
ARM® Architecture Reference Manual
Supplement

The Scalable Vector Extension (SVE), for ARMv8-A
Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved.
ARM DDI 0584A.e (ID103018)

ARM Architecture Reference Manual Supplement
The Scalable Vector Extension (SVE), for ARMv8-A

Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that
if there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Copyright © 2017-2018 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Change History

Date Issue Confidentiality Change

31 March 2017 A.a Non-Confidential Beta Beta release

21 August 2017 A.b Non-Confidential EAC EAC release

15 December 2017 A.c Non-Confidential EAC maintenance release

21 December 2017 A.d Non-Confidential EAC maintenance release

31 October 2018 A.e Non-Confidential EAC maintenance release
ii Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

LES-PRE-20349

In this document, where the term ARM is used to refer to the company it means “Arm or any of its subsidiaries as appropriate”.

Note
 • The term ARM can refer to versions of the ARM architecture, for example ARMv8 refers to version 8 of the ARM

architecture. The context makes it clear when the term is used in this way.

• This document describes only the ARMv8-A architecture profile. For the behaviors required by the previous version of
this architecture profile, ARMv7-A, see the ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. iii
ID103018 Non-Confidential

iv Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Contents
ARM Architecture Reference Manual Supplement
The Scalable Vector Extension (SVE), for ARMv8-A

Preface
About this book ... viii
Using this book ... ix
Conventions .. x
Additional reading .. xi
Feedback ... xii

Chapter 1 Introduction
1.1 About the SVE supplement .. 1-14
1.2 About the Scalable Vector Extension ... 1-15
1.3 Terminology ... 1-16
1.4 Register disambiguation ... 1-17

Chapter 2 SVE Application Level Programmers’ Model
2.1 Registers .. 2-20
2.2 Process state, PSTATE ... 2-24
2.3 SVE half-precision floating-point support ... 2-26

Chapter 3 SVE System Level Programmers’ Model
3.1 Exception model ... 3-28
3.2 Configurable vector length ... 3-30

Chapter 4 SVE Memory Model
4.1 Atomicity ... 4-34
4.2 Alignment support .. 4-35
4.3 Endian support ... 4-36
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. v
ID103018 Non-Confidential

Contents
4.4 Memory ordering .. 4-37
4.5 Device memory .. 4-38
4.6 Constrained unpredictable memory accesses ... 4-39

Chapter 5 SVE Instruction Set
5.1 SVE assembler language ... 5-42
5.2 Instruction set overview .. 5-43

Chapter 6 System Registers
6.1 System registers .. 6-68

Chapter 7 SVE Debug
7.1 Self-hosted debug .. 7-72
7.2 External debug ... 7-73

Chapter 8 SVE Performance Monitors Extension
8.1 Introduction .. 8-76
8.2 New performance monitor events .. 8-77
8.3 Existing ARMv8-A PMU events affected by SVE ... 8-78

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events .. A-80
A.2 Interesting combinations of SVE events ... A-104
A.3 Instruction categories .. A-106

Glossary
vi Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Preface

This preface introduces the ARM® Architecture Reference Manual Supplement, The Scalable Vector Extension
(SVE), for ARMv8-A. It contains the following sections:
• About this book on page viii.
• Using this book on page ix.
• Conventions on page x.
• Additional reading on page xi.
• Feedback on page xii.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. vii
ID103018 Non-Confidential

 Preface
 About this book
About this book
This book is the ARM® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for
ARMv8-A. This book describes the changes and additions to the ARMv8-A AArch64 architecture that are
introduced by SVE, and therefore must be read in conjunction with the ARM® Architecture Reference Manual,
ARMv8-A, for ARMv8-A architecture profile.
viii Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

 Preface
 Using this book
Using this book
This book is a supplement to the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture
profile (DDI0487), and is intended to be used with it. The ARMv8-A ARM is the definitive source of information
about ARMv8-A.

It is assumed that the reader is familiar with the ARMv8-A architecture.

This book is organized into the following chapters:

Chapter 1 Introduction

Read this for an overview of the SVE extension and definitions of key terminology. It outlines the
key features of SVE and introduces the terminology used to describe the extension.

Chapter 2 SVE Application Level Programmers’ Model

Read this for a description of the SVE Application Level Programmers’ Model. This section must
be read in conjunction with the section titled The AArch64 Application Level Programmers’ Model
in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile.

Chapter 3 SVE System Level Programmers’ Model

Read this for a description of the SVE System Level Programmers’ Model. This section must be
read in conjunction with the section titled The AArch64 System Level Programmers’ Model in the
ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile.

Chapter 4 SVE Memory Model

Read this for a description of the SVE Memory Model. This section must be read in conjunction
with the sections titled The AArch64 Application Level Memory Model and The AArch64 System
Level Memory Model in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A
architecture profile.

Chapter 5 SVE Instruction Set

Read this for a description of the SVE Instruction Set Architecture. This section must be read in
conjunction with the section titled The AArch64 Instruction Set in the ARM® Architecture Reference
Manual, ARMv8-A, for ARMv8-A architecture profile.

Chapter 6 System Registers

Read this for a description of the new SVE System registers and the pre-existing AArch64 System
registers that are modified by SVE. This section must be read in conjunction with the section titled
AArch64 System Register Descriptions in the ARM® Architecture Reference Manual, ARMv8-A, for
ARMv8-A architecture profile.

Chapter 7 SVE Debug

Read this for a description of the SVE additions to the ARMv8-A AArch64 Debug Architecture.
This section must be read in conjunction with the sections titled AArch64 Self-hosted Debug and
Debug State in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture
profile.

Chapter 8 SVE Performance Monitors Extension

Read this for a description of the SVE additions to the ARMv8-A AArch64 Performance Monitors
Extension. This section must be read in conjunction with the section titled The Performance
Monitor Extension in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A
architecture profile.

Appendix A Recommended SVE PMU events

Read this for a list of the recommended PMU events for SVE and their descriptions.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ix
ID103018 Non-Confidential

 Preface
 Conventions
Conventions
The following sections describe conventions that this book can use:
• Typographical conventions.
• Numbers.

Typographical conventions

The following table describes the typographical conventions:

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Typographical conventions

Style Purpose

italic Introduces special terminology, and denotes citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.
Also used in the main text for instruction mnemonics and for references to other items appearing in assembler
syntax descriptions, pseudocode, and source code examples.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For example:
MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used for a few terms that have specific technical meanings, and are included in the glossary.

Colored text Indicates a link. This can be:
• A URL, for example http://developer.arm.com.
• A cross-reference, that includes the page number of the referenced information if it is not on the current

page.
• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that defines the

colored term.
x Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

 Preface
 Additional reading
Additional reading
This section lists relevant publications from ARM and third parties.

See developer.arm.com, http://developer.arm.com, and the Infocenter, http://infocenter.arm.com, for access to
ARM documentation.

ARM publications
• ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile (ARM DDI 0487).
• System Register XML for ARMv8.3.
• A64 ISA XML for ARMv8.3.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. xi
ID103018 Non-Confidential

 Preface
 Feedback
Feedback
ARM welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:
• The title.
• The number, ARM DDI 0584A.e.
• The page numbers to which your comments apply.
• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note
 ARM tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.
xii Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Chapter 1
Introduction

This chapter provides an introduction to the Scalable Vector Extension for the ARMv8-A architecture. This chapter
contains the following sections:
• About the SVE supplement on page 1-14.
• About the Scalable Vector Extension on page 1-15.
• Terminology on page 1-16.
• Register disambiguation on page 1-17.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 1-13
ID103018 Non-Confidential

1 Introduction
1.1 About the SVE supplement
1.1 About the SVE supplement
This supplement must be read with the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture
profile. Together, the manual and this supplement provide a full description of the ARMv8-A architecture, including
the Scalable Vector Extension.

In general, this supplement describes only the architectural changes that are introduced by the Scalable Vector
Extension.

This supplement does not contain any detailed instruction descriptions, pseudocode, or System register descriptions.
Instead, this information is provided in a separate format, with links to this information appearing throughout the
supplement.
1-14 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

1 Introduction
1.2 About the Scalable Vector Extension
1.2 About the Scalable Vector Extension
The Scalable Vector Extension (SVE) is an optional extension to the ARMv8-A architecture, with a base
requirement of ARMv8.2-A. SVE complements and does not replace AArch64 Advanced SIMD and floating-point
functionality. If SVE is implemented, all SVE instructions are mandatory and the ARMv8.2-FP16 half-precision
floating-point and the ARMv8.3-CompNum complex number instructions must be implemented.

SVE is defined for the AArch64 Execution state only, and adds:
• Support for wide vector and predicate registers.
• A set of instructions that operate on wide vectors and predicates.
• Some minor additions to the configuration and identification registers.

The key features that SVE provides are:
• Scalable vector length. See Configurable vector length on page 3-30.
• Predication. See Predicate registers on page 2-21.
• Gather-load and scatter-store. See Load, store, and prefetch instructions on page 5-43.
• Software-managed speculative vectorization. See First Fault Register, FFR on page 2-22.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 1-15
ID103018 Non-Confidential

1 Introduction
1.3 Terminology
1.3 Terminology
The following is an alphabetical list of key terminology and phrases that are used throughout this supplement.

Active element

An Active element is a vector element or predicate element that has been identified, by the value of
the corresponding element of an instruction’s Governing predicate being TRUE, as a source register
element or destination register element to be used by the instruction. If an instruction is
unpredicated, all of the vector elements or predicate elements are implicitly treated as active.

First active element

The First active element of a vector or predicate register is defined as the lowest numbered element
that is an Active element.

First-fault load

SVE provides a First-fault option for some SVE vector load instructions. This option causes
memory access faults to be suppressed if they do not occur as a result of the First active element of
the vector. Instead, the FFR is updated to indicate which of the active vector elements were not
successfully loaded. See First Fault Register, FFR on page 2-22 for more information about the
FFR.

Governing predicate

A Governing predicate defines the Active elements and Inactive elements of the source and
destination registers for the corresponding instruction.

Inactive element

An Inactive element is a vector element or predicate element that has been identified, by the value
of the corresponding element of an instruction’s Governing predicate being FALSE, as an unused
source register element or destination register element for the associated instruction.

Last active element

The Last active element of a vector or predicate register is defined as the highest numbered element
that is an Active element.

Non-fault load

SVE provides a Non-fault option for some SVE vector load instructions. This option causes all
memory access faults to be suppressed. Instead, the FFR is updated to indicate which of the active
vector elements were not successfully loaded. See First Fault Register, FFR on page 2-22 for more
information about the FFR.
1-16 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

1 Introduction
1.4 Register disambiguation
1.4 Register disambiguation
In some sections of this manual, registers are referred to by a general name, where the description applies to more
than one context. This is because the description applies to multiple Exception levels, and therefore at a particular
Exception level the register names need to take the appropriate Exception level suffix, _EL0, _EL1, _EL2, or _EL3.

1.4.1 Register name disamiguation by Exception level

Table 1-1 disambiguates the general names of the registers by Execution state.

Table 1-1 Disambiguation of System registers by Exception level

General form EL0 EL1 EL2 EL3

ESR_ELx - ESR_EL1 ESR_EL2 ESR_EL3

FAR_ELx - FAR_EL1 FAR_EL2 FAR_EL3

SCTLR_ELx - SCTLR_EL1 SCTLR_EL2 SCTLR_EL3

ZCR_ELx - ZCR_EL1 ZCR_EL2 ZCR_EL3
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 1-17
ID103018 Non-Confidential

../SVE_SysReg/xhtml/AArch64-esr_el1.html
../SVE_SysReg/xhtml/AArch64-esr_el2.html
../SVE_SysReg/xhtml/AArch64-esr_el3.html
../SVE_SysReg/xhtml/AArch64-zcr_el1.html
../SVE_SysReg/xhtml/AArch64-zcr_el2.html
../SVE_SysReg/xhtml/AArch64-zcr_el3.html

1 Introduction
1.4 Register disambiguation
1-18 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Chapter 2
SVE Application Level Programmers’ Model

This chapter introduces the SVE Application Level Programmers’ model. This chapter contains the following
sections:
• Registers on page 2-20.
• Process state, PSTATE on page 2-24.
• SVE half-precision floating-point support on page 2-26.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 2-19
ID103018 Non-Confidential

2 SVE Application Level Programmers’ Model
2.1 Registers
2.1 Registers

2.1.1 Vector registers

SVE includes 32 scalable vector registers, Z0-Z31. The SVE vector registers are all of equal size, where the size is
an IMPLEMENTATION DEFINED multiple of 128 bits, up to an architectural maximum of 2048 bits. Each vector
register can be subdivided into a number of 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit vector elements. The vector
element size for a given instruction is encoded in the opcode of the instruction. If the order in which operations are
performed on vector elements has observable significance, then the vector elements must be processed in order of
increasing element number.

Bits[127:0] of the SVE vector registers, Z0-Z31, are shared with the AArch64 SIMD&FP registers, V0-V31, so that
Vn maps to Zn[127:0], as shown in Figure 2-1. If the SVE vector length at the current Exception level is greater
than 128 bits, then any AArch64 instruction that writes to V0-V31 sets all the accessible bits above bit[127] of the
corresponding SVE vector register to zero. See Configurable vector length on page 3-30 for more information.

Figure 2-1 SVE and SIMD&FP vectors in AArch64 state

255 0

Zn

[7] [4] [3] [0]

[15] [14] [0]

0

Vn

[2] [0]

256-bit vector of 32-bit elements

256-bit vector of 16-bit elements

128-bit vector of 32-bit elements

128-bit vector of 16-bit elements

128 127192 191 64 63

32 31

256-bit vector of 64-bit elements

[1][2]

[2] [0]

256-bit vector of 8-bit elements

[31] [1]

[1]

128-bit vector of 8-bit elements

[2] [0]

.B .B .B .B .B .B .B .B .B .B .B .B .B .B .B .B

[15] ...

.H.H .H .H .H .H .H .H

[4][5][6][7] [3] [2] [1] [0]

.S.S.S.S

[1][3]

[1] [0]

128-bit vector of 64-bit elements .D.D

127 63649596

...

.B .B

......

.H.H.H.H.H.H.H .H.H.H.H.H.H.H.H.H

[13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1]

.S.S.S.S.S.S.S.S

[1][2][5][6]

.D.D.D.D

[3] [0]

[1]

.Q.Q

[0]

256-bit vector of 128-bit elements
2-20 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

2 SVE Application Level Programmers’ Model
2.1 Registers
2.1.2 Predicate registers

SVE includes 16 scalable predicate registers, P0-P15. Each predicate register holds one bit per byte of a vector
register, meaning that each predicate register is one-eighth of the size of a vector register. Therefore, each predicate
register is an IMPLEMENTATION DEFINED multiple of 16 bits. Each predicate register can be subdivided into a number
of 1, 2, 4, or 8-bit elements, where each predicate element corresponds to a vector element. If the lowest-numbered
bit of a predicate element has a value of 1, the predicate element is TRUE, otherwise it is FALSE. For all instructions
other than those listed in Predicate permute on page 5-64, the other bits of the predicate element are IGNORED on
reads and set to zero on writes. A predicate element value with zeroes in all bits except the lowest-numbered bit is
said to be in canonical form.

See Predicate operations on page 5-57 for descriptions of instructions that operate on predicate registers.

Governing predicate

Where an instruction supports predication, it is known as a predicated instruction. The predicate register that is used
to determine the Active elements of a predicated instruction is known as the Governing predicate for that instruction.
Predicated instructions can only use P0-P7 as the Governing predicate.

When a Governing predicate element is TRUE, then the corresponding vector or predicate register element is Active
and is processed by the instruction, otherwise it is Inactive and takes no part in the operation of the instruction.

When a predicated instruction writes to a vector or predicate destination register, either:
• The Inactive elements in the destination are set to zero. This is known as zeroing predication.
• The Inactive elements in the destination retain their previous value. This is known as merging predication.

Figure 2-2 and Figure 2-3 show the relationship between a 256-bit implementation of an SVE vector register, Zn,
and the associated 32-bit Governing predicate register, Pg. Figure 2-2 shows an SVE vector register of four 64-bit
elements, with an associated Governing predicate register of four 8-bit elements. In this case, the lowest-numbered
bit of each predicate element is 1, indicating that all elements of the vector register are Active.

Figure 2-2 256-bit vector, 4x64-bit packed elements

Figure 2-3 shows an SVE vector register of eight 32-bit elements, with an associated Governing predicate register
of eight 4-bit elements. In this case, the lowest-numbered bit of each predicate element is 1, indicating that all
elements of the vector register are Active.

Figure 2-3 256-bit vector, 8x32-bit packed elements

Figure 2-4 on page 2-22 shows a property of SVE predicates that allows a Governing predicate register to be
interpreted differently when used for different vector element sizes. As defined in Predicate registers, an SVE
predicate register contains one bit per byte of the corresponding SVE vector register and the predicate elements are
numbered to match the equivalent vector elements.

06364127128191192255

[0][1][2][3] Zn

Pgxxxxxx1

07

xxxxxx1

815

xxxxxx1

1623

xxxxxx1

2431

06364127128191192255 31329596159160223224

[0][2][4][6] Zn

Pg

0

xxx1

2427

xxx1

2831

xxx1

2023

xxx1

1619

xxx1

1215

xxx1

811

xxx1

47

xxx1

3

[1][3][5][7]
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 2-21
ID103018 Non-Confidential

2 SVE Application Level Programmers’ Model
2.1 Registers
Figure 2-4 shows Za, a 256-bit vector of 32-bit elements, where the values of the 4-bit Governing predicate elements
indicate that the even-numbered vector elements are Active and the odd-numbered vector elements are Inactive.
When the same Governing predicate register is used for Zb, a 256-bit vector of 64-bit elements, Pg is interpreted
differently. Now, the values of the 8-bit Governing predicate elements indicate that all 64-bit elements of Zb are
Active.

Figure 2-4 Governing predicate interpretation for different vector organizations

2.1.3 First Fault Register, FFR

The First Fault Register, FFR, is a dedicated register that captures the cumulative fault status of a sequence of SVE
First-fault and Non-fault vector load instructions. The format of the FFR is the same as the predicate registers. Bits
in FFR are initialized to TRUE using the SETFFR instruction, and are indirectly cleared to FALSE as a result of an
unsuccessful load of the corresponding, or lower-numbered, vector element. After a sequence of one or more SVE
First-fault or Non-fault loads that follow a SETFFR instruction, the FFR contains a sequence of zero or more TRUE
elements followed by zero or more FALSE elements. Bits in the FFR are never set to TRUE as a result of a vector
load instruction, therefore the TRUE elements in the FFR indicate the shortest sequence of consecutive elements
that could contain valid data loaded from memory.

The only instructions that read the FFR are:
• RDFFR

• RDFFRS

The only instructions that directly write the FFR are:
• WRFFR

• SETFFR

The FFR is a Special-purpose register as defined in the section titled Special-purpose registers in the ARM®
Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile. This means that all direct and indirect
reads and writes to the FFR appear to occur in program order relative to other instructions, without the need for
explicit synchronization.

See Synchronous memory faults on page 3-28 for more information on SVE First-fault and Non-fault loads.

2.1.4 Scalar registers

Certain SVE instructions generate a scalar result that is written to an AArch64 general-purpose register or to
element[0] of a vector register. If an SVE instruction generates a scalar result that is narrower than the maximum
destination register width, the upper bits of the destination register are set to zero.

06364127128191192255

[0][1][2][3]

31329596159160223224

Zb

[0][2][4][6] Za

Pg

0

xxx1

2427

xxx0

2831

xxx0

2023

xxx1

1619

xxx0

1215

xxx1

811

xxx0

47

xxx1

3

Pg

0

xxx0xxx1

7

xxx0xxx1

815

xxx0xxx1

1623

xxx0xxx1

2431
2-22 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/setffr_f.html
../SVE_xml/xhtml/setffr_f.html
../SVE_xml/xhtml/rdffr_p_f.html
../SVE_xml/xhtml/rdffr_p_p_f.html
../SVE_xml/xhtml/wrffr_f_p.html
../SVE_xml/xhtml/setffr_f.html

2 SVE Application Level Programmers’ Model
2.1 Registers
Note
 See Registers in AArch64 Execution state in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A
architecture profile for more information about the AArch64 general-purpose and SIMD&FP registers.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 2-23
ID103018 Non-Confidential

2 SVE Application Level Programmers’ Model
2.2 Process state, PSTATE
2.2 Process state, PSTATE
SVE overloads the AArch64 PSTATE condition flags. See the section titled Process state, PSTATE in the ARM®
Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile for more information about the
PSTATE condition flags. The condition flags can be set either by an explicit test of a predicate register or based on
the result of an SVE predicate-generating and flag-setting instruction. Where present, a Governing predicate
determines which predicate elements are to be tested. Some instructions use the condition flags to signal different
events, but the most common SVE interpretations of the condition flags are shown in Table 2-1.

The SVE assembler syntax defines a new set of condition code aliases. The condition code aliases and their
associated meanings are described in Table 2-2.

Note
 For predicated instructions, it is the Governing predicate for the instruction that determines the Active and Inactive
elements in the predicate source and destination registers. Any unpredicated SVE flag-setting instructions have an
implicit Governing predicate, with all elements set to TRUE. This means that all elements in the predicate source
and destination registers are considered Active for the purpose of setting the condition flags.

Table 2-1 SVE condition flags

Flag SVE Name SVE Interpretation

N First Has a value of 1 if the First active element was TRUE, otherwise has a value
of 0.

Z None Has a value of 1 if no Active element was TRUE, otherwise has a value of 0.

C Not last Has a value of 0 if the Last active element was TRUE, otherwise has a value
of 1.

V - Cleared to 0 by the SVE flag-setting instructions, except CTERMEQ and
CTERMNE.

Table 2-2 Predicate condition flags

Condition test AArch64 name SVE alias SVE interpretation

Z == 1 EQ NONE No Active elements were TRUE

Z == 0 NE ANY An Active element was TRUE

C == 1 HS/CS NLAST The Last active element was not TRUE

C == 0 LO/CC LAST The Last active element was TRUE

N == 1 MI FIRST The First active element was TRUE

N == 0 PL NFRST The First active element was not TRUE

C == 1 && Z == 0 HI PMORE An Active element was TRUE but not the Last active
element

C == 0 || Z == 1 LS PLAST The Last active element was TRUE or no Active elements
were TRUE

V == 1 VS - CTERM comparison failed, but end of partition reached

V == 0 VC - CTERM comparison succeeded, or end of partition not
reached

N == V GE TCONT CTERM termination condition not detected

N != V LT TSTOP CTERM termination condition detected
2-24 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/ctermeq_rr.html
../SVE_xml/xhtml/ctermeq_rr.html

2 SVE Application Level Programmers’ Model
2.2 Process state, PSTATE
Figure 2-5 First active element

In Figure 2-5, Pd.H is a predicate register containing eight 2-bit predicate elements and Pg is the Governing predicate
In this case, element[1] of Pd.H is the First active element, not element[0].

015

10 0 01110

015

Pd.H

Pg xxxxxxxx

0000x x x x x x x x1111

[0][1][2][3][4][5][6][7]
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 2-25
ID103018 Non-Confidential

2 SVE Application Level Programmers’ Model
2.3 SVE half-precision floating-point support
2.3 SVE half-precision floating-point support
SVE inherits the following behaviors from ARMv8.2-FP16:
• The half-precision instructions are subject to the same floating-point exception traps and enables as apply to

the equivalent SVE single-precision or double-precision instructions.
• FPCR.FZ has no effect on the half-precision instructions.
• FPCR.FZ16 enables Flush-to-zero mode for all of the half-precision instructions, but not for conversions

between half-precision and single or double-precision.
• A half-precision value that is flushed to zero as a result of FPCR.FZ16 will not generate an Input Denormal

exception that sets FPSR.IDC to 1.

SVE half-precision floating-point instructions support only IEEE 754-2008 half-precision format and ignore the
value of the FPCR.AHP bit, behaving as if it has an Effective value of 0.
2-26 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Chapter 3
SVE System Level Programmers’ Model

This chapter introduces the SVE System Level Programmers’ model. This chapter contains the following sections:
• Exception model on page 3-28
• Configurable vector length on page 3-30
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 3-27
ID103018 Non-Confidential

3 SVE System Level Programmers’ Model
3.1 Exception model
3.1 Exception model
SVE adds hierarchical trap and enable controls at EL3, EL2, and EL1. These controls are implemented using the
following System register fields:
• CPTR_EL3.EZ.
• CPTR_EL2.TZ, when HCR_EL2.E2H == 0.
• CPTR_EL2.ZEN, when HCR_EL2.E2H == 1.
• CPACR_EL1.ZEN.

3.1.1 SVE exception class

SVE defines the 0b011001 Exception class value, in ESR_ELx.EC. The 0b011001 value is reported for exceptions that
are due to attempted execution of SVE instructions and MRS/MSR instructions that access the ZCR_ELx System
registers when trapped due to the controls described in Exception model.

See ESR_ELx for more details.

3.1.2 SVE floating-point exception traps

SVE floating-point instructions only generate floating-point exceptions in response to floating-point operations
performed on Active elements, but these are otherwise consistent with the behaviors described in the section titled
Floating-point exceptions and exception traps in the ARM® Architecture Reference Manual, ARMv8-A, for
ARMv8-A architecture profile.

3.1.3 MOVPRFX exception behavior

For detailed information about the SVE MOVPRFX (predicated) and MOVPRFX (unpredicated) instructions, see Move
prefix on page 5-65. When a MOVPRFX instruction is used as described in Move prefix on page 5-65 and execution of
the pair of instructions generates a synchronous exception or causes entry to Debug state, then the restart address
that is recorded in ESR_ELx or DLR_EL0 is a CONSTRAINED UNPREDICTABLE choice of:
• If the MOVPRFX instruction has caused no change to the architectural state, the address of the MOVPRFX

instruction.
• Otherwise, the address of the prefixed instruction.

Irrespective of the address that is recorded in ESR_ELx or DLR_EL0, if the prefixed instruction generates an
Instruction Abort due to an MMU fault or synchronous External abort and the MOVPRFX does not generate an
Instruction Abort, then the appropriate ESR_ELx, FAR_ELx, or HPFAR_EL2 registers will record the syndrome
information and address that is associated with the erroneous prefixed instruction fetch and not the MOVPRFX
instruction fetch. If both instruction fetches would cause an Instruction abort, then the address of the MOVPRFX
instruction is recorded in the appropriate FAR_ELx register.

3.1.4 Synchronous memory faults

The following mechanism is used to report a synchronous fault that is generated by a memory access that was
performed as a result of an SVE load or store instruction. That is:
• The appropriate ESR_ELx.EC field is updated with 0b100100 or 0b100101, depending on the Exception level

from which the fault occurred.
• Depending on the Exception level handling the fault, the FAR_ELx, or HPFAR_EL2 System register is

updated with the lowest address applicable to the Active element that the fault is reported against.
• A Data Abort exception is then taken.

Where multiple faults arise from different addresses that are generated by the same instruction, the architecture does
not prioritize between the different faults.

The SVE load and store instructions can generate a sequence of accesses that might not be completed as a result of
an exception being taken during that sequence of accesses. On return from such an exception, a load or store
instruction that has not been architecturally executed is restarted, meaning that one or more of the memory locations
might be accessed multiple times. This can result in repeated accesses to a location that has been changed between
the accesses, or that might be sensitive to the number of accesses.
3-28 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_SysReg/xhtml/AArch64-cptr_el3.html
../SVE_SysReg/xhtml/AArch64-cptr_el2.html
../SVE_SysReg/xhtml/AArch64-cptr_el2.html
../SVE_SysReg/xhtml/AArch64-cptr_el2.html
../SVE_SysReg/xhtml/AArch64-hcr_el2.html
../SVE_SysReg/xhtml/AArch64-cptr_el2.html
../SVE_SysReg/xhtml/AArch64-hcr_el2.html
../SVE_SysReg/xhtml/AArch64-cpacr_el1.html
../SVE_xml/xhtml/movprfx_z_p_z.html
../SVE_xml/xhtml/movprfx_z_z.html

3 SVE System Level Programmers’ Model
3.1 Exception model
SVE vector load and store instructions that generate a fault obey the sections titled Definition of a precise exception
and Effect of Data Aborts in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile,
with the following SVE-specific modifications:
• For SVE predicated vector stores, memory locations that are associated with Active elements that do not

generate a fault are set to an UNKNOWN value. Memory locations that are associated with Inactive elements,
or with Active elements that do generate a fault, are preserved.

• For SVE predicated vector loads that are not a First-fault or Non-fault load, all elements in the destination
vector registers return an UNKNOWN value, irrespective of any predication, unless the destination register is
a vector register that is also used as a base or index register by the instruction, in which case the original value
of the register is preserved.

• For SVE Non-fault vector loads, an exception is not taken and the ESR_ELx exception syndrome and
FAR_ELx and HPFAR_EL2 fault address registers are not updated. When a Non-fault memory element
access generates a fault or is suppressed for any other reason, the FFR predicate elements starting from that
element number, up to and including the highest-numbered element, are set to FALSE. Since an FFR
predicate element is never set to TRUE by an SVE vector load instruction, the fault indications are
cumulative. Following execution of an SVE Non-fault vector load, each destination vector element contains
either:
— If the corresponding FFR element is FALSE and it was an Active element, a CONSTRAINED

UNPREDICTABLE choice of either zero, the value read from memory if the memory access for that
element did not generate a fault and was not an access to Device memory, or the previous value of that
vector element.

— If the corresponding FFR element is FALSE and it was an Inactive element, a CONSTRAINED
UNPREDICTABLE choice of either zero, or the previous value of that vector element.

— If the corresponding FFR element is TRUE and it was an Active element, the value read from memory.
— If the corresponding FFR element is TRUE and it was an Inactive element, zero.

• For SVE First-fault vector loads, memory accesses due to the First active element are handled in the same
way as for SVE predicated vector loads. If a memory access due to the First active element does not generate
a fault, then the other elements are handled in the same way as for an SVE Non-fault vector load.

Note
 The term fault in this section includes any of the following results of a data access performed as a result of the
execution of SVE vector load and store instructions:
• MMU fault.
• Synchronous External abort, including synchronous parity or ECC error.
• Watchpoint debug event

Furthermore, an implementation is permitted to suppress the read of any Active element for an SVE Non-fault
vector load, and any Active element other than the First active element for an SVE First-fault vector load.

3.1.5 Asynchronous exception behavior

It is IMPLEMENTATION DEFINED whether SVE instructions can be interrupted by asynchronous exceptions. An
interrupted SVE instruction on return from an asynchronous exception will restart and cannot resume.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 3-29
ID103018 Non-Confidential

3 SVE System Level Programmers’ Model
3.2 Configurable vector length
3.2 Configurable vector length
Privileged Exception levels can use the ZCR_EL1.LEN, ZCR_EL2.LEN, and ZCR_EL3.LEN System register
fields to constrain the vector length at that Exception level and at less privileged Exception levels. SVE requires that
an implementation must allow the vector length to be constrained to any power of two that is less than the maximum
implemented vector length, but also permits an implementation to allow the vector length to be constrained to
multiples of 128 that are not a power of two. It is IMPLEMENTATION DEFINED which of the permitted multiples of
128 are supported. See Table 3-1 for more information.

If an unsupported vector length is requested in ZCR_ELx, the implementation is required to select the largest
supported vector length that is less than the requested length. This does not alter the value of ZCR_ELx.LEN.

When executing at an Exception level that is constrained to use a vector length that is less than the maximum
implemented vector length, then the bits beyond the constrained length of the vector registers, predicate registers,
and FFR are inaccessible. On taking an exception from an Exception level that is more constrained to a target
Exception level that is less constrained, or on writing a larger value to ZCR_ELx.LEN, then the previously
inaccessible bits of these registers that become accessible have a value of either zero or the value they had before
executing at the more constrained size. The choice between these options is IMPLEMENTATION DEFINED and can vary
dynamically.

If SVE instructions are disabled or trapped at ELx, or not available because that Exception level is in AArch32 state,
then for all purposes other than a direct read, the ZCR_ELx.LEN field has an Effective value of 0, which implies
an SVE vector length of 128 bits.

If floating-point and SVE are both disabled, trapped, or not available at all Exception levels below the target
Exception level, in the current Security state, then the accessible SVE register state at the target Exception level is
preserved.

Note
 The ZCR_ELx.LEN field constrains the SVE vector length to be no greater than (LEN+1)×128 bits, at Exception
level ELx and below. See the ZCR_EL1, ZCR_EL2, and ZCR_EL3 System register descriptions for more details.

Table 3-1 Configurable vector lengths

Additionally configurable vector lengths

Maximum configurable
vector length Required Permitted

128 - -

256 128 -

384 128, 256 -

512 128, 256 384

640 128, 256, 512 384

768 128, 256, 512 384, 640

896 128, 256, 512 384, 640, 768

1024 128, 256, 512 384, 640, 768, 896

1152 128, 256, 512, 1024 384, 640, 768, 896

1280 128, 256, 512, 1024 384, 640, 768, 896, 1152

1408 128, 256, 512, 1024 384, 640, 768, 896, 1152, 1280

1536 128, 256, 512, 1024 384, 640, 768, 896, 1152, 1280, 1408

1664 128, 256, 512, 1024 384, 640, 768, 896, 1152, 1280, 1408, 1536

1792 128, 256, 512, 1024 384, 640, 768, 896, 1152, 1280, 1408, 1536, 1664

1920 128, 256, 512, 1024 384, 640, 768, 896, 1152, 1280, 1408, 1536, 1664, 1792

2048 128, 256, 512, 1024 384, 640, 768, 896, 1152, 1280, 1408, 1536, 1664, 1792, 1920
3-30 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_SysReg/xhtml/AArch64-zcr_el1.html
../SVE_SysReg/xhtml/AArch64-zcr_el2.html
../SVE_SysReg/xhtml/AArch64-zcr_el3.html
../SVE_SysReg/xhtml/AArch64-zcr_el1.html
../SVE_SysReg/xhtml/AArch64-zcr_el2.html
../SVE_SysReg/xhtml/AArch64-zcr_el3.html

3 SVE System Level Programmers’ Model
3.2 Configurable vector length
An indirect read of ZCR_EL1.LEN, ZCR_EL2.LEN, or ZCR_EL3.LEN appears to occur in program order relative
to a direct write of the same register, without the need for explicit synchronization.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 3-31
ID103018 Non-Confidential

../SVE_SysReg/xhtml/AArch64-zcr_el2.html
../SVE_SysReg/xhtml/AArch64-zcr_el3.html

3 SVE System Level Programmers’ Model
3.2 Configurable vector length
3-32 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Chapter 4
SVE Memory Model

This chapter introduces the changes to the ARMv8-A memory model introduced by SVE. This chapter contains the
following sections:
• Atomicity on page 4-34.
• Alignment support on page 4-35.
• Endian support on page 4-36.
• Memory ordering on page 4-37.
• Device memory on page 4-38.
• Constrained unpredictable memory accesses on page 4-39.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 4-33
ID103018 Non-Confidential

4 SVE Memory Model
4.1 Atomicity
4.1 Atomicity
SVE vector loads and stores are performed as a sequence of element accesses.

Further to the rules relating to the atomicity of SIMD loads and stores in the section titled Atomicity in the ARM
architecture in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile, the
following behaviors are specific to accesses generated by SVE loads and stores:
• For predicated SVE vector element or structure loads, where an element address is aligned to the size of the

element in memory, that access is treated as a single-copy atomic read.
• For predicated SVE vector element or structure stores, where an element address is aligned to the size of the

element in memory, that access is treated as a single-copy atomic write.
• Unpredicated loads and stores of a vector or predicate register are regarded as a stream of byte accesses.

Single-copy atomicity of any access that is larger than a byte, within the series of byte accesses, is not
guaranteed by the architecture.
4-34 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

4 SVE Memory Model
4.2 Alignment support
4.2 Alignment support
Further to the rules relating to alignment of SIMD loads and stores in the sections titled Alignment Support and
Memory types and attributes in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture
profile, the following behaviors are specific to accesses generated by SVE loads or stores when alignment checking
is enabled. Alignment checking is enabled when SCTLR_ELx.A has a value of 1 at the current Exception level or
because the access is to any type of Device memory:
• For predicated SVE vector element and structure loads and stores:

— Alignment checks are based on the memory element access size, not the vector element size. See
Table 5-1 on page 5-43 for more information on SVE memory element access sizes.

— Inactive elements cannot cause an Alignment fault.
• For unpredicated SVE vector register loads or stores, the base address is checked for 16-byte alignment.
• For unpredicated SVE predicate register loads or stores, the base address is checked for 2-byte alignment.

Where an SVE load or store uses the current stack pointer, SP, as the base address, and stack alignment checking is
enabled in SCTLR_ELx at the current Exception level, then the stack pointer is checked for 16-byte alignment even
when there are no Active elements to be transferred.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 4-35
ID103018 Non-Confidential

4 SVE Memory Model
4.3 Endian support
4.3 Endian support
Further to the rules relating to the byte and element order of SIMD loads and stores in the section titled Data
endianness in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile, the
following behaviors are specific to accesses generated by SVE loads and stores:
• For predicated SVE vector element and structure loads and stores, the data size that is used for endianness

conversions is the memory element access size, not the vector element size.
• For unpredicated SVE vector register loads and stores, the vector is treated as containing byte elements that

are transferred in increasing element number order without any endianness conversion.
• For unpredicated SVE predicate register loads and stores, the predicate is treated as if each 8 predicate bits

in increasing element number order are held in a byte that is transferred without any endianness conversion.
• The endian conversion for SVE loads occurs before any sign-extension or zero-extension into a vector

element. For SVE stores, the endian conversion occurs after any truncation from the vector element to the
memory element access size.
4-36 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

4 SVE Memory Model
4.4 Memory ordering
4.4 Memory ordering
The ARMv8 memory model described in the section titled Definition of the ARMv8 memory model in the ARM®
Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile is relaxed for reads and writes
generated by SVE load and store instructions as follows:
• An address dependency between two reads generated by SVE vector load instructions does not contribute to

the Dependency-ordered-before relation.
• For a given observer, a pair of reads from the same location is not required to satisfy the internal visibility

requirement if at least one of the reads was generated by an SVE load instruction.
• A single SVE vector store instruction that generates multiple writes to the same location ensures that those

writes appear in the Coherence order for that location, in order of increasing vector element number. No other
ordering restrictions apply to memory effects generated by the same SVE vector store instruction.

For all SVE instructions that load or store vector registers or predicate registers, there is no requirement for the
memory system beyond the PE to be able to identify the size of the elements that are accessed by that load or store
instruction, and, except for multiple writes to the same location, the order in which elements and registers are
accessed is not architecturally defined. This applies to accesses to Normal memory and accesses to Device memory.
See the section titled Memory types and attributes in the ARM® Architecture Reference Manual, ARMv8-A, for
ARMv8-A architecture profile for more information.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 4-37
ID103018 Non-Confidential

4 SVE Memory Model
4.5 Device memory
4.5 Device memory
For accesses by SVE instructions to a memory location with any Device memory type, the following additional
exceptions apply:
• SVE vector prefetch instructions are guaranteed not to access Device memory.
• SVE Non-fault vector load instructions are guaranteed not to access Device memory, and an attempt by any

Active element to access Device memory is suppressed and reported in the FFR as described in Synchronous
memory faults on page 3-28.

• SVE First-fault vector load instructions can access Device memory only for the First active element. If that
access does not generate a fault, then an attempt by any other Active element to access Device memory is
suppressed and reported in the FFR as described in Synchronous memory faults on page 3-28.

• Hardware speculation of data accesses performed to a Device memory location is not permitted by the
architecture, with the following exceptions:
— Explicit reads that are performed by an SVE load instruction are permitted to access bytes that are not

explicitly accessed by the instruction, provided that the bytes accessed are in a naturally-aligned
64-byte window that contains at least 1 byte that is explicitly accessed by the instruction.

— Explicit reads that are performed by an SVE non-temporal load instruction from memory locations
with the Gathering attributes are permitted to access bytes that are not explicitly accessed by the
instruction, provided that the bytes accessed are in a naturally-aligned 128-byte window that contains
at least 1 byte that is explicitly accessed by the instruction.
4-38 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

4 SVE Memory Model
4.6 Constrained unpredictable memory accesses
4.6 CONSTRAINED UNPREDICTABLE memory accesses
The sections titled Crossing a page boundary with different memory types or Shareability attributes and Crossing
a peripheral boundary with a Device access in the ARM® Architecture Reference Manual, ARMv8-A, for
ARMv8-A architecture profile define CONSTRAINED UNPREDICTABLE behaviors associated with memory accesses
due to loads and stores. These behaviors also apply to SVE vector loads and stores as follows:
• An SVE unpredicated contiguous load or store instruction has the described CONSTRAINED UNPREDICTABLE

behaviors if it accesses an address range that crosses a boundary between memory types, Shareability
attributes, or peripherals.

• An SVE predicated contiguous load or store instruction has the described CONSTRAINED UNPREDICTABLE
behaviors only if there are accesses associated with Active elements on both sides of a boundary between
different memory types, Shareability attributes, or peripherals.

• An SVE predicated non-contiguous gather-load or scatter-store instruction has the described CONSTRAINED
UNPREDICTABLE behaviors only if there is a memory access associated with any Active element that crosses
a boundary between different memory types, Shareability attributes, or peripherals.

• Memory addresses associated with Inactive elements cannot trigger the described CONSTRAINED
UNPREDICTABLE behaviors.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 4-39
ID103018 Non-Confidential

4 SVE Memory Model
4.6 Constrained unpredictable memory accesses
4-40 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Chapter 5
SVE Instruction Set

This chapter introduces the SVE instruction set. This chapter contains the following sections:
• SVE assembler language on page 5-42.
• Instruction set overview on page 5-43.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 5-41
ID103018 Non-Confidential

5 SVE Instruction Set
5.1 SVE assembler language
5.1 SVE assembler language
The SVE assembler language extends the A64 assembler language, as described in the section titled Structure of the
A64 assembler language in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile,
as follows:
• SVE vector register names Z0-Z31 and predicate register names P0-P15 are added.
• The number of elements in a vector or predicate register is not specified as part of a vector register shape

qualifier. For example, Z1.B is used rather than V1.16B.
• An element size qualifier is not required for the Governing predicate, Pg, except in the cases where the

element size cannot be inferred from the source and destination element sizes. However, an assembler must
accept a predicate element size qualifier, if provided, and check it for consistency with the other operands.

• Where appropriate, predicated instructions must indicate whether the inactive destination vector elements are
to undergo zeroing predication or merging predication. The type of predication is indicated by use of a
qualifier suffix to the Governing predicate, where:
— Pg/Z indicates zeroing predication.
— Pg/M indicates merging predication.
Some instructions identify Active and Inactive elements, but do not write to a destination vector register. For
these instructions, the Governing predicate operand is used with no zeroing or merging qualifier.

• Many SVE instructions have destructive instruction encodings. To avoid ambiguity, the assembler language
frequently uses a constructive notation for these instructions, where the destination register is repeated in the
appropriate source operand position.

• The AArch64 load/store address syntax is extended to allow for vector register operands within the address
specifier. See Load, store, and prefetch instructions on page 5-43 for more information.

• A set of SVE aliases is defined for the AArch64 condition codes. See Table 2-2 on page 2-24 for further
details.
5-42 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

5 SVE Instruction Set
5.2 Instruction set overview
5.2 Instruction set overview

5.2.1 Introduction

SVE adds a set of instructions to the existing ARMv8-A A64 instruction set. For details on the A64 instruction set,
see the section titled The A64 instruction set in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A
architecture profile. For a detailed listing of the instructions that are introduced by SVE, see the SVE instruction
index. The SVE instructions break down into the following functional groups:
• Load, store, and prefetch instructions.
• Integer operations.
• Vector address calculation.
• Bitwise operations.
• Floating-point operations.
• Predicate operations.
• Move operations.
• Reduction operations.

The following sections provide an overview of these functional groups. For detailed information on each
instruction, see the individual instruction descriptions.

5.2.2 Load, store, and prefetch instructions

SVE vector load and store instructions transfer data in memory to or from elements of one or more vector or
predicate transfer registers. SVE also includes vector prefetch instructions that provide read and write hints to the
memory system.

For SVE predicated load, store, and prefetch instructions, the memory element access size and type that is associated
with each vector element is specified by a suffix to the instruction mnemonic, independently of the element size of
the transfer registers. For example, LD1SH. Table 5-1 shows the supported instruction suffixes for SVE load, store,
and prefetch instructions.

The element size of the transfer registers is always greater than or equal to the memory element access size. When
the element size of the transfer registers is strictly greater than the memory element access size, then these are
referred to as unpacked data accesses. In the case of unpacked data accesses:
• For load instructions, each element access is sign-extended or zero-extended to fill the vector element,

according to its size and type in Table 5-1.
• For store instructions, each vector element is truncated to the memory element access size.

Table 5-1 SVE memory element access instruction suffixes

Instruction suffix Memory element access size and type

B Unsigned byte

H Unsigned halfword or half-precision floating-point

W Unsigned word or single-precision floating-point

D Unsigned doubleword or double-precision floating-point

SB Signed byte

SH Signed halfword

SW Signed word
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 5-43
ID103018 Non-Confidential

../SVE_xml/xhtml/index.html
../SVE_xml/xhtml/index.html

5 SVE Instruction Set
5.2 Instruction set overview
Where the vector element size and the memory element access size are the same, then these are referred to as packed
data accesses. Signed access types are not supported for packed data accesses. Packed and unpacked access sizes
and types relate to the vector element size of the transfer registers, as defined in Table 5-2.

Note
 For gather-load and scatter-store instructions, the vector element size can only be .S or .D. This means that any
non-contiguous memory element access of less than a word is unpacked. Non-contiguous memory element accesses
of a word can be either packed or unpacked, depending on the vector element size.

Load, store, and prefetch instructions consist of the following:
• Predicated single vector contiguous element accesses.
• Predicated multiple vector contiguous structure load/store on page 5-45.
• Predicated non-contiguous element accesses on page 5-46.
• Predicated replicating element loads on page 5-46.
• Unpredicated vector register load/store on page 5-47.
• Unpredicated predicate register load/store on page 5-47.

All predicated load instructions zero the Inactive elements of the destination vector, except for Non-fault loads and
First-fault loads when the corresponding FFR element is FALSE.

Prefetch instructions provide hints to hardware and do not change architectural state. Therefore, a Governing
predicate for a prefetch instruction provides an additional hint which indicates the memory locations to be
prefetched. Prefetch instructions require an additional <prfop> operand to be specified. SVE prefetch instructions
support all of the <prfop> listed in the section titled Prefetch memory in the ARM® Architecture Reference Manual,
ARMv8-A, for ARMv8-A architecture profile, except for the PLI prefetch operand types.

Load, store, and prefetch instructions that multiply a scalar index register or an index vector element by the memory
element access size specify a shift type, followed by a shift amount in bits. The shift type can be one of LSL, SXTW,
or UXTW. The shift amount is always Log2 of the memory element access size, in bytes. The shift amount defaults to
zero when the memory element access size is a byte. The shift type of LSL must be omitted if the shift amount is
omitted.

When included as part of the assembler syntax for an instruction, MUL VL indicates that the specified immediate index
value is multiplied by the size of the addressed vector or predicate in memory, measured in bytes, irrespective of
predication. For a detailed description of the meaning of this assembler syntax for each instruction, see the
appropriate subsection below.

Note
 When used in pseudocode, the symbol VL represents the vector length, measured in bits.

SVE load, store, and prefetch instructions do not support pre-indexed or post-indexed addressing.

Predicated single vector contiguous element accesses

Predicated contiguous load and store instructions access memory locations starting from an address that is defined
by a scalar base register plus either:
• A scalar index register.
• An immediate index value that is in the range -8 to 7, inclusive. This defaults to zero if omitted.

Table 5-2 Relationship between vector element size and memory element access size and type

Vector element Packed access suffix Unpacked access suffixes

.B B -

.H H B, SB

.S W H, SH, B, SB

.D D W, SW, H, SH, B, SB
5-44 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

5 SVE Instruction Set
5.2 Instruction set overview
Predicated contiguous prefetch instructions address memory locations in a similar manner, with the index being
either:
• A scalar index register.
• An immediate index value that is in the range of -32 to 31, inclusive. This defaults to zero if omitted.

For this group of instructions:
• The immediate index value is a vector index, not an element index. The immediate index value is multiplied

by the number of vector elements, irrespective of predication, and then multiplied by the memory element
access size in bytes. The resulting offset is incremented following each element access by the memory
element access size.

• The scalar index register value is multiplied by the memory element access size in bytes. The index value is
incremented by one after each element access, but the scalar index register is not updated by the instruction.

• Load, LD1, and store, ST1, instructions support both packed and unpacked data accesses, with a scalar index
register or an immediate index value.

• First-fault load, LDFF1, instructions support both packed and unpacked data accesses, with a scalar index
register that defaults to XZR if omitted.

• Non-fault load, LDNF1, instructions support both packed and unpacked data accesses, with an immediate index
value.

• Non-temporal load, LDNT1, and store, STNT1, instructions support only packed data accesses, with a scalar
index register or an immediate index value.

• Prefetch, PRF, instructions support only packed data accesses, with a scalar index register or an immediate
index value.

• When alignment checking is enabled for loads and stores, the value of the base address register must be
aligned to the memory element access size.

Predicated multiple vector contiguous structure load/store

Structure load, LD2, LD3, LD4, instructions read N consecutive memory locations to the same-numbered element in
each of the N vector transfer registers, where N = 2, 3, or 4, respectively. Structure store, ST2, ST3, ST4, instructions
write from the same-numbered element in each of the N consecutive vector transfer registers to N consecutive
memory locations. The starting address is defined by a scalar base register plus either:
• A scalar index register.
• An immediate index that is a multiple of N, in the range -8×N to 7×N, inclusive. This defaults to zero if

omitted.

For this group of instructions:
• The immediate index value is a vector index, not an element index. The immediate index value is multiplied

by the number of vector elements, irrespective of predication, and then multiplied by the memory element
access size in bytes. The resulting offset is incremented following each element access by the memory
element access size.

• The scalar index register value is multiplied by the memory element access size in bytes. Following each
element access, the index value is incremented by one but the instruction does not update the scalar index
register.

• Each predicate element applies to a single structure in memory, or equivalently to the same element number
within each of the two, three, or four transferred vector registers.

• These instructions support packed data accesses only.

Supported addressing modes Assembler syntax

Scalar base + scalar index [<Xn|SP>, <Xm>{, LSL #<sh>}]

Scalar base + immediate index [<Xn|SP>{, #<simm>, MUL VL}]
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 5-45
ID103018 Non-Confidential

5 SVE Instruction Set
5.2 Instruction set overview
• When alignment checking is enabled for loads and stores, the base address must be aligned to the element
access size.

Predicated non-contiguous element accesses

Predicated non-contiguous element accesses address non-contiguous memory locations that are specified by either:
• A scalar base register plus a vector of indices or offsets.
• A vector of base addresses plus an immediate byte offset. The immediate byte offset is a multiple of the

memory element access size, in the range 0 to 31 times the memory element access size, inclusive, and
defaults to zero if omitted.

For this group of instructions:
• Vector registers used as part of the address must specify a vector element size of 32 bits or 64 bits, .S or .D.

For load and store instructions, the transfer register must specify the same vector element size.
• If the index vector register contains 32-bit index values then the lowest 32 bits of each index vector element

can either be zero-extended or sign-extended to 64 bits.
• For load and store instructions, the index vector elements are then optionally multiplied by the memory

element access size, in bytes, if a shift amount is specified. For prefetch instructions the index vector elements
are always multiplied by the memory element access size, in bytes.

• Load, LD1, store, ST1, and First-fault load, LDFF1, instructions support packed and unpacked data accesses.
Prefetch, PRF, instructions only specify the memory element access size.

• When alignment checking is enabled for loads and stores, the computed virtual address of each element must
be aligned to the memory element access size.

Predicated replicating element loads

The load and replicate instructions read one or more contiguous memory locations starting from an address that is
defined by a scalar base register plus either:
• A scalar index register.
• An immediate byte offset.

This defaults to zero if omitted.

For this group of instructions:
• The LD1R instructions load a single element value and replicate it into all Active elements of the destination

vector. These instructions support packed and unpacked data accesses.These instructions use an immediate
byte offset that is a multiple of the memory element access size, in the range 0 to 63 times the memory
element access size, inclusive.

Supported addressing modes Assembler syntax

Scalar base + scalar index [<Xn|SP>, <Xm>{, LSL #<sh>}]

Scalar base + immediate index [<Xn|SP>{, #<simm>, MUL VL}]

Assembler syntax

Supported addressing modes 64-bit elements 32-bit elements

Scalar base + 64-bit vector index [<Xn|SP>, <Zm>.D{, LSL #<sh>}] -

Scalar base + 32-bit vector index [<Xn|SP>, <Zm>.D, (S|U)XTW{ #<sh>}] [<Xn|SP>, <Zm>.S, (S|U)XTW{ #<sh>}]

Vector base + immediate offset [<Zn>.D{, #<uimm>}] [<Zn>.S{, #<uimm>}]
5-46 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

5 SVE Instruction Set
5.2 Instruction set overview
• The LD1RQ instructions load a predicated 128-bit quadword vector segment from contiguous element values
and replicate that segment into all segments of the destination vector. These instructions support only packed
data accesses. These instructions can use a scalar index register that is multiplied by the memory element
access size, or an immediate byte offset that is a multiple of 16, in the range of -128 to 112, inclusive.

• When alignment checking is enabled for loads and stores, the base address must be aligned to the memory
element access size.

Unpredicated vector register load/store

The unpredicated vector register load, LDR, and store, STR, instructions transfer a single vector register from or to
memory locations that are specified by a scalar base register plus an immediate index value that is in the range -256
to 255, inclusive. The immediate index value defaults to zero if omitted. For this group of instructions:
• The immediate index value is a vector index, not an element index. The immediate index value is multiplied

by the current vector register length in bytes.
• The data transfer is performed as a contiguous stream of byte accesses in ascending element order, without

endianness conversion.
• When alignment checking is enabled for loads and stores, the base address must be 16-byte aligned.

Unpredicated predicate register load/store

The unpredicated predicate register load, LDR, and store, STR, instructions transfer a single predicate register from or
to memory locations that are specified by a scalar base register plus an immediate index value that is in the range
-256 to 255, inclusive. The immediate index value defaults to zero if omitted. For this group of instructions:
• The immediate index value is a predicate index, not an element index. The immediate index value is

multiplied by the current predicate register length, in bytes.
• The data transfer is performed as a contiguous stream of byte accesses, each byte containing 8 consecutive

predicate bits, in ascending bit and element order, without endian conversion.
• When alignment checking is enabled for loads and stores, the base address must be 2-byte aligned.

Supported addressing modes Assembler syntax

Scalar base + scalar index [<Xn|SP>, <Xm>{, LSL #<sh>}]

Scalar base + immediate offset [<Xn|SP>{, #<imm>}]

Supported addressing mode Assembler syntax

Scalar base + immediate index [<Xn|SP>{, #<simm>, MUL VL}]

Supported addressing mode Assembler syntax

Scalar base + immediate index [<Xn|SP>{, #<simm>, MUL VL}]
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 5-47
ID103018 Non-Confidential

5 SVE Instruction Set
5.2 Instruction set overview
5.2.3 Vector move operations

Element move and broadcast

These instructions copy data from scalar registers, immediate values, and other vectors to selected vector elements.
The copied data might be in an integer or floating-point format.

5.2.4 Integer operations

The following instructions operate on signed or unsigned integer data within a vector.

Integer arithmetic

These instructions perform arithmetic operations on a source vector containing integer element values, and for
binary operations, either a second source vector of integer values, or an immediate value.

Table 5-3 Element move and broadcast instructions

Mnemonic Instruction See

CPY Copy signed integer immediate to vector elements CPY

Copy general-purpose register to vector elements CPY

Copy SIMD&FP scalar register to vector elements CPY

DUP Broadcast signed immediate to vector elements DUP

Broadcast general-purpose register to vector elements DUP

FCPY Copy 8-bit floating-point immediate to vector elements FCPY

FDUP Broadcast 8-bit floating-point immediate to vector elements FDUP

FMOV Move floating-point +0.0 to vector elements (unpredicated) FMOV

Move floating-point +0.0 to vector elements (predicated) FMOV

Move 8-bit floating-point immediate to vector elements (unpredicated) FMOV

Move 8-bit floating-point immediate to vector element (predicated) FMOV

MOV Move signed integer immediate to vector elements (unpredicated) MOV

Move signed integer immediate to vector elements (predicated) MOV

Move general-purpose register to vector elements (unpredicated) MOV

Move general-purpose register to vector elements (predicated) MOV

Move SIMD&FP scalar register to vector elements (unpredicated) MOV

Move SIMD&FP scalar register to vector elements (predicated) MOV

Move vector register (unpredicated) MOV

Move vector register (predicated) MOV

SEL Select vector elements from two vectors SEL

Table 5-4 Integer arithmetic instructions

Mnemonic Instruction See

ABS Absolute value ABS

ADD Add vectors (predicated) ADD

Add vectors (unpredicated) ADD

Add immediate ADD

CNOT Logically invert Boolean condition CNOT

MAD Multiply-add, writing to the multiplicand register MAD
5-48 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/abs_z_p_z.html
../SVE_xml/xhtml/add_z_p_zz.html
../SVE_xml/xhtml/add_z_zz.html
../SVE_xml/xhtml/add_z_zi.html
../SVE_xml/xhtml/cnot_z_p_z.html
../SVE_xml/xhtml/mad_z_p_zzz.html
../SVE_xml/xhtml/mov_dup_z_r.html
../SVE_xml/xhtml/cpy_z_p_i.html
../SVE_xml/xhtml/cpy_z_p_r.html
../SVE_xml/xhtml/cpy_z_p_v.html
../SVE_xml/xhtml/dup_z_i.html
../SVE_xml/xhtml/dup_z_r.html
../SVE_xml/xhtml/fcpy_z_p_i.html
../SVE_xml/xhtml/fdup_z_i.html
../SVE_xml/xhtml/fmov_dup_z_i.html
../SVE_xml/xhtml/fmov_cpy_z_p_i.html
../SVE_xml/xhtml/fmov_fdup_z_i.html
../SVE_xml/xhtml/fmov_fcpy_z_p_i.html
../SVE_xml/xhtml/mov_dup_z_i.html
../SVE_xml/xhtml/mov_cpy_z_p_i.html
../SVE_xml/xhtml/mov_cpy_z_p_r.html
../SVE_xml/xhtml/mov_cpy_z_p_v.html
../SVE_xml/xhtml/mov_dup_z_r.html
../SVE_xml/xhtml/mov_sel_z_p_zz.html
../SVE_xml/xhtml/sel_z_p_zz.html
../SVE_xml/xhtml/mov_dup_z_zi.html
../SVE_xml/xhtml/mov_dup_z_zi.html

5 SVE Instruction Set
5.2 Instruction set overview
MLA Multiply-add, writing to the addend register MLA

MLS Multiply-subtract, writing to the addend register MLS

MSB Multiply-subtract, writing to the multiplicand register MSB

MUL Multiply by immediate MUL

Multiply vectors MUL

NEG Negate NEG

SABD Signed absolute difference SABD

SDIV Signed divide SDIV

SDIVR Signed reverse divide SDIVR

SMAX Signed maximum with immediate SMAX

Signed maximum vectors SMAX

SMIN Signed minimum with immediate SMIN

Signed minimum vectors SMIN

SMULH Signed multiply returning high half SMULH

SQADD Signed saturating add immediate SQADD

Signed saturating add vectors SQADD

SQSUB Signed saturating subtract immediate SQSUB

Signed saturating subtract vectors SQSUB

SUB Subtract immediate SUB

Subtract vectors (predicated) SUB

Subtract vectors (unpredicated) SUB

SUBR Reversed subtract from immediate SUBR

Reversed subtract vectors SUBR

SXTB Signed byte extend SXTB

SXTH Signed halfword extend SXTH

SXTW Signed word extend SXTW

UABD Unsigned absolute difference UABD

UDIV Unsigned divide UDIV

UDIVR Unsigned reversed divide UDIVR

UMAX Unsigned maximum with immediate UMAX

Unsigned maximum vectors UMAX

UMIN Unsigned minimum with immediate UMIN

Unsigned minimum vectors UMIN

UMULH Unsigned multiply returning high half UMULH

UQADD Unsigned saturating add immediate UQADD

Unsigned saturating add vectors UQADD

UQSUB Unsigned saturating subtract immediate UQSUB

Unsigned saturating subtract vectors UQSUB

UXTB Unsigned byte extend UXTB

UXTH Unsigned halfword extend UXTH

UXTW Unsigned word extend UXTW

Table 5-4 Integer arithmetic instructions (continued)

Mnemonic Instruction See
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 5-49
ID103018 Non-Confidential

../SVE_xml/xhtml/mla_z_p_zzz.html
../SVE_xml/xhtml/mls_z_p_zzz.html
../SVE_xml/xhtml/msb_z_p_zzz.html
../SVE_xml/xhtml/mul_z_zi.html
../SVE_xml/xhtml/neg_z_p_z.html
../SVE_xml/xhtml/sabd_z_p_zz.html
../SVE_xml/xhtml/sdiv_z_p_zz.html
../SVE_xml/xhtml/sdivr_z_p_zz.html
../SVE_xml/xhtml/smax_z_zi.html
../SVE_xml/xhtml/smax_z_p_zz.html
../SVE_xml/xhtml/smin_z_zi.html
../SVE_xml/xhtml/smin_z_p_zz.html
../SVE_xml/xhtml/smulh_z_p_zz.html
../SVE_xml/xhtml/sqadd_z_zi.html
../SVE_xml/xhtml/sqadd_z_zz.html
../SVE_xml/xhtml/sqsub_z_zi.html
../SVE_xml/xhtml/sqsub_z_zz.html
../SVE_xml/xhtml/sub_z_zi.html
../SVE_xml/xhtml/sub_z_p_zz.html
../SVE_xml/xhtml/sub_z_zz.html
../SVE_xml/xhtml/subr_z_zi.html
../SVE_xml/xhtml/subr_z_p_zz.html
../SVE_xml/xhtml/sxtb_z_p_z.html
../SVE_xml/xhtml/sxtb_z_p_z.html
../SVE_xml/xhtml/sxtb_z_p_z.html
../SVE_xml/xhtml/uabd_z_p_zz.html
../SVE_xml/xhtml/udiv_z_p_zz.html
../SVE_xml/xhtml/udivr_z_p_zz.html
../SVE_xml/xhtml/umax_z_zi.html
../SVE_xml/xhtml/umax_z_p_zz.html
../SVE_xml/xhtml/umin_z_zi.html
../SVE_xml/xhtml/umin_z_p_zz.html
../SVE_xml/xhtml/umulh_z_p_zz.html
../SVE_xml/xhtml/uqadd_z_zi.html
../SVE_xml/xhtml/uqadd_z_zz.html
../SVE_xml/xhtml/uqsub_z_zi.html
../SVE_xml/xhtml/uqsub_z_zz.html
../SVE_xml/xhtml/uqsub_z_zz.html
../SVE_xml/xhtml/uxtb_z_p_z.html
../SVE_xml/xhtml/uxtb_z_p_z.html
../SVE_xml/xhtml/uxtb_z_p_z.html
../SVE_xml/xhtml/mul_z_p_zz.html

5 SVE Instruction Set
5.2 Instruction set overview
Integer dot product

The integer partial dot product instructions delimit the source vectors into groups of four 8-bit or 16-bit integer
elements, called quadtuplets. Within each group of four elements, the elements in the first source vector are
multiplied by the corresponding elements in the second source vector. The resulting widened products are summed
and added to the 32-bit or 64-bit element of the accumulator and destination vector that aligns with the group of four
elements in the first source vector.

The indexed forms of these instructions specify a single, numbered, group of four elements within each 128-bit
segment of the second source vector as the multiplier for all the groups of four elements within the corresponding
128-bit segment of the first source vector.

Integer comparisons

These instructions compare Active elements in the first source vector with the corresponding elements in a second
vector or with an immediate value. The Boolean result of each comparison is placed in the corresponding element
of the destination predicate. Inactive elements in the destination predicate register are set to zero. All integer
comparisons set the N, Z, and C condition flags based on the predicate result, and set the V flag to zero.

The wide element variants of the compare instructions allow a packed vector of narrower elements to be compared
with wider 64-bit elements. These instructions treat the second source vector as having a fixed 64-bit doubleword
element size and compare each narrow element of the first source vector with the corresponding vertically-aligned
wide element of the second source vector. For example, if the first source vector contained 8-bit byte elements, then
8-bit element[0] to element[7] of the first source vector are compared with 64-bit element[0] of the second source
vector, 8-bit element[8] to element[15] with 64-bit element[1], and so on. All 64 bits of the wide elements are
significant for the comparison, with the narrow elements being sign-extended or zero-extended to 64 bits as
appropriate for the type of comparison.

Table 5-5 Integer dot product instructions

Mnemonic Instruction See

SDOT Signed dot product by vector SDOT

Signed dot product by indexed quadtuplets SDOT

UDOT Unsigned dot product by vector UDOT

Unsigned dot product by indexed quadtuplets UDOT

Table 5-6 Integer comparison instructions

Mnemonic Instruction See

CMPEQ Compare signed equal to immediate CMPEQ

Compare signed equal to wide elements CMPEQ

Compare signed equal to vector CMPEQ

CMPGE Compare signed greater than or equal to immediate CMPGE

Compare signed greater than or equal to wide elements CMPGE

Compare signed greater than or equal to vector CMPGE

CMPGT Compare signed greater than immediate CMPGT

Compare signed greater than wide elements CMPGT

Compare signed greater than vector CMPGT

CMPHI Compare unsigned higher than immediate CMPHI

Compare unsigned higher than wide elements CMPHI

Compare unsigned higher than vector CMPHI

CMPHS Compare unsigned higher than or same as immediate CMPHS

Compare unsigned higher than or same as wide elements CMPHS

Compare unsigned higher than or same as vector CMPHS
5-50 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/sdot_z_zzz.html
../SVE_xml/xhtml/sdot_z_zzzi.html
../SVE_xml/xhtml/udot_z_zzz.html
../SVE_xml/xhtml/udot_z_zzzi.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html

5 SVE Instruction Set
5.2 Instruction set overview
5.2.5 Vector address calculation

These instructions compute vectors of addresses and addresses of vectors. This includes instructions to add a
multiple of the current vector length or predicate register length, in bytes, to a general-purpose register.

The ADR instruction is an integer arithmetic operation that is used to calculate a vector of 64-bit or 32-bit addresses.
The destination register elements are computed by the addition of the corresponding elements in the source
registers, with an optional sign or zero extension and optional bitwise left shift of 1-3 bits applied to the final
operands. This can be considered as the addition of a vector base and a scaled vector index.

32-bit addresses are computed by the addition of a 32-bit base and a scaled 32-bit unsigned index.

64-bit addresses are computed by one of:
• Addition of a 64-bit base and a scaled 64-bit unsigned index.
• Addition of a 64-bit base and a scaled, zero-extended 32-bit index.
• Addition of a 64-bit base and a scaled, sign-extended 32-bit index.

CMPLE Compare signed less than or equal to immediate CMPLE

Compare signed less than or equal to wide elements CMPLE

Compare signed less than or equal to vector CMPLE

CMPLO Compare unsigned lower than immediate CMPLO

Compare unsigned lower than 64-bit wide elements CMPLO

Compare unsigned lower than vector CMPLO

CMPLS Compare unsigned lower or same as immediate CMPLS

Compare unsigned lower or same as wide elements CMPLS

Compare unsigned lower or same as vector CMPLS

CMPLT Compare signed less than immediate CMPLT

Compare signed less than wide elements CMPLT

Compare signed less than vector CMPLT

CMPNE Compare not equal to immediate CMPNE

Compare not equal to wide elements CMPNE

Compare not equal to vector CMPNE

Table 5-6 Integer comparison instructions (continued)

Mnemonic Instruction See

Table 5-7 Vector address calculation instructions

Mnemonic Instruction See

ADDVL Add multiple of vector length, in bytes, to scalar register ADDVL

ADDPL Add multiple of predicate register length, in bytes, to scalar register ADDPL

ADR Compute vector of addresses ADR

RDVL Read multiple of vector register length, in bytes, to scalar register RDVL
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 5-51
ID103018 Non-Confidential

../SVE_xml/xhtml/adr_z_az.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/cmpeq_p_p_zi.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zw.html
../SVE_xml/xhtml/cmpeq_p_p_zz.html
../SVE_xml/xhtml/addvl_r_ri.html
../SVE_xml/xhtml/addpl_r_ri.html
../SVE_xml/xhtml/adr_z_az.html
../SVE_xml/xhtml/rdvl_r_i.html

5 SVE Instruction Set
5.2 Instruction set overview
5.2.6 Bitwise operations

Bitwise logical operations

These instructions perform bitwise logical operations on vectors. Where operations are unpredicated, the operations
are independent of the element size.

Bitwise shift, reverse, and count

Bitwise shifts, reversals, and counts within vector elements.

Shift counts saturate at the number of bits per element, rather than being used modulo the element size. If modulo
behavior is required, then the modulus must be computed separately.

The wide element variants of the bitwise shift instructions allow a packed vector of narrower elements to be shifted
by wider 64-bit shift amounts. These instructions treat the second source vector as having a fixed 64-bit doubleword
element size and shift each narrow element of the first source vector by the corresponding vertically-aligned wide
element of the second source vector. For example, if the first source vector contained 8-bit byte elements, then 8-bit
element[0] to element[7] of the first vector are shifted by 64-bit element[0] of the second source vector, 8-bit
element [8] to element[15] by 64-bit element[1], and so on. All 64 bits of the wide shift amount are significant.

Table 5-8 Bitwise logical operations

Mnemonic Instruction See

AND Bitwise AND vectors (predicated) AND

Bitwise AND vectors (unpredicated) AND

Bitwise AND with immediate AND

BIC Bitwise clear with vector (predicated) BIC

Bitwise clear with vector (unpredicated) BIC

Bitwise clear using immediate BIC

DUPM Broadcast bitmask immediate to vector (unpredicated) DUPM

EON Bitwise exclusive OR with inverted immediate EON

EOR Bitwise exclusive OR vectors (predicated) EOR

Bitwise exclusive OR vectors (unpredicated) EOR

Bitwise exclusive OR with immediate EOR

MOV Move bitmask immediate to vector MOV

Move vector register MOV

NOT Bitwise invert vector NOT

ORN Bitwise OR with inverted immediate ORN

ORR Bitwise OR vectors (predicated) ORR

Bitwise OR vectors (unpredicated) ORR

Bitwise OR with immediate ORR

Table 5-9 Bitwise shift, permute, and count instructions

Mnemonic Instruction See

ASR Arithmetic shift right by immediate (predicated) ASR

Arithmetic shift right by immediate (unpredicated) ASR

Arithmetic shift right by wide elements (predicated) ASR

Arithmetic shift right by wide elements (unpredicated) ASR

Arithmetic shift right by vector ASR
5-52 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/asr_z_p_zz.html
../SVE_xml/xhtml/eon_eor_z_zi.html
../SVE_xml/xhtml/and_z_p_zz.html
../SVE_xml/xhtml/and_z_zz.html
../SVE_xml/xhtml/and_z_zi.html
../SVE_xml/xhtml/bic_z_p_zz.html
../SVE_xml/xhtml/bic_z_zz.html
../SVE_xml/xhtml/bic_and_z_zi.html
../SVE_xml/xhtml/dupm_z_i.html
../SVE_xml/xhtml/eor_z_zi.html
../SVE_xml/xhtml/eor_z_p_zz.html
../SVE_xml/xhtml/eor_z_zz.html
../SVE_xml/xhtml/mov_dupm_z_i.html
../SVE_xml/xhtml/mov_orr_z_zz.html
../SVE_xml/xhtml/not_z_p_z.html
../SVE_xml/xhtml/orn_orr_z_zi.html
../SVE_xml/xhtml/orr_z_p_zz.html
../SVE_xml/xhtml/orr_z_zi.html
../SVE_xml/xhtml/orr_z_zz.html
../SVE_xml/xhtml/asr_z_p_zi.html
../SVE_xml/xhtml/asr_z_p_zw.html
../SVE_xml/xhtml/asr_z_zi.html
../SVE_xml/xhtml/asr_z_zw.html

5 SVE Instruction Set
5.2 Instruction set overview
5.2.7 Floating-point operations

The following instructions operate on floating-point data within a vector.

Floating-point arithmetic

These instructions perform arithmetic operations on vectors containing floating-point element values.

ASRD Arithmetic shift right for divide by immediate ASRD

ASRR Reversed arithmetic shift right by vector ASRR

CLS Count leading sign bits CLS

CLZ Count leading zero bits CLZ

CNT Count nonzero bits. CNT

LSL Logical shift left by immediate (predicated) LSL

Logical shift left by immediate (unpredicated) LSL

Logical shift left by wide elements (predicated) LSL

Logical shift left by wide elements (unpredicated) LSL

Logical shift left by vector LSL

LSLR Reversed logical shift left by vector LSLR

LSR Logical shift right by immediate (predicated) LSR

Logical shift right by immediate (unpredicated) LSR

Logical shift right by wide elements (predicated) LSR

Logical shift right by wide elements (unpredicated) LSR

Logical shift right by vector LSR

LSRR Reversed logical shift right by vector LSRR

RBIT Reverse bits RBIT

Table 5-9 Bitwise shift, permute, and count instructions (continued)

Mnemonic Instruction See

Table 5-10 Floating-point arithmetic instructions

Mnemonic Instruction See

FABD Floating-point absolute difference FABD

FABS Floating-point absolute value FABS

FADD Floating-point add immediate FADD

Floating-point add (predicated) FADD

Floating-point add (unpredicated) FADD
FDIV Floating-point divide FDIV

FDIVR Floating-point reversed divide FDIVR

FMAX Floating-point maximum with immediate FMAX

Floating-point maximum vectors FMAX
FMAXNM Floating-point maximum number with immediate FMAXNM

Floating-point maximum number vectors FMAXNM

FMIN Floating-point minimum with immediate FMIN

Floating-point minimum vectors FMIN

FMINNM Floating-point minimum number with immediate FMINNM
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 5-53
ID103018 Non-Confidential

../SVE_xml/xhtml/lsl_z_p_zz.html
../SVE_xml/xhtml/lsr_z_p_zz.html
../SVE_xml/xhtml/asrd_z_p_zi.html
../SVE_xml/xhtml/asrr_z_p_zz.html
../SVE_xml/xhtml/cls_z_p_z.html
../SVE_xml/xhtml/clz_z_p_z.html
../SVE_xml/xhtml/cnt_z_p_z.html
../SVE_xml/xhtml/lsl_z_p_zw.html
../SVE_xml/xhtml/lsl_z_p_zi.html
../SVE_xml/xhtml/lsl_z_zw.html
../SVE_xml/xhtml/lsl_z_zi.html
../SVE_xml/xhtml/lslr_z_p_zz.html
../SVE_xml/xhtml/lsr_z_zw.html
../SVE_xml/xhtml/lsr_z_zi.html
../SVE_xml/xhtml/lsr_z_p_zw.html
../SVE_xml/xhtml/lsr_z_p_zi.html
../SVE_xml/xhtml/lsrr_z_p_zz.html
../SVE_xml/xhtml/rbit_z_p_z.html
../SVE_xml/xhtml/fabd_z_p_zz.html
../SVE_xml/xhtml/fabs_z_p_z.html
../SVE_xml/xhtml/fadd_z_p_zs.html
../SVE_xml/xhtml/fadd_z_p_zz.html
../SVE_xml/xhtml/fadd_z_zz.html
../SVE_xml/xhtml/fdiv_z_p_zz.html
../SVE_xml/xhtml/fdivr_z_p_zz.html
../SVE_xml/xhtml/fmax_z_p_zs.html
../SVE_xml/xhtml/fmax_z_p_zz.html
../SVE_xml/xhtml/fmaxnm_z_p_zs.html
../SVE_xml/xhtml/fmaxnm_z_p_zz.html
../SVE_xml/xhtml/fmin_z_p_zs.html
../SVE_xml/xhtml/fmin_z_p_zz.html
../SVE_xml/xhtml/fminnm_z_p_zs.html

5 SVE Instruction Set
5.2 Instruction set overview
Floating-point multiply accumulate

These instructions perform floating-point fused multiply-add or multiply-subtract operations and their negated
forms. There are two groups of these instructions, as follows:
• Instructions where the result of the operation is written to the addend register.

— Supported instructions are: FMLA, FMLS, FNMLA, FNMLS.
• Instructions where the result of the operation is written to the multiplicand register.

— Supported instructions are: FMAD, FMSB, FNMAD, FNMSB.

Floating-point complex arithmetic

These instructions perform arithmetic on vectors containing floating-point complex numbers as interleaved pairs of
elements, where the even-numbered elements contain the real components and the odd-numbered elements contain
the imaginary components.

Floating-point minimum number vectors FMINNM

FMUL Floating-point multiply by immediate FMUL

Floating-point multiply vectors (predicated) FMUL

Floating-point multiply vectors (unpredicated) FMUL
FMULX Floating-point multiply-extended FMULX

FNEG Floating-point negate FNEG

FRECPE Floating-point reciprocal estimate FRECPE

FRECPS Floating-point reciprocal step FRECPS

FRECPX Floating-point reciprocal exponent FRECPX

FRSQRTE Floating-point reciprocal square root estimate FRSQRTE

FRSQRTS Floating-point reciprocal square root step FRSQRTS

FSCALE Floating-point adjust exponent by vector FSCALE

FSQRT Floating-point square root FSQRT

FSUB Floating-point subtract immediate FSUB

Floating-point subtract vectors (predicated) FSUB

Floating-point subtract vectors (unpredicated) FSUB
FSUBR Floating-point reversed subtract from immediate FSUBR

Floating-point reversed subtract vectors FSUBR

Table 5-11 Floating-point multiply accumulate instructions

Mnemonic Instruction See

FMLA Floating-point fused multiply-add vectors, writing to the addend FMLA

FMLS Floating-point fused multiply-subtract vectors, writing to the addend FMLS

FNMLA Floating-point negated fused multiply-add vectors, writing to the addend FNMLA

FNMLS Floating-point negated fused multiply-subtract vectors, writing to the addend FNMLS

FMAD Floating-point fused multiply-add vectors, writing to the multiplicand FMAD

FMSB Floating-point fused multiply-subtract vectors, writing to the multiplicand FMSB

FNMAD Floating-point negated fused multiply-add vectors, writing to the multiplicand FNMAD

FNMSB Floating-point negated fused multiply-subtract vectors, writing to the multiplicand FNMSB

Table 5-10 Floating-point arithmetic instructions (continued)

Mnemonic Instruction See
5-54 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/fmla_z_p_zzz.html
../SVE_xml/xhtml/fmls_z_p_zzz.html
../SVE_xml/xhtml/fnmla_z_p_zzz.html
../SVE_xml/xhtml/fsubr_z_p_zs.html
../SVE_xml/xhtml/fnmls_z_p_zzz.html
../SVE_xml/xhtml/fmad_z_p_zzz.html
../SVE_xml/xhtml/fmsb_z_p_zzz.html
../SVE_xml/xhtml/fnmad_z_p_zzz.html
../SVE_xml/xhtml/fnmsb_z_p_zzz.html
../SVE_xml/xhtml/fminnm_z_p_zz.html
../SVE_xml/xhtml/fmul_z_p_zs.html
../SVE_xml/xhtml/fmul_z_p_zz.html
../SVE_xml/xhtml/fmul_z_zz.html
../SVE_xml/xhtml/fmulx_z_p_zz.html
../SVE_xml/xhtml/fneg_z_p_z.html
../SVE_xml/xhtml/frecpe_z_z.html
../SVE_xml/xhtml/frecps_z_zz.html
../SVE_xml/xhtml/frecpx_z_p_z.html
../SVE_xml/xhtml/frsqrte_z_z.html
../SVE_xml/xhtml/frsqrts_z_zz.html
../SVE_xml/xhtml/fscale_z_p_zz.html
../SVE_xml/xhtml/fsqrt_z_p_z.html
../SVE_xml/xhtml/fsub_z_p_zs.html
../SVE_xml/xhtml/fsub_z_p_zz.html
../SVE_xml/xhtml/fsub_z_zz.html
../SVE_xml/xhtml/fsubr_z_p_zz.html

5 SVE Instruction Set
5.2 Instruction set overview
The FCADD instructions rotate the complex numbers in the second source vector by 90 degrees or 270 degrees in the
direction from the positive real axis towards the positive imaginary axis, when considered in polar representation,
before adding active pairs of elements to the corresponding elements of the first source vector in a destructive
manner.

The FCMLA instructions perform a transformation of the operands to allow the creation of multiply-add or
multiply-subtract operations on complex numbers by combining two of the instructions. The transformations
performed are as follows:
• The complex numbers in the second source vector, considered in polar form, are rotated by 0 degrees or 180

degrees before multiplying by the duplicated real components of the first source vector.
• The complex numbers in the second source vector, considered in polar form, are rotated by 90 degrees or 270

degrees before multiplying by the duplicated imaginary components of the first source vector.

The resulting products are then added to the corresponding components of the destination and addend vector,
without intermediate rounding. Two FCMLA instructions can be used as follows:

FCMLA Zda.S, Pg/M, Zn.S, Zm.S, #A
...
FCMLA Zda.S, Pg/M, Zn.S, Zm.S, #B

For example, some meaningful combinations of A and B are:
• A=0, B=90. In this case, the two vectors of complex numbers in Zn and Zm are multiplied and the products

are added to the complex numbers in Zda.
• A=0, B=270. In this case, the conjugates of the complex numbers in Zn are multiplied by the complex

numbers in Zm and the products are added to the complex numbers in Zda.
• A=180, B=270. In this case, the two vectors of complex numbers in Zn and Zm are multiplied and the

products are subtracted from the complex numbers in Zda.
• A=180, B=90. In this case, the conjugates of the complex numbers in Zn are multiplied by the complex

numbers in Zm and the products are subtracted from the complex numbers in Zda.

Note
 The lack of intermediate rounding can give unexpected results in certain cases relative to a traditional sequence of
independent multiply, add, and subtract instructions.

In addition, when using these instructions, the behavior of calculations such as (∞+∞i) multiplied by (0+i) is
(NaN+NaNi), rather than the result expected by ISO C, which is complex ∞.

The expectation is that these instructions are only used in situations where the effect of differences in the rounding
and handling of infinities are not material to the calculation.

Floating-point rounding and conversion

These instructions change floating-point size and precision, round floating-point to integral floating-point with
explicit rounding mode, and convert floating-point to or from integer format.

Table 5-12 Floating-point complex arithmetic instructions

Mnemonic Instruction See

FCADD Floating-point complex add with rotate FCADD

FCMLA Floating-point complex multiply-add with rotate FCMLA

Table 5-13 Floating-point rounding and conversion instructions

Mnemonic Instruction See

FCVT Floating-point convert precision FCVT

FCVTZS Floating-point convert to signed integer, rounding toward zero FCVTZS

FCVTZU Floating-point convert to unsigned integer, rounding toward zero FCVTZU
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 5-55
ID103018 Non-Confidential

../SVE_xml/xhtml/fcadd_z_p_zz.html
../SVE_xml/xhtml/fcmla_z_p_zzz.html
../SVE_xml/xhtml/fcvt_z_p_z.html
../SVE_xml/xhtml/fcvtzs_z_p_z.html
../SVE_xml/xhtml/fcvtzu_z_p_z.html

5 SVE Instruction Set
5.2 Instruction set overview
Floating-point comparisons

These instructions compare active floating-point element values in the first source vector with corresponding
elements in the second vector or with the immediate value +0.0. The Boolean result of each comparison is placed
in the corresponding element of the destination predicate. Inactive elements in the destination predicate register are
set to zero. Floating-point vector comparisons do not set the condition flags.

Floating-point transcendental acceleration

The floating-point transcendental instructions accelerate calculations of sine, cosine, and exponential functions for
vectors containing floating-point element values.

FRINTA Floating-point round to integral value, to nearest with ties away from zero FRINTA

FRINTI Floating-point round to integral value, using the current rounding mode FRINTI

FRINTM Floating-point round to integral value, toward minus infinity FRINTM

FRINTN Floating-point round to integral value, to nearest with ties to even FRINTN

FRINTP Floating-point round to integral value, toward plus infinity FRINTP

FRINTX Floating-point round to integral value exact, using the current rounding mode FRINTX

FRINTZ Floating-point round to integral value, toward zero FRINTZ

SCVTF Signed integer convert to floating-point SCVTF

UCVTF Unsigned integer convert to floating-point UCVTF

Table 5-14 Floating-point comparison instructions

Mnemonic Instruction See

FACGE Floating-point absolute compare greater than or equal FACGE

FACGT Floating-point absolute compare greater than FACGT

FACLE Floating-point absolute compare less than or equal FACLE

FACLT Floating-point absolute compare less than FACLT

FCMEQ Floating-point compare equal to zero FCMEQ

Floating-point compare equal to vector FCMEQ

FCMGE Floating-point compare greater than or equal to zero FCMGE

Floating-point compare greater than or equal to vector FCMGE

FCMGT Floating-point compare greater than zero FCMGT

Floating-point compare greater than vector FCMGT

FCMLE Floating-point compare less than or equal to zero FCMLE

Floating-point compare less than or equal to vector FCMLE

FCMLT Floating-point compare less than zero FCMLT

Floating-point compare less than vector FCMLT

FCMNE Floating-point compare not equal to zero FCMNE

Floating-point compare not equal to vector FCMNE

FCMUO Floating-point unordered vectors FCMUO

Table 5-13 Floating-point rounding and conversion instructions (continued)

Mnemonic Instruction See
5-56 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/frinta_z_p_z.html
../SVE_xml/xhtml/scvtf_z_p_z.html
../SVE_xml/xhtml/ucvtf_z_p_z.html
../SVE_xml/xhtml/facge_p_p_zz.html
../SVE_xml/xhtml/facge_p_p_zz.html
../SVE_xml/xhtml/facle_facge_p_p_zz.html
../SVE_xml/xhtml/faclt_facge_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_z0.html
../SVE_xml/xhtml/fcmeq_p_p_z0.html
../SVE_xml/xhtml/fcmeq_p_p_z0.html
../SVE_xml/xhtml/fcmeq_p_p_z0.html
../SVE_xml/xhtml/fcmeq_p_p_z0.html
../SVE_xml/xhtml/fcmeq_p_p_z0.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html
../SVE_xml/xhtml/fcmeq_p_p_zz.html

5 SVE Instruction Set
5.2 Instruction set overview
The trigonometric instructions accelerate the calculation of a polynomial series approximation for the sine and
cosine functions. The exponential instruction accelerates the polynomial series calculation of the exponential
function.

Floating-point indexed multiplies

These instructions multiply all floating-point elements within each 128-bit segment of the first source vector by the
single numbered element within the corresponding segment of the second source vector. For the FMLA and FMLS
instructions, the products are destructively added or subtracted from the corresponding elements of the addend and
destination vector, without intermediate rounding.

5.2.8 Predicate operations

These instructions relate to operations that manipulate the predicate registers.

Some of these instructions are insensitive to the predicate element size and specify an explicit byte element size
qualifier, .B, but an assembler must accept any qualifier, or none.

Predicate initialization

These instructions initialize predicate elements.

Predicate elements can be initialized to be FALSE, or to be TRUE when their element number is less than:
• A fixed number of elements, VL1 to VL256.
• The largest power of two elements, POW2.
• The largest multiple of three or four elements, MUL3 or MUL4.
• The number of accessible elements, ALL, which is implicitly a multiple of two.

Unspecified or out of range constraint encodings generate a predicate with values that are all FALSE and do not
cause an Undefined Instruction exception.

Table 5-15 Floating-point transcendental acceleration instructions

Mnemonic Instruction See

FTMAD Floating-point trigonometric multiply-add coefficient FTMAD

FTSMUL Floating-point trigonometric starting value FTSMUL

FTSSEL Floating-point trigonometric select coefficient FTSSEL

FEXPA Floating-point exponential accelerator FEXPA

Table 5-16 Floating-point index multiply instructions

Mnemonic Instruction See

FMLA Floating-point fused multiply-add by indexed elements FMLA

FMLS Floating-point fused multiply-subtract by indexed elements FMLS

FMUL Floating-point multiply by indexed elements FMUL

Table 5-17 Predicate initialization instructions

Mnemonic Instruction See

PFALSE Set all predicate elements to FALSE PFALSE

PTRUE Initialize predicate elements from named constraint PTRUE

PTRUES Initialize predicate elements from named constraint, setting the condition
flags

PTRUES
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 5-57
ID103018 Non-Confidential

../SVE_xml/xhtml/pfalse_p.html
../SVE_xml/xhtml/ptrue_p_s.html
../SVE_xml/xhtml/ptrue_p_s.html
../SVE_xml/xhtml/fmla_z_zzzi.html
../SVE_xml/xhtml/fmls_z_zzzi.html
../SVE_xml/xhtml/fmul_z_zzi.html
../SVE_xml/xhtml/ftmad_z_zzi.html
../SVE_xml/xhtml/ftsmul_z_zz.html
../SVE_xml/xhtml/ftssel_z_zz.html
../SVE_xml/xhtml/fexpa_z_z.html

5 SVE Instruction Set
5.2 Instruction set overview
Predicate move operations

These instructions copy data from predicate elements. These instructions operate on a fixed, 1-bit predicate element
size, so the Governing predicate for the flag-setting instructions must be in canonical form.

Predicate logical operations

These instructions perform bitwise logical operations on predicate registers that operate on all bits of the register,
implying a fixed, 1-bit predicate element size. The flag-setting variants set the N, Z, and C condition flags based on
the predicate result, and set the V flag to zero. Inactive elements in the destination Predicate register are set to zero,
except for PTEST which does not specify a destination register. Because these instructions operate with a fixed, 1-bit
element size, the Governing predicate for the flag-setting instructions must be in canonical form.

Table 5-18 Predicate move instructions

Mnemonic Instruction See

SEL Select predicate elements from two predicates SEL

MOV Move predicate elements (predicated, merging) MOV

Move predicate elements (predicated, zeroing) MOV

Move predicate elements (unpredicated) MOV

MOVS Move predicate elements, setting the condition flags (predicated) MOVS

Move predicate elements, setting the condition flags (unpredicated) MOVS

Table 5-19 Predicate logical operation instructions

Mnemonic Instruction See

AND Bitwise AND predicates AND

ANDS Bitwise AND predicates, setting the condition flags ANDS

BIC Bitwise clear predicates BIC

BICS Bitwise clear predicates, setting the condition flags BICS

EOR Bitwise exclusive OR predicates EOR

EORS Bitwise exclusive OR predicates, setting the condition flags EORS

NAND Bitwise NAND predicates NAND

NANDS Bitwise NAND predicates, setting the condition flags NANDS

NOR Bitwise NOR predicates NOR

NORS Bitwise NOR predicates, setting the condition flags NORS

NOT Bitwise invert predicate NOT

NOTS Bitwise invert predicate, setting the condition flags NOTS

ORN Bitwise OR inverted predicate ORN

ORNS Bitwise OR inverted predicate, setting the condition flags ORNS

ORR Bitwise OR predicates ORR

ORRS Bitwise OR predicates, setting the condition flags ORRS

PTEST Test predicate value, setting the condition flags PTEST
5-58 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/orn_p_p_pp.html
../SVE_xml/xhtml/mov_sel_p_p_pp.html
../SVE_xml/xhtml/mov_and_p_p_pp.html
../SVE_xml/xhtml/sel_p_p_pp.html
../SVE_xml/xhtml/sel_p_p_pp.html
../SVE_xml/xhtml/mov_sel_p_p_pp.html
../SVE_xml/xhtml/mov_and_p_p_pp.html
../SVE_xml/xhtml/mov_orr_p_p_pp.html
../SVE_xml/xhtml/movs_and_p_p_pp.html
../SVE_xml/xhtml/movs_orr_p_p_pp.html
../SVE_xml/xhtml/ptrue_p_s.html
../SVE_xml/xhtml/ptrue_p_s.html
../SVE_xml/xhtml/mov_orr_p_p_pp.html
../SVE_xml/xhtml/movs_and_p_p_pp.html
../SVE_xml/xhtml/movs_orr_p_p_pp.html
../SVE_xml/xhtml/and_p_p_pp.html
../SVE_xml/xhtml/and_p_p_pp.html
../SVE_xml/xhtml/bic_p_p_pp.html
../SVE_xml/xhtml/bic_p_p_pp.html
../SVE_xml/xhtml/eor_p_p_pp.html
../SVE_xml/xhtml/eor_p_p_pp.html
../SVE_xml/xhtml/nand_p_p_pp.html
../SVE_xml/xhtml/nand_p_p_pp.html
../SVE_xml/xhtml/nor_p_p_pp.html
../SVE_xml/xhtml/nor_p_p_pp.html
../SVE_xml/xhtml/not_eor_p_p_pp.html
../SVE_xml/xhtml/nots_eor_p_p_pp.html
../SVE_xml/xhtml/orn_p_p_pp.html
../SVE_xml/xhtml/orr_p_p_pp.html
../SVE_xml/xhtml/orr_p_p_pp.html
../SVE_xml/xhtml/ptest_p_p.html

5 SVE Instruction Set
5.2 Instruction set overview
FFR predicate handling

These instructions work with SVE First-fault and Non-fault loads using the FFR to determine which elements have
been successfully loaded and which remain to be loaded on a subsequent iteration. The RDFFRS instruction sets the
N, Z, and C condition flags based on the predicate result, and sets the V flag to zero. Because these instructions
operate with a fixed, 1-bit element size, the Governing predicate used with the predicated RDFFR and RDFFRS
instructions must be in canonical form.

Predicate counts

These instructions count either the number of Active predicate elements that are set to TRUE, or the number of
elements implied by a named predicate constraint. The count can be placed in a general-purpose register, or used to
increment or decrement a vector or general-purpose register.

Signed or unsigned saturating variants handle cases where, for example, an increment might cause a vectorized
scalar loop index to overflow and therefore never satisfy a loop termination condition that compares it with a limit
that is close to the maximum integer value.

The named predicate constraint limits the number of elements to:
• A fixed number of elements, VL1 to VL256.
• The largest power of two elements, POW2.
• The largest multiple of three or four elements, MUL3 or MUL4.
• The number of accessible elements, ALL, implicitly a multiple of two.

Unspecified or out of range predicate constraint encodings generate a zero element count and do not cause an
Undefined Instruction exception.

Table 5-20 FFR predicate handling instructions

Mnemonic Instruction See

RDFFR Return predicate of successfully loaded elements (unpredicated) RDFFR

Return predicate of successfully loaded elements (predicated) RDFFR
RDFFRS Return predicate of successfully loaded elements, setting the condition flags

(predicated)
RDFFRS

SETFFR Initialize the First-fault register to all TRUE SETFFR

WRFFR Write a predicate register to the First-fault register WRFFR

Table 5-21 Predicate count instructions

Mnemonic Instruction See

CNTB Set scalar to multiple of 8-bit predicate constraint
element count

CNTB

CNTH Set scalar to multiple of 16-bit predicate constraint element count CNTH

CNTW Set scalar to multiple of 32-bit predicate constraint element count CNTW

CNTD Set scalar to multiple of 64-bit predicate constraint element count CNTD

CNTP Set scalar to the number of Active predicate elements that are TRUE CNTP

DECB Decrement scalar by multiple of 8-bit predicate constraint element count DECB

DECH Decrement scalar by multiple of 16-bit predicate constraint element count DECH

Decrement vector by multiple of 16-bit predicate constraint element count DECH

DECW Decrement scalar by multiple of 32-bit predicate constraint element count DECW

Decrement vector by multiple of 32-bit predicate constraint element count DECW

DECD Decrement scalar by multiple of 64-bit predicate constraint element count DECD

Decrement vector by multiple of 64-bit predicate constraint element count DECD

DECP Decrement scalar by the number of predicate elements that are TRUE DECP
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 5-59
ID103018 Non-Confidential

../SVE_xml/xhtml/cntb_r_s.html
../SVE_xml/xhtml/cntb_r_s.html
../SVE_xml/xhtml/cntb_r_s.html
../SVE_xml/xhtml/cntb_r_s.html
../SVE_xml/xhtml/cntp_r_p_p.html
../SVE_xml/xhtml/decb_r_rs.html
../SVE_xml/xhtml/decb_r_rs.html
../SVE_xml/xhtml/decd_z_zs.html
../SVE_xml/xhtml/decb_r_rs.html
../SVE_xml/xhtml/decd_z_zs.html
../SVE_xml/xhtml/decb_r_rs.html
../SVE_xml/xhtml/decd_z_zs.html
../SVE_xml/xhtml/decp_r_p_r.html
../SVE_xml/xhtml/rdffr_p_f.html
../SVE_xml/xhtml/rdffr_p_p_f.html
../SVE_xml/xhtml/rdffr_p_p_f.html
../SVE_xml/xhtml/setffr_f.html
../SVE_xml/xhtml/wrffr_f_p.html

5 SVE Instruction Set
5.2 Instruction set overview
Decrement vector by the number of Active predicate elements that are TRUE DECP

INCB Increment scalar by multiple of 8-bit predicate constraint element count INCB

INCH Increment scalar by multiple of 16-bit predicate constraint element count INCH

Increment vector by multiple of 16-bit predicate constraint element count INCH

INCW Increment scalar by multiple of 32-bit predicate constraint element count INCW

Increment vector by multiple of 32-bit predicate constraint element count INCW

INCD Increment scalar by multiple of 64-bit predicate constraint element count INCD

Increment vector by multiple of 64-bit predicate constraint element count INCD

INCP Increment scalar by the number of predicate elements that are TRUE INCP

Increment vector by the number of predicate elements that are TRUE INCP

SQDECB Signed saturating decrement scalar by multiple of 8-bit predicate constraint
element count

SQDECB

SQDECH Signed saturating decrement scalar by multiple of 16-bit predicate constraint
element count

SQDECH

Signed saturating decrement vector by multiple of 16-bit predicate constraint
element count

SQDECH

SQDECW Signed saturating decrement scalar by multiple of 32-bit predicate constraint
element count.

SQDECW

Signed saturating decrement vector by multiple of 32-bit predicate constraint
element count

SQDECW

SQDECD Signed saturating decrement scalar by multiple of 64-bit predicate constraint
element count

SQDECD

Signed saturating decrement vector by multiple of 64-bit predicate constraint
element count

SQDECD

SQDECP Signed saturating decrement scalar the number of predicate elements that are
TRUE

SQDECP

Signed saturating decrement vector by the number of predicate elements that are
TRUE

SQDECP

SQINCB Signed saturating increment scalar by multiple of 8-bit predicate constraint
element count

SQINCB

SQINCH Signed saturating increment scalar by multiple of 16-bit predicate constraint
element count

SQINCH

Signed saturating increment vector by multiple of 16-bit predicate constraint
element count

SQINCH

SQINCW Signed saturating increment scalar by multiple of 32-bit predicate constraint
element count

SQINCW

Signed saturating increment vector by multiple of 32-bit predicate constraint
element count

SQINCW

SQINCD Signed saturating increment scalar by multiple of 64-bit predicate constraint
element count

SQINCD

Signed saturating increment vector by multiple of 64-bit predicate constraint
element count

SQINCD

SQINCP Signed saturating increment scalar by the number of predicate elements that are
TRUE

SQINCP

Signed saturating increment vector by the number of predicate elements that are
TRUE

SQINCP

Table 5-21 Predicate count instructions (continued)

Mnemonic Instruction See
5-60 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/decp_z_p_z.html
../SVE_xml/xhtml/incb_r_rs.html
../SVE_xml/xhtml/incb_r_rs.html
../SVE_xml/xhtml/incd_z_zs.html
../SVE_xml/xhtml/incb_r_rs.html
../SVE_xml/xhtml/incd_z_zs.html
../SVE_xml/xhtml/incb_r_rs.html
../SVE_xml/xhtml/incd_z_zs.html
../SVE_xml/xhtml/incp_r_p_r.html
../SVE_xml/xhtml/incp_z_p_z.html
../SVE_xml/xhtml/sqdecb_r_rs.html
../SVE_xml/xhtml/sqdech_r_rs.html
../SVE_xml/xhtml/sqdech_z_zs.html
../SVE_xml/xhtml/sqdecw_r_rs.html
../SVE_xml/xhtml/sqdecw_z_zs.html
../SVE_xml/xhtml/sqdecd_r_rs.html
../SVE_xml/xhtml/sqdecd_z_zs.html
../SVE_xml/xhtml/sqdecp_r_p_r.html
../SVE_xml/xhtml/sqdecp_z_p_z.html
../SVE_xml/xhtml/sqincb_r_rs.html
../SVE_xml/xhtml/sqinch_r_rs.html
../SVE_xml/xhtml/sqinch_z_zs.html
../SVE_xml/xhtml/sqincw_r_rs.html
../SVE_xml/xhtml/sqincw_z_zs.html
../SVE_xml/xhtml/sqincd_r_rs.html
../SVE_xml/xhtml/sqincd_z_zs.html
../SVE_xml/xhtml/sqincp_r_p_r.html
../SVE_xml/xhtml/sqincp_z_p_z.html

5 SVE Instruction Set
5.2 Instruction set overview
Loop control

These instructions control counted vector loops and vector loops with data-dependent termination conditions.

These instructions create a loop partition predicate with Active elements set to TRUE up to the point where the loop
should terminate, and FALSE thereafter. Two loop concepts are supported:

UQDECB Unsigned saturating decrement scalar by multiple of 8-bit predicate constraint
element count

UQDECB

UQDECH Unsigned saturating decrement scalar by multiple of 16-bit predicate constraint
element count

UQDECH

Unsigned saturating decrement vector by multiple of 16-bit predicate constraint
element count

UQDECH

UQDECW Unsigned saturating decrement scalar by multiple of 32-bit predicate constraint
element count

UQDECW

Unsigned saturating decrement vector by multiple of 32-bit predicate constraint
element count

UQDECW

UQDECD Unsigned saturating decrement scalar by multiple of 64-bit predicate constraint
element count

UQDECD

Unsigned saturating decrement vector by multiple of 64-bit predicate constraint
element count

UQDECD

UQDECP Unsigned saturating decrement scalar by the number of predicate elements that are
TRUE

UQDECP

Unsigned saturating decrement vector by the number of predicate elements that
are TRUE

UQDECP

UQINCB Unsigned saturating increment scalar by multiple of 8-bit predicate constraint
element count

UQINCB

UQINCH Unsigned saturating increment scalar by multiple of 16-bit predicate constraint
element count

UQINCH

Unsigned saturating increment vector by multiple of 16-bit predicate constraint
element count

UQINCH

UQINCW Unsigned saturating increment scalar by multiple of 32-bit predicate constraint
element count

UQINCW

Unsigned saturating increment vector by multiple of 32-bit predicate constraint
element count

UQINCW

UQINCD Unsigned saturating increment scalar by multiple of 64-bit predicate constraint
element count

UQINCD

Unsigned saturating increment vector by multiple of 64-bit predicate constraint
element count

UQINCD

UQINCP Unsigned saturating increment scalar by the number of predicate elements that are
TRUE

UQINCP

Unsigned saturating increment vector by the number of predicate elements that are
TRUE

UQINCP

Table 5-21 Predicate count instructions (continued)

Mnemonic Instruction See
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 5-61
ID103018 Non-Confidential

../SVE_xml/xhtml/uqdecb_r_rs.html
../SVE_xml/xhtml/uqdech_r_rs.html
../SVE_xml/xhtml/uqdech_z_zs.html
../SVE_xml/xhtml/uqdecw_r_rs.html
../SVE_xml/xhtml/uqdecw_z_zs.html
../SVE_xml/xhtml/uqdecd_r_rs.html
../SVE_xml/xhtml/uqdecd_z_zs.html
../SVE_xml/xhtml/uqdecp_r_p_r.html
../SVE_xml/xhtml/uqdecp_z_p_z.html
../SVE_xml/xhtml/uqincb_r_rs.html
../SVE_xml/xhtml/uqinch_r_rs.html
../SVE_xml/xhtml/uqinch_z_zs.html
../SVE_xml/xhtml/uqincw_r_rs.html
../SVE_xml/xhtml/uqincw_z_zs.html
../SVE_xml/xhtml/uqincd_r_rs.html
../SVE_xml/xhtml/uqincd_z_zs.html
../SVE_xml/xhtml/uqincp_r_p_r.html
../SVE_xml/xhtml/uqincp_z_p_z.html

5 SVE Instruction Set
5.2 Instruction set overview
Simple loops

For simple counted loops, the WHILE instructions compare an incrementing value from their first scalar source
register with their second scalar register, for each destination predicate element. The result is a predicate with
elements set to TRUE while the comparison is true, and FALSE thereafter. The condition flags are unconditionally
set to control a subsequent conditional branch.

Data-dependent loops

For data-dependent termination conditions, it is necessary to convert the result of a vector comparison into a loop
partition predicate. The new partition truncates the current vector partition immediately before or after the first
active TRUE comparison. The condition flags are optionally set to control a subsequent conditional branch.

The BRKA instructions set active destination predicate elements to TRUE up to and including the first active TRUE
element in their source predicate register, setting subsequent elements to FALSE.

The BRKB instructions set active destination predicate elements to TRUE up to but excluding the first active TRUE
element in their source predicate register, setting subsequent elements to FALSE.

The BRKPA and BRKPB instructions propagate the result of a previous BRKB or BRKPB instruction, by setting their
destination predicate register to all FALSE if the Last active element of their first source predicate register is not
TRUE, but otherwise generate the destination predicate from their second source predicate as described for the BRKA
and BRKB instructions.

The BRKN instructions propagate the result of a previous BRKB or BRKPB instruction by setting the destination predicate
register to all FALSE if the Last active element of their first source predicate register is not TRUE, but otherwise
leave the destination predicate unchanged. The destination and second source predicate must have been created by
another instruction, such as RDFFR or WHILE.

These instructions operate on a fixed, 1-bit predicate element size, so the Governing predicate must be in canonical
form.

Table 5-22 Simple counted loop instructions

Mnemonic Instruction See

WHILELE While incrementing signed scalar less than or equal to scalar WHILELE

WHILELO While incrementing unsigned scalar lower than scalar WHILELO

WHILELS While incrementing unsigned scalar lower than or the same as scalar WHILELS

WHILELT While incrementing signed scalar less than scalar WHILELT

Table 5-23 Data-dependent loop instructions

Mnemonic Instruction See

BRKA Break after the first true condition BRKA

BRKAS Break after the first true condition, setting the condition flags BRKAS

BRKB Break before the first true condition BRKB

BRKBS Break before the first true condition, setting the condition flags BRKBS

BRKN Propagate break to next partition BRKN

BRKNS Propagate break to next partition, setting the condition flags BRKNS

BRKPA Break after the first true condition, propagating from previous partition BRKPA

BRKPAS Break after the first true condition, propagating from previous partition,
setting the condition flags

BRKPAS

BRKPB Break before the first true condition, propagating from the previous partition BRKPB

BRKPBS Break before the first true condition, propagating from the previous partition,
setting the condition flags

BRKPBS
5-62 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/whilele_p_p_rr.html
../SVE_xml/xhtml/whilelo_p_p_rr.html
../SVE_xml/xhtml/whilels_p_p_rr.html
../SVE_xml/xhtml/whilelt_p_p_rr.html
../SVE_xml/xhtml/brka_p_p_p.html
../SVE_xml/xhtml/brka_p_p_p.html
../SVE_xml/xhtml/brkb_p_p_p.html
../SVE_xml/xhtml/brkb_p_p_p.html
../SVE_xml/xhtml/brkn_p_p_pp.html
../SVE_xml/xhtml/brkn_p_p_pp.html
../SVE_xml/xhtml/brkpa_p_p_pp.html
../SVE_xml/xhtml/brkpa_p_p_pp.html
../SVE_xml/xhtml/brkpb_p_p_pp.html
../SVE_xml/xhtml/brkpb_p_p_pp.html

5 SVE Instruction Set
5.2 Instruction set overview
Serialized operations

These instructions permit Active elements within a vector to be processed sequentially without unpacking the
vector. The condition flags are unconditionally set to control a subsequent conditional branch.

The PFIRST instruction operates with a fixed, 1-bit predicate element size, so its Governing predicate must be in
canonical form.

5.2.9 Move operations

Element permute and shuffle

These instructions move data between different vector elements, or between vector elements and scalar registers.
These instructions perform the following operations:
• Conditionally extract the Last active element of a vector or the following element.

— The supported instructions are: CLASTA, CLASTB.
• Unconditionally extract the Last active element of a vector or the following element.

— The supported instructions are: LASTA, LASTB.
• Variable permute instructions where the permutation is determined by the values in a predicate register or a

table of element index values.
— The supported instructions are: COMPACT, SPLICE, TBL.

• Fixed permute instructions where the form of the permutation is encoded in the instruction.
— The supported instructions are: DUP, EXT, INSR, REV, REVB, REVH, REVW, SUNPKHI, SUNPKLO, TRN1, TRN2,

UUNPKHI, UUNPKLO, UZP1, UZP2, ZIP1, ZIP2.

Table 5-24 Serialized operation instructions

Mnemonic Instruction See

PFIRST Set the First active element to TRUE PFIRST

PNEXT Find next Active element PNEXT

CTERMEQ Compare and terminate loop when equal CTERMEQ

CTERMNE Compare and terminate loop when not equal CTERMNE

Table 5-25 Element permute and shuffle instructions

Mnemonic Instruction See

CLASTA Conditionally extract element after the Last active element to general-purpose
register

CLASTA

Conditionally extract element after the Last active element to SIMD&FP scalar CLASTA

Conditionally extract element after the Last active element to vector CLASTA

CLASTB Conditionally extract Last active element to general-purpose register CLASTB

Conditionally extract Last active element to SIMD&FP scalar CLASTB

Conditionally extract Last active element to vector CLASTB

LASTA Extract element after the Last active element to general-purpose register LASTA

Extract element after the Last active element to SIMD&FP scalar LASTA

LASTB Extract Last active element to general-purpose register LASTB

Extract Last active element to SIMD&FP scalar LASTB

COMPACT Shuffle Active elements of vector to the right and fill with zeros COMPACT

SPLICE Splice two vectors under predicate control SPLICE

TBL Programmable table lookup using vector of element indexes TBL

DUP Broadcast indexed vector element DUP
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 5-63
ID103018 Non-Confidential

../SVE_xml/xhtml/clasta_r_p_z.html
../SVE_xml/xhtml/pfirst_p_p_p.html
../SVE_xml/xhtml/clasta_v_p_z.html
../SVE_xml/xhtml/clasta_z_p_zz.html
../SVE_xml/xhtml/clastb_r_p_z.html
../SVE_xml/xhtml/clastb_v_p_z.html
../SVE_xml/xhtml/clastb_z_p_zz.html
../SVE_xml/xhtml/lasta_r_p_z.html
../SVE_xml/xhtml/lasta_v_p_z.html
../SVE_xml/xhtml/lastb_r_p_z.html
../SVE_xml/xhtml/lastb_v_p_z.html
../SVE_xml/xhtml/compact_z_p_z.html
../SVE_xml/xhtml/splice_z_p_zz.html
../SVE_xml/xhtml/tbl_z_zz.html
../SVE_xml/xhtml/dup_z_zi.html
../SVE_xml/xhtml/pnext_p_p_p.html
../SVE_xml/xhtml/ctermeq_rr.html
../SVE_xml/xhtml/ctermeq_rr.html

5 SVE Instruction Set
5.2 Instruction set overview
Unpacking instructions

These instructions unpack half of the elements from the source vector register or predicate register, widen the
unpacked elements to twice the width, and place the result in the destination register.

Predicate permute

These instructions are used to move and permute predicate elements. These instructions generally mirror the fixed
vector permutes to allow predicates to follow their data. The permutes move all of the bits in a predicate element,
not just the least-significant bit.

EXT Extract vector from pair of vectors EXT

INSR Insert general-purpose register into shifted vector INSR

Insert SIMD&FP scalar register into shifted vector INSR

MOV Move indexed element or SIMD&FP scalar to vector (unpredicated) MOV

Move SIMD&FP scalar register to vector elements (predicated) MOV
REV Reverse all elements in vector REV

REVB Reverse 8-bit bytes in elements REVB

REVH Reverse 16-bit halfwords in elements REVH

REVW Reverse 32-bit words in elements REVW

TRN1 Interleave even elements from two vectors TRN1

TRN2 Interleave odd elements from two vectors TRN2

UZP1 Concatenate even elements from two vectors UZP1

UZP2 Concatenate odd elements from two vectors UZP2

ZIP1 Interleave elements from low halves of two vectors ZIP1

ZIP2 Interleave elements from high halves of two vectors ZIP2

Table 5-26 Unpacking instructions

Mnemonic Instruction See

SUNPKHI Unpack and sign-extend elements from high half of vector SUNPKHI

SUNPKLO Unpack and sign-extend elements from low half of vector SUNPKLO

UUNPKHI Unpack and zero-extend elements from high half of vector UUNPKHI

UUNPKLO Unpack and zero-extend elements from low half of vector UUNPKLO

PUNPKHI Unpack and widen elements from high half of predicate PUNPKHI

PUNPKLO Unpack and widen elements from low half of predicate PUNPKLO

Table 5-27 Predicate permute instructions

Mnemonic Instruction See

REV Reverse all elements in predicate REV

TRN1 Interleave even elements from two predicates TRN1

TRN2 Interleave odd elements from two predicates TRN2

UZP1 Select even elements from two predicates UZP1

Table 5-25 Element permute and shuffle instructions (continued)

Mnemonic Instruction See
5-64 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/sunpkhi_z_z.html
../SVE_xml/xhtml/sunpkhi_z_z.html
../SVE_xml/xhtml/sunpkhi_z_z.html
../SVE_xml/xhtml/uunpkhi_z_z.html
../SVE_xml/xhtml/uunpkhi_z_z.html
../SVE_xml/xhtml/punpkhi_p_p.html
../SVE_xml/xhtml/punpkhi_p_p.html
../SVE_xml/xhtml/ext_z_zi.html
../SVE_xml/xhtml/insr_z_r.html
../SVE_xml/xhtml/insr_z_v.html
../SVE_xml/xhtml/mov_dup_z_zi.html
../SVE_xml/xhtml/mov_cpy_z_p_v.html
../SVE_xml/xhtml/rev_z_z.html
../SVE_xml/xhtml/revb_z_z.html
../SVE_xml/xhtml/revb_z_z.html
../SVE_xml/xhtml/revb_z_z.html
../SVE_xml/xhtml/trn1_z_zz.html
../SVE_xml/xhtml/trn1_z_zz.html
../SVE_xml/xhtml/uzp1_z_zz.html
../SVE_xml/xhtml/uzp1_z_zz.html
../SVE_xml/xhtml/zip1_z_zz.html
../SVE_xml/xhtml/zip1_z_zz.html
../SVE_xml/xhtml/rev_p_p.html
../SVE_xml/xhtml/trn1_p_pp.html
../SVE_xml/xhtml/trn1_p_pp.html
../SVE_xml/xhtml/uzp1_p_pp.html

5 SVE Instruction Set
5.2 Instruction set overview
Index vector generation

The INDEX instruction initializes a vector horizontally by setting its first element to an integer value, and then
repeatedly incrementing it by a second integer value to generate the subsequent elements. Each integer value can be
specified as a signed immediate or a general-purpose register.

Move prefix

The MOVPRFX (predicated) instruction is a predicated vector move that can be combined with a predicated destructive
instruction that immediately follows it, in program order, to create a single constructive operation, or to convert an
instruction with merging predication to use zeroing predication.

The MOVPRFX (unpredicated) instruction is an unpredicated vector move that can be combined with a predicated and
unpredicated destructive instruction that immediately follows it, in program order, to create a single constructive
operation.

The prefixed instruction that immediately follows a MOVPRFX instruction in program order must be an SVE instruction
where:
• The destination register field implicitly specifies one of the source operands, which means that it is a

destructive binary or ternary vector operation or unary operation with merging predication, excluding
MOVPRFX.

• The destination register is the same as the MOVPRFX destination register.
• The prefixed instruction does not use the MOVPRFX destination register in any of its other source register fields,

even if it has a different name but refers to the same architectural register state. For example, Z1, V1, and D1
all refer to the same architectural register.

• If the MOVPRFX instruction is predicated, then the prefixed instruction is predicated using the same Governing
predicate register, and the maximum encoded element size is the same as the MOVPRFX element size, excluding
the fixed-size 64-bit elements of the wide elements form of bitwise shift and integer compare operations.

• If the MOVPRFX instruction is unpredicated, then the prefixed instruction can use any Governing predicate
register and element size, or it can be unpredicated. A predicated MOVPRFX cannot be used with an unpredicated
instruction.

Otherwise, the use of a MOVPRFX instruction has a CONSTRAINED UNPREDICTABLE result, with the following permitted
behaviors for the pair of instructions:
• Either or both instructions can execute with their individually described effects.
• Either instruction can generate an Undefined Instruction exception.
• Either or both instructions can execute as a NOP.
• The second instruction can execute with an UNKNOWN value for any of its source registers.
• Any register that is written by either or both instructions can be set to an UNKNOWN value.

UZP2 Select odd elements from two predicates UZP2

ZIP1 Interleave elements from low halves of two predicates ZIP1

ZIP2 Interleave elements from high halves of two predicates ZIP2

Table 5-28 Index vector generation instructions

Mnemonic Instruction See

INDEX Create index vector starting from and incremented by immediates INDEX

Create index vector starting from immediate and incremented by
general-purpose register

INDEX

Create index vector starting from general-purpose register and incremented by
immediate

INDEX

Create index vector starting from and incremented by general-purpose registers INDEX

Table 5-27 Predicate permute instructions (continued)

Mnemonic Instruction See
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 5-65
ID103018 Non-Confidential

../SVE_xml/xhtml/index_z_ii.html
../SVE_xml/xhtml/index_z_ir.html
../SVE_xml/xhtml/index_z_ri.html
../SVE_xml/xhtml/index_z_rr.html
../SVE_xml/xhtml/movprfx_z_p_z.html
../SVE_xml/xhtml/movprfx_z_z.html
../SVE_xml/xhtml/uzp1_p_pp.html
../SVE_xml/xhtml/zip1_p_pp.html
../SVE_xml/xhtml/zip1_p_pp.html

5 SVE Instruction Set
5.2 Instruction set overview
• A control flow instruction that writes the PC can set the PC to an UNKNOWN value.

5.2.10 Reduction operations

Horizontal reductions

These instructions perform arithmetic horizontally across Active elements of a single source vector and deliver a
scalar result.

The floating-point horizontal accumulating sum instruction, FADDA, operates strictly in order of increasing element
number across a vector, using the scalar destination register as a source for the initial value of the accumulator. This
preserves the original program evaluation order where non-associativity is required.

The other floating-point reductions calculate their result using a recursive pair-wise algorithm that does not preserve
the original program order, but permits increased parallelism for code that does not require strict order of evaluation.

Integer reductions are fully associative, and the order of evaluation is not specified by the architecture.

Table 5-29 Move prefix instructions

Mnemonic Instruction See

MOVPRFX Move prefix (predicated) MOVPRFX

Move prefix (unpredicated) MOVPRFX

Table 5-30 Horizontal reduction instructions

Mnemonic Instruction See

ANDV Bitwise AND reduction, treating Inactive elements as all ones ANDV

EORV Bitwise XOR reduction, treating Inactive elements as zero EORV

FADDA Floating-point add strictly-ordered reduction, accumulating in scalar, ignoring
Inactive elements

FADDA

FADDV Floating-point add recursive reduction, treating Inactive elements as +0.0 FADDV

FMAXNMV Floating-point maximum number recursive reduction, treating Inactive elements as
the default NaN

FMAXNMV

FMAXV Floating-point maximum recursive reduction, treating Inactive elements as
negative infinity

FMAXV

FMINNMV Floating-point minimum number recursive reduction, treating Inactive elements
as the default NaN

FMINNMV

FMINV Floating-point minimum recursive reduction, treating Inactive elements as
positive infinity

FMINV

ORV Bitwise OR reduction, treating Inactive elements as zero ORV

SADDV Signed add reduction, treating Inactive elements as zero SADDV

SMAXV Signed maximum reduction, treating Inactive elements as the minimum signed
integer

SMAXV

SMINV Signed minimum reduction, treating Inactive elements the maximum signed
integer

SMINV

UADDV Unsigned add reduction, treating Inactive elements as zero UADDV

UMAXV Unsigned maximum reduction, treating Inactive elements as zero UMAXV

UMINV Unsigned minimum reduction, treating Inactive elements as the maximum
unsigned integer

UMINV
5-66 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/andv_r_p_z.html
../SVE_xml/xhtml/eorv_r_p_z.html
../SVE_xml/xhtml/fadda_v_p_z.html
../SVE_xml/xhtml/faddv_v_p_z.html
../SVE_xml/xhtml/fmaxnmv_v_p_z.html
../SVE_xml/xhtml/fmaxv_v_p_z.html
../SVE_xml/xhtml/fminnmv_v_p_z.html
../SVE_xml/xhtml/fminv_v_p_z.html
../SVE_xml/xhtml/orv_r_p_z.html
../SVE_xml/xhtml/saddv_r_p_z.html
../SVE_xml/xhtml/smaxv_r_p_z.html
../SVE_xml/xhtml/sminv_r_p_z.html
../SVE_xml/xhtml/uaddv_r_p_z.html
../SVE_xml/xhtml/umaxv_r_p_z.html
../SVE_xml/xhtml/uminv_r_p_z.html
../SVE_xml/xhtml/movprfx_z_p_z.html
../SVE_xml/xhtml/movprfx_z_z.html

Chapter 6
System Registers

This chapter introduces the ARMv8-A System registers that affect SVE as well as the new System registers that are
specific to SVE. This chapter contains the following sections:
• AArch64 System registers affected by SVE on page 6-68.
• SVE System registers on page 6-69.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 6-67
ID103018 Non-Confidential

6 System Registers
6.1 System registers
6.1 System registers
The following sections describe the AArch64 System registers that affect SVE and the AArch64 System registers
specific to SVE. For general information on AArch64 System registers, see the section titled AArch64 System
register descriptions in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile.

6.1.1 AArch64 System registers affected by SVE

Table 6-1 lists the modifications to the AArch64 System registers due to SVE.

Note
 The Description column in Table 6-1 provides a general description of the behavior of the fields relating to SVE.
For the strict definition of these fields, follow the links to the appropriate XML or HTML content.

Table 6-1 AArch64 System registers

Register Change Description

ID_AA64PFR0_EL1 Defines bits[35:32] as the SVE field. The SVE field indicates whether SVE is
implemented.

CPACR_EL1 Defines bits[17:16] as the ZEN field. The ZEN field enables access to SVE functionality
from EL1 and EL0.

CPTR_EL2 When HCR_EL2.E2H == 0, defines bit[8] as TZ. The TZ field traps access to SVE functionality from
EL2 and Non-secure EL1&0 to EL2.

When HCR_EL2.E2H == 1, defines bits[17:16] as
the ZEN field.

The ZEN field enables access to SVE functionality
from EL2 and Non-secure EL1&0.

CPTR_EL3 Defines bit[8] as EZ. The EZ field enables access to SVE functionality
from EL0, EL1, EL2, and EL3.

TCR_EL1 Defines bit[54] as NFD1 and bit[53] as NFD0. The NFD1 and NFD0 fields disable stage 1
translation table walks caused by certain elements of
the SVE First-fault and Non-fault vector load
instructions from EL0 for translations using
TTBR1_EL1 or TTBR0_EL1, respectively.

TCR_EL2 When HCR_EL2.E2H == 1, defines bit[54] as NFD1
and bit[53] as NFD0.

The NFD1 and NFD0 fields disable stage 1
translation table walks caused by certain elements of
the SVE First-fault and Non-fault vector load
instructions from EL0 for translations using
TTBR1_EL2 or TTBR0_EL2, respectively.

EDPFR Defines bits[35:32] as the SVE field. The SVE field indicates whether SVE is
implemented for debug.

ESR_ELx New exception class, 0b011001, added to the EC field
description.

The new EC code, 0b011001, identifies accesses to
SVE functionality when disabled or trapped by
CPACR_EL1, CPTR_EL2, or CPTR_EL3.
6-68 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_SysReg/xhtml/AArch64-id_aa64pfr0_el1.html
../SVE_SysReg/xhtml/AArch64-cpacr_el1.html
../SVE_SysReg/xhtml/AArch64-cptr_el2.html
../SVE_SysReg/xhtml/AArch64-hcr_el2.html
../SVE_SysReg/xhtml/AArch64-cptr_el2.html
../SVE_SysReg/xhtml/AArch64-cptr_el3.html
../SVE_SysReg/xhtml/AArch64-tcr_el1.html
../SVE_SysReg/xhtml/ext-edpfr.html
../SVE_SysReg/xhtml/AArch64-esr_elx.html
../SVE_SysReg/xhtml/AArch64-cpacr_el1.html
../SVE_SysReg/xhtml/AArch64-cptr_el2.html
../SVE_SysReg/xhtml/AArch64-cptr_el3.html
../SVE_SysReg/xhtml/AArch64-hcr_el2.html
../SVE_SysReg/xhtml/AArch64-cptr_el3.html
../SVE_SysReg/xhtml/AArch64-tcr_el2.html
../SVE_SysReg/xhtml/AArch64-hcr_el2.html
../SVE_SysReg/xhtml/AArch64-cptr_el2.html

6 System Registers
6.1 System registers
6.1.2 SVE System registers

The AArch64 System registers specific to SVE are outlined in Table 6-2.

Table 6-2 SVE System registers

Register Description

ID_AA64ZFR0_EL1 SVE feature ID register 0

ZCR_EL1 SVE control register to constrain the vector length at EL1 and EL0

ZCR_EL2 SVE control register to constrain the vector length at EL2 and
Non-secure EL1 and EL0

ZCR_EL3 SVE control register to constrain the vector length at EL3, EL2,
EL1, and EL0
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 6-69
ID103018 Non-Confidential

../SVE_SysReg/xhtml/AArch64-id_aa64zfr0_el1.html
../SVE_SysReg/xhtml/AArch64-zcr_el1.html
../SVE_SysReg/xhtml/AArch64-zcr_el2.html
../SVE_SysReg/xhtml/AArch64-zcr_el3.html

6 System Registers
6.1 System registers
6-70 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Chapter 7
SVE Debug

This chapter introduces the additions to ARMv8-A AArch64 debug due to SVE. This chapter contains the following
sections:
• Self-hosted debug on page 7-72.
• External debug on page 7-73.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 7-71
ID103018 Non-Confidential

7 SVE Debug
7.1 Self-hosted debug
7.1 Self-hosted debug
SVE defines behaviors that permit debugging of SVE instructions when using the debug exception model described
in the section titled AArch64 Self-hosted Debug in ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A
architecture profile.

7.1.1 Watchpoints

The following memory accesses can trigger watchpoints:
• Non-speculative, single-copy atomic accesses performed as a result of an Active element by an SVE

predicated vector load or store instruction.
• Byte accesses performed by an SVE unpredicated register load or store instruction.

For all SVE predicated vector load and store instructions, watchpoint debug events can only be generated by address
matches that occur due to Active elements.

SVE Non-fault vector loads do not generate watchpoint debug events, but any Active element access that matches
a configured watchpoint is suppressed and reported in the FFR as described in Synchronous memory faults on
page 3-28.

SVE First-fault vector loads can generate a watchpoint debug event only for the First active element. If that access
does not generate a fault or a watchpoint debug event, then any other Active element access that matches a
configured watchpoint is suppressed and reported in the FFR as described in Synchronous memory faults on
page 3-28.

7.1.2 MOVRPFX instruction debug behavior

For debugging purposes, the MOVPRFX (predicated) and the MOVPRFX (unpredicated) instructions have predictable
behavior when used with breakpoints and single-step execution:
• It is permitted to use MOVPRFX to prefix an A64 BRK or HLT instruction.
• A hardware breakpoint is only predictable if it is programmed with the address of the initial MOVPRFX

instruction, and not the address of the prefixed instruction.
• A single step when the instruction to be stepped is a permitted use of MOVPRFX can either step over the pair of

instructions, or step over only the MOVPRFX instruction, as described in MOVPRFX exception behavior on
page 3-28.
7-72 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/movprfx_z_p_z.html
../SVE_xml/xhtml/movprfx_z_z.html

7 SVE Debug
7.2 External debug
7.2 External debug
SVE architectural state can be accessed using external debug features while in Debug state, as described in the
section titled External Debug in ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture
profile.

7.2.1 SVE instructions that are changed in Debug state

The list of instructions that are contained in the section titled A64 instructions that are changed in Debug state in
the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile is extended to include the
following SVE instruction:

7.2.2 SVE instructions that are unchanged in Debug state

The list of instructions that are contained in the section titled A64 instructions that are unchanged in Debug state in
the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile is extended to include the
following SVE instructions:
• RDVL

• CPY (immediate form, with zeroing predication, byte element size, and a shift amount of 0 only)
• PTRUE (with ALL constraint and byte element size only)
• RDFFR (unpredicated)
• WRFFR (unpredicated)
• EXT

• INSR (scalar)
• DUP (scalar)

7.2.3 SVE instructions that are CONSTRAINED UNPREDICTABLE in Debug state

All SVE instructions, other than those listed in SVE instructions that are changed in Debug state and SVE
instructions that are unchanged in Debug state, are CONSTRAINED UNPREDICTABLE in Debug state, with the
following permissible behaviors:
• The instruction generates an Undefined Instruction exception.
• The instruction executes as a NOP.
• If the instruction modifies PSTATE, it sets DLR_EL0 and DSPSR_EL0 to UNKNOWN values.
• If the instruction is similar to an SVE instruction that has defined behavior in Debug state, it executes as that

instruction. Such instructions are described in SVE instructions that are changed in Debug state and SVE
instructions that are unchanged in Debug state.

• The instruction has the same behavior as in Non-debug state.

Table 7-1 SVE instructions that are changed in Debug state

Instruction Change in Debug state

CMPNE (immediate form, byte
element size only)

This instruction has unchanged behavior in Debug state with respect to the SVE
vector and predicate source and destination registers, but is architecturally
defined to set DSPSR_EL0 and DLR_EL0 to UNKNOWN values.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 7-73
ID103018 Non-Confidential

../SVE_xml/xhtml/rdvl_r_i.html
../SVE_xml/xhtml/cpy_z_p_i.html
../SVE_xml/xhtml/ptrue_p_s.html
../SVE_xml/xhtml/rdffr_p_f.html
../SVE_xml/xhtml/wrffr_f_p.html
../SVE_xml/xhtml/ext_z_zi.html
../SVE_xml/xhtml/insr_z_r.html
../SVE_xml/xhtml/dup_z_zi.html

7 SVE Debug
7.2 External debug
7-74 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Chapter 8
SVE Performance Monitors Extension

This chapter introduces the changes that are made to the ARMv8-A Performance Monitor Extension by the Scalable
Vector Extension. This chapter contains the following sections:
• Introduction on page 8-76.
• New performance monitor events on page 8-77.
• Existing ARMv8-A PMU events affected by SVE on page 8-78.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 8-75
ID103018 Non-Confidential

8 SVE Performance Monitors Extension
8.1 Introduction
8.1 Introduction
This chapter defines the changes made to the ARMv8-A Performance Monitor Extension by SVE. For more
information about the ARMv8-A Performance Monitor Extension, see the sections titled The Performance Monitor
Extension in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile.

SVE reserves PMU event numbers in the range 0x8000 to 0x80FF. Unless otherwise stated, the behavior of SVE PMU
events is defined for AArch64 state only. In AArch32 state, it is IMPLEMENTATION DEFINED which instructions and
operations are counted.

All SVE PMU events share the same IMPLEMENTATION DEFINED definition of speculatively executed as is defined
in the section titled PMU events and event numbers in the ARM® Architecture Reference Manual, ARMv8-A, for
ARMv8-A architecture profile.

Implementations of SVE that include the Performance Monitor Extension are architecturally required to include at
least one of SVE_INST_RETIRED and SVE_INST_SPEC.

Note
 ARM strongly recommends that the SVE_INST_RETIRED event is implemented.

As well as these required events, ARM recommends that certain other events are implemented. For more
information on the recommended SVE PMU events, see List of recommended PMU events on page A-80. An
implementation is permitted to:
• Modify the definition of an event to better correspond to the implementation.
• Not use some, or many, of these events.

The instructions and operations that are counted by each event can be described by reference to the instruction
categories in Instruction categories on page A-106, with the following exceptions:
• It is IMPLEMENTATION DEFINED whether operations due to any of the instructions listed in Data movement

instructions on page A-106, Floating-point conversions on page A-111, or Floating-point or integer
instructions on page A-112, will be counted
— As integer operations.
— As floating-point operations.
— As neither integer operations or floating-point operations.
However, they must not be counted as both integer operations and floating-point operations.

• Unless otherwise stated, a reference to Advanced SIMD or SVE instructions refers to all the instructions
listed in Instruction categories on page A-106 under the corresponding subheadings. This includes
data-processing, predicate handling, load, store, and prefetch instructions.

• A reference to Advanced SIMD scalar instructions refers to Advanced SIMD instructions that would be
counted for the ARMv8 DP_SPEC event, and to Advanced SIMD instructions that only read element[0] of their
source vectors, and can write a non-zero result only to element[0] of their destination vector.

• It is IMPLEMENTATION DEFINED whether a reference to Advanced SIMD instructions includes the instructions
listed in Cryptographic instructions on page A-114 that would be counted by the ARMv8 CRYPTO_SPEC event.
If they are counted as Advanced SIMD instructions, then it is IMPLEMENTATION DEFINED whether individual
Cryptographic instructions are counted as SIMD or Advanced SIMD scalar instructions.

• Except for events 0x807C - 0x807F, it is IMPLEMENTATION DEFINED whether an SVE MOVPRFX instruction, or
microarchitecural operations (μ−ops) due to a MOVPRFX instruction, are counted. This can vary dynamically
for each execution of the same instruction.

• The terms Operation and Speculatively executed are broad enough to permit such events to count only retired,
architecturally executed instructions. However, the UOP_SPEC, ASE_UOP_SPEC, SVE_UOP_SPEC,
ASE_SVE_UOP_SPEC and SIMD_UOP_SPEC events are explicitly defined to count speculative execution
on both correct and false execution paths of μ−ops that are due to architectural instructions.
8-76 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

8 SVE Performance Monitors Extension
8.2 New performance monitor events
8.2 New performance monitor events

8.2.1 Required SVE PMU events

Implementations of SVE that include the Performance Monitor Extension are architecturally required to include at
least one of the events listed in Table 8-1.

PMU event descriptions

0x8002, SVE_INST_RETIRED, SVE instructions architecturally executed

This event counts architecturally executed SVE instructions. It is IMPLEMENTATION DEFINED
whether this event counts the instructions listed in Non-SIMD SVE instructions on page A-112.

0x8006, SVE_INST_SPEC, SVE operations speculatively executed

This event counts speculatively executed operations due to SVE instructions. It is IMPLEMENTATION
DEFINED whether it counts operations due to the instructions listed in Non-SIMD SVE instructions
on page A-112.

Table 8-1 New SVE PMU events

Event number Event type Event mnemonic

0x8002 Architectural, Required SVE_INST_RETIRED

0x8006 Microarchitectural, Required SVE_INST_SPEC
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. 8-77
ID103018 Non-Confidential

8 SVE Performance Monitors Extension
8.3 Existing ARMv8-A PMU events affected by SVE
8.3 Existing ARMv8-A PMU events affected by SVE
The following ARMv8-A PMU events also count SVE instructions and operations. These events are described in
Table 8-2. All other ARMv8-A PMU events do not count SVE instructions and operations. See the section titled
Common Event Numbers in the ARM® Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile
for further information on these events.

Table 8-2 Existing PMU events affected by SVE

Event
number Event mnemonic SVE clarification

0x0006 LD_RETIRED Counts architecturally executed SVE load instructions.

0x0007 ST_RETIRED Counts architecturally executed SVE store instructions.

0x0008 INST_RETIRED Counts architecturally executed SVE instructions. It is IMPLEMENTATION DEFINED
whether MOVPRFX is counted by this event.

0x000F UNALIGNED_LDST_RETIRED Counts architecturally executed SVE load and store instructions that access at least
one unaligned element address that would generate an alignment fault when
Alignment fault checking is enabled.

0x0013 MEM_ACCESS Counts memory reads and writes as a result of SVE load and store instructions. The
number of accesses generated by each SVE instruction is IMPLEMENTATION
DEFINED.

0x001B INST_SPEC Counts speculatively executed SVE operations. It is IMPLEMENTATION DEFINED
whether MOVPRFX is counted by this event.

0x0066 MEM_ACCESS_RD Similar to MEM_ACCESS, but only counts reads.

0x0067 MEM_ACCESS_WR Similar to MEM_ACCESS but only counts writes.

0x0068 UNALIGNED_LD_SPEC Counts speculatively executed SVE load operations that access at least one
unaligned element address.

0x0069 UNALIGNED_ST_SPEC Counts speculatively executed SVE store operations that access at least one
unaligned element address.

0x006A UNALIGNED_LDST_SPEC Counts speculatively executed SVE load and store operations that access at least
one unaligned element address.

0x0070 LD_SPEC Counts speculatively executed SVE load operations.

0x0071 ST_SPEC Counts speculatively executed SVE store operations.

0x0072 LDST_SPEC Counts speculatively executed SVE load and store operations.
8-78 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_xml/xhtml/movprfx_z_p_z.html
../SVE_xml/xhtml/movprfx_z_p_z.html

Appendix A
Recommended SVE PMU events

This section contains a list of the recommended PMU events for SVE and contains the following section:

• List of recommended PMU events on page A-80
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-79
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
A.1 List of recommended PMU events
Table Table A-1 describes the recommended PMU events for SVE implementations.

Table A-1 Recommended PMU events

Event number Event type Event mnemonic

0x8000 Architectural SIMD_INST_RETIRED

0x8001 Architectural ASE_INST_RETIRED

0x8002 Architectural. Required event See SVE_INST_RETIRED

0x8003 Architectural ASE_SVE_INST_RETIRED

0x8004 Microarchitectural SIMD_INST_SPEC

0x8005 Microarchitectural ASE_INST_SPEC

0x8006 Microarchitectural. Required event See SVE_INST_SPEC

0x8007 Microarchitectural ASE_SVE_INST_SPEC

0x8008 Microarchitectural UOP_SPEC

0x8009 Microarchitectural ASE_UOP_SPEC

0x800A Microarchitectural SVE_UOP_SPEC

0x800B Microarchitectural ASE_SVE_UOP_SPEC

0x800C Microarchitectural SIMD_UOP_SPEC

0x800D Reserved Reserved for future expansion

0x800E Microarchitectural SVE_MATH_SPEC

0x800F Reserved Reserved for future expansion

0x8010 Microarchitectural FP_SPEC

0x8011 Microarchitectural ASE_FP_SPEC

0x8012 Microarchitectural SVE_FP_SPEC

0x8013 Microarchitectural ASE_SVE_FP_SPEC

0x8014 Microarchitectural FP_HP_SPEC

0x8015 Microarchitectural ASE_FP_HP_SPEC

0x8016 Microarchitectural SVE_FP_HP_SPEC

0x8017 Microarchitectural ASE_SVE_FP_HP_SPEC

0x8018 Microarchitectural FP_SP_SPEC

0x8019 Microarchitectural ASE_FP_SP_SPEC

0x801A Microarchitectural SVE_FP_SP_SPEC

0x801B Microarchitectural ASE_SVE_FP_SP_SPEC

0x801C Microarchitectural FP_DP_SPEC

0x801D Microarchitectural ASE_FP_DP_SPEC

0x801E Microarchitectural SVE_FP_DP_SPEC

0x801F Microarchitectural ASE_SVE_FP_DP_SPEC

0x8020 Microarchitectural FP_DIV_SPEC

0x8021 Microarchitectural ASE_FP_DIV_SPEC

0x8022 Microarchitectural SVE_FP_DIV_SPEC

0x8023 Microarchitectural ASE_SVE_FP_DIV_SPEC

0x8024 Microarchitectural FP_SQRT_SPEC

0x8025 Microarchitectural ASE_FP_SQRT_SPEC

0x8026 Microarchitectural SVE_FP_SQRT_SPEC
A-80 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
0x8027 Microarchitectural ASE_SVE_FP_SQRT_SPEC

0x8028 Microarchitectural FP_FMA_SPEC

0x8029 Microarchitectural ASE_FP_FMA_SPEC

0x802A Microarchitectural SVE_FP_FMA_SPEC

0x802B Microarchitectural ASE_SVE_FP_FMA_SPEC

0x802C Microarchitectural FP_MUL_SPEC

0x802D Microarchitectural ASE_FP_MUL_SPEC

0x802E Microarchitectural SVE_FP_MUL_SPEC

0x802F Microarchitectural ASE_SVE_FP_MUL_SPEC

0x8030 Microarchitectural FP_ADDSUB_SPEC

0x8031 Microarchitectural ASE_FP_ADDSUB_SPEC

0x8032 Microarchitectural SVE_FP_ADDSUB_SPEC

0x8033 Microarchitectural ASE_SVE_FP_ADDSUB_SPEC

0x8034 Microarchitectural FP_RECPE_SPEC

0x8035 Microarchitectural ASE_FP_RECPE_SPEC

0x8036 Microarchitectural SVE_FP_RECPE_SPEC

0x8037 Microarchitectural ASE_SVE_FP_RECPE_SPEC

0x8038 Microarchitectural FP_CVT_SPEC

0x8039 Microarchitectural ASE_FP_CVT_SPEC,

0x803A Microarchitectural SVE_FP_CVT_SPEC

0x803B Microarchitectural ASE_SVE_FP_CVT_SPEC

0x803C Microarchitectural SVE_FP_AREDUCE_SPEC

0x803D Microarchitectural ASE_FP_PREDUCE_SPEC

0x803E Microarchitectural SVE_FP_VREDUCE_SPEC

0x803F Microarchitectural ASE_SVE_FP_VREDUCE_SPEC

0x8040 Microarchitectural INT_SPEC

0x8041 Microarchitectural ASE_INT_SPEC

0x8042 Microarchitectural SVE_INT_SPEC

0x8043 Microarchitectural ASE_SVE_INT_SPEC

0x8044 Microarchitectural INT_DIV_SPEC

0x8045 Microarchitectural INT_DIV64_SPEC

0x8046 Microarchitectural SVE_INT_DIV_SPEC

0x8047 Microarchitectural SVE_INT_DIV64_SPEC

0x8048 Microarchitectural INT_MUL_SPEC

0x8049 Microarchitectural ASE_INT_MUL_SPEC

0x804A Microarchitectural SVE_INT_MUL_SPEC

0x804B Microarchitectural ASE_SVE_INT_MUL_SPEC

0x804C Microarchitectural INT_MUL64_SPEC

0x804D Microarchitectural SVE_INT_MUL64_SPEC

0x804E Microarchitectural INT_MULH64_SPEC

0x804F Microarchitectural SVE_INT_MULH64_SPEC

Table A-1 Recommended PMU events (continued)

Event number Event type Event mnemonic
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-81
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
0x8050 - 0x8057 Reserved Reserved for future expansion

0x8058 Microarchitectural NONFP_SPEC

0x8059 Microarchitectural ASE_NONFP_SPEC

0x805A Microarchitectural SVE_NONFP_SPEC

0x805B Microarchitectural ASE_SVE_NONFP_SPEC

0x805C Reserved Reserved for future expansion

0x805D Microarchitectural ASE_INT_VREDUCE_SPEC

0x805E Microarchitectural SVE_INT_VREDUCE_SPEC

0x805F Microarchitectural ASE_SVE_INT_VREDUCE_SPEC

0x8060 Microarchitectural SVE_PERM_SPEC

0x8061 Microarchitectural SVE_PERM_IGRANULE_SPEC

0x8062 Microarchitectural SVE_PERM_XGRANULE_SPEC

0x8063 Microarchitectural SVE_PERM_VARIABLE_SPEC

0x8064 Microarchitectural SVE_XPIPE_SPEC

0x8065 Microarchitectural SVE_XPIPE_Z2R_SPEC

0x8066 Microarchitectural SVE_XPIPE_R2Z_SPEC

0x8067 Microarchitectural SVE_PGEN_NVEC_SPEC

0x8068 Microarchitectural SVE_PGEN_SPEC

0x8069 Microarchitectural SVE_PGEN_FLG_SPEC

0x806A Microarchitectural SVE_PGEN_CMP_SPEC

0x806B Microarchitectural SVE_PGEN_FCM_SPEC

0x806C Microarchitectural SVE_PGEN_LOGIC_SPEC

0x806D Microarchitectural SVE_PPERM_SPEC

0x806E Microarchitectural SVE_PSCAN_SPEC

0x806F Microarchitectural SVE_PCNT_SPEC

0x8070 Microarchitectural SVE_PLOOP_WHILE_SPEC

0x8071 Microarchitectural SVE_PLOOP_TEST_SPEC

0x8072 Microarchitectural SVE_PLOOP_ELTS_SPEC

0x8073 Microarchitectural SVE_PLOOP_TERM_SPEC

0X8074 Microarchitectural SVE_PRED_SPEC

0x8075 Microarchitectural SVE_PRED_EMPTY_SPEC

0x8076 Microarchitectural SVE_PRED_FULL_SPEC

0x8077 Microarchitectural SVE_PRED_PARTIAL_SPEC

0x8078 Microarchitectural SVE_UNPRED_SPEC

0x8079 - 0x807B Reserved Reserved for future expansion

0x807C Microarchitectural SVE_MOVPRFX_SPEC

0x807D Microarchitectural SVE_MOVPRFX_Z_SPEC

0x807E Microarchitectural SVE_MOVPRFX_M_SPEC

0x807F Microarchitectural SVE_MOVPRFX_U_SPEC

0x8080 Microarchitectural SVE_LDST_SPEC

0x8081 Microarchitectural SVE_LD_SPEC

Table A-1 Recommended PMU events (continued)

Event number Event type Event mnemonic
A-82 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
0x8082 Microarchitectural SVE_ST_SPEC

0x8083 Microarchitectural SVE_PRF_SPEC

0x8084 Microarchitectural ASE_SVE_LDST_SPEC

0x8085 Microarchitectural ASE_SVE_LD_SPEC

0x8086 Microarchitectural ASE_SVE_ST_SPEC

0x8087 Microarchitectural PRF_SPEC

0x8088 Microarchitectural BASE_LDST_REG_SPEC

0x8089 Microarchitectural BASE_LD_REG_SPEC

0x808A Microarchitectural BASE_ST_REG_SPEC

0x808B Microarchitectural BASE_PRF_SPEC

0x808C Microarchitectural FPASE_LDST_REG_SPEC

0x808D Microarchitectural FPASE_LD_REG_SPEC

0x808E Microarchitectural FPASE_ST_REG_SPEC

0x808F Reserved Reserved for future expansion

0x8090 Microarchitectural SVE_LDST_REG_SPEC

0x8091 Microarchitectural SVE_LDR_REG_SPEC

0x8092 Microarchitectural SVE_STR_REG_SPEC

0x8093 Reserved Reserved for future expansion

0x8094 Microarchitectural SVE_LDST_PREG_SPEC

0x8095 Microarchitectural SVE_LDR_PREG_SPEC

0x8096 Microarchitectural SVE_STR_PREG_SPEC

0x8097 Reserved Reserved for future expansion

0x8098 Microarchitectural SVE_LDST_ZREG_SPEC

0x8099 Microarchitectural SVE_LDR_ZREG_SPEC

0x809A Microarchitectural SVE_STR_ZREG_SPEC

0x809B Reserved Reserved for future expansion

0x809C Microarchitectural SVE_LDST_CONTIG_SPEC

0x809D Microarchitectural SVE_LD_CONTIG_SPEC

0x809E Microarchitectural SVE_ST_CONTIG_SPEC

0x809F Microarchitectural SVE_PRF_CONTIG_SPEC

0x80A0 Microarchitectural SVE_LDSTNT_CONTIG_SPEC

0x80A1 Microarchitectural SVE_LDNT_CONTIG_SPEC

0x80A2 Microarchitectural SVE_STNT_CONTIG_SPEC

0x80A3 Reserved Reserved for future expansion

0x80A4 Microarchitectural ASE_SVE_LDST_MULTI_SPEC

0x80A5 Microarchitectural ASE_SVE_LD_MULTI_SPEC

0x80A6 Microarchitectural ASE_SVE_ST_MULTI_SPEC

0x80A7 Reserved Reserved for future expansion

0x80A8 Microarchitectural SVE_LDST_MULTI_SPEC

0x80A9 Microarchitectural SVE_LD_MULTI_SPEC

0x80AA Microarchitectural SVE_ST_MULTI_SPEC

Table A-1 Recommended PMU events (continued)

Event number Event type Event mnemonic
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-83
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
0x80AB Reserved Reserved for future expansion

0x80AC Microarchitectural SVE_LDST_NONCONTIG_SPEC

0x80AD Microarchitectural SVE_LD_GATHER_SPEC

0x80AE Microarchitectural SVE_ST_SCATTER_SPEC

0x80AF Microarchitectural SVE_PRF_GATHER_SPEC

0x80B0 Microarchitectural SVE_LDST64_NONCONTIG_SPEC

0x80B1 Microarchitectural SVE_LD64_GATHER_SPEC

0x80B2 Microarchitectural SVE_ST64_SCATTER_SPEC

0x80B3 Microarchitectural SVE_PRF64_GATHER_SPEC

0x80B4 Microarchitectural ASE_SVE_UNALIGNED_LDST_SPEC

0x80B5 Microarchitectural ASE_SVE_UNALIGNED_LD_SPEC

0x80B6 Microarchitectural ASE_SVE_UNALIGNED_ST_SPEC

0x80B7 Reserved Reserved for future expansion

0x80B8 Microarchitectural ASE_SVE_UNALIGNED_CONTIG_LDST_SPEC

0x80B9 Microarchitectural ASE_SVE_UNALIGNED_CONTIG_LD_SPEC

0x80BA Microarchitectural ASE_SVE_UNALIGNED_CONTIG_ST_SPEC

0x80BB Reserved Reserved for future expansion

0x80BC Microarchitectural SVE_LDFF_SPEC

0x80BD Microarchitectural SVE_LDFF_FAULT_SPEC

0x80BE - 0x80BF Reserved Reserved for future expansion

0x80C0 Microarchitectural FP_SCALE_OPS_SPEC

0x80C1 Microarchitectural FP_FIXED_OPS_SPEC

0x80C2 Microarchitectural FP_HP_SCALE_OPS_SPEC

0x80C3 Microarchitectural FP_HP_FIXED_OPS_SPEC

0x80C4 Microarchitectural FP_SP_SCALE_OPS_SPEC

0x80C5 Microarchitectural FP_SP_FIXED_OPS_SPEC

0x80C6 Microarchitectural FP_DP_SCALE_OPS_SPEC

0x80C7 Microarchitectural FP_DP_FIXED_OPS_SPEC

0x80C8 Microarchitectural INT_SCALE_OPS_SPEC

0x80C9 Microarchitectural INT_FIXED_OPS_SPEC

0x80CA Microarchitectural LDST_SCALE_OPS_SPEC

0x80CB Microarchitectural LDST_FIXED_OPS_SPEC

0x80CC Microarchitectural LD_SCALE_OPS_SPEC

0x80CD Microarchitectural LD_FIXED_OPS_SPEC

0x80CE Microarchitectural ST_SCALE_OPS_SPEC

0x80CF Microarchitectural ST_FIXED_OPS_SPEC

0x80D0 - 0x80D9 Reserved Reserved for future expansion

0x80DA Microarchitectural LDST_SCALE_BYTES_SPEC

0x80DB Microarchitectural LDST_FIXED_BYTES_SPEC

0x80DC Microarchitectural LD_SCALE_BYTES_SPEC

0x80DD Microarchitectural LD_FIXED_BYTES_SPEC

Table A-1 Recommended PMU events (continued)

Event number Event type Event mnemonic
A-84 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
A.1.1 Definitions

CSIZE

Container size, in bits, that corresponds to the largest non-overlapping SVE or Advanced SIMD
vector element size or scalar register size that is encoded in the instruction opcode. This excludes
the 64-bit elements of the wide element variants of the SVE bitwise shift and integer compare
instructions that overlap the narrower source and destination elements.

MSIZE

Memory element access size, in bits, that corresponds to a load or store instruction mnemonic suffix,
where B=8, H=16, W=32, or D=64. When an instruction mnemonic suffix is not specified, the memory
access size is implied by the scalar transfer register size or SIMD transfer register element size.

VL

The vector length, in bits.

A.1.2 Recommended PMU event descriptions

0x8000, SIMD_INST_RETIRED, SIMD instructions architecturally executed

This event counts architecturally executed SIMD instructions as follows:
• SVE instructions excluding the instructions listed in Non-SIMD SVE instructions on

page A-112.
• Advanced SIMD instructions excluding the Advanced SIMD scalar instructions.

0x8001, ASE_INST_RETIRED, Advanced SIMD instructions architecturally executed

This event counts architecturally executed Advanced SIMD instructions. It is IMPLEMENTATION
DEFINED whether this event counts Advanced SIMD scalar instructions.

0x8003, ASE_SVE_INST_RETIRED, Advanced SIMD and SVE instructions architecturally executed

This event counts architecturally executed instructions that would be counted for
ASE_INST_RETIRED or SVE_INST_RETIRED.

0x8004, SIMD_INST_SPEC, SIMD operations speculatively executed

This event counts speculatively executed operations due to:
• SVE instructions excluding the instructions listed in Non-SIMD SVE instructions on

page A-112
• Advanced SIMD instructions excluding Advanced SIMD scalar instructions.

0x8005, ASE_INST_SPEC, Advanced SIMD operations speculatively executed

This event counts speculatively executed operations due to Advanced SIMD instructions. It is
IMPLEMENTATION DEFINED whether this event counts operations due to Advanced SIMD scalar
instructions.

0x8007, ASE_SVE_INST_SPEC, Advanced SIMD and SVE operations speculatively executed

This event counts speculatively executed operations that would be counted for ASE_INST_SPEC
or SVE_INST_SPEC.

0x8008, UOP_SPEC, microarchitectural operations speculatively executed

0x80DE Microarchitectural ST_SCALE_BYTES_SPEC

0x80DF Microarchitectural ST_FIXED_BYTES_SPEC

0x80E0 - 0x80FF Reserved Reserved for future expansion

Table A-1 Recommended PMU events (continued)

Event number Event type Event mnemonic
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-85
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
This event counts all speculatively executed microarchitectural operations, irrespective of the
IMPLEMENTATION DEFINED interpretation of operation speculatively executed.

0x8009, ASE_UOP_SPEC, Advanced SIMD microarchitecural operations speculatively executed

This event counts speculatively executed microarchitectural operations due to Advanced SIMD
instructions, irrespective of the IMPLEMENTATION DEFINED interpretation of operation speculatively
executed. It is IMPLEMENTATION DEFINED whether it counts microarchitecural operations due to
Advanced SIMD scalar instructions.

0x800A, SVE_UOP_SPEC, SVE micro-operation speculatively executed

This event counts speculatively executed microarchitectural operations due to SVE instructions,
irrespective of the IMPLEMENTATION DEFINED interpretation of operation speculatively executed. It
is IMPLEMENTATION DEFINED whether this event counts microarchitecural operations due to the
instructions listed in Non-SIMD SVE instructions on page A-112.

0x800B, ASE_SVE_UOP_SPEC, Advanced SIMD and SVE microarchitecural operations speculatively
executed

This event counts speculatively executed microarchitectural operations as described for
SVE_UOP_SPEC and ASE_UOP_SPEC.

0x800C, SIMD_UOP_SPEC, SIMD micro-operation speculatively executed

This event counts speculatively executed microarchitectural operations irrespective of the
IMPLEMENTATION DEFINED interpretation of operation speculatively executed, due to:
• SVE instructions excluding the instructions listed in Non-SIMD SVE instructions on

page A-112.
• Advanced SIMD instructions excluding Advanced SIMD scalar instructions.

0x800E, SVE_MATH_SPEC, SVE math accelerator operation speculatively executed

This event counts speculatively executed math function operations due to the SVE FTSMUL, FTMAD,
FTSSEL, and FEXPA instructions.

0x8010, FP_SPEC, floating-point operation speculatively executed

This event counts speculatively executed operations due to scalar, Advanced SIMD, and SVE
instructions listed in Floating-point instructions on page A-110 and optionally Floating-point
conversions on page A-111 and Floating-point or integer instructions on page A-112.

Note
 This event differs from the ARMv8-A VFP_SPEC event which does not count SIMD operations.

0x8011, ASE_FP_SPEC, Advanced SIMD floating-point operation speculatively executed

This event counts speculatively executed operations due to Advanced SIMD instructions listed in
Floating-point instructions on page A-110 and optionally Floating-point conversions on
page A-111 and Floating-point or integer instructions on page A-112.

0x8012, SVE_FP_SPEC, SVE floating-point operation speculatively executed

This event counts speculatively executed operations due to SVE instructions listed in Floating-point
instructions on page A-110 and optionally Floating-point conversions on page A-111 and
Floating-point or integer instructions on page A-112.

0x8013, ASE_SVE_FP_SPEC, Advanced SIMD and SVE floating-point operations speculatively executed

This event counts speculatively executed operations due to Advanced SIMD and SVE instructions
listed in Floating-point instructions on page A-110 and optionally Floating-point conversions on
page A-111 and Floating-point or integer instructions on page A-112.

0x8014, FP_HP_SPEC, half-precision floating-point operation speculatively executed
A-86 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
This event counts speculatively executed operations due to scalar, Advanced SIMD, and SVE
instructions listed in Floating-point instructions on page A-110 and optionally Floating-point
conversions on page A-111 and Floating-point or integer instructions on page A-112, where the
largest type is half-precision.

0x8015, ASE_FP_HP_SPEC, Advanced SIMD half-precision floating-point operation speculatively executed

This event counts speculatively executed operations due to Advanced SIMD instructions listed in
Floating-point instructions on page A-110 and optionally Floating-point conversions on
page A-111 and Floating-point or integer instructions on page A-112, where the largest type is
half-precision.

0x8016, SVE_FP_HP_SPEC, SVE half-precision floating-point operation speculatively executed

This event counts speculatively executed operations due to SVE instructions listed in Floating-point
instructions on page A-110 and optionally Floating-point conversions on page A-111 and
Floating-point or integer instructions on page A-112, where the largest type is half-precision.

0x8017, ASE_SVE_FP_HP_SPEC, Advanced SIMD and SVE floating-point half-precision operations
speculatively executed

This event counts speculatively executed operations due to Advanced SIMD and SVE instructions
listed in Floating-point instructions on page A-110 and optionally Floating-point conversions on
page A-111 and Floating-point or integer instructions on page A-112, where the largest type is
half-precision.

0x8018, FP_SP_SPEC, single-precision floating-point operation speculatively executed

This event counts speculatively executed operations due to scalar, Advanced SIMD, and SVE
instructions listed in Floating-point instructions on page A-110 and optionally Floating-point
conversions on page A-111 and Floating-point or integer instructions on page A-112, where the
largest type is single-precision.

0x8019, ASE_FP_SP_SPEC, Advanced SIMD single-precision floating-point operations speculatively
executed

This event counts speculatively executed operations due to Advanced SIMD instructions listed in
Floating-point instructions on page A-110 and optionally Floating-point conversions on
page A-111 and Floating-point or integer instructions on page A-112, where the largest type is
single-precision.

0x801A, SVE_FP_SP_SPEC, SVE single-precision floating-point operation speculatively executed

This event counts speculatively executed operations due to SVE instructions listed in Floating-point
instructions on page A-110 and optionally Floating-point conversions on page A-111 and
Floating-point or integer instructions on page A-112, where the largest type is single-precision.

0x801B, ASE_SVE_FP_SP_SPEC, Advanced SIMD and SVE single-precision floating-point operations
speculatively executed

This event counts speculatively executed operations due to Advanced SIMD and SVE instructions
listed in Floating-point instructions on page A-110 and optionally Floating-point conversions on
page A-111 and Floating-point or integer instructions on page A-112, where the largest type is
single-precision.

0x801C, FP_DP_SPEC, double-precision floating-point operation speculatively executed

This event counts speculatively executed operations due to scalar, Advanced SIMD, and SVE
instructions listed in Floating-point instructions on page A-110 and optionally Floating-point
conversions on page A-111 and Floating-point or integer instructions on page A-112, where the
largest type is double-precision.

0x801D, ASE_FP_DP_SPEC, Advanced SIMD double-precision floating-point operation speculatively
executed
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-87
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
This event counts speculatively executed operations due to Advanced SIMD instructions listed in
Floating-point instructions on page A-110 and optionally Floating-point conversions on
page A-111 and Floating-point or integer instructions on page A-112, where the largest type is
double-precision.

0x801E, SVE_FP_DP_SPEC, SVE double-precision floating-point operation speculatively executed

This event counts speculatively executed operations due to SVE instructions listed in Floating-point
instructions on page A-110 and optionally Floating-point conversions on page A-111 and
Floating-point or integer instructions on page A-112, where the largest type is double-precision.

0x801F, ASE_SVE_FP_DP_SPEC, Advanced SIMD and SVE double-precision floating-point operations
speculatively executed

This event counts speculatively executed operations due to Advanced SIMD and SVE instructions
listed in Floating-point instructions on page A-110 and optionally Floating-point conversions on
page A-111 and Floating-point or integer instructions on page A-112, where the largest type is
double-precision.

0x8020, FP_DIV_SPEC, floating-point divide operation speculatively executed

This event counts speculatively executed floating-point divide operations.

0x8021, ASE_FP_DIV_SPEC, Advanced SIMD floating-point divide operation speculatively executed

This event counts speculatively executed Advanced SIMD floating-point divide operations.

0x8022, SVE_FP_DIV_SPEC, SVE floating-point divide operation speculatively executed

This event counts speculatively executed SVE floating-point divide operations.

0x8023, ASE_SVE_FP_DIV_SPEC, Advanced SIMD and SVE floating-point divide operations speculatively
executed

This event counts speculatively executed Advanced SIMD and SVE floating-point divide
operations.

0x8024, FP_SQRT_SPEC, floating-point square root operation speculatively executed

This event counts speculatively executed floating-point square-root operations.

0x8025, ASE_FP_SQRT_SPEC, Advanced SIMD floating-point square root operation speculatively executed

This event counts speculatively executed Advanced SIMD floating-point square-root operations.

0x8026, SVE_FP_SQRT_SPEC, SVE floating-point square root operation speculatively executed

This event counts speculatively executed SVE floating-point square-root operations.

0x8027, ASE_SVE_FP_SQRT_SPEC, Advanced SIMD and SVE floating-point square-root operations
speculatively executed

This event counts speculatively executed Advanced SIMD and SVE floating-point square-root
operations.

0x8028, FP_FMA_SPEC, floating-point FMA operation speculatively executed

This event counts speculatively executed floating-point fused multiply-add and multiply-subtract
operations due to the following instructions:
• Scalar: FMADD, FMSUB, FNMADD, FNMSUB.
• Advanced SIMD: FCMLA, FMLA, FMLS.
• SVE: FCMLA, FMAD, FMLA, FMLS, FMSB, FNMAD, FNMLA, FNMLS, FNMSB, FTMAD.

0x8029, ASE_FP_FMA_SPEC, Advanced SIMD floating-point FMA operation speculatively executed

This event counts speculatively executed floating-point fused multiply-add and multiply-subtract
operations due to the Advanced SIMD FCMLA, FMLA, and FMLS instructions.

0x802A, SVE_FP_FMA_SPEC, SVE floating-point FMA operation speculatively executed
A-88 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
This operation speculatively executed floating-point fused multiply-add and multiply-subtract
operations due to the SVE FCMLA, FMAD, FMLA, FMLS, FMSB, FNMAD, FNMLA, FNMLS, FNMSB, and FTMAD
instructions.

0x802B, ASE_SVE_FP_FMA_SPEC, Advanced SIMD and SVE floating-point FMA operations speculatively
executed

This event counts speculatively executed floating-point fused multiply-add and multiply-subtract
operations due to the following instructions:
• Advanced SIMD: FCMLA, FMLA, FMLS.
• SVE: FCMLA, FMAD, FMLA, FMLS, FMSB, FNMAD, FNMLA, FNMLS, FNMSB, FTMAD.

0x802C, FP_MUL_SPEC, floating-point multiply operation speculatively executed

This event counts speculatively executed floating-point multiply operations due to the scalar,
Advanced SIMD, and SVE FMUL and FMULX instructions and the SVE FTSMUL instruction.

0x802D, ASE_FP_MUL_SPEC, Advanced SIMD floating-point multiply operation speculatively executed

This event counts speculatively executed floating-point multiply operations due to the scalar and
Advanced SIMD FMUL and FMULX instructions.

0x802E, SVE_FP_MUL_SPEC, SVE floating-point multiply operation speculatively executed

This event counts speculatively executed floating-point multiply operations due to the SVE FMUL,
FMULX, and FTSMUL instructions.

0x802F, ASE_SVE_FP_MUL_SPEC, Advanced SIMD and SVE floating-point multiply operations
speculatively executed

This event counts speculatively executed floating-point multiply operations due to the Advanced
SIMD and SVE FMUL and FMULX instructions and the SVE FTSMUL instruction.

0x8030, FP_ADDSUB_SPEC, floating-point add or subtract operation speculatively executed

This event counts speculatively executed floating-point add and subtract operations due to the
scalar, Advanced SIMD, and SVE FADD and FSUB instructions, and the Advanced SIMD and SVE
FABD instructions.

0x8031, ASE_FP_ADDSUB_SPEC, Advanced SIMD floating-point add or subtract operation speculatively
executed

This event counts speculatively executed floating-point add and subtract operations due to the
Advanced SIMD FABD, FADD, and FSUB instructions.

0x8032, SVE_FP_ADDSUB_SPEC, SVE floating-point add or subtract operation speculatively executed

This event counts speculatively executed floating-point add and subtract operations due to the SVE
FABD, FADD, and FSUB instructions.

0x8033, ASE_SVE_FP_ADDSUB_SPEC, Advanced SIMD and SVE floating-point add and subtract
operations speculatively executed

This event counts speculatively executed floating-point add and subtract operations due to the
Advanced SIMD and SVE FABD, FADD, and FSUB instructions.

0x8034, FP_RECPE_SPEC, Floating-point reciprocal estimate operations speculatively executed

This event counts speculatively executed floating-point reciprocal estimate operations due to the
Advanced SIMD scalar, Advanced SIMD vector, and SVE FRECPE and FRSQRTE instructions.

0x8035, ASE_FP_RECPE_SPEC, Advanced SIMD floating-point reciprocal estimate operations
speculatively executed

This event counts speculatively executed floating-point reciprocal estimate operations due to the
Advanced SIMD vector FRECPE and FRSQRTE instructions.

0x8036, SVE_FP_RECPE_SPEC, SVE floating-point reciprocal estimate operations speculatively executed
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-89
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
This event counts speculatively executed floating-point reciprocal estimate operations due to the
SVE FRECPE and FRSQRTE instructions.

0x8037, ASE_SVE_FP_RECPE_SPEC, Advanced SIMD and SVE floating-point reciprocal estimate
operations speculatively executed

This event counts speculatively executed floating-point reciprocal estimate operations due to
Advanced SIMD vector and SVE FRECPE and FRSQRTE instructions.

0x8038, FP_CVT_SPEC, floating-point convert operation speculatively executed

This event counts speculatively executed floating-point convert operations due to the scalar,
Advanced SIMD, and SVE floating-point conversion instructions listed in Floating-point
conversions on page A-111.

0x8039, ASE_FP_CVT_SPEC, Advanced SIMD floating-point convert operation speculatively executed

This event counts speculatively executed floating-point convert operations due to the Advanced
SIMD floating-point conversion instructions listed in Floating-point conversions on page A-111.

0x803A, SVE_FP_CVT_SPEC, SVE floating-point convert operation speculatively executed

This event counts speculatively executed floating-point convert operations due to the SVE
floating-point conversion instructions listed in Floating-point conversions on page A-111.

0x803B, ASE_SVE_FP_CVT_SPEC, Advanced SIMD and SVE floating-point convert operations
speculatively executed

This event counts speculatively executed floating-point convert operations due to the Advanced
SIMD and SVE floating-point conversion instructions listed in Floating-point conversions on
page A-111.

0x803C, SVE_FP_AREDUCE_SPEC, SVE floating-point accumulating reduction operations speculatively
executed

This event counts speculatively executed floating-point accumulating reduction operations due to
the SVE FADDA instruction.

0x803D, ASE_FP_PREDUCE_SPEC, Advanced SIMD floating-point pairwise add step operations
speculatively executed

This event counts speculatively executed floating-point pairwise add operations due to the
Advanced SIMD FADDP instruction.

0x803E, SVE_FP_VREDUCE_SPEC, SVE floating-point vector reduction operation speculatively executed

This event counts speculatively executed floating-point treewise reduction operations due to the
SVE FADDV, FMAXNMV, FMAXV, FMINNMV, and FMINV instructions.

0x803F, ASE_SVE_FP_VREDUCE_SPEC, Advanced SIMD and SVE floating-point vector reduction
operations speculatively executed

This event counts speculatively executed floating-point reduction operations due to the Advanced
SIMD and SVE FMAXNMV, FMAXV, FMINNMV, and FMINV instructions, the Advanced SIMD FADDP
instruction, and the SVE FADDV instruction.

0x8040, INT_SPEC, integer operations speculatively executed

This event counts speculatively executed integer arithmetic operations due to scalar, Advanced
SIMD, and SVE data-processing instructions listed in Integer instructions on page A-107 and
optionally Floating-point conversions on page A-111 and Floating-point or integer instructions on
page A-112.

0x8041, ASE_INT_SPEC, Advanced SIMD integer operations speculatively executed
A-90 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
This event counts speculatively executed integer arithmetic operations due to Advanced SIMD
data-processing instructions listed in Integer instructions on page A-107 and optionally
Floating-point conversions on page A-111 and Floating-point or integer instructions on
page A-112.

0x8042, SVE_INT_SPEC, SVE integer operations speculatively executed

This event counts speculatively executed integer arithmetic operations due to SVE data-processing
instructions listed in Integer instructions on page A-107 and optionally Floating-point conversions
on page A-111 and Floating-point or integer instructions on page A-112.

0x8043, ASE_SVE_INT_SPEC, Advanced SIMD and SVE integer operations speculatively executed

This event counts speculatively executed integer arithmetic operations due to Advanced SIMD and
SVE data-processing instructions listed in Integer instructions on page A-107 and optionally
Floating-point conversions on page A-111 and Floating-point or integer instructions on
page A-112.

0x8044, INT_DIV_SPEC, integer divide operation speculatively executed

This event counts speculatively executed scalar and SVE integer divide operations due to the SDIV
and UDIV instructions.

0x8045, INT_DIV64_SPEC, 64-bit integer divide operation speculatively executed

This event counts speculatively executed scalar and SVE integer divide operations due to the SDIV
and UDIV instructions with 64-bit operands or vector elements.

0x8046, SVE_INT_DIV_SPEC, SVE integer divide operation speculatively executed

This event counts speculatively executed SVE integer divide operations due to the SVE SDIV and
UDIV instructions.

0x8047, SVE_INT_DIV64_SPEC, SVE 64-bit integer divide operation speculatively executed

This event counts speculatively executed SVE integer divide operations due to the SVE SDIV and
UDIV instructions with 64-bit vector elements.

0x8048, INT_MUL_SPEC, integer multiply operation speculatively executed

This event counts speculatively executed integer multiply operations due to the following
instructions:
• Scalar: MADD, MSUB, MUL, SMADDL, SMULH, UMADDL, UMULH.
• Advanced SIMD: MLA, MLS, MUL, PMUL, PMULL, SMLAL, SMLS, SMULL, SQMLAL, SQDMLSL, SQDMULH,

SQDMULL, SQRDMLAH, SQRDMLSH, SQRDMULH, UMLAL, UMLSL, UMULL.
• SVE: MAD, MLA, MLS, MSB, MUL, SMULH, UMULH.

0x8049, ASE_INT_MUL_SPEC, Advanced SIMD integer multiply operation speculatively executed

This event counts speculatively executed integer multiply operations due to the following Advanced
SIMD instructions: MLA, MLS, MUL, PMUL, PMULL, SMLAL, SMLSL, SMULL, SQDMLAL, SQDMLSL, SQDMULH, SQDMULL,
SQRDMLAH, SQRDMLSH, SQRDMULH, UMLAL, UMLSL, UMULL.

0x804A, SVE_INT_MUL_SPEC, SVE integer multiply operation speculatively executed

This event counts speculatively executed integer multiply operations due to the following SVE
instructions: MAD, MLA, MLS, MSB, MUL, SMULH, UMULH.

0x804B, ASE_SVE_INT_MUL_SPEC, Advanced SIMD and SVE integer multiply operations speculatively
executed

This event counts speculatively executed integer multiply operations due to the following
instructions:
• Advanced SIMD: MLA, MLS, MUL, PMUL, PMULL, SMLAL, SMLSL, SMULL, SQDMLAL, SQDMLSL, SQDMULH,

SQDMULL, SQRDMLAH, SQRDMLSH, SQRDMULH, UMLAL, UMLSL, UMULL.
• SVE: MAD, MLA, MLS, MSB, MUL, SMULH, UMULH.

0x804C, INT_MUL64_SPEC, integer 64x64 multiply operation speculatively executed
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-91
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
This event counts speculatively executed integer multiply operations returning a 64-bit result for the
following instructions:
• Scalar: MADD, MSUB, MUL, SMADDL, SMULH, UMADDL, UMULH.
• SVE: MAD, MLS, MLA, MSB, MUL, SMULH, UMULH.

0x804D, SVE_INT_MUL64_SPEC, SVE integer 64-bit multiply operation speculatively executed

This event counts speculatively executed integer multiply operations returning a 64-bit result for the
following SVE instructions: MAD, MLA, MLS, MSB, MUL, SMULH, UMULH.

0x804E, INT_MULH64_SPEC, integer 64-bit multiply returning high part operation speculatively executed

This event counts speculatively executed widening integer multiply operations returning a 64-bit
result for the scalar and SVE SMULH and UMULH instructions.

0x804F, SVE_INT_MULH64_SPEC, SVE integer 64-bit multiply high part operations speculatively executed

This event counts speculatively executed widening integer multiply operations returning a 64-bit
result for the SVE SMULH and UMULH instructions.

0x8058, NONFP_SPEC, Non floating-point operations speculatively executed

This event counts speculatively executed operations due to the following instructions:
• Scalar instructions that would be counted by the ARMv8 DP_SPEC event.
• Advanced SIMD data processing instructions defined in the section titled Data processing -

SIMD and floating-point in the ARM® Architecture Reference Manual, ARMv8-A, for
ARMv8-A architecture profile that would not be counted by FP_SPEC.

• SVE instructions with vector source or destination registers that would not be counted by
FP_SPEC.

0x8059, ASE_NONFP_SPEC, Advanced SIMD non-floating-point operations speculatively executed

This event counts speculatively executed operations due to Advanced SIMD data processing
instructions defined in the section titled Data processing - SIMD and floating-point in the ARM®
Architecture Reference Manual, ARMv8-A, for ARMv8-A architecture profile that would not be
counted by ASE_FP_SPEC.

0x805A, SVE_NONFP_SPEC, SVE non-floating-point operations speculatively executed

This event counts speculatively executed operations due to SVE instructions with vector source or
destination registers that would not be counted by SVE_FP_SPEC.

0x805B, ASE_SVE_NONFP_SPEC, Advanced SIMD and SVE non-floating-point operations speculatively
executed

This event counts speculatively executed operations due to the following instructions:
• Advanced SIMD data-processing instructions defined in the section titled Data processing -

SIMD and floating-point in the ARM® Architecture Reference Manual, ARMv8-A, for
ARMv8-A architecture profile that would not be counted by ASE_SVE_FP_SPEC.

• SVE instructions with vector source or destination registers that would not be counted by
ASE_SVE_FP_SPEC.

0x805D, ASE_INT_VREDUCE_SPEC, Advanced SIMD integer reduction operation speculatively executed

This event counts speculatively executed across-vector and pairwise integer reduction operations
due to the Advanced SIMD SADDLP, SADDLV, SMAXP, SMAXV, SMINP, SMINV, UADDVL, UMAXV, and UMINV
instructions.

0x805E, SVE_INT_VREDUCE_SPEC, SVE integer reduction operation speculatively executed

This event counts speculatively executed across-vector integer reduction operations due to the
following SVE instructions: ANDV, EORV, ORV, SADDV, SMAXV, SMINV, UADDV, UMAXV, and UMINV instructions.

0x805F, ASE_SVE_INT_VREDUCE_SPEC, Advanced SIMD and SVE integer reduction operations
speculatively executed
A-92 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
This event counts speculatively executed across-vector and pairwise integer reduction operations
due to the following instructions:
• Advanced SIMD: SADDLP, SADDLV, SMAXP, SMAXV, SMINP, SMINV, UADDLV, UMAXV, and UMINV.
• SVE: ANDV, EORV, ORV, SADDV, SMAXV, SMINV, UADDV, UMAXV, UMINV.

0x8060, SVE_PERM_SPEC, SVE permute operation speculatively executed

This event counts speculatively executed vector or predicate permute operations due to the
following SVE instructions: CLASTA, CLASTB, CPY, COMPACT, DUP, EXT, INSR, LASTA, LASTB, PUNPKHI,
PUNPKLO, REV, REV16, REV32, REV64, SPLICE, SUNPKHI, SUNPKLO, TBL, TRN1, TRN2, UUNPKHI, UUNPKLO, UZP1,
UZP2, ZIP1, and ZIP2.

0x8061, SVE_PERM_IGRANULE_SPEC, SVE intra-granule permute operations speculatively executed

This event counts speculatively executed vector or predicate permute operations within a 128-bit
vector granule or 16-bit predicate granule for the following SVE instructions: REV16, REV32, REV64,
TRN1, TRN2.

0x8062, SVE_PERM_XGRANULE_SPEC, SVE cross-granule permute operations speculatively executed

This event counts speculatively executed vector or predicate permute operations that can cross
between 128-bit vector granules or 16-bit predicate granules for the following SVE instructions:
CLASTA, CLASTB, CPY, COMPACT, DUP, EXT, INSR, LASTA, LASTB, PUNPKHI, PUNPKLO, REV, SPLICE, SUNPKHI,
SUNPKLO, TBL, UNPKHI, UNPKLO, UZP1, UZP2, ZIP1, and ZIP2.

0x8063, SVE_PERM_VARIABLE_SPEC, SVE programmable permute operations speculatively executed

This event counts speculatively executed variable vector permute operations due to the following
SVE instructions: CLASTA, CLASTB, COMPACT, LASTA, LASTB, SPLICE, and TBL.

0x8064, SVE_XPIPE_SPEC, SVE cross-pipe operations speculatively executed

This event counts speculatively executed cross-pipeline transfer operations due to the following
SVE instructions: CLASTA (scalar), CLASTB (scalar), CNTP, CPY (scalar), DECP (scalar), DUP (scalar), INCP
(scalar), INDEX (immediate, scalar), INDEX (scalar, immediate), INDEX (scalar, scalar), INSR (scalar),
LASTA (scalar), LASTB (scalar), SQDECP (scalar), SQINCP (scalar), UQDECP (scalar), UQDECP (scalar),
WHILE<cc>.

0x8065, SVE_XPIPE_Z2R_SPEC, SVE vector to scalar cross-pipe operations speculatively executed

This event counts speculatively executed vector to general-purpose scalar cross-pipeline transfer
operations due to the following SVE instructions: CLASTA (scalar), CLASTB (scalar), CNTP, DECP (scalar),
INCP (scalar), LASTA (scalar), LASTB (scalar), SQDECP (scalar), SQINCP (scalar), UQDECP (scalar), UQDECP
(scalar).

0x8066, SVE_XPIPE_R2Z_SPEC, SVE scalar to vector cross-pipe operations speculatively executed

This event counts speculatively executed general-purpose scalar to vector cross-pipeline transfer
operations due to the following SVE instructions: CPY (scalar), DUP (scalar), INDEX (immediate,
scalar), INDEX (scalar, immediate), INDEX (scalar, scalar), INSR (scalar), WHILE<cc>.

0x8067, SVE_PGEN_NVEC_SPEC, SVE predicate-only operations speculatively executed

This event counts speculatively executed predicate-generating operations that do not read vector
registers due to the following SVE instructions: AND (predicates), ANDS, BIC (predicates), BICS, BRKA,
BRKAS, BRKB, BRKBS, BRKN, BRKNS, BRKPA, BRKPAS, BRKPB, BRKPBS, EOR (predicates), EORS, NAND, NANDS, NOR,
NORS, ORN (predicates), ORNS, ORR (predicates), ORRS, PFALSE, PFIRST, PNEXT, PTRUE, PTRUES, PUNPKHI,
PUNPKLO, RDFFR, RDFFRS, REV (predicate), SEL (predicates), TRN1 (predicates), TRN2 (predicates), UZP1
(predicates), UZP2 (predicates), WHILE<cc>, ZIP1 (predicates), ZIP2 (predicates).

0x8068, SVE_PGEN_SPEC, SVE predicate generating operations speculatively executed

This event counts speculatively executed predicate-generating operations due to the following SVE
instructions: AND (predicates), ANDS, BIC (predicates), BICS, BRKA, BRKAS, BRKB, BRKBS, BRKN, BRKNS,
BRKPA, BRKPAS, BRKPB, BRKPBS, CMP<cc>, EOR (predicates), EORS, FAC<cc>, FCM<cc>, NAND, NANDS, NOR, NORS,
ORN (predicates), ORNS, ORR (predicates), ORRS, PFALSE, PFIRST, PNEXT, PTRUE, PTRUES, PUNPKHI, PUNPKLO,
RDFFR, RDFFRS, REV (predicate), SEL (predicates), TRN1 (predicates), TRN2 (predicates), UZP1
(predicates), UZP2 (predicates), WHILE<cc>, ZIP1 (predicates), ZIP2 (predicates).
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-93
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
0x8069, SVE_PGEN_FLG_SPEC, SVE predicate flag setting operations speculatively executed

This event counts speculatively executed predicate-generating operations that set condition flags,
due to the following SVE instructions: ANDS, BICS, BRKAS, BRKBS, BRKNS, BRKPAS, BRKPBS, CMP<cc>, EORS,
NANDS, NORS, ORNS, ORRS, PFIRST, PNEXT, PTRUES, RDFFRS, WHILE<cc>.

0x806A, SVE_PGEN_CMP_SPEC, SVE vector compare operations speculatively executed

This event counts speculatively executed vector compare operations due to the following SVE
instructions: CMP<cc>, FAC<cc>, FCM<cc>.

0x806B, SVE_PGEN_FCM_SPEC, SVE floating-point vector compare operations speculatively executed

This event counts speculatively executed vector floating-point compare operations, due to the
following SVE instructions: FAC<cc>, FCM<cc>.

0x806C, SVE_PGEN_LOGIC_SPEC, SVE predicate logical operations speculatively executed

This event counts speculatively executed predicate logical operations, due to the following SVE
instructions: AND (predicates), ANDS, BIC (predicates), BICS, EOR (predicates), EORS, NAND, NANDS, NOR,
NORS, ORN (predicates), ORNS, ORR (predicates), ORRS.

0x806D, SVE_PPERM_SPEC, SVE predicate permute operations speculatively executed

This event counts speculatively executed predicate permute operations, due to the following SVE
instructions: PUNPKHI, PUNPKLO, REV (predicate), TRN1 (predicates), TRN2 (predicates), UZP1 (predicates),
UZP2 (predicates), ZIP1 (predicates), ZIP2 (predicates).

0x806E, SVE_PSCAN_SPEC, SVE predicate scan operations speculatively executed

This event counts speculatively executed predicate scanning and generation operations, due to the
following SVE instructions: BRKA, BRKAS, BRKB, BRKBS, BRKN, BRKNS, BRKPA, BRKPAS, BRKPB, BRKPBS,
PFIRST, PNEXT.

0x806F, SVE_PCNT_SPEC, SVE predicate count operations speculatively executed

This event counts speculatively executed predicate population count operations, due to the
following SVE instructions: CNTP, DECP, INCP, SQDECP, SQINCP, UQDECP, UQINCP.

0x8070, SVE_PLOOP_WHILE_SPEC, SVE predicate loop while operations speculatively executed

This event counts speculatively executed counted predicate generation operations, due to the
following SVE instructions: WHILELE, WHILELO, WHILELS, WHILELT.

0x8071, SVE_PLOOP_TEST_SPEC, SVE predicate loop test operations speculatively executed

This event counts speculatively executed loop predicate test operations, due to the following SVE
instructions: BRKAS, BRKBS, BRKNS, BRKPAS, BRKPBS, WHILELE, WHILELO, WHILELS, WHILELT.

0x8072, SVE_PLOOP_ELTS_SPEC, SVE predicate loop elements speculatively executed

This event counts speculatively executed loop predicate generation operations, due to the following
SVE instructions: WHILELE, WHILELO, WHILELS, WHILELT. This event increments the counter by (128 ÷
CSIZE).

Note
 This counter must be multiplied by (VL ÷ 128) to determine the number of vector elements

speculatively processed by while loops.

0x8073, SVE_PLOOP_TERM_SPEC, SVE predicate loop termination speculatively executed

This event counts speculatively executed loop-terminating predicate generation operations due to
the following SVE instructions:
• WHILELE, WHILELO, WHILELS, WHILELT, which set PSTATE.N to 0.
• BRKAS, BRKBS, BRKNS, BRKPAS, BRKPBS, which set PSTATE.C to 1.
• CTERMEQ and CTERMNE, which set PSTATE.N to 1 and PSTATE.V to 0.

0x8074, SVE_PRED_SPEC, SVE predicated operations speculatively executed
A-94 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
This event counts speculatively executed SIMD data-processing and load/store operations due to
SVE instructions with a Governing predicate operand that determines the Active elements.

0x8075, SVE_PRED_EMPTY_SPEC, SVE predicated operations with no active predicates speculatively
executed

This event counts speculatively executed SIMD data-processing and load/store operations due to
SVE instructions with a Governing predicate in which all elements are FALSE.

0x8076, SVE_PRED_FULL_SPEC, SVE predicated operations speculatively executed with all active
predicates

This event counts speculatively executed SIMD data-processing and load/store operations due to
SVE instructions with a Governing predicate in which all elements are TRUE.

0x8077, SVE_PRED_PARTIAL_SPEC, SVE predicated operations speculatively executed with partially
active predicates

This event counts speculatively executed SIMD data-processing and load/store operations due to
SVE instructions with a Governing predicate in which elements are neither all TRUE nor all
FALSE.

0x8078, SVE_UNPRED_SPEC, SVE unpredicated operations speculatively executed

This event counts speculatively executed SIMD data-processing and load/store operations due to
SVE instructions without a Governing predicate.

0x807C, SVE_MOVPRFX_SPEC, SVE MOVPRFX operations speculatively executed

This event counts speculatively executed operations due to MOVPRFX instructions, whether or not they
were fused with the prefixed instruction.

0x807D, SVE_MOVPRFX_Z_SPEC, SVE MOVPRFX zeroing predication operations speculatively executed

This event counts speculatively executed operations due to MOVPRFX instructions using zeroing
predication, whether or not they were fused with the prefixed instruction.

0x807E, SVE_MOVPRFX_M_SPEC, SVE MOVPRFX merging predication operations speculatively
executed

This event counts speculatively executed operations due to MOVPRFX instructions using merging
predication, whether or not they were fused with the prefixed instruction.

0x807F, SVE_MOVPRFX_U_SPEC, SVE MOVPRFX unfused operations speculatively executed

This event counts speculatively executed operations due to MOVPRFX instructions that were not fused
with the prefixed instruction.

0x8080, SVE_LDST_SPEC, SVE load/store/prefetch operations speculatively executed

This event counts speculatively executed operations that read from, write to, or prefetch memory
due to SVE instructions.

0x8081, SVE_LD_SPEC, SVE load operations speculatively executed

This event counts speculatively executed operations that read from memory due to SVE load
instructions.

0x8082, SVE_ST_SPEC, SVE store operations speculatively executed

This event counts speculatively executed operations that write to memory due to SVE store
instructions.

0x8083, SVE_PRF_SPEC, SVE prefetch operations speculatively executed

This event counts speculatively executed operations that prefetch memory due to SVE prefetch
instructions.

0x8084, ASE_SVE_LDST_SPEC, Advanced SIMD and SVE load/store operations speculatively executed

This event counts speculatively executed operations that read from or write to memory due to SVE
and Advanced SIMD instructions, or any instructions that prefetch memory.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-95
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
0x8085, ASE_SVE_LD_SPEC, Advanced SIMD and SVE load operations speculatively executed

This event counts speculatively executed operations that read from memory due to SVE and
Advanced SIMD load instructions.

0x8086, ASE_SVE_ST_SPEC, Advanced SIMD and SVE store operations speculatively executed

This event counts speculatively executed operations that write to memory due to SVE and
Advanced SIMD store instructions.

0x8087, PRF_SPEC, Prefetch operations speculatively executed

This event counts speculatively executed prefetch operations due to scalar PRFM and SVE PRF
instructions.

0x8088, BASE_LDST_REG_SPEC, General-purpose register load/store/prefetch operations speculatively
executed

This event counts speculatively executed operations that read from memory to a general-purpose
register, write a general-purpose register to memory, or prefetch memory due to the PRFM instruction.
It is IMPLEMENTATION DEFINED whether operations due to the DC ZVA instruction are counted.

0x8089, BASE_LD_REG_SPEC, General-purpose register load operations speculatively executed

This event counts speculatively executed operations that read from memory due to an instruction
that loads a general-purpose register.

0x808A, BASE_ST_REG_SPEC, General-purpose register store operations speculatively executed

This event counts speculatively executed operations that write to memory due to an instruction that
stores a general-purpose register. It is IMPLEMENTATION DEFINED whether operations due to the DC
ZVA instruction are counted.

0x808B, BASE_PRF_SPEC, General-purpose register prefetch operations speculatively executed

This event counts speculatively executed operations that prefetch memory due to the PRFM
instruction.

0x808C, FPASE_LDST_REG_SPEC, Floating-point and Advanced SIMD register load/store operations
speculatively executed

This event counts speculatively executed operations that read from or write to memory, due to scalar
SIMD&FP LDR, LDP, STR, and STP instructions or Advanced SIMD LD1, LD1R, and ST1 instructions.

0x808D, FPASE_LD_REG_SPEC, Floating-point and Advanced SIMD register load operations speculatively
executed

This event counts speculatively executed operations that read from memory, due to scalar
SIMD&FP LDR and LDP instructions or Advanced SIMD LD1 and LD1R instructions.

0x808E, FPASE_ST_REG_SPEC, Floating-point and Advanced SIMD register store operations speculatively
executed

This event counts speculatively executed operations that write to memory, due to scalar SIMD&FP
STR and STP instructions or Advanced SIMD ST1 instructions.

0x8090, SVE_LDST_REG_SPEC, SVE unpredicated load/store register operations speculatively executed

This event counts speculatively executed operations that read from memory or write to memory due
to SVE LDR and STR instructions.

0x8091, SVE_LDR_REG_SPEC, SVE unpredicated load register operations speculatively executed

This event counts speculatively executed operations that read from memory due to an SVE LDR
instruction.

0x8092, SVE_STR_REG_SPEC, SVE unpredicated store register operations speculatively executed

This event counts speculatively executed operations that write to memory due to an SVE STR
instruction.

0x8094, SVE_LDST_PREG_SPEC, SVE load/store predicate register operations speculatively executed
A-96 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
This event counts speculatively executed operations that read from memory or write to memory due
to SVE LDR (predicate) and STR (predicate) instructions.

0x8095, SVE_LDR_PREG_SPEC, SVE load predicate register operations speculatively executed

This event counts speculatively executed operations that read from memory due to an SVE LDR
(predicate) instruction.

0x8096, SVE_STR_PREG_SPEC, SVE store predicate register operations speculatively executed

This event counts speculatively executed operations that write to memory due to an SVE STR
(predicate) instruction.

0x8098, SVE_LDST_ZREG_SPEC, SVE load/store vector register operations speculatively executed

This event counts speculatively executed operations that read from memory or write to memory due
to SVE LDR (vector) and STR (vector) instructions.

0x8099, SVE_LDR_ZREG_SPEC, SVE load vector register operations speculatively executed

This event counts speculatively executed operations that read from memory due to an SVE LDR
(vector) instruction.

0x809A, SVE_STR_ZREG_SPEC, SVE store vector register operations speculatively executed

This event counts speculatively executed operations that write to memory due to an SVE STR
(vector) instruction.

0x809C, SVE_LDST_CONTIG_SPEC, SVE contiguous load/store/prefetch element operations speculatively
executed

This event counts speculatively executed operations that read from, write to, or prefetch memory
due to an SVE predicated single vector contiguous element load, store, or prefetch instruction.
Operations due to SVE load and replicate LD1R and LD1RQ instructions are also counted.

0x809D, SVE_LD_CONTIG_SPEC, SVE contiguous load element operations speculatively executed

This event counts speculatively executed operations that read from memory due to SVE predicated
single vector contiguous element load instructions. Operations due to SVE load and replicate LD1R
and LD1RQ instructions are also counted.

0x809E, SVE_ST_CONTIG_SPEC, SVE contiguous store element operations speculatively executed

This event counts speculatively executed operations that write to memory due to SVE predicated
single vector contiguous element store instructions.

0x809F, SVE_PRF_CONTIG_SPEC, SVE contiguous prefetch element operations speculatively executed

This event counts speculatively executed operations that prefetch memory due to an SVE predicated
single contiguous element prefetch instruction.

0x80A0, SVE_LDSTNT_CONTIG_SPEC, SVE non-temporal contiguous load/store element operations
speculatively executed

This event counts speculatively executed operations that read from memory or write to memory
with a non-temporal hint due to an SVE non-temporal contiguous element load or store instruction.

0x80A1, SVE_LDNT_CONTIG_SPEC, SVE non-temporal contiguous load element operations speculatively
executed

This event counts speculatively executed operations that read from memory with a non-temporal
hint due to an SVE non-temporal contiguous element load instruction.

0x80A2, SVE_STNT_CONTIG_SPEC, SVE non-temporal contiguous store element operations speculatively
executed

This event counts speculatively executed operations that write to memory with a non-temporal hint
due to an SVE non-temporal contiguous element store instruction.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-97
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
0x80A4, ASE_SVE_LDST_MULTI_SPEC, Advanced SIMD and SVE contiguous load/store multiple vector
operations speculatively executed

This event counts speculatively executed operations that read from memory or write to memory due
to an SVE or Advanced SIMD multiple vector contiguous structure load and store instruction.

0x80A5, ASE_SVE_LD_MULTI_SPEC, Advanced SIMD and SVE contiguous load multiple vector operations
speculatively executed

This event counts speculatively executed operations that read from memory due to SVE and
Advanced SIMD multiple vector contiguous structure load instructions.

0x80A6, ASE_SVE_ST_MULTI_SPEC, Advanced SIMD and SVE contiguous store multiple vector
operations speculatively executed

This event counts speculatively executed operations that write to memory due to SVE and
Advanced SIMD multiple vector contiguous structure store instructions.

0x80A8, SVE_LDST_MULTI_SPEC, SVE contiguous load/store multiple vector operations speculatively
executed

This event counts speculatively executed operations that read from memory or write to memory due
to SVE multiple vector contiguous structure load and store instructions.

0x80A9, SVE_LD_MULTI_SPEC, SVE contiguous load multiple vector operations speculatively executed

This event counts speculatively executed operations that read from memory due to SVE multiple
vector contiguous structure load instructions.

0x80AA, SVE_ST_MULTI_SPEC, SVE contiguous store multiple vector operations speculatively executed

This event counts speculatively executed operations that write to memory due to SVE multiple
vector contiguous structure store instructions.

0x80AC, SVE_LDST_NONCONTIG_SPEC, SVE non-contiguous load/store/prefetch operations speculatively
executed

This event counts speculatively executed operations that read from, write to, or prefetch memory
due to SVE non-contiguous gather-load, scatter-store, and gather-prefetch instructions.

0x80AD, SVE_LD_GATHER_SPEC, SVE gather-load operations speculatively executed

This event counts speculatively executed operations that read from memory due to SVE
non-contiguous gather-load instructions.

0x80AE, SVE_ST_SCATTER_SPEC, SVE scatter-store operations speculatively executed

This event counts speculatively executed operations that write to memory due to SVE
non-contiguous scatter-store instructions.

0x80AF, SVE_PRF_GATHER_SPEC, SVE gather-prefetch operations speculatively executed

This event counts speculatively executed operations that prefetch memory due to SVE
non-contiguous gather-prefetch instructions.

0x80B0, SVE_LDST64_NONCONTIG_SPEC, SVE 64-bit non-contiguous load/store/prefetch operations
speculatively executed

This event counts speculatively executed operations that read from, write to, or prefetch memory
due to SVE non-contiguous gather-load, scatter-store, and gather-prefetch instructions with 64-bit
vector elements in the address.

0x80B1, SVE_LD64_GATHER_SPEC, SVE 64-bit gather-load operations speculatively executed

This event counts speculatively executed operations that read from memory due to SVE
non-contiguous gather-load instructions with 64-bit vector elements in the address.

0x80B2, SVE_ST64_SCATTER_SPEC, SVE 64-bit scatter-store operations speculatively executed

This event counts speculatively executed operations that write to memory due to SVE
non-contiguous scatter-store instructions with 64-bit vector elements in the address.
A-98 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
0x80B3, SVE_PRF64_GATHER_SPEC, SVE 64-bit gather-prefetch operations speculatively executed

This event counts speculatively executed operations that prefetch memory due to SVE
non-contiguous gather-prefetch instructions with 64-bit vector elements in the address.

0x80B4, ASE_SVE_UNALIGNED_LDST_SPEC, Advanced SIMD and SVE unaligned accesses

This event counts memory read and write accesses due to SVE and Advanced SIMD load and store
instructions where:
• A contiguous vector address is not aligned to the minimum of the in-memory size of the

vector and the cache line size, in bytes.
• A gather/scatter or single element address is not aligned to the memory element access size,

in bytes.

This event also counts unaligned accesses if they are subsequently converted into multiple aligned
accesses.

0x80B5, ASE_SVE_UNALIGNED_LD_SPEC, Advanced SIMD and SVE unaligned read accesses

This event counts memory read and write accesses due to SVE and Advanced SIMD load
instructions where:
• A contiguous vector address is not aligned to the minimum of the in-memory size of the

vector and the cache line size, in bytes.
• A gather/scatter or single element address is not aligned to the memory element access size,

in bytes.

This event also counts unaligned accesses if they are subsequently converted into multiple aligned
accesses.

0x80B6, ASE_SVE_UNALIGNED_ST_SPEC, Advanced SIMD and SVE unaligned write accesses

This event counts memory read and write accesses due to SVE and Advanced SIMD store
instructions where:
• A contiguous vector address is not aligned to the minimum of the in-memory size of the

vector and the cache line size, in bytes.
• A gather/scatter or single element address is not aligned to the memory element access size,

in bytes.

This event also counts unaligned accesses if they are subsequently converted into multiple aligned
accesses.

0x80B8, ASE_SVE_UNALIGNED_CONTIG_LDST_SPEC, Advanced SIMD and SVE unaligned contiguous
accesses

This event counts memory read and write accesses due to SVE and Advanced SIMD contiguous
load and store instructions where the address is not aligned to the minimum of the in-memory size
of the vector and the cache line size, in bytes.

This event also counts unaligned accesses if they are subsequently converted into multiple aligned
accesses.

0x80B9, ASE_SVE_UNALIGNED_CONTIG_LD_SPEC, Advanced SIMD and SVE unaligned contiguous
read accesses

This event counts memory read accesses due to SVE and Advanced SIMD contiguous load
instructions where the address is not aligned to the minimum of the in-memory size of the vector
and the cache line size, in bytes.

This event also counts unaligned accesses if they are subsequently converted into multiple aligned
accesses.

0x80BA, ASE_SVE_UNALIGNED_CONTIG_ST_SPEC, Advanced SIMD and SVE unaligned contiguous
write accesses

This event counts memory write accesses due to SVE and Advanced SIMD contiguous store
instructions where the address is not aligned to the minimum of the in-memory size of the vector
and the cache line size, in bytes.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-99
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
This event also counts unaligned accesses if they are subsequently converted into multiple aligned
accesses.

0x80BC, SVE_LDFF_SPEC, SVE First-fault load operations speculatively executed

This event counts speculatively executed memory read operations due to SVE First-fault and
Non-fault load instructions.

0x80BD, SVE_LDFF_FAULT_SPEC, SVE First-fault load operations speculatively executed which set FFR bit
to 0

This event counts speculatively executed memory read operations due to SVE First-fault and
Non-fault load instructions that write 0 to at least one bit in FFR.

0x80C0, FP_SCALE_OPS_SPEC, Scalable floating-point element operations speculatively executed

This event counts speculatively executed operations that would be counted by SVE_FP_SPEC,
except that it is IMPLEMENTATION DEFINED whether operations due to instructions other than those
listed in Floating-point arithmetic (SVE) on page A-111 are counted. The counter is incremented by
(128 ÷ CSIZE) and by twice that amount for operations that would also be counted by
SVE_FP_FMA_SPEC.

0x80C1, FP_FIXED_OPS_SPEC, Non-scalable floating-point element operations speculatively executed

This event counts speculatively executed operations that would be counted by FP_SPEC but not by
SVE_FP_SPEC, and it is IMPLEMENTATION DEFINED whether operations due to instructions other
than those listed in Floating-point arithmetic (scalar) on page A-110 and Floating-point arithmetic
(Advanced SIMD) on page A-110 are counted. The counter is incremented by the specified number
of elements for Advanced SIMD operations or by 1 for scalar operations, and by twice those
amounts for operations that would also be counted by FP_FMA_SPEC.

0x80C2, FP_HP_SCALE_OPS_SPEC, Scalable half-precision floating-point element operations speculatively
executed

This event counts speculatively executed operations that would be counted by SVE_FP_HP_SPEC,
except that is IMPLEMENTATION DEFINED whether operations due to instructions other than those
listed in Floating-point arithmetic (SVE) on page A-111 are counted. The counter is incremented by
8, or by 16 for operations that would also be counted by SVE_FP_FMA_SPEC.

0x80C3, FP_HP_FIXED_OPS_SPEC, Non-scalable half-precision floating-point element operations
speculatively executed

This event counts speculatively executed operations that would be counted by FP_HP_SPEC but
not by SVE_FP_HP_SPEC, and it is IMPLEMENTATION DEFINED whether operations due to
instructions other than those listed in Floating-point arithmetic (scalar) on page A-110 and
Floating-point arithmetic (Advanced SIMD) on page A-110 are counted. The counter is
incremented by the number of 16-bit elements for Advanced SIMD operations, or by 1 for scalar
operations, and by twice those amounts for operations that would also be counted by
FP_FMA_SPEC.

0x80C4, FP_SP_SCALE_OPS_SPEC, Scalable single-precision floating-point element operations
speculatively executed

This event counts speculatively executed operations that would be counted by SVE_FP_SP_SPEC,
except that is IMPLEMENTATION DEFINED whether operations other than those listed in
Floating-point arithmetic (SVE) on page A-111 are counted. The counter is incremented by 4, or by
8 for operations that would also be counted by SVE_FP_FMA_SPEC.

0x80C5, FP_SP_FIXED_OPS_SPEC, Non-scalable single-precision floating-point element operations
speculatively executed

This event counts speculatively executed operations that would be counted by FP_SP_SPEC but not
by SVE_FP_SP_SPEC, and it is IMPLEMENTATION DEFINED whether due to instructions other than
those listed in Floating-point arithmetic (scalar) on page A-110 and Floating-point arithmetic
(Advanced SIMD) on page A-110 are counted. The counter is incremented by the number of 32-bit
elements for Advanced SIMD operations, or by 1 for scalar operations, and by twice those amounts
for operations that would also be counted by FP_FMA_SPEC.
A-100 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
0x80C6, FP_DP_SCALE_OPS_SPEC, Scalable double-precision floating-point element operations
speculatively executed

This event counts speculatively executed operations that would be counted by SVE_FP_DP_SPEC,
except that is IMPLEMENTATION DEFINED whether operations due to instructions other than those
listed in Floating-point arithmetic (SVE) on page A-111 are counted. The counter is incremented by
2, or by 4 for operations that would also be counted by SVE_FP_FMA_SPEC.

0x80C7, FP_DP_FIXED_OPS_SPEC, Non-scalable double-precision floating-point element operations
speculatively executed

This event counts speculatively executed operations that would be counted by FP_DP_SPEC but
not by SVE_FP_DP_SPEC, and it is IMPLEMENTATION DEFINED whether operations due to
instructions other than those listed in Floating-point arithmetic (scalar) on page A-110 and
Floating-point arithmetic (Advanced SIMD) on page A-110 are counted. The counter is
incremented by 2 for Advanced SIMD operations, or by 1 for scalar operations, and by twice those
amounts for operations that would also be counted by FP_FMA_SPEC.

0x80C8, INT_SCALE_OPS_SPEC, Scalable integer element operations speculatively executed

This event counts speculatively executed operations that would be counted by SVE_INT_SPEC.
The counter is incremented by (128 ÷ CSIZE), and by twice that amount for operations due to the
SVE MAD, MLA, and MSB instructions.

0x80C9, INT_FIXED_OPS_SPEC, Non-scalable integer element operations speculatively executed

This event counts speculatively executed operations that would be counted by INT_SPEC but not
by SVE_INT_SPEC. The counter is incremented by the specified number of elements for Advanced
SIMD operations, or by 1 for scalar operations, and by twice those amounts for operations due to:
• Scalar: MADD, MSUB, SMADDL, SMSUBL, UMADD, UMSUBL.
• Advanced SIMD: MLA, MLS, SMLAL, SMLSL, SQDMLAL, SQDMLSL, SQRDMLAH, SQRDMLSH, UMLAL, UMLSL.

0x80CA, LDST_SCALE_OPS_SPEC, Scalable load/store element operations speculatively executed

This event counts speculatively executed memory read and write operations, due to the SVE
predicated vector load and store instructions, excluding the replicating LD1R and LD1RQ instructions.
For each instruction, the counter is incremented by (128 ÷ CSIZE), multiplied by the number of
transferred vector register.

0x80CB, LDST_FIXED_OPS_SPEC, Non-scalable load/store element operations speculatively executed

This event counts speculatively executed memory read and write operations as follows:
• Loading or storing a single scalar register increments the counter by 1.
• Loading or storing a pair of scalar registers increments the counter by 2.
• An atomic store instruction increments the counter by 1.
• An atomic load instruction increments the counter by 2.
• SVE and Advanced SIMD LD1R instructions increment the counter by 1.
• SVE LD1RQ instructions increment the counter by (128 ÷ CSIZE).
• Advanced SIMD LD[1-4] and ST[1-4] instructions increment the counter by the number of

elements transferred per vector multiplied by the number of transferred registers.

0x80CC, LD_SCALE_OPS_SPEC, Scalable load element operations speculatively executed

This event counts speculatively executed memory read operations, due to SVE predicated vector
load instructions, excluding the replicating LD1R and LD1RQ instructions. For each instruction, the
counter is incremented by (128 ÷ CSIZE), multiplied by the number of transferred registers.

0x80CD, LD_FIXED_OPS_SPEC, Non-scalable load element operations speculatively executed

This event counts speculatively executed memory read operations as follows:
• Loading a single scalar register increments the counter by 1.
• Loading a pair of scalar registers increments the counter by 2.
• An atomic load instruction increments the counter by 1.
• SVE and Advanced SIMD LD1R instructions increment the counter by 1.
• SVE LD1RQ instructions increment the counter by (128 ÷ CSIZE).
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-101
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
• Advanced SIMD LD[1-4] instructions increment the counter by the number of elements
transferred per vector multiplied by the number of transferred registers.

0x80CE, ST_SCALE_OPS_SPEC, Scalable store element operations speculatively executed

This event counts speculatively executed memory write operations, due to SVE predicated vector
store instructions. For each instruction, the counter is incremented by (128 ÷ CSIZE), multiplied by
the number of transferred registers.

0x80CF, ST_FIXED_OPS_SPEC, Non-scalable store element operations speculatively executed

This event counts speculatively executed memory write operations as follows:
• Storing a single scalar register increments the counter by 1.
• Storing a pair of scalar registers increments the counter by 2.
• An atomic store instruction increments the counter by 1.
• Advanced SIMD ST[1-4] instructions increment the counter by the number of elements

transferred per vector multiplied by the number of transferred registers.

0x80DA, LDST_SCALE_BYTES_SPEC, Scalable load/store bytes speculatively executed

This event counts bytes speculatively read or written due to SVE vector load and store instructions,
excluding the replicating LD1R and LD1RQ instructions. For each instruction, the counter is
incremented by (16 ÷ (CSIZE ÷ MSIZE)), multiplied by the number of transferred vector registers.

0x80DB, LDST_FIXED_BYTES_SPEC, Non-scalable load/store bytes speculatively executed

This event counts bytes speculatively read and written as follows:
• Non-SVE LDR and STR instructions increment the counter by (MSIZE ÷ 8).
• LDP, LDNP, STP, and STNP instructions increment the counter by 2 × (MSIZE ÷ 8).
• Atomic store instructions increment the counter by (MSIZE ÷ 8).
• Atomic load instructions increment the counter by 2 × (MSIZE ÷ 8).
• SVE and Advanced SIMD LD1R instructions increment the counter by (MSIZE ÷ 8).
• SVE LD1RQ instructions increment the counter by 16.
• Advanced SIMD LD[1-4] and ST[1-4] instructions increment the counter by the number of

bytes being transferred per register multiplied by the number of registers transferred.

0x80DC, LD_SCALE_BYTES_SPEC, Scalable load bytes speculatively executed

This event counts bytes speculatively read due to SVE vector load instructions, excluding the
replicating LD1R and LD1RQ instructions. For each instruction, the counter is incremented by (16 ÷
(CSIZE ÷ MSIZE)), multiplied by the number of transferred vector registers.

0x80DD, LD_FIXED_BYTES_SPEC, Non-scalable load bytes speculatively executed

This event counts bytes speculatively read as follows:
• Non-SVE LDR instructions increment the counter by (MSIZE ÷ 8).
• LDP and LDNP instructions increment the counter by (2 × (MSIZE ÷ 8)).
• Atomic load instructions increment the counter by (MSIZE ÷ 8).
• SVE and Advanced SIMD LD1R instructions increment the counter by (MSIZE ÷ 8).
• SVE LD1RQ instructions increment the counter by 16.
• Advanced SIMD LD[1-4] instructions increment the counter by the number of bytes read per

register multiplied by the number of registers transferred.

0x80DE, ST_SCALE_BYTES_SPEC, Scalable store bytes speculatively executed

This event counts bytes speculatively written due to SVE vector store instructions. For each
instruction, the counter is incremented by (16 ÷ (CSIZE ÷ MSIZE)), multiplied by the number of
transferred vector registers.

0x80DF, ST_FIXED_BYTES_SPEC, Non-scalable store bytes speculatively executed

This event counts bytes speculatively written as follows:
• Non-SVE STR instructions increment the counter by (MSIZE ÷ 8).
• STP and STNP instructions increment the counter by 2 × (MSIZE ÷ 8).
A-102 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.1 List of recommended PMU events
• Atomic load and store instructions increment the counter by (MSIZE ÷ 8).
• Advanced SIMD ST[1-4] instructions increment the counter by the number of bytes read per

register multiplied by the number of registers transferred.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-103
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.2 Interesting combinations of SVE events
A.2 Interesting combinations of SVE events

A.2.1 Scalar-equivalent operations

The number of speculatively executed operations performed on individual scalar values, assuming that all SVE
vector elements are active, can be determined from a pair of event counters. For example, the total
number of individual floating-point operations performed can be computed as follows:

FP_SCALE_OPS_SPEC × VL ÷ 128 + FP_FIXED_OPS_SPEC

A summary of these event pairs is given in Table A-2. Note that combined multiply-add and multiply-subtract
instructions are counted as two operations per element.

A.2.2 Bytes loaded and stored

The number of bytes speculatively loaded from memory or stored to memory, assuming that all SVE vector
elements are active, can be determined from a pair of event counters. For example, the total number of bytes loaded
from memory can be computed as follows:

LD_SCALE_BYTES_SPEC × VL ÷ 128 + LD_FIXED_BYTES_SPEC

Table A-2 Total operation count pairs

Operation type Scalable operations Fixed width operations

Floating-point operations (any precision) FP_SCALE_OPS_SPEC FP_FIXED_OPS_SPEC

Half-precision floating-point operations FP_HP_SCALE_OPS_SPEC FP_HP_FIXED_OPS_SPEC

Single-precision floating-point operations FP_SP_SCALE_OPS_SPEC FP_SP_FIXED_OPS_SPEC

Double-precision floating-point operations FP_DP_SCALE_OPS_SPEC FP_DP_FIXED_OPS_SPEC

Integer operations (any size) INT_SCALE_OPS_SPEC INT_FIXED_OPS_SPEC

Load/store accesses (any size) LDST_SCALE_OPS_SPEC LDST_FIXED_OPS_SPEC

Load accesses (any size) LD_SCALE_OPS_SPEC LD_FIXED_OPS_SPEC

Store accesses (any size) ST_SCALE_OPS_SPEC ST_FIXED_OPS_SPEC

Table A-3 Total byte count pairs

Operation type Scalable operations Fixed width operations

Load/store byte count LDST_SCALE_BYTES_SPEC LDST_FIXED_BYTES_SPEC

Load byte count LD_SCALE_BYTES_SPEC LD_FIXED_BYTES_SPEC

Store byte count ST_SCALE_BYTES_SPEC ST_FIXED_BYTES_SPEC
A-104 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.2 Interesting combinations of SVE events
A.2.3 Overall vector utilization

ARM does not recommend the accumulation of an active predicate population count, or predicate weight, by every
predicated SVE instruction. However, the vector utilization can be estimated using one or more of the ratios of
events shown in Table A-4 and the result used to adjust SVE event counters that ignore the predicate weight.

Regions of code generating a high frequency of SVE_PRED_EMPTY_SPEC events might indicate where the
addition of a B.NONE conditional branch around a block of predicated code would avoid executing instructions that
frequently generate no useful result.

A.2.4 Vector loop efficiency

The effectiveness with which sequential or scalar source loops are vectorized can be estimated using ratios of the
SVE_PLOOP_*_SPEC predicated loop events, as shown in Table A-5.

Table A-4 Vector utilization ratios

Utilization rate Ratio

All predicates active SVE_PRED_FULL_SPEC ÷ SVE_PRED_SPEC

Partial predicates active SVE_PRED_PARTIAL_SPEC ÷ SVE_PRED_SPEC

No predicates active SVE_PRED_EMPTY_SPEC ÷ SVE_PRED_SPEC

Table A-5 Vector loop efficiency ratios

Vector loop metric Ratio

Source level iterations per loop SVE_PLOOP_ELTS_SPEC ÷ SVE_PLOOP_TERM_SPEC

Vectorized iterations per loop SVE_PLOOP_TEST_SPEC ÷ SVE_PLOOP_TERM_SPEC

Parallelism per vector loop SVE_PLOOP_ELTS_SPEC ÷ SVE_PLOOP_TEST_SPEC
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-105
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.3 Instruction categories
A.3 Instruction categories

A.3.1 Data movement instructions

Data movement (scalar)
• FCSEL

• FMOV (immediate)
• FMOV (general)
• FMOV (register)

Data movement (Advanced SIMD)
• DUP

• EXT

• FMOV (vector, immediate)
• INS
• SMOV
• TBL
• TBX
• TRN1, TRN2
• UMOV
• UZP1, UZP2
• XTN, XTN2

• ZIP1, ZIP2

Data movement (SVE)
• CLASTA, CLASTB

• COMPACT

• CPY (scalar)
• CPY (immediate) [MOV (immediate, predicated) alias]
• DUP (scalar)
• DUP (immediate) [MOV (immediate, unpredicated) alias]
• EXT

• FCPY [FMOV (immediate, predicated) alias]
• FDUP [FMOV (immediate, unpredicated) alias]
• INDEX
• INSR
• LASTA, LASTB
• MOVPRFX

• REV (vector)
• SEL (vectors)
• SPLICE
• SUNPKHI, SUNPKLO
• TBL

• TRN1, TRN2 (vectors)
• UUNPKHI, UUNPKLO

• UZP1, UZP2 (vectors)
• ZIP1, ZIP2 (vectors)
A-106 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.3 Instruction categories
A.3.2 Integer instructions

Integer (scalar)

Integer uniform arithmetic (scalar)
• ADC, ADCS

• ADD, ADDS
• CCMN, CCMP
• CSINC, CSINV, CSNEG
• MADD, MSUB
• SBC, SBCS
• SDIV, UDIV
• SMULH, UMULH
• SUB, SUBS

• ADR, ADRP

Integer widening arithmetic
• SMADDL, SMSUBL, UMADDL, UMSUBL

Integer bitwise operations (scalar)
• AND, ANDS, BIC, BICS, EOR, EON, ORR, ORN

• ASRV, LSLV, LSRV, RORV
• BFM, SBFM, UBFM
• CLS, CLZ
• EXTR

• RBIT, REV, REV16, REV32

Integer (Advanced SIMD)

Integer uniform arithmetic (Advanced SIMD)
• ABS, NEG

• ADD, SUB

• MLA, MLS

• MUL, PMUL

• SABA, UABA

• SABD, UABD

• SDOT, UDOT

• SHADD, SHSUB, SRHADD, UHADD, UHSUB, URHADD

• SMAX, SMIN, UMAX, UMIN

• SQABS, SQNEG

• SQADD, SQSUB, SUQADD, UQADD, USQADD, UQSUB

• SQDMULH, SQRDMULH

• SQRDMLAH, SQRDMLSH

• URECPE, URSQRTE

• USRA
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-107
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.3 Instruction categories
Integer widening arithmetic (Advanced SIMD)
• SABAL, SABAL2, UABAL, UABAL2

• SABDL, SABDL2, UABDL, UABDL2

• SADDL, SADDL2, UADDL, UADDL2

• SADDW, SADDW2, UADDW, UADDW2

• SMLAL, SMLAL2, UMLAL, UMLAL2

• SMLSL, SMLSL2, UMLSL, UMLSL2

• SMULL, SMULL2, UMULL, UMULL2, PMULL, PMULL2

• SQDMULL, SQDMULL2, SQDMLAL, SQDMLAL2, SQDMLSL, SQDMLSL2

• SHLL, SHLL2, SSHLL, SSHLL2, USHLL, USHLL2

• SSUBL, SSUBL2, USUBL, USUBL2

• SSUBW, SSUBW2, USUBW, USUBW2

• UXTL, UXTL2

Integer narrowing arithmetic (Advanced SIMD)

• ADDHN, ADDHN2, RADDHN, RADDHN2

• SUBHN, SUBHN2, RSUBHN, RSUBHN2

• SHRN, SHRN2, RSHRN, RSHRN2

• SQRSHRN, SQRSHRN2, SQRSHRUN, SQRSHRUN2, UQRS

• SQSHRN, SQSHRN2, SQSHRUN, SQSHRUN2, UQSHRN, UQSHRN2

• SQXTN, SQXTN2, SQXTUN, SQXTUN2, UQXTN, UQXTN2

Integer bitwise operations (Advanced SIMD)
• AND, BIC, EOR, ORN, ORR

• BIF, BIT, BSL

• CLS, CLZ, CNT

• MOVI, MVNI

• NOT

• RBIT, REV16, REV32, REV64

• SHL, SRSHL, URSHL

• SRSHR, URSHR

• SRSRA, SSRA, URSRA

• SLI, SRI

• SQRSHL, SQSHL, SQSHLU, UQRSHL, UQSHL

• SSHL, USHL

• SSHR, USHR

Integer comparisons (Advanced SIMD)

• CMEQ, CMGE, CMGT, CMHI, CMHS, CMLE, CMLT, CMTST

Integer reductions (Advanced SIMD)

• ADDP, ADDV

• SADALP, UADALP

• SADDLP, SADDLV, UADDLP, UADDLV

• SMAXP, SMAXV, UMAXP, UMAXV
A-108 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.3 Instruction categories
• SMINP, SMINV, UMINP, UMINV

Integer (SVE)

Integer uniform arithmetic (SVE)

• ABS, NEG

• ADD, SUB, SUBR

• ADR

• CNOT

• MAD, MSB

• MLA, MLS

• MUL

• SABD, UABD

• SDIV, SDIVR, UDIV, UDIVR

• SDOT, UDOT

• SMAX, SMIN, UMAX, UMIN

• SMULH, UMULH

• SQADD, SQSUB, UQADD, UQSUB

• SXTB, SXTH, SXTW, UXTB, UXTH, UXTW

Integer bitwise operations (SVE)

• AND, BIC, EON, EOR, ORN, ORR (vectors)

• ASR, ASRR

• ASRD

• CLS, CLZ, CNT

• DUPM

• LSL, LSLR

• LSR, LSRR

• NOT (vector)

• RBIT, REVB, REVH, REVW

Integer comparisons (SVE)

• CMPEQ, CMPGE, CMPGT, CMPHI, CMPHS, CMPLE, CMPLO, CMPLS, CMPLT, CMPNE

Integer reductions (SVE)

• ANDV, EORV, ORV

• SADDV, UADDV

• SMAXV, UMAXV

• SMINV, UMINV
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-109
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.3 Instruction categories
Element count and increment vector (SVE)

• DECH, DECW, DECD (vector)

• INCH, INCW, INCD (vector)

• SQDECH, SQDECW, SQDECD (vector)

• SQINCH, SQINCW, SQINCD (vector)

• UQDECH, UQDECW, UQDECD (vector)

• UQINCH, UQINCW, UQINCD (vector)

A.3.3 Floating-point instructions

Floating-point (scalar)

Floating-point arithmetic (scalar)
• FADD, FSUB (scalar)

• FDIV (scalar)

• FMADD, FMSUB, FNMADD, FNMSUB (scalar)

• FMUL, FNMUL (scalar)
• FSQRT (scalar)

Floating-point miscellaneous (scalar)

• FMAX, FMAXNM (scalar)

• FMIN, FMINNM (scalar)
• FRINTA, FRINTI, FRINTM, FRINTN, FRINTP, FRINTX, FRINTZ (scalar)

Floating-point comparisons (scalar)

• FCMP, FCMPE

Floating-point (Advanced SIMD)

Floating-point arithmetic (Advanced SIMD)
• FABD, FADD, FSUB (vector)

• FCADD, FCMLA

• FDIV (vector)

• FMLA, FMLS

• FMUL, FMULX (vector)

• FRECPS, FRSQRTS

• FSQRT (vector)

Floating-point miscellaneous (Advanced SIMD)

• FMAX, FMAXNM (vector)

• FMIN, FMINNM (vector)

• FRECPX

• FRINTA, FRINTI, FRINTM, FRINTN, FRINTP, FRINTX, FRINTZ (vector)
A-110 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.3 Instruction categories
Floating-point comparisons (Advanced SIMD)
• FACGE, FACGT

• FCMEQ, FCMGE, FCMGT, FCMLE, FCMLT

Floating-point reductions (Advanced SIMD)

• FADDP

• FMAXNMP, FMAXP

• FMAXNMV, FMAXV

• FMINNMP, FMINP

• FMINNMV, FMINV

Floating-point (SVE)

Floating-point arithmetic (SVE)
• FABD, FADD, FSUB, FSUBR

• FCADD, FCMLA

• FDIV, FDIVR

• FMAD, FNMAD, FNMSB, FMSB

• FMLA, FMLS, FNMLA, FNMLS

• FMUL, FMULX

• FRECPS, FRSQRTS

• FSCALE

• FSQRT

• FTMAD, FTSMUL

Floating-point miscellaneous (SVE)

• FMAX, FMAXNM

• FMIN, FMINNM

• FRECPX

• FRINTA, FRINTI, FRINTM, FRINTN, FRINTP, FRINTX, FRINTZ

Floating-point comparisons (SVE)
• FACGE, FACGT, FACLE, FACLT

• FCMEQ, FCMGE, FCMGT, FCMLE, FCMLT, FCMNE, FCMUO

Floating-point reductions (SVE)

• FADDA, FADDV

• FMAXNMV, FMAXV

• FMINNMV, FMINV

A.3.4 Floating-point conversions

Float↔Float convert (scalar)

• FCVT

Float↔Float convert (Advanced SIMD)
• FCVTL, FCVTL2

• FCVTN, FCVTN2
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-111
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.3 Instruction categories
• FCVTXN, FCVTXN2

Float↔Float convert (SVE)

• FCVT

Float↔Int convert (scalar)
• FCVTAS, FCVTMS, FCVTNS, FCVTPS, FCVTZS (scalar)

• FCVTAU, FCVTMU, FCVTNU, FCVTPU, FCVTZU (scalar)
• FJCVTZS

• SCVTF, UCVTF (scalar)

Float↔Int convert (Advanced SIMD)
• FCVTAS, FCVTMS, FCVTNS, FCVTPS, FCVTZS (vector)

• FCVTAU, FCVTMU, FCVTNU, FCVTPU, FCVTZU (vector)
• SCVTF, UCVTF (vector)

Float↔Int convert (SVE)
• FCVTZS, FCVTZU

• SCVTF, UCVTF

A.3.5 Floating-point or integer instructions

Floating-point or integer arithmetic (scalar)

• FABS, FNEG (scalar)

Floating-point or integer arithmetic (Advanced SIMD)
• FABS, FNEG (vector)
• FRECPE, FRSQRTE

Floating-point or integer arithmetic (SVE)
• FABS, FNEG

• FRECPE, FRSQRTE

• FEXPA, FTSSEL

A.3.6 Non-SIMD SVE instructions

Element count and increment scalar (SVE)
• ADDPL, ADDVL, RDVL

• CNTB, CNTH, CNTW, CNTD

• DECB, DECH, DECW, DECD (scalar)

• INCB, INCH, INCW, INCD (scalar)

• SQDECB, SQDECH, SQDECW, SQDECD (scalar)

• SQINCB, SQINCH, SQINCW, SQINCD (scalar)

• UQDECB, UQDECH, UQDECW, UQDECD (scalar)
• UQINCB, UQINCH, UQINCW, UQINCD (scalar)
A-112 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.3 Instruction categories
Compare and terminate (SVE)

• CTERMEQ, CTERMNE

A.3.7 Predicate instructions

Predicate move (SVE)
• PFALSE, PTRUE, PTRUES

• PUNPKHI, PUNPKLO

• RDFFR, RDFFRS (predicated)

• RDFFR, SETFFR, WRFFR (unpredicated)

• REV (predicate)

• SEL (predicates)

• TRN1, TRN2 (predicates)

• UZP1, UZP2 (predicates)
• ZIP1, ZIP2 (predicates)

Predicate counted loop (SVE)

• WHILELE, WHILELO, WHILELS, WHILELT

Predicate bitwise logical operations (SVE)
• AND, ANDS (predicates)

• BIC, BICS (predicates)

• EOR, EORS (predicates)

• NAND, NANDS

• NOR, NORS

• NOT, NOTS (predicate)

• ORN, ORNS (predicates)

• ORR, ORRS (predicates)
• PTEST

Predicate scan (SVE)

• BRKA, BRKAS, BRKB, BRKBS

• BRKN, BRKNS

• BRKPA, BRKPAS, BRKPB, BRKPBS

• PFIRST,

Predicate count and increment scalar (SVE)

• CNTP, DECP, INCP (scalar)

• SQDECP, SQINCP (scalar)

• UQDECP, UQINCP (scalar)
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-113
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.3 Instruction categories
Predicate count and increment vector (SVE)

• DECP, INCP (vector)

• SQDECP, SQINCP (vector)

• UQDECP, UQINCP (vector)

A.3.8 Cryptographic instructions

Cryptographic (Advanced SIMD)
• AESD, AESE

• AESIMC, AESMC

• SHA1C, SHA1H, SHA1M, SHA1P

• SHA1SU0, SHA1SU1

• SHA256H, SHA256H2

• SHA256SU0, SHA256SU1

A.3.9 Load/store/prefetch instructions

Load/store (Advanced SIMD & FP scalar)

Contiguous elements load/store (Advanced SIMD)
• LD1 (multiple structures)
• ST1 (multiple structures)

Contiguous structures load/store (Advanced SIMD)
• LD2, LD3, LD4 (multiple structures)
• ST2, ST3, ST4 (multiple structures)

Single element/structure load/store (Advanced SIMD)
• LD1, LD2, LD3, LD4 (single structure)
• ST1, ST2, ST3, ST4 (single structure)

Single element/structure replicating load (Advanced SIMD)
• LD1R, LD2R, LD3R, LD4R

Register load/store (Advanced SIMD & FP scalar)
• LDNP (SIMD&FP)

• LDP (SIMD&FP)

• LDR (SIMD&FP)

• LDUR (SIMD&FP)

• STNP (SIMD&FP)

• STP (SIMD&FP)

• STR (SIMD&FP)
• STUR (SIMD&FP)
A-114 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Appendix A Recommended SVE PMU events
A.3 Instruction categories
Load/store/prefetch (SVE)

Contiguous elements load/store/prefetch (SVE)
• LD1B, LD1H, LD1W, LD1D, LD1SB, LD1SH, LD1SW (scalar, immediate)

• LD1B, LD1H, LD1W, LD1D, LD1SB, LD1SH, LD1SW (scalars)

• LDFF1B, LDFF1H, LDFF1W, LDFF1D, LDFF1SB, LDFF1SH, LDFF1SW (scalars)

• LDNF1B, LDNF1H, LDNF1W, LDNF1D, LDNF1SB, LDNF1SH, LDNF1SH

• LDNT1B, LDNT1H, LDNT1W, LDNT1D (scalar, immediate)

• LDNT1B, LDNT1H, LDNT1W, LDNT1D (scalars)

• PRFB, PRFH, PRFW, PRFD (scalar, immediate)

• PRFB, PRFH, PRFW, PRFD (scalars)

• ST1B, ST1H, ST1W, ST1D (scalar, immediate)

• ST1B, ST1H, ST1W, ST1D (scalars)

• STNT1B, STNT1H, STNT1W, STNT1D (scalar, immediate)
• STNT1B, STNT1H, STNT1W, STNT1D (scalars)

Contiguous structures load/store (SVE)
• LD2B, LD2H, LD2W, LD2D (scalar, immediate)

• LD2B, LD2H, LD2W, LD2D (scalars)

• LD3B, LD3H, LD3W, LD3D (scalar, immediate)

• LD3B, LD3H, LD3W, LD3D (scalars)

• LD4B, LD4H, LD4W, LD4D (scalar, immediate)

• LD4B, LD4H, LD4W, LD4D (scalars)

• ST2B, ST2H, ST2W, ST2D (scalar, immediate)

• ST2B, ST2H, ST2W, ST2D (scalars)

• ST3B, ST3H, ST3W, ST3D (scalar, immediate)

• ST3B, ST3H, ST3W, ST3D (scalars)

• ST4B, ST4H, ST4W, ST4D (scalar, immediate)
• ST4B, ST4H, ST4W, ST4D (scalars)

Gather/scatter load/store/prefetch (SVE)
• LD1B, LD1H, LD1W, LD1D, LD1SB, LD1SH, LD1SW (vector, immediate)

• LD1B, LD1H, LD1W, LD1D, LD1SB, LD1SH, LD1SW (scalar, vector)

• LDFF1B, LDFF1H, LDFF1W, LDFF1D, LDFF1SB, LDFF1SH, LDFF1SW (vector, immediate)

• LDFF1B, LDFF1H, LDFF1W, LDFF1D, LDFF1SB, LDFF1SH, LDFF1SW (scalar, vector)

• PRFB, PRFH, PRFW, PRFD (vector, immediate)

• PRFB, PRFH, PRFW, PRFD (scalar, vector)

• ST1B, ST1H, ST1W, ST1D (vector, immediate)
• ST1B, ST1H, ST1W, ST1D (scalar, vector)
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. A-115
ID103018 Non-Confidential

Appendix A Recommended SVE PMU events
A.3 Instruction categories
Single element load and replicate (SVE)

• LD1RB, LD1RH, LD1RW, LD1RD, LD1RSB, LD1RSH, LD1RSW

Single quadword load and replicate (SVE)
• LD1RQB, LD1RQH, LD1RQW, LD1RQD (scalar, immediate)
• LD1RQB, LD1RQH, LD1RQW, LD1RQD (scalars)

Register load/store (SVE)
• LDR (predicate)

• LDR (vector)
• STR (predicate)
A-116 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

Glossary

Constructive
instruction
encoding

A constructive instruction encoding is an instruction encoding where the destination register is encoded
independently of the source registers.

Destructive
instruction
encoding

A destructive instruction encoding is an instruction encoding where one of the source registers is also used as the
destination register.

Element number For a given element size of N bits, elements within a vector or predicate register are numbered with element[0]
always representing bits[(N-1):0], element[1] always representing bits[(2N-1):N], and so on. See Figure 2-1 on
page 2-20 for more information.

Gather-load Gather-load is a mechanism that allows the elements of a vector to be read from non-contiguous memory locations
using a vector of addresses, where the addresses are constructed according to the addressing mode. See Load, store,
and prefetch instructions on page 5-43 for more information.

Merging
predication

When a predicated instruction specifies merging predication, the Inactive elements of the destination register remain
unchanged.

Predicate A one-dimensional array of predicate elements of the same size. The predicate element size of 1, 2, 4, or 8 bits is
specified independently by each instruction, and is one-eighth the size of the corresponding vector element.

Predicated
instruction

An instruction is said to be predicated if the instruction specifies a Governing predicate register.

Predicate element The lowest-numbered bit of each predicate element holds the Boolean value of that element, where 1 represents
TRUE and 0 represents FALSE.

Predicate register An SVE predicate register, P0-P15, having a length that is a multiple of 16 bits, in the range 16 to 256, inclusive.

Prefixed
instruction

The instruction that immediately follows a MOVPRFX instruction in program order.

Scalar base
register

A scalar base register refers to an AArch64 general-purpose register, X0-X30, or the current stack pointer, SP.
ARM DDI 0584A.e Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. Glossary-117
ID103018 Non-Confidential

 Glossary

Scalar index
register

A scalar index register refers to an AArch64 general-purpose register, X0-X30, or for certain instructions, XZR.

Scatter-store Scatter-store is a mechanism that allows the elements of a vector to be written to non-contiguous memory locations
using a vector of addresses, where the addresses are constructed according to the addressing mode. See Load, store,
and prefetch instructions on page 5-43 for more information.

SIMD Single Instruction, Multiple Data. A SIMD instruction performs the same operation on multiple vector elements or
predicate elements in parallel.

Vector A one-dimensional array of vector elements of the same size and data type. The vector element size of 8, 16, 32, 64,
or 128 bits, and the data type, is specified independently by each instruction.

Vector length The accessible width of the SVE vector registers at the current Exception level, as constrained by the ZCR_EL1,
ZCR_EL2, and ZCR_EL3 System registers. All vector registers at the same Exception level have the same vector
length. The accessible width of the SVE predicate registers and FFR is one-eighth of the vector length.

Vector register An SVE vector register, Z0-Z31, having a length that is a multiple of 128 bits, in the range 128 to 2048, inclusive.

Zeroing
predication

When a predicated instruction specifies zeroing predication, the Inactive elements of the destination register are set
to zero.
Glossary-118 Copyright © 2017-2018 ARM Limited or its affiliates. All rights reserved. ARM DDI 0584A.e
Non-Confidential ID103018

../SVE_SysReg/xhtml/AArch64-zcr_el1.html
../SVE_SysReg/xhtml/AArch64-zcr_el2.html
../SVE_SysReg/xhtml/AArch64-zcr_el3.html

	ARM Architecture Reference Manual Supplement The Scalable Vector Extension (SVE), for ARMv8-A
	Contents
	Preface
	About this book
	Using this book
	Conventions
	Typographical conventions
	Numbers

	Additional reading
	ARM publications

	Feedback
	Feedback on this book

	1: Introduction
	1.1 About the SVE supplement
	1.2 About the Scalable Vector Extension
	1.3 Terminology
	1.4 Register disambiguation
	1.4.1 Register name disamiguation by Exception level

	2: SVE Application Level Programmers’ Model
	2.1 Registers
	2.1.1 Vector registers
	2.1.2 Predicate registers
	2.1.3 First Fault Register, FFR
	2.1.4 Scalar registers

	2.2 Process state, PSTATE
	2.3 SVE half-precision floating-point support

	3: SVE System Level Programmers’ Model
	3.1 Exception model
	3.1.1 SVE exception class
	3.1.2 SVE floating-point exception traps
	3.1.3 MOVPRFX exception behavior
	3.1.4 Synchronous memory faults
	3.1.5 Asynchronous exception behavior

	3.2 Configurable vector length

	4: SVE Memory Model
	4.1 Atomicity
	4.2 Alignment support
	4.3 Endian support
	4.4 Memory ordering
	4.5 Device memory
	4.6 Constrained unpredictable memory accesses

	5: SVE Instruction Set
	5.1 SVE assembler language
	5.2 Instruction set overview
	5.2.1 Introduction
	5.2.2 Load, store, and prefetch instructions
	5.2.3 Vector move operations
	5.2.4 Integer operations
	5.2.5 Vector address calculation
	5.2.6 Bitwise operations
	5.2.7 Floating-point operations
	5.2.8 Predicate operations
	5.2.9 Move operations
	5.2.10 Reduction operations

	6: System Registers
	6.1 System registers
	6.1.1 AArch64 System registers affected by SVE
	6.1.2 SVE System registers

	7: SVE Debug
	7.1 Self-hosted debug
	7.1.1 Watchpoints
	7.1.2 MOVRPFX instruction debug behavior

	7.2 External debug
	7.2.1 SVE instructions that are changed in Debug state
	7.2.2 SVE instructions that are unchanged in Debug state
	7.2.3 SVE instructions that are constrained unpredictable in Debug state

	8: SVE Performance Monitors Extension
	8.1 Introduction
	8.2 New performance monitor events
	8.2.1 Required SVE PMU events

	8.3 Existing ARMv8-A PMU events affected by SVE

	A: Recommended SVE PMU events
	A.1 List of recommended PMU events
	A.1.1 Definitions
	A.1.2 Recommended PMU event descriptions

	A.2 Interesting combinations of SVE events
	A.2.1 Scalar-equivalent operations
	A.2.2 Bytes loaded and stored
	A.2.3 Overall vector utilization
	A.2.4 Vector loop efficiency

	A.3 Instruction categories
	A.3.1 Data movement instructions
	A.3.2 Integer instructions
	A.3.3 Floating-point instructions
	A.3.4 Floating-point conversions
	A.3.5 Floating-point or integer instructions
	A.3.6 Non-SIMD SVE instructions
	A.3.7 Predicate instructions
	A.3.8 Cryptographic instructions
	A.3.9 Load/store/prefetch instructions

	Glossary

