Some interconnects support atomic transactions. These are treated as performing both a read and a write for
permission checking purposes. For Event records generated due to atomic accesses:

• In the event of a permission fault due to having write access but not read access, the value of the
F_PERMISSION event's RnW field is:

o SMMUV3.0: IMPLEMENTATION DEFINED.
o SMMUv3.1: 1.

• In the event of a permission fault due not having write access, or no access, the F_PERMISSION event's
RnW==0.

• The RnW field of event types other than F_PERMISSION is 0.

The access permission attributes of an incoming transaction are only used by the SMMU to enforce access
permissions against the permissions determined by translation table descriptors and SMMU_S_CR0.SIF. They
do not interact with the memory type in any way.
Note: In AArch32 state, a PE is permitted to raise a Permission fault when an instruction fetch is made to Device
memory and execute-never is not set. The SMMU does not raise a Permission fault in this case, and the output
attribute remains Device. An access is permitted if the permission checks succeed, regardless of the final
memory type.

13.1.2 Attribute support
The SMMU defines behavior for all architected attributes. However, where an interconnect from the SMMU to the
memory system supports only a subset of these attributes, the SMMU is not required to generate attributes that it
does not use. With the exception of R/W, INST, and PRIV all configuration fields that affect unused attributes are
IGNORED.

When SMMU_S_IDR1.SECURE_IMPL==1:

• Override fields that are associated with NS might be supported.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 350 of 443

 Non-Confidential

• Any transaction that belongs to a Non-secure stream is outputted with NS==1.

When SMMU_S_IDR1.SECURE_IMPL==0:

• Override fields that are associated with NS are not supported.
• Where supported by the memory system, all transactions are outputted with NS==1.

If an interconnect supports attributes but does not differentiate inner and outer in the same way as the
architecture, the mapping onto the architecturally-defined set of attributes is IMPLEMENTATION DEFINED.

In some implementations, a client device might request translation services from an SMMU and later perform
transactions separately, based on the translations and attributes determined by the SMMU. The behavior of the
client device transactions with respect to attributes presented to the system are outside the scope of the SMMU
architecture. Where such a client device does not support certain memory types or attributes that are returned by
the SMMU translation process, behavior on accesses with these memory types is defined by the device
implementation. However, the page permission protection model of the SMMU translations must always be fully
observed.
Note: For example, a client device must never use a read-only translation to issue a write transaction into the
system. If a client device does not support a particular memory type, a valid behavior might be to alter the type in
an architecturally-safe manner. This could be strengthening a Device-GRE access to a Device-nGnRnE access.
If this is not possible, another valid behavior might be for the client device to abort the access in a client device-
specific manner.
Note: A composite device that contains an SMMU, such as an intelligent accelerator, is conceptually identical to a
client device making requests of an external SMMU.

The SMMU makes its own accesses to memory, for example to fetch configuration or perform translation table
walks. Each access has a memory type and attributes that are configured using SMMU registers or structure
fields. Where an SMMU and the memory system support only a subset of memory types, and where access to an
unsupported type can be reported to the SMMU, the SMMU will record an external abort for the cause of the
access in question in the architected manner. If such an access is instigated by an incoming transaction, the
transaction will be terminated with an abort.
A fetch from unsupported memory types generates the following fault and errors:

• STE: F_STE_FETCH
• CD: F_CD_FETCH
• Command queue read entry: GERROR.CMDQ_ERR and Command queue CERROR_ABT
• Event queue access: GERROR.EVENTQ_ABT_ERR
• PRI queue access: GERROR.PRIQ_ABT_ERR
• MSIs: GERROR.MSI_*_ABT_ERR
• Translation table walk: F_WALK_EABT

ARM strongly recommends that an SMMU supports all architected access types (for both its own structure
accesses and for client transactions) so that it is compatible with generic driver software.

The SMMU considers all incoming writes to be Data, even if the client device marks the incoming write as
Instruction. This is done on input, prior to any translation table permission checks. In addition, STE.INSTCFG
and SMMU_(S_)GBPA.INSTCFG can only change the instruction/data marking of reads. Where an

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 351 of 443

 Non-Confidential

implementation outputs an INST attribute to the memory system, this reflects the output of the INSTCFG fields for
reads and is fixed as DATA for writes.

All reads that originate from the SMMU, for example structure fetch, are represented as Privileged-Data if
INST/PRIV attributes are supported by the memory system.

All SMMU writes of output queue data and MSIs are represented as Privileged-Data if INST/PRIV attributes are
supported by the memory system.

13.1.3 Default input attributes
Where the SMMU is not supplied with an attribute because the interconnect between the client device and SMMU
does not have the ability to convey it, the SMMU constructs a default input value:

Attribute Input generated as:

MT Normal iWB-oWB

SH NSH

RA Allocate

WA Allocate

TR Non-transient

INST Data

PRIV Unprivileged

NS Non-secure

These values are used when any configuration path is set to ‘Use incoming’ attribute, but the attribute is not
supplied.

Note: The SMMU architecture only includes configuration of inner and outer properties for the Cacheability of a
memory type. No separate inner or outer configuration is provided for RA, WA or TR in any location aside from
the translation table descriptor. Attribute overrides for RA, WA and TR affect both inner and outer allocation and
transient hints at the same time.

13.1.4 Replace
The Replace operation discards any input attribute, replacing a specific attribute with a configured value. For
example, the SMMU_GBPA.SHCFG field allows the input Shareability to be discarded and replaced by
NSH/ISH/OSH values, or used directly without override, for the purposes of global bypass when the SMMU is
disabled.

In this document, the term Override refers to a configuration field that causes an attribute to be replaced with a
specific value.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 352 of 443

 Non-Confidential

The STE fields INSTCFG, PRIVCFG, NSCFG, SHCFG, ALLOCCFG, MTCFG/MemAttr contain override fields that
can cause individual input attributes to be replaced with values given in these fields. Similar fields in
SMMU_(S_)GBPA allow override of attributes when transactions globally bypass. Whether overrides in these
fields take effect is indicated by SMMU_IDR1.ATTR_TYPES_OVR and SMMU_IDR1.ATTR_PERMS_OVR. See
6.3.2 and the field descriptions in 5.2 for more information.

When stage 1 translation is used, memory type attributes that are provided by translation table entries replace the
attributes provided by the input transaction and any input overrides, if appropriate.

This operation is represented by replace_attrs() in pseudocode.

Global or STE input overrides are not be permitted to make output attributes inconsistent. Because allocation and
transient hints are only relevant to Normal cacheable memory types, their overrides in either SMMU_(S_)GBPA or
in the STEs do not affect a transaction with the Device or Normal iNC-oNC type. The override value is ignored.
Similarly, an input type of Device or Normal-iNC-oNC, whether supplied by the client device or overridden in
SMMU_(S_)GBPA or in the STE, will always be OSH regardless of any SHCFG override.

When an input transaction provides a memory type that is not cacheable and an STE or GBPA input override
changes the inner or outer type to a cacheable type, the input RA, WA and TR attributes are taken to be ‘RA, WA,
nTR’ (consistent with 13.1.3), unless these attributes are also overridden.

13.1.5 Combine
The result of combining one attribute value with another is governed by rules that are similar to those that apply to
SMMUv2 and the ARM Architecture’s combining of stage 1 and stage 2 attributes. The SMMUv3 behavior is the
same as that of a PE in that stage 2 translation, when enabled, combines its attribute with those from stage 1, or
with the incoming attributes when stage 1 is not enabled.

This operation is represented by combine_attrs() in pseudocode.

Note: The SMMUv3 behavior with respect to Read-Allocate, Write-Allocate and transient hints with stage 2 differs
from SMMUv2 in that SMMUv3 has no stage 2 overrides of RA/WA/TR. However, an order of precedence is
defined here to make the pseudocode clearer.

The permission-related attributes (R/W, INST, PRIV, NS) are not subject to combine operations. These attributes
are only used in the SMMU to check against each enabled stage of translation descriptor permissions. Only MT,
SH, RA/WA and TR are combined.

For any one attribute, an order of strength is observed. For each attribute, a combine operation takes the stronger
of the values presented.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 353 of 443

 Non-Confidential

Weakest Strongest

Normal-WB Normal-WT Normal-
NC

Device-GRE Device-nGRE Device-
nGnRE

Device-nGnRnE

Weakest Strongest

NSH ISH OSH

Weakest Strongest

Allocate No-allocate

Weakest Strongest

Non-transient Transient

The order for allocate and transient hints is chosen so that allocate and non-transient are the normal cases that
are pulled down for no-allocate or transient special cases.

13.1.5.1 Combine examples

Normal-iWB/RAWAnTR-oNC-ISH + Device-nGnRE = Device-nGnRE

Device-nGnRE + Device-nGnRnE = Device-nGnRnE

Normal-iWB/RAWAnTR-oNC-ISH + Normal-iWT/RAWAnTR-oWT/RAnWATR-OSH

 = Normal-iWT/RAWAnT-oNC-OSH

(Note: outer non-transient even though onTR+oTR = oTR, as outer non-cacheable – see below.)

13.1.6 Ensuring consistent output attributes
The SMMU does not allow the output of inconsistent attribute combinations. If overrides, translation table
configuration or bad input results in inconsistent attributes, the SMMU ensures consistency:

• Any-Device and Normal iNC-oNC are output as Outer Shareable
• For Normal types, NC at either inner or outer cache level have no RA/WA or TR attributes at that level. A

non-cached access is considered to be read-no-allocate, write-no-allocate, non-transient, regardless of
programmed read/write allocate and transient configuration.

• For Normal types, a cacheable type that is read-no-allocate and write-no-allocate has no TR attribute.
Such a type is considered to be non-transient, regardless of any input or programmed override
configuration.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 354 of 443

 Non-Confidential

This also applies to the result of ATOS translation operations. See section 9.

Note: In addition to these architectural attribute consistency rules, an implementation might include interconnect-
specific consistency rules. See section 16.7.5.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 355 of 443

 Non-Confidential

13.2 SMMU disabled global bypass attributes
When the SMMU is disabled for a given Security state, transactions that belong to that Security state are subject
to global bypass attribute overrides.

Incoming
transaction

Construct default for
attributes not provided by

upstream interconnect

Security
implemented?

Transaction’s
SEC_SID input

Y

SMMU_S_CR0.
SMMUEN

1

SMMU_CR0.
SMMUEN

Locate STE from
Secure StreamTable

Apply S_GBPA
overrides

1

0

N

0

Locate STE from Non-
secure StreamTable

1

Apply GBPA
overrides

Output bypass
transaction

0

Translation flow

Secure stream
Non-secure stream

For example, AMBA
AXI input does not
provide shareability –
set as ‘NSH’

A

Set NS=1

Ensure consistent
attributes

SMMU does not output
architecturally-
inconsistent attributes:

Device and Normal-iNC-
oNC types must be OSH.

Figure 20: Input attribute flow - SMMU-disabled bypass and start of translation flow

When SMMU_S_IDR1.SECURE_IMPL==0 and SMMU_CR0.SMMUEN==0, all transactions bypass the
translation and configuration facilities of the SMMU. The memory type, Shareability, Read/Write allocate,
Transient, Inst/Data and Privilege attributes of the transaction might be individually replaced by the
MTCFG/MemAttr, SHCFG, ALLOCCFG, INSTCFG and PRIVCFG override fields of the SMMU_GBPA register,
respectively. Each attribute might take a set value or select to Use incoming. In the latter case, the attribute is
either taken from the incoming interconnect or, when not supplied, the default input attribute constructed in the
SMMU. Apart from these overrides, the transaction is output directly.
Alternatively, when SMMU_S_IDR1.SECURE_IMPL==0 and SMMU_CR0.SMMUEN==1, an STE is located and
the translation flow begins.

When SMMU_S_IDR1.SECURE_IMPL==1, the behavior of a transaction on arrival at the SMMU is determined by
the Security state of its StreamID, as determined by the SEC_SID input, see section 3.10.1. If the stream is Non-
secure and SMMU_CR0.SMMUEN==0, the attributes are overridden by SMMU_GBPA as described earlier in this
section. If the stream is Secure and SMMU_S_CR0.SMMUEN==0, the attributes are determined by

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 356 of 443

 Non-Confidential

SMMU_S_GBPA in the same way, otherwise a secure STE is located and the translation flow begins. The output
NS attribute is determined by SMMU_S_GBPA.NSCFG, it can use the incoming value or be overridden to either
state.

The reset state of the bypass attribute register SMMU_GBPA, and when SMMU_S_IDR1.SECURE_IMPL==1
SMMU_S_GBPA, is IMPLEMENTATION DEFINED.

Note: The SMMU might provide an implementation-time configuration of the default bypass attributes which allows
a system designer to ensure that device DMA has useful attributes even if system software has not initialized the
SMMU.

ARM recommends that the default attributes are set as appropriate for the system in accordance with relevant
base system architecture definitions.

This case is illustrated by this pseudocode:

// See 13.1.3:

Attrs input_attrs = add_defaults_for_unsupplied(upstream_attrs);

bool secure = (SEC_SID == 1);

if (secure) {

 output_attrs = replace_attrs(SMMU_S_GBPA, input_attrs);

} else {

 output_attrs = replace_attrs(SMMU_GBPA, input_attrs);

 output_attrs.NS = 1;

}

// MT, SH, RA, WA, TR, INST, PRIV are unchanged or overridden,

// depending on respective register field.

//

// NS is unchanged or overridden if secure stream, otherwise

// fixed at 1.

// See 13.1.6:

output_attrs = ensure_consistent_attrs(output_attrs);

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 357 of 443

 Non-Confidential

13.3 Translation flow, STE bypasses stage 1 and stage 2

A second type of SMMU bypass is available when the SMMU is enabled. This is when a StreamID selects an
STE configured to bypass (STE.Config==0b100). SMMU_GBPA and SMMU_S_GBPA are not used, and a finer-
grained per-STE configuration is available. Refer to the no-translate case of Figure 21.

The STE fields MTCFG, MemAttr, ALLOCCFG, SHCFG, NSCFG, PRIVCFG and INSTCFG can override any
attribute before the transaction is passed to the memory system. This provides per-StreamID granularity of
attribute settings.

Each attribute might take a set value or select to Use incoming. Where the incoming attribute is use, the attribute
is either taken from the incoming interconnect or, when not supplied, the default input attribute constructed in the
SMMU.

Pseudocode:

// See 13.1.3:

Attrs input_attrs = add_defaults_for_unsupplied(upstream_attrs);

STE ste = get_STE_for_stream(StreamID);

output_attrs = replace_attrs(ste, input_attrs);

if (!ste.fetched_for_secure_stream()) {

 output_attrs.NS = 1;

}

// MT, SH, RA, WA, TR, INST, PRIV are unchanged or overridden,

// depending on respective STE field.

//

// NS is unchanged or overridden if secure stream, otherwise

// fixed at 1.

output_attrs = ensure_consistent_attrs(output_attrs);

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 358 of 443

 Non-Confidential

13.4 Normal translation flow

STE: Stage1
translates?

Apply STE overrides for
PRIV, INST, NS perms

A

MT, SH replaced with values
from S1 translation descriptor/

MAIR attributes
Y

STE: Stage2
translates?

N

MT, SH combine with
S2 translation
descriptor attrs

Note: S2 has no
allocation/transient
hints.
RA, WA, TR are
unmodified at S2.

Y

Output attributes

N

Check R/W, PRIV, INST
against page permissions

Set NS from descriptor.NS
and intermediate NSTable

flags

Check R/W, INST
against page
permissions

Ensure consistent
attributes

(From previous chart)

Secure stream only

Secure
stream?

NS=1

N

Y

Only Non-Secure streams have
Stage 2 translation

Note: S2 has no
privilege concept;
PRIV is not
checked

Apply STE overrides for
MT, SH, RA, WA, TR attrs

 RA, WA, TR combined with
values from S1 translation
descriptor/MAIR attributes

Figure 21: Attribute determination in translation

When the StreamID of a transaction selects an STE configuration with two stages of translation, the memory
attribute of the transaction is determined by the stage 1 TTD attributes, which are determined using the MAIR
fields, and combined with the stage 2 TTD attributes. For stage 1-only translations, the memory attributes are
determined solely by the stage 1 TTD attributes. For stage 2-only translations, the memory attributes are
determined by the input attribute, with STE overrides, combined with the stage 2 TTD attributes.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 359 of 443

 Non-Confidential

First, the incoming attributes, with defaults constructed for any unsupplied attributes, are subject to the STE
override described in section 13.3. These attributes are provided to the first enabled stage of translation. If stage
1 bypasses, these attributes are provided to stage 2 directly.

If stage 1 translates, the stage 1 TTD, in combination with the MAIR fields of the CD, determine the stage 1
attributes and page permissions. The R/W, PRIV and INST attributes,(as modified by STE overrides, are checked
against the page permissions.

13.4.1 Stage 1 page permissions
The effect of the lower bit of the stage 1 translation table descriptor AP[2:1] field, AP[1], changes depending on
the translation regime under which the translation is performed, as determined by StreamWorld. For Secure or
Non-secure EL1 or for EL2-E2H, the AP[1] bit controls the EL0 access permissions of the page (PRIV==0).
However, when StreamWorld==EL2 or StreamWorld==EL3, the AP[1] bit is ignored and treated as if it were 1.
This has the same effect as treating PRIV==1 for the purposes of permission checking, and so input PRIV
attributes and any STE.PRIVCFG overrides are ignored for these checks.

When PRIV and INST attributes are output to the memory system, they are presented as the result of applying the
STE.PRIVCFG and STE.INSTCFG overrides to the input attribute. They are not modified after this point.

13.4.2 Stage 1 memory attributes
The attributes determined from the stage 1 translation table descriptor and CD.MAIR are provided directly to the
stage 2 translation. The incoming attributes, including any STE overrides, are discarded and replaced by the
stage 1 attributes, with the exception of RA/WA/TR.

When the translation is from a Secure StreamID, the NS attribute that is output is determined directly from the
effective NS bit of the descriptor, which must take into account the value of NSTable flags on intermediate table
descriptors in addition to the final descriptor NS flag, in the same way as on the PE. In addition, CDs that are
used with Secure streams contain NSCFGx flags that determine the starting NS attribute of translation table walks
performed through CD.TTB0/1. When a translation is fetched using a CD.TTB0/1 with a corresponding
NSCFGx==1, the effective final NS bit is always 1. When a translation is from a Non-secure stream, the output
NS attribute that is output is always 1 and the NS attribute that was input with the transactions is ignored.

Note: The behavior of NS matches the SMMUv2 behavior in that it is wholly determined by the stage 1 descriptor
and translation table walk configuration. The input NS attribute, and STE override, only affect the output NS
attribute when no stage 1 translation is configured.

When the attribute input to stage 1 is a Normal-cacheable type, the RA/WA/TR attributes are not discarded and
instead are combined with those determined from the stage 1 translation TTD and MAIR. Any other type does not
communicate RA/WA/TR hints, in which case the stage 1 translation RA/WA/TR attributes are used directly. All
other attributes must be overridden by stage 1 translation table attributes.

Note: This property, combined with STE.ALLOCCFG==0b0xxx configuration, allows a client device to influence
per-transaction allocation/transient attributes when using stage 1 translation tables, allowing sub-page control.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 360 of 443

 Non-Confidential

13.4.3 Stage 2
If stage 2 bypasses, the attributes provided by the incoming transaction or the stage 1 translation are forwarded
unchanged to the memory system.

If stage 2 translates, the MT and SH attributes input to stage 2 undergo a combine operation with the stage 2
translation descriptor attributes and the result passed on.

Stage 2 descriptors do not include read/write allocate or transient hints so the RA/WA/TR attributes provided to
stage 2 are passed on unchanged.

The INST attribute is checked, along with R/W, against the descriptor page permissions. However, PRIV is not.
The values of INST and PRIV are passed on unchanged.

13.4.4 Output

The transaction is output after ensuring consistency of the attributes and forcing NS=1 for transactions on Non-
secure streams.

Pseudocode, which also illustrates the cases describe in sections 13.2 and 13.3 in more detail, is show below:

// See 13.1.3:

Attrs input_attrs = add_defaults_for_unsupplied(upstream_attrs);

bool secure = (SEC_SID == 1);

if (secure && SMMU_S_CR0.SMMUEN == 0) {

 output_attrs = replace_attrs(SMMU_S_GBPA, input_attrs);

// See 13.1.6:

output_attrs = ensure_consistent_attrs(output_attrs);

 output_transaction(output_attrs); // Address, direction not shown

 // Done.

} // Else carry on below

if (!secure && SMMU_CR0.SMMUEN == 0) {

 output_attrs = replace_attrs(SMMU_GBPA, input_attrs);

 output_attrs.NS = 1;

// See 13.1.6:

output_attrs = ensure_consistent_attrs(output_attrs);

output_transaction(output_attrs); // Address, direction not shown

 // Done.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 361 of 443

 Non-Confidential

} // Else carry on below

// If we get to here, the appropriate SMMU interface is enabled and

// configuration can be fetched:

STE ste = get_STE_for_stream(StreamID);

Attrs i;

// Starting attributes are as input, with STE overrides:

i = replace_attrs(ste, input_attrs);

if (ste.s1_translates()) {

 Attrs s1_attrs;

 TTD s1_ttd;

 CD cd = get_CD(ste, StreamID, SubstreamID, SubstreamID_valid);

 s1_ttd = s1_translation(cd, ste);

 // Address not shown; IPA determined from VA.

 s1_attrs = s1_ttd.lookup_attrs();

 // The returned s1_attrs contains attributes determined from the

 // translation descriptor and MAIR, including RA/WA and TR.

 if (s1_ttd.translation_fault()) {

 // XXXX Stage 1 translation fault

 // Note: A speculative read transaction is simply terminated

// with abort here, without recording an event.

 }

 // Note: Permission checking must consider HTTU configuration,

 // and update Access/Dirty flags instead of signalling a related fault

// when HTTU enabled:

 if (check_perms_and_httu(cd, s1_ttd, i.RW, i.INST, i.PRIV) == FAULT) {

 // XXXX Stage 1 permissions or Access flag fault

 // Note: EL2 or AArch64 EL3 stage 1 do not check PRIV,

 // i.e. client traffic behaves as if PRIV=1. However,

 // the PRIV attribute is not modified.

}

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 362 of 443

 Non-Confidential

// Note: See section 13.4.2; when a cached type is input to Stage 1,

// s1_attrs.{RA,WA,TR} are combined with i.{RA,WA,TR} instead of

// replacement (non-cached/Device types do not express RA/WA/TR

// attributes):

 if (is_cached_type(i.MT)) {

i.{RA,WA,TR} = combine_attrs(i.{RA,WA,TR}, s1_attrs.{RA,WA,TR});

 } else {

 // An input NC/Device type does not provide these attributes,

// so take these attributes from S1:

 i.{RA,WA,TR} = s1_attrs.{RA,WA,TR};

}

// MT and SH are taken directly from Stage 1:

 i.{MT,SH} = s1_attrs.{MT,SH};

// NS is taken from the ‘effective’ value calculated from

// S1 page descriptor, CD.NSCONFIGx and appropriate NSTable bits:

i.NS = s1_ttd.get_effective_NS();

// RW, INST, PRIV do not change.

} else {

 // MT, SH, RA, WA, TR unchanged; and RW, INST, PRIV, NS

// permissions passed through.

}

if (ste.s2_translates()) {

 Attrs s2_attrs;

 TTD s2_ttd;

 s2_ttd = s2_translation(ste);

 // Address not shown; PA determined from IPA and HTTU is performed.

 s2_attrs = s2_ttd.lookup_attrs();

if (s2_ttd.translation_fault()) {

 // XXX Stage 2 translation fault

 // Note: On any fault, a speculative read transaction is simply

// terminated with abort.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 363 of 443

 Non-Confidential

 // Note: HTTU at Stage 1 is permitted, even if we fault @S2

 }

 // S2 does not encode RA/WA/TR; these values plus combine_attrs() below
 // result in “take input from S1/previous step” behaviour for RA/WA/TR:

 s2_attrs.RA_inner = true;

 s2_attrs.RA_outer = true;

 s2_attrs.WA_inner = true;

 s2_attrs.WA_outer = true;

 s2_attrs.TR_inner = false;

 s2_attrs.TR_outer = false;

// MT, SH, RA, WA, TR updated via combine:

 i = combine_attrs(i, s2_attrs);

// See HTTU note in Stage 1:

 if (check_perms_and_httu(ste, s2_ttd, i.RW, i.INST, i.PRIV) == FAULT) {

 // XXXX Stage 2 permissions or Access flag fault

// Note: S2 does not check PRIV.

}

} else {

 // MT, SH, RA, WA, TR unchanged; and RW, INST, PRIV, NS

// permissions passed through.

}

// Finally, a non-secure stream may not output NS=0; overrides

// and page attribute ignored:

if (!ste.fetched_for_secure_stream()) {

 output_attrs.NS = 1;

}

// MT, SH, RA, WA, TR may be modified by translations and overrides.

// INST, PRIV may be modified by STE overrides.

//

// For a secure stream, NS is determined from the Stage 1 translation

// (if present), otherwise is the STE override or input value.

// See 13.1.6:

output_attrs = ensure_consistent_attrs(output_attrs);

output_transaction(output_attrs); // Address, direction not shown

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 364 of 443

 Non-Confidential

// Done.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 365 of 443

 Non-Confidential

13.5 Summary of attribute/permission configuration fields

The attributes output from the SMMU are determined as follows.

 If translation occurs If bypass

Incoming
attribute

Stage 1-only Stage 1 + stage 2 Stage 2-only SMMUEN=1
but STE.
Config=
0b100

SMMUEN=0

INST STE.INSTCFG SMMU_(S_)
GBPA.
INSTCFG

PRIV STE.PRIVCFG SMMU_(S_)
GBPA.
PRIVCFG

NS
(Secure
stream)

Effective
S1_TTD.NS,
NSTable and
CD.NSCFGx

N/A STE.NSCFG SMMU_S_
GBPA.NSCFG

NS (Non-
secure
stream)

Fixed, NS=1

MT CD.MAIR[
S1_TTD.AttrIndx]

Combine(
CD.MAIR[
S1_TTD.AttrIndx],
S2_TTD.MemAttr)

Combine(STE.
{MemAttr,
MTCFG},
S2_TTD.MemAttr)

STE.
{MemAttr,
MTCFG}

SMMU_(S_)
GBPA.
{MemAttr,
MTCFG}

RA, WA,
TR

CD.MAIR[
S1_TTD.AttrIndx],
if STE.{MemAttr,
MTCFG} provide
any-Device or NC
input to Stage 1,
otherwise:
Combine(
STE.ALLOCCFG,
CD.MAIR[
S1_TTD.AttrIndx])

CD.MAIR[
S1_TTD.AttrIndx],
if STE.{MemAttr,
MTCFG} provide
any-Device or NC
input to Stage 1,
otherwise:
Combine(
STE.ALLOCCFG,
CD.MAIR[
S1_TTD.AttrIndx])

Combine(
STE.ALLOCCFG,
S2_TTD.MemAttr)

STE.
ALLOCCFG

SMMU_(S_)
GBPA.
ALLOCCFG

SH S1_TTD.SH Combine(
S1_TTD.SH,
S2_TTD.SH)

Combine(
STE.SHCFG,
S2_TTD.SH)

STE.SHCFG SMMU_(S_)
GBPA.SHCFG

Notes:
• Permission checking of InD and PnU against translation descriptor fields is not shown here. Also, many

systems might not require InD/PnU to be output into the system.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 366 of 443

 Non-Confidential

• References to INSTCFG, PRIVCFG, NSCFG, MTCFG/MemAttr and ALLOCCFG refer to the effective
output of these override fields, which might always be the incoming attribute depending on
SMMU_IDR1.ATTR_PERMS_OVR and SMMU_IDR1.ATTR_TYPES_OVR. This table does not show the
effect of one field on another field. For example, the configuration used to determine allocation/transient
hints or Shareability is irrelevant if the MemType is of any-Device type. See section 16.7.5 for other
interconnect-specific dependencies between attributes.

13.6 PCIe and ATS attribute/permissions handling
This section covers an area of system architecture that intersects with the SMMU operation. Integration of PCIe,
particularly with ATS, requires consideration of the presentation of transactions to the SMMU from the Root
Complex and the overall system architecture, including platform definitions such as Server Base System
Architecture [10], in addition to that of the SMMU itself.

In many systems it will be typical to have a discrete Root Complex IP block connected to a downstream SMMU IP
block by a standard piece of interconnect fabric, for example using AXI. This section considers the attributes
provided to the SMMU by the Root Complex on such an upstream interconnect in relation to the output attributes
provided by the SMMU downstream into the system.

13.6.1 PCIe memory type attributes
PCIe does not contain memory type attributes, and each transaction takes a system-defined memory type when it
progresses into the system. The Server Base System Architecture [10] requires the base memory type to be
cacheable shared (IO-coherent).
Note: When PCIe is used with an SMMU, the SMMU can assign a different attribute if necessary, but the
common usage model is for PCIe DMA to remain cacheable shared and the SMMU is primarily used for address
transformation/protection rather than attribute assignment.

Note: SBSA requires that, when no SMMU is present or an SMMU is present and in global or stream bypass
mode, a transaction from a Root Complex targeted at memory is presented to the memory system with a fixed
attribute of cached, shared. The exact attribute will be Normal-iWB-oWB-ISH or OSH and is system-dependent,
but is considered fixed/static because PCIe does not encode different memory types. The system must treat
transactions that are targeted at devices (such as MSIs) as Device type accesses.

When an SMMU is used with translation (i.e. not in bypass mode), its configuration might use Stage 1/Stage 2
translation and/or STE input overrides, determining an output attribute from a function of the input, TTD and
override attributes as described previously in this chapter. The final attribute is defined by software configuration.
Note: See No_snoop below, which might alter the output final attribute.

Note: See SMMU_GBPA (6.3.13) and STE.{MTCFG,ALLOCCFG,SHCFG}: it is IMPLEMENTATION DEFINED whether
attribute overrides affect streams associated with PCIe devices or whether the incoming attribute is used. ARM
does not expect attribute overrides to be required for PCIe devices.

13.6.1.1 No_snoop

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 367 of 443

 Non-Confidential

Note: In PCIe, No_snoop is not guaranteed to be supported by an endpoint or Root Complex, and requires
explicit enablement via configuration space. When a transaction includes a No_snoop=1 flag, it indicates that the
transaction is allowed to “opt-out” of hardware cache coherency; software cache coherency ensures the access
would not hit in a cache, so the I/O access is permitted to avoid snooping caches.

In an ARM system, a No_snoop access corresponds to Normal-iNC-oNC-OSH.

Support for No_snoop is system-dependent and, if implemented, No_snoop transforms a final access attribute of
a Normal cacheable type to Normal-iNC-oNC-OSH downstream of (or appearing to be performed downstream of)
the SMMU. No_snoop does not have an effect on an any-Device type.
Note: This is consistent with SBSA’s requirements of No_snoop.
Note: To achieve this ‘pull-down’ behavior, the No_snoop flag might be carried through the SMMU and used to
transform the SMMU output downstream.

13.6.2 ATS attribute overview
It is IMPLEMENTATION DEFINED whether an SMMU implementation assigns attributes (of memory type, Shareability
and allocation hints) to ATS “Translated” transactions consistent with the result of an “Untranslated” transaction to
the same address, or whether ATS Translated transactions have the fixed cached, shared attribute applied.

Note: An ATS client makes a Translation Request to the SMMU and caches the resulting Physical Address in its
local Address Translation Cache (PCI terminology for a remote TLB). When a client has successfully received a
translation, it might use it later to make direct physically-addressed (“Translated”) accesses to the page, which are
intended to bypass SMMU translation altogether. However, the PCIe ATS protocol r1.1 does not explicitly provide
a field to convey a memory type/access attribute to the client in the completion of the Translation Request,
therefore the subsequent Translated transaction is issued from the endpoint with no attributes (beyond R/W).

When a regular “Untranslated” (non-ATS) transaction is forwarded to the SMMU by the Root Complex, the
incoming attribute is constant, fixed at cacheable shareable as above. The SMMU applies an outgoing attribute
determined from a function of input, input overrides and TTDs, so the outgoing attribute is address-dependent.

When a Translated transaction (from ATS) is forwarded to the SMMU, it is intended to bypass address translation
in the SMMU and, if ATS attributes are supported, the SMMU modifies the transaction’s attributes as appropriate
for the accessed page.
Note: If ATS attributes are not supported, the resulting output attribute from a Translated transaction might not
match that of a non-ATS/Untranslated access to the same address. This is acceptable in systems for which an
attribute mismatch does not present a loss of correctness, or where it is expected that the SMMU-assigned
attribute will always be consistent with the fixed cached, shared attribute.

If ATS attributes are supported, the mechanism for assigning an attribute to a Translated transaction is
implementation specific.
Note: Because the ARM architecture does not support a 64-bit Physical Address space, the MSBs of the 64-bit
Translated Address field are ordinarily unused and an implementation might encode attribute information into this
space. In compliance with the PCIe ATS architecture [3], a PCIe function with ATS must not modify any
Translated Address that is returned in a Translation Completion in any way, and must cache all bits [63:12] of
address. If a non-compliant function were to exist that illegally drops some of the Translated Address bits, or
otherwise modifies them, it is not able to use ATS with this scheme.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 368 of 443

 Non-Confidential

13.6.2.1 Supporting No_snoop with ATS
ARM recommends that, in systems that support No_snoop, it behaves as though the flag passes through the
SMMU to downgrade any output cacheable shareable type into non-cached post-SMMU, consistent with SBSA.

If the SMMU supports the encoding of attributes into ATS, the mechanism for determining the ATS Translated
attribute in the SMMU is independent of the subsequent application of a No_snoop non-cacheable/downgraded
attribute.

The N field in ATS Translation Completions is always 0. The SMMU does not provide means to control No_snoop
per-page.

13.6.3 Split-stage (STE.EATS=0b10) ATS behavior and responses
When Split-stage ATS is enabled for a stream (that is, when STE.EATS==0b10, SMMU_CR0.ATSCHK==1 and
STE.Config[2:0]==0b111), the response to an ATS Translation Request contains an IPA. When a Translated
transaction is emitted as a result of this response, its IPA then undergoes stage 2 translation in the SMMU.
Note: In effect, the stage 1 VA to IPA translation is held in the ATC but stage 2 IPA to PA translation is still
performed in the SMMU. This can be used to increase security/isolation over regular nested EATS=0b01 ATS,
where the system does not trust the endpoint to use physical addresses directly.

The behavior of Split-stage ATS is the same as regular EATS=0b01 ATS with nested (stage 1+stage 2)
translation, except:

• The completion contains the IPA result from the Stage 1 translation of the requested VA (instead of the
output PA from stage 1+stage 2 translation of the requested VA).

• If the SMMU supports the encoding of attributes into ATS (see section 13.6.2), an attribute is returned that
gives a final output equivalent to the Stage 1+Stage 2 combined attribute when the resulting ATS
Translated transaction is subject to stage 2 translation in the SMMU.

o Note: This might be implemented as returning a Stage 1 attribute which is later combined with
that of stage 2 in the SMMU, or might be implemented as returning a stage 1+2 combined
attribute which might later be passed through stage 2 (or combined with stage 2 a second time,
which gives the same result).

All other aspects are identical to regular EATS=0b01 ATS with nested translation:

• Permissions are granted from the combination of the stage 1 and stage 2 translation permissions (see
13.7), with respect to the permissions requested in the Translation Request.

• The maximum permissible translation size is derived from the intersection of stage 1 and stage 2
page/block sizes. ARM recommends that, for performance reasons, the maximum translation size is
returned where possible.

o Note: The largest translation size is the minimum of the stage 1 and stage 2 translation sizes for
the given address, such that the returned translation represents a single span with constant
permission and translation.

See 13.6.5 for behavior of STE.S1DSS skipping stage 1.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 369 of 443

 Non-Confidential

The behavior of an incoming Translated transaction differs when the EATS configuration of the StreamID
presenting the transaction is 0b10:

• When EATS==0b01, the Translated transaction is presented directly to the output. The given address is
treated as a PA. If the SMMU supports the encoding of attributes into ATS, the attribute encoded in the
Translated transaction is used as the output attribute, otherwise the (fixed) input attribute is output.

• When EATS==0b10, the Translated transaction provides an IPA. This IPA is subject to stage 2
translation (which might generate faults and events) and, if successful, provides the PA for output. If the
SMMU supports the encoding of attributes into ATS, the attribute encoded in the Translated transaction is
input to stage 2, otherwise the transaction’s (fixed) input attribute is input to stage 2. The stage 2
translation’s attribute combines with the input to stage 2 to form the output, in the same way as for any
other stage 2 translation.

EATS==0b10 configuration is only usable when SMMU_CR0.ATSCHK==1.
Note: ATSCHK==1 causes Translated transactions to look up and be checked against STE configuration, which
for EATS==0b10 provides the stage 2 with which to translate and for EATS==0b01 allows the transaction to
bypass without translation.

13.6.4 Full ATS skipping Stage 1
When all of the following are true, transactions arriving without a PASID are configured to skip stage 1 translation:

• STE.Config[0] == 1 (Stage 1 translation enabled)

• STE.EATS == 0b01 (“Full ATS” enabled)

• STE.S1CDMax != 0 (Substreams/PASIDs enabled)

• STE.S1DSS == 0b01, (non-PASID transactions bypass Stage 1)

If stage 2 translation is enabled (STE.Config[1]==1), an ATS Translation Request without a PASID is translated
stage 2-only as though STE.Config[1:0]==0b10. The Translation Completion returns a PA from the stage 2-only
translation.

Where a stage 1 + stage 2 configuration has the first stage skipped due to STE.S1DSS==0b01, the translation
process behaves as though stage 1 were not configured (i.e. Config[0]=0). If ATS attributes are supported, the
final attribute is therefore determined by the (fixed) upstream input attribute, replaced by STE overrides where
configured, and combined with the attribute from the stage 2 TTD.

If stage 2 is not enabled, an ATS Translation Request without a PASID made to this configuration skips the single
translation stage and its Translation Completion returns a direct-mapped “pass-through” of the stage.

This is encoded as an identity-mapped Translation Completion containing:

• U=0
• R=1
• W=1
• TranslatedAddress 1:1/identity-mapped with Translation Request’s Untranslated Address

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 370 of 443

 Non-Confidential

• Translation size containing at least the requested Untranslated Address
o Note: An implementation might return a larger identity-mapped region, as any address accessed

under the same StreamID/configuration conditions will result in this type of response. A larger
region might avoid future page-by-page translation requests.

o The maximum permissible translation size is the same as the OAS (see section 3.4).
• Note: As this response is made for an ATS Translation Request received without a PASID, the request

cannot contain Execute_Requested==1 or Privileged_Mode_Requested==1 as these fields are carried in
a PASID. The response is made with Execute_Permitted and Privileged_Mode_Access both 0.

• Note: This response causes the function to make 1:1 accesses to physical addresses, equivalent to the
behavior of untranslated non-ATS transactions from the same stream.

The output attribute is a function of the (fixed) upstream input attribute replaced by STE overrides (where
configured); this can be evaluated at the time of the Translation Request and encoded into the returned
Translated Address as per section 13.6.2.

13.6.5 Split-stage ATS skipping Stage 1
Where

• STE.Config[1:0]==0b11 (Stage 1 and 2 translation enabled)

• STE.EATS==0b10 (Split-stage ATS enabled)

• STE.S1CDMax>0 (Substreams/PASIDs enabled)

• STE.S1DSS==0b01, (non-PASID transactions bypass stage 1)
a Translation Request without a PASID is configured to skip stage 1 translation, but the ATS configuration is for
stage 1-only.

In this case, the Translation Request supplies an IPA address and an identity-mapped Translation Completion is
returned, containing:

• U=0
• R and W permissions are granted from the stage 2 permissions for the IPA, with respect to the

permissions requested in the Translation Request.
• TranslatedAddress 1:1/identity-mapped with the Translation Request’s IPA.
• The maximum permissible translation size is that of the stage 2 translation. ARM recommends that, for

performance reasons, the maximum translation size is returned where possible.
• Note: See 13.6.4; this response is made with Execute_Permitted and Privileged_Mode_Access both 0 as

it is in response to a request made without a PASID.
If the SMMU supports the encoding of attributes into ATS (see 13.6.2), an attribute is returned that causes the
resulting ATS Translated transaction to have a final output (after Stage 2 translation in the SMMU) equivalent to
the (fixed) upstream input attribute, replaced by STE overrides (where configured), combined with the Stage 2
translation’s attribute.
Note: This might be implemented by returning the constant input attribute (cached, shareable) replaced by STE
overrides, and later combining that during stage 2 translation. Or, this might be implemented by returning the
input (with STE overrides) combined with stage 2 translation and either passing the Translated transaction’s
attribute through or combining it with stage 2 translation again (which gives the same result).

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 371 of 443

 Non-Confidential

The function then performs Translated accesses with IPAs and these are translated stage 2-only in the same way
as described above for Split-stage ATS that does not skip stage 1.

13.7 PCIe permission attribute interpretation
PCIe-domain permissions are interpreted by the SMMU as described in this section.

Base PCIe interconnect expresses only a Read/Write access permission. The PASID TLP prefix adds the
following access permissions:

• Execute (In the PASID, Execute_Requested, hereafter referred to as ‘Exe’)
• Privileged (In the PASID, Privileged_Mode_Requested, hereafter referred to as ‘Priv’)

For normal transactions, the SMMU can use R/W and Privileged directly as incoming R/W and PRIV attributes.
Note: The PASID TLP prefix can only encode an ‘Execute’ attribute for Memory Read Requests; this is
compatible with the SMMU’s behavior in considering all write transactions to be Data.

The SMMU interprets the INST and PRIV attributes of a normal transaction without a PASID TLP prefix as “Data”
and “non-privileged”, respectively.

For an ATS Translation Request, base PCIe supplies:

• Read access is implied in all ATS Translation Requests
o An ATS Translation Completion might grant per-page Read access, depending on page

permissions.
• No-Write (NW)

o NW=0 signals the intention of the device to perform write accesses. When NW=0, the Translation
Completion sent by the SMMU grants Write permission if the page permission (from TTD.AP
and/or TTD.HAP) contains permission for write (Note: pages marked Dirty have write permission).
When NW=1, Write permission is permitted but not required to be granted if the page permissions
contain permission for write.

o When HTTU is not enabled, Write permission is not granted when the page permissions do not
contain permission for write regardless of the request’s NW bit or the TTD DBM state.

o When HTTU is enabled, a request having NW=0 to a page marked Writable Clean updates the
page to be marked Dirty and then grants Write permission in the response. See 3.13.6.
Note: Referring to the above, a request with NW=1 might grant write access if the page is already
marked Dirty (as the page permissions contain write permission).

o HTTU does not mark a page Dirty in response to a Translation Request with NW=1.
The PASID TLP prefix adds the following to an ATS Translation Request:

• Execute (Exe)
o This flag requests execute permission. If this flag is set, the response might grant execute

permission. The response must not grant execute permission if this flag is not set in the request.
A valid translation might or might not grant the requested Execute permission, depending on
actual page ‘X’ permission.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 372 of 443

 Non-Confidential

Note: A request might be made with Exe=1 and NW=0, meaning an endpoint requests access for
write and execute. This does not imply that the endpoint will perform ‘instruction writes’ to the
page.

o Exe implies R in an ATS response.
Certain configurations of AArch64 translation tables allow an ‘XO’ execute-only permission. A
translation seeking Exe permission through ATS is not compatible with an XO page and will result
in no access (unless STE.INSTCFG=Instruction). Similarly, care must be taken when using the
Stage 2 ‘XO’ permission with ATS; a guest might map all executable pages as RX but a
hypervisor Stage 2 can further modify this down to execute-only. See section 13.7.1 below for
more information on ATS Exe permission.

• Privileged (Priv)
o This flag marks the request as being made from a privileged or unprivileged entity in the endpoint.

The response contains permissions granted only to that entity/privilege level.
Note: The PCIe PASID ECN [9] states: “The ATC must not assume any correlation between the
Privileged Mode and Non-Privileged Mode permissions associated with a translation.”

For an ATS Translation Request without a PASID TLP prefix, the INST and PRIV attributes must be provided to
the SMMU as “Data” and “non-privileged”, respectively.

The following table of example ATS Translation Requests shows the access permissions granted for the request
on several different page permission combinations:

Example Request Page permissions Response

NW=1, Exe=0, Priv=0 User-RO, Priv-RW, XN=0 R=1, W=0, Exe=0, Priv=0

NW=0, Exe=0, Priv=0 User-RW, Priv-RW, XN=0 R=1, W=1, Exe=0, Priv=0

NW=0, Exe=0, Priv=0 User-RO, Priv-RW, XN=0 R=1, W=0, Exe=0, Priv=0

NW=0, Exe=0, Priv=1 User-RO, Priv-RW, XN=0 R=1, W=1, Exe=0, Priv=1

NW=1, Exe=1, Priv=0 User-RW, Priv-RW, XN=1 R=1, W=0 or 1, Exe=0, Priv=0
Note: The SMMU is permitted to
return Write permission if the page is
writable, even if NW=1.

NW=0, Exe=0, Priv=0 User-RW, Priv-RW, XN=1 R=1, W=1, Exe=0, Priv=0

NW=0, Exe=1, Priv=0 User-RW, Priv-RW, XN=0 R=1, W=1, Exe=1, Priv=0

NW=0, Exe=1, Priv=0 User-X, Priv-RW, UXN=0 (AArch64) R=0, W=0, Exe=0, Priv=0

NW=any, Exe=any, Priv=any Not mapped (or any type of
translation-related fault)

R=0, W=0, Exe=0, Priv=0
Note: See 3.9.1; this Translation
Completion is marked with ‘Success’
status, as opposed to UR/CA.

When the STE.INSTCFG and STE.PRIVCFG override fields are supported
(SMMU_IDR1.ATTR_PERMS_OVR=1), they affect ATS Translation Requests as described in 13.7.1 below.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 373 of 443

 Non-Confidential

Note: ARM recommends that an STE not override INST and PRIV when the system supports PCIe PASID
prefixes, in order for this attribute to be communicated from the device to the SMMU translation lookup. However,
when a PASID TLP prefix is not used and the INST and PRIV attributes are provided as “Data” and “non-
privileged”, as required above, software might wish to override these attributes using the STE input overrides; for
example, it might configure a stream to be privileged. When PASIDs/SubstreamIDs are configured for a
translating Stage 1 configuration, traffic without a PASID is deemed unexpected if STE.S1DSS=0b00, and
aborted. If STE.S1DSS=0b01, traffic without a PASID skips Stage 1 and translation behaves as though the STE
is configured for Stage 2-only translation. In this case, the PRIV attribute is ignored by Stage 2 and the “Data”
default is sensible.

When HTTU is in use, an ATS TR that generates a response with R==1 || W==1 || Exe==1 also sets the
TTD.AF==1. When HTTU is enabled for Dirty state update (using HD flags), an ATS TR having NW==0 to a
Writable-Clean page accessible at the requested permission level (permissions are read-only, with DBM==1) will
make the page permissions read/write (Writable-Dirty) and generates a response with W==1. An ATS TR having
NW==1 must not mark a page as Writable-Dirty. (Note: TTW in nested stage 1+stage 2 scenarios might cause
stage 2 pages to be marked Writable-Dirty where Stage 1 TTDs are updated)

Note: As STE.{INSTCFG,PRIVCFG} overrides might affect the permissions granted in an ATS response, a
change to these overrides must be accompanied by an invalidation of associated ATCs.

13.7.1 Permission attributes granted in ATS Translation Completions
The pseudocode below illustrates how the R, W, Exec, Priv attributes in a Translation Completion are calculated
with respect to the input Translation Request, the translation table descriptor permissions and the STE
INSTCFG/PRIVCFG overrides.

A PRIVCFG=Privileged or PRIVCFG=Unprivileged override calculates (R,W,X) attributes appropriate to the
privilege level to which the request was overridden, but the ‘Priv’ field in the ATS Translation Completion returns
the same privilege supplied in the associated Translation Request.

• For example, a TR with ‘NW=0, Exe=0, Priv=1’ with PRIVCFG=Unprivileged, and page permissions of
‘User-RO, Priv-RW’, returns a Translation Completion with ‘R=1, W=0, Exe=0, Priv=1’.

The INSTCFG override affects the interpretation of the TR’s Exe and the translation table ‘X’ attributes.

// Here, TR is the incoming Translation Request, TC is the returned

// Translation Completion and final_combined_translation is the

// result of all enabled stages of translation for the given address.

// HTTU is not shown; it is assumed final_combined_translation contains

// post-HTTU permissions if relevant. (Note: HTTU for ATS is influenced

// by TR.NW.)

if (!TR.PASID_present) {

 // The Priv and Exe fields of a Translation Completion without a

// PASID are reserved and set to 0. Effectively, there are no Priv

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 374 of 443

 Non-Confidential

// and Exe permission bits in a response without a PASID:

 TR.Priv = 0;

 TR.Exe = 0;

}

// The Translation Completion’s Priv field is not affected by PRIVCFG and

// is as the TR supplied:

TC.Priv = TR.Priv;

STE_effective_PRIVCFG = (SMMU_IDR1.ATTR_PERMS_OVR == 1) ? STE.PRIVCFG :

 Use_Incoming;

STE_effective_INSTCFG = (SMMU_IDR1.ATTR_PERMS_OVR == 1) ? STE.INSTCFG :

 Use_Incoming;

// Effective privilege that permissions will be checked against:

effectivePriv = (STE_effective_PRIVCFG == Use_Incoming) ? TR.Priv :

((STE_effective_PRIVCFG == PRIVILEGED) ? 1 : 0));

ttd_R = final_combined_translation.readable_by_privlevel(effectivePriv);

ttd_RX = ttd_R &&
 final_combined_translation.executable_by_privlevel(effectivePriv);

ttd_X = final_combined_translation.executable_by_privlevel(effectivePriv);

// Grant of write permission is always governed by the translation’s W

// permission. Also note that, when enabled, HTTU only sets Dirty if

// TR.NW=0; the page is writable if this is the case, or if the page is

// already Dirty (see text).

// Note: An implementation is not *required* to return W=1 if

// TR.NW=1 and TTD permissions include write, but doing so can avoid

// the Endpoint having to make a second request if it subsequently requires

// to write.

TC.W = final_combined_translation.writable_by_privlevel(effectivePriv);

if (STE_effective_INSTCFG == Use_Incoming) {

TC.R = ttd_R;

TC.Exe = TR.Exe && ttd_RX; // Granting X implies granting R

// Note: An execute-only (XO) translation grants no access to ATS.

// A normal (non-ATS) transaction for Exe=1 will succeed

// to an XO translation.

} else if (STE_effective_INSTCFG == INST) {

TC.R = ttd_X;

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 375 of 443

 Non-Confidential

TC.Exe = TR.Exe && ttd_X;

// Note: An XO translation can grant R&Exe access to an ATS Request

// because in this configuration all reads are considered

// instruction fetches, therefore R&Exe are the same.

} else { // STE.INSTCFG == DATA

 // This is effectively equivalent to assuming X=R; anything with ‘R’

 // for the privilege level is accessible.

 TC.R = ttd_R;

TC.Exe = TR.Exe && ttd_R;

}

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 376 of 443

 Non-Confidential

14 EXTERNAL INTERFACES

14.1 Data path ingress/egress ports
Along with read/write data/address, the following information is supplied with an incoming transaction:

• StreamID
• Optionally, SubstreamID (PASID) and a SubstreamID-Valid flag, SSV.
• StreamID is qualified by a SEC_SID flag to denote Secure/Non-secure StreamID when the SMMU

implements security support.
• StreamID is passed through the SMMU into the memory system, to create a DeviceID that enables the

GICv3 ITS to differentiate interrupts by stream.
o An internal StreamID is generated for MSIs originating from the SMMU.

o Note: The StreamID generated for MSIs must have a different value to those associated with
client devices, so that the GICv3 ITS can differentiate SMMU MSIs from those originating from
client devices.

• ATS Translated/Untranslated tag to control bypass.
• Instruction/Data/NS permission attributes and Memory type/Shareability/allocation hints from upstream

device (optional, can be overridden in STE). See section 13.

If the ability to perform HTTU atomic updates using local monitors is required, the SMMU would need to attach to
the system using a fully-coherent interconnect port. However, if HTTU is not implemented or the downstream
system provides far atomic facilities which do not require a fully-coherent port, an IO-coherent interconnect port
might be used.

As the SMMU does not translate outgoing coherency or broadcast invalidation traffic, there is no requirement to
use an interconnect supporting cache coherency or DVM between the SMMU and client devices. Client devices
might connect to the SMMU using an IO-coherent interconnect port.

14.2 ATS Interface, packets, protocol
Note: An SMMU implementation might provide a separate interface to provide ATS and PRI protocol support with
a compatible PCIe Root Complex. This interface is outside the scope of this specification.

14.3 SMMU-originated transactions
An SMMU read for any translation, configuration or queue structure that is performed into any PCIe address
space is permitted to return any value or be terminated with an external abort.

Note: ARM expects SMMU structures and translation tables that are accessed externally in non-embedded
implementations to be located in system memory. A potential deadlock (where an SMMU read access is
dependent on the completion of an incoming PCIe write which is itself dependent on the SMMU translation that

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 377 of 443

 Non-Confidential

caused the original access) can be avoided by the system terminating SMMU accesses targeted to the PCIe
domain by malicious or incorrect software.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 378 of 443

 Non-Confidential

15 TRANSLATION PROCEDURE

The following flowcharts are an illustration of the sequence of events from the beginning of a translation to its final
outcome. They represent an abstracted translation flow to summarize the information in the rest of this document.

The purpose is to indicate the end result of different types of transactions, in terms of transaction and translation
success or error responses (including PCIe ATS errors and completion responses). Certain aspects are not
intended to be depicted in detail, including but not limited to:

• Atomic translation table update mechanism.
• TLB conflict, configuration cache conflict (which might happen at an IMPLEMENTATION DEFINED point in the

translation).
• Speculative operations (which do not record errors or faults).
• Attribute control.

15.1 Translation procedure charts

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 379 of 443

 Non-Confidential

O
ut

co
m

e
fo

r
O

rd
in

ar
y

tr
an

sa
ct

io
n

O
ut

co
m

e
fo

r
AT

S
Tr

an
sla

tio
n

Re
qu

es
t

O
ut

co
m

e
fo

r
AT

S
Tr

an
sla

te
d

tr
an

sa
ct

io
n

SM
M

UE
N

N TT
?

AT
SC

HK

1

Y

0

1

ST
E

Fe
tc

h
O

K?

Y

EA
BT

 o
n

ST
E

fe
tc

h ,
 o

r c
ac

he
 lo

ok
up

 fa
ilu

re
.

If
O

T:
 F

_S
TE

_F
ET

CH
, o

r F
_C

FG
_C

O
NF

LI
CT

N

SM
M

U
By

pa
ss

Te
rm

in
at

e,
 a

bo
rt

De
ny

, U
R

De
ny

, C
A

Te
rm

in
at

e,
 a

bo
rt

Te
rm

in
at

e,
 a

bo
rt

Un
pa

ck
/a

pp
ly

 A
tt

rib
ut

es
 if

 su
pp

or
te

d.
Pa

ss
 tr

an
sa

ct
io

n

In
co

m
in

g
AT

S
Tr

an
sla

tio
n

Re
qu

es
t

In
co

m
in

g
or

di
na

ry

tr
an

sa
ct

io
n

In
co

m
in

g
AT

S
Tr

an
sla

te
d

tr
an

sa
ct

io
n

O
T=

TR
UE

TR
=T

RU
E

TT
=T

RU
E

Un
su

pp
or

te
d

tr
an

sa
ct

io
n?

Te
rm

in
at

e,
 a

bo
rt

Te
rm

in
at

e,
 a

bo
rt

NO
TE

:
F_

UU
T

ha
s I

M
PD

EF
 p

rio
rit

y
an

d
co

ul
d

be
 ch

ec
ke

d/
re

co
rd

ed
 la

te
r o

n
–

th
is

pl
ac

em
en

t i
s a

n
ex

am
pl

e.

Un
su

pp
or

te
d

up
st

re
am

 tr
an

sa
ct

io
n,

 F
_U

UT

Sh
or

th
an

d,
 O

T/
TR

/T
T,

 fo
r d

iff
er

en
t

ty
pe

s o
f i

nc
om

in
g

tr
an

sa
ct

io
n

SI
D

ra
ng

e
O

K?

N Y

Ba
d

St
re

am
ID

.
If

O
T:

 C
_B

AD
_S

TR
EA

M
ID

N

In
va

lid
 o

n
by

pa
ss

.
TR

:
F_

BA
D_

AT
S_

TR
EQ

TT
:

F_
TR

AN
SL

_F
O

RB
ID

DE
N

Y

0

SE
C_

SI
D

1
AT

S
Tr

an
sla

te
d

no
t a

llo
w

ed
 o

n
Se

cu
re

St

re
am

ID
.

TT
:

F_
TR

AN
SL

_F
O

RB
ID

DE
N

Te
rm

in
at

e,
 a

bo
rt

0

Ad
dr

 >
 O

AS
?

N

Te
rm

in
at

e,
 a

bo
rt

Y

In
pu

t a
dd

re
ss

 si
ze

 is
 o

ut
 o

f r
an

ge
 (o

ut
sid

e
of

 O
AS

).

TR
?

SE
C_

SI
D

Y

N
0

AT
S

Tr
an

sla
tio

n
Re

qu
es

t n
ot

 a
llo

w
ed

 o
n

Se
cu

re
 S

tr
ea

m
ID

.
TR

: F
_B

AD
_A

TS
_T

RE
Q

1
De

ny
, U

R

GB
PA

.
Ab

or
t

O
T?

Y

N
Pa

ss
 tr

an
sa

ct
io

n

Ap
pl

y
GP

BA
 a

tt
rib

ut
es

.
0

N

1
Te

rm
in

at
e,

 a
bo

rt

SE
C_

SI
D=

1
&

&
 In

D=
1

&
&

 S
IF

=1

&
&

NS
=1

Te
rm

in
at

e,
 a

bo
rt

Y

Fe
tc

h
&

ch

ec
k

ST
E

A

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 380 of 443

 Non-Confidential

O
ut

co
m

e
fo

r
O

rd
in

ar
y

tr
an

sa
ct

io
n

O
ut

co
m

e
fo

r
AT

S
Tr

an
sla

tio
n

Re
qu

es
t

O
ut

co
m

e
fo

r
AT

S
Tr

an
sla

te
d

tr
an

sa
ct

io
n

ST
E

va
lid

, n
ot

IL

LE
GA

L?

ST
E.

V=
0

di
sa

bl
es

 st
re

am
 o

r
ST

E.
V=

1
bu

t c
on

te
nt

s I
LL

EG
AL

.
If

O
T:

 C
_B

AD
_S

TE
N

S1
+S

2
By

pa
ss

?

TT
?N N

Fe
tc

h
&

ch

ec
k

ST
E

ST
E.

EA
TS

Y

01
 (F

ul
l A

TS
en

ab
le

d)

Y

10
 (S

pl
it -

st
ag

e
AT

S)

St
re

am
By

pa
ss

De
ny

, U
R

Te
rm

in
at

e,
 a

bo
rt

Te
rm

in
at

e,
 a

bo
rt

Te
rm

in
at

e,
 a

bo
rt

De
ny

, C
A

00
 (A

TS
 d

isa
bl

ed
)

Te
rm

in
at

e,
 a

bo
rt

ST
E.

Co
nf

ig
[2

:0
] m

us
t b

e
11

1
(b

ot
h

S 1
 &

 S
2

tr
an

sla
tio

n)
 fo

r S
TE

to

 b
e

va
lid

 w
ith

 E
AT

S=
10

.
‘S

ta
ge

 1
’ a

tt
rib

ut
es

 fi
xe

d
in

pu
t o

r,
if

at
tr

ib
ut

es
 in

 T
T

ar
e

su
pp

or
te

d,

un
pa

ck
.

St
ag

e
2

tr
an

sla
tio

n
is

ne
xt

.

Pa
ss

 tr
an

sa
ct

io
n

Y

F_
TR

AN
SL

_F
O

RB
ID

DE
N

Ap
pl

y
At

tr
ib

ut
es

:
fix

ed
, o

r u
np

ac
k

up
pe

r P
A

bi
ts

.

ST
E.

Co
nf

ig

1x
x

Si
le

nt
ly

 te
rm

in
at

ed
, n

o
ev

en
t r

ec
or

de
d.

00
0

TR
:

Ill
eg

al
 o

n
by

pa
ss

, F
_B

AD
_A

TS
_T

RE
Q

TT
: I

lle
ga

l o
n

by
pa

ss
, F

_T
RA

NS
L_

FO
RB

ID
DE

N

Ef
fe

ct
iv

e
ST

E.
EA

TS
=0

0
if

ST
E.

Co
nf

ig
=1

00

TR
?

N

Ef
fe

ct
iv

e
ST

E .
EA

TS
Y

F_
BA

D_
AT

S_
TR

EQ
00

 (A
TS

 d
isa

bl
ed

)
De

ny
, U

R

O
th

er

AT
S

TR

an
d

TT

Th
is

is
th

e
on

ly
 e

rr
or

 re
co

rd
ed

 fo
r A

TS
 T

Rs
.

EA
TS

=1
0

&
&

AT

SC
HK

=0
N

Y
(e

ffe
ct

iv
e

EA
TS

=0
0)

Ef
fe

ct
iv

e
va

lu
e

of
 S

TE
.E

AT
S=

00
 if

 R
es

er
ve

d
va

lu
e

us
ed

He
re

, A
TS

CH
K=

1
(a

s A
TS

CH
K=

0
TT

 e
xi

te
d

th
e

flo
w

ch
ar

t e
ar

ly
, a

bo
ve

).
 T

he
re

fo
re

 in
 th

is
br

an
ch

 it
 ch

ec
ks

 a
ga

in
st

 co
nf

ig
ur

at
io

n.

To
 S

ta
ge

2

Ch
ec

k
SS

ID

Ch
ec

k
fo

r E
AT

S=
10

 b
eh

av
in

g
as

 0
0

if
AT

SC
HK

=0
.

TR
 o

r T
T?

Y

O
T:

 A
pp

ly
 S

TE
 o

ve
rr

id
e

at
tr

ib
ut

es

SS
ID

 p
re

se
nt

?
O

T:
 N

o
St

ag
e

1
fo

r s
ub

st
re

am
, C

_B
AD

_S
UB

ST
RE

AM
ID

Y

N

N
Te

rm
in

at
e,

 a
bo

rt

Te
rm

in
at

e,
 a

bo
rt

Ad
dr

 >
 O

AS
?

N

O
T:

 S
ta

ge
 1

 F
_A

DD
R_

SI
ZE

Y
Te

rm
in

at
e,

 a
bo

rt

O
T

&
 T

R:
 A

pp
ly

 S
TE

 o
ve

rr
id

e
at

tr
ib

ut
es

Te
rm

in
at

e,
 a

bo
rt

Te
rm

in
at

e,
 a

bo
rt

De
ny

, U
R

SE
C_

SI
D=

1
&

&
 In

D=
1

&
&

 S
IF

=1

&
&

NS
=1

Pa
ss

 tr
an

sa
ct

io
n

YN

F_
PE

RM
IS

SI
O

N

A

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 381 of 443

 Non-Confidential

O
ut

co
m

e
fo

r
O

rd
in

ar
y

tr
an

sa
ct

io
n

O
ut

co
m

e
fo

r
AT

S
Tr

an
sla

tio
n

Re
qu

es
t

O
ut

co
m

e
fo

r
AT

S
Tr

an
sla

te
d

tr
an

sa
ct

io
n

S1
 tr

an
sla

te
s?

Y

SS
ID

 p
re

se
nt

?

N

Su
bs

tr
ea

m
s d

isa
bl

ed
.

O
T:

 C
_B

AD
_S

UB
ST

RE
AM

ID
YN

n/
a

Te
rm

in
at

e,
 a

bo
rt

De
ny

, C
A

Go
t V

A

SS
ID

 p
re

se
nt

?

N

No
 S

ta
ge

 1
 fo

r s
ub

st
re

am
.

O
T:

 C
_B

AD
_S

UB
ST

RE
AM

ID
Y

ST
E.

CD
M

ax
 >

0 ?

N

Y

ST
E.

CD
M

ax
 >

0? N

ST
E.

S1
DS

S
Y

No
n-

su
bs

tr
ea

m
 tr

af
fic

 d
isa

bl
ed

.
O

T:
 F

_S
TR

EA
M

_D
IS

AB
LE

D
00

O
th

er

SS
ID

 >

ST
E.

CD
M

ax
Su

bs
tr

ea
m

 o
ut

sid
e

le
ga

l r
an

ge
.

O
T:

 C
_B

AD
_S

UB
ST

RE
AM

ID
Y

O
th

er

ST
E.

S1
DS

S
Su

bs
tr

ea
m

 0
 re

se
rv

ed
.

O
T:

 F
_S

TR
EA

M
_D

IS
AB

LE
D

Y

N

SS
ID

=0
10

N

Ch
ec

k
Su

b
st

re
am

 ID

To
 S

ta
ge

2

Ch
ec

k
SS

ID

ST
E.

S1
DS

S
10

Sk
ip

St

ag
e

1

Ad
dr

 >
 IA

S?
N

S1
 b

yp
as

s a
dd

re
ss

 to
o

la
rg

e.
O

T:
 S

ta
ge

 1
 F

_A
DD

R_
SI

ZE
Y

Ad
dr

 >
 IA

S?
S1

 b
yp

as
s a

dd
re

ss
 to

o
la

rg
e.

O
T:

 F
_A

DD
R_

SI
ZE

Y

01

N

St
ag

e
1

+
St

ag
e

2
by

pa
ss

 d
ea

lt
w

ith
 a

bo
ve

, s
o

no
-S

1
im

pl
ie

s
S2

 tr
an

sla
te

s.

CD
 ta

bl
e

en
tr

y
0

us
ed

Te
rm

in
at

e,
 a

bo
rt

Co
m

pl
et

e,
 R

=W
=0

B

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 382 of 443

 Non-Confidential

O
ut

co
m

e
fo

r
O

rd
in

ar
y

tr
an

sa
ct

io
n

O
ut

co
m

e
fo

r
AT

S
Tr

an
sla

tio
n

Re
qu

es
t

O
ut

co
m

e
fo

r
AT

S
Tr

an
sla

te
d

tr
an

sa
ct

io
n

CD
 fe

tc
h

O
K?

EA
BT

 o
n

fe
tc

h,
 o

r c
ac

he
 lo

ok
up

 fa
ilu

re
.

O
T:

 F
_C

D_
FE

TC
H,

 o
r F

_C
FG

_C
O

NF
LI

CT
N

S2
 tr

an
sla

te
s?

N

S2
 tr

an
sla

te

O
K? Y

Y

Tr
an

sla
tio

n-
re

la
te

d
fa

ul
t a

t S
ta

ge
 2

 fo
r C

D-
IP

A.
O

T:
 F

_T
RA

NS
LA

TI
O

N/
F_

AD
DR

_S
IZ

E/
F_

PE
RM

IS
SI

O
N

(/
F_

AC
CE

SS
, i

f
ST

E.
S2

HA
=0

)
(C

LA
SS

=C
D,

 S
ta

ge
=2

)

N

0

1

Fe
tc

h
CD

S2
 tr

an
sla

te
 fo

r C
D-

IP
A.

HT
TU

: I
f S

TE
.S

2H
A=

1,
 se

t
S2

-T
TD

.A
F=

1
if

no
t a

lre
ad

y
se

t

Y

No
n-

tr
an

sla
tio

n
re

ad
 e

rr
or

?
N

Y

ST
E.

S2
S

S2
 fa

ul
t m

ig
ht

 b
e

tr
an

sie
nt

du

e
to

 S
2

pa
gi

ng
.

O
r,

if
it’

s a
 g

en
ui

ne
ly

 b
ad

 a
dd

re
ss

, H
V

m
ig

ht
 re

sp
on

d
by

 in
je

ct
in

g
F_

CD
_F

ET
CH

 to
 g

ue
st

St
al

l

Te
rm

in
at

e,
 a

bo
rt

Co
m

pl
et

e,
 R

=W
=0

Te
rm

in
at

e,
 a

bo
rt

De
ny

, C
A

Fo
r S

ta
ge

 1
 +

 S
ta

ge
 2

 A
TS

 (i
nc

lu
di

ng
 S

pl
it -

st
ag

e
AT

S,
 a

nd
 w

ith
 P

RI
 a

t b
ot

h
le

ve
ls)

, t
hi

s c
as

e
re

tu
rn

s
‘R

=W
=0

’ t
o

el
ic

it
a

PP
R

fr
om

 th
e

en
dp

oi
nt

.
Th

e
Hy

pe
rv

iso
r (

HV
) t

ra
ps

 th
e

PP
R

fo
r V

A
an

d
tr

an
sla

te
s

it
to

 d
et

er
m

in
e

th
at

 th
e

CD
 fe

tc
h

fa
ul

te
d.

 T
he

 H
V

m
ig

ht
 m

ak
e

th
e

pa
ge

 a
va

ila
bl

e
an

d
co

nt
in

ue
.

Ho
w

ev
er

, i
f t

he
 g

ue
st

 u
se

d
a

ge
nu

in
el

y
ba

d
CD

 IP
A

th
e

ne
ar

es
t e

qu
iv

al
en

t i
s a

n
ab

or
t o

n
CD

 re
ad

(fr

om
 IP

A)
.

Th
e

gu
es

t c
an

 d
et

ec
t t

ha
t A

TS
 to

 a
 st

re
am

 w
ith

 a
 b

ad
 C

D
ad

dr
es

s s
ee

m
ed

 to
 su

cc
ee

d
(R

=W
=0

) i
ns

te
ad

 o
f D

en
y,

 C
A.

 I
n

ei
th

er
 ca

se
, d

ev
ic

e
ac

ce
ss

 is
 sa

fe
ly

 d
en

ie
d

bu
t t

he
 g

ue
st

 O
S

co
ul

d
de

te
ct

 a
 d

iff
er

en
t e

rr
or

.

St
ag

e
2

TT
D

fe
tc

h
EA

BT
, o

r T
LB

 lo
ok

up

fa
ilu

re
.

O
T:

 F
_W

AL
K_

EA
BT

 (C
LA

SS
=C

D,
 S

ta
ge

=2
),

F_
TL

B_
CO

NF
LI

CT
 (S

ta
ge

=2
)

CD
 v

al
id

?

Y

In
va

lid
 C

D.
O

T:
 C

_B
AD

_C
D

N
Te

rm
in

at
e,

 a
bo

rt
De

ny
, C

A

W
al

k
St

ag
e

1

n/
a

n/
a

B

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 383 of 443

 Non-Confidential

O
ut

co
m

e
fo

r
O

rd
in

ar
y

tr
an

sa
ct

io
n

O
ut

co
m

e
fo

r
AT

S
Tr

an
sla

tio
n

Re
qu

es
t

O
ut

co
m

e
fo

r
AT

S
Tr

an
sla

te
d

tr
an

sa
ct

io
n

W
al

k
St

ag
e

1
TT

S2
 tr

an
sla

te
s?

Re
ad

 S
1-

TT
D

fr
om

PA

St
ag

e
1

TT
D

O
K?

S2
 w

al
k

fo
r S

1-
TT

D
re

ad

IP
A.

HT
TU

: I
f S

TE
.S

2H
A=

1,

up
da

te
 S

2-
TT

D.
AF

=1
 if

 n
ot

al

re
ad

y
se

t

S2
 tr

an
sla

te

O
K?

Y
N

N

IP
A

tr
an

sla
te

d
to

 P
A

La
st

-le
ve

l
TT

D?
N

Y

No
n-

tr
an

sla
tio

n
re

ad
 e

rr
or

?
N

St
ag

e
1

fa
ul

t:
O

T:
 F

_T
RA

NS
LA

TI
O

N,
 F

_A
DD

R_
SI

ZE
,

(F
_A

CC
ES

S
if

la
st

-le
ve

l T
TD

 &
&

 C
D.

HA
=0

),
F_

PE
RM

IS
SI

O
N

(a
ffe

ct
ed

 b
y

CD
.H

D=
0)

 fr
om

 S
1-

TT
D

of
 V

A.
(C

LA
SS

=I
N,

 S
ta

ge
=1

)
O

r,
F_

PE
RM

IS
SI

O
N

du
e

to
 S

EC
_S

ID
=1

 &
&

 In
D=

1
&

&
 S

IF
=1

 &
&

 N
S=

1.

Y

St
ag

e
2

fa
ul

t:
O

T:
 F

_T
RA

NS
LA

TI
O

N,
F_

AD
DR

_S
IZ

E,
 F

_P
ER

M
IS

SI
O

N,
(F

_A
CC

ES
S

if
ST

E.
S2

HA
=0

) f
ro

m
 S

2-
TT

D
ba

ck
in

g
S1

-T
TD

 IP
A.

(C
LA

SS
=T

T,
 S

ta
ge

=2
)

0

1
No

n-
tr

an
sla

tio
n

re
ad

 e
rr

or
?

ST
E.

S2
S

S1
 H

TT
U

re
qu

ire
d?

S2
 w

al
k

fo
r S

1-
TT

D
w

rit
e

IP
A.

HT
TU

: I
f S

TE
.S

2H
D=

1
up

da
te

S2

-T
TD

.D
irt

y =
1

if
no

t a
lre

ad
y

se
t

Co
ns

tr
uc

t S
1-

TT
D

ad
dr

es
s (

IP
A/

PA
)

Y

S2
 tr

an
sla

te

O
K?

Re
-a

cc
es

s S
ta

ge
 2

 T
TD

, b
ut

fo

r w
rit

e EA
BT

 o
n

TT
D

re
ad

?
N

St
ag

e
2

is
R/

O
 fo

r S
1-

TT
D.

O
T:

 F
_P

ER
M

IS
SI

O
N

fr
om

S2

-T
TD

 b
ac

ki
ng

 S
1-

TT
D’

s
up

da
te

 IP
A.

(C
LA

SS
=T

T,
 S

ta
ge

=2
)

N

01
ST

E.
S2

S

Ra
ce

 co
nd

iti
on

, n
o

ab
or

t w
he

n
it

w
as

 re
ad

 b
ut

 n
ow

 co
ul

d
EA

BT
 w

he
n

w
rit

e
at

te
m

pt
ed

Go
t I

PA

N

0

1

CD
.S

S2
 tr

an
sla

te
s?

Up
da

te
 S

1-
TT

D
Y

EA
BT

 o
n

TT
D

w
rit

e?
N

Y

St
al

l

Te
rm

in
at

e,
 a

bo
rt

Co
m

pl
et

e,
 R

=W
=0

Te
rm

in
at

e,
 a

bo
rt

De
ny

, C
A

St
al

l

Te
rm

in
at

e,
 a

bo
rt

St
al

l

Te
rm

in
at

e,
 a

bo
rt

De
ny

, C
A

Y

N

At
om

ic

O
T:

 F
_W

AL
K_

EA
BT

(C

LA
SS

=T
T,

 S
ta

ge
=1

)

N

N

Y

Y

S2
 fa

ul
t m

ig
ht

 b
e

tr
an

sie
nt

du

e
to

 S
2

pa
gi

ng
.

Te
rm

in
at

e,
 a

bo
rt

De
ny

, C
A

CD
.A

1

Te
rm

in
at

e,
 R

AZ
/W

I
0

CD
.A

=0
 a

nd
 C

D.
S=

1
ha

ve
 n

o
ef

fe
ct

 o
n

a
TR

.
AT

S
do

es
 n

ot

su
pp

or
t R

AZ
/W

I a
bo

rt
s.

Y

Te
rm

in
at

e,
 a

bo
rt

De
ny

, C
A

O
T :

 F
_ W

AL
K_

EA
BT

(C

LA
SS

=T
T,

 S
ta

ge
=2

)

Te
rm

in
at

e,
 a

bo
rt

Co
m

pl
et

e,
 R

=W
=0

St
ag

e
2

TT
D

fe
tc

h
EA

BT
, o

r T
LB

 lo
ok

up

fa
ilu

re
.

O
T:

 F
_W

AL
K_

EA
BT

 (C
LA

SS
=T

T,
 S

ta
ge

=2
),

F_
TL

B_
CO

NF
LI

CT
 (S

ta
ge

=2
)

St
ag

e
1

TT
D

fe
tc

h
EA

BT
, o

r T
LB

 lo
ok

up
 fa

ilu
re

.
O

T:
 F

_W
AL

K_
EA

BT
 (C

LA
SS

=T
T,

 S
ta

ge
=1

),
F_

TL
B_

CO
NF

LI
CT

 (S
ta

ge
=1

)

NO
TE

: T
hi

s f
lo

w
 d

ep
ic

ts
 S

2-
TT

D
be

in
g

up
da

te
d

w
ith

 A
F=

1,
 th

en
 la

te
r D

irt
y=

1
(e

.g
. f

et
ch

 S
1-

TT
D

th
en

 la
te

r d
ec

id
e

to
 u

pd
at

e
it

–
at

om
ic

al
ly

).
 If

S2

 m
ap

s S
1

re
ad

-o
nl

y,
 co

ul
d

re
su

lt
in

 S
2

ha
vi

ng

AF
=1

 y
et

 la
te

r a
n

S2
 fa

ul
t w

he
n

Di
rt

y
up

da
te

 is

at
te

m
pt

ed
.

n/
a

W
al

k
St

ag
e

1

n/
a

n/
a

Co
m

pl
et

e,
 R

=W
=0

Tr
an

sla
tio

n
Fa

ul
t?

N

In
pu

t a
dd

re
ss

 o
ut

 o
f r

an
ge

 (c
on

sid
er

in
g

St
re

am
W

or
ld

, C
D.

Tx
SZ

, C
D.

TB
I),

 o
r e

ffe
ct

iv
e

EP
D

Fa
ul

t

C

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 384 of 443

 Non-Confidential

O
ut

co
m

e
fo

r
O

rd
in

ar
y

tr
an

sa
ct

io
n

O
ut

co
m

e
fo

r
AT

S
Tr

an
sl

at
io

n
Re

qu
es

t

O
ut

co
m

e
fo

r
AT

S
Tr

an
sl

at
ed

tr

an
sa

ct
io

n

W
al

k
St

ag
e

2
TT

S2
 tr

an
s?

N

N

Re
ad

 S
2-

TT
D

fr
om

PA

TT
D

O
K?

La
st

 T
TD

?

Y Y

S2
 H

TT
U

re

qu
ire

d?

Go
t P

A

N

Co
ns

tr
uc

t S
2-

TT
D

ad
dr

es
s (

PA
)

N
on

-
tr

an
sla

tio
n

re
ad

 e
rr

or
?

Y
St

ag
e

2
fa

ul
t:

O
T/

TT
:

F_
TR

AN
SL

AT
IO

N
,

F_
AD

DR
_S

IZ
E,

 F
_P

ER
M

IS
SI

O
N

,
(F

_A
CC

ES
S

if
ST

E.
S2

HA
=0

),
F_

PE
RM

IS
SI

O
N

(a

ffe
ct

ed
 b

y
ST

E.
S2

HD
=0

)
fr

om
 S

2-
TT

D
of

 IP
A

(S
ta

ge
=2

, C
LA

SS
=I

N
)

ST
E.

S2
S

N
1

N

U
pd

at
e

S2
-T

TD

EA
BT

 o
n

S2
-

TT
D

Y
N

Pa
ss

 tr
an

sa
ct

io
n

(a
pp

ly

S1
 a

tt
rs

)
Co

m
pl

et
e,

 p
er

m
s &

 P
A

fr
om

 S
1

ta
bl

e
w

al
k

Te
rm

in
at

e,
 a

bo
rt

De
ny

, C
A

Te
rm

in
at

e,
 a

bo
rt

St
al

l

Te
rm

in
at

e,
 a

bo
rt

Co
m

pl
et

e,
 R

=W
=0

Te
rm

in
at

e,
 a

bo
rt

0

Pa
ss

 tr
an

sa
ct

io
n

(a
pp

ly

(S
1+

)S
2

at
tr

s)
Co

m
pl

et
e,

 p
er

m
s &

 P
A

fr
om

 (S
1+

)S
2

ta
bl

e
w

al
k

Pa
ss

 tr
an

sa
ct

io
n

(C
om

bi
ne

 in
 S

2
at

tr
s)

Te
rm

in
at

e,
 a

bo
rt

De
ny

, C
A

Te
rm

in
at

e,
 a

bo
rt

At
om

ic

At
om

ic
:

M
ay

 “
lo

ad
-e

xc
lu

siv
e,

 te
st

/
m

an
ip

ul
at

e,
 st

or
e-

ex
cl

us
iv

e”
 in

 so
m

e
sy

st
em

s
or

 “
re

ad
, t

es
t/

m
an

ip
ul

at
e,

 fa
r C

AS
”

or
 si

m
ila

r;
if

th
e

TT
D

ha
s c

ha
ng

ed
 in

 b
et

w
ee

n,
 re

-r
ea

d
TT

D
(i.

e.
 G

O
TO

 R
ea

d
S2

-T
TD

)

O
T/

TT
:

F_
W

AL
K_

EA
BT

(W

AL
K=

TT
D,

 S
ta

ge
=2

)

N

St
ag

e
2

TT
D

fe
tc

h
EA

BT
, o

r T
LB

 lo
ok

up
 fa

ilu
re

.
O

T/
TT

:
F_

W
AL

K_
EA

BT
 (C

LA
SS

=I
N

, S
ta

ge
=2

),
F_

TL
B_

CO
N

FL
IC

T
(S

ta
ge

=2
)

S2
 fa

ul
t m

ig
ht

 b
e

tr
an

sie
nt

du

e
to

 S
2

pa
gi

ng
.

To
 S

ta
ge

2Sk
ip

St

ag
e

1
EA

TS
=0

1
&

&

ST
E.

Co
nf

ig
[1

]=
0

Co
m

pl
et

e,
 P

A=
VA

, U
=0

,
R=

W
=1

Y

N

TR
?

Y

N

If
S1

DS
S=

01
 c

au
se

s S
ta

ge
 1

 to
 b

e
sk

ip
pe

d
w

he
n

EA
TS

=1
0,

 th
e

ou
tp

ut
 a

dd
re

ss
 is

 th
e

sa
m

e
as

 in
pu

t (
sin

ce
 E

AT
S=

10
 m

ea
ns

 o
nl

y
St

ag
e

1
is

tr
an

sla
te

d
us

in
g

AT
S)

.
Ho

w
ev

er
, t

hi
s c

ar
rie

s o
n

to
 S

ta
ge

 2
 to

 c
he

ck
 p

er
m

iss
io

ns
/a

tt
rib

ut
es

.
Se

e
Ch

ap
te

r
15

.

Fo
r r

eg
ul

ar
 E

AT
S=

01
 A

TS
, S

ta
ge

 1
 h

as
 b

ee
n

sk
ip

pe
d

du
e

to
 S

1D
SS

=0
1

an
d

St
ag

e
2

do
es

 n
ot

 tr
an

sla
te

.

n/
a

Tr
an

sla
tio

n
Fa

ul
t?

In

pu
t a

dd
re

ss
 o

ut
 o

f r
an

ge

(c
on

sid
er

in
g

ST
E.

S2
T0

SZ
)

Fa
ul

t

N

TR
 &

&

EA
TS

=1
0?

Y

TR
 w

ith
 E

AT
S=

10
:

St
or

e
IP

A
to

 re
tu

rn
 in

 fi
na

l r
es

ul
t,

co
nt

in
ue

 to

St
ag

e
2

fo
r p

er
m

iss
io

ns
 (r

es
ul

t’s
 p

er
m

iss
io

ns

ar
e

co
m

bi
ne

d
S1

+S
2

pe
rm

iss
io

ns
)

Y

TR
 &

&

EA
TS

=1
0?

N

Co
m

pl
et

e,
 p

er
m

s f
ro

m

S1
+S

2;
 re

tu
rn

 IP
A

Y

EA
TS

=1
0?

TR
 w

ith
 E

AT
S=

10
:

St
or

e
In

pu
t a

dd
re

ss
 a

s I
PA

 to

re
tu

rn
 in

 re
su

lt,
 c

on
tin

ue
 to

St

ag
e

2
fo

r p
er

m
iss

io
ns

.

N
Y

Te
rm

in
at

e,
 a

bo
rt

SE
C_

SI
D=

1
&

&
 In

D=
1

&
&

 S
IF

=1

&
&

N
S=

1

F_
PE

RM
IS

SI
O

N
N

Y
n/

a

C

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 385 of 443

 Non-Confidential

15.2 Notes on translation procedure charts

In general, ATS Translation Requests do not record faults and errors (with the exception of F_BAD_ATS_TREQ
which indicates situations that would not otherwise be observable through error responses for an ordinary
transaction sent through identical configuration).

In general, ATS Translated traffic does not record faults and errors, with the exceptions of:

• F_TRANSL_FORBIDDEN.
• EATS=0b10 Split-stage ATS configurations, which are translated at stage 2 in an identical way to

ordinary transactions (including recording of faults).

For every fault or termination that an ordinary transaction might experience, an ATS Translation Request has an
equivalent defined response. Generally, situations that represent a configuration error result in a Completer Abort
(CA) response to the endpoint, situations that represent an explicit prevention or disable of ATS service result in
an Unsupported Request (UR) response, and Translation-related failures result in a successful Translation
Completion having R=W=0 (that is, no access for this address).

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 386 of 443

 Non-Confidential

16 SYSTEM AND IMPLEMENTATION CONSIDERATIONS

16.1 Stages
ARM strongly recommends that stage 2 is only used to provide device assignment to a guest OS. To support
other usage scenarios, ARM recommends implementations also implement stage 1 if stage 2 is implemented.

16.2 Caching
An SMMU implementation is not required to implement caching of any kind, but ARM expects that performance
requirements will require caching of at least some configuration or translation information.

Caching of configuration or translations might manifest as separate caches for each type of structure, or some
combination of structures into a smaller number of caches. When architected structure types are cached together
as one combined entry, the invalidation and lookup semantics remain identical to many specialised per-structure
caches.

For example, an implementation with caches of each structure and translation stage implemented separately
would contain:

• An STE cache
o Indexed by StreamID.
o Invalidated by StreamID, StreamID-span, or all.
o Might contain a Level 1 Stream table cache of pointers to 2nd-level Stream table.

 Identical index/invalidation requirements.
• A CD cache

o Indexed by StreamID and SubstreamID, or address.
 Note: Address index could be used, calculated from the STE.S1CtxPtr of a prior STE

lookup plus the incoming SubstreamID. This arrangement might be useful where many
STEs share a common table of CDs.

o Invalidated by StreamID and SubstreamID, StreamID, or all.
o Might contain a Level 1 CD table cache of pointers to 2nd-level CD table.

 Identical index and invalidation requirements.
• A stage 1 TLB (VA to IPA).

o Indexed by VA, ASID, VMID and EL.
 EL is the Exception level or StreamWorld on whose behalf the TLB entry was inserted.

o Invalidated by VA, ASID, VMID and EL, or ASID, VMID and EL, or VMID and EL, or EL.
o Might contain or be paired with a walk cache (invalidated under the same conditions as PE

translation walk caches).
• A stage 2 TLB (IPA to PA)

o Indexed by IPA and VMID.
 No Exception level, as stage 2 is only relevant to one StreamWorld (NS-EL1).

o Invalidated by IPA and VMID, or VMID, or all.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 387 of 443

 Non-Confidential

o Might contain or be paired with a walk cache.

In this example, consistency is maintained by looking up cache entries in order from STE through CD, then using
the parameters determined from that stream configuration to lookup in the TLBs. That is, given a StreamID,
SubstreamID and VA input, convert StreamID and SubstreamID into ASID, VMID and Exception level, then use
VA, ASID, VMID and EL to lookup in the TLBs.

16.2.1 Caching combined structures
Note: In the example given in 16.2, a stage 1 TLB is implemented separately to the stage 2 TLB. While this
layout mimics the two stages of translation table, it might not provide optimal performance. A designer might
determine that a combined stage 1 and stage 2 TLB is better, where each entry would translate VA to PA directly
but would inherit invalidation requirements from both original structures.

For translations and TLBs, the SMMU invalidation rules for combined TLBs directly match those of ARMv8-A.

Note: For example, an invalidation by IPA is not required to invalidate entries in a combined S1 and S2 TLB but is
required to be paired with a second invalidation by VA or stage 1-all that would affect S1 and S2 TLB entries.

Combined structure caches maintain the same invalidation semantics as discrete structures. An entry of a
combined cache is invalidated if any part of the entry would have been invalidated in an equivalent operation, with
the same parameters, on a discrete cache.

Note: For example, a particular SMMU implementation maintains only two hardware caches, a combined cache
of STE and CD, and a translation cache or TLB. In this layout, a StreamID and SubstreamID and VA input looks
up StreamID and SubstreamID in the combined cache and determines the ASID, VMID, and StreamWorld at the
same time. The translation is then looked up using VA, ASID, VMID and StreamWorld to determine the PA. The
invalidation requirements of the combined STE and CD cache are the union of the requirements of the separate
structures. STE invalidation operations invalidate every combined cache entry that contains data loaded using a
given StreamID. This covers all CDs fetched from a given STE, which is implied anyway by the CMD_CFGI_STE
to invalidate CDs subordinate to the STE. Conversely, every entry that contains data from a CD to be invalidated
must be invalidated even if the STE portion is still valid.

An implementation might combine a TLB with configuration caching so that a single cache is looked up by
StreamID and SubstreamID and VA and results in a PA output. Entries in this cache are invalidated when any
part of an entry would match (or cannot be proven to not match) a required invalidation for STE, CD or translation.

Note: Implementations must balance a trade-off between over-invalidation that might be necessary to cover all
required entries, and the cost of adding extra tagging. For example, a single cache might tag entries by VA, ASID,
VMID, and StreamID so that broadcast TLB invalidations can remove only relevant entries, or so that an STE
invalidation removes only entries that could have been constructed from the given StreamID.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 388 of 443

 Non-Confidential

16.2.2 Data dependencies between structures
The configuration structures logically make a tree or graph by indicating subsequent structures (and onwards,
indicating translation tables). The structures contain fields to locate the next structure in the chain but might also
modify interpretation of subsequent structures.

The dependencies between structures are:

• STE to CD to TT (stage 1)
• STE to TT (stage 2)

(Here, ‘STE’ might be composed of multi-level L1STD to STE lookups and CD might be composed of multi-level
L1CD to CD lookups.)

The STE contains fields that determine how to locate a CD and stage 2 translations (whichever are relevant to
STE.Config) but also contains fields that modify the behavior of a CD and translation table walks performed
through it:

• The STE StreamWorld (STRW plus STE Secure/Non-secure state) determines the translation regime,
which:

o Tags caches of translations subsequently inserted, to separate lookup and match on invalidation
o Determines which translation table formats are valid for use by the CD.

• STE.S1STALLD modifies CD.S behavior upon stage 1 fault.
• AArch32 stage 2 translation (STE.Config[1]==1 and STE.S2AA64==0) causes a 64-bit stage 1

(CD.AA64==1) to be ILLEGAL.
Note: A change to an STE field requires an STE invalidation. An STE invalidation also invalidates all CDs that
were cached through the STE.

The CD contains fields that determine how to locate translation tables but also contains fields that modify the
behavior of a translation table walk through it:

• CD.{AA64, EPDx, SHx, ORx, IRx, TGx, TxSZ, ENDI, NSCFGx} govern walks of the translation table itself.
(In addition, NSCFGx can influence the final NS attribute in that a Non-secure TTW never outputs NS=0.)

• CD.{UWXN, WXN, PAN, AFFD, HADx} govern permission checking with the translation table descriptors.
• CD.{ASID, ASET} govern ASID-tagged translation cache entries.
• CD.{MAIR, AMAIR} modify the attribute determined from translation.
• CD.{HA,HD} determines HTTU configuration for walks performed through TTB{0,1}.

Some STE and CD fields are permitted to be cached as part of a translation or TLB entry (therefore requiring
invalidation of TLB entries that might contain the old value when the fields are changed). These fields are noted in
sections 5.2 and 5.4.1. With the exception of these fields, no other information is expected to be ‘carried forward’
between structures.

Some configuration register fields are, where indicated, permitted to be cached in a TLB. Changes to these fields
require invalidation of any TLB entries that might cache a previous value of the field.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 389 of 443

 Non-Confidential

16.3 Programming implications of bus address sizing
If pointers are programmed into a device from the PE that would, on the PE, cause translation faults due to failing
sign-extension checks, the SMMU will also raise a translation fault because of the sign-extension checks on input.
However, if a system cannot convey all 64 address bits from a device, or a device lacks the ability to register
upper address bits, the SMMU does not have enough information to perform these checks. In this case, ARM
recommends that if detection of such errors is required, software (or the device, if it has the facility to hold the full
address) checks the validity of upper bits.

On ARMv8-A PEs, the TBI facility allows the top byte of addresses to contain tags that are ignored when checking
address sign-extension validity. If an address is truncated to ≤ 56 bits on the flow through device DMA registers to
device DMA accesses to I/O interconnect to the SMMU, the SMMU cannot check the validity of the top byte so
effectively TBI is always used. In such a system, another entity (device, software) must check addresses if
required.

16.4 System integration
• The SMMU must be in the same Inner Shareable domain as any other agents that might use DVM with

the SMMU, because DVM messages are only broadcast over the Inner Shareable domain.
• In general, ARM does not expect SMMUs to be connected in series.

Note: This topology needs special software support, particularly when different software modules manage
different SMMUs. This must not be used to construct two stages of translation using two SMMU
implementations that support only one stage, as it is programmed differently to an SMMU that supports
both stages.

• When used with a PCIe subsystem, an SMMU implementation must support at least the full (16-bit) range
of PCI RequesterIDs and the system must ensure that a Root Complex generates StreamIDs from PCI
RequesterIDs (BDF) in a one to one or linear fashion so that StreamID[15:0] == RequesterID[15:0]. A
larger StreamID might be constructed by concatenating the RequesterIDs from multiple PCI domains (or
“segments” in ACPI terminology), for example:

o StreamID[17:0] = { pci_rc_id[1:0], pci_bus[7:0], pci_dev[4:0], pci_fn[2:0] };
that is, StreamID[17:0] = { pci_domain[1:0], RequesterID[15:0] };

When used with a PCIe system supporting PASIDs, ARM recommends that the SMMU supports the same
number of (or fewer) PASID bits supported by client Root Complexes so that software is able to detect end-to-
end SubstreamID capabilities through the SMMU.
• If accesses from a device are expected to experience page faults and the Stall model is used, ARM

recommends that a system does depend on other devices on the same SMMU path as the device in order
to resolve the faults. Because a stalled transaction occupies an input buffer resource, the SMMU might
not guarantee to pass traffic whether faulting or not, and any new request for device DMA might deadlock.

• Streams belonging to PCIe endpoints must not be stalled. The Terminate model is the only useful option.
Stalling PCIe transactions risks either timeouts from the PCIe endpoint (which might be difficult to recover
from), or deadlock in certain scenarios.

• Specifically, PCIe traffic (especially if configured to Terminate, architecturally not stalling) must not be held
up waiting for any PE action, including draining the Event queue or restarting stalled transactions. PCIe
traffic must always make forward progress without unbounded delays dependent on software. An
implementation must ensure that transactions to be terminated are not blocked by any other users of the
SMMU which might consume resources or stall transactions for an indefinite time.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 390 of 443

 Non-Confidential

16.5 System software
Note: Software must:

• Not assume that both stage 1 and stage 2 are implemented.
• Support systems in which broadcast TLB invalidation messages are not supported so do not invalidate

SMMU TLB entries, that is fall back to software TLB invalidation messages.
• Discover StreamID and SubstreamID sizes and capabilities.
• Probe SMMU_IDR1 for PRESET configuration table and queue base pointers, only allocating memory for

pointers that require initialization.
• Discover the maximum table sizes of the SMMU rather than using fixed-size tables.
• Interoperate between Secure and Non-secure domains and function whether or not the other Security

state exists. (Implementations might be NS, Secure-only or of mixed security.)
• Present system-specific StreamIDs as part of firmware descriptions for each device, as the StreamIDs

associated with a physical device are system-specific.
• Ensure that when HTTU is not used, TTDs mapping DMA memory are marked Accessed (and not Read-

Only, if DMA writes are expected) in order to avoid faults.

16.6 Implementation-defined features

16.6.1 Configuration and translation cache locking
Note: The lockdown of configuration and translation cache entries is not a feature directly described by the
SMMU architecture because cache structures might vary between implementation and entry lockdown might
expose this layout to software.
An implementation might support cache locking in an IMPLEMENTATION DEFINED manner using registers in the
IMPLEMENTATION DEFINED memory map.
Note: These registers might expose cache contents and provide insertion, probe and invalidation operations.

If an implementation supports translation cache locking, TLB invalidation must be consistent with the ARMv8-A
rules on locked entries:

• A TLB invalidate-all operation does not invalidate locked entries.
• An implementation might choose to implement TLB invalidate-by-VA or invalidate-by-ASID operations so

that they do one of the following:
o Invalidate locked entries that are explicitly matched by the operation.
o Do not invalidate locked entries.

A locked TLB entry is not affected by over-invalidation side-effects of invalidation operations that do not directly
match the entry.

The behavior of CMD_CFGI_* commands with respect to locked configuration cache entries is IMPLEMENTATION
DEFINED.

See SMMU_S_INIT.INV_ALL in section 6.3.53, this initialization invalidate-all operation invalidates locked entries.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 391 of 443

 Non-Confidential

16.7 Interconnect-specific features

16.7.1 Reporting of Unsupported Client Transactions
The SMMU behaves as though a single transaction is associated with one translation.

SMMU implementations might define their own input alignment restrictions leading to an unsupported client
transaction error. For example, an implementation with an AMBA downstream interconnect is likely to treat an
incoming transaction that crosses a 4KB boundary as unsupported, because these would violate the alignment
rules of the downstream interconnect.

For AMBA4 systems the following upstream client transactions are unsupported:

• FIXED bursts comprising more than a single beat that translate to Normal memory.
• Far Atomic operations (see section 16.7.6) where not supported by the downstream interconnect or

SMMU implementation.

Such transactions will be aborted and an F_UUT event will be recorded if possible.

16.7.2 Non-data transfer transactions
Some interconnect architectures support transactions that do not perform a data transfer, prefetch or translation
request action.

If the input interconnect can express the following transactions from client devices, the transactions will be
terminated silently by the SMMU with a Slave Error (or equivalent on non-AMBA interconnect):

• DVM operations (of all sub-types).
• Barriers.

The interconnect architecture of an implementation might support the following non-data operations that perform
address-based cache maintenance:

• Clean.
• Invalidate.
• CleanInvalidate.
• CleanToPersistence.

o In AMBA, these are the MakeClean, MakeInvalid, CleanInvalid and CleanShared (with point of
persistence scope) transactions.

SMMUv3.0:

• The SMMU does not support Cache Maintenance Operations and silently terminates them.

SMMUv3.1:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 392 of 443

 Non-Confidential

• Cache Maintenance Operations that are not address-based are not supported and are silently terminated
by the SMMU.

• Cache Maintenance Operations are permitted to pass into the system unmodified when the transaction
bypasses all implemented stages of translation. See section 16.7.2.3 on memory types.

• When one or more stages of translation is applied, the SMMU allows these operations to progress into
the system subject to the configuration controls and permission model described in sections 16.7.2.1 and
16.7.2.2. Additionally, Invalidate operations might be transformed into Clean and Invalidate operations as
part of these checks.

• When the input interconnect can deliver these operations, but the output interconnect does not support
them, the transactions are silently terminated.

SMMU implementations supporting AMBA might define an IMPLEMENTATION DEFINED set of unsupported incoming
transactions.

SMMU implementations supporting other interconnects might define their own set of unsupported incoming
transactions.

Note: See section 3.22. A destructive read (read with invalidate), write with directed prefetch, or standalone
directed prefetch transaction is not considered to be a discrete Cache Maintenance Operation and is handled
differently.

16.7.2.1 SMMUv3.1 control of Cache Maintenance Operations
In SMMUv3.1, STE.DRE controls whether an Invalidate operation is transformed as follows:

Input transaction class DRE==0 DRE==1

Invalidate Transformed into CleanInvalidate.

The operation is treated identically to a
CleanInvalidate for permission
evaluation.

Eligible for output as Invalidate (if
permissions checks allow)

The STE.DRE field applies in this manner when one or more stages of translation are applied. This does not
include the case where the only stage of translation is skipped due to STE.S1DSS.

16.7.2.2 SMMUv3.1 permissions model for Cache Maintenance Operations
In SMMUv3.1, when one or more stages of translation are applied, the following permissions are required for
Cache Maintenance Operations:

Maintenance operation type Required permissions Behavior if permissions not met

Clean,
CleanInvalidate,

Identical to ordinary read:
Requires Read or Execute permission,
(depending on input InD and

Identical to ordinary read:
Read/Exec permission fault

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 393 of 443

 Non-Confidential

CleanToPersistence INSTCFG) at privilege appropriate to
PnU input and STE.PRIVCFG.

Invalidate To progress as Invalidate, requires
permissions identical to ordinary write:
Requires Write permission at privilege
appropriate to PnU input and
STE.PRIVCFG.

If no Write permission, transformed
into a CleanInvalidate operation.
(As above, the CleanInvalidate might
succeed, or might cause permission
fault if Read/Exec permission
requirements are not met).

When HTTU is enabled, a Writable
Clean page (DBM==1 and
AP[2]==1/S2AP[1]==0) is not made
Writable Dirty by the SMMU.

If a Clean, CleanInvalidate, Invalidate or CleanToPersistence operation leads to a fault, it is recorded as a read
(data or instruction, as appropriate to the input InD/INSTCFG). On fault, these operations stall in the same way as
an ordinary read transaction if the SMMU is configured for stalling fault behavior, Retry and termination behave
the same as for an ordinary read or write transaction.

Note: The input interconnect might supply all Cache Maintenance Operations as Data, that is the effective InD
value is 0.

16.7.2.3 SMMUv3.1 memory types and Shareability for Cache Maintenance Operations
Cache Maintenance Operations do not have a memory type.

In SMMUv3.1, the Shareability of a CMO is determined in the same way to that of an ordinary transaction.

This rule applies to all such operations in all translation and bypass configurations, including:
• Global bypass (attribute set from GBPA).
• STE bypass (whether STE.Config==0b100 or STE.S1DSS and STE.Config==0b101 causes skip of the

only stage of translation).
• Translation.
• Input attribute is used unmodified.

16.7.3 Treatment of AMBA Exclusives from client devices
Exclusive accesses cannot be performed from ACE-Lite masters to shared addresses. If an SMMU is an ACE-
Lite master, it therefore cannot propagate client Exclusive accesses (to shared translated addresses) into the
system. ARM recommends that the accesses are transformed into non-Exclusives.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 394 of 443

 Non-Confidential

The outcome of such a transformed Exclusive transaction is equivalent to that of an ordinary transaction and
depends on whether the transaction experiences a fault and, if it faults, fault configuration. The transaction will
experience one of the following:

• Translates without fault, returning the non-exclusive transaction’s response to the upstream client device.
A response of EXOK is not possible (as the transaction is now non-exclusive). A response of OK will be
treated as an exclusive fail by the upstream client device.

• Faults on translation and is terminated with abort. These aborts are reported to the upstream client
device in the same way for transformed Exclusive transactions as for regular transactions (for example as
a Slave Error).

• Fault on stage 1 translation and be terminated with RAZ/WI semantics because CD.A==0. This returns a
response of OK.

16.7.4 Treatment of downstream aborts
Some systems might allow a slave device to abort transactions, returning status to the master. Translated
transactions initiated by a client device that are aborted in the memory system are not recorded in the SMMU.
The abort is returned to the client device, which is responsible for recording and reporting such faults. Aborted
transactions that were internally-initiated by the SMMU are recorded by the SMMU if possible to do so.

The event recorded by the SMMU, on one of its accesses being returned with abort status (whether aborted by
the interconnect or slave), depends on the type of access:

• STE fetch: F_STE_FETCH
• CD fetch: F_CD_FETCH
• Translation table walk: F_WALK_EABT
• Command queue read entry: GERROR.CMDQ_ERR & Command queue CERROR_ABT
• Event queue access: GERROR.EVENTQ_ABT_ERR
• PRI queue access: GERROR.PRIQ_ABT_ERR
• MSI write: GERROR.MSI_*_ABT_ERR

16.7.5 SMMU and AMBA attribute differences

16.7.5.1 Conversion of AMBA attributes to ARMv8 on input and inferring Inner Attributes
AMBA does not explicitly encode separate inner attributes for an upstream client device. ARM recommends that
the inner and outer attributes are considered to be the same as the outer attributes except in the following case for
data operations:

• It is IMPLEMENTATION DEFINED whether Non-cacheable with any AxDOMAIN value is treated as iNC-oNC-
OSH or whether Non-cacheable with an AxDOMAIN value of NSH/ISH/OSH is treated as an iWB-oNC-
{NSH,ISH,OSH} type. In the latter case, it must be considered to be Read-Allocate and Write-Allocate.

Note: Determination of the inner attributes might be used if the downstream interconnect can convey inner
attributes.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 395 of 443

 Non-Confidential

16.7.5.1.1 Conversion of input attributes from AMBA to ARMv8 architectural attributes
Incoming AMBA attributes are converted to SMMU/ARMv8 architectural attributes as follows:

AMBA attribute ARMv8 attribute Notes

Device-Sys non-bufferable Device-nGnRnE

Device-Sys bufferable Device-nGnRE

Normal-Non-cacheable-Sys (bufferable
or non-bufferable)

Normal-iNC-oNC-OSH

Normal-Non-cacheable-{NSH,ISH,OSH}
(bufferable or non-bufferable)

Normal-iNC-oNC-OSH
Or
Normal-iWB-oNC-
{NSH,ISH,OSH}

This is an
IMPLEMENTATION
DEFINED choice.

When the input is treated as
iNC-oNC-OSH, RA/WA/TR
do not exist. Otherwise, RA,
WA are 1 and marked non-
transient.

Normal-WriteThrough-{NSH,ISH,OSH} Normal-iNC-oNC-OSH (1)
Or
Normal-iWT-oWT-
{NSH,ISH,OSH}

This is an
IMPLEMENTATION
DEFINED choice.

When the input is treated as
iNC-oNC-OSH, RA/WA/TR
do not exist. Otherwise,
RA,WA are from input and
marked non-transient.

Normal-WriteBack-{NSH,ISH,OSH} Normal-iWB-oWB-
{NSH,ISH,OSH}

RA, WA from input. Always
marked non-transient.

An ACE-Sys input Shareability in considered to be OSH for the purposes of attribute combining and overriding as
described in section 13.1.

Note (1): The conversion between architectural and AMBA attributes might consider WriteThrough to be
equivalent to a Normal Non-cacheable type on output and an implementation might, for consistency, apply this
strategy on input.

16.7.5.2 Conversion of ARMv8 attributes to AMBA on output and representation of Shareability
The SMMU specifies the architectural Inner and Outer Cacheability and Shareability attributes. However, in some
circumstances there is a non-obvious transformation of these attributes into an AMBA representation:

• The architecture considers any-Device/Normal-iNC-oNC to be OSH, while ACE considers these to be
‘Sys’.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 396 of 443

 Non-Confidential

• Final attributes of any-Device/Normal-iNC-oNC are presented on AMBA as ACE-Device-Sys/ACE-
Normal-Non-cacheable-Sys.

• If the implementation does not transform final attributes of i{WB,WT}-oNC-OSH (inner cacheable of any
variety) to Normal-Non-cacheable-SYS as set out in 16.7.5.3 (for example, a different interpretation of
attribute mapping is used to that of ARM PE IP) and these attributes are transformed to an ACE
cacheable type, the type is represented as ACE-OSH.

16.7.5.2.1 Conversion of ARMv8 architectural attributes to AMBA on output
SMMU/ARMv8 architectural attributes are converted to AMBA attributes on output as follows:

ARMv8 attribute AMBA attribute Notes

Device-nGnRnE Device-Sys non-bufferable

Device-(n)G(n)RE Device-Sys bufferable

Normal-iNC-oNC-OSH Normal-Non-cacheable-Sys
bufferable

Architecturally, a Normal-iNC-
oNC-{NSH,ISH} attribute is not
possible, only OSH.

Normal-iNC-oWT-
{NSH,ISH,OSH}

Normal-Non-cacheable-Sys
bufferable

See (1)

Normal-iNC-oWB-
{NSH,ISH,OSH}

Normal-Non-cacheable-Sys
bufferable

See (1)

Normal-iWT-oNC-
{NSH,ISH,OSH}

Normal-Non-cacheable-Sys
bufferable

See (1)

Normal-iWT-oWT-
{NSH,ISH,OSH}

Normal-Non-cacheable-Sys
bufferable

See (1)

Normal-iWT-oWB-
{NSH,ISH,OSH}

Normal-Non-cacheable-Sys
bufferable

See (1)

Normal-iWB-oNC-
{NSH,ISH,OSH}

Normal-Non-cacheable-Sys
bufferable

See (1)

Normal-iWB-oWT-
{NSH,ISH,OSH}

Normal-Non-cacheable-Sys
bufferable

See (1)

Normal-iWB-oWB-
{NSH,ISH,OSH}

Normal-WriteBack-
{NSH,ISH,OSH}

(1) See 16.7.5.3 below: these transformations correspond to the transformations implemented in the PEs in
the system. The outputs shown correspond to ARM Cortex IP. For other PE IP, the interpretations of the
ARMv8 attributes are IMPLEMENTATION DEFINED.

When a cacheable type is output, AMBA interconnect RA and WA attributes are generated directly from the
RA/WA portion of the ARM architectural attribute.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 397 of 443

 Non-Confidential

Section 13.1.6 mandates that the SMMU will not output architecturally-inconsistent attributes or attribute
combinations that are illegal for the interconnect. For AMBA, the output AxDOMAIN is made consistent with the
final AxCACHE value if it is not already. If required, this is made consistent by choosing the highest (most
shareable) value of AxDOMAIN that is legal given AxCACHE. Normal Non-cacheable types are always
bufferable. The output AxDOMAIN is ACE-Sys if the final attributes are a Device or a Non-cacheable type.

 For example, in the case where:

• The SMMU is configured to bypass, SMMU_CR0.SMMUEN==0.
• SMMU_GBPA.MTCFG==1, and the input MemAttr is overridden to ‘iWB-oWB’ by SMMU_GBPA.MemAttr.
• SMMU_GBPA.SHCFG==”use-incoming”.
• An ACE input attribute provides ACE-Device-Sys.

The final output of the SMMU is ACE-WB-OSH.

16.7.5.3 Common interpretation of attribute encoding between SMMU and PE
If interoperation with the ARMv8 PE IP is required, a Normal memory attribute that is not iWB-oWB is transformed
to the architectural type iNC-oNC-OSH. See 16.7.5.2, in AMBA systems this is represented as ACE-NC-Sys.

For example, a final output attribute of iWT-oNC-NSH is converted to iNC-oNC-OSH and is therefore output into
an AMBA system as ACE-NC-Sys.

Access attributes of type any-Device are unaffected by this rule.

Otherwise, for interoperation with other PE IP, the transformations between Normal memory attributes that are not
iWB-oWB or iNC-oNC and AMBA attributes are IMPLEMENTATION DEFINED.

16.7.6 Far Atomic operations
If an interconnect and SMMU supports client device-initiated Far Atomic operations according to the atomic
operations specified in ARMv8.1-A [5], they experience permission checking as though they perform both a read
and a write operation. See section 13.1.1 for permission checking and fault reporting. An atomic access is
considered to be a write that also performs a read, so is always considered to be Data. The InD attribute and any
INSTCFG overrides are ignored for atomic accesses.

Note: For example, a Far Atomic increment to an address in a read-only page must cause a write Permissions
Fault (if all other translation requirements are satisfied). If the transaction is configured to stall and is later retried,
the entirety of the transaction must be retried atomically. It is prohibited to satisfy the read of data prior to raising
a write fault for the update of the data and then use the same read data when the transaction is later retried. The
retry must perform the unbroken atomic transaction in one action.

If an upstream interconnect can express this kind of atomic transaction, but the downstream interconnect or
system cannot, one of the following occurs:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 398 of 443

 Non-Confidential

1. Terminate the transaction in the SMMU with an abort, and record an F_UUT.
2. Support Far Atomic transactions within the SMMU, converting them to local monitor atomic operations

using a fully-coherent cache in the SMMU.
In case (1) where far atomics are not supported at all, ARM recommends that the system ensures that upstream
devices are not able to emit these transactions (and that software not expect to use them).

16.7.7 AMBA DVM messages with respect to CD.ASET=1 TLB entries
CD.ASET==1 affects the interaction of TLB entries with DVM messages in the following ways:

Entries created from StreamWorld=NS-EL1 are not required to be invalidated by:

• Guest OS TLB invalidation by ASID.
• Guest OS TLB invalidation by ASID and VA.

Entries created from StreamWorld=Secure are not required to be invalidated by:
• Secure TLB invalidation by ASID.
• Secure TLB invalidation by ASID and VA.

Entries created from StreamWorld=EL2-E2H are not required to be invalidated by:
• Hypervisor TLB invalidation by ASID.
• Hypervisor TLB invalidation by ASID and VA.

Entries created from StreamWorld=EL2 are not required to be invalidated by:
• Hypervisor TLB invalidation by VA.
• Hypervisor TLB invalidation by ASID.
• Hypervisor TLB invalidation by ASID and VA.

Entries created from StreamWorld=EL3 are not required to be invalidated by:
• EL3 TLB invalidation by VA.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 399 of 443

 Non-Confidential

17 APPENDIX - THE ARM RAS ARCHITECTURE

17.1 Faults, errors, and failures
There are many sources of faults in a system, including both software and hardware faults:

Hardware faults
These faults originate in, or affect, hardware. Hardware faults can be generated from various different sources,
and can be further subdivided into:

• Transient faults. These faults include:

o Interference from a high-energy particle, such as from atomic decay or a cosmic ray.

o Electrical interference, for example from cross-talk that results from a manufacturing or design
defect.

o Environmental faults, for example overheating or a voltage drop.

• Persistent faults. These faults are non-transient faults, and include:

o A manufacturing defect that was not found during the manufacturing tests.

o Faults that are accumulated by a component during its lifetime, for example wear-out, stress,
migration, or radiation damage.

o Faults that occur early in the life of a component during its burn-in period.

Software faults
These faults originate from software bugs, or faults in the input to software.

The RAS architecture describes data corruption faults, which generally occur in memories or on data links. To
achieve reliability, availability, and serviceability, the RAS architecture concepts can also be used for handling
other types of faults found in systems.

Faults can remain dormant and not affect the operation of a system. When a fault becomes active, it produces an
error. Errors propagate within a component and between components. This propagation might halt, for example if
the error is overwritten. Where the fault is overwritten, the error is referred to as being masked.

A service failure occurs when an error propagates to the service interface and causes a deviation from correct
service. Correct service might encompass:

• Producing correct results.

• Producing results within the time allotted to the task.

• Not divulging secret or secure information.

Therefore:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 400 of 443

 Non-Confidential

• A failure is the event of deviation from correct service.

• An error is the deviation.

• A fault is the cause of the error.

Errors that are present but not yet detected are latent or undetected errors. A transaction that carries a latent or
undetected error is corrupted.

A component might detect and correct an error:

• If a component fails to detect an error, it is undetected.

• If a component detects and corrects an error, it is a corrected error.

• If a producer cannot correct an error, but can continue correct operation, it can defer the error.

In the simplest case, an error is propagated if a corrupt value is passed from the producer to the consumer.
However, an error is also said to have propagated if:

• A transaction that would not have been permitted to occur had the fault not been activated passes from the
producer to the consumer.

• A transaction that would otherwise have occurred does not occur.

• Modified data is lost or any other loss of coherency in a multiprocessor coherent system is observed.

• In some cases, changing the timing and order of transactions is also considered to propagate an error.

If an uncorrected error is received by the consumer as an undetected error, the error has been silently
propagated. A detected, uncorrected error is uncontained at the component that silently propagates it.

Any error is uncontainable if it is uncontained. A detected uncorrected error is containable if it is not
uncontainable. If the component cannot determine whether a detected error is uncontainable or containable, it
must treat it as uncontainable.

Each device sets its own targets for reliability, availability, and serviceability, and uses different techniques to
achieve these targets, including:

• Fault prevention.

• Fault removal.

• Fault handling.

• Error handling and recovery.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 401 of 443

 Non-Confidential

Fault prevention and fault removal mechanisms are implementation defined. The RAS architecture provides a
common programmers’ model and mechanisms for fault handling and error recovery.

17.2 Error handling and recovery
For containable uncorrected errors:

• If the error is received by the consumer as a detected error, then the producer has deferred the error to the
consumer, creating a deferred error.

A common mechanism for deferring errors is by poisoning state. Typically, a first producer detects the error
on data that it is about to write to a first consumer that will update the storage location. The first producer
signals a Deferred error on the write, invalidating its copy of the data, and the first consumer poisons the
location.

If the location is later accessed by a second consumer, the poison is detected and signaled by the first
consumer, which acts as the second producer, as an Uncorrected error. Alternatively, the first consumer
might defer the error again to the second consumer.

• If a component transports or contains corrupted data, and the corrupted data is marked as corrupted, then
the component is propagating the error and no further action is required.

Note: If a detected error is allocated into a cache without being signaled in the cache as having an error, it
might be silently propagated and therefore, in this case, is uncontainable.

• If a consumer of an error does not require the corrupted data to make progress, and therefore can recover
with no action, the error is a restartable error. It is implementation defined whether such errors are signaled
to software.

Note: An error on a speculative read that has not updated the state of the component is often containable
and restartable.

• If the consumer can take action to recover from the error, possibly requiring software intervention, before
corrupting its state, but requires the corrupted data to make progress, the error is a recoverable error.

• If the error has corrupted the state of the component so that recovery of the component is not possible, the
error is an unrecoverable error for the affected component.

An error that is uncontainable at the component might still be containable at the system level.

Note: Hardware cannot know the capabilities of software. Therefore, a component might report an error as
restartable or recoverable, and software must implement recovery.

A PE consumes an error as an External Abort or SError interrupt exception. Other system components might
signal errors to software using an error recovery interrupt that is usually sent to an interrupt controller. See also
Error recovery interrupt and Error recovery and fault handling signaling

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 402 of 443

 Non-Confidential

Note: Reporting an error as containable allows software to contain the error. It does not mean that hardware has
contained the error.

17.3 Fault handling
When an error is detected by a component that supports fault reporting, it records the error in an error record and
might generate a fault handling interrupt that is usually sent to an interrupt controller, see also. See also Error
recovery interrupt and Error recovery and fault handling signaling

Note: A fault handling interrupt is logically separate from the error recovery interrupt described in Error handling
and recovery. This is because the processes of fault handling and error recovery are logically separate. Controls
are provided to enable and disable the fault handling interrupt.

17.4 Nodes
In the RAS architecture, the component that detects an error is called a node. The architecture defines the
following common features for a node. A node might implement some or all of these features, and, if implemented,
might implement controls to enable or disable the features in ERR<n>CTLR.

Error detection or correction, or both

The level of error correction and detection that is implemented at a node is implementation defined. A
node might include a control to disable error detection and correction, for example while software
initializes the node.

Fault handling interrupt

Asynchronous reporting of all or some detected errors of an interrupt. That is, all Corrected errors,
Deferred errors, and Uncorrected errors. It is implementation defined whether a node provides a
single control for all errors, or a first control for Corrected errors and a second control for all other
detected errors.

See also Fault handling interrupt.

Corrected error counting

It is implementation defined whether a node that provides error correction implements a counter for
counting Corrected errors. Software might poll the error counter or initialize the counter with a
negative threshold value and receive an interrupt when the counter overflows.

It is implementation defined which Corrected errors are counted.

For example, if an implementation is capable of correcting multiple errors in a single cycle, although
this is statistically very unlikely compared to the overall corrected error FIT (failure-in-time) rate, the
implementation might decide to only count one of the Corrected errors.

See also Standard format Corrected error counter.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 403 of 443

 Non-Confidential

In-band Uncorrected error signaling (external aborts)

In-band signaling of detected Uncorrected errors to the consumer of the error. This is also referred to
as an external abort. Corrected errors and Deferred errors are not reported by such means.

Note: In this overview, external abort refers to any in-band error signaling on an interface. This
includes error signaling on a memory interface from a PE, which might generate External Abort
exceptions. However, other interfaces can also include in-band error signaling, and so any use of
external abort in this section also includes these interfaces.

See also In-band error signaling.

Uncorrected error recovery and handling interrupt

Asynchronous (out-of-band) reporting of detected Uncorrected errors by an interrupt. The interrupt
can be used for error recovery, fault handling, or both. Corrected errors are not reported by this
means. It is implementation defined whether the node provides a control to enable Deferred errors to
be reported in this way. If the control is not supported, Deferred errors are not reported by this
means.

The error recovery interrupt is generated even if the error syndrome is discarded because the error
record already records a higher priority error.

Note:

• An interrupt is always asynchronous and is routed by the interrupt controller. If
implemented as a Shared Peripheral Interrupt (SPI), it can be routed to any PE as an
IRQ or FIQ interrupt. For more information about SPIs, see the ARM® Generic
Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version
4.0.

• If a detected error is signaled by an error recovery interrupt and not as an external
abort, then the consumer does not consume the detected error.

• For brevity, this is called the error recovery interrupt in other parts of this appendix. See
also Error recovery interrupt.

Records

A node implements one or more records. When an error is detected, syndrome about the error is
written to a record.

See Standard error record.

Throughout this architecture, where it is required that a node returns an external abort, defers an error, or
generates an interrupt, it is assumed that the feature is both implemented and enabled.

17.4.1 Synchronization and error record accesses

When a node detects an error it updates the error record registers and might generate one or more of:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 404 of 443

 Non-Confidential

• A fault handling interrupt.

• An error recovery interrupt.

• An in-band error response.

Each of these might generate an exception at a PE. After taking an exception generated by such a signal from a
node, if the PE reads the error record registers at the node, the read must return the updated values.

For memory-mapped registers, this assumes the memory-mapped registers are mapped as a Device type that
does not permit read speculation.

17.5 Standard error record
An error record holds syndrome for the error:

• Status of the error.

• An address, if applicable.

• Optionally, counters for software to poll the rate of Corrected errors.

• Information to identify a field replaceable unit (FRU) and locate the error within the FRU.

• Other IMPLEMENTATION DEFINED information.

The error record registers might also contain control registers for error detection, correction, and reporting at the
node.

The RAS extension defines a standard error record and a mechanism to access error records as System
registers. The standard error record contains:

• Controls for common features, and an identification mechanism for these controls. See Nodes for more
information about common features.

For each node it IS IMPLEMENTATION DEFINED whether the fault and error reporting mechanisms apply to both
reads and writes, or can be individually controlled for reads and writes.

• A status register for common status fields, such as the type and coarse characterization of the error.

• An address register, if applicable.

• Standard mechanisms for Corrected error counters for software to poll the rate of Corrected errors.

• IMPLEMENTATION DEFINED controls and identification registers.

• IMPLEMENTATION DEFINED status registers. ARM recommends that these are used to identify a FRU and
locate the error within the FRU.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 405 of 443

 Non-Confidential

Error records can be accessed using memory-mapped interfaces. Memory-mapped view of an error record
defines a reusable format for memory-mapped registers. Use of the reusable format is optional.

Error records must be preserved over error recovery reset, allowing diagnosis after system failure.

ARM recommends that all error records are remotely accessible for access by all PEs in a system, or by a
Baseboard Management Controller (BMC) or System Control Processor (SCP). The remote access mechanism is
IMPLEMENTATION DEFINED, but might use CoreSight-like interfaces. ARM recommends that remote access is
possible when the rest of the system is in a fail state, for example when the system has locked up.

17.5.1 Security and virtualization

If a component with memory-mapped fault handling registers processes Secure data, then the fault handling
registers must either:

• Be visible only to Secure accesses.

• Provide a reduced functionality to Non-secure state that does not affect operation in Secure state, or does
not provide visibility of Secure data, or both.

If a component with memory-mapped fault handling registers processes only Non-secure state, then it is
IMPLEMENTATION DEFINED whether:

• The fault handling registers are visible to both Non-secure and Secure accesses.

• It is configurable whether the fault handling registers are visible to Non-secure accesses.

• The fault handling registers are visible only to Secure accesses.

ARM recommends that it is configurable whether memory-mapped fault handling registers are visible to Non-
secure accesses.

Note: The mechanism by which Secure firmware prevents Non-secure accesses to memory-mapped fault
handling registers is IMPLEMENTATION DEFINED.

If a component provides multiple virtual peripherals for use by multiple guest operating systems under a
hypervisor, ARM recommends that each virtual peripheral has a set of fault handling registers to control error
recovery and fault handling for that virtual machine. This allows a hypervisor to isolate errors to a given virtual
machine. An additional set of fault handling registers might be provided for use by the hypervisor or Secure
monitor, and for errors that cannot be isolated.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 406 of 443

 Non-Confidential

17.5.2 Multiple records per node

Each node contains at least one error record. Where a node implements multiple error records, it is
IMPLEMENTATION DEFINED whether this is used by the node:

• To record different types of error in different records. For example, a node detects errors in multiple
memories, such as DIMMs, and implements one record for each memory.

Note: In this case the multiple records behave as a single node because they share control and identification
registers.

• To record multiple errors. For example, on detecting an error the node chooses a free record from the
multiple records.

17.5.3 Error types in the error record

The highest priority recorded error type is recorded in the ERR<n>STATUS.{CE, DE, UE, UET} fields, as shown in
Table 1.

ERR<n>STATUS fields Highest priority error type Mnemonic

V CE DE UE UET

0 X X X 0bXX None -

1 0b00 0 0 0bXX

1 !=0b00 0 0 0b00 Corrected error CE

1 X 1 0 0b00 Deferred error DE

1 X X 1 0b10 Restartable uncorrected error UEO

1 X X 1 0b11 Recoverable uncorrected error UER

1 X X 1 0b01 Unrecoverable uncorrected error UEU

1 X X 1 0b00 Uncontainable uncorrected error UC

Table 1: Encoding the highest priority error

Note: Non-zero X bits record the highest priority error, and additionally might record previously recorded errors.

For example, if ERR<n>STATUS.{CE, DE, UE, UET} =={0b01, 1, 0, 0b00}, then the highest priority error is
deferred, but at least one corrected error might have been previously recorded.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 407 of 443

 Non-Confidential

The error types that are implemented at a node are IMPLEMENTATION DEFINED. An implementation might only
include a simplified subset of these error types. A node can always record:

• UEO as any of UER, UEU, or UC.

• UER as either UEU or UC.

• UEU as UC.

17.5.4 Writing the error record

When a new error is detected, the node:

• Sets or modifies ERR<n>STATUS.{CE, DE, UE, UET} to indicate the type of the new detected error, see
Error types in the error record.

Note: ERR<n>STATUS.{DE, UE} are single-bit fields that are set to 1. ERR<n>STATUS.CE is a 2-bit field
that might be modified.

• Either:

• Overwrites the error record with the syndrome for the new error, if it has a higher priority than
the previous highest priority recorded error.

• Keeps the syndrome for the previous error, if the new error has a lower priority than the
previous highest priority recorded error.

Note: One of ERR<n>STATUS.{CE, DE, UE} is always set or modified even if the new error
syndrome is discarded.

• Counts the error, if it is a Corrected error and a counter is implemented.

Note: A counter for Corrected errors is optional, see ERR<n>MISC0.

17.5.5 Prioritizing errors

Overwriting depends on the type of the previous highest priority error and the type of newly recorded error, as
shown in Table 2. In this table, the row and column headings use the mnemonics for Table 1 and the following
other abbreviations are used:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 408 of 443

 Non-Confidential

K Keep. Keep the previous error syndrome. It is implementation defined whether ERR<n>STATUS.OF is
set to 1 or unchanged.

O Overflow. Keep the previous error syndrome and set ERR<n>STATUS.OF to 1. This means that software
can detect that a secondary error of the same type was discarded.

W Overwrite. Record the new error syndrome. It is IMPLEMENTATION DEFINED whether ERR<n>STATUS.OF
is set to 0 or unchanged.

CK Count and keep. Count CE if a counter is implemented, and keep the previous error syndrome. If the
counter overflows, or no counter is implemented, it is IMPLEMENTATION DEFINED whether
ERR<n>STATUS.OF is set to 1 or unchanged.

CWK Count and overwrite or keep. The behavior is IMPLEMENTATION DEFINED and described by the value of
ERR<n>FR.CEO:

0 Count CE if a counter is implemented, and keep the previous error syndrome. If the counter
overflows, or if no counter is implemented, ERR<n>STATUS.OF is set to 1.

1 Count CE. If ERR<n>STATUS.OF == 1 before the CE is counted, keep the previous syndrome.
Otherwise record the new error syndrome. If the counter overflows, ERR<n>STATUS.OF is set
to 1.

CW Count and overwrite. Count CE if a counter is implemented, and overwrite. If a counter is implemented
and overflows, ERR<n>STATUS.OF is set to an unknown value. Otherwise, it is IMPLEMENTATION DEFINED
whether ERR<n>STATUS.OF is set to 0 or unchanged.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 409 of 443

 Non-Confidential

WO Overwrite and overflow. ERR<n>STATUS.OF is set to 1.

Previous error type New detected error type

 CE DE UEO UER UEU UC

- CW W W W W W

CE CWK W W W W W

DE CK O W W W W

UEO CK K O WO WO WO

UER CK K O O WO WO

UEU CK K O O O WO

UC CK K O O O O

Table 2: Rules for overwriting error records

17.5.6 Overwriting the error syndrome

When an old record is overwritten:

• Bits shown as X in Table 1for the new error are unchanged. This allows software to detect that the
syndrome for a previous error was overwritten.

• The ERR<n>STATUS.{ER, PN, IERR, SERR} syndrome fields are written with the syndrome for the new
error.

• If there is an address syndrome for the new error, ERR<n>STATUS.AV is set to 1 and the address that is
written to ERR<n>ADDR. Otherwise ERR<n>STATUS.AV is set to 0.

• If there is other miscellaneous syndrome for the new error, it is written to the ERR<n>MISC0 or
ERR<n>MISC1 registers and ERR<n>STATUS.MV is set to 1.

• If there is no additional miscellaneous syndrome for the new error that is written to the ERR<n>MISC0 or
ERR<n>MISC1 registers, then it is IMPLEMENTATION DEFINED whether ERR<n>STATUS.MV is set to 0 or
unchanged:

• If software can determine from the ERR<n>MISC0 and ERR<n>MISC1 contents that the syndrome is
not related to the highest priority error, the MV bit is unchanged.

• Otherwise the MV bit is cleared to 0.

• ERR<n>STATUS.V, the Valid bit, is set to 1.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 410 of 443

 Non-Confidential

When software has processed an error record it must clear the Valid bit for that record so that it can record new
errors. Software must only clear those fields that it believes to be set in the record. Therefore, hardware can
correctly detect if a further error has occurred since software read the record, and prevent the Valid bit from being
cleared.

17.5.7 Keeping the previous error syndrome
When an old record is kept:

• ERR<n>STATUS.{PN, IERR, SERR} are unchanged. ERR<n>ADDR and ERR<n>STATUS.AV are
unchanged. If the new error is an Uncorrected error, then ERR<n>STATUS.UET is unchanged.

• It is IMPLEMENTATION DEFINED whether ERR<n>MISC0 or ERR<n>MISC1, or both, are updated. The
content of the ERR<n>MISC0 and ERR<n>MISC1 registers is IMPLEMENTATION DEFINED. As such, it is
possible that some of the information about an otherwise discarded error is recorded in these registers. If
data is written to ERR<n>MISC0 or ERR<n>MISC1 then ERR<n>STATUS.MV is set to 1. Software must
be able to determine which data relates to which type of error.

The applicable one of ERR<n>STATUS.{CE, DE, UE} is set or modified even if the new error syndrome is
discarded. DE and UE are single-bit fields that are set to 1. CE is a 2-bit field that might be modified, as in the
following example.

Example: On detecting a first Corrected error, CE is set to 0b10. On detecting a second Corrected error,
the new error is discarded, but CE is updated to 0b11 (persistent) if this error is detected at the
same location to the first error, or 0b01 (transient) otherwise. Support for persistent error
detection is IMPLEMENTATION DEFINED.

17.5.8 Detecting multiple errors

If a node detects multiple errors simultaneously, it is IMPLEMENTATION DEFINED whether the nodes behave:
• As if all errors were recorded, in any order. In this case, the prioritization rules mean that the highest priority

error will be recorded in the syndrome registers. However, the final value of the syndrome register might
depend on the logical order in which the errors were recorded.

• As if the highest priority error was recorded and one or more of the lower priority errors were not recorded.

If multiple errors are corrected simultaneously, and a Corrected error counter is implemented, it is IMPLEMENTATION
DEFINED whether all the Corrected errors are counted.

ARM recommends that if multiple simultaneous errors are statistically likely when, (compared to the overall FIT
rate), then the implementation behaves as if all errors are recorded.

17.5.9 Standard format Corrected error counter
The architecture defines standard formats for a Corrected error counter (CE counter) that can be indicated in the
ERR<n>FR register when implemented in ERR<n>MISC0:

• 8 bits, comprising a 7-bit CE counter plus a single sticky overflow bit.

• 16 bits, comprising a 15-bit CE counter plus a single sticky overflow bit.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 411 of 443

 Non-Confidential

The fault handling interrupt is generated when the corrected fault handling interrupt is enabled and the overflow bit
is set.

An implementation might include a pair of counters. In such an arrangement the first counter, called the repeat
counter, counts errors at the same location. Errors in other locations are counted in a second error counter, called
the other counter. The fault handling interrupt is generated when the corrected fault handling interrupt is enabled
and either overflow bit is set.

Note: IMPLEMENTATION DEFINED forms of counter, including other sizes, other overflow models, and other
ERR<n>MISC0 or ERR<n>MISC1 locations might be implemented.

17.6 Error recovery interrupt
If an error recovery interrupt is implemented by a node, then the set of controls for enabling error recovery
interrupts is IMPLEMENTATION DEFINED:

• A control for enabling the error recovery interrupt on Deferred errors, ERR<n>CTLR.DUI might be
implemented:
• If the DUI control is implemented, it enables the error recovery interrupt for Deferred errors.
• If the DUI control is not implemented, the error recovery interrupt is never generated for Deferred errors.

• A control for enabling the error recovery interrupt on Uncorrected errors, ERR<n>CTLR.UI might be
implemented:
• If the UI control is implemented, it enables the error recovery interrupt for Uncorrected errors.
• If the UI control is not implemented, the error recovery interrupt is always enabled for Uncorrected errors.

If an error recovery interrupt is not implemented by a node, these controls are not implemented.

For each implemented control, it is further implementation defined whether there is a single control or whether
there are separate controls for reads and writes, for example, ERR<n>CTLR.{RUI, WUI} in place of
ERR<n>CTLR.UI.

Software uses ERR<n>FR.{DUI, UI} to discover which controls are implemented.

See also Error recovery and fault handling signaling

17.7 Fault handling interrupt
If a fault handling interrupt is implemented by a node, then the set of controls for enabling fault handling interrupts
is IMPLEMENTATION DEFINED:

• A control for generating the fault handling interrupt on Corrected errors, ERR<n>CTLR.CFI, might be
implemented. If the control is implemented:

— The CFI control enables the fault handling interrupt for corrected error events.

— The ERR<n>CTLR.FI control must also be implemented and enables the fault handling interrupt
for Deferred and Uncorrected errors.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 412 of 443

 Non-Confidential

• If the CFI control is not implemented, a control for generating the fault handling interrupt on all detected
errors, ERR<n>CTLR.FI, might be implemented:

— If the FI control is implemented, it enables the fault handling interrupt for all corrected error
events, Deferred and Uncorrected errors.

— If the FI control is not implemented, the fault handling interrupt is always enabled for all corrected
error events, Deferred and Uncorrected errors.

If a fault handling interrupt is not implemented by a node, these controls are not implemented.

A corrected error event is either:

• When the counter overflows and sets the overflow bit, if the node implements a Corrected error counter, see
Standard format Corrected error counter.

• Each detected Corrected error, otherwise.

For each implemented control, it is further IMPLEMENTATION DEFINED whether there is a single control or whether
there are separate controls for reads and writes, for example ERR<n>CTLR.{RFI, WFI} instead of
ERR<n>CTLR.FI.

Software uses ERR<n>FR.{CFI, FI} to discover which controls are implemented.

The fault handling interrupt is generated when the node detects an error, even if the error syndrome is discarded
because the error record already records a higher priority error, see Writing the error record and Error recovery
and fault handling signaling.

17.8 In-band error signaling
If support for in-band error signaling, also referred to as external aborts, is implemented by a node, then controls
for signaling external aborts, ERR<n>CTLR.UE might be implemented:

• If the control is implemented, it enables external abort signaling for all Uncorrected errors.

• If the control is not implemented, then external aborts are always enabled for all Uncorrected errors.

If external aborts are not implemented by a node, these controls are not implemented.

For this control, it is further IMPLEMENTATION DEFINED whether there is a single control or separate
ERR<n>CTLR.{RUE, WUE} controls for reads and writes.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 413 of 443

 Non-Confidential

Software uses ERR<n>FR.UE to discover which controls are implemented.

When the node signals an Uncorrected error using an external abort, it sets ERR<n>STATUS.ER to 1.

17.9 Error recovery and fault handling signaling
Error recovery and fault handling interrupts are normally routed using the interrupt controller (typically a GIC).

The GIC generates either an IRQ or FIQ interrupt exception at the PE depending on the group assigned to the
interrupt. To allow it to be delivered to firmware as a high priority group 0 interrupt, error recovery and fault
handling interrupts must be signaled as either Shared Peripheral Interrupts (SPIs) or Private Peripheral Interrupts
(PPIs).

Note:

• A PPI can only be taken by the PE that it is private to. Any error that is not private to a PE or might need
to be processed by another PE (such as an SCP), must generate an SPI.

• LPIs can only be taken as group 1 interrupts.
• An implementation might provide low-latency interrupts for error recovery. The latency of error recovery

interrupts is outside the scope of the architecture.
• An in-band error (external abort) might generate an SError interrupt (SEI) exception if it is consumed at a

PE. In this case, the external abort is routed to the PE in-band with the data, and the PE generates the
SEI exception. The GIC is not involved in routing external aborts

It is IMPLEMENTATION DEFINED whether each node uses independent interrupts for fault handling and error recovery,
or shares interrupts with fault handling and/or error recovery interrupts of other nodes. If multiple nodes share an
interrupt, fault handling software must use the fault record registers to determine the source of the fault.

Example: A single component implements multiple error sources, such as multiple independent caches.
Each error source is a node and has a set of fault record registers, but all share the same fault
handling interrupt. This fault handling interrupt might also be shared with error recovery
interrupts.

It is IMPLEMENTATION DEFINED whether interrupts are edge-triggered or level-sensitive.

If the interrupt is level-sensitive, it is asserted by the node while enabled in ERR<n>CTLR and the appropriate
error flag or flags in the corresponding ERR<n>STATUS register or (if implemented and applicable) overflow bit,
or both, in the Corrected error counter. That is:

• A fault handling interrupt remains asserted while any of:

— Fault handling interrupts on all detected errors are enabled, the ERR<n>STATUS.V bit is set to 1,
and either or both of the ERR<n>STATUS.{DE,UE} bits are set to 1.

— Fault handling interrupts on corrected errors are enabled and either:

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 414 of 443

 Non-Confidential

 If the node implements a Corrected error counter, both the ERR<n>STATUS.V bit and
the counter overflow bit are set to 1.

 Otherwise, both the ERR<n>STATUS.V bit is set to 1 and the ERR<n>STATUS.CE field
is nonzero.

• An error recovery interrupt remains asserted while any of the following are true:

— Error recovery interrupts on Uncorrected errors are enabled and both the ERR<n>STATUS.V and
ERR<n>STATUS.UE bits are set to 1.

— Error recovery interrupts on Deferred errors are enabled and both the ERR<n>STATUS.V and
ERR<n>STATUS.DE bits are set to 1.

If the interrupt is edge-triggered, then an enabled interrupt is generated even if the error syndrome is discarded
because the error record already records a higher priority error. See Writing the error record,

Error recovery interrupt, and Fault handling interrupt describe the controls for enabling these interrupts.

When an error is detected and recorded, or an interrupt becomes enabled, the state of the interrupts must be
updated in finite time.

The system architecture, for example the Server Base System Architecture, must define, or define mechanisms,
to discover:

• Which SPIs and PPIs are used for error recovery and fault handling interrupts.

• Which SGIs are used to delegate errors and faults from firmware to other agents.

For more information about the Server Base System Architecture, see the ARM® Server Base System
Architecture.

17.10 Error recovery reset
A system comprises multiple power and logical domains, each of which might implement one or more reset
signals.

Two classes of reset are defined:

• Cold reset is asserted to a component when it transitions from a powerdown state to a power up state. Cold
reset initializes the component to a known initial state. No state is preserved from the previous powerdown
state.

• Error recovery reset is an optional reset that might be applied at any other time. System Error Recovery
reset initializes the component to a known state. Unlike Cold reset, any recorded error syndrome information
is preserved over a System Error Recovery reset.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 415 of 443

 Non-Confidential

The way these resets map to other resets is IMPLEMENTATION DEFINED. The mechanisms for asserting resets are
IMPLEMENTATION DEFINED.

For a PE, the Error Recovery reset might be implemented by the Warm reset defined by the ARMv8 architecture.
If Warm reset is implemented, it must preserve the error records in the PE.

ARM strongly recommends that all components implement an Error Recovery reset.

17.11 Memory-mapped view of an error record
This section defines the optional memory-mapped registers that might be implemented by a node in a system
implementing the RAS extensions. There are two views:

• Single record (within a component) describes a reusable format for a component that implements a single
error record. This might be implemented as part of the control registers for a component.

• Group of records describes a reusable format for a component that implements several records in a group
relating to one or more nodes.

Register index describes a group with up to 56 records, the highest number that can be contained in a 4KB group.

17.11.1 Supported access sizes

The memory-mapped view of a record or group of records is a mix of:

• 32-bit registers at word-aligned locations.

• 64-bit registers at doubleword-aligned locations.

The memory access sizes supported by any peripheral is IMPLEMENTATION DEFINED by the peripheral. For
accesses to the memory-mapped view of a record or group or records, implementations must support:

• Word-aligned 32-bit accesses to access 32-bit registers or either half of a 64-bit register.

• Doubleword-aligned 64-bit accesses to access 64-bit registers.

These accesses must be single-copy atomic at the peripheral.

The following accesses are not supported:

• Byte.

• Halfword.

• Unaligned word (such accesses are not word single-copy atomic).

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 416 of 443

 Non-Confidential

• Unaligned doubleword (such accesses are not doubleword single-copy atomic).

• Doubleword accesses to a pair of 32-bit locations that are not a doubleword-aligned pair forming a 64-bit
register.

• Quad-word or higher.

• Exclusives.

For each of these access types it is UNPREDICTABLE whether:

• The access generates a fault handling interrupt or not.

• A read is ignored or not, in terms of its side-effects. A read returns UNKNOWN data.

• A write is ignored or sets the accessed register or registers to UNKNOWN .

For memory-mapped accesses from an ARM architecture PE, the size of an access made by an instruction is
determined by the single-copy atomicity rules for the instruction, the type of instruction, and the type of memory
accessed.

ARMv8 does not require the size of each element that is accessed by a multi-register load or store instruction to
be identifiable by the memory system beyond the PE. Any memory-mapped access to a peripheral register is
defined to beyond the PE.

Example: Two Doubleword instructions made to consecutive doubleword-aligned locations will generate a pair of
single-copy atomic doubleword reads, but if made to Normal memory or Device-GRE memory might appear as a
single quadword access which is not supported by the peripheral.

Software must use a Device-nGRE or tighter memory-type and use only single register load and store instructions
to create memory accesses that are supported by the peripheral, For more information, see the ARM®
Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.

17.12 Reset values
Unless otherwise stated, the reset values of all registers are IMPLEMENTATION DEFINED and might be UNKNOWN.
Unless explicitly stated, the reset value refers to both Error Recovery and Cold reset.

Where a Cold reset value is explicitly stated, the register is unchanged on an Error Recovery reset.

17.12.1 Writes to ERR<n>STATUS
// ERRSTATUS[] (assignment form)
// =============================
// For a system register, n = UInt(ERRSELR_EL1.SEL)

ERRSTATUS[integer n] = bits(32) w

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 417 of 443

 Non-Confidential

 STATUS = _ERRSTATUS[n]; // previous value (physical register)

 c = (STATUS<31:20> AND NOT(w<31:20>)):Zeros(4):w<15:0>; // candidate value

 if c.OF == ‘1’ then c.<UE,DE,CE> = STATUS.<UE,DE,CE>; // do not clear UE/DE/CE if OF set

 if !IsZero(c.<UE,DE,CE>) then c.V = STATUS.V; // do not clear V if UE/DE/CE set

 if (c.UE != ‘0’ || // do not clear syndrome if not
 (STATUS.UE == ‘0’ && c.DE != ‘0’) || // clearing highest priority error
 (STATUS.<UE,DE> == ‘00’ && c.CE != ‘00’)) then

 c.<AV,ER,MV,PN,UET,IERR,SERR> = STATUS.<AV,ER,MV,PN,UET,IERR,SERR>;

 _ERRSTATUS[n] = c;

17.13 Register index

Offset Access Size Register Description

0x000+64×n RO 64 ERR<n>FR Error Record Feature Register

0x008+64×n RW 64 ERR<n>CTLR Error Record Control Register

0x010+64×n RW 64 ERR<n>STATUS Error Record Primary Status
Register

0x018+64×n RW 64 ERR<n>ADDR Error Record Address Register

0x020+64×n RW 64 ERR<n>MISC0 Error Record Miscellaneous
Register 0

0x028+64×n RW 64 ERR<n>MISC1 Error Record Miscellaneous
Register 1

0xE00+8×n RO 64 ERRGSR<n> Error Group Status Register

0xE80+8×n RW 64 ERRIRQCR<n> Error Interrupt Configuration
Register

0xFBC RO 32 ERRDEVARCH Device Architecture Register

0xFC8 RO 32 ERRIDR Error Record ID Register

Table 3: Memory-mapped register map

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 418 of 443

 Non-Confidential

Offset Name Field Value Meaning

0xFF0 RAS_CIDR0, Component ID 0 [7:0] 0x0D Preamble

0xFF4 RAS_CIDR1, Component ID 1 [7:4] 0xF Class

[3:0] 0x0 Preamble

0xFF8 RAS_CIDR2, Component ID 2 [7:0] 0x05 Preamble

0xFFC RAS_CIDR3, Component ID 3 [7:0] 0xB1 Preamble

0xFE0 RAS_PIDR0, Peripheral ID0 [7:0] IMPLEMENTATION

DEFINED

PART_0, bits[7:0]
of the Part
number

0xFE4 RAS_PIDR1, Peripheral ID1 [7:4] IMPLEMENTATION

DEFINED

DES_0, bits[3:0]
of the JEP106
Designer code

[3:0] IMPLEMENTATION

DEFINED

PART_1,
bits[11:8] of the
Part number

0xFE8 RAS_PIDR2, Peripheral ID2 [7:4] IMPLEMENTATION

DEFINED

REVISION

[3] 1 JEDEC-assigned
value for DES
always used

[2:0] IMPLEMENTATION

DEFINED

DES_1, bits[6:4]
of the JEP106
Designer code

0xFEC RAS_PIDR3, Peripheral ID3 [7:4] IMPLEMENTATION

DEFINED

REVAND

[3:0] IMPLEMENTATION

DEFINED

CMOD

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 419 of 443

 Non-Confidential

0xFD0 RAS_PIDR4, Peripheral ID4 [7:4] IMPLEMENTATION

DEFINED

SIZE

[3:0] IMPLEMENTATION

DEFINED

DES_2, JEP106
Designer
continuation code

0xFD4 RAS_PIDR5, Peripheral ID5 - RES0 Reserved

0xFD8 RAS_PIDR6, Peripheral ID6 - RES0 Reserved

0xFDC RAS_PIDR7, Peripheral ID7 - RES0 Reserved

Table 4: CoreSight ID register map

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 420 of 443

 Non-Confidential

18 APPENDIX - THE ARM RAS REGISTERS

18.1.1 ERR<n>ADDR, Error Record Address Register
The ERR<n>ADDR characteristics are:

Purpose

If an error has an associated address, this must be written to the address register when the error is
recorded. It is IMPLEMENTATION DEFINED how the recorded addresses map to the software-visible physical
addresses. Software might have to reconstruct the actual physical addresses using the identity of the
node and knowledge of the system.

Usage constraints

Ignores writes if ERR<n>STATUS.AV is set to 1.

Configurations

Always implemented.

Attributes

64-bit read/write register.

The ERR<n>ADDR bit assignments are:

NS, bit [63]

Non-secure attribute. The possible values of this bit are:

0 The address is Secure.

1 The address is Non-secure.

SI, bit [62]

Secure Incorrect. Indicates whether the NS bit is valid. The possible values of this bit are:

0 The NS bit is correct. That is, it matches the programmers' view of the Non-secure attribute for this
recorded location.

55 32

PADDR[55:32]

60 56

RES0

61

AI

62

SI

63

NS

31 0

PADDR[31:0]

http://teamsites.arm.com/sites/atg/ATGArchitecture/ATGSpecifications/_vti_history/14848/ARMv8A%20profile/RAS%20Extension.docx#ERR%3Cn%3ESTATUS
http://teamsites.arm.com/sites/atg/ATGArchitecture/ATGSpecifications/_vti_history/14848/ARMv8A%20profile/RAS%20Extension.docx#ERR%3Cn%3ESTATUS.AV

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 421 of 443

 Non-Confidential

1 The NS bit might not be correct, and might not match the programmers' view of the Non-secure
attribute for the recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

AI, bit [61]

Address Incomplete or incorrect. Indicates whether the PADDR field is a valid physical address. The
possible values of this bit are:

0 The PADDR field is a valid physical address. That is, it matches the programmers' view of the physical
address for this recorded location.

1 The PADDR field might not be a valid physical address, and might not match the programmers' view of
the physical address for the recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

Bits [60:56]

Reserved. This field is RES0.

PADDR, bits [55:0]

Address. Unimplemented bits are RES0.

18.1.2 ERR<n>CTLR, Error Record Control Register
The ERR<n>CTLR characteristics are:

Purpose

The error control register contains enable bits for the node that writes to this record:

— Enabling error detection and correction.

— Enabling an error recovery interrupt.

— Enabling a fault handling interrupt.

— Enabling error recovery reporting as a read or write error response.

For each bit, if the selected node does not support the feature, the bit is RES0. The definition of each
record is IMPLEMENTATION DEFINED.

Usage constraints

None.

Configurations

For some controls, it is IMPLEMENTATION DEFINED whether ERR<n>CTLR contains a single combined
read/write control or separate read and write controls. This register description shows two possible
combinations:

— All controls are combined.

— All controls are separate.

However, this is IMPLEMENTATION DEFINED for each control.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 422 of 443

 Non-Confidential

If a single node has multiple records, then only the first record has a populated error control register. For
other records of the same node, the error control register is RES0.

Attributes

64-bit read/write register located at offset 0x008 + 64×n.

When combined read/write control, the ERR<n>CTLR bit assignments are:

When separate read/write controls, the ERR<n>CTLR bit assignments are:

Bits [63:32]

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION DEFINED
behavior.

Bits [31:12]

Reserved. This field is RES0.

WDUI, bit [11], when separate read/write controls

Error recovery interrupt for deferred errors on writes. As the DUI bit, except for writes only.

Bits [11,9,7:5], when combined read/write control

Reserved. This field is RES0.

63 32

IMPLEMENTATION DEFINED

0

ED

1 2

UI

3

FI

4 7 5

RES0

8 9

(0)

10 11

(0)

31 12

RES0

IMP DEF UE CFI DUI

63 32

IMPLEMENTATION DEFINED

0

ED

1 2 3 4 5 6 7 8 9 10 11 31 12

RES0

IMP DEF WDUI
RUI RDUI
RFI WCFI
RUE RCFI

WUI WUE
WFI

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 423 of 443

 Non-Confidential

DUI, bit [10], when combined read/write control

Error recovery interrupt for deferred errors enable. When enabled the error recovery interrupt is generated
for all detected Deferred errors. The possible values of this bit are:

0 Error recovery interrupt not generated for deferred errors.

1 Error recovery interrupt generated for deferred errors.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error. If the node does not support this control, this bit is RES0.

Note: Applies to both reads and writes.

RDUI, bit [10], when separate read/write controls

Error recovery interrupt for deferred errors on reads. As the DUI bit, except for reads only.

WCFI, bit [9], when separate read/write controls

Fault handling interrupt for corrected errors on writes. As for CFI, except for writes only.

CFI, bit [8], when combined read/write control

Fault handling interrupt for corrected errors enable. When enabled:

— If the node implements a Corrected error counter, the fault handling interrupt is only generated
when the counter overflows and the overflow bit is set. See ERR<n>MISC0.

— Otherwise the fault handling interrupt is also generated for all detected Corrected errors.

The possible values of this bit are:

0 Fault handling interrupt not generated for corrected errors.

1 Fault handling interrupt generated for corrected errors.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error. If the node does not support this control, this bit is RES0.

Note: Applies to both reads and writes.

RCFI, bit [8], when separate read/write controls

Fault handling interrupt for corrected errors on reads. As for CFI, except for reads only.

WUE, bit [7], when separate read/write controls

Error reporting on writes. As the UE bit, except for writes only.

WFI, bit [6], when separate read/write controls

Fault handling interrupt on writes. As the FI bit, except for writes only.

WUI, bit [5], when separate read/write controls

Error recovery interrupt on writes. As the UI bit, except for writes only.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 424 of 443

 Non-Confidential

UE, bit [4], when combined read/write control

In-band Uncorrected error reporting enable. When enabled, responses to transactions that detect an
uncorrected error that cannot be deferred are signaled as a detected error (external abort). The possible
values of this bit are:

0 External abort response for uncorrected errors disabled.

1 External abort response for uncorrected errors enabled.

If the node does not support this control, this bit is RES0.

Note: Applies to both reads and writes.

RUE, bit [4], when separate read/write controls

Error reporting on reads. As the UE bit, except for reads only.

FI, bit [3], when combined read/write control

Fault handling interrupt enable. When enabled:

— The fault handling interrupt is generated for all detected Deferred errors and Uncorrected errors.

— If the fault handling interrupt for corrected errors control is not implemented:

 If the node implements a Corrected error counter, the fault handling interrupt is also
generated when the counter overflows and the overflow bit is set.

 Otherwise the fault handling interrupt is also generated for all detected Corrected errors.

The possible values of this bit are:

0 Fault handling interrupt disabled.

1 Fault handling interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error. If the node does not support this control, this bit is RES0.

Note: Applies to both reads and writes.

RFI, bit [3], when separate read/write controls

Fault handling interrupt on reads. As the FI bit, except for reads only.

UI, bit [2], when combined read/write control

Uncorrected error recovery interrupt enable. When enabled, the error recovery interrupt is generated for
all detected Uncorrected errors that are not deferred. The possible values of this bit are:

0 Error recovery interrupt disabled.

1 Error recovery interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already
records a higher priority error. If the node does not support this control, this bit is RES0.

Note: Applies to both reads and writes.

RUI, bit [2], when separate read/write controls

Error recovery interrupt on reads. As the UI bit, except for reads only.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 425 of 443

 Non-Confidential

Bit [1]

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

This bit reads as an IMPLEMENTATION DEFINED value and writes to this bit have IMPLEMENTATION DEFINED
behavior.

ED, bit [0]

Enable error detection and correction at the node. When disabled, error detection and correction is
disabled on reads. ARM recommends that, when disabled, correct error detection and correction codes
are written for writes, unless disabled by an IMPLEMENTATION DEFINED control for error injection. The
possible values of this bit are:

0 Error detection and correction disabled.

1 Error detection and correction enabled.

If the node does not support this control, this bit is RES0.

This bit resets to zero on a Cold reset.

Note: The bit is set to 0 on Cold reset, meaning errors are not detected or corrected from Cold reset.
This allows boot software to initialize a node without signaling errors. When the node is initialized,
software can enable error detection.

18.1.3 ERR<n>FR, Error Record Feature Register
The ERR<n>FR characteristics are:

Purpose

Defines which of the common architecturally-defined features are implemented and, of the implemented
features, which are software programmable. If a single node has multiple records, then only the first
record has a populated error feature register. If any other record is selected, bits [31:0] of the error
feature register are RES0.

Usage constraints

None.

Configurations

Always implemented.

Attributes

64-bit read-only register located at offset 0x000 + 64×n.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 426 of 443

 Non-Confidential

The ERR<n>FR bit assignments are:

Bits [63:32]

Reserved for identifying IMPLEMENTATION DEFINED controls. This field reads as an IMPLEMENTATION DEFINED
value.

Bits [31:20]

Reserved. This field is RES0.

CEO, bits [19:18]

Corrected Error overwrite. Indicates the behavior when a second Corrected error is detected after a first
Corrected error has been recorded by the node. The defined values of this field are:

00 Count Corrected error if a counter is implemented. Keep the previous error syndrome. If the counter
overflows, or no counter is implemented. ERR<n>STATUS.OF is set to 1.

01 Count Corrected error. If ERR<n>STATUS.OF == 1 before the Corrected error is counted, keep the
previous syndrome. Otherwise the previous syndrome is overwritten. If the counter overflows,
ERR<n>STATUS.OF is set to 1.

This field must be 0b00 if no Corrected error counter is implemented. See also Writing the error record.

DUI, bits [17:16]

Error recovery interrupt for deferred errors. Indicates whether the node implements a control for enabling
error recovery interrupts on deferred errors. The defined values of this field are:

00 Does not support feature.

10 Feature is controllable.

11 Feature is controllable with independent controls for reads and writes.

All other values are reserved.

If UI == 0b00, this field is RES0.

RP, bit [15]

Repeat counter. Indicates whether the node implements a repeat Corrected error counter. The defined
values of this bit are:

0 A single CE counter is implemented.

1 A first (repeat) counter and a second (other) counter are implemented. The repeat counter is the same

63 32

IMPLEMENTATION DEFINED

1 0

ED

3 2 5 4

UI

7 6

FI

9 8

UE

11 10

CFI

14 12

CEC

15

RP

17 16

DUI

19 18

CEO

31 20

RES0

IMP DEF

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 427 of 443

 Non-Confidential

size as the primary error counter.

If CEC == 0b00, this bit is RES0.

CEC, bits [14:12]

Corrected Error Counter. Indicates whether the node implements a standard Corrected error counter (CE
counter) mechanism in ERR<n>MISC0.. The defined values of this field are:

000 Does not implement the standard Corrected error counter model.

010 Implements an 8-bit Corrected error counter in ERR<n>MISC0. [39:32].

100 Implements a 16-bit Corrected error counter in ERR<n>MISC0. [47:32].

All other values are reserved.

Note: Implementations might include other error counter models, or might include the standard model
and not indicate this in ERR<n>FR.

CFI, bits [11:10]

Fault handling interrupt for corrected errors. Indicates whether the node implements a control for enabling
fault handling interrupts on corrected errors. The defined values of this field are:

00 Does not support feature.

10 Feature is controllable.

11 Feature is controllable with independent controls for reads and writes.

All other values are reserved.

If FI == 0b00, this field is RES0.

UE, bits [9:8]

In-band uncorrected error reporting. Indicates whether the node implements in-band uncorrected error
reporting (external aborts), and, if so, whether it implements controls for enabling and disabling it. The
defined values of this field are:

00 Does not support feature.

01 Feature always enabled.

10 Feature is controllable.

11 Feature is controllable with independent controls for reads and writes.

FI, bits [7:6]

Fault handling interrupt. Indicates whether the node implements a fault handling interrupt, and, if so,
whether it implements controls for enabling and disabling it. The defined values of this field are:

00 Does not support feature.

01 Feature always enabled.

10 Feature is controllable.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 428 of 443

 Non-Confidential

11 Feature is controllable with independent controls for reads and writes.

UI, bits [5:4]

Error recovery interrupt for uncorrected errors. Indicates whether the node implements an error recovery
interrupt, and, if so, whether it implements controls for enabling and disabling it. The defined values of
this field are:

00 Does not support feature.

01 Feature always enabled.

10 Feature is controllable.

11 Feature is controllable with independent controls for reads and writes.

Bits [3:2]

This field reads as an IMPLEMENTATION DEFINED value.

ED, bits [1:0]

Error detection and correction. Indicates whether the node implements controls for enabling and disabling
error detection and, if implemented, correction. The defined values of this field are:

01 Feature always enabled.

10 Feature is controllable.

All other values are reserved.

18.1.4 ERR<n>MISC0, Error Record Miscellaneous Register 0
The ERR<n>MISC0 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers contain:

— Corrected error counter(s), if the node supports the counting of Corrected errors.

— Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and
might contain enough information to locate error within that FRU.

— Other state information not present in the corresponding status and address registers.

If the node supports the architecturally-defined error counter, this is implemented in ERR<n>MISC0.

Usage constraints

If ERR<n>STATUS.MV is set to 1, it is IMPLEMENTATION DEFINED whether fields of ERR<n>MISC0 ignores
writes. ARM recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error.
Miscellaneous syndrome for the most recently recorded error, such as information locating a FRU for that
error, should ignore writes. This prevents information being lost if an error is detected whilst the previous
error is being logged.

http://teamsites.arm.com/sites/atg/ATGArchitecture/ATGSpecifications/_vti_history/14848/ARMv8A%20profile/RAS%20Extension.docx#ERR%3Cn%3ESTATUS
http://teamsites.arm.com/sites/atg/ATGArchitecture/ATGSpecifications/_vti_history/14848/ARMv8A%20profile/RAS%20Extension.docx#ERR%3Cn%3ESTATUS.MV

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 429 of 443

 Non-Confidential

Configurations

Always implemented.

Attributes

64-bit read/write register located at offset 0x020 + 64×n.

18.1.4.1 ERR<n>MISC0 (contents are IMPLEMENTATION DEFINED)
The ERR<n>MISC0 (contents are IMPLEMENTATION DEFINED) bit assignments are:

Bits [63:0], when contents are IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and writes to
this field have IMPLEMENTATION DEFINED behavior.

18.1.4.2 ERR<n>MISC0 (standard 16-bit CE counter)
The ERR<n>MISC0 (standard 16-bit CE counter) bit assignments are:

Bits [63:48,31:0], when standard 16-bit CE counter

IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and writes to
this field have IMPLEMENTATION DEFINED behavior.

OF, bit [47], when standard 16-bit CE counter

Sticky overflow bit. The possible values of this bit are:

0 Counter has not overflowed.

1 Counter has overflowed.

The fault handling interrupt is generated when the corrected fault handling interrupt is enabled and the
overflow bit is set to 1.

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

46 32

CEC

47 63 48

IMPLEMENTATION DEFINED

OF

31 0

IMPLEMENTATION DEFINED

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 430 of 443

 Non-Confidential

CEC, bits [46:32], when standard 16-bit CE counter

Corrected error count.

This field resets to an IMPLEMENTATION DEFINED which might be UNKNOWN on a Cold reset. If the reset
value is UNKNOWN, then the value of this field remains UNKNOWN until software initializes it.

18.1.4.3 ERR<n>MISC0 (standard 8-bit CE counter)
The ERR<n>MISC0 (standard 8-bit CE counter) bit assignments are:

Bits [63:40,31:0], when standard 8-bit CE counter

IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and writes to
this field have IMPLEMENTATION DEFINED behavior.

OF, bit [39], when standard 8-bit CE counter

Sticky overflow bit. The possible values of this bit are:

0 Counter has not overflowed.

1 Counter has overflowed.

The fault handling interrupt is generated when the corrected fault handling interrupt is enabled and the
overflow bit is set to 1.

CEC, bits [38:32], when standard 8-bit CE counter

Corrected error count.

This field resets to an IMPLEMENTATION DEFINED which might be UNKNOWN on a Cold reset. If the reset
value is UNKNOWN, then the value of this field remains UNKNOWN until software initializes it.

18.1.4.4 ERR<n>MISC0 (standard 16-bit CE counter pair)
The ERR<n>MISC0 (standard 16-bit CE counter pair) bit assignments are:

38 32

CEC

39 63 40

IMPLEMENTATION DEFINED

OF

31 0

IMPLEMENTATION DEFINED

46 32

CECR

47 62 48

CECO

63

OFR OFO

31 0

IMPLEMENTATION DEFINED

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 431 of 443

 Non-Confidential

OFO, bit [63], when standard 16-bit CE counter pair

Sticky overflow bit, other. The possible values of this bit are:

0 Other counter has not overflowed.

1 Other counter has overflowed.

The fault handling interrupt is generated when the corrected fault handling interrupt is enabled and either
overflow bit is set to 1.

CECO, bits [62:48], when standard 16-bit CE counter pair

Corrected error count, other. Incremented for each Corrected error that does not match the recorded
syndrome.

This field resets to an IMPLEMENTATION DEFINED which might be UNKNOWN on a Cold reset. If the reset
value is UNKNOWN, then the value of this field remains UNKNOWN until software initializes it.

OFR, bit [47], when standard 16-bit CE counter pair

Sticky overflow bit, repeat. The possible values of this bit are:

0 Repeat counter has not overflowed.

1 Repeat counter has overflowed.

The fault handling interrupt is generated when the corrected fault handling interrupt is enabled and either
overflow bit is set to 1.

CECR, bits [46:32], when standard 16-bit CE counter pair

Corrected error count, repeat. Incremented for the first recorded error, which also records other
syndrome, and then again for each Corrected error that matches the recorded syndrome.

This field resets to an IMPLEMENTATION DEFINED which might be UNKNOWN on a Cold reset. If the reset
value is UNKNOWN, then the value of this field remains UNKNOWN until software initializes it.

Bits [31:0], when standard 16-bit CE counter pair

IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and writes to
this field have IMPLEMENTATION DEFINED behavior.

18.1.4.5 ERR<n>MISC0 (standard 8-bit CE counter pair)
The ERR<n>MISC0 (standard 8-bit CE counter pair) bit assignments are:

38 32

CECR

39 46 40

CECO

47 63 48

IMPLEMENTATION DEFINED

OFR OFO

31 0

IMPLEMENTATION DEFINED

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 432 of 443

 Non-Confidential

Bits [63:48,31:0], when standard 8-bit CE counter pair

IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and writes to
this field have IMPLEMENTATION DEFINED behavior.

OFO, bit [47], when standard 8-bit CE counter pair

Sticky overflow bit, other. The possible values of this bit are:

0 Other counter has not overflowed.

1 Other counter has overflowed.

The fault handling interrupt is generated when the corrected fault handling interrupt is enabled and either
overflow bit is set to 1.

CECO, bits [46:40], when standard 8-bit CE counter pair

Corrected error count, other. Incremented for each Corrected error that does not match the recorded
syndrome.

This field resets to an IMPLEMENTATION DEFINED which might be UNKNOWN on a Cold reset. If the reset
value is UNKNOWN, then the value of this field remains UNKNOWN until software initializes it.

OFR, bit [39], when standard 8-bit CE counter pair

Sticky overflow bit, repeat. The possible values of this bit are:

0 Repeat counter has not overflowed.

1 Repeat counter has overflowed.

The fault handling interrupt is generated when the corrected fault handling interrupt is enabled and either
overflow bit is set to 1.

CECR, bits [38:32], when standard 8-bit CE counter pair

Corrected error count, repeat. Incremented for the first recorded error, which also records other
syndrome, and then again for each Corrected error that matches the recorded syndrome.

This field resets to an IMPLEMENTATION DEFINED which might be UNKNOWN on a Cold reset. If the reset
value is UNKNOWN, then the value of this field remains UNKNOWN until software initializes it.

18.1.5 ERR<n>MISC1, Error Record Miscellaneous Register 1
The ERR<n>MISC1 characteristics are:

Purpose

IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers contain:

— Corrected error counter(s), if the node supports the counting of Corrected errors.

— Information to identify the Field Replaceable Unit (FRU) in which the error was detected, and
might contain enough information to locate error within that FRU.

— Other state information not present in the corresponding status and address registers.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 433 of 443

 Non-Confidential

Usage constraints

If ERR<n>STATUS.MV is set to 1, it is IMPLEMENTATION DEFINED whether fields of ERR<n>MISC1 ignores
writes. ARM recommends that miscellaneous syndrome for multiple errors, such as a corrected error
counter, is read/write. This allows a counter to be reset in the presence of a persistent error.
Miscellaneous syndrome for the most recently recorded error, such as information locating a FRU for that
error, should ignore writes. This prevents information being lost if an error is detected whilst the previous
error is being logged.

Configurations

Always implemented.

Attributes

64-bit read/write register located at offset 0x028 + 64×n.

The ERR<n>MISC1 bit assignments are:

Bits [63:0]

IMPLEMENTATION DEFINED syndrome. This field reads as an IMPLEMENTATION DEFINED value and writes to
this field have IMPLEMENTATION DEFINED behavior.

18.1.6 ERR<n>STATUS, Error Record Primary Status Register
The ERR<n>STATUS characteristics are:

Purpose

Contains the following information for the error record:

— Whether any error has been detected (valid).

— Whether any detected error was not corrected, and returned to a master.

— Whether any detected error was not corrected and deferred.

— Whether a second error of the same type was detected before the first error was handled by
software (overflow).

— Whether any error has been reported.

— Whether the other error record register(s) contain valid information.

— Whether the error was due to poison data or detected by an EDC.

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 434 of 443

 Non-Confidential

— A primary error code.

— An IMPLEMENTATION DEFINED extended error code.

Within this register:

— The {AV, V, MV} bits are valid bits that define whether the error record registers are valid.

— The {UE, OF, CE, DE, UET} bits encode the type of error(s) recorded.

— The {ER, PN, IERR, SERR} fields are syndrome fields.

Usage constraints

After reading the status register, software must clear the valid bits to allow new errors to be recorded.
Between reading the register and clearing the valid bits, a new error might have overwritten the register.
To prevent this error being lost, some control bits use a form of R/W1C.

Configurations

Always implemented.

Attributes

64-bit read/write register located at offset 0x010 + 64×n.

The ERR<n>STATUS bit assignments are:

Bits [63:32,19:16]

Reserved. This field is RES0.

AV, bit [31]

Address Valid. The possible values of this bit are:

0 ERR<n>ADDR not valid.

1 ERR<n>ADDR contains an address associated with the highest priority error recorded by this record.

Direct writes to this bit are ignored if any of the CE, DE, or UE bits is set to 1, and the highest priority of
these is not being cleared to 0 in the same write. This bit is read/write-one-to-clear.

This bit resets to zero on a Cold reset.

63 32

RES0

7 0

SERR

15 8

IERR

19 16

RES0

21 20

UET

22

PN

23 25 24

CE

26 27 28 29 30

V

31

DE MV AV

OF UE
ER

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 435 of 443

 Non-Confidential

V, bit [30]

Status Register valid. The possible values of this bit are:

0 ERR<n>STATUS not valid.

1 ERR<n>STATUS valid. At least one error has been recorded.

Direct writes to this bit are ignored if any of the UE, DE, or CE bits is set to 1 and is not being cleared to 0
in the same write. This bit is read/write-one-to-clear.

This bit resets to zero on a Cold reset.

UE, bit [29]

Uncorrected error(s). The possible values of this bit are:

0 No errors that could neither be corrected nor deferred.

1 At least one error detected that has neither been corrected nor deferred.

Direct writes to this bit are ignored if the OF bit is set to 1 and is not being cleared to zero in the same
write. This bit is read/write-one-to-clear.

ER, bit [28]

Error Reported. The possible values of this bit are:

0 No in-band error (external abort) reported.

1 An external abort was signaled by the node to the master making the access or other transaction. This
can be because any of:

• The applicable one of the ERR<n>CTLR.{WUE,RUE,UE} bits is implemented and was set to 1
when an Uncorrected error was detected.

• The applicable one of the ERR<n>CTLR.{WUE,RUE,UE} bits is not implemented and the node
always reports errors.

Direct writes to this bit are ignored if any of the CE, DE, or UE bits is set to 1, and the highest priority of
these is not being cleared to 0 in the same write.

RES0 for a Corrected error. It is IMPLEMENTATION DEFINED whether this bit can be set for a Deferred error.

This bit is read/write-one-to-clear.

Note: An external abort signaled by the node might be masked and not generate any exception.

OF, bit [27]

Overflow.

Multiple errors detected. This bit is set to 1 when:

— An Uncorrected error is detected and the previous error syndrome is kept because UE == 1.

— A Deferred error is detected and the previous error syndrome is kept is discarded because DE ==
1.

— A Corrected error is detected and either:

 A Corrected error counter is implemented, and the counter overflows.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 436 of 443

 Non-Confidential

 No Corrected error counter is implemented, and CE ≠ 0b00. The CE field might be
updated for the new Corrected error.

It is IMPLEMENTATION DEFINED whether the bit is set to 1 when:

— A Deferred error is detected and UE == 1.

— A Corrected error is detected and either or both the DE or UE bits are set to 1, and either the
Corrected error counter overflows or is not implemented.

It is IMPLEMENTATION DEFINED whether this bit is reset to 0 when an error is detected and the previous error
syndrome is overwritten.

The possible values of this bit are:

0 • If UE == 1, then no error syndrome for an Uncorrected error has been discarded.

• If UE == 0 and DE == 1, then no error syndrome for a Deferred error has been discarded.

• If UE == 0, DE == 0 and CE ≠ 0b00 then:

— If a Corrected error counter is implemented, it has not overflowed.

— If no Corrected error counter is implemented, no error syndrome for a Corrected error
has been discarded.

Note: An error syndrome might have been discarded but not recorded in this bit because a higher
priority syndrome is recorded or has overwritten this bit.

1 At least one error syndrome has been discarded or, if a Corrected error counter is implemented, it
might have overflowed.

For more information, see Writing the error record. This bit is read/write-one-to-clear.

MV, bit [26]

Miscellaneous Registers Valid. The possible values of this bit are:

0 ERR<n>MISC0 and ERR<n>MISC1 not valid.

1 The IMPLEMENTATION DEFINED contents of the ERR<n>MISC0 and ERR<n>MISC1 registers contains
additional information for an error recorded by this record.

Direct writes to this bit are ignored if any of the CE, DE, or UE bits is set to 1, and the highest priority of
these is not being cleared to 0 in the same write. This bit is read/write-one-to-clear.

This bit resets to zero on a Cold reset.

Note: If the ERR<n>MISC0 and ERR<n>MISC1 registers can contain additional information for a
previously recorded error, then the contents must be self-describing to software or a user. For
example, certain fields might relate only to Corrected errors, and other fields only to the most
recently error that was not discarded.

CE, bits [25:24]

Corrected error(s). The possible values of this field are:

00 No errors were corrected.

01 At least one transient error was corrected.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 437 of 443

 Non-Confidential

10 At least one error was corrected.

11 At least one persistent error was corrected.

The mechanism by which a node detects whether a correctable error is transient or persistent is
IMPLEMENTATION DEFINED. If no such mechanism is implemented, the node sets this field to 0b10 when an
error is corrected.

Direct writes to this field are ignored if the OF bit is set to 1 and is not being cleared to 0 in the same write.

This field is read/write-one-to-clear.

DE, bit [23]

Deferred error(s). The possible values of this bit are:

0 No errors were deferred.

1 At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

Direct writes to this bit are ignored if the OF bit is set to 1 and is not being cleared to 0 in the same write.

This bit is read/write-one-to-clear.

PN, bit [22]

Poison. The possible values of this bit are:

0 Uncorrected or deferred error from a corrupted value.

Note: If a node detects a corrupted value and defers the error by producing poison, then this bit is set
to 0 at the producer node.

1 Uncorrected error or Deferred error from a poisoned value. Indicates that an error was due to
detecting a poison value rather than detecting a corrupted value.

Note: This might only be an indication of poison, as in some EDC schemes, a poisoned value is
encoded as an unlikely form of corrupted data, meaning it is possible to mistake a corrupted
value as a poisoned value.

It is IMPLEMENTATION DEFINED whether a node can distinguish a poisoned value from a corrupted value.

Valid only if at least one of the UE or DE bits are set. Otherwise RES0.

Direct writes to this bit are ignored if any of the CE, DE, or UE bits is set to 1, and the highest priority of
these is not being cleared to 0 in the same write.

This bit is read/write-one-to-clear.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an
Uncorrected error. The possible values of this field are:

0b10 Uncorrected error, Latent or Restartable error (UEO).

0b11 Uncorrected error, Signaled or Recoverable error (UER).

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 438 of 443

 Non-Confidential

0b01 Uncorrected error, Unrecoverable error (UEU).

0b00 Uncorrected error, Uncontainable error (UC).

Valid only if the UE bit is set. Otherwise RES0.

Direct writes to this field are ignored if any of the CE, DE, or UE bits is set to 1, and the highest priority of
these is not being cleared to 0 in the same write.

This field is read/write-one-to-clear.

Note: Software might use the information in the error record registers to determine what recovery is
necessary.

IERR, bits [15:8]

IMPLEMENTATION DEFINED error code. Used with any primary error code SERR value. Further
IMPLEMENTATION DEFINED information can be placed in the MISC registers.

Direct writes to this field are ignored if any of the CE, DE, or UE bits is set to 1, and the highest priority of
these is not being cleared to 0 in the same write.

The set of values that IERR can take is IMPLEMENTATION DEFINED. If any value not in this set is written to
this register, the value read back from IERR is UNKNOWN.

Note: This means that an implementation can choose to implement one or more bits of IERR as fixed
read-as-zero or read-as-one values.

SERR, bits [7:0]

Architecturally-defined primary error code. Indicates the type of error. The primary error code might be
used by a fault handling agent to triage an error without requiring device-specific code. For example, to
count and threshold corrected errors in software, or generate a short log entry. The possible values of
this field are:

0 No error.

1 IMPLEMENTATION DEFINED error.

2 Data value from (non-associative) internal memory. For example, ECC from on-chip SRAM or buffer.

3 IMPLEMENTATION DEFINED pin. For example, nSEI pin.

4 Assertion failure. For example, consistency failure.

5 Internal data path. For example, parity on ALU result.

6 Data value from associative memory. For example, ECC error on cache data.

7 Address/control value(s) from associative memory. For example, ECC error on cache tag.

8 Data value from a TLB. For example, ECC error on TLB data.

9 Address/control value(s) from a TLB. For example, ECC error on TLB tag.

10 Data value from producer. For example, parity error on write data bus.

11 Address/control value(s) from producer. For example, parity error on address bus.

12 Data value from (non-associative) external memory. For example, ECC error in SDRAM.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 439 of 443

 Non-Confidential

13 Illegal address (software fault). For example, access to unpopulated memory.

14 Illegal access (software fault). For example, byte write to word register.

15 Illegal state (software fault). For example, device not ready.

16 Internal data register. For example, parity on a FP&SIMD register. For a PE, all general-purpose,
stack pointer, and FP&SIMD registers are data registers.

17 Internal control register. For example, Parity on a system register. For a PE, all registers other than
general-purpose, stack pointer, and FP&SIMD registers are control registers.

18 Error response from slave. For example, error response from cache write-back.

19 External timeout. For example, timeout on interaction with another node.

20 Internal timeout. For example, timeout on interface within the node.

All other values are reserved.

Direct writes to this field are ignored if any of the CE, DE, or UE bits is set to 1, and the highest priority of
these is not being cleared to 0 in the same write.

The subset of architecturally-defined values that SERR can take is IMPLEMENTATION DEFINED. If any value
not in this set is written to this register, the value read back from SERR is UNKNOWN.

Note: This means that an implementation can choose to implement one or more bits of SERR as fixed
read-as-zero or read-as-one values.

18.1.7 ERRDEVARCH, Device Architecture Register
The ERRDEVARCH characteristics are:

Purpose

Identifies the programmers' model architecture of the component. This allows software to make some use
of a component that conforms to an architecture definition but whose part number is not necessarily
recognized, or to disambiguate multiple architecturally-defined sub-components of a system.

Usage constraints

None.

Configurations

Always implemented.

Attributes

32-bit read-only register located at offset 0xFBC.

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 440 of 443

 Non-Confidential

When DEVARCH is implemented, the ERRDEVARCH bit assignments are:

When DEVARCH is not implemented, the ERRDEVARCH bit assignments are:

Bits [31:21,19:0], when DEVARCH is not implemented

Reserved. This field is RES0.

ARCHITECT, bits [31:21], when DEVARCH is implemented

Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106 bank ID,
minus 1) and bits [27:21] are the JEP106 ID code. The defined values of this field are:

0x23B JEP106 continuation code 0x4, ID code 0x3B. ARM Limited.

Other values are defined by the JEDEC JEP106 standard. This field reads as 0x23B.

PRESENT, bit [20]

Defines that the DEVARCH register is present. The defined values of this bit are:

0 DEVARCH information not present. The rest of the register is RES0.

1 DEVARCH information present.

REVISION, bits [19:16], when DEVARCH is implemented

Defines the architecture revision. The defined values of this field are:

0000 RAS system architecture v1.0.

This field reads as 0b0000.

ARCHVER, bits [15:12], when DEVARCH is implemented

Defines the architecture version of the component. The defined values of this field are:

0000 RAS system architecture v1.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, such that ARCHVER is
ARCHID[15:12]. This field reads as 0b0000.

11 0

1 0 1 0 0 0 0 0 0 0 0 0

15 12

0 0 0 0

19 16

0 0 0 0

20

1

31 21

0 1 0 0 0 1 1 1 0 1 1

ARCHPART ARCHVER REVISION PRESENT ARCHITECT

19 0

RES0

20

0

31 21

RES0

PRESENT

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 441 of 443

 Non-Confidential

ARCHPART, bits [11:0], when DEVARCH is implemented

Defines the architecture of the component. The defined values of this field are:

0xA00 RAS system architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, such that ARCHPART is
ARCHID[11:0]. This field reads as 0xA00.

18.1.8 ERRGSR<n>, Error Group Status Register
The ERRGSR<n> characteristics are:

Purpose

Each ERRGSR<n> register shows the status for up to 64 records in the group. <n> selects the set of 64
records from the records in the group.

Usage constraints

None.

Configurations

Always implemented.

Attributes

64-bit read-only register located at offset 0xE00 + 8×n.

The ERRGSR<n> bit assignments are:

S, bits [63:0]

Bit <q> maps to S[m], where m = 64×n + q, the status for Error Record <m>. A read-only copy of
ERR<m>STATUS.V. The defined values of this field are:

0 No error.

1 One or more errors.

If <m> is greater than or equal to the number of implemented records, or the record does not support this
type of reporting, the bit is RES0.

63 32

S[63:32]

31 0

S[31:0]

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 442 of 443

 Non-Confidential

18.1.9 ERRIDR, Error Record ID Register
The ERRIDR characteristics are:

Purpose

Defines the number of error records in this group.

Usage constraints

None.

Configurations

Always implemented.

Attributes

32-bit read-only register located at offset 0xFC8.

The ERRIDR bit assignments are:

Bits [31:16]

Reserved. This field is RES0.

NUM, bits [15:0]

Number of records in this group. Each record is notionally owned by a node. A node might own multiple
records.

This field reads as an IMPLEMENTATION DEFINED value.

18.1.10 ERRIRQCR<n>, Error Interrupt Configuration Register
The ERRIRQCR<0-14> characteristics are:

Purpose

The ERRIRQCR<n> registers are reserved for IMPLEMENTATION DEFINED interrupt configuration registers.

Usage constraints

None.

15 0

IMPLEMENTATION DEFINED

31 16

RES0

NUM

ARM IHI 0070A Copyright © 2016 ARM or its affiliates. All rights reserved. Page 443 of 443

 Non-Confidential

Configurations

Present only if interrupt configuration registers are implemented. RES0 otherwise.

Attributes

64-bit read/write register located at offset 0xE80 + 8×n.

The ERRIRQCR<0-14> bit assignments are:

Bits [63:0]

IMPLEMENTATION DEFINED controls. The content of these registers is IMPLEMENTATION DEFINED.

This field reads as an IMPLEMENTATION DEFINED value and writes to this field have IMPLEMENTATION DEFINED
behavior.

Note: For example, in a system supporting GIC message signaled interrupts, these registers might be
used to configure the address of and payload for a write to a GICD_SETSPI register.

63 32

IMPLEMENTATION DEFINED

31 0

IMPLEMENTATION DEFINED

	Proprietary Notice
	Contents
	1 About this document
	1.1 Change history
	1.2 References
	1.3 Terms and abbreviations
	1.4 Document Scope

	2 Introduction
	2.1 History
	2.2 SMMUv3.0 features
	2.3 SMMUv3.1 features
	2.4 System placement

	3 Operation
	3.1 Software interface
	3.2 Stream numbering
	3.3 Data structures and translation procedure
	3.3.1 Stream Table lookup
	3.3.1.1 Linear Stream Table
	3.3.1.2 2-level Stream Table

	3.3.2 StreamIDs to Context Descriptors
	3.3.3 Configuration and Translation lookup
	3.3.4 Transaction attributes: incoming, two-stage translation and overrides

	3.4 Address sizes
	3.4.1 Input address size and Virtual Address size
	3.4.2 Address alignment checks
	3.4.3 Address sizes of SMMU-originated accesses

	3.5 Command and Event queues
	3.5.1 SMMU circular queues
	3.5.2 Queue entry visibility semantics
	3.5.3 Event queue behavior
	3.5.4 Definition of event record write “Commit”
	3.5.5 Event merging

	3.6 Structure and queue ownership
	3.7 Programming registers
	3.8 Virtualization
	3.9 Support for PCI Express, PASIDs, PRI and ATS
	3.9.1 ATS Interface
	3.9.1.1 Responses to ATS Translation Requests and Translated transactions
	3.9.1.2 ATC invalidation timeout
	3.9.1.3 ATC invalidation errors

	3.9.2 Changing ATS configuration

	3.10 Support for two Security states
	3.10.1 Secure State Determination (SSD)
	3.10.2 Secure commands, events and configuration

	3.11 Reset, Enable and initialization
	3.12 Fault models, recording and reporting
	3.12.1 Terminate model
	3.12.2 Stall model
	3.12.2.1 Suppression of duplicate Stall event records
	3.12.2.2 Early retry of Stalled transactions
	3.12.2.3 Miscellaneous Stall considerations

	3.12.3 Considerations for client devices using the Stall fault model
	3.12.4 Virtual Memory paging with SMMU
	3.12.4.1 Page-in request event

	3.12.5 Combinations of fault configuration with two stages

	3.13 Translation table entries and Access/Dirty flags
	3.13.1 Software update of flags
	3.13.2 Access flag hardware update
	3.13.3 Dirty flag hardware update
	3.13.4 HTTU behavior summary
	3.13.5 HTTU with two stages of translation
	3.13.6 ATS, PRI and translation table flag update
	3.13.6.1 Hardware flag update for ATS & PRI
	3.13.6.2 Behaviour with respect to flag maintenance for ATS & PRI without HTTU

	3.14 Speculative accesses
	3.15 Coherency considerations and memory access types
	3.15.1 Client devices

	3.16 Embedded implementations
	3.16.1 Changes to structure and queue storage behavior when fixed/preset
	3.16.1.1 Event Queue and PRI Queue
	3.16.1.2 Command Queue
	3.16.1.3 Stream Table Entry

	3.17 TLB tagging, VMIDs, ASIDs and participation in broadcast TLB maintenance
	3.17.1 The Global flag in the Translation Table Descriptor
	3.17.2 TLB maintenance from ARMv8-A PEs with EL3 in AArch64
	3.17.3 TLB maintenance from ARMv7-A PEs or ARMv8-A PEs with EL3 using AArch32 state
	3.17.4 Broadcast TLB maintenance in mixed AArch32 and AArch64 systems and with mixed ASID or VMID sizes
	3.17.5 EL2 ASIDs in EL2 Host (E2H) mode
	3.17.6 VMID Wildcards

	3.18 Interrupts and notifications
	3.18.1 MSI synchronisation
	3.18.2 Interrupt sources

	3.19 Power control
	3.19.1 Dormant state

	3.20 TLB and configuration cache conflict
	3.20.1 TLB conflict
	3.20.2 Configuration cache conflicts

	3.21 Structure access rules and update procedures
	3.21.1 Translation tables and TLB invalidation completion behavior
	3.21.2 Queues
	3.21.3 Configuration structures and configuration invalidation completion
	3.21.3.1 Configuration structure update procedure

	3.22 Destructive reads and directed cache prefetch transactions
	3.22.1 SMMUv3.1 control of transaction downgrade
	3.22.2 SMMUv3.1 permissions model
	3.22.3 SMMUv3.1 memory types and Shareability

	4 Commands
	4.1.1 Command opcodes
	4.1.2 Submitting commands to the Command queue
	4.1.3 Command errors
	4.1.4 Consumption of commands from the Command queue
	4.1.5 Reserved fields
	4.1.6 Common fields
	4.1.7 Out-of-range parameters
	4.2 Prefetch
	4.2.1 CMD_PREFETCH_CONFIG(StreamID, SSec, SubstreamID, SSV)
	4.2.2 CMD_PREFETCH_ADDR(StreamID, SSec, SubstreamID, SSV, Addr, Size, Stride)

	4.3 Configuration structure invalidation
	4.3.1 CMD_CFGI_STE(StreamID, SSec, Leaf)
	4.3.2 CMD_CFGI_STE_RANGE(StreamID, SSec, Range)
	4.3.3 CMD_CFGI_CD(StreamID, SSec, SubstreamID, Leaf)
	4.3.4 CMD_CFGI_CD_ALL(StreamID, SSec)
	4.3.5 CMD_CFGI_ALL(World)
	4.3.6 Action of VM guest OS structure invalidations by hypervisor
	4.3.7 Configuration structure invalidation semantics/rules

	4.4 TLB invalidation
	4.4.1 TLB invalidation of stage 1
	4.4.1.1 CMD_TLBI_NH_ALL(VMID)
	4.4.1.2 CMD_TLBI_NH_ASID(VMID, ASID)
	4.4.1.3 CMD_TLBI_NH_VAA(VMID, Addr, Leaf)
	4.4.1.4 CMD_TLBI_NH_VA(VMID, ASID, Addr, Leaf)
	4.4.1.5 CMD_TLBI_EL3_ALL
	4.4.1.6 CMD_TLBI_EL3_VA(Addr, Leaf)
	4.4.1.7 CMD_TLBI_EL2_ALL
	4.4.1.8 CMD_TLBI_EL2_VA(ASID, Addr, Leaf)
	4.4.1.9 CMD_TLBI_EL2_VAA(Addr, Leaf)
	4.4.1.10 CMD_TLBI_EL2_ASID(ASID)

	4.4.2 TLB invalidation of stage 2
	4.4.2.1 CMD_TLBI_S2_IPA(VMID, Addr, Leaf)
	4.4.2.2 CMD_TLBI_S12_VMALL(VMID)

	4.4.3 Common TLB invalidation
	4.4.3.1 CMD_TLBI_NSNH_ALL

	4.5 ATS and PRI
	4.5.1 CMD_ATC_INV(StreamID, SubstreamID, SSV, Global, Address, Size)
	4.5.2 CMD_PRI_RESP(StreamID, SubstreamID, SSV, GroupID, Resp)

	4.6 Fault response and synchronisation commands
	4.6.1 CMD_RESUME(StreamID, SSec, STAG, Action, Abort)
	4.6.2 CMD_STALL_TERM(StreamID, SSec)
	4.6.2.1 Notes and usage

	4.6.3 CMD_SYNC(ComplSignal, MSIAddress, MSIData, MSIWriteAttributes)

	4.7 Command Consumption summary

	5 Data structure formats
	5.1 Level 1 Stream Table Descriptor
	5.2 Stream Table Entry
	5.2.1 Validity of STE

	5.3 Level 1 Context Descriptor
	5.4 Context Descriptor
	5.4.1 CD notes
	5.4.1.1 EPDx behavior

	5.4.2 Validity of CD

	5.5 Fault configuration (A,R,S bits)

	6 Memory map and registers
	6.1 Memory map
	6.2 Register overview
	6.3 Register formats
	6.3.1 SMMU_IDR0
	6.3.2 SMMU_IDR1
	6.3.3 SMMU_IDR2
	6.3.4 SMMU_IDR3
	6.3.5 SMMU_IDR4
	6.3.6 SMMU_IDR5
	6.3.7 SMMU_IIDR
	6.3.8 SMMU_AIDR
	6.3.9 SMMU_CR0
	6.3.9.1 VMW
	6.3.9.2 ATSCHK
	6.3.9.3 CMDQEN
	6.3.9.4 EVENTQEN
	6.3.9.5 PRIQEN
	6.3.9.6 SMMUEN

	6.3.10 SMMU_CR0ACK
	6.3.11 SMMU_CR1
	6.3.11.1 TABLE_* attributes
	6.3.11.2 QUEUE_* attributes

	6.3.12 SMMU_CR2
	6.3.12.1 PTM
	6.3.12.2 RECINVSID
	6.3.12.3 E2H

	6.3.13 SMMU_GBPA
	6.3.13.1 Update procedure

	6.3.14 SMMU_AGBPA
	6.3.15 SMMU_STATUSR
	6.3.16 SMMU_IRQ_CTRL
	6.3.17 SMMU_IRQ_CTRLACK
	6.3.18 SMMU_GERROR
	6.3.19 SMMU_GERRORN
	6.3.20 SMMU_GERROR_IRQ_CFG0
	6.3.21 SMMU_GERROR_IRQ_CFG1
	6.3.22 SMMU_GERROR_IRQ_CFG2
	6.3.23 SMMU_STRTAB_BASE
	6.3.24 SMMU_STRTAB_BASE_CFG
	6.3.25 SMMU_CMDQ_BASE
	6.3.26 SMMU_CMDQ_CONS
	6.3.27 SMMU_CMDQ_PROD
	6.3.28 SMMU_EVENTQ_BASE
	6.3.29 SMMU_EVENTQ_CONS
	6.3.30 SMMU_EVENTQ_PROD
	6.3.31 SMMU_EVENTQ_IRQ_CFG0, SMMU_EVENTQ_IRQ_CFG1, SMMU_EVENTQ_IRQ_CFG2
	6.3.32 SMMU_PRIQ_BASE
	6.3.33 SMMU_PRIQ_CONS
	6.3.34 SMMU_PRIQ_PROD
	6.3.35 SMMU_PRIQ_IRQ_CFG0, SMMU_PRIQ_IRQ_CFG1
	6.3.36 SMMU_PRIQ_IRQ_CFG2
	6.3.37 SMMU_GATOS_CTRL
	6.3.38 SMMU_GATOS_SID
	6.3.39 SMMU_GATOS_ADDR
	6.3.40 SMMU_GATOS_PAR
	6.3.41 SMMU_VATOS_SEL
	6.3.42 SMMU_S_IDR0
	6.3.43 SMMU_S_IDR1
	6.3.44 SMMU_S_IDR2
	6.3.45 SMMU_S_IDR3
	6.3.46 SMMU_S_IDR4
	6.3.47 SMMU_S_CR0
	6.3.47.1 NSSTALLD
	6.3.47.2 SIF

	6.3.48 SMMU_S_CR0ACK
	6.3.49 SMMU_S_CR1
	6.3.50 SMMU_S_CR2
	6.3.51 SMMU_S_GBPA
	6.3.52 SMMU_S_AGBPA
	6.3.53 SMMU_S_INIT
	6.3.54 SMMU_S_IRQ_CTRL
	6.3.55 SMMU_S_IRQ_CTRLACK
	6.3.56 SMMU_S_GERROR
	6.3.57 SMMU_S_GERRORN
	6.3.58 SMMU_S_GERROR_IRQ_CFG0, SMMU_S_GERROR_IRQ_CFG1, SMMU_S_GERROR_IRQ_CFG2
	6.3.59 SMMU_S_STRTAB_BASE
	6.3.60 SMMU_S_STRTAB_BASE_CFG
	6.3.61 SMMU_S_CMDQ_BASE
	6.3.62 SMMU_S_CMDQ_CONS
	6.3.63 SMMU_S_CMDQ_PROD
	6.3.64 SMMU_S_EVENTQ_BASE
	6.3.65 SMMU_S_EVENTQ_CONS
	6.3.66 SMMU_S_EVENTQ_PROD
	6.3.67 SMMU_S_EVENTQ_IRQ_CFG0, SMMU_S_EVENTQ_IRQ_CFG1, SMMU_S_EVENTQ_IRQ_CFG2
	6.3.68 SMMU_S_GATOS_CTRL
	6.3.69 SMMU_S_GATOS_SID
	6.3.70 SMMU_S_GATOS_ADDR
	6.3.71 SMMU_S_GATOS_PAR
	6.3.72 ID_REGS
	6.3.73 SMMU_VATOS_CTRL, SMMU_VATOS_SID, SMMU_VATOS_ADDR, SMMU_VATOS_PAR

	7 Event queue, Faults and Errors
	7.1 Command queue errors
	7.2 Event queue recorded faults and events
	7.2.1 Recording of events and conditions for writing to the Event queue
	7.2.2 Event queue access external abort
	7.2.3 Secure and Non-secure Event queues

	7.3 Event records
	7.3.1 Event record merging
	7.3.2 F_UUT
	7.3.3 C_BAD_STREAMID
	7.3.4 F_STE_FETCH
	7.3.5 C_BAD_STE
	7.3.6 F_BAD_ATS_TREQ
	7.3.7 F_STREAM_DISABLED
	7.3.8 F_TRANSL_FORBIDDEN
	7.3.9 C_BAD_SUBSTREAMID
	7.3.10 F_CD_FETCH
	7.3.11 C_BAD_CD
	7.3.12 F_WALK_EABT
	7.3.13 F_TRANSLATION
	7.3.14 F_ADDR_SIZE
	7.3.15 F_ACCESS
	7.3.16 F_PERMISSION
	7.3.17 F_TLB_CONFLICT
	7.3.18 F_CFG_CONFLICT
	7.3.19 E_PAGE_REQUEST
	7.3.20 IMPDEF_EVENTn
	7.3.21 Event queue record priorities

	7.4 Event queue overflow
	7.5 Global error recording
	7.5.1 GERROR interrupt notification

	8 Page request queue
	8.1 PRI queue overflow
	8.1.1 Recovery procedure

	8.2 Miscellaneous
	8.3 PRG Response Message codes

	9 Address Translation Operations
	9.1 Register usage
	9.1.1 ATOS_CTRL
	9.1.2 ATOS_SID
	9.1.3 ATOS_ADDR
	9.1.4 ATOS_PAR
	9.1.5 ATOS_PAR.FAULTCODE encodings
	9.1.6 SMMU_VATOS_SEL

	10 Performance Monitor Extension
	10.1 Support and discovery
	10.2 Overview of counters and groups
	10.2.1 Overflow, interrupts and capture

	10.3 Monitor events
	10.4 StreamIDs and filtering
	10.4.1 Counter Group StreamID size

	10.5 Registers
	10.5.1 SMMU_PMCGn address map
	10.5.2 Register details
	10.5.2.1 SMMU_PMCG_EVCNTRn
	10.5.2.2 SMMU_PMCG_EVTYPERn
	10.5.2.3 SMMU_PMCG_SVRn
	10.5.2.4 SMMU_PMCG_SMRn
	10.5.2.5 SMMU_PMCG_CNTENSET0
	10.5.2.6 SMMU_PMCG_CNTENCLR0
	10.5.2.7 SMMU_PMCG_INTENSET0
	10.5.2.8 SMMU_PMCG_INTENCLR0
	10.5.2.9 SMMU_PMCG_OVSCLR0
	10.5.2.10 SMMU_PMCG_OVSSET0
	10.5.2.11 SMMU_PMCG_CAPR
	10.5.2.12 SMMU_PMCG_SCR
	10.5.2.13 SMMU_PMCG_CFGR
	10.5.2.14 SMMU_PMCG_CR
	10.5.2.15 SMMU_PMCG_CEID{0,1}
	10.5.2.16 SMMU_PMCG_IRQ_CTRL
	10.5.2.17 SMMU_PMCG_IRQ_CTRLACK
	10.5.2.18 SMMU_PMCG_IRQ_CFG0
	10.5.2.19 SMMU_PMCG_IRQ_CFG1
	10.5.2.20 SMMU_PMCG_IRQ_CFG2
	10.5.2.21 SMMU_PMCG_IRQ_STATUS
	10.5.2.22 SMMU_PMCG_AIDR
	10.5.2.23 SMMU_PMCG_ID_REGS
	10.5.2.23.1 SMMU_PMCG_PMAUTHSTATUS

	10.6 Support for two Security states

	11 Debug/Trace
	12 Reliability, Availability and Serviceability (RAS)
	12.1 Error propagation, consumption and containment in the SMMU
	12.2 Error consumption visible through the SMMU programming interface
	12.3 Service Failure Mode (SFM)
	12.4 RAS fault handling/reporting

	13 Attribute Transformation
	13.1 SMMU handling of attributes
	13.1.1 Attribute definitions
	13.1.2 Attribute support
	13.1.3 Default input attributes
	13.1.4 Replace
	13.1.5 Combine
	13.1.5.1 Combine examples

	13.1.6 Ensuring consistent output attributes

	13.2 SMMU disabled global bypass attributes
	13.3 Translation flow, STE bypasses stage 1 and stage 2
	13.4 Normal translation flow
	13.4.1 Stage 1 page permissions
	13.4.2 Stage 1 memory attributes
	13.4.3 Stage 2
	13.4.4 Output

	13.5 Summary of attribute/permission configuration fields
	13.6 PCIe and ATS attribute/permissions handling
	13.6.1 PCIe memory type attributes
	13.6.1.1 No_snoop

	13.6.2 ATS attribute overview
	13.6.2.1 Supporting No_snoop with ATS

	13.6.3 Split-stage (STE.EATS=0b10) ATS behavior and responses
	13.6.4 Full ATS skipping Stage 1
	13.6.5 Split-stage ATS skipping Stage 1

	13.7 PCIe permission attribute interpretation
	13.7.1 Permission attributes granted in ATS Translation Completions

	14 External interfaces
	14.1 Data path ingress/egress ports
	14.2 ATS Interface, packets, protocol
	14.3 SMMU-originated transactions

	15 Translation procedure
	15.1 Translation procedure charts
	15.2 Notes on translation procedure charts

	16 System and Implementation Considerations
	16.1 Stages
	16.2 Caching
	16.2.1 Caching combined structures
	16.2.2 Data dependencies between structures

	16.3 Programming implications of bus address sizing
	16.4 System integration
	16.5 System software
	16.6 Implementation-defined features
	16.6.1 Configuration and translation cache locking

	16.7 Interconnect-specific features
	16.7.1 Reporting of Unsupported Client Transactions
	16.7.2 Non-data transfer transactions
	16.7.2.1 SMMUv3.1 control of Cache Maintenance Operations
	16.7.2.2 SMMUv3.1 permissions model for Cache Maintenance Operations
	16.7.2.3 SMMUv3.1 memory types and Shareability for Cache Maintenance Operations

	16.7.3 Treatment of AMBA Exclusives from client devices
	16.7.4 Treatment of downstream aborts
	16.7.5 SMMU and AMBA attribute differences
	16.7.5.1 Conversion of AMBA attributes to ARMv8 on input and inferring Inner Attributes
	16.7.5.1.1 Conversion of input attributes from AMBA to ARMv8 architectural attributes

	16.7.5.2 Conversion of ARMv8 attributes to AMBA on output and representation of Shareability
	16.7.5.2.1 Conversion of ARMv8 architectural attributes to AMBA on output

	16.7.5.3 Common interpretation of attribute encoding between SMMU and PE

	16.7.6 Far Atomic operations
	16.7.7 AMBA DVM messages with respect to CD.ASET=1 TLB entries

	17 Appendix - The ARM RAS architecture
	17.1 Faults, errors, and failures
	17.2 Error handling and recovery
	17.3 Fault handling
	17.4 Nodes
	17.4.1 Synchronization and error record accesses

	17.5 Standard error record
	17.5.1 Security and virtualization
	17.5.2 Multiple records per node
	17.5.3 Error types in the error record
	17.5.4 Writing the error record
	17.5.5 Prioritizing errors
	17.5.6 Overwriting the error syndrome
	17.5.7 Keeping the previous error syndrome
	17.5.8 Detecting multiple errors
	17.5.9 Standard format Corrected error counter

	17.6 Error recovery interrupt
	17.7 Fault handling interrupt
	17.8 In-band error signaling
	17.9 Error recovery and fault handling signaling
	17.10 Error recovery reset
	17.11 Memory-mapped view of an error record
	17.11.1 Supported access sizes

	17.12 Reset values
	17.12.1 Writes to ERR<n>STATUS

	17.13 Register index

	18 Appendix - The ARM RAS registers
	18.1.1 ERR<n>ADDR, Error Record Address Register
	18.1.2 ERR<n>CTLR, Error Record Control Register
	18.1.3 ERR<n>FR, Error Record Feature Register
	18.1.4 ERR<n>MISC0, Error Record Miscellaneous Register 0
	18.1.4.1 ERR<n>MISC0 (contents are implementation defined)
	18.1.4.2 ERR<n>MISC0 (standard 16-bit CE counter)
	18.1.4.3 ERR<n>MISC0 (standard 8-bit CE counter)
	18.1.4.4 ERR<n>MISC0 (standard 16-bit CE counter pair)
	18.1.4.5 ERR<n>MISC0 (standard 8-bit CE counter pair)

	18.1.5 ERR<n>MISC1, Error Record Miscellaneous Register 1
	18.1.6 ERR<n>STATUS, Error Record Primary Status Register
	18.1.7 ERRDEVARCH, Device Architecture Register
	18.1.8 ERRGSR<n>, Error Group Status Register
	18.1.9 ERRIDR, Error Record ID Register
	18.1.10 ERRIRQCR<n>, Error Interrupt Configuration Register

