Arm A32/T32 Instruction Set

for A-profile architecture

arm

Copyright © 2010-2023 Arm Limited (or its affiliates). All rights reserved.
DDI 0597 (ID030323)

Arm A32/T32 Instruction Set
for A-profile architecture

Copyright © 2010-2023 Arm Limited (or its affiliates). All rights reserved.
Release Information

For information on the change history and known issues for this release, see the Release Notes in the A32/T32 ISA XML for
A-profile architecture (2023-03).

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ™ or © are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Copyright © 2010-2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)
Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this release covers multiple versions of the architecture. The content relating to different versions is given
different quality ratings.

The information relating to the 2022 Extensions of the A-profile Architecture is at Alpha quality. Alpha quality means that most
major features of the specification are described in this release, but some features and details might be missing.

The information relating to the rest of the Architecture is at Beta quality. Beta quality means that all major features of the
specification are described, but some details might be missing.

Copyright © 2010-2023 Arm Limited (or its affiliates). All rights reserved. DDI 0597
Non-Confidential ID030323

Web Address
http://www.arm.com
Progressive Terminology Commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives
to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find offensive terms
in this document, please contact terms@arm.com.

DDI 0597 Copyright © 2010-2023 Arm Limited (or its affiliates). All rights reserved. iii
1D030323 Non-Confidential

Copyright © 2010-2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

DDI 0597
1D030323

AArch32 -- Base Instructions (alphabetic order)

AArch32 -- Base Instructions (alphabetic order)

ADC, ADCS (immediate): Add with Carry (immediate).

ADC, ADCS (register): Add with Carry (register).

ADC, ADCS (register-shifted register): Add with Carry (register-shifted register).
ADD (immediate, to PC): Add to PC: an alias of ADR.

ADD, ADDS (immediate): Add (immediate).
ADD, ADDS (register): Add (register).

ADD, ADDS (register-shifted register): Add (register-shifted register).

ADD, ADDS (SP plus immediate): Add to SP (immediate).
ADD, ADDS (SP plus register): Add to SP (register).

ADR: Form PC-relative address.
AND, ANDS (immediate): Bitwise AND (immediate).

AND, ANDS (register): Bitwise AND (register).

AND, ANDS (register-shifted register): Bitwise AND (register-shifted register).

ASR (immediate): Arithmetic Shift Right (immediate): an alias of MOV, MOVS (register).
ASR (register): Arithmetic Shift Right (register): an alias of MOV, MOVS (register-shifted register).

ASRS (immediate): Arithmetic Shift Right, setting flags (immediate): an alias of MOV, MOVS (register).

ASRS (register): Arithmetic Shift Right, setting flags (register): an alias of MOV, MOVS (register-shifted register).

B: Branch.

BFC: Bit Field Clear.

BFI: Bit Field Insert.

BIC, BICS (immediate): Bitwise Bit Clear (immediate).

BIC, BICS (register): Bitwise Bit Clear (register).

BIC, BICS (register-shifted register): Bitwise Bit Clear (register-shifted register).

BKPT: Breakpoint.

BL, BLX (immediate): Branch with Link and optional Exchange (immediate).
BLX (register): Branch with Link and Exchange (register).

BX: Branch and Exchange.

BX]J: Branch and Exchange, previously Branch and Exchange Jazelle.

CBNZ, CBZ: Compare and Branch on Nonzero or Zero.

CLRBHB: Clear Branch History.

CLREX: Clear-Exclusive.

CLZ: Count Leading Zeros.

CMN (immediate): Compare Negative (immediate).

CMN (register): Compare Negative (register).

Page 2

AArch32 -- Base Instructions (alphabetic order)

CMN (register-shifted register): Compare Negative (register-shifted register).

CMP (immediate): Compare (immediate).

CMP (register): Compare (register).

CMP (register-shifted register): Compare (register-shifted register).
CPS, CPSID, CPSIE: Change PE State.

CRC32: CRC32.
CRC32C: CRC32C.
CSDB: Consumption of Speculative Data Barrier.

DBG: Debug hint.

DCPS1: Debug Change PE State to EL1.

DCPS2: Debug Change PE State to EL2.

DCPS3: Debug Change PE State to EL3.

DMB: Data Memory Barrier.

DSB: Data Synchronization Barrier.

EOR, EORS (immediate): Bitwise Exclusive-OR (immediate).

EOR, EORS (register): Bitwise Exclusive-OR (register).

EOR, EORS (register-shifted register): Bitwise Exclusive-OR (register-shifted register).

ERET: Exception Return.

ESB: Error Synchronization Barrier.

HIT: Halting Breakpoint.

HVC: Hypervisor Call.

ISB: Instruction Synchronization Barrier.

IT: If-Then.

LDA: Load-Acquire Word.

LDAB: Load-Acquire Byte.

LDAEX: Load-Acquire Exclusive Word.

LDAEXB: Load-Acquire Exclusive Byte.

LDAEXD: Load-Acquire Exclusive Doubleword.

LDAEXH: Load-Acquire Exclusive Halfword.

LDAH: Load-Acquire Halfword.

LDC (immediate): Load data to System register (immediate).
LDC (literal): Load data to System register (literal).

LDM (exception return): Load Multiple (exception return).

LDM (User registers): Load Multiple (User registers).

LDM, LDMIA, LDMFD: Load Multiple (Increment After, Full Descending).

LDMDA, ILDMFA: Load Multiple Decrement After (Full Ascending).

Page 3

AArch32 -- Base Instructions (alphabetic order)

LDMDB, L.LDMEA: Load Multiple Decrement Before (Empty Ascending).

LDMIB, LDMED: Load Multiple Increment Before (Empty Descending).

LDR (immediate): Load Register (immediate).

LDR (literal): Load Register (literal).

LDR (register): Load Register (register).

LDRB (immediate): Load Register Byte (immediate).

LDRB (literal): Load Register Byte (literal).

LDRB (register): Load Register Byte (register).

LDRBT: Load Register Byte Unprivileged.

LDRD (immediate): Load Register Dual (immediate).

LDRD (literal): Load Register Dual (literal).

LDRD (register): Load Register Dual (register).

LDREX: Load Register Exclusive.

LDREXB: Load Register Exclusive Byte.

LDREXD: Load Register Exclusive Doubleword.

LDREXH: Load Register Exclusive Halfword.

LDRH (immediate): Load Register Halfword (immediate).
LDRH (literal): Load Register Halfword (literal).

LDRH (register): Load Register Halfword (register).

LDRHT: Load Register Halfword Unprivileged.

LDRSB (immediate): Load Register Signed Byte (immediate).
LDRSB (literal): Load Register Signed Byte (literal).

LDRSB (register): Load Register Signed Byte (register).
LDRSBT: Load Register Signed Byte Unprivileged.

LDRSH (immediate): Load Register Signed Halfword (immediate).
LDRSH (literal): Load Register Signed Halfword (literal).
LDRSH (register): Load Register Signed Halfword (register).
LDRSHT: Load Register Signed Halfword Unprivileged.

LDRT: Load Register Unprivileged.

LSI. (immediate): Logical Shift Left (immediate): an alias of MOV, MOVS (register).

LSI. (register): Logical Shift Left (register): an alias of MOV, MOVS (register-shifted register).

LSLS (immediate): Logical Shift Left, setting flags (immediate): an alias of MOV, MOVS (register).

LSL.S (register): Logical Shift Left, setting flags (register): an alias of MOV, MOVS (register-shifted register).
LSR (immediate): Logical Shift Right (immediate): an alias of MOV, MOVS (register).

LSR (register): Logical Shift Right (register): an alias of MOV, MOVS (register-shifted register).

LSRS (immediate): Logical Shift Right, setting flags (immediate): an alias of MOV, MOVS (register).

Page 4

AArch32 -- Base Instructions (alphabetic order)

LSRS (register): Logical Shift Right, setting flags (register): an alias of MOV, MOVS (register-shifted register).
MCR: Move to System register from general-purpose register or execute a System instruction.
MCRR: Move to System register from two general-purpose registers.

MILA, MLAS: Multiply Accumulate.

MLS: Multiply and Subtract.
MOV, MOVS (immediate): Move (immediate).
MOV, MOVS (register): Move (register).

MOV, MOVS (register-shifted register): Move (register-shifted register).
MOVT: Move Top.

MRC: Move to general-purpose register from System register.

MRRC: Move to two general-purpose registers from System register.

MRS: Move Special register to general-purpose register.

MRS (Banked register): Move Banked or Special register to general-purpose register.
MSR (Banked register): Move general-purpose register to Banked or Special register.
MSR (immediate): Move immediate value to Special register.

MSR (register): Move general-purpose register to Special register.

MUL, MULS: Multiply.

MVN, MVNS (immediate): Bitwise NOT (immediate).

MVN, MVNS (register): Bitwise NOT (register).

MVN, MVNS (register-shifted register): Bitwise NOT (register-shifted register).
NOP: No Operation.

ORN, ORNS (immediate): Bitwise OR NOT (immediate).
ORN, ORNS (register): Bitwise OR NOT (register).
ORR, ORRS (immediate): Bitwise OR (immediate).

ORR, ORRS (register): Bitwise OR (register).

ORR, ORRS (register-shifted register): Bitwise OR (register-shifted register).
PKHBT, PKHTB: Pack Halfword.

PLD (literal): Preload Data (literal).

PLD, PIL.DW (immediate): Preload Data (immediate).

PLD, PLDW (register): Preload Data (register).

PLI (immediate, literal): Preload Instruction (immediate, literal).

PLI (register): Preload Instruction (register).

POP: Pop Multiple Registers from Stack.

POP (multiple registers): Pop Multiple Registers from Stack: an alias of LDM, LDMIA, LDMFD.
POP (single register): Pop Single Register from Stack: an alias of LDR (immediate).

PSSBB: Physical Speculative Store Bypass Barrier.

Page 5

AArch32 -- Base Instructions (alphabetic order)

PUSH: Push Multiple Registers to Stack.

PUSH (multiple registers): Push multiple registers to Stack: an alias of STMDB, STMFD.
PUSH (single register): Push Single Register to Stack: an alias of STR (immediate).

QADD: Saturating Add.

QADD16: Saturating Add 16.

QADDS8: Saturating Add 8.

QASX: Saturating Add and Subtract with Exchange.
QDADD: Saturating Double and Add.

QDSUB: Saturating Double and Subtract.

QSAX: Saturating Subtract and Add with Exchange.
QSUB: Saturating Subtract.

QSUBI16: Saturating Subtract 16.

QSUBS8: Saturating Subtract 8.

RBIT: Reverse Bits.

REV: Byte-Reverse Word.

REV16: Byte-Reverse Packed Halfword.

REVSH: Byte-Reverse Signed Halfword.

RFE, RFEDA, RFEDB, RFEIA, RFEIB: Return From Exception.

ROR (immediate): Rotate Right (immediate): an alias of MOV, MOVS (register).

ROR (register): Rotate Right (register): an alias of MOV, MOVS (register-shifted register).
RORS (immediate): Rotate Right, setting flags (immediate): an alias of MOV, MOVS (register).

RORS (register): Rotate Right, setting flags (register): an alias of MOV, MOVS (register-shifted register).

RRX: Rotate Right with Extend: an alias of MOV, MOVS (register).

RRXS: Rotate Right with Extend, setting flags: an alias of MOV, MOVS (register).
RSB, RSBS (immediate): Reverse Subtract (immediate).

RSB, RSBS (register): Reverse Subtract (register).

RSB, RSBS (register-shifted register): Reverse Subtract (register-shifted register).
RSC, RSCS (immediate): Reverse Subtract with Carry (immediate).

RSC, RSCS (register): Reverse Subtract with Carry (register).

RSC, RSCS (register-shifted register): Reverse Subtract (register-shifted register).
SADD16: Signed Add 16.

SADDS: Signed Add 8.

SASX: Signed Add and Subtract with Exchange.

SB: Speculation Barrier.

SBC, SBCS (immediate): Subtract with Carry (immediate).

SBC, SBCS (register): Subtract with Carry (register).

Page 6

AArch32 -- Base Instructions (alphabetic order)

SBC, SBCS (register-shifted register): Subtract with Carry (register-shifted register).
SBFX: Signed Bit Field Extract.

SDIV: Signed Divide.

SEL: Select Bytes.

SETEND: Set Endianness.

SETPAN: Set Privileged Access Never.

SEV: Send Event.

SEVL: Send Event Local.

SHADD16: Signed Halving Add 16.

SHADDS8: Signed Halving Add 8.

SHASX: Signed Halving Add and Subtract with Exchange.
SHSAX: Signed Halving Subtract and Add with Exchange.
SHSUBI16: Signed Halving Subtract 16.

SHSUBS: Signed Halving Subtract 8.

SMC: Secure Monitor Call.

SMIABB, SMILABT, SMILATB, SMILATT: Signed Multiply Accumulate (halfwords).

SMIAD, SMIADX: Signed Multiply Accumulate Dual.

SMIAL, SMIALS: Signed Multiply Accumulate Long.

SMIALBB, SMILALBT, SMILALTB, SMIALTT: Signed Multiply Accumulate Long (halfwords).

SMIALD, SMIALDX: Signed Multiply Accumulate Long Dual.

SMLAWB, SMILAWT: Signed Multiply Accumulate (word by halfword).

SMLSD, SMILSDX: Signed Multiply Subtract Dual.

SMLSI.D, SMISI.DX: Signed Multiply Subtract Long Dual.

SMMIA, SMMIAR: Signed Most Significant Word Multiply Accumulate.

SMMILS, SMMLSR: Signed Most Significant Word Multiply Subtract.

SMMUIL, SMMUILR: Signed Most Significant Word Multiply.

SMUAD, SMUADX: Signed Dual Multiply Add.

SMULBB, SMULBT, SMULTB, SMULTT: Signed Multiply (halfwords).

SMULL, SMULLS: Signed Multiply Long.

SMUILWB, SMUILWT: Signed Multiply (word by halfword).

SMUSD, SMUSDX: Signed Multiply Subtract Dual.

SRS, SRSDA, SRSDB, SRSIA, SRSIB: Store Return State.

SSAT: Signed Saturate.
SSAT16: Signed Saturate 16.
SSAX: Signed Subtract and Add with Exchange.

SSBB: Speculative Store Bypass Barrier.

Page 7

AArch32 -- Base Instructions (alphabetic order)

SSUB16: Signed Subtract 16.

SSUBS8: Signed Subtract 8.

STC: Store data to System register.

STL: Store-Release Word.

STLB: Store-Release Byte.

STLEX: Store-Release Exclusive Word.
STLEXB: Store-Release Exclusive Byte.
STLEXD: Store-Release Exclusive Doubleword.
STLEXH: Store-Release Exclusive Halfword.
STLH: Store-Release Halfword.

STM (User registers): Store Multiple (User registers).

STM, STMIA, STMEA: Store Multiple (Increment After, Empty Ascending).

STMDA, STMED: Store Multiple Decrement After (Empty Descending).

STMDB, STMFD: Store Multiple Decrement Before (Full Descending).

STMIB, STMFA: Store Multiple Increment Before (Full Ascending).

STR (immediate): Store Register (immediate).

STR (register): Store Register (register).

STRB (immediate): Store Register Byte (immediate).

STRB (register): Store Register Byte (register).

STRBT: Store Register Byte Unprivileged.

STRD (immediate): Store Register Dual (immediate).

STRD (register): Store Register Dual (register).

STREX: Store Register Exclusive.

STREXB: Store Register Exclusive Byte.

STREXD: Store Register Exclusive Doubleword.

STREXH: Store Register Exclusive Halfword.

STRH (immediate): Store Register Halfword (immediate).
STRH (register): Store Register Halfword (register).

STRHT: Store Register Halfword Unprivileged.

STRT: Store Register Unprivileged.

SUB (immediate, from PC): Subtract from PC: an alias of ADR.
SUB, SUBS (immediate): Subtract (immediate).

SUB, SUBS (register): Subtract (register).

SUB, SUBS (register-shifted register): Subtract (register-shifted register).
SUB, SUBS (SP minus immediate): Subtract from SP (immediate).
SUB, SUBS (SP minus register): Subtract from SP (register).

Page 8

AArch32 -- Base Instructions (alphabetic order)

SVC: Supervisor Call.
SXTAB: Signed Extend and Add Byte.
SXTAB16: Signed Extend and Add Byte 16.
SXTAH: Signed Extend and Add Halfword.
SXTB: Signed Extend Byte.

SXTB16: Signed Extend Byte 16.

SXTH: Signed Extend Halfword.

TBB, TBH: Table Branch Byte or Halfword.

TEQ (immediate): Test Equivalence (immediate).
TEQ (register): Test Equivalence (register).

TEQ (register-shifted register): Test Equivalence (register-shifted register).

TSB CSYNC: Trace Synchronization Barrier.
TST (immediate): Test (immediate).
TST (register): Test (register).

TST (register-shifted register): Test (register-shifted register).
UADD16: Unsigned Add 16.

UADDS: Unsigned Add 8.

UASX: Unsigned Add and Subtract with Exchange.

UBFX: Unsigned Bit Field Extract.

UDEF: Permanently Undefined.

UDIV: Unsigned Divide.

UHADD16: Unsigned Halving Add 16.

UHADDS: Unsigned Halving Add 8.

UHASX: Unsigned Halving Add and Subtract with Exchange.
UHSAX: Unsigned Halving Subtract and Add with Exchange.
UHSUBI16: Unsigned Halving Subtract 16.

UHSUBS: Unsigned Halving Subtract 8.

UMAAL.: Unsigned Multiply Accumulate Accumulate Long.

UMIAL, UMIALS: Unsigned Multiply Accumulate Long.

UMULL, UMULLS: Unsigned Multiply Long.

UQADDI16: Unsigned Saturating Add 16.

UQADDS8: Unsigned Saturating Add 8.

UQASX: Unsigned Saturating Add and Subtract with Exchange.
UQSAX: Unsigned Saturating Subtract and Add with Exchange.
UQSUB16: Unsigned Saturating Subtract 16.

UQSUBS8: Unsigned Saturating Subtract 8.

Page 9

AArch32 -- Base Instructions (alphabetic order)

USADS8: Unsigned Sum of Absolute Differences.
USADAS: Unsigned Sum of Absolute Differences and Accumulate.
USAT: Unsigned Saturate.

USAT16: Unsigned Saturate 16.

USAX: Unsigned Subtract and Add with Exchange.
USUB16: Unsigned Subtract 16.

USUBS8: Unsigned Subtract 8.

UXTAB: Unsigned Extend and Add Byte.
UXTAB16: Unsigned Extend and Add Byte 16.
UXTAH: Unsigned Extend and Add Halfword.
UXTB: Unsigned Extend Byte.

UXTB16: Unsigned Extend Byte 16.

UXTH: Unsigned Extend Halfword.

WFE: Wait For Event.

WFI: Wait For Interrupt.

YIELD: Yield hint.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 10

ADC, ADCS (immediate)

Add with Carry (immediate) adds an immediate value and the Carry flag value to a register value, and writes the result
to the destination register.
If the destination register is not the PC, the ADCS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The ADC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
e The ADCS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 1 01 0 1]S] Rn | Rd | imm12
cond
ADC (S == 0)

ADC{<c>}{<qg>} {<Rd>,} <Rn>, #<const>
ADCS (S ==1)

ADCS{<c>}{<g>} {<Rd>,} <Rn>, #=<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1"'); 1imm32 = A32ExpandImm(imml2);

Tl

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0]ilo[1 0 1 0[S] Rn [0] imm3 | Rd | imm8
ADC (S == 0)

ADC{<c>}{<g>} {<Rd>,} <Rn>, #<const>
ADCS (S ==1)

ADCS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); 1imm32 = T32ExpandImm(i:imm3:imm8);
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

ADC, ADCS (immediate) Page 11

<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:
* For the ADC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.
* For the ADCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding Al: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[n], imm32, PSTATE.C);
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);
else
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADC, ADCS (immediate) Page 12

ADC, ADCS (register)

Add with Carry (register) adds a register value, the Carry flag value, and an optionally-shifted register value, and
writes the result to the destination register.
If the destination register is not the PC, the ADCS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The ADC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
e The ADCS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 O0[1 0 1]S] Rn | Rd | imm5 [stype] 0 | Rm |
cond

ADC, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
ADC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ADC, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADCS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
ADCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ADCS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ADCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift n) = DecodeImmShift(stype, imm5);

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[01 00 0 0[01 0 1] Rm | Rdn |

T1

ADC<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)
ADCS{<g>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d =
(shift t, shift_n) = (SRType LSL, 0);

T2

ADC, ADCS (register) Page 13

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 010 1[1 01 0]S] Rn (0)] imm3 | Rd [imm2]stype]| Rm |

ADC, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
ADC{<c>}{<qg>} {<Rd>,} <Rn>, <Rm>, RRX
ADC, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ADC<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

ADC{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADCS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)
ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADCS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ADCS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

ADCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift t, shift n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1l: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
flzgi;.ter is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is

* For the ADC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

e For the ADCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

ADC, ADCS (register) Page 14

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm?2" field as <amount> modulo 32.

In T32 assembly:

¢ Outside an IT block, if ADCS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is
assembled using encoding T1 as though ADCS <Rd>, <Rn> had been written.
¢ Inside an IT block, if ADC<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range RO-R7, it is
assembled using encoding T1 as though ADC<c> <Rd>, <Rn> had been written.
To prevent either of these happening, use the .W qualifier.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], shifted, PSTATE.C);
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADC, ADCS (register) Page 15

ADC, ADCS (register-shifted register)

Add with Carry (register-shifted register) adds a register value, the Carry flag value, and a register-shifted register
value. It writes the result to the destination register, and can optionally update the condition flags based on the result.

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 O0[1 0 1]S] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)
ADCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>
Not flag setting (S == 0)

ADC{<c>}{<qg>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift t DecodeRegShift(stype);
if d==15 || n==15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], shifted, PSTATE.C);
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

ADC, ADCS (register-shifted

register) Page 16

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADC, ADCS (register-shifted

register) Page 17

ADD (immediate, to PC)

Add to PC adds an immediate value to the Align(PC, 4) value to form a PC-relative address, and writes the result to the
destination register. Arm recommends that, where possible, software avoids using this alias.

This is a pseudo-instruction of ADR. This means:

¢ The encodings in this description are named to match the encodings of ADR.

¢ The assembler syntax is used only for assembly, and is not used on disassembly:.

e The description of ADR gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any
operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T3) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 Jo 0 1 o1 o0 ofO0[1 1 1 1] Rd | imm12

cond

Al

ADD{<c>}{<q>} <Rd>, PC, #<const>
is equivalent to

ADR{<c>}{<g>} <Rd>, <label>

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 01 oJ/]o] Rd | imm8

T1

ADD{<c>}{<g>} <Rd>, PC, #<imm8>
is equivalent to

ADR{<c>}{<qg>} <Rd>, <label>

T3

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 11 1 0]i]1 o[of[ofofo[1 1 1 1[0[imm3 | Rd | imm8

T3

ADDW{<c>}{<g>} <Rd>, PC, #<imml2> // (<Rd>, <imml2> can be represented in T1)
ADD{<c>}{<q>} <Rd>, PC, #<imml2>
is equivalent to

ADR{<c>}{<qg>} <Rd>, <label>

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

ADD (immediate, to PC) Page 18

<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If the PC is
used, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC.

For encoding T1 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding Al: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR
instruction to this label.

If the offset is zero or positive, encoding Al is used, with imm32 equal to the offset.

If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the use
of encoding A2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are any of the constants described in Modified immediate
constants in A32 instructions.

For encoding T1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR
instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range 0 to
1020.

For encoding T3: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR
instruction to this label.

If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.

If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the use
of encoding T2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are 0-4095.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as
<imm8>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants in A32 instructions for the range of values.

Operation

The description of ADR gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (immediate, to PC) Page 19

ADD, ADDS (immediate)

Add (immediate) adds an immediate value to a register value, and writes the result to the destination register.
If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:
¢ The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
¢ The ADDS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1,T2,T3 and T4) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 1 0[1 0 OS] Rn | Rd | imm12

cond

ADD (S == 0 && Rn != 11x1)
ADD{<c>}{<g>} {<Rd>,} <Rn>, #<const>
ADDS (S == 1 && Rn !=1101)

ADDS{<c>}{<g>} {<Rd>,} <Rn>, #=<const>

if Rn == '1111' & S == '0' then SEE "ADR";
if Rn == '1101' then SEE "ADD (SP plus immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); 1imm32 = A32ExpandImm(imml2);
T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0001 1 1[0 imm3 [Rn | Rd |
T1

ADD<c>{<g>} <Rd>, <Rn>, #<imm3> // (Inside IT block)
ADDS{<qg>} <Rd>, <Rn>, #<imm3> // (Outside IT block)

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|0 0 1|1 0] Rdn | imm8

ADD, ADDS (immediate) Page 20

T2

ADD<c>{<qg>} <Rdn>, #<imm8> // (Inside IT block, and <Rdn>, <imm8> can be represented in T1)
ADD<c>{<g>} {<Rdn>,} <Rdn>, #<imm8> // (Inside IT block, and <Rdn>, <imm8> cannot be represented in T1)
ADDS{<g>} <Rdn>, #<imm8> // (Outside IT block, and <Rdn>, <imm8> can be represented in T1)
ADDS{<qg>} {<Rdn>,} <Rdn>, #<imm8> // (Outside IT block, and <Rdn>, <imm8> cannot be represented in T1)

d = UInt(Rdn); n = UInt(Rdn); setflags = !'InITBlock(); imm32 = ZeroExtend(imm8, 32);

T3
1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 11 1 0[ilo[]1 0 0 0[S| !'=1101 [O] imm3 | Rd | imm8
Rn
ADD (S == 0)

ADD<c>.W {<Rd>,} <Rn>, #<const> // (Inside IT block, and <Rd>, <Rn>, <const> can be represented in Tl or

ADD{<c>}{<g>} {<Rd>,} <Rn>, #<const>
ADDS (S == 1 && Rd !=1111)

ADDS.W {<Rd>,} <Rn>, #<const> // (Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1l or]

ADDS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

if Rd == '1111' & S == 'l' then SEE "CMN (immediate)";

if Rn == '1101' then SEE "ADD (SP plus immediate)";

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1"'); 1imm32 = T32ExpandImm(i:imm3:imm8);

if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
T4

1514 1312 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 111 0]if[1 ofloJofo[o0o] !'=11x1 [O] imm3 | Rd | imm8

Rn

T4

ADD{<c>}{<g>} {<Rd>,} <Rn>, #<imml2> // (<imml2> cannot be represented in T1, T2, or T3)
ADDW{<c>}{<g>} {<Rd>,} <Rn>, #<imml2> // (<imml2> can be represented in T1l, T2, or T3)

if Rn == '1111' then SEE "ADR";

if Rn == '1101' then SEE "ADD (SP plus immediate)";

d = UInt(Rd); n = UInt(Rn); setflags = FALSE; 1imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.
<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

ADD, ADDS (immediate) Page 21

<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. If the PC is used:
* For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.
* For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>. Arm deprecates use of this instruction.
For encoding T1, T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the same as <Rn>.

<Rn> For encoding A1l and T4: is the general-purpose source register, encoded in the "Rn" field. If the SP is
used, see ADD (SP plus immediate). If the PC is used, see ADR.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is used, see
ADD (SP plus immediate).

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.
<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T3: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

When multiple encodings of the same length are available for an instruction, encoding T3 is preferred to encoding T4
(if encoding T4 is required, use the ADDW syntax). Encoding T1 is preferred to encoding T2 if <Rd> is specified and
encoding T2 is preferred to encoding T1 if <Rd> is omitted.

Operation

if CurrentlInstrSet() == InstrSet A32 then
if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[n], imm32, '0');
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;
else
if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[n], imm32, '0');
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (immediate) Page 22

ADD, ADDS (register)

Add (register) adds a register value and an optionally-shifted register value, and writes the result to the destination
register.

If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:
¢ The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
¢ The ADDS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1, T2 and T3) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 O0[1 0 OS] !'=1101 | Rd | imm5 [stype] 0] Rm |
cond Rn

ADD, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
ADD{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ADD, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
ADD{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
ADDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ADDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rn == '1101' then SEE "ADD (SP plus register)";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift n) = DecodeImmShift(stype, imm5);

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[0 0 011 0[0] Rm | Rn | Rd |
T1

ADD<c>{<q>} <Rd>, <Rn>, <Rm> // (Inside IT block)
ADDS{<qg>} {<Rd>,} <Rn>, <Rm> // (Outside IT block)

= UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !'InITBlock();
shift t, shift n) = (SRType LSL, 0);

d
(

ADD, ADDS (register) Page 23

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[01 0 00 1/0 O[DN] !=1101 | Rdn |
Rm

T2 ({(DN == 1 && Rdn == 101))

ADD<c>{<q>} <Rdn>, <Rm> // (Preferred syntax, Inside IT block)
ADD{<c>}{<g>} {<Rdn>,} <Rdn>, <Rm>

if (DN:Rdn) == '1101' || Rm == '1101' then SEE "ADD (SP plus register)";

d = UInt(DN:Rdn); n =d; m = UInt(Rm); setflags = FALSE; (shift t, shift n) = (SRType LSL, 0);
if n == 15 & m == 15 then UNPREDICTABLE;

if d == 15 && InITBlock() && 'LastInITBlock() then UNPREDICTABLE;

T3

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 11 010 1[1 0 0 0S| !'=1101 [0)] imm3 | Rd [imm?2|stype]| Rm |
Rn

ADD, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
ADD{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX
ADD, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ADD<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)
ADD{<c>}.W {<Rd>,} <Rn>, <Rm> // (<Rd> == <Rn>, and <Rd>, <Rn>, <Rm> can be represented in T2)

ADD{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)
ADDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111)

ADDS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in Tl or T2)

ADDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rd == '1111' & S == '1' then SEE "CMN (register)";
if Rn == '1101' then SEE "ADD (SP plus register)";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");

(shift_t, shift n) = DecodeImmShift(stype, imm3:imm2);
if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

ADD, ADDS (register) Page 24

<Rdn> Is the general-purpose source and destination register, encoded in the "DN:Rdn" field. If the PC is used,
the instruction is a branch to the address calculated by the operation. This is a simple branch, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
The assembler language allows <Rdn> to be specified once or twice in the assembler syntax. When
used inside an IT block, and <Rdn> and <Rm> are in the range RO to R7, <Rdn> must be specified
once so that encoding T2 is preferred to encoding T1. In all other cases there is no difference in
behavior when <Rdn> is specified once or twice.

<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. If the PC is used:

* For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.
* For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>. Arm deprecates use of this instruction.
For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.
When used inside an IT block, <Rd> must be specified. When used outside an IT block, <Rd> is
optional, and:
» If omitted, this register is the same as <Rn>.
» If present, encoding T1 is preferred to encoding T2.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1l: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used. If the SP is used, see ADD (SP plus register).

For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the first general-purpose source register, encoded in the "Rn" field. If the SP is
used, see ADD (SP plus register).

<Rm> For encoding A1l: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.

For encoding T1 and T3: is the second general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm?2" field as <amount> modulo 32.

Inside an IT block, if ADD<c> <Rd>, <Rn>, <Rd> cannot be assembled using encoding T1, it is assembled using
encoding T2 as though ADD<c> <Rd>, <Rn> had been written. To prevent this happening, use the .W qualifier.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], shifted, '0');
if d == 15 then
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

ADD, ADDS (register) Page 25

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (register) Page 26

ADD, ADDS (register-shifted register)

Add (register-shifted register) adds a register value and a register-shifted register value. It writes the result to the
destination register, and can optionally update the condition flags based on the result.

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 0[1 0 OS] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)
ADDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>
Not flag setting (S == 0)

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift t DecodeRegShift(stype);
if d==15 || n==15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then

EncodingSpecificOperations();
shift n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], shifted, '0');
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

ADD, ADDS (register-shifted

register) Page 27

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (register-shifted

register) Page 28

ADD, ADDS (SP plus immediate)

Add to SP (immediate) adds an immediate value to the SP value, and writes the result to the destination register.
If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the

result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. However,

when the destination register is the PC:

¢ The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on

the AArch32 general-purpose registers and the PC.

¢ The ADDS variant of the instruction performs an exception return without the use of the stack. Arm

deprecates use of this instruction. However, in this case:

o The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.

o The PE checks SPSR_<current mode> for an illegal return event. See Illegal return events from

AArch32 state.
o The instruction is UNDEFINED in Hyp mode.

o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1,T2,T3 and T4) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5 4 3 0

['=1111 Jo 0 1 01 0 O[S[1 1 0 1] Rd
cond

ADD (S == 0)

ADD{<c>}{<g>} {<Rd>,} SP, #<const>
ADDS (S ==1)

ADDS{<c>}{<qg>} {<Rd>,} SP, #<const>

d = UInt(Rd); setflags = (S == '1'); imm32 = A32ExpandImm(imml2);
T1

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|1 01 0o]1] Rd | imm8
T1

ADD{<c>}{<g>} <Rd>, SP, #<imm8>

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm8:'00', 32);
T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 01 1 000 0]0] imm7
T2

ADD{<c>}{<g>} {SP,} SP, #<imm7>

d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);
T3

ADD, ADDS (SP plus Page 29

immediate)

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0]iloJ1 0 0 o[Ss[1 1 0 1[0] imm3 | Rd | imm8
ADD (S == 0)

ADD{<c>}.W {<Rd>,} SP, #<const> // (<Rd>, <const> can be represented in Tl or T2)

ADD{<c>}{<q>} {<Rd>,} SP, #<const>
ADDS (S == 1 && Rd !=1111)

ADDS{<c>}{<g>} {<Rd>,} SP, #<const>

if Rd == '1111' & S == '1' then SEE "CMN (immediate)";
d = UInt(Rd); setflags = (S == '1'); 1imm32 = T32ExpandImm(i:imm3:imm8);
if d == 15 && !setflags then UNPREDICTABLE;
T4
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
[1 11 1 0[i[1 ofoJo[o]of[1 1 0 1[0 imm3 | Rd | imm8
T4

ADD{<c>}{<q>} {<Rd>,} SP, #<imml2> // (<imml2> cannot be represented in T1, T2, or T3)
ADDW{<c>}{<qg>} {<Rd>,} SP, #<imml2> // (<imml2> can be represented in T1l, T2, or T3)

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

SP, Is the stack pointer.

<imm?7> Is the unsigned immediate, a multiple of 4, in the range 0 to 508, encoded in the "imm7" field as
<imm7>/4.

<Rd> For encoding A1l: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this

register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:
* For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.
e For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

For encoding T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the SP.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as
<imm8x>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T3: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

ADD, ADDS (SP plus

immediate) Page 30

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[13], imm32, '0');
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (SP plus

immediate) Page 31

ADD, ADDS (SP plus register)

Add to SP (register) adds an optionally-shifted register value to the SP value, and writes the result to the destination
register.
If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
¢ The ADDS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1, T2 and T3) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 O0[1 0 O[S|[1 1 0 1] Rd | imm5 [stype] 0 | Rm |
cond

ADD, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
ADD{<c>}{<q>} {<Rd>,} SP, <Rm> , RRX

ADD, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
ADD{<c>}{<g>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
ADDS{<c>}{<g>} {<Rd>,} SP, <Rm> , RRX

ADDS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ADDS{<c>}{<g>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

UInt(Rd); m = UInt(Rm); setflags = (S == '1");

d =
(shift_t, shift n) = DecodeImmShift(stype, imm5);

Tl

15 14 13 12 11 10

Tl

ADD{<c>}{<g>} {<Rdm>,} SP, <Rdm>
= UInt(DM:Rdm); m UInt(DM:Rdm); setflags = FALSE;

d =
(shift_t, shift n) = (SRType LSL, 0);
if d == 15 && InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

ADD, ADDS (SP plus register) Page 32

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[001 000 1[0 0of[1] !=1101 [1 0 1|
Rm

T2

ADD{<c>}{<qg>} {SP,} SP, <Rm>
if Rm == '1101"' then SEE "encoding T1";

d = 13; m = UInt(Rm); setflags = FALSE;
(shift t, shift n) = (SRType LSL, 0);

T3

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 11 010 1[1 0 0 0[S|[1 1 0 1]0)] imm3 | Rd [imm?2|stype]| Rm |

ADD, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
ADD{<c>}{<g>} {<Rd>,} SP, <Rm>, RRX
ADD, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ADD{<c>}.W {<Rd>,} SP, <Rm> // (<Rd>, <Rm> can be represented in T1 or T2)

ADD{<c>}{<g>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)
ADDS{<c>}{<g>} {<Rd>,} SP, <Rm>, RRX

ADDS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111)

ADDS{<c>}{<g>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

if Rd == '1111' & S == '1' then SEE "CMN (register)";

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1");

(shift_t, shift n) = DecodeImmShift(stype, imm3:imm2);

if (d == 15 && !setflags) || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

SP, Is the stack pointer.

<Rdm> Is the general-purpose destination and second source register, encoded in the "Rdm" field. If omitted,

this register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used, the
instruction is a branch to the address calculated by the operation. This is a simple branch, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

<Rd> For encoding A1l: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:
* For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

ADD, ADDS (SP plus register) Page 33

* For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the SP.

<Rm> For encoding A1l and T2: is the second general-purpose source register, encoded in the "Rm" field. The
PC can be used, but this is deprecated.

For encoding T3: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm?2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[13], shifted, '0');
if d == 15 then
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (SP plus register) Page 34

ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the result
to the destination register.

This instruction is used by the alias SUB (immediate, from PC).
This instruction is used by the pseudo-instruction ADD (immediate, to PC).
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1, T2 and T3) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 Jo 0 1 o1 o0 of0O[1 1 1 1] Rd | imm12

cond

Al

ADR{<c>}{<g>} <Rd>, <label>

d = UInt(Rd); imm32 = A32ExpandImm(imml2); add = TRUE;

A2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 Jo 0 1 0[O0 1 ofO0[1 1 1 1] Rd | imm12

cond

A2

ADR{<c>}{<g>} <Rd>, <label>

d = UInt(Rd); dimm32 = A32ExpandImm(imml2); add = FALSE;

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 01 oJ/]o] Rd | imm8

T1

ADR{<c>}{<g>} <Rd>, <label>

d = UInt(Rd); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0]i]1 of1[of1[0[1 1 1 1[0[imm3 | Rd | imm8

T2

ADR{<c>}{<g>} <Rd>, <label>

d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = FALSE;
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T3

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 11 1 0]i]1 o[of[of[o[0[1 1 1 1[0[imm3 | Rd | imm8 |

ADR Page 35

T3

ADR{<c>}.W <Rd>, <label> // (<Rd>, <label> can be presented in T1)
ADR{<c>}{<g>} <Rd>, <label>

d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = TRUE;
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rd> For encoding Al and A2: is the general-purpose destination register, encoded in the "Rd" field. If the PC

is used, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC.

For encoding T1, T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding Al and A2: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label.
If the offset is zero or positive, encoding A1l is used, with imm32 equal to the offset.
If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the use
of encoding A2 indicates that the required offset is minus the value of imm32.
Permitted values of the size of the offset are any of the constants described in Modified immediate
constants in A32 instructions.

For encoding T1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR
instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range 0 to
1020.

For encoding T2 and T3: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label.

If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.

If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the use
of encoding T2 indicates that the required offset is minus the value of imm32.

Permitted values of the size of the offset are 0-4095.

The instruction aliases permit the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Alias Conditions

Alias Of variant Is preferred when
ADD (immediate, to PC) Never
SUB (immediate, from PC) T2 i:imm3:imm8 == '000000000000'
SUB (immediate, from PC) A2 imml2 == '000000000000'
Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
if d == 15 then // Can only occur for A32 encodings
ALUWritePC(result);
else
R[d] = result;

ADR Page 36

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADR Page 37

AND, ANDS (immediate)

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result to
the destination register.

If the destination register is not the PC, the ANDS variant of the instruction updates the condition flags based on the
result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

¢ The AND variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
¢ The ANDS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR_<current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 1 0[0 0 OS] Rn | Rd | imm12

cond
AND (S == 0)

AND{<c>}{<g>} {<Rd>,} <Rn>, #<const>

ANDS (S ==1)

ANDS{<c>}{<g>} {<Rd>,} <Rn>, #=<const>

d = UInt(Rd); n
(imm32, carry) =

= UInt(Rn); setflags = (S == '1");
A32ExpandImm C(imm12, PSTATE.C);

Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0]iloJ0O O O O0[S] Rn [0] imm3 | Rd | imm8
AND (S == 0)

AND{<c>}{<g>} {<Rd>,} <Rn>, #<const>
ANDS (S == 1 && Rd !=1111)

ANDS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

if Rd == '1111' && S == '1l' then SEE "TST (immediate)";

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1");

(imm32, carry) = T32ExpandImm C(i:imm3:imm8, PSTATE.C);

if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

AND, ANDS (immediate) Page 38

<q> See Standard assembler syntax fields.
<Rd> For encoding A1l: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:
* For the AND variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.
* For the ANDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.
For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.
<Rn> For encoding Al: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.
<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.
Operation

if ConditionPassed() then

EncodingSpecificOperations();
result = R[n] AND imm32;
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z IsZeroBit(result);
PSTATE.C carry;
// PSTATE.V unchanged

Operational information

IfC

PSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND, ANDS (immediate) Page 39

AND, ANDS (register)

Bitwise AND (register) performs a bitwise AND of a register value and an optionally-shifted register value, and writes
the result to the destination register.
If the destination register is not the PC, the ANDS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The AND variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
¢ The ANDS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 0[O0 O OS] Rn | Rd | imm5 [stype] 0 | Rm |
cond

AND, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
AND{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

AND, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ANDS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
ANDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ANDS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ANDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift n) = DecodeImmShift(stype, imm5);

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[01 000 0[O0 00 O] Rm | Rdn |

T1

AND<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)
ANDS{<g>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d =
(shift t, shift_n) = (SRType LSL, 0);

T2

AND, ANDS (register) Page 40

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
/1 1 1 010 1[0 0 0 0S| Rn (0)] imm3 | Rd [imm2]stype]| Rm |

AND, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
AND{<c>}{<qg>} {<Rd>,} <Rn>, <Rm>, RRX
AND, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

AND<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

AND{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ANDS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)
ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ANDS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111)

ANDS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)
ANDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rd == '1111' & S == '1' then SEE "TST (register)";

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift _t, shift n) = DecodeImmShift(stype, imm3:imm2);

if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1l: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
flzgi;.ter is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is

* For the AND variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

e For the ANDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

AND, ANDS (register) Page 41

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm?2" field as <amount> modulo 32.

In T32 assembly:

¢ Outside an IT block, if ANDS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is
assembled using encoding T1 as though ANDS <Rd>, <Rn> had been written.

¢ Inside an IT block, if AND<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0O-R7, it is
assembled using encoding T1 as though AND<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
result = R[n] AND shifted;
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;

// PSTATE.V unchanged
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO01_31, pseudocode v2023-03 rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND, ANDS (register) Page 42

AND, ANDS (register-shifted register)

Bitwise AND (register-shifted register) performs a bitwise AND of a register value and a register-shifted register
value. It writes the result to the destination register, and can optionally update the condition flags based on the result.

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 0[O0 O OS] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)
ANDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>
Not flag setting (S == 0)

AND{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift t DecodeRegShift(stype);
if d==15 || n==15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift n = UInt(R[s]<7:0>);
(shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
result = R[n] AND shifted;
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

AND, ANDS (register-shifted

register) Page 43

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND, ANDS (register-shifted

register) Page 44

ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies of its
sign bit, and writes the result to the destination register.

This is an alias of MOV, MOVS (register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register).
e The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T2 and T3) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 [0 0 0 1 1[0 1]0](0)(0)(0)(0) Rd | imm5 |1 0[0] Rm |
cond S stype

MOV, shift or rotate by value

ASR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

T2

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 0 0]1 0] imm5 | Rm | Rd |
op

T2

ASR<c>{<q>} {<Rd>,} <Rm>, #<imm> // (Inside IT block)
is equivalent to
MOV<c>{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when InITBlock().

T3

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

1 1 1 01 0 1[0 0 1 0[0[1 1 1 1[0)] imm3 | Rd limm2]1 0] Rm |
S stype

MOV, shift or rotate by value

ASR<c>.W {<Rd>,} <Rm>, #<imm> // (Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)
ASR{<c>}{<g>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

ASR (immediate) Page 45

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates

using the PC as the destination register, but if the PC is used, the instruction is a branch to the address
calculated by the operation. This is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1l: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding Al and T2: is the shift amount, in the range 1 to 32, encoded in the "immb5" field as
<imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm?2" field as <imm>
modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (immediate) Page 46

ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its sign
bit, and writes the result to the destination register. The variable number of bits is read from the bottom byte of a
register.

This is an alias of MOV, MOVS (register-shifted register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted

register).

¢ The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 |0 0 0 1 1[0 1]0]/(0)(0)(0)(0) Rd | Rs [0[1 of1] Rm |
cond S stype

Not flag setting

ASR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>
is equivalent to
MOV{<c>}{<g>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

T1

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

|01 000 0[010 O] Rs | Rdm |
op

Arithmetic shift right

ASR<c>{<gq>} {<Rdm>,} <Rdm>, <Rs> // (Inside IT block)
is equivalent to
MOV<c>{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when InITBlock().

T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

1 1 11101 00[1 0[0] Rm 1 1 1 1] Rd |0 0 0 0] Rs |
stype S

Not flag setting

ASR<c>.W {<Rd>,} <Rm>, <Rs> // (Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)
ASR{<c>}{<g>} {<Rd>,} <Rm>, <Rs>

is equivalent to

ASR (register) Page 47

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (register) Page 48

ASRS (immediate)

Arithmetic Shift Right, setting flags (immediate) shifts a register value right by an immediate number of bits, shifting
in copies of its sign bit, and writes the result to the destination register.
If the destination register is not the PC, this instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

¢ The PE branches to the address written to the PC, and restores PSTATE from SPSR <current mode>.

* The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from AArch32

state.
¢ The instruction is UNDEFINED in Hyp mode.
¢ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This is an alias of MOV, MOVS (register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register).
¢ The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T2 and T3) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 1[0 1[1](0)(0)(0)(0) Rd | imm5 [1 0]o0] Rm |
cond S stype

MOVS, shift or rotate by value

ASRS{<c>}{<g>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[0 0 0[1 O] imm5 | Rm | Rd |
op

T2

ASRS{<qg>} {<Rd>,} <Rm>, #<imm> // (Outside IT block)
is equivalent to
MOVS{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when !InITBlock().

T3

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 11 010 1[0 0 1 011 1 1 1][0)] imm3 | Rd [imm2[1 0] Rm |
S stype

ASRS (immediate) Page 49

MOVS, shift or rotate by value

ASRS.W {<Rd>,} <Rm>, #<imm> // (Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)
ASRS{<c>}{<g>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<g>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates

using the PC as the destination register, but if the PC is used, the instruction performs an exception
return, that restores PSTATE from SPSR <current mode>.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding Al: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding Al and T2: is the shift amount, in the range 1 to 32, encoded in the "immb5" field as
<imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm?2" field as <imm>
modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASRS (immediate) Page 50

ASRS (register)

Arithmetic Shift Right, setting flags (register) shifts a register value right by a variable number of bits, shifting in
copies of its sign bit, writes the result to the destination register, and updates the condition flags based on the result.
The variable number of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).
The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 [0 0 0 1 1[0 1[1](0)(0)(0)(0) Rd | Rs [0[1 of1] Rm |

cond S stype

Flag setting

ASRS{<c>}{<g>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<g>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.
T1

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
|01 000 0[010 O] Rs | Rdm |

op

Arithmetic shift right

ASRS{<g>} {<Rdm>,} <Rdm>, <Rs> // (Outside IT block)

is equivalent to

MOVS{<g>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when !InITBlock().
T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 111010 0[1 0[1] Rm 1 1 1 1] Rd |0 0 0 0] Rs |

stype S

Flag setting

ASRS.W {<Rd>,} <Rm>, <Rs> // (Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)
ASRS{<c>}{<g>} {<Rd>,} <Rm>, <Rs>

is equivalent to

ASRS (register) Page 51

MOVS{<c>}{<g>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASRS (register) Page 52

Branch causes a branch to a target address.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1,T2,T3and T4).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 |1 0 1[0] imm?24

cond

Al

B{<c>}{<qg>} <label>

imm32 = SignExtend(imm24:'00', 32);

Tl
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 1 0 1] !'=111x | imm8

cond
T1

B<c>{<qg>} <label> // (Not permitted in IT block)

if cond == '1110' then SEE "UDF";
if cond == '1111' then SEE "SVC";
imm32 = SignExtend(imm8:'0Q', 32);
if InITBlock() then UNPREDICTABLE;

T2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
11 11 0 0] imm11

T2

B{<c>}{<qg>} <label> // (Outside or last in IT block)

imm32 = SignExtend(immll:'0', 32);
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

T3
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0o]S]| !=111x | imm6 [1 ofji]o])2] imm11
cond
T3

B<c>.W <label> // (Not permitted in IT block, and <label> can be represented in T1)
B<c>{<qg>} <label> // (Not permitted in IT block)
if cond<3:1> == '111' then SEE "Related encodings";

imm32 = SignExtend(S:J2:J1:imm6:immll:'0', 32);
if InITBlock() then UNPREDICTABLE;

B Page 53

T4

151413121110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

[1 1 1 1

0S| imm10 [1 o[Jj1f1])2] imm11

T4

B{<c>}.W <label> // (<label> can be represented in T2)

B{<c>}{<g>} <label>

I1 = NOT(J1 EOR S); 1I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imml1@:immll:'0Q', 32);
if InITBlock() && 'LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Related encodings: Branches and miscellaneous control.

Assembler Symbols

<c>

<q>

<label>

Operation

For encoding A1, T2 and T4: see Standard assembler syntax fields.
For encoding T1: see Standard assembler syntax fields. Must not be AL or omitted.

For encoding T3: see Standard assembler syntax fields. <c> must not be AL or omitted.
See Standard assembler syntax fields.

For encoding A1l: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an encoding
that sets imm32 to that offset.

Permitted offsets are multiples of 4 in the range -33554432 to 33554428.

For encoding T1: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an encoding
that sets imm32 to that offset. Permitted offsets are even numbers in the range -256 to 254.

For encoding T2: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an encoding
that sets imm32 to that offset. Permitted offsets are even numbers in the range -2048 to 2046.

For encoding T3: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an encoding
that sets imm32 to that offset.

Permitted offsets are even numbers in the range -1048576 to 1048574.
For encoding T4: the label of the instruction that is to be branched to. The assembler calculates the

required value of the offset from the PC value of the B instruction to this label, then selects an encoding
that sets imm32 to that offset.

Permitted offsets are even numbers in the range -16777216 to 16777214.

if ConditionPassed() then
EncodingSpecificOperations();
BranchWritePC(PC + imm32, BranchType DIR);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

B Page 54

BFC

Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting the other bits in the
register.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| !1=1111 |0 1 1 1 1 1 O] msb | Rd | Isb o0 1]1 1 1 1]
cond

Al

BFC{<c>}{<qg>} <Rd>, #<lsb>, #<width>
d = UInt(Rd); msbit = UInt(msb); 1sbit = UInt(lsb);

if d == 15 then UNPREDICTABLE;
if msbit < lsbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < lsbit, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
e The value in the destination register is UNKNOWN.

Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O
1 1 11 0/0)f1 1/0 1[1]/0f1 1 1 1[0] imm3 | Rd [imm?2{(0)] msb |
T1

BFC{<c>}{<g>} <Rd>, #<lsb>, #<width>

d = UInt(Rd); msbit = UInt(msb); 1lsbit = UInt(imm3:imm2);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if msbit < 1sbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < 1lsbit, then one of the following behaviors must occur:

e The instruction is UNDEFINED.

¢ The instruction executes as NOP.

* The value in the destination register is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<lsh> 1I:loi“dencoding Al: is the least significant bit to be cleared, in the range 0 to 31, encoded in the "Isb"
eld.

BFC Page 55

For encoding T1: is the least significant bit that is to be cleared, in the range 0 to 31, encoded in the
"imm3:imm2" field.

<width> Is the number of bits to be cleared, in the range 1 to 32-<Isb>, encoded in the "msb" field as
<Isb>+<width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d]<msbit:1lsbit> = Replicate('0', (msbit-lsbit)+1);
// Other bits of R[d] are unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFC Page 56

BFI

Bit Field Insert copies any number of low order bits from a register into the same number of adjacent bits at any
position in the destination register.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 |0 1 1 1 1 1 O] msb | Rd | Isb |0 0 1] !=1111 |
cond Rn
Al
BFI{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>
if Rn == '1111' then SEE "BFC";
d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); 1sbit = UInt(1lsb);
if d == 15 then UNPREDICTABLE;
if msbit < lsbit then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior
If msbit < lsbit, then one of the following behaviors must occur:
* The instruction is UNDEFINED.
* The instruction executes as NOP.
¢ The value in the destination register is UNKNOWN.
T1
1514 1312 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 11 0J0)f1 1/0 1|1]0] !'=1111 [O0] imm3 | Rd [imm?2{(0)] msb |

Rn
T1

BFI{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

if Rn == '1111' then SEE "BFC";

d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); 1lsbit = UInt(imm3:imm2);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if msbit < 1sbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < 1lsbit, then one of the following behaviors must occur:

e The instruction is UNDEFINED.

e The instruction executes as NOP.

¢ The value in the destination register is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

BFI Page 57

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> For encoding A1l: is the least significant destination bit, in the range 0 to 31, encoded in the "lsb" field.

For encoding T1: is the least significant destination bit, in the range 0 to 31, encoded in the
"imm3:imm2" field.

<width> Is the number of bits to be copied, in the range 1 to 32-<lsb>, encoded in the "msb" field as
<Isb>+<width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d]<msbit:1lsbit> = R[n]<(msbit-1lsbit):0>;
// Other bits of R[d] are unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFI Page 58

BIC, BICS (immediate)

Bitwise Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an immediate value,
and writes the result to the destination register.
If the destination register is not the PC, the BICS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The BIC variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.
¢ The BICS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 1 1 1|1 0]S] Rn | Rd | imm12

cond
BIC (S == 0)

BIC{<c>}{<g>} {<Rd>,} <Rn>, #<const>
BICS (S == 1)

BICS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

= UInt(Rn); setflags = (S == '1");
A32ExpandImm C(imm12, PSTATE.C);

d = UInt(Rd); n
(imm32, carry) =

Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0]iloJOo O O 1[S]| Rn [0] imm3 | Rd | imm8

BIC (S == 0)

BIC{<c>}{<qg>} {<Rd>,} <Rn>, #<const>
BICS (S == 1)

BICS{<c>}{<qg>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1");
(imm32, carry) = T32ExpandImm C(i:imm3:imm8, PSTATE.C);
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

BIC, BICS (immediate) Page 59

<q>

<Rd

<Rn

See Standard assembler syntax fields.

> For encoding A1l: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:
* For the BIC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.
* For the BICS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

> For encoding Al: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the

range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then

EncodingSpecificOperations();
result = R[n] AND NOT(imm32);
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z IsZeroBit(result);
PSTATE.C carry;
// PSTATE.V unchanged

Operational information

IfC

PSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC, BICS (immediate) Page 60

BIC, BICS (register)

Bitwise Bit Clear (register) performs a bitwise AND of a register value and the complement of an optionally-shifted
register value, and writes the result to the destination register.
If the destination register is not the PC, the BICS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The BIC variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.
¢ The BICS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 1|1 0]S] Rn | Rd | imm5 [stype] 0 | Rm |
cond

BIC, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
BIC{<c>}{<qg>} {<Rd>,} <Rn>, <Rm>, RRX

BIC, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
BIC{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

BICS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
BICS{<c>}{<qgq>} {<Rd>,} <Rn>, <Rm>, RRX

BICS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

BICS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift n) = DecodeImmShift(stype, imm5);

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[01 00 00[1110] Rm | Rdn |

T1

BIC<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)
BICS{<g>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d =
(shift t, shift_n) = (SRType LSL, 0);

T2

BIC, BICS (register) Page 61

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
/1 1 1 010 1[0 0 0 1][S] Rn (0)] imm3 | Rd [imm2]stype]| Rm |

BIC, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
BIC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX
BIC, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

BIC<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

BICS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)
BICS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

BICS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

BICS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)
BICS{<c>}{<qg>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");

(shift t, shift n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1l: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
flzgi;.ter is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is

* For the BIC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

* For the BICS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

BIC, BICS (register) Page 62

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "immb5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm?2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
result = R[n] AND NOT(shifted);
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;

// PSTATE.V unchanged
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC, BICS (register) Page 63

BIC, BICS (register-shifted register)

Bitwise Bit Clear (register-shifted register) performs a bitwise AND of a register value and the complement of a
register-shifted register value. It writes the result to the destination register, and can optionally update the condition
flags based on the result.

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 1|1 0]S] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)
BICS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>
Not flag setting (S == 0)

BIC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

UInt(Rm); s = UInt(Rs);
DecodeReqShlft(stype)
| s

d = UInt(Rd); n = UInt(Rn);
setflags = (S == '1"); shlft
if d == 15 || n == 15 ||m——15|

== 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift n = UInt(R[s]<7:0>);
(shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
result = R[n] AND NOT(shifted);
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z IsZeroBit(result);
PSTATE.C carry;
// PSTATE.V unchanged

BIC, BICS (register-shifted

register) Page 64

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC, BICS (register-shifted

register) Page 65

BKPT

Breakpoint causes a Breakpoint Instruction exception.
Breakpoint is always unconditional, even when inside an IT block.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
['=1111 Jo 0 0 1 00 1]0] imm12 [001 1 1] imm4 |
cond

Al

BKPT{<g>} {#}<imm>

imml6 = imml2:imm4;
if cond !'= '1110' then UNPREDICTABLE; // BKPT must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes unconditionally.
The instruction executes conditionally.

Tl

8 7 6 5 4 3 2 1 0
0| imm8

15 14 13 12 11 10 9
1 01 1111

Tl

BKPT{<g>} {#}<imm>
imml6 = ZeroExtend(imm8, 16);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields. A BKPT instruction must be unconditional.

<imm> For encoding A1l: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. This value:
* Isrecorded in the Comment field of ESR _ELx.ISS if the Software Breakpoint Instruction
exception is taken to an exception level that is using AArch64.
» Is ignored otherwise.
For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field. This
value:
* Isrecorded in the Comment field of ESR ELx.ISS if the Software Breakpoint Instruction
exception is taken to an exception level that is using AArch64.
* Isignored otherwise.

Operation

EncodingSpecificOperations();
AArch32.SoftwareBreakpoint (imml6);

BKPT Page 66

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BKPT Page 67

BL, BLX (immediate)

Branch with Link calls a subroutine at a PC-relative address, and setting LR to the return address.

Branch with Link and Exchange Instruction Sets (immediate) calls a subroutine at a PC-relative address, setting LR to
the return address, and changes the instruction set from A32 to T32, or from T32 to A32.

It has encodings from the following instruction sets: A32 (Al and A2) and T32 (T1 and T2) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 |1 0 1]1] imm?24

cond

Al

BL{<c>}{<g>} <label>

imm32 = SignExtend(imm24:'00', 32); targetInstrSet = InstrSet A32;

A2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 1 1 1]1 0 1[H] imm?24

cond
A2

BLX{<c>}{<q>} <label>

imm32 = SignExtend(imm24:H:'0', 32); targetInstrSet = InstrSet T32;

T1
1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 1 1 1 0S| imm10 [1 1[)1[1])2] imm11

T1

BL{<c>}{<g>} <label>

I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imml@:imm1l1l:'0Q', 32);
targetInstrSet = InstrSet T32;
if InITBlock() && 'LastInITBlock() then UNPREDICTABLE;

T2

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 1 1 1 0S| imm10H [1 1[)1]0])2] imm10L [H |
T2

BLX{<c>}{<g>} <label>

if H == '1' then UNDEFINED;

I1 = NOT(J1 EOR S); 1I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:immlOH:immlOL:'00', 32);
targetInstrSet = InstrSet A32;

if InITBlock() && 'LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

BL, BLX (immediate) Page 68

Assembler Symbols

<c> For encoding A1, T1 and T2: see Standard assembler syntax fields.

For encoding A2: see Standard assembler syntax fields. <c> must be AL or omitted.
<qg> See Standard assembler syntax fields.

<label> For encoding Al: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the BL instruction to this label, then selects an
encoding that sets imm32 to that offset.

Permitted offsets are multiples of 4 in the range -33554432 to 33554428.
For encoding A2: the label of the instruction that is to be branched to. The assembler calculates the

required value of the offset from the PC value of the BLX instruction to this label, then selects an
encoding with imm32 set to that offset.

Permitted offsets are even numbers in the range -33554432 to 33554430.

For encoding T1: the label of the instruction that is to be branched to.

The assembler calculates the required value of the offset from the PC value of the BL instruction to this
label, then selects an encoding with imm32 set to that offset.

Permitted offsets are even numbers in the range -16777216 to 16777214.

For encoding T2: the label of the instruction that is to be branched to.

The assembler calculates the required value of the offset from the Align(PC, 4) value of the BLX
instruction to this label, then selects an encoding with imm32 set to that offset.

Permitted offsets are multiples of 4 in the range -16777216 to 16777212.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if CurrentInstrSet() == InstrSet A32 then
LR = PC - 4;
else
LR = PC<31:1> : '1"';
bits(32) targetAddress;
if targetInstrSet == InstrSet A32 then
targetAddress = Align(PC,4) + imm32;
else
targetAddress = PC + imm32;
SelectInstrSet(targetInstrSet);
BranchWritePC(targetAddress, BranchType DIRCALL);

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BL, BLX (immediate) Page 69

BLX (register)

Branch with Link and Exchange (register) calls a subroutine at an address specified in the register, and if necessary
changes to the instruction set indicated by bit[0] of the register value. If the value in bit[0] is 0, the instruction set
after the branch will be A32. If the value in bit[0] is 1, the instruction set after the branch will be T32.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
| '=1111 o 0 0 1 0 0 1 O [D[WIWiD[DIDIMIDIDIDIW]o 0 1 1] Rm |
cond

Al

BLX{<c>}{<qg>} <Rm>

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;

T1
1514 1312 1110 9 8 7 6 5 4 3 2 1 0
01 000 1 1 1[1] Rm 1(0)[(0)[(0)]
T1

BLX{<c>}{<q>} <Rm>

m = UInt(Rm);

if m == 15 then UNPREDICTABLE;

if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
target = R[m];
bits(32) next instr_addr;
if CurrentInstrSet() == InstrSet A32 then
next instr addr = PC - 4;
LR = next instr addr;
else
next instr addr = PC - 2;
LR = next instr addr<31l:1> : 'l';
BXWritePC(target, BranchType INDCALL);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BLX (register) Page 70

BX

Branch and Exchange causes a branch to an address and instruction set specified by a register.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7 6 5 4
| '=1111 o 0 0 1 0 0 1 O[O0 0 0 1] Rm |
cond

Al

BX{<c>}{<qg>} <Rm>

m = UInt(Rm);
T1

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|01 00011 1]0] Rm [(0)](0)](0)]
T1

BX{<c>}{<g>} <Rm>

m = UInt(Rm);
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rm> For encoding Al: is the general-purpose register holding the address to be branched to, encoded in the

"Rm" field. The PC can be used.

For encoding T1: is the general-purpose register holding the address to be branched to, encoded in the
"Rm" field. The PC can be used.

Note

If <Rm> is the PC at a non word-aligned address, it results in UNPREDICTABLE behavior because the
address passed to the BXWritePC() pseudocode function has bits<1:0> = '10".

Operation

if ConditionPassed() then
EncodingSpecificOperations();
BXWritePC(R[m], BranchType INDIR);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BX Page 71

BXJ

Branch and Exchange, previously Branch and Exchange Jazelle.

BXJ behaves as a BX instruction, see BX. This means it causes a branch to an address and instruction set specified by a
register.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 0 1 0 0 1 O[O0 0 1 0] Rm |
cond

Al

BXJ{<c>}{<qg>} <Rm>

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;

Tl
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 1110011110 0] Rm [1 o[o [(WDD]0)](0)](0)[(0)](0)](0)](0)](0)]
T1

BXJ{<c>}{<g>} <Rm>

m = UInt(Rm);

if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
BXWritePC(R[m], BranchType INDIR);

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BX]J Page 72

CBNZ, CBZ

Compare and Branch on Nonzero and Compare and Branch on Zero compare the value in a register with zero, and

conditionally branch forward a constant value. They do not affect the condition flags.

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 0 1 1]op[O]i]1] imm5 | Rn |

CBNZ (op == 1)
CBNZ{<g>} <Rn>, <label>
CBZ (op == 0)

CBZ{<g>} <Rn>, <label>

n = UInt(Rn); 1imm32 = ZeroExtend(i:imm5:'0', 32); nonzero = (op == '1');
if InITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<qg> See Standard assembler syntax fields.
<Rn> Is the general-purpose register to be tested, encoded in the "Rn" field.
<label> Is the program label to be conditionally branched to. Its offset from the PC, a multiple of 2 and in the

range 0 to 126, is encoded as "i:imm5" times 2.

Operation

EncodingSpecificOperations();
if nonzero != IsZero(R[n]) then
CBWritePC(PC + imm32);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CBNZ, CBZ

Page 73

CLRBHB

Clear Branch History clears the branch history for the current context to the extent that branch history information
created before the CLRBHB instruction cannot be used by code before the CLRBHB instruction to exploitatively control
the execution of any indirect branches in code in the current context that appear in program order after the
instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
(FEAT_CLRBHB)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
| I=1111 |0 01 1 0|0|1 O|O 00 0|(1)|(1)|(1)|(1)|(0)(0) (0)(0) O 0 ©
cond

YN
olw
SN
[y
ol|o

Al

CLRBHB{<c>}{<q>}

if !'HaveFeatCLRBHB() then EndOfInstruction(); // Instruction executes as NOP

T1
(FEAT_CLRBHB)

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13 12 11 10 9 8 7 6 5
[1 1110011101 o0/@@Om1oloolfofo o of[o o0 0

S
[o|w
21N
[y P
ol|o

Tl

CLRBHB{<c>}{<q>}

if !'HaveFeatCLRBHB() then EndOfInstruction(); // Instruction executes as NOP

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
Hint CLRBHB();

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLRBHB Page 74

CLREX

Clear-Exclusive clears the local monitor of the executing PE.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
[1 11101010 1 1 1[DOOOOMDOIDIMLIMLO0)0)O0

[@][e)]
ol|lun
EES
=
= (w
N
—
'—I
N
—
'—I
e
—
=
e

Al

CLREX{<c>}{<g>}
// No additional decoding required
T1

15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
1 111001110 1 1[OMMMm1oloolmmmimo o 1 o011

Tl

CLREX{<c>}{<g>}
// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding Al: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
ClearExclusivelocal (ProcessorID());

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLREX Page 75

CLZ

Count Leading Zeros returns the number of binary zero bits before the first binary one bit in a value.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 o 0 0 1 0 1 1 O [D[D|D)|1) Rd (DD o o0 o 1] Rm |
cond

Al

CLZ{<c>}{<g>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);

if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O

/11 111010 1[0 1 1] Rn 1 1 1 1] Rd |1 0]/0 0] Rm |

CLZ{<c>}{<g>} <Rd>, <Rm>

m = UInt(Rm); n = UInt(Rn);
== 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m !'= n, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

* The instruction executes as described, with no change to its behavior and no additional side effects.

¢ The instruction executes with the additional decode: m = Ulnt(Rn);.

¢ The value in the destination register is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1l: is the general-purpose source register, encoded in the "Rm" field.

For encoding T1: is the general-purpose source register, encoded in the "Rm" field. It must be encoded
with an identical value in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

result = CountleadingZeroBits(R[m]);
R[d] = result<31:0>;

CLZ Page 76

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLZ Page 77

CMN (immediate)

Compare Negative (immediate) adds a register value and an immediate value. It updates the condition flags based on
the result, and discards the result.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 Jo 0 1 1 0[1 1[1] Rn 1(0)[(0)[(0)](0)] imm12

cond

Al

CMN{<c>}{<g>} <Rn>, #<const>

n = UInt(Rn); imm32 A32ExpandImm(imml2) ;

Tl
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 11 1 0]ilo[1 0 0 O0f1] Rn o] imm3 |1 1 1 1] imm8

Tl

CMN{<c>}{<g>} <Rn>, #<const>

n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rn> For encoding Al: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,

but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[n], imm32, '0');
PSTATE.<N,Z,C,V> = nzcv;

Operational information
If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.

CMN (immediate) Page 78

o The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (immediate) Page 79

CMN (register)

Compare Negative (register) adds a register value and an optionally-shifted register value. It updates the condition
flags based on the result, and discards the result.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 |0 0 0 1 Of1 1[1] Rn 1(0)[(0)[(0)[(0)] imm5 |stype| 0 | Rm |
cond

Rotate right with extend (imm5 == 00000 && stype == 11)
CMN{<c>}{<g>} <Rn>, <Rm>, RRX
Shift or rotate by value (!(imm5 == 00000 && stype == 11))

CMN{<c>}{<g>} <Rn>, <Rm> {, <shift> #<amount>}

n = UInt(Rn); m = UInt(Rm);

(shift_t, shift n) = DecodeImmShift(stype, imm5);
T1

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
[01 00 00[1 01 1] Rm | Rn |
T1

CMN{<c>}{<g>} <Rn>, <Rm>

= UInt(Rn); m = UInt(Rm);
shift t, shift n) = (SRType LSL, 0);

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 11 010 1[1 0 0 Of1] Rn [(0)] imm3 |1 1 1 1 [imm2[stype] Rm |

Rotate right with extend (imm3 == 000 && imm2 == 00 && stype == 11)
CMN{<c>}{<g>} <Rn>, <Rm>, RRX
Shift or rotate by value (!(imm3 == 000 && imm2 == 00 && stype == 11))

CMN{<c>}.W <Rn>, <Rm> // (<Rn>, <Rm> can be represented in T1)
CMN{<c>}{<g>} <Rn>, <Rm> {, <shift> #<amount>}
n = UInt(Rn); m UInt(Rm);

(shift _t, shift n) = DecodeImmShift(stype, imm3:imm2);
if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

CMN (register) Page 80

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rn> For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be

used, but this is deprecated.

For encoding T1 and T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:
stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm?2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], shifted, '0');
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (register) Page 81

CMN (register-shifted register)

Compare Negative (register-shifted register) adds a register value and a register-shifted register value. It updates the
condition flags based on the result, and discards the result.

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 o1 1][1] Rn [(0)[(0)[(0)](0)] Rs [0 [stype| 1] Rm |
cond

Al

CMN{<c>}{<g>} <Rn>, <Rm>, <type> <Rs>

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift t = DecodeRegShift(stype);
if n==15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <type>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], shifted, '0');
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

CMN (register-shifted

register) Page 82

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (register-shifted

register) Page 83

CMP (immediate)

Compare (immediate) subtracts an immediate value from a register value. It updates the condition flags based on the
result, and discards the result.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 Jo 0 1 1 0[1 Of1] Rn 1(0)[(0)[(0)](0)] imm12

cond

Al

CMP{<c>}{<g>} <Rn>, #<const>

n = UInt(Rn); imm32 = A32ExpandImm(imml2);

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|0 0 1]0 1] Rn | imm8

T1

CMP{<c>}{<g>} <Rn>, #<imm8>

n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
T2

1514 1312 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0f]ilo[1 1 0 1[1] Rn 0] imm3 |1 1 1 1] imm8

T2

CMP{<c>}.W <Rn>, #<const> // (<Rd>, <const> can be represented in T1)

CMP{<c>}{<g>} <Rn>, #<const>

n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c>
<qg>

<Rn>

<imm8>

<const>

See Standard assembler syntax fields.
See Standard assembler syntax fields.

For encoding Al: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.

For encoding T1: is a general-purpose source register, encoded in the "Rn" field.
For encoding T2: is the general-purpose source register, encoded in the "Rn" field.
Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

CMP (immediate) Page 84

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[n], NOT(imm32), '1');
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (immediate) Page 85

CMP (register)

Compare (register) subtracts an optionally-shifted register value from a register value. It updates the condition flags
based on the result, and discards the result.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1, T2 and T3).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 |0 0 0 1 01 Of1] Rn 1(0)[(0)[(0)[(0)] imm5 |stype| 0 | Rm |
cond

Rotate right with extend (imm5 == 00000 && stype == 11)
CMP{<c>}{<g>} <Rn>, <Rm>, RRX
Shift or rotate by value (!(imm5 == 00000 && stype == 11))

CMP{<c>}{<qg>} <Rn>, <Rm> {, <shift> #<amount>}

= UInt(Rn); m = UInt(Rm);
shift t, shift n) = DecodeImmShift(stype, imm5);

T1
1514 13121110 9 8 7 6 5 4 3 2 1 0
[01 00 00[1010] Rm | Rn |
T1

CMP{<c>}{<qg>} <Rn>, <Rm> // (<Rn> and <Rm> both from RO-R7)

n = UInt(Rn); m = UInt(Rm);

(shift t, shift n) = (SRType LSL, 0);
T2

1514 13121110 9 8 7 6 5 4 3 2 1 0
[001 0 0 0 1[0 1[N] Rm | Rn |
T2

CMP{<c>}{<qg>} <Rn>, <Rm> // (<Rn> and <Rm> not both from RO-R7)

n = UInt(N:Rn); m = UInt(Rm);
(shift t, shift n) = (SRType LSL, 0);

if n < 8 & m < 8 then UNPREDICTABLE;
if n == 15 || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifn < 8 & m < 8, then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes as described, with no change to its behavior and no additional side effects.
The condition flags become UNKNOWN.

T3

CMP (register) Page 86

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
/1 1 1 010 1[1 1 0 1[1] Rn (0)) imm3 |1 1 1 1 [imm2][stype] Rm |

Rotate right with extend (imm3 == 000 && imm2 == 00 && stype == 11)
CMP{<c>}{<g>} <Rn>, <Rm>, RRX
Shift or rotate by value (!(imm3 == 000 && imm2 == 00 && stype == 11))

CMP{<c>}.W <Rn>, <Rm> // (<Rn>, <Rm> can be represented in T1 or T2)
CMP{<c>}{<qg>} <Rn>, <Rm>, <shift> #<amount>
n = UInt(Rn); m = UInt(Rm);

(shift_t, shift n) = DecodeImmShift(stype, imm3:imm2);
if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rn> For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be

used, but this is deprecated.
For encoding T1 and T3: is the first general-purpose source register, encoded in the "Rn" field.
For encoding T2: is the first general-purpose source register, encoded in the "N:Rn" field.

<Rm> For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.

For encoding T1, T2 and T3: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "immb5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm?2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:

CMP (register) Page 87

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (register) Page 88

CMP (register-shifted register)

Compare (register-shifted register) subtracts a register-shifted register value from a register value. It updates the
condition flags based on the result, and discards the result.

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 01 O[1] Rn [(0)[(0)[(0)](0)] Rs [0 [stype| 1] Rm |
cond

Al

CMP{<c>}{<g>} <Rn>, <Rm>, <type> <Rs>

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift t = DecodeRegShift(stype);
if n==15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <type>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

CMP (register-shifted

register) Page 89

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (register-shifted

register) Page 90

CPS, CPSID, CPSIE

Change PE State changes one or more of the PSTATE.{A, I, F} interrupt mask bits and, optionally, the PSTATE.M
mode field, without changing any other PSTATE bits.

CPS is treated as NOP if executed in User mode unless it is defined as being CONSTRAINED UNPREDICTABLE elsewhere in
this section.

The PE checks whether the value being written to PSTATE.M is legal. See Illegal changes to PSTATE.M.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[T 1 11000100 0 0[imodM[0[OJOJOIOIOIO[O[A]ITF]0] mode |

Change mode (imod == 00 && M == 1)
CPS{<q>} #<mode> // (Cannot be conditional)
Interrupt disable (imod == 11 && M == 0)
CPSID{<g>} <iflags> // (Cannot be conditional)
Interrupt disable and change mode (imod == 11 && M == 1)
CPSID{<g>} <iflags> , #<mode> // (Cannot be conditional)
Interrupt enable (imod == 10 && M == 0)
CPSIE{<g>} <iflags> // (Cannot be conditional)
Interrupt enable and change mode (imod == 10 && M == 1)

CPSIE{<g>} <iflags> , #<mode> // (Cannot be conditional)

if mode != '00000' & M == 'O' then UNPREDICTABLE;

if (imod<l> == '1' && A:I:F == '000') || (imod<l> == '0' && A:I:F != '000') then UNPREDICTABLE;
enable = (imod == '10'); disable = (imod == '11'); changemode = (M == '1"');

affectA = (A == '1'); affectl = (I == '1'); affectF = (F == '1");

if (imod == '00' & M == '0') || imod == 'O1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If imod == '01', then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

If imod == '00' & M == '0Q', then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

If mode != '00000' & M == '0Q', then one of the following behaviors must occur:

The instruction is UNDEFINED.
The instruction executes as NOP.
The instruction executes with the additional decode: changemode = TRUE.

The instruction executes as described, and the value specified by mode is ignored. There are no additional
side-effects.

If imod<l> == '1l' && A:I:F == '000', then one of the following behaviors must occur:

CPS, CPSID, CPSIE Page 91

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction behaves as if imod<1> == "'0".

The instruction behaves as if A:I:F has an UNKNOWN nonzero value.

If imod<1l> == '0' && A:I:F != '000', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction behaves as if imod<1> == "1".
The instruction behaves as if A:I:F == '000".

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 01 101100 1[1[m[OA[I[F]

Interrupt disable (im == 1)
CPSID{<g>} <iflags> // (Not permitted in IT block)
Interrupt enable (im == 0)

CPSIE{<qg>} <iflags> // (Not permitted in IT block)

if A:I:F == '000' then UNPREDICTABLE;
enable = (im == '0'); disable = (im == '1'); changemode = FALSE;
affectA = (A== "'1"); affectl = (I == '1'); affectF = (F == '1");

if InITBlock() then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior

IfA:I:F == '000', then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

™
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 111001110 1 0[O ofo]olo)]imod[M[A]I]F] mode |

CPS, CPSID, CPSIE

Page 92

Change mode (imod == 00 && M == 1)
CPS{<g>} #<mode> // (Not permitted in IT block)
Interrupt disable (imod == 11 && M == 0)
CPSID.W <iflags> // (Not permitted in IT block)
Interrupt disable and change mode (imod == 11 && M == 1)
CPSID{<g>} <iflags>, #<mode> // (Not permitted in IT block)
Interrupt enable (imod == 10 & M == 0)
CPSIE.W <iflags> // (Not permitted in IT block)
Interrupt enable and change mode (imod == 10 && M == 1)

CPSIE{<g>} <iflags>, #<mode> // (Not permitted in IT block)

if imod == '00' & M == '0O' then SEE "Hint instructions";

if mode != '00000' && M == 'O' then UNPREDICTABLE;

if (imod<l> == '1' && A:I:F == '000') || (imod<l> == '0' && A:I:F != '000') then UNPREDICTABLE;
enable = (imod == '10'); disable = (imod == '11'); changemode = (M == '1"');

affectA = (A== "'1"); affectl = (I == '1'); affectF = (F == '1");

if imod == '01' || InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If imod == '01', then one of the following behaviors must occur:

e The instruction is UNDEFINED.
e The instruction executes as NOP.

If mode != '00000' && M == '0', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: changemode = TRUE.

The instruction executes as described, and the value specified by mode is ignored. There are no additional
side-effects.

If imod<1l> == '1' && A:I:F == '000', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction behaves as if imod<1> == "'0".

The instruction behaves as if A:I:F has an UNKNOWN nonzero value.

If imod<1l> == '0Q' && A:I:F != '000', then one of the following behaviors must occur:

e The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction behaves as if imod<1> == "1".

¢ The instruction behaves as if A:I:F == '000".
Hint instructions: In encoding T2, if the imod field is 00 and the M bit is 0, a hint instruction is encoded. To determine
which hint instruction, see Branches and miscellaneous control.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

CPS, CPSID, CPSIE Page 93

<iflags> Is a sequence of one or more of the following, specifying which interrupt mask bits are affected:

a
Sets the A bit in the instruction, causing the specified effect on PSTATE.A, the SError interrupt
mask bit.

i
Sets the I bit in the instruction, causing the specified effect on PSTATE.I, the IRQ interrupt mask
bit.

f
Sets the F bit in the instruction, causing the specified effect on PSTATE.F, the FIQ interrupt mask
bit.

<mode> Is the number of the mode to change to, in the range 0 to 31, encoded in the "mode" field.

Operation

if CurrentInstrSet() == InstrSet A32 then
EncodingSpecificOperations();
if PSTATE.EL != ELO then
if enable then

if affectA then PSTATE.A = '0';

if affectI then PSTATE.I = '0';

if affectF then PSTATE.F = '0';
if disable then

if affectA then PSTATE.A = '1';

if affectI then PSTATE.I = '1';

if affectF then PSTATE.F = '1';

if changemode then
// AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
AArch32.WriteModeByInstr(mode);

else
EncodingSpecificOperations();
if PSTATE.EL != ELO then
if enable then

if affectA then PSTATE.A = '0';

if affectI then PSTATE.I = '0';

if affectF then PSTATE.F = '0';
if disable then

if affectA then PSTATE.A = '1';

if affectI then PSTATE.I = '1';

if affectF then PSTATE.F = '1';

if changemode then
// AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
AArch32 .WriteModeByInstr(mode);

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPS, CPSID, CPSIE Page 94

CRC32

CRC32 performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an
input CRC value in the first source operand, performs a CRC on the input value in the second source operand, and
returns the output CRC value. The second source operand can be 8, 16, or 32 bits. To align with common usage, the
bit order of the values is reversed as part of the operation, and the polynomial 0x04C11DB?7 is used for the CRC

calculation.

In an Armv8.0 implementation, this is an OPTIONAL instruction. From Armv8.1, it is mandatory for all implementations

to implement this instruction.

Note

ID ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
(FEAT_CRC32)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 0
['=1111 Jo 0 0 1 0] sz [0] Rn | Rd [(0)]0)o]]o 1 0 0] |
cond

CRC32B (sz == 00)

CRC32B{<g>} <Rd>, <Rn>, <Rm>
CRC32H (sz == 01)

CRC32H{<g>} <Rd>, <Rn>, <Rm>
CRC32W (sz == 10)

CRC32W{<g>} <Rd>, <Rn>, <Rm>

if ! HaveCRCExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

size = 8 << UInt(

crc32c = (C == '1");

if d =15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;

if cond !'= '1110' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

¢ The instruction executes with the additional decode: size = 32;.

If cond != '1110', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes unconditionally.
The instruction executes conditionally.

T1
(FEAT_CRC32)

CRC32

Page 95

15 14 13 12 11 10 9 8 7 6 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
1 1 111010 1]1 | Rn 1 1 1 1] Rd |1 0] sz | Rm |

[@][6)]

[@lI=]E>

CRC32B (sz == 00)

CRC32B{<g>} <Rd>, <Rn>, <Rm>
CRC32H (sz == 01)

CRC32H{<g>} <Rd>, <Rn>, <Rm>
CRC32W (sz == 10)

CRC32W{<g>} <Rd>, <Rn>, <Rm>

if InITBlock() then UNPREDICTABLE;

if ! HaveCRCExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

size = 8 << Ulnt(sz);

crc32c = (C == "'1");

if d =15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

e The instruction executes as NOP.

¢ The instruction executes with the additional decode: size = 32;.
For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<qg> See Standard assembler syntax fields. A CRC32 instruction must be unconditional.
<Rd> Is the general-purpose accumulator output register, encoded in the "Rd" field.
<Rn> Is the general-purpose accumulator input register, encoded in the "Rn" field.
<Rm> Is the general-purpose data source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();

acc = R[n]; // accumulator

val RIm]<size-1:0>; // input value

poly = (if crc32c then Ox1EDC6F41 else 0x04C11DB7)<31:0>;

tempacc = BitReverse(acc):Zeros(size);

tempval = BitReverse(val):Zeros(32);

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
R[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:

CRC32 Page 96

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32 Page 97

CRC32C

CRC32C performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an
input CRC value in the first source operand, performs a CRC on the input value in the second source operand, and
returns the output CRC value. The second source operand can be 8, 16, or 32 bits. To align with common usage, the
bit order of the values is reversed as part of the operation, and the polynomial 0x1EDCG6F41 is used for the CRC
calculation.

In an Armv8.0 implementation, this is an OPTIONAL instruction. From Armv8.1, it is mandatory for all implementations
to implement this instruction.

Note

ID ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
(FEAT_CRC32)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 0 1 0] sz [0] Rn | Rd (OO 1]0)]0 1 0 0] Rm |
cond C

CRC32CB (sz == 00)
CRC32CB{<g>} <Rd>, <Rn>, <Rm>
CRC32CH (sz == 01)
CRC32CH{<g>} <Rd>, <Rn>, <Rm>
CRC32CW (sz == 10)

CRC32CW{<g>} <Rd>, <Rn>, <Rm>

if ! HaveCRCExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
size = 8 << UInt(sz);
crc32c = (C == '1");
if d =15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;

if cond !'= '1110' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction executes with the additional decode: size = 32;.

If cond != '1110', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes unconditionally.
The instruction executes conditionally.

T1
(FEAT_CRC32)

CRC32C Page 98

3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
| Rn 1 1 1 1] Rd |1 0] sz | Rm |

15 14 13 12 11 10 9 8 7 6
1 1 111010 1]1

[@][6)]

QI EIES

CRC32CB (sz == 00)
CRC32CB{<g>} <Rd>, <Rn>, <Rm>
CRC32CH (sz == 01)
CRC32CH{<g>} <Rd>, <Rn>, <Rm>
CRC32CW (sz == 10)

CRC32CW{<g>} <Rd>, <Rn>, <Rm>

if InITBlock() then UNPREDICTABLE;

if ! HaveCRCExt() then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

size = 8 << Ulnt(sz);

crc32c = (C == "'1");

if d =15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

e The instruction executes as NOP.

¢ The instruction executes with the additional decode: size = 32;.
For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<qg> See Standard assembler syntax fields. A CRC32C instruction must be unconditional.
<Rd> Is the general-purpose accumulator output register, encoded in the "Rd" field.
<Rn> Is the general-purpose accumulator input register, encoded in the "Rn" field.
<Rm> Is the general-purpose data source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();

acc = R[n]; // accumulator

val RIm]<size-1:0>; // input value

poly = (if crc32c then Ox1EDC6F41 else 0x04C11DB7)<31:0>;

tempacc = BitReverse(acc):Zeros(size);

tempval = BitReverse(val):Zeros(32);

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
R[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:

CRC32C Page 99

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32C Page 100

CSDB

Consumption of Speculative Data Barrier is a memory barrier that controls speculative execution and data value
prediction.

No instruction other than branch instructions and instructions that write to the PC appearing in program order after
the CSDB can be speculatively executed using the results of any:

¢ Data value predictions of any instructions.

e PSTATE.{N,Z,C,V} predictions of any instructions other than conditional branch instructions and conditional
instructions that write to the PC appearing in program order before the CSDB that have not been
architecturally resolved.

Note

For purposes of the definition of CSDB, PSTATE.{N,Z,C,V} is not considered a data value. This definition permits:

¢ Control flow speculation before and after the CSDB.

* Speculative execution of conditional data processing instructions after the CSDB, unless they use the
results of data value or PSTATE.{N,Z,C,V} predictions of instructions appearing in program order before
the CSDB that have not been architecturally resolved.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).
Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
[7=1111 Jo 0 1 1 0]0]1 o]0 0 0 O[M[LD[M[©0)(©(©)(O) 0 0 0

[E1EN
o|w
[EIN)
ol~
olo

cond
Al
CSDB{<c>}{<qg>}
if cond !'= '1110' then UNPREDICTABLE; // CSDB must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes unconditionally.
The instruction executes conditionally.

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13 12 11 10 9 8 7 6
[1 1110011101 o0/MOWOMm1i1oloolfo]o o ofo o

ol|lun
ES
[o|w
21N
o~
oo

Tl

CSDB{<c>}{<g>}

if InITBlock() then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes unconditionally.
The instruction executes conditionally.

CSDB Page 101

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
Operation

if ConditionPassed() then
EncodingSpecificOperations();

ConsumptionOfSpeculativeDataBarrier();

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSDB Page 102

DBG

DBG executes as a NOP. Arm deprecates any use of the DBG instruction.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 |o 0 1 1 ofo[1 oo o0 O [DILIW|) (MO MO ®© 1 1 1 1| option |
cond

Al

DBG{<c>}{<qg>} #<option>
// DBG executes as a NOP. The ‘'option' field is ignored
Tl

15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
1 1110011101 o0/mmioloofofo o o1 1 1 1] option |

Tl

DBG{<c>}{<qg>} #<option>
// DBG executes as a NOP. The ‘'option' field is ignored

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<option> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "option" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBG Page 103

DCPS1

Debug Change PE State to EL1 allows the debugger to move the PE into EL1 from ELO or to a specific mode at the
current Exception level.
DCPS1 is UNDEFINED if any of:
e The PE is in Non-debug state.
« EL2 is implemented, EL2 is implemented and enabled in the current Security state, and any of:
o EL2 is using AArch32 and HCR.TGE is set to 1.
o EL2 is using AArch64 and HCR EL2.TGE is set to 1.
When the PE executes DCPS1 at ELO, EL1 or EL3:
e IfEL3 or EL1 is using AArch32, the PE enters SVC mode and LR svc, SPSR svc, DLR, and DSPSR become
UNKNOWN. If DCPS1 is executed in Monitor mode, SCR.NS is cleared to 0.
e IfELI1 is using AArch64, the PE enters EL1 using AArch64, selects SP EL1, and ELR EL1, ESR EL1,
SPSR EL1, DLR ELO and DSPSR EL0O become UNKNOWN.
When the PE executes DCPS1 at EL2 the PE does not change mode, and ELR hyp, HSR, SPSR_hyp, DLR and DSPSR
become UNKNOWN.
For more information on the operation of the DCPS<n> instructions, see DCPS.

T1
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
[1 1 1101111000111 1[1 000[/000O0000O0O0GO0TGO0[0 1]
T1

DCPS1

// No additional decoding required.

DCPS1 Page 104

Operation

if !Halted() then UNDEFINED;

if EL2Enabled() && PSTATE.EL == ELO then
tge = if ELUsingAArch32(EL2) then HCR.TGE else HCR EL2.TGE;
if tge == '1l' then UNDEFINED;

if PSTATE.EL != ELO || ELUsingAArch32(EL1) then
if PSTATE.M == M32 Monitor then SCR.NS = '0';
if PSTATE.EL != EL2 then
AArch32.WriteMode(M32 Svc);
PSTATE.E = SCTLR.EE;
if HavePANExt() && SCTLR.SPAN == 'O' then PSTATE.PAN = '1';
LR svc = bits(32) UNKNOWN;
SPSR_svc = bits(32) UNKNOWN;
else
PSTATE.E = HSCTLR.EE;
ELR hyp = bits(32) UNKNOWN;
HSR = bits(32) UNKNOWN;
SPSR_hyp = bits(32) UNKNOWN;

DLR = ts(32) UNKNOWN;
DSPSR bits(32) UNKNOWN;
else // Targeting EL1 using AArch64
AArch64.MaybeZeroRegisterUppers();
MaybeZeroSVEUppers (EL1);
PSTATE.nRW = '0';

bi

PSTATE.SP = '1';
PSTATE.EL = EL1;
if HavePANExt() && SCTLR EL1.SPAN == 'O' then PSTATE.PAN = 'l1';

if HaveUAOExt() then PSTATE.UAO = '0';

ELR EL1 = bits(64) UNKNOWN;
ESR EL1 = bits(64) UNKNOWN;
SPSR EL1 = bits(64) UNKNOWN;

DLR_ELO

= (64) UNKNOWN;
DSPSR ELO

bits
= bits(64) UNKNOWN;
// SCTLR EL1.IESB might be ignored in Debug state.
if (HaveIESB() && SCTLR EL1.IESB == '1' &&
IConstrainUnpredictableBool (Unpredictable IESBinDebug)) then
SynchronizeErrors();

UpdateEDSCRFields(); // Update EDSCR PE state flags

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS1 Page 105

DCPS2

Debug Change PE State to EL2 allows the debugger to move the PE into EL2 from a lower Exception level.
DCPS2 is UNDEFINED if any of:
e The PE is in Non-debug state.
¢ EL2 is not implemented.
¢ The PE is in Secure state and any of:
o Secure EL2 is not implemented.
o Secure EL2 is implemented and Secure EL2 is disabled.
When the PE executes DCPS2:
e IfEL2 is using AArch32, the PE enters Hyp mode and ELR hyp, HSR, SPSR _hyp, DLR and DSPSR become
UNKNOWN.
e IfEL2 is using AArch64, the PE enters EL2 using AArch64, selects SP EL2, and ELR EL2, ESR EL2,
SPSR EL2, DLR ELO and DSPSR EL0O become UNKNOWN.
For more information on the operation of the DCPS<n> instructions, see DCPS

Tl
1514 1312 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0
/11110111 100U0[1111[1000[(00O0O00O0O0UO0GO0O0[1 0]
T1
DCPS2
if !HaveEL(EL2) then UNDEFINED;
Operation
if 'Halted() || !'EL2Enabled() then UNDEFINED;
if ELUsingAArch32(EL2) then
AArch32 .WriteMode (M32 Hyp);
PSTATE.E = HSCTLR.EE;
ELR hyp = bits(32) UNKNOWN;
HSR = bits(32) UNKNOWN;
SPSR hyp = bits(32) UNKNOWN;
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
else // Targeting EL2 using AArch64
AArch64 .MaybeZeroRegisterUppers();
MaybeZeroSVEUppers(EL2);
PSTATE.nRW = '0';
PSTATE.SP = '1';
PSTATE.EL = EL2;
if HavePANExt() && SCTLR EL2.SPAN == '0' && HCR EL2.E2H == '1l' && HCR EL2.TGE == 'l1l' then

PSTATE.PAN = '1';
if HaveUAQOExt() then PSTATE.UAO = '0';

ELR EL2 = bits(64) UNKNOWN;
ESR EL2 = bits(64) UNKNOWN;
SPSR EL2 = bits(64) UNKNOWN;

DLR_ELO

= bits(64) UNKNOWN;
DSPSR_ELO

bit
= bits(64) UNKNOWN;

// SCTLR EL2.IESB might be ignored in Debug state.
if (HaveIESB() && SCTLR EL2.IESB == 'l1' &&

IConstrainUnpredictableBool (Unpredictable IESBinDebug)) then
SynchronizeErrors();

UpdateEDSCRFields(); // Update EDSCR PE state flags

DCPS2 Page 106

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS2 Page 107

DCPS3

Debug Change PE State to EL3 allows the debugger to move the PE into EL3 from a lower Exception level or to a
specific mode at the current Exception level.

DCPS3 is UNDEFINED if any of:
e The PE is in Non-debug state.
¢ EL3 is not implemented.
e EDSCR.SDDis set to 1.
When the PE executes DCPS3:
e IfEL3 is using AArch32, the PE enters Monitor mode and LR mon, SPSR mon, DLR and DSPSR become
UNKNOWN. If DCPS3 is executed in Monitor mode, SCR.NS is cleared to 0.
e IfEL3 is using AArch64, the PE enters EL3 using AArch64, selects SP EL3, and ELR EL3, ESR EL3,
SPSR EL3, DLR ELO and DSPSR ELO become UNKNOWN.
For more information on the operation of the DCPS<n> instructions, see DCPS.

T1

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
/11110111 100G06[1111[1000[000O0O00O0O0UO0GO0GO0[1 1]
T1

DCPS3

if !'HaveEL(EL3) then UNDEFINED;

DCPS3 Page 108

Operation

if !Halted() || EDSCR.SDD == '1' then UNDEFINED;

if ELUsingAArch32(EL3) then
from secure = CurrentSecurityState() == SS Secure;
if PSTATE.M == M32 Monitor then SCR.NS = '0';
AArch32.WriteMode(M32 Monitor);
if HavePANExt() then
if !from_secure then
PSTATE.PAN = '0';
elsif SCTLR.SPAN == 'Q@' then
PSTATE.PAN = '1"';
PSTATE.E = SCTLR.EE;

LR mon = bits(32) UNKNOWN;
SPSR _mon = bits(32) UNKNOWN;

DLR = ts(32) UNKNOWN;
DSPSR bits(32) UNKNOWN;
else // Targeting EL3 using AArch64
AArch64.MaybeZeroRegisterUppers();
MaybeZeroSVEUppers (EL3);
PSTATE.nRW = '0';
PSTATE.SP '1';
PSTATE.EL = EL3;
if HaveUAOExt() then PSTATE.UAO = '0';

bi

ELR EL3 bits(64) UNKNOWN;
ESR EL3 bits(64) UNKNOWN;
SPSR EL3 = bits(64) UNKNOWN;

DLR_ELO

= bits(64) UNKNOWN;
DSPSR_ELO

bit

= bits(64) UNKNOWN;

sync_errors = HaveIESB() && SCTLR EL3.IESB == 'l1';

if HaveDoubleFaultExt() && EffectiveEA() == '1l' && SCR EL3.NMEA == 'l1' then
sync_errors = TRUE;

// SCTLR EL3.IESB might be ignored in Debug state.

if !ConstrainUnpredictableBool (Unpredictable IESBinDebug) then
sync_errors = FALSE;

if sync errors then SynchronizeErrors();

UpdateEDSCRFields(); // Update EDSCR PE state flags

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS3 Page 109

DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data
Memory Barrier (DMB).
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
[1 11101010 1 1 1[@DO@OOOMOILOLmOoooo[o 1 0 1] option |

Al

DMB{<c>}{<g>} {<option>}

// No additional decoding required

Tl
15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
1 111001110 1 1[OOMMm1oloolM@io 1 0 1] option |

Tl

DMB{<c>}{<g>} {<option>}
// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding Al: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.
<option> Specifies an optional limitation on the barrier operation. Values are:
SY

Full system is the required shareability domain, reads and writes are the required access types,
both before and after the barrier instruction. Can be omitted. This option is referred to as the full
system barrier. Encoded as option = 0b1111.

ST
Full system is the required shareability domain, writes are the required access type, both before
and after the barrier instruction. SYST is a synonym for ST. Encoded as option = 0b1110.

LD
Full system is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as option = 0b1011.

ISHST

Inner Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as option = 0b1010.

DMB Page 110

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b1001.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both
before and after the barrier instruction. Encoded as option = 0b0111.

NSHST
Non-shareable is the required shareability domain, writes are the required access type both before
and after the barrier instruction. Encoded as option = 0b0110.

NSHLD
Non-shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b0101.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as option = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as option = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b0001.

For more information on whether an access is before or after a barrier instruction, see Data Memory
Barrier (DMB). All other encodings of option are reserved. All unsupported and reserved options must
execute as a full system DMB operation, but software must not rely on this behavior.

Note

The instruction supports the following alternative <option> values, but Arm recommends that
software does not use these alternative values:

¢ SH as an alias for ISH.

¢ SHST as an alias for ISHST.

¢ UN as an alias for NSH.

e UNST as an alias for NSHST.

DMB Page 111

Operation

if ConditionPassed() then

EncodingSpecificOperations();
MBRegDomain domain;

MBReqTypes types;

case opt
when
when
when
when
when
when
when
when
when
when
when
othe

ion of
'0001"
'0010"
‘0011
‘0101
‘0110
'0111"
‘1001
'1010"
'1011"
‘1101
'1110"

rwise

domain
domain
domain
domain
domain
domain
domain
domain
domain
domain
domain
domain

MBRegDomain QuterShareable;
MBRegDomain QuterShareable;
MBRegDomain QuterShareable;
MBRegDomain Nonshareable;
MBRegDomain Nonshareable;
MBRegDomain Nonshareable;
MBRegDomain InnerShareable;
MBRegDomain InnerShareable;
MBRegDomain InnerShareable;
MBRegDomain FullSystem;
MBRegDomain FullSystem;
MBRegDomain FullSystem;

if PSTATE.EL IN {ELO, EL1} && EL2Enabled() then
'11' then
MBRegDomain FullSystem;

if H

if H

if H

CR.BS

domain
CR.BSU
domain
CR.BSU
domain

'10' && domain != MBRegDomain FullSystem then

types
types
types
types
types
types
types
types
types
types
types
types

MBRegDomain QuterShareable;

MBRegTypes Reads;

MBReqTypes Writes;
MBReqTypes All;

MBRegTypes Reads;

MBReqTypes Writes;
MBReqTypes All;

MBRegTypes Reads;

MBReqTypes Writes;
MBReqTypes All;

MBRegTypes Reads;

MBReqTypes Writes;
MBReqTypes All;

'01' && domain == MBReqDomain Nonshareable then
MBRegDomain InnerShareable;

DataMemoryBarrier(domain, types);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DMB

Page 112

DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data
Synchronization Barrier (DSB).

An AArch32 DSB instruction does not require the completion of any AArch64 TLB maintenance instructions,
regardless of the nXS qualifier, appearing in program order before the AArch32 DSB.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[1 1110101 0 1 1 1[DO@OOMOMOIDIOIOOOM][0]0 1 0 0] '=0x00 |
option

Al

DSB{<c>}{<qg>} {<option>}

// No additional decoding required

Tl

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 1312 1110 9 8 7 6 5 4 3 2 1 O

[1 111001110 1 1[WOOMm1IoJolM@DMo 1 0o o] '=0x00 |
option

Tl

DSB{<c>}{<qg>} {<option>}
// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding Al: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.
<option> Specifies an optional limitation on the barrier operation. Values are:
SY

Full system is the required shareability domain, reads and writes are the required access types,
both before and after the barrier instruction. Can be omitted. This option is referred to as the full
system barrier. Encoded as option = 0b1111.

ST
Full system is the required shareability domain, writes are the required access type, both before
and after the barrier instruction. SYST is a synonym for ST. Encoded as option = 0b1110.

LD
Full system is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as option = 0b1011.

DSB Page 113

ISHST
Inner Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as option = 0b1010.

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b1001.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both
before and after the barrier instruction. Encoded as option = 0b0111.

NSHST
Non-shareable is the required shareability domain, writes are the required access type both before
and after the barrier instruction. Encoded as option = 0b0110.

NSHLD
Non-shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b0101.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as option = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as option = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b0001.

For more information on whether an access is before or after a barrier instruction, see Data
Synchronization Barrier (DSB). All other encodings of option are reserved, other than the values
0b0000 and 0b0100. All unsupported and reserved options must execute as a full system DSB
operation, but software must not rely on this behavior.

Note

The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.
The instruction supports the following alternative <option> values, but Arm recommends that
software does not use these alternative values:

¢ SH as an alias for ISH.

¢ SHST as an alias for ISHST.

¢ UN as an alias for NSH.

e UNST as an alias for NSHST.

DSB Page 114

Operation

if ConditionPassed() then

EncodingSpecificOperations();

boolean

nXsS;

if HaveFeatXS() then

nXS = (PSTATE.EL IN {ELO

else

IsHCRXEL2Enabled() && HCRX EL2.FnXS == '1');

nXS = FALSE;
MBRegDomain domain;

MBReqTypes types;

case opt
when
when
when
when
when
when
when
when
when
when
when
othe

ion of
'0001"
'0010"
'0011"
‘0101
‘0110
'0111"
‘1001
'1010"
'1011"
‘1101
'1110"

rwise

domain
domain
domain
domain
domain
domain
domain
domain
domain
domain
domain

MBRegDomain OuterShareable;
MBRegDomain OuterShareable;
MBRegDomain OuterShareable;
MBRegDomain Nonshareable;
MBRegDomain Nonshareable;
MBRegDomain Nonshareable;
MBRegDomain InnerShareable;
MBRegDomain InnerShareable;
MBRegDomain InnerShareable;
MBRegDomain FullSystem;
MBRegDomain FullSystem;

assert !(option IN {'0x00'});

domain = MBRegDomain FullSystem;

types
types
types
types
types
types
types
types
types
types
types

EL1} && 'ELUsingAArch32(EL2) &&

MBRegTypes Reads;

MBReqTypes Writes;
MBReqTypes All;

MBRegTypes Reads;

MBReqTypes Writes;
MBReqTypes All;

MBRegTypes Reads;

MBReqTypes Writes;
MBReqTypes All;

MBRegTypes Reads;

MBReqTypes Writes;

types = MBReqTypes All;

if PSTATE.EL IN {ELO, EL1} && EL2Enabled() then
'11' then
MBRegDomain FullSystem;

if H

if H

if H

domain
CR.BSU
domain
CR.BSU
domain

CR.BSU ==

MBRegDomain QuterShareable;

MBRegDomain InnerShareable;

DataSynchronizationBarrier(domain, types, nXS);

= '10' && domain != MBRegDomain FullSystem then

= '01' && domain == MBRegDomain Nonshareable then

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DSB

Page 115

EOR, EORS (immediate)

Bitwise Exclusive-OR (immediate) performs a bitwise exclusive-OR of a register value and an immediate value, and
writes the result to the destination register.
If the destination register is not the PC, the EORS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The EOR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
¢ The EORS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 1 0[0 0 1]S] Rn | Rd | imm12

cond
EOR (S == 0)

EOR{<c>}{<g>} {<Rd>,} <Rn>, #<const>
EORS (S == 1)

EORS{<c>}{<qg>} {<Rd>,} <Rn>, #<const>

= UInt(Rn); setflags = (S == '1");
A32ExpandImm C(imm12, PSTATE.C);

d = UInt(Rd); n
(imm32, carry) =

Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0]iloJ0o 1 0 0[S] Rn [0] imm3 | Rd | imm8
EOR (S == 0)

EOR{<c>}{<q>} {<Rd>,} <Rn>, #<const>
EORS (S == 1 && Rd !'=1111)

EORS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

if Rd == '1111' && S == '1l' then SEE "TEQ (immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1");
(imm32, carry) = T32ExpandImm C(i:imm3:imm8, PSTATE.C);
if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

EOR, EORS (immediate) Page 116

Asse

mbler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:
* For the EOR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.
* For the EORS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.
For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.
<Rn> For encoding Al: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.
<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.
Operation

if ConditionPassed() then

EncodingSpecificOperations();
result = R[n] EOR imm32;
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z IsZeroBit(result);
PSTATE.C carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR, EORS (immediate) Page 117

EOR, EORS (register)

Bitwise Exclusive-OR (register) performs a bitwise exclusive-OR of a register value and an optionally-shifted register
value, and writes the result to the destination register.
If the destination register is not the PC, the EORS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The EOR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
¢ The EORS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 0[O0 0 1]S] Rn | Rd | imm5 [stype] 0 | Rm |
cond

EOR, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
EOR{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
EOR{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
EORS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

EORS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift n) = DecodeImmShift(stype, imm5);

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[01 000 0[0 0O 1] Rm | Rdn |

T1

EOR<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)
EORS{<g>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d =
(shift t, shift_n) = (SRType LSL, 0);

T2

EOR, EORS (register) Page 118

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 010 1[0 1 0 0]S] Rn (0)] imm3 | Rd [imm2]stype]| Rm |

EOR, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
EOR{<c>}{<qg>} {<Rd>,} <Rn>, <Rm>, RRX
EOR, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

EOR<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)
EORS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111)

EORS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)
EORS{<c>}{<qg>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rd == '1111' & S == '1' then SEE "TEQ (register)";

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift _t, shift n) = DecodeImmShift(stype, imm3:imm2);

if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1l: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
flzgi;.ter is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is

* For the EOR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

* For the EORS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

EOR, EORS (register) Page 119

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm?2" field as <amount> modulo 32.

In T32 assembly:

¢ Outside an IT block, if EORS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is
assembled using encoding T1 as though EORS <Rd>, <Rn> had been written

¢ Inside an IT block, if EOR<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is
assembled using encoding T1 as though EOR<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
result = R[n] EOR shifted;
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;

// PSTATE.V unchanged
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO01_31, pseudocode v2023-03 rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR, EORS (register) Page 120

EOR, EORS (register-shifted register)

Bitwise Exclusive-OR (register-shifted register) performs a bitwise exclusive-OR of a register value and a register-
shifted register value. It writes the result to the destination register, and can optionally update the condition flags
based on the result.

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 0[O0 O 1]S] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)
EORS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>
Not flag setting (S == 0)

EOR{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

UInt(Rm); s = UInt(Rs);
DecodeReqShlft(stype)
| s

d = UInt(Rd); n = UInt(Rn);
setflags = (S == '1"); shlft
if d == 15 || n == 15 ||m——15|

== 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift n = UInt(R[s]<7:0>);
(shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
result = R[n] EOR shifted;
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z IsZeroBit(result);
PSTATE.C carry;
// PSTATE.V unchanged

EOR, EORS (register-shifted

register) Page 121

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR, EORS (register-shifted

register) Page 122

ERET

Exception Return.

The PE branches to the address held in the register holding the preferred return address, and restores PSTATE from
SPSR_<current_mode>.

The register holding the preferred return address is:

e ELR hyp, when executing in Hyp mode.
¢ LR, when executing in a mode other than Hyp mode, User mode, or System mode.

The PE checks SPSR_<current mode> for an illegal return event. See Illegal return events from AArch32 state.
Exception Return is CONSTRAINED UNPREDICTABLE in User mode and System mode.

In Debug state, the T1 encoding of ERET executes the DRPS operation.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 [0 0 0 1 0 1 1 0 (0)(0)[(0)(0)[(0)[(0)[(0)[(D)[(0)](0)(®)[(0)[0 1 1 0 [(1)[(1)|(1)[(0)]
cond
Al
ERET{<c>}{<g>}

// No additional decoding required

Tl

1514 1312 1110 9 8 7 6 5 4 3 2 1 0 1514 13 12 11 10 9 8 7 6 5
[1 1110011110 1[1 1101 ofool@Ino o o

o~
o|w
(@] 1]
(@i
ole

Tl

ERET{<c>}{<g>}
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

ERET Page 123

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if !'Halted() then
if PSTATE.M IN {M32 User,M32 System} then
UNPREDICTABLE; // UNDEFINED or NOP
else
new _pc _value = if PSTATE.EL == EL2 then ELR hyp else R[14];
AArch32.ExceptionReturn(new pc value, SPSRI[]);

else // Perform DRPS operation in Debug state
if PSTATE.M == M32 User then
UNDEFINED;
elsif PSTATE.M == M32 System then
UNPREDICTABLE; // UNDEFINED or NOP
else

SynchronizeContext();
DebugRestorePSR();

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32 User,M32 System}, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERET

Page 124

ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR and VDISR. This
instruction can be used at all Exception levels and in Debug state.

In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. See Error
Synchronization Barrier in the ARM(R) Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for
Armv8-A architecture profile.

If the RAS Extension is not implemented, this instruction executes as a NOP.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
(FEAT_RAS)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| 1=1111 |0 01 1 O|0|1 O|O 0 O 0|(1)|(1)|(1)|(1)|(0)(0)(0)(0) 0O 001 00O 0|
cond
Al
ESB{<c>}{<qg>}
if !'HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
if cond '= '1110' then UNPREDICTABLE; // ESB must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes unconditionally.
The instruction executes conditionally.

T1
(FEAT_RAS)

15 14 13 12 11 10

9 8 1 0 15 14 13 12 11 10
1 1110011

6 5 4 3 2 9 8 7 6
0 1 o[MM[DIW[1 ofo]oJ]o 0 0Jo 0

(oY I
[@][6;]
SIS
(o|w
o~
o~
o|o

T1

ESB{<c>}{<q>}

if !'HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes unconditionally.
The instruction executes conditionally.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

ESB Page 125

Operation

if ConditionPassed() then
EncodingSpecificOperations();

SynchronizeErrors();
AArch32.ESBOperation();
if PSTATE.EL IN {ELO, EL1} && EL2Enabled() then AArch32.vESBOperation();

TakeUnmaskedSErrorInterrupts();

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESB Page 126

HLT

Halting breakpoint causes a software breakpoint to occur.
Halting breakpoint is always unconditional, even inside an IT block.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
['=1111 Jo 0 0 1 00 O0]0] imm12 [001 1 1] imm4 |
cond

Al

HLT{<g>} {#}<imm>

if EDSCR.HDE == '0' || !'HaltingAllowed() then UNDEFINED;
if cond != '1110' then UNPREDICTABLE; // HLT must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes unconditionally.
The instruction executes conditionally.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/1 01 11010 10] imm6 |

Tl

HLT{<q>} {#}<imm>

if EDSCR.HDE == '0' || 'HaltingAllowed() then UNDEFINED;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields. An HLT instruction must be unconditional.

<imm> For encoding A1l: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. This value is for assembly and disassembly only. It is ignored by the PE, but can be
used by a debugger to store more information about the halting breakpoint.

For encoding T1: is a 6-bit unsigned immediate, in the range 0 to 63, encoded in the "imm6" field. This
value is for assembly and disassembly only. It is ignored by the PE, but can be used by a debugger to
store more information about the halting breakpoint.

Operation

EncodingSpecificOperations();
boolean is async = FALSE;

Halt (DebugHalt HaltInstruction, is async);
Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

HLT Page 127

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HLT Page 128

HVC

Hypervisor Call causes a Hypervisor Call exception. For more information, see Hypervisor Call (HVC) exception.
Software executing at EL1 can use this instruction to call the hypervisor to request a service.

The HVC instruction is UNDEFINED:

When EL3 is implemented and using AArch64, and SCR_EL3.HCE is set to 0.

In Non-secure EL1 modes when EL3 is implemented and using AArch32, and SCR.HCE is set to 0.

When EL3 is not implemented and either HCR_EL2.HCD is set to 1 or HCR.HCD is set to 1.

When EL2 is not implemented.

In Secure state, if EL2 is not enabled in the current Security state.

In User mode.

The HVC instruction is CONSTRAINED UNPREDICTABLE in Hyp mode when EL3 is implemented and using AArch32, and
SCR.HCE is set to 0.

On executing an HVC instruction, the HSR, Hyp Syndrome Register reports the exception as a Hypervisor Call
exception, using the EC value 0x12, and captures the value of the immediate argument, see Use of the HSR.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 |o 0 0 1 0[1 0]0] imm12 01 1 1] imm4 |
cond

Al

HVC{<q>} {#}<imml6>

if cond != '1110' then UNPREDICTABLE;
immle = imml2:imm4;

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes unconditionally.
The instruction executes conditionally.

Tl

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
1 1110111 111[0o] imm4 [1 0[0]O] imm12

T1

HVC{<g>} {#}<imml6>

imml6 = imm4:imml2;
if InITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols
<q> See Standard assembler syntax fields. An HVC instruction must be unconditional.

<imml16> For encoding Al: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. This value is for assembly and disassembly only. It is reported in the HSR but

HVC Page 129

otherwise is ignored by hardware. An HVC handler might interpret imm16, for example to determine
the required service.

For encoding T1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field. This value is for assembly and disassembly only. It is reported in the HSR but
otherwise is ignored by hardware. An HVC handler might interpret imm16, for example to determine
the required service.

Operation

EncodingSpecificOperations()
if PSTATE.EL IN {ELO, EL3} |

bit

| 'EL2Enabled() then
UNDEFINED;

hvc _enable;

if HaveEL (EL3) then

else

if ELUsingAArch32(EL3) && SCR.HCE == '0' && PSTATE.EL == EL2 then
UNPREDICTABLE;

else
hvc_enable = SCR_GEN[].HCE;

hvc_enable = if ELUsingAArch32(EL2) then NOT(HCR.HCD) else NOT(HCR EL2.HCD);

if hvc enable == '0' then

else

UNDEFINED;

AArch32.CallHypervisor(imml6) ;

CONSTRAINED UNPREDICTABLE behavior

If ELUsingAArch32(EL3) && SCR.HCE == '0' && PSTATE.EL == EL2, then one of the following behaviors must occur:

The instruction is UNDEFINED.
The instruction executes as NOP.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HVC Page 130

ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more
information, see Instruction Synchronization Barrier (ISB).
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 11101010 1 1 1[@OOOOOMOILOmOoooo[o 1 1 o] option |

Al

ISB{<c>}{<qg>} {<option>}

// No additional decoding required

Tl
15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
[1 111001110 1 1[OOOMm1oloolM@@io 1 1 0] option |

Tl

ISB{<c>}{<q>} {<option>}
// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding Al: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.
<option> Specifies an optional limitation on the barrier operation. Values are:
SY

Full system barrier operation, encoded as option = Ob1111. Can be omitted.
All other encodings of option are reserved. The corresponding instructions execute as full system
barrier operations, but must not be relied upon by software.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
InstructionSynchronizationBarrier();

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ISB Page 131

IT

If-Then makes up to four following instructions (the IT block) conditional. The conditions for the instructions in the IT
block are the same as, or the inverse of, the condition the IT instruction specifies for the first instruction in the block.
The IT instruction itself does not affect the condition flags, but the execution of the instructions in the IT block can
change the condition flags.

16-bit instructions in the IT block, other than CMP, CMN and TST, do not set the condition flags. An IT instruction with
the AL condition can change the behavior without conditional execution.

The architecture permits exception return to an instruction in the IT block only if the restoration of the CPSR restores
PSTATE.IT to a state consistent with the conditions specified by the IT instruction. Any other exception return to an
instruction in an IT block is UNPREDICTABLE. Any branch to a target instruction in an IT block is not permitted, and if
such a branch is made it is UNPREDICTABLE what condition is used when executing that target instruction and any
subsequent instruction in the IT block.

Many uses of the IT instruction are deprecated for performance reasons, and an implementation might include ITD
controls that can disable those uses of IT, making them UNDEFINED.

For more information see Conditional execution and Conditional instructions. The first of these sections includes more
information about the ITD controls.

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 01 1 1 1 1 1] firstcond | '=0000 |

mask
T1

IT{<x>{<y>{<z>}}}{<q>} <cond>

if mask == '0000' then SEE "Related encodings";
if firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1) then UNPREDICTABLE;
if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1), then one of the following behaviors
must occur:

* The instruction is UNDEFINED.
¢ The instruction executes as NOP.
e The '1111' condition is treated as being the same as the '1110' condition, meaning always, and the ITSTATE
state machine is progressed in the same way as for any other cond base value.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Related encodings: Miscellaneous 16-bit instructions.

Assembler Symbols

<x> The condition for the second instruction in the IT block. If omitted, the "mask" field is set to 0b1000. If
present it is encoded in the "mask[3]" field:
T
firstcond[0]
E
NOT firstcond[0]
<y> The condition for the third instruction in the IT block. If omitted and <x> is present, the "mask[2:0]"
field is set to 0b100. If <y> is present it is encoded in the "mask[2]" field:
T
firstcond[0]
E

NOT firstcond[0]

IT Page 132

<z> The condition for the fourth instruction in the IT block. If omitted and <y> is present, the "mask[1:0]"

field is set to 0b10. If <z> is present, the "mask[0]" field is set to 1, and it is encoded in the "mask[1]"
field:

T
firstcond[0]

E
NOT firstcond[0]

<q> See Standard assembler syntax fields.

<cond> The condition for the first instruction in the IT block, encoded in the "firstcond" field. See Condition
codes for the range of conditions available, and the encodings.

The conditions specified in an IT instruction must match those specified in the syntax of the instructions in its IT

block. When assembling to A32 code, assemblers check IT instruction syntax for validity but do not generate
assembled instructions for them. See Conditional instructions.

Operation

EncodingSpecificOperations();
AArch32.CheckITEnabled(mask);
PSTATE.IT<7:0> = firstcond:mask;
ShouldAdvancelIT = FALSE;

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IT Page 133

LDA

Load-Acquire Word loads a word from memory and writes it to a register. The instruction also has memory ordering
semantics as described in Load-Acquire, Store-Release

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
['=1111 Jo 0 0 1 1]0 O[1] Rn | Rt [(Dl[o]o]1 0o 0o 1]1)(1)(1)(1)]
cond

Al

LDA{<c>}{<g>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;
Tl

4 3 2 1 0 15 14 13 12 11 10 9 8
1] Rn | Rt (1) (1) (1) (1)

i~
(@] ()}
(=
(@] EN
—
—(w
N
—
'—\
N
—
'—I
=
—
=
=

LDA{<c>}{<g>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
5 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
R[t] = MemO[address, 4];

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDA Page 134

LDAB

Load-Acquire Byte loads a byte from memory, zero-extends it to form a 32-bit word and writes it to a register. The
instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
['=1111 Jo 0 0 1 11 0[1] Rn | Rt [(Dl[o]o]1 0o 0o 1]1)(1)(1)(1)]
cond

Al

LDAB{<c>}{<qg>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
[1 110100011 0[1] Rn | Rt [(1) (1) (1) (1)]

Ll]
(@] o)
o|uw
o|&
—
=W
SN—
—
-
N—
—~
-
-
—~
=
—

Tl

LDAB{<c>}{<qg>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
R[t] = ZeroExtend(MemO[address, 1], 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAB Page 135

LDAEX

Load-Acquire Exclusive Word loads a word from memory, writes it to a register and:

¢ If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.
¢ Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 1]0 O[1] Rn | Rt [(Dl[1]o]1 0 0o 1]1)(1) (1))
cond

Al

LDAEX{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O
[1 110100011 O0]1] RN [Rt (MW@ @@1]1]1 0]@)(1)(1) (1)
T1

LDAEX{<c>}{<g>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
AArch32.SetExclusiveMonitors(address, 4);
R[t] = MemO[address, 4];

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.
Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

LDAEX Page 136

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAEX Page 137

LDAEXB

Load-Acquire Exclusive Byte loads a byte from memory, zero-extends it to form a 32-bit word, writes it to a register
and:

¢ If the address has the Shared Memory attribute, marks the physical address as exclusive access for the

executing PE in a global monitor.

¢ Causes the executing PE to indicate an active exclusive access in the local monitor.
The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 0 1 11 O0[1] Rn | Rt [(Dl[1]o]1 0 0o 1]1)(1) (1))
cond

Al

LDAEXB{<c>}{<g>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);

if t == 15 || n == 15 then UNPREDICTABLE;
Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 11010001 10][1] Rn | Rt (D@ @@[1[1]0o o) (1)) (1)
T1

LDAEXB{<c>}{<g>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
AArch32.SetExclusiveMonitors(address, 1);
R[t] = ZeroExtend(MemO[address, 1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

LDAEXB Page 138

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAEXB Page 139

LDAEXD

Load-Acquire Exclusive Doubleword loads a doubleword from memory, writes it to two registers and:

¢ If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor
¢ Causes the executing PE to indicate an active exclusive access in the local monitor.
The instruction also acts as a barrier instruction with the ordering requirements described in Load-Acquire, Store-
Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 10 1][1] Rn | Rt [(Dl[1]o]1 0 0o 1]1)(1) (1))
cond

Al

LDAEXD{<c>}{<qg>} <Rt>, <Rt2>, [<Rn>]

t = UInt(Rt); t2 =t + 1; n = UInt(Rn);
if Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Rt<0> == '1', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: t<0> = '0'.

The instruction executes with the additional decode: t2 = t.

The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

The instruction is UNDEFINED.
The instruction executes as NOP.
The instruction is handled as described in Using R15.

T1
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
/111 01 0001 10][1] Rn | Rt | Rt2 [1]1]1 1D Q) QD)]

Tl

LDAEXD{<c>}{<qg>} <Rt>, <Rt2>, [<Rn>]

t = UInt(Rt)
if t == 15 |

; t2 = UInt(Rt2); n = UInt(Rn);
| t2 == 15 || t == t2 || n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The load instruction executes but the destination register takes an UNKNOWN value.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

LDAEXD Page 140

Assembler Symbols

<c>
<q>

<Rt>

<Rt2>

<Rn>

Operation

See Standard assembler syntax fields.
See Standard assembler syntax fields.

For encoding A1l: is the first general-purpose register to be transferred, encoded in the "Rt" field. <Rt>
must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

For encoding Al: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

Is the general-purpose base register, encoded in the "Rn" field.

if ConditionPassed() then
EncodingSpecificOperations();
address
AArch32.SetExclusiveMonitors(address, 8);

value

= R[n];

MemO[address, 8];

// Extract words from 64-bit loaded value such that R[t] is
// loaded from address and R[t2] from address+4.

R[t]
R[t2]

if BigEndian(AccessType GPR) then value<63:32> else value<31:0>;
if BigEndian(AccessType GPR) then value<31:0> else value<63:32>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAEXD Page 141

LDAEXH

Load-Acquire Exclusive Halfword loads a halfword from memory, zero-extends it to form a 32-bit word, writes it to a
register and:

¢ If the address has the Shared Memory attribute, marks the physical address as exclusive access for the

executing PE in a global monitor.

¢ Causes the executing PE to indicate an active exclusive access in the local monitor.
The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 0 1 11 1][1] Rn | Rt [(Dl[1]o]1 0 0o 1]1)(1) (1))
cond

Al

LDAEXH{<c>}{<g>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);

if t == 15 || n == 15 then UNPREDICTABLE;
Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 11010001 10][1] Rn | Rt (D@ @@[1[1]0o 1]1)(@)(@Q1)Q1)]
T1

LDAEXH{<c>}{<g>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
AArch32.SetExclusiveMonitors(address, 2);
R[t] = ZeroExtend(MemO[address, 2], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

LDAEXH Page 142

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAEXH Page 143

LDAH

Load-Acquire Halfword loads a halfword from memory, zero-extends it to form a 32-bit word and writes it to a register.
The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
['=1111 Jo 0 0 1 11 1][1] Rn | Rt [(Dl[o]o]1 0o 0o 1]1)(1)(1)(1)]
cond

Al

LDAH{<c>}{<qg>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
[1 110100011 0[1] Rn | Rt [(1) (1) (1) (1)]

|~
(@]}
o|u
[RESN
—
| w
N
—
'—\
N
—
'—I
=
—
=
=

Tl

LDAH{<c>}{<qg>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
R[t] = ZeroExtend(MemO[address, 2], 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAH Page 144

LDC (immediate)

Load data to System register (immediate) calculates an address from a base register value and an immediate offset,
loads a word from memory, and writes it to the DBGDTRTXint System register. It can use offset, post-indexed, pre-
indexed, or unindexed addressing. For information about memory accesses see Memory accesses.

In an implementation that includes EL2, the permitted LDC access to DBGDTRTXint can be trapped to Hyp mode,
meaning that an attempt to execute an LDC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see
Trapping general Non-secure System register accesses to debug registers.

For simplicity, the LDC pseudocode does not show this possible trap to Hyp mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 |1 1 ofPJuUfofw[1] '=1111 [o 1 0 1]1 1 1]0] imm8

cond Rn

Offset (P == 1 && W == 0)

LDC{<c>}{<qg>} pl4, c5, [<Rn>{, #{+/-}<imm>}]
Post-indexed (P == 0 && W == 1)

LDC{<c>}{<g>} pl4, c5, [<Rn>], #{+/-}<imm>
Pre-indexed (P == 1 && W == 1)

LDC{<c>}{<g>} pl4, c5, [<Rn>, #{+/-}<imm>]!
Unindexed (P == 0 && U == 1 && W == 0)

LDC{<c>}{<qg>} pl4, c5, [<Rn>], <option>

if Rn == '1111' then SEE "LDC (literal)";

if P=='0' & U == '0' & W == '0' then UNDEFINED;

n = UInt(Rn); cp = 14;

imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1"'); wback = (W== "'1");
T1

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O
1 11 01 1 ofPJufofw[1] '=1111 [o 1 0 1|1 1 1]0] imm8
Rn

LDC (immediate) Page 145

Offset (P == 1 && W == 0)

LDC{<c>}{<0g>} pl4, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 1)

LDC{<c>}{<qg>} pl4, c5, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDC{<c>}{<qg>} pl4, c5, [<Rn>, #{+/-}<imm>]!

Unindexed (P==0 && U == 1 && W == 0)

LDC{<c>}{<g>} pl4, c5, [<Rn>], <option>

if Rn == '1111' then SEE "LDC (literal)";

if P=="'0" & U == '0' & W == '0' then UNDEFINED;

n = UInt(Rn); cp = 14;

imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1"'); wback = (W== '1");

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see LDC (literal).
<option> Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value of
this field is ignored when executing this instruction.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:
U+
0 -
B
<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting to 0
and encoded in the "imm8" field, as <imm>/4.
Operation

if ConditionPassed() then

EncodingSpecificOperations();
offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset addr else R[n];

// System register write to DBGDTRTXint.
AArch32.SysRegWriteM(cp, ThisInstr(), address);

if wback then R[n] = offset addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDC (immediate) Page 146

LDC (literal)

Load data to System register (literal) calculates an address from the PC value and an immediate offset, loads a word
from memory, and writes it to the DBGDTRTXint System register. For information about memory accesses see Memory

accesses.

In an implementation that includes EL2, the permitted LDC access to DBGDTRTXint can be trapped to Hyp mode,
meaning that an attempt to execute an LDC instruction in a Non-secure mode other than Hyp mode, that would be

permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see

Trapping general Non-secure System register accesses to debug registers.
For simplicity, the LDC pseudocode does not show this possible trap to Hyp mode.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
| '=1111 |1 1 ofPJuUfofw[1]1 1 1 1[0 1 0 1]1 1 1]0] imm8
cond
Al ((P==0&& U == 0 && W == 0))
LDC{<c>}{<qg>} pl4, c5, <label>
LDC{<c>}{<qg>} pl4, c5, [PC, #{+/-}<imm>]
LDC{<c>}{<qg>} pl4, c5, [PC], <option>
if P=='0"' & U == '0' & W == '0' then UNDEFINED;
index = (P == '1"'"); add = (U == "'1'); cp = 14; imm32 = ZeroExtend(imm8:'00', 32);
if W=="'1"'" || (P =="0" &% CurrentInstrSet() != InstrSet A32) then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior
IfW == '1', then one of the following behaviors must occur:
¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction executes without writeback of the base address.
¢ The instruction uses the addressing mode described in the equivalent immediate offset instruction.
T1
15 14 13 12 11 10 7 6 5 4 3 2 0

9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10
1 11011 o0f[P{UujOofW[1][1 1 1 1/0 1 0

T1((P==0&& U ==0 && W == 0))

LDC{<c>}{<g>} pl4, c5, <label>

LDC{<c>}{<q>} pl4, c5, [PC, #{+/-}<imm>]

if P=="0" & U == '0' & W == '0' then UNDEFINED;
index = (P == '1'); add = (U == "'1"); cp = 14; 1imm32 = ZeroExtend(imm8:'00', 32);
if W=="1" || (P == "'0" & CurrentInstrSet() != InstrSet A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

IfW=="1" || == '0', then one of the following behaviors must occur:
* The instruction is UNDEFINED.

¢ The instruction executes as NOP.
e The instruction executes without writeback of the base address.

LDC (literal)

Page 147

¢ The instruction executes as LDC (immediate) with writeback to the PC. The instruction is handled as described
in Using R15.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<option> Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value of

this field is ignored when executing this instruction.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the
offset are multiples of 4 in the range -1020 to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE (encoded as U == 1).
If the offset is negative, imm32 is equal to minus the offset and add == FALSE (encoded as U == 0).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U+
0 _
I
<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting to 0

and encoded in the "imm8" field, as <imm>/4.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset addr = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
address = if index then offset addr else Align(PC,4);

// System register write to DBGDTRTXint.
AArch32.SysRegWriteM(cp, ThisInstr(), address);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDC (literal) Page 148

LDM (exception return)

Load Multiple (exception return) loads multiple registers from consecutive memory locations using an address from a
base register. The SPSR of the current mode is copied to the CPSR. An address adjusted by the size of the data loaded
can optionally be written back to the base register.
The registers loaded include the PC. The word loaded for the PC is treated as an address and a branch occurs to that
address.
The PE checks the encoding that is copied to the CPSR for an illegal return event. See Illegal return events from
AArch32 state.
Load Multiple (exception return) is:

e UNDEFINED in Hyp mode.

e UNPREDICTABLE in debug state, and in User mode and System mode.

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 |1 0 o[PJuf1|w][1] Rn [1] register list

cond

Al

LDM{<amode>}{<c>}{<qg>} <Rn>{!}, <registers with pc>"

n = UInt(Rn); registers = register list;

wback = (W == '1"); increment = (U == '1'); wordhigher = (P == U);
if n == 15 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && registers<n> == 'l1', then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all the loads using the specified addressing mode and the content of the register
being written back is UNKNOWN. In addition, if an exception occurs during the execution of this instruction,
the base address might be corrupted so that the instruction cannot be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<amode> is one of:
DA

Decrement After. The consecutive memory addresses end at the address in the base register.
Encoded as P =0, U = 0.

FA
Full Ascending. For this instruction, a synonym for DA.

DB

Decrement Before. The consecutive memory addresses end one word below the address in the
base register. Encoded as P =1, U = 0.

EA
Empty Ascending. For this instruction, a synonym for DB.

IA

Increment After. The consecutive memory addresses start at the address in the base register. This
is the default. Encoded as P =0, U = 1.

FD
Full Descending. For this instruction, a synonym for IA.

LDM (exception return) Page 149

IB

Increment Before. The consecutive memory addresses start one word above the address in the
base register. Encoded as P =1, U = 1.

ED
Empty Descending. For this instruction, a synonym for IB.
<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers with pc> Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies
the set of registers to be loaded. The registers are loaded with the lowest-numbered register
from the lowest memory address, through to the highest-numbered register from the highest
memory address. The PC must be specified in the register list, and the instruction causes a
branch to the address (data) loaded into the PC. See also Encoding of lists of general-purpose
registers and the PC.

Instructions with similar syntax but without the PC included in the registers list are described in LDM (User registers).

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.M IN {M32 User,M32 System} then
UNPREDICTABLE; // UNDEFINED or NOP

else
length = 4*BitCount(registers) + 4;
address = if increment then R[n] else R[n]-length;
if wordhigher then address = address+4;

for i = 0 to 14
if registers<i> == '1' then
R[i] MemS[address,4]; address = address + 4;
new pc_value MemS[address,4];

if wback && registers<n> == '0' then R[n]

if increment then R[n]+length else R[n]-length;
if wback && registers<n> == '1' then R[n]

bits(32) UNKNOWN;

AArch32.ExceptionReturn(new pc value, SPSR[]);
CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32 User,M32 System}, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDM (exception return) Page 150

LDM (User registers)

In an EL1 mode other than System mode, Load Multiple (User registers) loads multiple User mode registers from
consecutive memory locations using an address from a base register. The registers loaded cannot include the PC. The
PE reads the base register value normally, using the current mode to determine the correct Banked version of the
register. This instruction cannot writeback to the base register.

Load Multiple (User registers) is UNDEFINED in Hyp mode, and UNPREDICTABLE in User and System modes.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see
FEAT LSMAOC.

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 |1 0 ofPJul1]0)]1] Rn [0] register list

cond

Al

LDM{<amode>}{<c>}{<qg>} <Rn>, <registers without pc>"

; registers = register list; increment = (U == 'l1'); wordhigher = (P == U);
| BitCount(registers) < 1 then UNPREDICTABLE;

n = UInt(Rn)
if n ==15 |

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of
registers. These registers might include R15.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<amode> is one of:

DA
Decrement After. The consecutive memory addresses end at the address in the base register.
Encoded as P =0, U = 0.

FA
Full Ascending. For this instruction, a synonym for DA.

DB
Decrement Before. The consecutive memory addresses end one word below the address in the
base register. Encoded as P =1, U = 0.

EA
Empty Ascending. For this instruction, a synonym for DB.

IA
Increment After. The consecutive memory addresses start at the address in the base register. This
is the default. Encoded as P =0, U = 1.

FD
Full Descending. For this instruction, a synonym for IA.

IB
Increment Before. The consecutive memory addresses start one word above the address in the
base register. Encoded as P =1, U = 1.

LDM (User registers) Page 151

ED
Empty Descending. For this instruction, a synonym for IB.

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<registers without pc> Is a list of one or more registers, separated by commas and surrounded by { and }. It
specifies the set of registers to be loaded by the LDM instruction. The registers are loaded
with the lowest-numbered register from the lowest memory address, through to the
highest-numbered register from the highest memory address. The PC must not be in the
register list. See also Encoding of lists of general-purpose registers and the PC.

Instructions with similar syntax but with the PC included in <registers without pc> are described in LDM (exception
return).

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNDEFINED;
elsif PSTATE.M IN {M32 User,M32 System} then UNPREDICTABLE;
else
length = 4*BitCount(registers);
address = if increment then R[n] else R[n]-length;
if wordhigher then address = address+4;
for i = 0 to 14
if registers<i> == '1' then // Load User mode register
Rmode[i, M32 User] = MemS[address,4]; address = address + 4;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32 User,M32 System}, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

¢ The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of
registers. These registers might include R15.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDM (User registers) Page 152

LDM, LDMIA, LDMFD

Load Multiple (Increment After, Full Descending) loads multiple registers from consecutive memory locations using an
address from a base register. The consecutive memory locations start at this address, and the address just above the
highest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see
FEAT LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
Related system instructions are LDM (User registers) and LDM (exception return).

This instruction is used by the alias POP (multiple registers).

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 |1 0 ofof1]o[w][1] Rn | register list

cond

Al

LDM{IA}{<c>}{<g>} <Rn>{!}, <registers> // (Preferred syntax)

LDMFD{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack)

n = UInt(Rn); registers = register list; wback = (W == '1");
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If wback && registers<n> == 'l1', then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

1514 13121110 9 8 7 6 5 4 3 2 1 0
|1 1 0 0J]1] Rn | register _list

T1

LDM{IA}{<c>}{<g>} <Rn>{!}, <registers> // (Preferred syntax)
LDMFD{<c>}{<g>} <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack)

n = UInt(Rn); registers = '00000000':register list; wback = (registers<n> == '0');
if BitCount(registers) < 1 then UNPREDICTABLE;

LDM, LDMIA, LDMFD Page 153

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

1 1 1 01 0 0[0 1[0[wW[1] Rn |P|M] register _list

T2

LDM{IA}{<c>}.W <Rn>{!}, <registers> // (Preferred syntax, if <Rn>, '!' and <registers> can be represente
LDMFD{<c>}.W <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack, if <Rn>, '!' and <registe!

LDM{IA}{<c>}{<g>} <Rn>{!}, <registers> // (Preferred syntax)

LDMFD{<c>}{<qg>} <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack)

n = UInt(Rn); registers = P:M:register list; wback = (W == '1");

if n == 15 || BitCount(registers) <2 || (P == '1' & M == '1') then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

if registers<13> == '1' then UNPREDICTABLE;

if registers<15> == '1' && InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

¢ The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If wback &% registers<n> == 'l1', then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) == 1, then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction loads a single register using the specified addressing modes.

The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

If registers<13> == '1', then one of the following behaviors must occur:

* The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction performs all of the loads using the specified addressing mode, but R13 is UNKNOWN.

IfP == '1l'" & M == '1', then one of the following behaviors must occur:
* The instruction is UNDEFINED.

* The instruction executes as NOP.
¢ The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

LDM, LDMIA, LDMFD Page 154

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

IA Is an optional suffix for the Increment After form.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

For encoding A1 and T2: the address adjusted by the size of the data loaded is written back to the base
register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.

For encoding T1: the address adjusted by the size of the data loaded is written back to the base register.
It is omitted if <Rn> is included in <registers>, otherwise it must be present.

<registers> For encoding Al: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }.

The PC can be in the list.
Arm deprecates using these instructions with both the LR and the PC in the list.

For encoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register list" field.

For encoding T2: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R12, encoded in the "register list" field,
and can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.
If the PC is in the list:

e The LR must not be in the list.

* The instruction must be either outside any IT block, or the last instruction in an IT block.

Alias Conditions

of
variant
POP (multiple T2 W=="1" & Rn == '1101' && BitCount(P:M:register list) > 1
registers)

POP (multiple Al == '1l' & Rn == '1101' && BitCount(register list) > 1
registers)

Alias Is preferred when

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
for i = 0 to 14

if registers<i> == '1' then
R[i] = MemS[address,4]; address = address + 4;
if registers<15> == '1' then
LoadWritePC(MemS[address,4]);
if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDM, LDMIA, LDMFD Page 155

LDMDA, LDMFA

Load Multiple Decrement After (Full Ascending) loads multiple registers from consecutive memory locations using an
address from a base register. The consecutive memory locations end at this address, and the address just below the
lowest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see
FEAT LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
Related system instructions are LDM (User registers) and LDM (exception return).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 |1 0 ofofofo[w][1] Rn | register list

cond

Al

LDMDA{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

LDMFA{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Full Ascending stack)

n = UInt(Rn); registers = register list; wback = (W == '1");
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of
registers. These registers might include R15. If the instruction specifies writeback, the modification to the
base address on writeback might differ from the number of registers loaded.

If wback && registers<n> == 'l1', then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.
The PC can be in the list.
Arm deprecates using these instructions with both the LR and the PC in the list.

LDMDA, LDMFA Page 156

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] - 4*BitCount(registers) + 4;
for i =0 to 14

if registers<i> == 'l1' then
R[i] = MemS[address,4]; address = address + 4;
if registers<15> == '1' then
LoadWritePC(MemS[address,4]);
if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
if wback &% registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDMDA, LDMFA Page 157

LDMDB, LDMEA

Load Multiple Decrement Before (Empty Ascending) loads multiple registers from consecutive memory locations using
an address from a base register. The consecutive memory locations end just below this address, and the address of the
lowest of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see
FEAT LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
Related system instructions are LDM (User registers) and LDM (exception return).

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 |1 o0 of1[ofo[w[1] Rn | register _list

cond

Al

LDMDB{<c>}{<qg>} <Rn>{!}, <registers> // (Preferred syntax)

LDMEA{<c>}{<qg>} <Rn>{!}, <registers> // (Alternate syntax, Empty Ascending stack)

n = UInt(Rn); registers = register list; wback = (W == '1");
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && registers<n> == 'l1', then one of the following behaviors must occur:

* The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) < 1, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

¢ The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

Tl
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
1 11 010 0[1 ofJo|w|[1] Rn |P[M] register list

T1

LDMDB{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

LDMEA{<c>}{<qg>} <Rn>{!}, <registers> // (Alternate syntax, Empty Ascending stack)

n = UInt(Rn); registers = P:M:register list; wback = (W == '1");

if n == 15 || BitCount(registers) <2 || (P == '1' & M == '1') then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

if registers<13> == '1' then UNPREDICTABLE;

if registers<15> == '1' && InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

LDMDB, LDMEA Page 158

CONSTRAINED UNPREDICTABLE behavior

If wback && registers<n> == 'l1', then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) < 1, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.

These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If BitCount(registers) == 1, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction loads a single register using the specified addressing modes.

¢ The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.
These registers might include R15.

If registers<13> == '1', then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode, but R13 is UNKNOWN.
IfP == '1l' & M == '1', then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

¢ The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is

encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> For encoding Al: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }.

The PC can be in the list.

Arm deprecates using these instructions with both the LR and the PC in the list.

For encoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R12, encoded in the "register list" field,
and can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.

If the PC is in the list:

* The LR must not be in the list.
* The instruction must be either outside any IT block, or the last instruction in an IT block.

LDMDB, LDMEA Page 159

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] - 4*BitCount(registers)
for i =0 to 14

if registers<i> == 'l1' then
R[i] = MemS[address,4]; address = address + 4;
if registers<15> == '1' then
LoadWritePC(MemS[address,4]);
if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
if wback &% registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDMDB, LDMEA

Page 160

LDMIB, LDMED

Load Multiple Increment Before (Empty Descending) loads multiple registers from consecutive memory locations
using an address from a base register. The consecutive memory locations start just above this address, and the
address of the last of those locations can optionally be written back to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see
FEAT LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
Related system instructions are LDM (User registers) and LDM (exception return).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 |1 0 of1[1]o[w][1] Rn | register list

cond

Al

LDMIB{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

LDMED{<c>}{<qg>} <Rn>{!}, <registers> // (Alternate syntax, Empty Descending stack)

n = UInt(Rn); registers = register list; wback = (W == '1");
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of
registers. These registers might include R15. If the instruction specifies writeback, the modification to the
base address on writeback might differ from the number of registers loaded.

If wback && registers<n> == 'l1', then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.
The PC can be in the list.
Arm deprecates using these instructions with both the LR and the PC in the list.

LDMIB, LDMED Page 161

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + 4;
for i =0 to 14
if registers<i> == 'l1' then
R[i] = MemS[address,4];
if registers<15> == '1' then

address = address + 4;

LoadWritePC(MemS[address,4]);

if wback && registers<n> == '0'
if wback && registers<n> == 'l1'

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

then
then

R[n]
R[n]

R[n] + 4*BitCount(registers);
bits(32) UNKNOWN;

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDMIB, LDMED

Page 162

LDR (immediate)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads a word
from memory, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. For information
about memory accesses see Memory accesses.

This instruction is used by the alias POP (single register).
It has encodings from the following instruction sets: A32

T2, T3 and T4) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 1 ofPJujo[w[1] '=1111 | Rt | imm12

cond Rn

Offset (P == 1 && W == 0)
LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]
Post-indexed (P == 0 && W == 0)
LDR{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>
Pre-indexed (P == 1 && W == 1)

LDR{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDR (literal)";

if P == "'0"' & W == '1' then SEE "LDRT";

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);

index = (P == '1"'); add = (U == '1"); wback = (P == '0') || (W=="1");

if wback && n == t then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior

If wback & n == t, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Tl
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
101 1]0]1] imm5 | Rn | Rt |
T1

LDR{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

t nt(Rt); =
1ndex = TRUE; dd

UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
= TRUE; wback = FALSE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|1 0 0 1]1] Rt | imm8

LDR (immediate) Page 163

T2

LDR{<c>}{<q>} <Rt>, [SP{, #{+}<imm>}]

13; 1imm32 = ZeroExtend(imm8:'00', 32);

=
=
o
o
X
Il
—
X
[
m
Q
o
ol
Il
-~

RUE; wback = FALSE;
T3
1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 0
[1 1111000 1[1 0f[1] !'=1111 | Rt | imm12
Rn
T3

LDR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // (<Rt>, <Rn>, <imm> can be represented in T1 or T2)
LDR{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]
if Rn == '1111' then SEE "LDR (literal)";

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32); index = TRUE; add = TRUE;
wback = FALSE; if t == 15 && InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

T4
1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 111100001 0f[1] !'=1111 | Rt [1]PU]W] imm8

Rn

Offset (P == 1 && U == 0 && W == 0)

LDR{<c>}{<g>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W == 1)

LDR{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDR{<c>}{<qg>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDR (literal)";

if P=="'1"'&& U == "'1'" & W == '0' then SEE "LDRT";

if P == '0' & W == '0' then UNDEFINED;

t = UInt(Rt); n = UInt(Rn);

imm32 = ZeroExtend(imm8, 32); index = (P == '1'); add = (U == '1"'); wback = (W=="1");

if (wback & n == t) || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

LDR (immediate) Page 164

Assembler Symbols

<c>
<q>

<Rt>

<Rn>

+/-

<imm>

See Standard assembler syntax fields.
See Standard assembler syntax fields.

For encoding Al: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is
an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.

For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T3 and T4: is the general-purpose register to be transferred, encoded in the "Rt" field. The
PC can be used, provided the instruction is either outside an IT block or the last instruction of an IT
block. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.

For encoding A1, T3 and T4: is the general-purpose base register, encoded in the "Rn" field. For PC use
see LDR (literal).

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

_U _+-
0 N
1 +

Specifies the offset is added to the base register.

For encoding Al: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to O if
omitted, and encoded in the "imm12" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4, in the range 0
to 124, defaulting to 0 and encoded in the "immb5" field as <imm>/4.

For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in the range 0
to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.

For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.

For encoding T4: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm8" field.

Alias Conditions

Alias of . Is preferred when

variant
POP Al P=="10"& U=="1" & W == '0' && Rn == '1101' && imml2 == '000000000100'
(single (post-
register) indexed)
POP T4 Rn == '1101' & P == '0' & U == '1' & W == '1' && imm8 == '00000100'
(single (post-

register) indexed)

LDR (immediate) Page 165

Operation

if CurrentInstrSet() == InstrSet A32 then
if ConditionPassed() then
EncodingSpecificOperations();

offset addr = if add then (R[n] + imm32) else (R[n]

address = if index then offset addr else R[n];

data = MemU[address,4];
if wback then R[n] = offset addr;
if t == 15 then

if address<l:0> == '00' then
LoadWritePC(data);
else
UNPREDICTABLE;
else
R[t] = data;

else
if ConditionPassed() then
EncodingSpecificOperations();

offset addr = if add then (R[n] + imm32) else (R[n]

address = if index then offset addr else R[n];

data = MemU[address,4];
if wback then R[n] = offset addr;
if t == 15 then

if address<l:0> == '00' then
LoadWritePC(data);
else
UNPREDICTABLE;
else
R[t] = data;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (immediate) Page 166

LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory,
and writes it to a register. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 Jo 1 ofPJuUfo[w[1]1 1 1 1] Rt | imm12

cond

Al ((P == 0 && W == 1))

LDR{<c>}{<g>} <Rt>, <label> // (Normal form)

LDR{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' & W == '1' then SEE "LDRT";
t = UInt(Rt); imm32 = ZeroExtend(imml2, 32);
add = (U == '1'); wback = (P == "'0") || (W=="1");

if wback then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: wback = FALSE;.

The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDR (immediate). The instruction uses post-indexed addressing when P == '0' and uses
pre-indexed addressing otherwise. The instruction is handled as described in Using R15.

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01 0 0 1] Rt | imm8

T1

LDR{<c>}{<g>} <Rt>, <label> // (Normal form)

t = UInt(Rt); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

T
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
[1 111100 o0fJUuJ1l 011 1 1 1] Rt | imm12

T2

LDR{<c>}.W <Rt>, <label> // (Preferred syntax, and <Rt>, <label> can be represented in T1)
LDR{<c>}{<g>} <Rt>, <label> // (Preferred syntax)
LDR{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)

t = UInt(Rt); imm32 = ZeroExtend(imml2, 32); add = (U == '1");
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

LDR (literal) Page 167

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Cc>
<qg>

<Rt>

<label>

+/-

<imm>

See Standard assembler syntax fields.
See Standard assembler syntax fields.

For encoding A1l: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is
an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.

For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The SP can
be used. The PC can be used, provided the instruction is either outside an IT block or the last
instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to the
PC. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-
purpose registers and the PC.

For encoding Al and T2: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are Multiples of four in the range 0 to 1020.

Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U 4
0 -
_1]+

For encoding Al: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to O if
omitted, and encoded in the "imm12" field.

For encoding T2: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

base = Align(PC,4);

address = if add then (base + imm32) else (base - imm32);
data = MemU[address,4];

if t == 15 then

if address<1:0> == '00' then
LoadWritePC(data);
else
UNPREDICTABLE;
else
R[t] = data;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (literal)

Page 168

LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word
from memory, and writes it to a register. The offset register value can optionally be shifted. For information about
memory accesses, see Memory accesses.

The T32 form of LDR (register) does not support register writeback.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 1 1[PJujow][1] Rn | Rt | imm5 [stype] 0] Rm |
cond

Offset (P == 1 && W == 0)

LDR{<c>}{<g>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]
Post-indexed (P == 0 && W == 0)

LDR{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}
Pre-indexed (P == 1 && W == 1)

LDR{<c>}{<qg>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

if P == '0' & W == '1' then SEE "LDRT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1'); add = (U == '1"); wback = (P == '0') || (W=="1");

(shift t, shift n) = DecodeImmShift(stype, imm5);
if m == 15 then UNPREDICTABLE;
if wback & (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|01 0 1]1]0o]o] Rm [Rn | Rt |
T1

LDR{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>]

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
(shift t, shift n) = (SRType LSL, 0);
T2
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 111000 0[1 0[1] '=1111 | Rt |0 0 0 0 0 0]imm2] Rm |
Rn

LDR (register) Page 169

T2

LDR{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)
LDR{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rn == '1111' then SEE "LDR (literal)";

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

(shift_t, shift n) = (SRType LSL, UInt(imm2));

if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if t == 15 && InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rt> For encoding Al: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC

can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This
branch is an interworking branch, see Pseudocode description of operations on the AArch32 general-
purpose registers and the PC.

For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can
be used, provided the instruction is either outside an IT block or the last instruction of an IT block. If
the PC is used, the instruction branches to the address (data) loaded to the PC. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC.

<Rn> For encoding Al: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in
the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U+
0 -
B
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts

applied to a register.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is
encoded in imm?2. If absent, no shift is specified and imm2 is encoded as 0b00.

LDR (register) Page 170

Operation

if CurrentInstrSet() == InstrSet A32 then
if ConditionPassed() then

EncodingSpecificOperations();
offset = Shift(R[m], shift t, shift n, PSTATE.C);
offset addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset addr else R[n];
data = MemU[address,4];
if wback then R[n] = offset addr;
if t == 15 then

if address<l:0> == '00' then
LoadWritePC(data);
else
UNPREDICTABLE;
else
R[t] = data;

else
if ConditionPassed() then

EncodingSpecificOperations();
offset = Shift(R[m], shift t, shift n, PSTATE.C);
offset _addr = (R[n] + offset);
address = offset addr;
data = MemU[address,4];
if t == 15 then

if address<l:0> == '00' then
LoadWritePC(data);
else
UNPREDICTABLE;
else
R[t] = data;

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (register) Page 171

LDRB (immediate)

Load Register Byte (immediate) calculates an address from a base register value and an immediate offset, loads a byte
from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed, or pre-
indexed addressing. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1, T2 and T3).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 Jo 1 ofPJuUf1[w[1] '=1111 | Rt | imm12

cond Rn

Offset (P == 1 && W == 0)
LDRB{<c>}{<g>} <Rt>, [<Rn> {, #{+/-}<imm>}]
Post-indexed (P == 0 && W == 0)
LDRB{<c>}{<qg>} <Rt>, [<Rn>], #{+/-}<imm>
Pre-indexed (P == 1 && W == 1)

LDRB{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRB (literal)";

if P=='0' & W == '1' then SEE "LDRBT";

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);

index = (P == '1"'); add = (U == "1"); wback = (P == '0') || (W=="1");
if t == 15 || (wback & n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

e The instruction is UNDEFINED.

e The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1
1514 13121110 9 8 7 6 5 4 3 2 1 0
[0 1 1[1]1] imm5 | Rn | Rt |
T1

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
index = TRUE; add = TRUE; wback = FALSE;

T2
151413121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 1111000 1[0 0f[1] !'=1111 ['=1111 | imm12

Rn Rt

LDRB (immediate) Page 172

T2

LDRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // (<Rt>, <Rn>, <imm> can be represented in T1)
LDRB{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rt == '1111' then SEE "PLD";

if Rn == '1111' then SEE "LDRB (literal)";

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;

// Armv8-A removes UNPREDICTABLE for R13

T3
1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 1111 0000[0O0[1] '=1111 | Rt [1]P]U[W] imm8

Rn

Offset (Rt != 1111 && P == 1 && U == 0 && W == 0)

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W == 1)

LDRB{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRB{<c>}{<qg>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rt == '1111' & P == '1' & U == '0' & W == '0' then SEE "PLD, PLDW (immediate)";
if Rn == '1111' then SEE "LDRB (literal)";

if P=="'1"'&& U=="1" & W == '0' then SEE "LDRBT";

if P == '0' & W == '0' then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

index = (P == '1'); add = (U == '1"'); wback = (W=="1");

if (t==15&& W=="1") || (wback & n == t) then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13
CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC use

see LDRB (literal).

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

LDRB (immediate) Page 173

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U+
0 -
B
+ Specifies the offset is added to the base register.
<imm> For encoding A1l: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if

omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting to
0 and encoded in the "imm5" field.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imma8" field.

Operation

if CurrentInstrSet() == InstrSet A32 then
if ConditionPassed() then
EncodingSpecificOperations();
offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset addr else R[n];
R[t] = ZeroExtend(MemU[address,1], 32);
if wback then R[n] = offset addr;

else
if ConditionPassed() then
EncodingSpecificOperations();
offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset addr else R[n];
R[t] = ZeroExtend(MemU[address,1], 32);
if wback then R[n] = offset addr;

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (immediate) Page 174

LDRB (literal)

Load Register Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte from
memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses see
Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 Jo 1 ofPJuUf1[w[1]1 1 1 1] Rt | imm12

cond

Al ({(P ==0 && W == 1))

LDRB{<c>}{<q>} <Rt>, <label> // (Normal form)

LDRB{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' & W == '1' then SEE "LDRBT";
t = UInt(Rt); imm32 = ZeroExtend(imml2, 32);
add = (U == '1'); wback = (P == "'0") || (W=="1");

if t == 15 || wback then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: wback = FALSE;.

The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDRB (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15.

Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
/1 111 1000J/UJOOf[1]1 1 1 1] '=1111 | imm12

Rt
T1

LDRB{<c>}{<g>} <Rt>, <label> // (Preferred syntax)
LDRB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)
if Rt == '1111' then SEE "PLD";

t = UInt(Rt); imm32 = ZeroExtend(imml2, 32); add = (U == '1');
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

LDRB (literal) Page 175

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required

value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the
offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U+
0 -
L
<imm> For encoding Al: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if

omitted, and encoded in the "imm12" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
R[t] = ZeroExtend(MemU[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (literal) Page 176

LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can
optionally be shifted. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| !1=1111 Jo 1 1[PJU[1[wW][1] Rn | Rt | imm5 |stype| 0| Rm |
cond

Offset (P == 1 && W == 0)

LDRB{<c>}{<qg>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]
Post-indexed (P == 0 && W == 0)

LDRB{<c>}{<qg>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}
Pre-indexed (P == 1 && W == 1)

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

if P == '0' & W == '1' then SEE "LDRBT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1"'); add = (U == "1"); wback = (P == '0') || (W=="1");

(shift_t, shift n) = DecodeImmShift(stype, imm5);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback & (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

e The instruction is UNDEFINED.

e The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1
1514 13121110 9 8 7 6 5 4 3 2 1 0
[0 1 0 1]1[1]0o] Rm | Rn | Rt |
T1

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

t = UInt(Rt); n =
index = TRUE; add
(shift_t, shift n)

UInt(Rn); m = UInt(Rm);
TRUE; wback FALSE;

(SRType LSL, 0);

T2

151413121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 1111000 0J0O0f[1] !'=1111 | '=1111 [0 0 O O O O [imm2] Rm |
Rn Rt

LDRB (register) Page 177

T2

LDRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)
LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rt == '1111' then SEE "PLD";

if Rn == '1111' then SEE "LDRB (literal)";

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = TRUE; add = TRUE; wback = FALSE;

(shift_t, shift n) = (SRType LSL, UInt(imm2));

if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding Al: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in

the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U+
0 _
_1]+
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts

applied to a register.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is
encoded in imm?2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift t, shift n, PSTATE.C);
offset addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset addr else R[n];
R[t] = ZeroExtend(MemU[address,1],32);
if wback then R[n] = offset addr;

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (register) Page 178

LDRBT

Load Register Byte Unprivileged loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a
register. For information about memory accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually
running in User mode.

LDRBT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.

It has encodings from the following instruction sets: A32 (Al and A2) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '1=1111 Jo 1 ofofuUf1f1[1] Rn | Rt | imm12

cond

Al

LDRBT{<c>}{<g>} <Rt>, [<Rn>] {, #{+/-}<imm>}

= UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
register form = FALSE imm32 = ZeroExtend(imml2, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

¢ The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15.

¢ The instruction uses immediate offset addressing with the base register as PC, without writeback.

Ifn == t & n != 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| !'=1111 |Jo 1 1[ofuf1]1]1] Rn | Rt | imm5 |stype| 0 | Rm |
cond

A2

LDRBT{<c>}{<g>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

= UInt(Rt); n t(Rn); = UInt(Rm); postindex = TRUE; add = (U == '1"');
register form = TRUE (shlft t shift n) = DecodeImmShift(stype, imm5);
if t=15 || n==15 || n [| m == 15 then UNPREDICTABLE;

LDRBT Page 179

CONSTRAINED UNPREDICTABLE behavior

If n == t & n != 15, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Tl
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 111000 0[0 0f[1] '=1111 | Rt [1 1 1 0] imm8

Rn
T1

LDRBT{<c>}{<qg>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDRB (literal)";

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;

register form = FALSE; imm32 = ZeroExtend(imm8, 32);

if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rt> For encoding Al: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC

can be used, but this is deprecated.
For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding Al: specifies the offset is added to or subtracted from the base register, defaulting to + if
omitted and encoded in “U”:

U 4
0 -
1]+

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in “U”:

U+
0 -
_1]+
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.
+ Specifies the offset is added to the base register.
<imm> For encoding A1l: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to O if

omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to
0 and encoded in the "imm8" field.

LDRBT Page 180

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
offset = if register form then Shift(R[m], shift t, shift n, PSTATE.C) else imm32;
offset addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset addr;
R[t] = ZeroExtend(MemU unpriv[address,1],32);
if postindex then R[n] = offset addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction executes as LDRB (immediate).

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRBT Page 181

LDRD (immediate)

Load Register Dual (immediate) calculates an address from a base register value and an immediate offset, loads two
words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 Jo o ofPJuUf1[w[o] '=1111 | Rt | imm4H [1]1 01| imm4L |
cond Rn

Offset (P == 1 && W == 0)

LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRD{<c>}{<qg>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRD (literal)";
if Rt<0> == '1' then UNPREDICTABLE;
t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == '1'); add = (U == '1"); wback = (P == '0') || (W=="1");
if P == '0"'" & W == '1' then UNPREDICTABLE;
if wback && (n == [] n == t2) then UNPREDICTABLE;
if t2 == 15 then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior
If wback && (n == || n == t2), then one of the following behaviors must occur:

e The instruction is UNDEFINED.

e The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

IfP == '0' & W == '1', then one of the following behaviors must occur:

e The instruction is UNDEFINED.
e The instruction executes as NOP.
* The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

If Rt<0> == '1', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: t<0> ="'0".

The instruction executes with the additional decode: t2 = t.

The instruction executes as described, with no change to its behavior and no additional side-effects. This does
not apply when Rt == "1111".

Tl

LDRD (immediate) Page 182

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

1 11 01 0 ofP[U[1[w[1] '=1111 | Rt | Rt2 | imm8
Rn

Offset (P == 1 && W == 0)

LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]
Post-indexed (P == 0 && W == 1)

LDRD{<c>}{<qg>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>
Pre-indexed (P == 1 && W == 1)

LDRD{<c>}{<qg>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

if P=='0"'" & W == '0Q' then SEE "Related encodings";

if Rn == '1111' then SEE "LDRD (literal)";

t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); 1imm32 = ZeroExtend(imm8:'00', 32);

index = (P == '1'); add = (U == "1"'); wback = (W=="1");

if wback && (n == [| n == t2) then UNPREDICTABLE;

if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && (n == [| n == t2), then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base

address might be corrupted so that the instruction cannot be repeated.
If t == t2, then one of the following behaviors must occur:
* The instruction is UNDEFINED.

e The instruction executes as NOP.
* The load instruction executes but the destination register takes an UNKNOWN value.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints

on UNPREDICTABLE behaviors.
Related encodings: Load/store dual, load/store exclusive, table branch.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rt> For encoding A1l: is the first general-purpose register to be transferred, encoded in the "Rt" field. This

register must be even-numbered and not R14.

For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding Al: is the second general-purpose register to be transferred. This register must be
<R(t+1)>.
For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRD (literal).
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and

encoded in “U”:

_U 4
0 N

_1]+

LDRD (immediate)

Page 183

<imm> For encoding Al: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020,
defaulting to 0 if omitted, and encoded in the "imm8" field as <imm=>/4.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset addr else R[n];
if IsAligned(address, 8) then
data = MemA[address,8];
if BigEndian(AccessType GPR) then
R[t] = data<63:32>;
R[t2] = data<31:0>;
else
R[t] = data<31:0>;
R[t2] = data<63:32>;

else
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];
if wback then R[n] = offset addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRD (immediate) Page 184

LDRD (literal)

Load Register Dual (literal) calculates an address from the PC value and an immediate offset, loads two words from
memory, and writes them to two registers. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).
Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 3 2 1 O

7 6 5 4
| '=1111 Jo o o[M[uUf1fOfof1 1 1 1] Rt | imm4H [1]1 01| imm4L |
cond

Al

LDRD{<c>}{<qg>} <Rt>, <Rt2>, <label> // (Normal form)
LDRD{<c>}{<qg>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // (Alternative form)

if Rt<0> == '1' then UNPREDICTABLE;
t = UInt(Rt); t2 = t+1; 1imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == '1');
if t2 == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Rt<0> == '1', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: t<0> = "'0';.

The instruction executes with the additional decode: t2 = t;.

The instruction executes as described, with no change to its behavior and no additional side-effects. This does
not apply when Rt == "1111".

IfP == '0"' || W== "1", then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction executes as if P == 1 and W == 0.'

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
1 11010 O/P[UJ1|W[1]1 1 1 1] Rt | Rt2 | imm8

Tl ({(P == 0 && W == 0))

LDRD{<c>}{<g>} <Rt>, <Rt2>, <label> // (Normal form)

LDRD{<c>}{<q>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // (Alternative form)

if P=='0" & W == '0Q' then SEE "Related encodings";
t = UInt(Rt); t2 = UInt(Rt2);
imm32 = ZeroExtend(imm8:'00', 32); add = (U == '1');

if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if W == "1" then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:
* The instruction is UNDEFINED.

* The instruction executes as NOP.
* The load instruction executes but the destination register takes an UNKNOWN value.

LDRD (literal) Page 185

IfW == '1', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes without writeback of the base address.

The instruction uses post-indexed addressing when P == '0' and uses pre-indexed addressing otherwise. The
instruction is handled as described in Using R15.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Related encodings: Load/Store dual, Load/Store-Exclusive, Load-Acquire/Store-Release, table branch.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rt> For encoding A1l: is the first general-purpose register to be transferred, encoded in the "Rt" field. This

register must be even-numbered and not R14.
For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1l: is the second general-purpose register to be transferred. This register must be
<R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<label> For encoding Al: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are multiples of 4 in the range -1020 to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U+
0 -
B
<imm> For encoding Al: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if

omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting
to 0 and encoded in the "imm8" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

LDRD (literal) Page 186

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
if IsAligned(address, 8) then
data = MemA[address,8];
if BigEndian(AccessType GPR) then
R[t] = data<63:32>;
R[t2] = data<31:0>;
else
R[t] = data<31:0>;
R[t2] = data<63:32>;

else
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRD (literal) Page 187

LDRD (register)

Load Register Dual (register) calculates an address from a base register value and a register offset, loads two words
from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses.

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7 6 5 4
['=1111 Jo 0 o[PJujo[w]|oO] Rn | Rt [(O)]O)[O]O]1]1 0]1] Rm |
cond

Offset (P == 1 && W == 0)

LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]

Post-indexed (P == 0 && W == 0)

LDRD{<c>}{<qg>} <Rt>, <Rt2>, [<Rn>], {+/-}<Rm>

Pre-indexed (P == 1 && W == 1)

LDRD{<c>}{<qg>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]!

if Rt<0> == '1' then UNPREDICTABLE;

t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);

index = (P == '1"'); add = (U == '1"); wback = (P == '0') || (W=="1");
if P == "'0"'" & W == '1' then UNPREDICTABLE;

if t2 ==15 || m==15 || m == t || m == t2 then UNPREDICTABLE;

if wback & (n == 15 || n == || n == t2) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && (n == || n == t2), then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

IfP == '0' & W == '1', then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

Ifm == || m == t2, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction loads register Rm with an UNKNOWN value.

If Rt<0> == '1', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: t<0> ="'0".

The instruction executes with the additional decode: t2 = t.

The instruction executes as described, with no change to its behavior and no additional side-effects. This does
not apply when Rt == "1111".

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

LDRD (register) Page 188

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must be
even-numbered and not R14.

<Rt2> Is the second general-purpose register to be transferred. This register must be <R(t+1)>.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted

and encoded in “U”:

U+
0 B
B
<Rm> Is the general-purpose index register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
address = if index then offset addr else R[n];
if IsAligned(address, 8) then
data = MemA[address,8];
if BigEndian(AccessType GPR) then
R[t] = data<63:32>;
R[t2] = data<31l:0>;
else
R[t] = data<31:0>;
R[t2] = data<63:32>;

else
R[t] = MemA[address,b4];
R[t2] = MemA[address+4,4];

if wback then R[n] = offset addr;
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRD (register) Page 189

LDREX

Load Register Exclusive calculates an address from a base register value and an immediate offset, loads a word from
memory, writes it to a register and:

¢ If the address has the Shared Memory attribute, marks the physical address as exclusive access for the

executing PE in a global monitor.

¢ Causes the executing PE to indicate an active exclusive access in the local monitor.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
| '=1111 Jo 0 0 1 1[0 O1] Rn | Rt (MW 1]1]1 0o 0 1](M)(1D) (D) Q)]
cond

Al

LDREX{<c>}{<qg>} <Rt>, [<Rn> {, {#}<imm>}]

t = UInt(Rt); n = UInt(Rn); imm32 = Zeros(32); // Zero offset
if t == 15 || n == 15 then UNPREDICTABLE;

Tl
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
/11 1 01 0000 10[1] Rn | Rt [(1) (1) (1) (1)] imm8

T1

LDREX{<c>}{<qg>} <Rt>, [<Rn> {, #<imm>}]

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<imm> For encoding Al: the immediate offset added to the value of <Rn> to calculate the address. <imm> can

only be 0 or omitted.

For encoding T1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can
be omitted, meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
AArch32.SetExclusiveMonitors(address,4);
R[t] = MemA[address,4];

LDREX Page 190

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDREX Page 191

LDREXB

Load Register Exclusive Byte derives an address from a base register value, loads a byte from memory, zero-extends it
to form a 32-bit word, writes it to a register and:

¢ If the address has the Shared Memory attribute, marks the physical address as exclusive access for the

executing PE in a global monitor.

¢ Causes the executing PE to indicate an active exclusive access in the local monitor.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 Jo 0 0 1 1[1 of1] Rn | Rt (MW 1]1]1 0o 0 1](M)(1D) (D) Q)]
cond
Al
LDREXB{<c>}{<g>} <Rt>, [<Rn>]
t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;
T1
15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
1 11 0100011 O0[1] Rn | Rt (D@ @ @o 1[0 o1)(1)(1) (1)

Tl

LDREXB{<c>}{<g>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
AArch32.SetExclusiveMonitors(address,1);
R[t] = ZeroExtend(MemA[address,1l], 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

LDREXB Page 192

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDREXB Page 193

LDREXD

Load Register Exclusive Doubleword derives an address from a base register value, loads a 64-bit doubleword from
memory, writes it to two registers and:
¢ If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.
¢ Causes the executing PE to indicate an active exclusive access in the local monitor.

For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).
Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

8 7 6 5 4 3
| !1=1111 Jo 0 0 1 1[0 1[1] Rn | Rt (MW 1]1]1 0o 0 1](M)(1D) (D) Q)]
cond

Al

LDREXD{<c>}{<qg>} <Rt>, <Rt2>, [<Rn>]

t = UInt(Rt); t2 =t + 1; n = UInt(Rn);
if Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Rt<0> == '1', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: t<0> ="'0'.

The instruction executes with the additional decode: t2 = t.

The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

The instruction is UNDEFINED.
The instruction executes as NOP.
The instruction is handled as described in Using R15.

Tl
15 14 1312 1110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
1 11 0100011 0[1] Rn | Rt | Rt2 [0 1[1 1[(1)() (1) ()]

T1

LDREXD{<c>}{<qg>} <Rt>, <Rt2>, [<Rn>]

t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
if t==15 || t2 =15 || t == t2 || n == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

e The instruction is UNDEFINED.

e The instruction executes as NOP.

* The load instruction executes but the destination register takes an UNKNOWN value.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

LDREXD Page 194

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rt> For encoding Al: is the first general-purpose register to be transferred, encoded in the "Rt" field. <Rt>
must be even-numbered and not R14.
For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding Al: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.
For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then

EncodingSpecificOperations();

address = R[n];
AArch32.SetExclusiveMonitors(address,8);
value = MemA[address,8];

// Extract words from 64-bit loaded value such that R[t] is

// loaded from address and R[t2] from address+4.

R[t] = if BigEndian(AccessType GPR) then value<63:32> else value<31:0>;
R[t2] = if BigEndian(AccessType GPR) then value<31:0> else value<63:32>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDREXD Page 195

LDREXH

Load Register Exclusive Halfword derives an address from a base register value, loads a halfword from memory, zero-
extends it to form a 32-bit word, writes it to a register and:

¢ If the address has the Shared Memory attribute, marks the physical address as exclusive access for the

executing PE in a global monitor.

¢ Causes the executing PE to indicate an active exclusive access in the local monitor.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 Jo 0 0 1 1[1 1[1] Rn | Rt (MW 1]1]1 0o 0 1](M)(1D) (D) Q)]
cond
Al
LDREXH{<c>}{<g>} <Rt>, [<Rn>]
t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;
T1
15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
1 11 0100011 O0[1] Rn | Rt (@@ @o 1[0 1[1)(1)(1)(1)]

Tl

LDREXH{<c>}{<g>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
AArch32.SetExclusiveMonitors(address,2);
R[t] = ZeroExtend(MemA[address,2], 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

LDREXH Page 196

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDREXH Page 197

LDRH (immediate)

Load Register Halfword (immediate) calculates an address from a base register value and an immediate offset, loads a
halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed,
or pre-indexed addressing. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1, T2 and T3).
Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 3 2 1 O

7 6 5 4
| '=1111 Jo o ofPJuUf1[w[1] '=1111 | Rt | imm4H [1]0 1]1] imm4L |
cond Rn

Offset (P == 1 && W == 0)
LDRH{<c>}{<g>} <Rt>, [<Rn> {, #{+/-}<imm>}]
Post-indexed (P == 0 && W == 0)
LDRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>
Pre-indexed (P == 1 && W == 1)

LDRH{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRH (literal)";

if P=='0' & W == '1' then SEE "LDRHT";

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);

index = (P == '1"'); add = (U == "1"); wback = (P == '0') || (W=="1");
if t == 15 || (wback & n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

e The instruction is UNDEFINED.

e The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1
1514 13121110 9 8 7 6 5 4 3 2 1 0
[1 0 0 O0f1] imm5 | Rn | Rt |
T1

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
index = TRUE; add = TRUE; wback = FALSE;

T2
151413121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 1111000 1[0 1[1] !'=1111 ['=1111 | imm12

Rn Rt

LDRH (immediate) Page 198

T2

LDRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // (<Rt>, <Rn>, <imm> can be represented in T1)
LDRH{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rt == '1111' then SEE "PLD (immediate)";

if Rn == '1111' then SEE "LDRH (literal)";

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;

// Armv8-A removes UNPREDICTABLE for R13

T3
1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 111100000 1[1] !'=1111 | Rt [1]P]U[W] imm8

Rn

Offset (Rt != 1111 && P == 1 && U == 0 && W == 0)

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W == 1)

LDRH{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRH{<c>}{<qg>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRH (literal)";

if Rt == '1111' & P == '1' & U == '0' & W == '0' then SEE "PLDW (immediate)";
if P=="1"'&& U=="1" & W == '0' then SEE "LDRHT";

if P == '0' & W == '0' then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

index = (P == '1'); add = (U == '1"'); wback = (W=="1");

if (t == 15 & W == '1') || (wback & n == t) then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13
CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC use

see LDRH (literal).

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

LDRH (immediate) Page 199

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U+
0 -
B
+ Specifies the offset is added to the base register.
<imm> For encoding Al: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if

omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2, in the range 0
to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imma8" field.

Operation

if CurrentInstrSet() == InstrSet A32 then
if ConditionPassed() then
EncodingSpecificOperations();
offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset addr;
R[t] = ZeroExtend(data, 32);

else
if ConditionPassed() then
EncodingSpecificOperations();
offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset addr;
R[t] = ZeroExtend(data, 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (immediate) Page 200

LDRH (literal)

Load Register Halfword (literal) calculates an address from the PC value and an immediate offset, loads a halfword
from memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses
see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).
Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 3 2 1 0

7 6 5 4
| '=1111 Jo o ofPJuUf1[w[1]1 1 1 1] Rt | imm4H [1]0 1]1] imm4L |
cond

Al ({(P ==0 && W == 1))

LDRH{<c>}{<g>} <Rt>, <label> // (Normal form)

LDRH{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' & W == '1' then SEE "LDRHT";
t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32);
add = (U == '1'); wback = (P == "'0") || (W=="1");

if t == 15 || wback then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: wback = FALSE;.

The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDRH (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15.

Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
/1 111 1000J/UJO 1]1[1 1 1 1] '=1111 | imm12

Rt
T1

LDRH{<c>}{<g>} <Rt>, <label> // (Preferred syntax)
LDRH{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)
if Rt == '1111' then SEE "PLD (literal)";

t = UInt(Rt); imm32 = ZeroExtend(imml2, 32); add = (U == '1');
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

LDRH (literal) Page 201

<label> For encoding Al: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U+
0 B
B .
<imm> For encoding Al: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if

omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data MemU[address,2];
R[t] ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (literal) Page 202

LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads a
halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can
be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .
Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7 6 5 4
| '=1111 |0 0 o[P|uUjo|w|1] Rn | Rt o)) 1]0 1[1] Rm |
cond

Offset (P == 1 && W == 0)

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed (P == 0 && W == 0)

LDRH{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed (P == 1 && W == 1)

LDRH{<c>}{<g>} <Rt>, [<Rn>, {+/-}<Rm>]!

if P == '0' & W == '1' then SEE "LDRHT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1"'); add = (U == "1"); wback = (P == '0') || (W=="1");

(shift t, shift n) = (SRType LSL, 0);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback & (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

e The instruction is UNDEFINED.

e The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1
1514 13121110 9 8 7 6 5 4 3 2 1 0
[0 1 0 1]1]/0[1] Rm | Rn | Rt |
T1

LDRH{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>]

t = UInt(Rt); n =
index = TRUE; add
(shift_t, shift n)

UInt(Rn); m = UInt(Rm);
TRUE; wback FALSE;

(SRType LSL, 0);

T2

151413121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 111100000 1[1] !'=1111 | '=1111 [0 0 O O O O [imm2] Rm |
Rn Rt

LDRH (register) Page 203

T2

LDRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)
LDRH{<c>}{<qg>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rn == '1111' then SEE "LDRH (literal)";

if Rt == '1111' then SEE "PLDW (register)";

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = TRUE; add = TRUE; wback = FALSE;

(shift_t, shift n) = (SRType LSL, UInt(imm2));

if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding Al: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in

the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U+
0 _
_1]+
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is

encoded in imm?2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift t, shift n, PSTATE.C);
offset addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset addr;
R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (register) Page 204

LDRHT

Load Register Halfword Unprivileged loads a halfword from memory, zero-extends it to form a 32-bit word, and writes
it to a register. For information about memory accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually
running in User mode.

LDRHT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.

It has encodings from the following instruction sets: A32 (Al and A2) and T32 (T1).
Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 3 2 1 O

7 6 5 4
| '=1111 Jo o0 ofofuUf1[1[1] Rn | Rt | imm4H [1]0 1]1] imm4L |
cond

Al

LDRHT{<c>}{<g>} <Rt>, [<Rn>] {, #{+/-}<imm>}

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1"');
register form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

¢ The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15.

¢ The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset
addressing with the base register as PC, without writeback.

Ifn == t & n != 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

A2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7 6 5 4
[1=1111 Jo 0 ofoJufo[1[1] RN | Rt (OOJO[0]1]0 1[1] Rm |
cond

A2

LDRHT{<c>}{<g>} <Rt>, [<Rn>], {+/-}<Rm>

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1");
register form = TRUE;
if t=15 || n==15 || n == [| m == 15 then UNPREDICTABLE;

LDRHT Page 205

CONSTRAINED UNPREDICTABLE behavior

If n == t & n != 15, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Tl
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 111000 0[0 1[1] '=1111 | Rt [1 1 1 0] imm8

Rn
T1

LDRHT{<c>}{<qg>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDRH (literal)";

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;

register form = FALSE; imm32 = ZeroExtend(imm8, 32);

if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding Al: specifies the offset is added to or subtracted from the base register, defaulting to + if

omitted and encoded in “U”:

_U 4
0 R

_1]+

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in “U”:

U+
0 -
B .
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
+ Specifies the offset is added to the base register.
<imm> For encoding Al: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if

omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to
0 and encoded in the "imm8" field.

LDRHT Page 206

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
offset = if register form then R[m] else imm32;
offset addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset addr;
data = MemU unpriv[address,2];
if postindex then R[n] = offset addr;
R[t] = ZeroExtend(data, 32);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction executes as LDRH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRHT

Page 207

LDRSB (immediate)

Load Register Signed Byte (immediate) calculates an address from a base register value and an immediate offset,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-
indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2).
Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 3 2 1 O

7 6 5 4
| '=1111 Jo o ofPJuUf1[w[1] '=1111 | Rt | imm4H [1]1 01| imm4L |
cond Rn

Offset (P == 1 && W == 0)
LDRSB{<c>}{<qg>} <Rt>, [<Rn> {, #{+/-}<imm>}]
Post-indexed (P == 0 && W == 0)
LDRSB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>
Pre-indexed (P == 1 && W == 1)

LDRSB{<c>}{<qg>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRSB (literal)";

if P == '0' & W == '1' then SEE "LDRSBT";

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);

index = (P == '1"'); add = (U == "1"); wback = (P == '0') || (W=="1");
if t == 15 || (wback & n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

e The instruction is UNDEFINED.

e The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Tl
1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 1111001 1[0 0f[1] !'=1111 ['=1111 | imm12

Rn Rt
T1

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rt == '1111' then SEE "PLI";

if Rn == '1111' then SEE "LDRSB (literal)";

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;

// Armv8-A removes UNPREDICTABLE for R13

T2

LDRSB (immediate) Page 208

15 14 1

11 10 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 O

1 1 1

9 8 7 6 5 4
1 001 00 o0f1] '=1111 | Rt [1]P|U|wW]| imm8

Rn

Offset (Rt != 1111 && P == 1 && U == 0 && W == 0)

LDRSB{<c>}{<qg>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W == 1)

LDRSB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRSB{<c>}{<qg>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rt == '1111' & P == '1' & U == '0' & W == '0' then SEE "PLI";
if Rn == '1111' then SEE "LDRSB (literal)";

if P=="'1" & U == '1l' & W == '0' then SEE "LDRSBT";

if P=="'0" & W == '0' then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

index
if (t

(P=="'1"); add = (U=="'1"); wback = (W=="'1");
15 & W == '1') || (wback & n == t) then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

e The instruction is UNDEFINED.

e The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Cc>
<qg>
<Rt>
<Rn>

+/-

<imm>

See Standard assembler syntax fields.

See Standard assembler syntax fields.

Is the general-purpose register to be transferred, encoded in the "Rt" field.

Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSB (literal).

Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U 4

0
_1]+

Specifies the offset is added to the base register.

For encoding Al: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imma8" field.

LDRSB (immediate) Page 209

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset addr else R[n];
R[t] = SignExtend(MemU[address,1], 32);
if wback then R[n] = offset addr;

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (immediate) Page 210

LDRSB (literal)

Load Register Signed Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte from
memory, sign-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses see
Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 Jo o ofPJuUf1[w[1]1 1 1 1] Rt | imm4H [1]1 01| imm4L |
cond

Al ({(P ==0 && W == 1))

LDRSB{<c>}{<g>} <Rt>, <label> // (Normal form)

LDRSB{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' & W == '1' then SEE "LDRSBT";
t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32);
add = (U == '1'); wback = (P == "'0") || (W=="1");

if t == 15 || wback then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: wback = FALSE;.

The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDRSB (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15.

Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
/1 111100 1/UfOo 01 1 1 1 1] '=1111 | imm12

Rt
T1

LDRSB{<c>}{<q>} <Rt>, <label> // (Preferred syntax)
LDRSB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)
if Rt == '1111' then SEE "PLI";

t = UInt(Rt); imm32 = ZeroExtend(imml2, 32); add = (U == '1');
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

LDRSB (literal) Page 211

<label> For encoding Al: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U+
0 B
B .
<imm> For encoding Al: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if

omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
R[t] = SignExtend(MemU[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (literal) Page 212

LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register value
can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2).
Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 3 2 1 O

7 6 5 4
| '=1111 |0 0 o[P|uUjo|w|1] Rn | Rt (OO0 1]1 0f1] Rm |
cond

Offset (P == 1 && W == 0)

LDRSB{<c>}{<g>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed (P == 0 && W == 0)

LDRSB{<c>}{<g>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed (P == 1 && W == 1)

LDRSB{<c>}{<g>} <Rt>, [<Rn>, {+/-}<Rm>]!

if P == '0' & W == '1' then SEE "LDRSBT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1"'); add = (U == "1"); wback = (P == '0') || (W=="1");

(shift t, shift n) = (SRType LSL, 0);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback & (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

e The instruction is UNDEFINED.

e The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1
1514 13121110 9 8 7 6 5 4 3 2 1 0
[0 1 0 1]of1][1] Rm | Rn | Rt |
T1

LDRSB{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>]

t = UInt(Rt); n =
index = TRUE; add
(shift_t, shift n)

UInt(Rn); m = UInt(Rm);
TRUE; wback FALSE;

(SRType LSL, 0);

T2

151413121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 111100100 O0f[1] '=1111 | '=1111 [0 0 O O O O [imm2] Rm |
Rn Rt

LDRSB (register) Page 213

T2

LDRSB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)
LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rt == '1111' then SEE "PLI";

if Rn == '1111' then SEE "LDRSB (literal)";

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = TRUE; add = TRUE; wback = FALSE;

(shift_t, shift n) = (SRType LSL, UInt(imm2));

if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding Al: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in

the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U+
0 _
_1]+
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is

encoded in imm?2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift t, shift n, PSTATE.C);
offset addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset addr else R[n];
R[t] = SignExtend(MemU[address,1], 32);
if wback then R[n] = offset addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (register) Page 214

LDRSBT

Load Register Signed Byte Unprivileged loads a byte from memory, sign-extends it to form a 32-bit word, and writes it
to a register. For information about memory accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually
running in User mode.

LDRSBT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.

It has encodings from the following instruction sets: A32 (Al and A2) and T32 (T1).
Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 3 2 1 O

7 6 5 4
| '=1111 Jo o0 ofofuUf1[1[1] Rn | Rt | imm4H [1]1 of1] imm4L |
cond

Al

LDRSBT{<c>}{<qg>} <Rt>, [<Rn>] {, #{+/-}<imm>}

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1"');
register form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15.

¢ The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset
addressing with the base register as PC, without writeback.

Ifn == t & n != 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
[1=1111 Jo 0 ofoJufo[1[1] RN | Rt (O[OO[0]1]1 0[1] Rm |
cond

A2

LDRSBT{<c>}{<qg>} <Rt>, [<Rn>], {+/-}<Rm>

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1");
register form = TRUE;
if t=15 || n==15 || n == [| m == 15 then UNPREDICTABLE;

LDRSBT Page 215

CONSTRAINED UNPREDICTABLE behavior

If n == t & n != 15, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Tl
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1100 10[0 0f[1] '=1111 | Rt [1 1 1 0] imm8

Rn
T1

LDRSBT{<c>}{<qg>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDRSB (literal)";

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;

register form = FALSE; imm32 = ZeroExtend(imm8, 32);

if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding Al: specifies the offset is added to or subtracted from the base register, defaulting to + if

omitted and encoded in “U”:

_U 4
0 R

_1]+

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in “U”:

U+
0 -
B .
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
+ Specifies the offset is added to the base register.
<imm> For encoding Al: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if

omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to
0 and encoded in the "imm8" field.

LDRSBT Page 216

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
offset = if register form then R[m] else imm32;
offset addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset addr;
R[t] = SignExtend(MemU unpriv[address,1], 32);
if postindex then R[n] = offset addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction executes as LDRSB (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSBT

Page 217

LDRSH (immediate)

Load Register Signed Halfword (immediate) calculates an address from a base register value and an immediate offset,
loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-
indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2).
Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 3 2 1 O

7 6 5 4
| '=1111 Jo o ofPJuUf1[w[1] '=1111 | Rt | imm4H [1[1 1[1] imm4L |
cond Rn

Offset (P == 1 && W == 0)
LDRSH{<c>}{<qg>} <Rt>, [<Rn> {, #{+/-}<imm>}]
Post-indexed (P == 0 && W == 0)
LDRSH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>
Pre-indexed (P == 1 && W == 1)

LDRSH{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRSH (literal)";

if P == '0' & W == '1' then SEE "LDRSHT";

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);

index = (P == '1"'); add = (U == "1"); wback = (P == '0') || (W=="1");
if t == 15 || (wback & n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

e The instruction is UNDEFINED.

e The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Tl
1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 1111001 1[0 1[1] !'=1111 ['=1111 | imm12

Rn Rt
T1

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDRSH (literal)";

if Rt == '1111' then SEE "Related instructions";

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;

// Armv8-A removes UNPREDICTABLE for R13

T2

LDRSH (immediate) Page 218

15 14 13 12 11 10 3 2 1 0 151413121110 9 8 7 6 5 4 3

2

1

0

9 8 7 6 5 4
1 1 1 1100 10[0 1[1] '=1111 | Rt [1]P|U|wW]| imm8

Rn

Offset (Rt != 1111 && P == 1 && U == 0 && W == 0)

LDRSH{<c>}{<qg>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W == 1)

LDRSH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRSH{<c>}{<qg>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRSH (literal)";

if Rt == '1111' & P == '1' & U == '0' & W == '0' then SEE "Related instructions";
if P=="'1" & U == '1' & W == '0' then SEE "LDRSHT";

if P=="'0" & W == '0' then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

index
if (t

(P=="'1"); add = (U=="'1"); wback = (W=="'1");
15 & W == '1') || (wback & n == t) then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

e The instruction is UNDEFINED.

e The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Related instructions: Load/store single.

Assembler Symbols

<c>
<q>
<Rt>
<Rn>

+/-

<imm>

See Standard assembler syntax fields.
See Standard assembler syntax fields.
Is the general-purpose register to be transferred, encoded in the "Rt" field.

Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSH (literal).

Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U 4
0 -
1]+

Specifies the offset is added to the base register.

For encoding A1l: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to O if
omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imma8" field.

LDRSH (immediate) Page 219

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset addr;
R[t] = SignExtend(data, 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSH (immediate) Page 220

LDRSH (literal)

Load Register Signed Halfword (literal) calculates an address from the PC value and an immediate offset, loads a
halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. For information about memory
accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

3 2 1 0

7 6 5 4
'=1111 Jo o0 ofPJuUf1[w[1]1 1 1 1] Rt | imm4H [1[1 1[1] imm4L |

cond

Al ({(P ==0 && W == 1))

LDRSH{<c>}{<g>} <Rt>, <label> // (Normal form)

LDRSH{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' & W == '1' then SEE "LDRSHT";
t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32);
add = (U == '1'); wback = (P == "'0") || (W=="1");

if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: wback = FALSE;.

The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing
mode as described in LDRSH (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15.

Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
/1 111100 1/Ufo 1f1 1 1 1 1] '=1111 | imm12

Rt
T1

LDRSH{<c>}{<q>} <Rt>, <label> // (Preferred syntax)
LDRSH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)

if Rt == '1111' then SEE "Related instructions";
t = UInt(Rt); imm32 = ZeroExtend(imml2, 32); add = (U == '1');
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Related instructions: Load, signed (literal).

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

LDRSH (literal) Page 221

<label> For encoding Al: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U+
0 B
B .
<imm> For encoding Al: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if

omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,2];
R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSH (literal) Page 222

LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register value,
loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register
value can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2).
Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 3 2 1 O

7 6 5 4
| '1=1111 Jo o o[P[U[Oo[W][1] Rn | Rt (O)O)o)o) 1]1 1]1] Rm |
cond

Offset (P == 1 && W == 0)

LDRSH{<c>}{<qg>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed (P == 0 && W == 0)

LDRSH{<c>}{<qg>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed (P == 1 && W == 1)

LDRSH{<c>}{<qg>} <Rt>, [<Rn>, {+/-}<Rm>]!

if P == '0' & W == '1' then SEE "LDRSHT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1"'); add = (U == "1"); wback = (P == '0') || (W=="1");

(shift t, shift n) = (SRType LSL, 0);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback & (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

e The instruction is UNDEFINED.

e The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is <arm-defined-word>unknown</arm-defined-word>. In addition, if an exception occurs
during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1
1514 13121110 9 8 7 6 5 4 3 2 1 0
[0 1 0 1]1[1[1] Rm | Rn | Rt |
T1

LDRSH{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>]

t = UInt(Rt); n =
index = TRUE; add
(shift_t, shift n)

UInt(Rn); m = UInt(Rm);
TRUE; wback FALSE;

(SRType LSL, 0);

T2

151413121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 111100100 1[1] !'=1111 | '=1111 [0 0 O O O O [imm2] Rm |
Rn Rt

LDRSH (register) Page 223

T2

LDRSH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)
LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rn == '1111' then SEE "LDRSH (literal)";

if Rt == '1111' then SEE "Related instructions";

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);

index = TRUE; add = TRUE; wback = FALSE;

(shift_t, shift n) = (SRType LSL, UInt(imm2));

if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Related instructions: Load/store, signed (register offset).

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding Al: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in

the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U+
0 -
B
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is

encoded in imm?2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift t, shift n, PSTATE.C);
offset addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset addr;
R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSH (register) Page 224

LDRSHT

Load Register Signed Halfword Unprivileged loads a halfword from memory, sign-extends it to form a 32-bit word, and
writes it to a register. For information about memory accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually
running in User mode.

LDRSHT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.

It has encodings from the following instruction sets: A32 (Al and A2) and T32 (T1).
Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 3 2 1 O

7 6 5 4
| '=1111 Jo o0 ofofuUf1[1[1] Rn | Rt | imm4H [1]1 1]1] imm4L |
cond

Al

LDRSHT{<c>}{<qg>} <Rt>, [<Rn>] {, #{+/-}<imm>}

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1"');
register form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15.

¢ The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset
addressing with the base register as PC, without writeback.

Ifn == t & n != 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

A2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

7 6 5 4
| '=1111 |o 0 ofojujo|1]1] Rn | Rt (OO 1]1 1[1] Rm |
cond

A2

LDRSHT{<c>}{<qg>} <Rt>, [<Rn>], {+/-}<Rm>

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1");
register form = TRUE;
if t=15 || n==15 || n == [| m == 15 then UNPREDICTABLE;

LDRSHT Page 225

CONSTRAINED UNPREDICTABLE behavior

If n == t & n != 15, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Tl
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1100 10[0 1[1] '=1111 | Rt [1 1 1 0] imm8

Rn
T1

LDRSHT{<c>}{<qg>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDRSH (literal)";

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;

register form = FALSE; imm32 = ZeroExtend(imm8, 32);

if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding Al: specifies the offset is added to or subtracted from the base register, defaulting to + if

omitted and encoded in “U”:

_U 4
0 R

_1]+

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in “U”:

U+
0 -
B .
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
+ Specifies the offset is added to the base register.
<imm> For encoding Al: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if

omitted, and encoded in the "imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to
0 and encoded in the "imm8" field.

LDRSHT Page 226

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
offset = if register form then R[m] else imm32;
offset addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset addr;
data = MemU unpriv[address,2];
if postindex then R[n] = offset addr;
R[t] = SignExtend(data, 32);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction executes as LDRSH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSHT

Page 227

LDRT

Load Register Unprivileged loads a word from memory, and writes it to a register. For information about memory
accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually
running in User mode.

LDRT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.

It has encodings from the following instruction sets: A32 (Al and A2) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '1=1111 Jo 1 ofofuUlof1[1] Rn | Rt | imm12

cond

Al

LDRT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

= UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
register form = FALSE imm32 = ZeroExtend(imml2, 32);
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction uses post-indexed addressing with the base register as PC. This is handled as described in
Using R15.

¢ The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset
addressing with the base register as PC, without writeback.

Ifn == t & n != 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 |Jo 1 1[ofujof1]1] Rn | Rt | imm5 |stype| 0 | Rm |
cond

A2

LDRT{<c>}{<g>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

= UInt(Rt); n t(Rn); = UInt(Rm); postindex = TRUE; add = (U == '1");
register form = TRUE (shlft t shift n) = DecodeImmShift(stype, imm5);
if t=15 || n==15 || n [| m == 15 then UNPREDICTABLE;

LDRT Page 228

CONSTRAINED UNPREDICTABLE behavior

If n == t & n != 15, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction performs all of the loads using the specified addressing mode and the content of the register
that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

Tl
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 11000 0[1 0f[1] '=1111 | Rt [1 1 1 0] imm8

Rn
T1

LDRT{<c>}{<qg>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDR (literal)";

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;

register form = FALSE; imm32 = ZeroExtend(imm8, 32);

if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rt> For encoding Al: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC

can be used, but this is deprecated.

For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding Al: specifies the offset is added to or subtracted from the base register, defaulting to + if
omitted and encoded in “U”:

U 4
0 -
1]+

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in “U”:

U+
0 -
_1]+
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.
+ Specifies the offset is added to the base register.
<imm> For encoding A1l: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to O if

omitted, and encoded in the "imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to
0 and encoded in the "imm8" field.

LDRT Page 229

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
offset = if register form then Shift(R[m], shift t, shift n, PSTATE.C) else imm32;
offset addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset addr;
data = MemU unpriv[address,4];
if postindex then R[n] = offset addr;
R[t] = data;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The instruction executes as LDR (immediate).

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRT Page 230

LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and writes
the result to the destination register.

This is an alias of MOV, MOVS (register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register).
e The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T2 and T3) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 1110 9 8 7 6 5 4 3 2 1 0

| '=1111 [0 0 0 1 1[0 1]0](0)(0)(0)(0) Rd | '=00000 [0 O[0] Rm |
cond S immb5 stype

MOV, shift or rotate by value

LSL{<c>}{<g>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 0 0[]0 O] '=00000 | Rm | Rd |
op imm5

T2

LSL<c>{<g>} {<Rd>,} <Rm>, #<imm> // (Inside IT block)
is equivalent to
MOV<c>{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when InITBlock().

T3

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

1 1 1 01 0 1[0 0 1 0[0[1 1 1 1[0)] imm3 | Rd limm2]/0 0| Rm |
S stype

MOV, shift or rotate by value

LSL<c>.W {<Rd>,} <Rm>, #<imm> // (Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)
LSL{<c>}{<g>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

LSL (immediate) Page 231

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates

using the PC as the destination register, but if the PC is used, the instruction is a branch to the address
calculated by the operation. This is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1l: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding Al: is the shift amount, in the range 0 to 31, encoded in the "imm5" field as <imm>
modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "immb5" field as <amount>
modulo 32.

For encoding T3: is the shift amount, in the range 0 to 31, encoded in the "imm3:imm2" field as <imm>
modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (immediate) Page 232

LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The variable number of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted

register).

¢ The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| '=1111 [0 0 0 1 1[0 1]0]/(0)(0)(0)(0) Rd | Rs o]0 Oo]1] Rm |
cond S stype

Not flag setting

LSL{<c>}{<g>} {<Rd>,} <Rm>, <Rs>
is equivalent to
MOV{<c>}{<g>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

T1

1514 1312 1110 9 8 7 6 5 4 3 2 1 0

01 000 0[0 0 10| Rs | Rdm |
op

Logical shift left

LSL<c>{<qg>} {<Rdm>,} <Rdm>, <Rs> // (Inside IT block)
is equivalent to
MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when InITBlock().

T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

/1 1 111010 0[00[0] Rm 1 1 1 1] Rd |0 0 0 0] Rs |
stype S

Not flag setting

LSL<c>.W {<Rd>,} <Rm>, <Rs> // (Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)
LSL{<c>}{<g>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

LSL (register) Page 233

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (register) Page 234

LSLS (immediate)

Logical Shift Left, setting flags (immediate) shifts a register value left by an immediate number of bits, shifting in
zeros, and writes the result to the destination register.
If the destination register is not the PC, this instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

¢ The PE branches to the address written to the PC, and restores PSTATE from SPSR <current mode>.

* The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from AArch32

state.
¢ The instruction is UNDEFINED in Hyp mode.
¢ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This is an alias of MOV, MOVS (register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register).
¢ The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T2 and T3) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 1[0 1[1](0)(0)(0)(0) Rd ['=00000 [0 OfO] Rm |
cond S imm5 stype

MOVS, shift or rotate by value

LSLS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[0 0 0[]0 O] '=00000 | Rm | Rd |
op immb5

T2

LSLS{<g>} {<Rd>,} <Rm>, #<imm> // (Outside IT block)
is equivalent to
MOVS{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when !InITBlock().

T3

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 11 010 1[0 0 1 011 1 1 1][0)] imm3 | Rd [imm2[0 0] Rm |
S stype

LSLS (immediate) Page 235

MOVS, shift or rotate by value

LSLS.W {<Rd>,} <Rm>, #<imm> // (Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)
LSLS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<g>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates

using the PC as the destination register, but if the PC is used, the instruction performs an exception
return, that restores PSTATE from SPSR <current mode>.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding Al: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding Al: is the shift amount, in the range 0 to 31, encoded in the "imm5" field as <imm>
modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "immb5" field as <amount>
modulo 32.

For encoding T3: is the shift amount, in the range 0 to 31, encoded in the "imm3:imm2" field as <imm>
modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSLS (immediate) Page 236

LSLS (register)

Logical Shift Left, setting flags (register) shifts a register value left by a variable number of bits, shifting in zeros,
writes the result to the destination register, and updates the condition flags based on the result. The variable number
of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

¢ The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| '=1111 [0 0 0 1 1[0 1[1](0)(0)(0)(0) Rd | Rs o]0 Oo]1] Rm |
cond S stype

Flag setting

LSLS{<c>}{<g>} {<Rd>,} <Rm>, <Rs>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

T1

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0

01 000 0[0 0 10| Rs | Rdm |
op

Logical shift left

LSLS{<g>} {<Rdm>,} <Rdm>, <Rs> // (Outside IT block)
is equivalent to
MOVS{<g>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when !InITBlock().

T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

/1 1 111010 0[0 0[1] Rm 1 1 1 1] Rd |0 0 0 0] Rs |
stype S

Flag setting

LSLS.W {<Rd>,} <Rm>, <Rs> // (Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)
LSLS{<c>}{<g>} {<Rd>,} <Rm>, <Rs>

is equivalent to

LSLS (register) Page 237

MOVS{<c>}{<g>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSLS (register) Page 238

LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This is an alias of MOV, MOVS (register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register).
e The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T2 and T3) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 [0 0 0 1 1[0 1]0](0)(0)(0)(0) Rd | imm5 o 1]0] Rm |
cond S stype

MOV, shift or rotate by value

LSR{<c>}{<g>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

T2

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

|0 0 0J]O 1] imm5 | Rm | Rd |
op

T2

LSR<c>{<qg>} {<Rd>,} <Rm>, #<imm> // (Inside IT block)
is equivalent to
MOV<c>{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when InITBlock().

T3

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

1 1 1 01 0 1[0 0 1 0[0[1 1 1 1[0)] imm3 | Rd limm2]/0 1| Rm |
S stype

MOV, shift or rotate by value

LSR<c>.W {<Rd>,} <Rm>, #<imm> // (Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)
LSR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

LSR (immediate) Page 239

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates

using the PC as the destination register, but if the PC is used, the instruction is a branch to the address
calculated by the operation. This is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1l: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding Al and T2: is the shift amount, in the range 1 to 32, encoded in the "immb5" field as
<imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm?2" field as <imm>
modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (immediate) Page 240

LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The variable number of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted

register).

¢ The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 [0 0 0 1 1[0 1]0]/(0)(0)(0)(0) Rd | Rs o]0 1]1] Rm |
cond S stype

Not flag setting

LSR{<c>}{<g>} {<Rd>,} <Rm>, <Rs>
is equivalent to
MOV{<c>}{<g>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|01 00 0o0[0O01 1] Rs | Rdm |
op

Logical shift right

LSR<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // (Inside IT block)
is equivalent to
MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when InITBlock().

T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

1 1 111010 0[0 1[0] Rm 1 1 1 1] Rd |0 0 0 0] Rs |
stype S

Not flag setting

LSR<c>.W {<Rd>,} <Rm>, <Rs> // (Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)
LSR{<c>}{<g>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

LSR (register) Page 241

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (register) Page 242

LSRS (immediate)

Logical Shift Right, setting flags (immediate) shifts a register value right by an immediate number of bits, shifting in
zeros, and writes the result to the destination register.
If the destination register is not the PC, this instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

¢ The PE branches to the address written to the PC, and restores PSTATE from SPSR <current mode>.

* The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from AArch32

state.
¢ The instruction is UNDEFINED in Hyp mode.
¢ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This is an alias of MOV, MOVS (register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register).
¢ The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T2 and T3) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 1[0 1[1](0)(0)(0)(0) Rd | imm5 [0 1]0] Rm |
cond S stype

MOVS, shift or rotate by value

LSRS{<c>}{<g>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[0 0 0[O0 1] imm5 | Rm | Rd |
op

T2

LSRS{<g>} {<Rd>,} <Rm>, #<imm> // (Outside IT block)
is equivalent to
MOVS{<gq>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when !InITBlock().

T3

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 11 010 1[0 0 1 011 1 1 1][0)] imm3 | Rd [imm2[0 1] Rm |
S stype

LSRS (immediate) Page 243

MOVS, shift or rotate by value

LSRS.W {<Rd>,} <Rm>, #<imm> // (Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)
LSRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<g>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates

using the PC as the destination register, but if the PC is used, the instruction performs an exception
return, that restores PSTATE from SPSR <current mode>.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding Al: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding Al and T2: is the shift amount, in the range 1 to 32, encoded in the "immb5" field as
<imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm?2" field as <imm>
modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSRS (immediate) Page 244

LSRS (register)

Logical Shift Right, setting flags (register) shifts a register value right by an immediate number of bits, shifting in
zeros, writes the result to the destination register, and updates the condition flags based on the result. The variable
number of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

¢ The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 [0 0 0 1 1[0 1[1](0)(0)(0)(0) Rd | Rs o]0 1]1] Rm |
cond S stype

Flag setting

LSRS{<c>}{<qg>} {<Rd>,} <Rm>, <Rs>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|01 00 0o0[0O01 1] Rs | Rdm |
op

Logical shift right

LSRS{<g>} {<Rdm>,} <Rdm>, <Rs> // (Outside IT block)
is equivalent to
MOVS{<g>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when !InITBlock().

T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

1 1 111010 0[0 1[1] Rm 1 1 1 1] Rd |0 0 0 0] Rs |
stype S

Flag setting

LSRS.W {<Rd>,} <Rm>, <Rs> // (Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)
LSRS{<c>}{<qg>} {<Rd>,} <Rm>, <Rs>

is equivalent to

LSRS (register) Page 245

MOVS{<c>}{<g>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSRS (register) Page 246

MCR

Move to System register from general-purpose register or execute a System instruction. This instruction copies the
value of a general-purpose register to a System register, or executes a System instruction.

The System register and System instruction descriptions identify valid encodings for this instruction. Other encodings
are UNDEFINED. For more information see About the AArch32 System register interface and General behavior of
System registers.

In an implementation that includes EL2, MCR accesses to System registers can be trapped to Hyp mode, meaning that
an attempt to execute an MCR instruction in a Non-secure mode other than Hyp mode, that would be permitted in the
absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2 configurable
instruction enables, disables, and traps.

Because of the range of possible traps to Hyp mode, the MCR pseudocode does not show these possible traps.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 2019 18 17 16 1514 1312 11 10 9 8 7 6 5 4 3 2 10

['=1111 |1 1 1 O] opc1 O] CRn | Rt [1 1 1 Jcoproc<O>| opc2 [1] CRm |
cond coproc<3:1>

Al

MCR{<c>}{<g>} <coproc>, {#}<opcl>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1
151413121110 9 8 7 6 5 4 3 2 1 0 15141312 11 10 9 8 7 6 5 4 3 2 1 0
[11101110[opcl 0] CRAN | Rt [1 1 1 Jcoproc<0>| opc2 [1] CRm |

coproc<3:1>
T1

MCR{<c>}{<qg>} <coproc>, {#}<opcl>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<coproc> Is the System register encoding space, encoded in “coproc<0>":

coproc<0> <coproc>

0 pl4
1 pl5
<opcl> Is the opcl parameter within the System register encoding space, in the range 0 to7, encoded in the
"opcl" field.
<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<CRn> Is the CRn parameter within the System register encoding space, in the range c0 to c15, encoded in the
"CRn" field.

MCR Page 247

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in

the "CRm" field.

<opc2> Is the opc2 parameter within the System register encoding space, in the range 0 to7, encoded in the

"opc2" field.

The possible values of { <coproc>, <opcl>, <CRn>, <CRm>, <opc2> } encode the entire System register and

System instruction encoding space. Not all of this space is allocated, and the System register and System instruction
descriptions identify the allocated encodings.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
AArch32.SysRegWrite(cp, ThisInstr(), t);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MCR Page 248

MCRR

Move to System register from two general-purpose registers. This instruction copies the values of two general-purpose
registers to a System register.

The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For
more information see About the AArch32 System register interface and General behavior of System registers.

In an implementation that includes EL2, MCRR accesses to System registers can be trapped to Hyp mode, meaning that
an attempt to execute an MCRR instruction in a Non-secure mode other than Hyp mode, that would be permitted in the
absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2 configurable
instruction enables, disables, and traps.

Because of the range of possible traps to Hyp mode, the MCRR pseudocode does not show these possible traps.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 2019 18 17 16 1514 1312 11 10 9 8 7 6 5 4 3 2 10

['=1111 |1 1 0 0 of1]oJo] R2 | Rt [1 1 1 Jcoproc<O>] opcl1 | CRm |
cond coproc<3:1>

Al

MCRR{<c>}{<g>} <coproc>, {#}<opcl>, <Rt>, <Rt2>, <CRm>

t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<@> == '0' then 14 else 15;
if t == 15 || t2 == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

T1
151413121110 9 8 7 6 5 4 3 2 1 0 15141312 11 10 9 8 7 6 5 4 3 2 1 0
[111011000[1[o]Jo] R2 | Rt [1 1 1 Jcoproc<0O>] opcl | CRm |

coproc<3:1>
T1

MCRR{<c>}{<g>} <coproc>, {#}<opcl>, <Rt>, <Rt2>, <CRm>

t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<@> == '0' then 14 else 15;
if t == 15 || t2 == 15 then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<coproc> Is the System register encoding space, encoded in “coproc<0>":

coproc<0> <coproc>

0 pla
1 pl5
<opcl> Is the opcl parameter within the System register encoding space, in the range 0 to 15, encoded in the
"opcl" field.
<Rt> Is the first general-purpose register that is transferred into, encoded in the "Rt" field.
<Rt2> Is the second general-purpose register that is transferred into, encoded in the "Rt2" field.

MCRR Page 249

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

The possible values of { <coproc>, <opcl>, <CRm> } encode the entire System register encoding space. Not all of
this space is allocated, and the System register descriptions identify the allocated encodings.

For the permitted uses of these instructions, as described in this manual, <Rt2> transfers bits[63:32] of the selected
System register, while <Rt> transfers bits[31:0].

Operation

if ConditionPassed() then
EncodingSpecificOperations();
AArch32.SysRegWrite64(cp, ThisInstr(), t, t2);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MCRR Page 250

MLA, MLAS

Multiply Accumulate multiplies two register values, and adds a third register value. The least significant 32 bits of the
result are written to the destination register. These 32 bits do not depend on whether the source register values are
considered to be signed values or unsigned values.

In an A32 instruction, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 0 0[O0 O 1]S] Rd | Ra | Rm [1 0 0 1] Rn |
cond
Flag setting (S == 1)
MLAS{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>
Not flag setting (S == 0)
MLA{<c>}{<qg>} <Rd>, <Rn>, <Rm>, <Ra>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = (S == '1");
if d =15 || n==15 || m == 15 || a == 15 then UNPREDICTABLE;
Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1101 10[00 0] Rn | '=1111 | Rd |0 0]0 0] Rm |
Ra
T1
MLA{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>
if Ra == '1111' then SEE "MUL";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = FALSE;
if d == 15 || n==15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

MLA, MLAS Page 251

Operation

if ConditionPassed() then
EncodingSpecificOperations();

operandl = SInt(R[n]); // operandl = UInt(R[n]) produces the same final results
operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
result = operandl * operand2 + addend;

R[d] = result<31:0>;

if setflags then
PSTATE.N = result<31l>;
PSTATE.Z = IsZeroBit(result<31:0>);
// PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLA, MLAS Page 252

MLS

Multiply and Subtract multiplies two register values, and subtracts the product from a third register value. The least
significant 32 bits of the result are written to the destination register. These 32 bits do not depend on whether the

source register

values are considered to be signed values or unsigned values.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 |o 0 0 0[O0 1 1][0] Rd | Ra | Rm |1 0 0 1] Rn |
cond
Al
MLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d==15 || n==15 || m == 15 || a == 15 then UNPREDICTABLE;
T1
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
11 11101 10[00 0] Rn | Ra | Rd [0 o]0 1] Rm |
T1
MLS{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d==15 || n==15 || m == 15 || a == 15 then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is
<Rm> Is

<Ra> Is

Operation

the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

the third general-purpose source register holding the minuend, encoded in the "Ra" field.

if ConditionPassed() then

EncodingSpecificOperations();

operandl
operand2
addend

result =

UInt(R[n]) produces the same final results
UInt(R[m]) produces the same final results
UInt(R[a]) produces the same final results

’

= SInt(R[n]); // operandl
SInt(R[m]); // operand2
SInt(R[a]); // addend

addend - operandl * operand

NI

R[d] = result<31:0>;

MLS Page 253

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLS Page 254

MOV, MOVS (immediate)

Move (immediate) writes an immediate value to the destination register.
If the destination register is not the PC, the MOVS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:
¢« The MOV variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
¢ The MOVS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al and A2) and T32 (T1,T2 and T3) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 1 1 1]0 1][S](0)(0)(0)(0) Rd | imm12

cond
MOV (S == 0)

MOV{<c>}{<qg>} <Rd>, #<const>

MOVS (S == 1)

MOVS{<c>}{<qg>} <Rd>, #<const>

d = UInt(Rd); setflags = (S == '1"'); (imm32, carry) = A32ExpandImm C(imml2, PSTATE.C);
A2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 |0 0 1 1 0[0[0 O] imm4 | Rd | imm12
cond

A2

MOV{<c>}{<g>} <Rd>, #<imml6> // (<imml6> can not be represented in Al)
MOVW{<c>}{<g>} <Rd>, #<imml6> // (<imml6> can be represented in Al)

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:imml2, 32);
if d == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1{0 0] Rd | imm8

MOV, MOVS (immediate) Page 255

Tl

MOV<c>{<q>} <Rd>, #<imm8> // (Inside IT block)
MOVS{<q>} <Rd>, #<imm8> // (Outside IT block)

d = UInt(Rd); setflags 1InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = PSTATE.C;

T2

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
1 0[s|[1 1 1 1]0] imm3 | Rd | imm8

[1 111 0]iflo0]0

(@] BN

MOV (S == 0)

MOV<c>.W <Rd>, #<const> // (Inside IT block, and <Rd>, <const> can be represented in T1)

MOV{<c>}{<qg>} <Rd>, #<const>

MOVS (S == 1)

MOVS.W <Rd>, #<const> // (Outside IT block, and <Rd>, <const> can be represented in T1)

MOVS{<c>}{<g>} <Rd>, #<const>

d = UInt(Rd); setflags = (S == '1'); (imm32, carry) = T32ExpandImm C(i:imm3:imm8, PSTATE.C);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
T3
1514 1312 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 11 1 0[if[1 0f/0]1 0 0] imm4 [O] imm3 | Rd | imm8
T3

MOV{<c>}{<g>} <Rd>, #<imml6> // (<imml6> cannot be represented in T1l or T2)
MOVW{<c>}{<g>} <Rd>, #<imml6> // (<imml6> can be represented in T1l or T2)

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rd> For encoding A1l: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates

using the PC as the destination register, but if the PC is used:

* For the MOV variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

e For the MOVS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding A2, T1, T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.
<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<imm16> For encoding A2: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field.

MOV, MOVS (immediate) Page 256

For encoding T3: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:i:imm3:imm8" field.

<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = imm32;
if d == 15 then // Can only occur for encoding Al
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);
else
R[d] = result;
if setflags then
PSTATE.N = result<31l>;
PSTATE.Z IsZeroBit(result);
PSTATE.C carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV, MOVS (immediate) Page 257

MOV, MOVS (register)

Move (register) copies a value from a register to the destination register.
If the destination register is not the PC, the MOVS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:
¢ The MOV variant of the instruction is a branch. In the T32 instruction set (encoding T1) this is a simple
branch, and in the A32 instruction set it is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.
¢ The MOVS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is used by the aliases ASRS (immediate), ASR (immediate), LSLS (immediate), LSL (immediate), LSR
(immediate), LSR (immediate), RORS (immediate), ROR (immediate), RRXS, and RRX.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1, T2 and T3).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 |0 0 0 1 1|0 1[S]|(0)(0)(0)(0) Rd | imm5 |stype| 0 | Rm |
cond

MOV, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
MOV{<c>}{<q>} <Rd>, <Rm>, RRX

MOV, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
MOV{<c>}{<g>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

MOVS{<c>}{<g>} <Rd>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1");
(shift t, shift n) = DecodeImmShift(stype, imm5);
T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|01 000 1|1 o|D] Rm | Rd |
T1

MOV{<c>}{<g>} <Rd>, <Rm>
d = UInt(D:Rd); m UInt(Rm); setflags = FALSE;
(shift t, shift n)

T

= (SRType LSL, 0);
if d == 15 && InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

MOV, MOVS (register) Page 258

T2

1514 13121110 9 8 7 6 5 4 3 2 1 0
[0 0 0[!=11] imm5 | Rm | Rd |
op

T2

MOV<c>{<q>} <Rd>, <Rm> {, <shift> #<amount>} // (Inside IT block)
MOVS{<g>} <Rd>, <Rm> {, <shift> #<amount>} // (Outside IT block)
d = UInt(Rd); m UInt(Rm); setflags = !InITBlock();

(shift_t, shift n) = DecodeImmShift(op, imm5);
if op == '00' && imm5 == '00000' && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifop == '00' & imm5 == '00000' && InITBlock(), then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as if it passed its condition code check.

The instruction executes as NOP, as if it failed its condition code check.
The instruction executes as MOV Rd, Rm.

T3

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 01 0 1]/0 0 1 0[S[1 1 1 1[0 imm3 | Rd [imm2]|stype]| Rm |

MOV, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
MOV{<c>}{<q>} <Rd>, <Rm>, RRX
MOV, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

MOV{<c>}.W <Rd>, <Rm> {, LSL #0} // (<Rd>, <Rm> can be represented in T1)
MOV<c>.W <Rd>, <Rm> {, <shift> #<amount>} // (Inside IT block, and <Rd>, <Rm>, <shift>, <amount> can be |

MOV{<c>}{<g>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)
MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

MOVS.W <Rd>, <Rm> {, <shift> #<amount>} // (Outside IT block, and <Rd>, <Rm>, <shift>, <amount> can be re
MOVS{<c>}{<qg>} <Rd>, <Rm> {, <shift> #<amount>}
d = UInt(Rd); m = UInt(Rm); setflags = (S == '1");

(shift t, shift n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

MOV, MOVS (register) Page 259

<q> See Standard assembler syntax fields.

<Rd> For encoding A1l: is the general-purpose destination register, encoded in the "Rd" field. If the PC is
used:

* For the MOV variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC. Arm deprecates use of the instruction if <Rn> is the
PC.

e For the MOVS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>. Arm deprecates use of the instruction if <Rn> is not the LR, or
if the optional shift or RRX argument is specified.

For encoding T1: is the general-purpose destination register, encoded in the "D:Rd" field. If the PC is
used:

e The instruction causes a branch to the address moved to the PC. This is a simple branch, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
* The instruction must either be outside an IT block or the last instruction of an IT block.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding Al and T1: is the general-purpose source register, encoded in the "Rm" field. The PC can
be used. Arm deprecates use of the instruction if <Rd> is the PC.

For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<shift> For encoding Al and T3: is the type of shift to be applied to the source register, encoded in “stype”:
stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

For encoding T2: is the type of shift to be applied to the source register, encoded in “op”:

op <shift>

00 LSL
01 LSR
10 ASR

<amount> For encoding Al: is the shift amount, in the range 0 to 31 (when <shift> = LSL), or 1 to 31 (when
<shift> = ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm5" field as <amount>
modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "immb5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 0 to 31 (when <shift> = LSL) or 1 to 31 (when
<shift> = ROR), or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm?2" field as
<amount> modulo 32.

Alias Conditions

Alias Of variant Is preferred when
ASRS T3 (MOVS, shift S == '1' && stype == '10'
(immediate) or rotate by
value), Al

(MOVS, shift or
rotate by value)

ASRS T2 op == '10' && !'InITBlock()
(immediate)
ASR T3 (MOV, shift == '0' && stype == '10'

(immediate) or rotate by
value), A1 (MOV,
shift or rotate
by value)

ASR T2 op == '10' && InITBlock()
(immediate)

MOV, MOVS (register) Page 260

Alias
LSLS
(immediate)

—

SLS
(immediate)

=

SLS
(immediate)
LSL
(immediate)

—
=

S
(immediate)

—
—

S
(immediate)

LSRS
(immediate)

-
=

SRS
(immediate)
LSR
(immediate)

LSR
(immediate)
RORS
(immediate)

RORS
(immediate)

OR
(immediate)

el

ROR
(immediate)

RRXS

Of variant

T3 (MOVS, shift
or rotate by
value)

Al (MOVS, shift
or rotate by
value)

T2

T3 (MOV, shift
or rotate by
value)

Al (MOV, shift
or rotate by
value)

T2

T3 (MOVS, shift
or rotate by
value), Al
(MOVS, shift or
rotate by value)

T2

T3 (MOV, shift
or rotate by
value), A1 (MOV,
shift or rotate
by value)

T2

T3 (MOVS, shift
or rotate by
value)

Al (MOVS, shift
or rotate by
value)

T3 (MOV, shift
or rotate by
value)

Al (MOV, shift
or rotate by
value)

T3 (MOVS,
rotate right with
extend)

Al (MOVS,
rotate right with
extend)

T3 (MOV, rotate
right with
extend)

Al (MOV, rotate
right with
extend)

Is preferred when

S

op

op

op

'1' && imm3:Rd:imm2 != '000xxxx00' && stype ==
'1' && imm5 != '00000' && stype == '00'

= '00' && imm5 != '00000' && !INITBlock()
'0' && imm3:Rd:imm2 !'= '000xxxx00' && stype ==
'0' && imm5 != '00000' && stype == '00'

= '00' && imm5 != '00000' && InITBlock()
'1' & stype == '0O1'

= '01' && !'InITBlock()

'0' & stype == 'O1'

'1' && imm3:Rd

1" &

imm5 !

&& imm3:Rd

&&

imm5 !

'1' & imm3 ==

'1' &

imm5

'0' & imm3 ==

'0' & imm5 ==

‘01" && InITBlock()

:imm2 = '000xxxx00' && stype
'00000"' && stype == '11'

:imm2 = '000xxxx00' && stype
'00000"' && stype == '11'

'000' && imm2 == '00' && stype
'00000' && stype == '11'

'000' && imm2 == '00' && stype
'00000' && stype == '11'

MOV, MOVS (register)

|00|

|00|

|11|

llll

|11|

|11|

Page 261

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
result = shifted;
if d == 15 then
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;

// PSTATE.V unchanged
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV, MOVS (register) Page 262

MOV, MOVS (register-shifted register)

Move (register-shifted register) copies a register-shifted register value to the destination register. It can optionally

update the condition flags based on the value.

This instruction is used by the aliases ASRS (register), ASR (register), LSLS (register), LSL (register), LSRS (register),

LSR (register), RORS (register), and ROR (register).
It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

6 5 4 3

['=1111 Jo 0 0 1 1[0 1][S](0)(0)(0)(0) Rd | Rs [0 [stype| 1]

cond
Flag setting (S == 1)
MOVS{<c>}{<g>} <Rd>, <Rm>, <shift> <Rs>
Not flag setting (S == 0)

MOV{<c>}{<g>} <Rd>, <Rm>, <shift> <Rs>

d = UInt(Rd); m = UInt(Rm); s UInt(Rs);
setflags = (S == '1'); shift t DecodeRegShift(stype);
if d == 15 || m == 15 || s == 15 then UNPREDICTABLE;

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|01 000 0[O0 x x x[Rs | Rdm |

op

Arithmetic shift right (op == 0100)

MOV<c>{<qgq>} <Rdm>, <Rdm>, ASR <Rs> // (Inside IT block)

MOVS{<qg>} <Rdm>, <Rdm>, ASR <Rs> // (Outside IT block)
Logical shift left (op == 0010)

MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs> // (Inside IT block)

MOVS{<gq>} <Rdm>, <Rdm>, LSL <Rs> // (Qutside IT block)
Logical shift right (op == 0011)

MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs> // (Inside IT block)

MOVS{<gq>} <Rdm>, <Rdm>, LSR <Rs> // (Outside IT block)
Rotate right (op == 0111)

MOV<c>{<qgq>} <Rdm>, <Rdm>, ROR <Rs> // (Inside IT block)

MOVS{<qg>} <Rdm>, <Rdm>, ROR <Rs> // (Outside IT block)

if !(op IN {'0010', '0011', '0le0', '01l1l1'}) then SEE "Related encodings";

d = UInt(Rdm); m = UInt(Rdm); s
setflags = 'InITBlock(); shift t

UInt(Rs);
DecodeRegShift(op<2>:0p<0>);

MOV, MOVS (register-shifted
register)

Page 263

T2

15 14 13 12 11 10 9 8 7 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 1 1 11 0 1 0 0]stype[S] Rm [1 1 1 1] Rd [0 0 0 O] Rs |

Flag setting (S == 1)

MOVS.W <Rd>, <Rm>, <shift> <Rs> // (Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented ii

MOVS{<c>}{<g>} <Rd>, <Rm>, <shift> <Rs>
Not flag setting (S == 0)

MOV<c>.W <Rd>, <Rm>, <shift> <Rs> // (Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented :
MOV{<c>}{<g>} <Rd>, <Rm>, <shift> <Rs>
d = UInt(Rd); m = UInt(Rm); UInt(Rs);

s
setflags = (S == '1"); shift t = DecodeRegShift(stype);
if d == 15 || m == 15 || s == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Related encodings: In encoding T1, for an op field value that is not described above, see Data-processing (two low
registers).

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the general-purpose source register and the destination register, encoded in the "Rdm" field.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Alias Conditions

Alias Of variant Is preferred when

ASRS (register) Al (flag setting) S =="'1" && stype == '10'
ASRS (register) T1 (arithmetic shift right) op == '0100' && !'InITBlock()
ASRS (register) T2 (flag setting) stype == '10' & S = '1'
ASR (register) A1l (not flag setting) == '0' && stype == '10'
ASR (register) T1 (arithmetic shift right) op == '0100' && InITBlock()
ASR (register) T2 (not flag setting) stype == '10' & S == '0'
LSLS (register) Al (flag setting) == '1l' && stype == '00'
LSLS (register) T1 (logical shift left) op == '0010' && !'InITBlock()
LSLS (register) T2 (flag setting) stype == '00' && S == '1"'
LSL (register) A1 (not flag setting) S == "'0' & stype == '00'

MOV, MOVS (register-shifted

register) Page 264

Alias
LSIL. (register)
LSL (register)
LSRS (register)
LSRS (register)
LSRS (register)
LSR (register)
LSR (register)
LSR (register)
RORS (register)
RORS (register)
RORS (register)
ROR (register)
ROR (register)
ROR (register)

Operation

Of variant

T1 (logical shift left)
T2 (not flag setting)
Al (flag setting)

T1 (logical shift right)
T2 (flag setting)

A1l (not flag setting)
T1 (logical shift right)
T2 (not flag setting)
Al (flag setting)

T1 (rotate right)

T2 (flag setting)

Al (not flag setting)
T1 (rotate right)

T2 (not flag setting)

if ConditionPassed() then

EncodingSpecificOperations();

shift n =

UInt(R[s]<7:0>);

(result, carry) = Shift C(R[m], shift t, shift n,

R[d] = result;

if setflags then

PSTATE.N
PSTATE.Z
PSTATE.C

result<31l>;

IsZeroBit(result);

carry;

// PSTATE.V unchanged

Operational information

Is preferred when

op == '0010' && InITBlock()
stype == '00' & S == '0'

== '1l"'" && stype == '01'
op == '0011' && !'InITBlock()
stype == '01' & S == '1'

= '0' && stype == '01'
op == '0011' && InITBlock()
stype == '01' & S == '0'

== '1l"' & stype == '11'
op == '0111' && !InITBlock()
stype == '11' & S == '1'

== '0' && stype == '11'
op == '0111' && InITBlock()
stype == '11' & S == '0'
PSTATE.C);

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or

destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV, MOVS (register-shifted

register)

Page 265

MOVT

Move Top writes an immediate value to the top halfword of the destination register. It does not affect the contents of
the bottom halfword.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 Jo 0 1 1 o[1][0 O] imm4 | Rd | imm12

cond

Al

MOVT{<c>}{<g>} <Rd>, #<imml6>

d = UInt(Rd); imml6 = imm4:imml2;
if d == 15 then UNPREDICTABLE;

Tl
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 11 1 0]i]1 of1][1 0 o] imm4 [O] imm3 | Rd | imm8

T1

MOVT{<c>}{<g>} <Rd>, #<imml6>

d = UInt(Rd); imml6 = imm4:i:imm3:imm8;
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm16> For encoding Al: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field.

For encoding T1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:i:imm3:imm8" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d]<31:16> = imml6;
// R[d]<15:0> unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:

MOVT Page 266

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVT Page 267

MRC

Move to general-purpose register from System register. This instruction copies the value of a System register to a
general-purpose register.

The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For
more information see About the AArch32 System register interface and General behavior of System registers.

In an implementation that includes EL2, MRC accesses to system control registers can be trapped to Hyp mode,
meaning that an attempt to execute an MRC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2
configurable instruction enables, disables, and traps.

Because of the range of possible traps to Hyp mode, the MRC pseudocode does not show these possible traps.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 2019 18 17 16 1514 1312 11 10 9 8 7 6 5 4 3 2 10

['=1111 |1 1 1 0] opcl1 1] CRn | Rt [1 1 1 Jcoproc<O>| opc2 [1] CRm |
cond coproc<3:1>

Al

MRC{<c>}{<g>} <coproc>, {#}<opcl>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

t = nt(Rt); cp = if coproc<@> == '0' then 14 else 15;

// A 8 A removes UNPREDICTABLE for R13
Tl

151413121110 9 8 7 6 5 4 3 2 1 0 15141312 11 10 9 8 7 6 5 4 3 2 1 0
[11101110[opcl 1] CRAN | Rt [1 1 1 Jcoproc<0>| opc2 [1] CRm |

coproc<3:1>
T1

MRC{<c>}{<g>} <coproc>, {#}<opcl>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

t = nt(Rt); cp = if coproc<@> == '0' then 14 else 15;
// A 8 A removes UNPREDICTABLE for R13

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<coproc> Is the System register encoding space, encoded in “coproc<0>":

coproc<0> <coproc>

0 pla
1 pl5
<opcl> Is the opcl parameter within the System register encoding space, in the range 0 to7, encoded in the
"opcl" field.
<Rt> Is the general-purpose register to be transferred or APSR nzcv (encoded as 0b1111), encoded in the

"Rt" field. If APSR nzcv is used, bits [31:28] of the transferred value are written to the PSTATE
condition flags.

<CRn> Is the CRn parameter within the System register encoding space, in the range c0 to c15, encoded in the
"CRn" field.
<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in

the "CRm" field.

MRC Page 268

<opc2> Is the opc2 parameter within the System register encoding space, in the range 0 to7, encoded in the
"opc2" field.

The possible values of { <coproc>, <opcl>, <CRn>, <CRm>, <opc2> } encode the entire System register and
System instruction encoding space. Not all of this space is allocated, and the System register and System instruction
descriptions identify the allocated encodings.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

if t !'= 15 || AArch32.SysRegReadCanWriteAPSR(cp, ThisInstr()) then
AArch32.SysRegRead(cp, ThisInstr(), t);

else
UNPREDICTABLE;

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MRC Page 269

MRRC

Move to two general-purpose registers from System register. This instruction copies the value of a System register to
two general-purpose registers.

The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For
more information see About the AArch32 System register interface and General behavior of System registers.

In an implementation that includes EL2, MRRC accesses to System registers can be trapped to Hyp mode, meaning that
an attempt to execute an MRRC instruction in a Non-secure mode other than Hyp mode, that would be permitted in the
absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2 configurable
instruction enables, disables, and traps.

Because of the range of possible traps to Hyp mode, the MRRC pseudocode does not show these possible traps.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 2019 18 17 16 1514 1312 11 10 9 8 7 6 5 4 3 2 10

['=1111 |1 1 0 0 of1fo]J1] R2 | Rt [1 1 1 Jcoproc<O>] opcl1 | CRm |
cond coproc<3:1>

Al

MRRC{<c>}{<g>} <coproc>, {#}<opcl>, <Rt>, <Rt2>, <CRm>

t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<@> == '0' then 14 else 15;
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The value in the destination register is UNKNOWN.

T1
151413121110 9 8 7 6 5 4 3 2 1 0 15141312 11 10 9 8 7 6 54 3 2 10
11 1011000][1]/0of1] R2 [Rt [1 1 1 [coproc<0> opcl | CRm |

coproc<3:1>
T1

MRRC{<c>}{<q>} <coproc>, {#}<opcl>, <Rt>, <Rt2>, <CRm>

t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<0> == '0O' then 14 else 15;
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:
¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.
¢ The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

MRRC Page 270

<q>

<coproc>

<opcl>

<Rt>
<Rt2>
<CRm>

See Standard assembler syntax fields.

Is the System register encoding space, encoded in “coproc<0>":

coproc<0> <coproc>
0 pla
1 pl5

Is the opcl parameter within the System register encoding space, in the range 0 to 15, encoded in the
"opcl" field.

Is the first general-purpose register that is transferred into, encoded in the "Rt" field.
Is the second general-purpose register that is transferred into, encoded in the "Rt2" field.

Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

The possible values of { <coproc>, <opcl>, <CRm> } encode the entire System register encoding space. Not all of
this space is allocated, and the System register descriptions identify the allocated encodings.

For the permitted uses of these instructions, as described in this manual, <Rt2> transfers bits[63:32] of the selected
System register, while <Rt> transfers bits[31:0].

Operation

if ConditionPassed() then

EncodingSpecificOperations();

AArch32.SysRegRead64(cp, ThisInstr(), t, t2);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MRRC Page 271

MRS

Move Special register to general-purpose register moves the value of the APSR, CPSR, or SPSR_<current mode> into
a general-purpose register.

Arm recommends the APSR form when only the N, Z, C, V, Q, and GE[3:0] bits are being written. For more information,
see APSR.

An MRS that accesses the SPSRs is UNPREDICTABLE if executed in User mode or System mode.

An MRS that is executed in User mode and accesses the CPSR returns an UNKNOWN value for the CPSR.{E, A, I, E M}
fields.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 0 1 Oo|R[0[0](1)(1)(1) (D) Rd [(0)](0)] o]0 0 0 0](0)(0)(0)(0)]
cond

Al

MRS{<c>}{<q>} <Rd>, <spec_ reg>

d = UInt(Rd); read spsr = (R == "'1");
if d == 15 then UNPREDICTABLE;

T1
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O
[1 111001111 1[R[DOID@D[1 o]w©)]o0] Rd [(0)[(0)] 0 [(0)](0)](0)[(0)[(0)]

MRS{<c>}{<q>} <Rd>, <spec_reg>

d = UInt(Rd); read spsr = (R == '1");
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<spec reg> Is the special register to be accessed, encoded in “R”:

R <spec_reg>
0 CPSR|APSR
1 SPSR

MRS Page 272

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if read _spsr then
if PSTATE.M IN {M32 User,M32 System} then
UNPREDICTABLE;
else
R[d] = SPSR[];

else
// CPSR has same bit assignments as SPSR, but with the IT, J, SS, IL, and T bits masked out.
bits(32) mask = '11111000 11101111 00000011 11011111';
psr_val = GetPSRFromPSTATE(AArch32 NonDebugState, 32) AND mask;
if PSTATE.EL == ELO then
// If accessed from User mode return UNKNOWN values for E, A, I, F bits, bits<9:6>,
// and for the M field, bits<4:0>
psr_val<22> = bits(1) UNKNOWN;
psr val<9:6> = bits(4) UNKNOWN;
psr_val<4:0> bits(5) UNKNOWN;
R[d] = psr_val;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32 User, M32 System} && read spsr, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MRS Page 273

MRS (Banked register)

Move to Register from Banked or Special register moves the value from the Banked general-purpose register or Saved
Program Status Registers (SPSRs) of the specified mode, or the value of ELR_hyp, to a general-purpose register.

MRS (Banked register) is UNPREDICTABLE if executed in User mode.

When EL3 is using AArch64, if an MRS (Banked register) instruction that is executed in a Secure EL1 mode would
access SPSR mon, SP_mon, or LR mon, it is trapped to EL3.

The effect of using an MRS (Banked register) instruction with a register argument that is not valid for the current mode
is UNPREDICTABLE. For more information see Usage restrictions on the Banked register transfer instructions.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 0 1 O|R|[O]O] M1 | Rd [(0)(0)1]M]0 0 0 0](0)(0)(0)(0)]
cond

Al

MRS{<c>}{<g>} <Rd>, <banked reg>

d = UInt(Rd); read spsr = (R == "'1");

if d == 15 then UNPREDICTABLE;

SYSm = M:M1;

Tl

15 14 13 121110 9 8 7 6 5 4 3 2 1 0 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O
[1 111001111 1]R] M1 [1 0]0)]o0] Rd [(0)[(0)] 1 [M(0)[(0)](0)[(0)]

Tl

MRS{<c>}{<g>} <Rd>, <banked reg>

d = UInt(Rd); read spsr = (R == "'1");
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
SYSm = M:M1;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<banked reg> Is the name of the banked register to be transferred to or from, encoded in “R:M:M1":

MRS (Banked register) Page 274

R M M1 <banked reg>
0 0 0000 R8 usr

0 0 0001 RO usr

0 0 0010 R10 usr

0 0 0011 R11 usr

0 0 0100 R12 usr

0 0 0101 SP_usr

0 0 0110 LR usr

0 0 0111 UNPREDICTABLE
0 0 1000 R8 fiq

0 0 1001 RO fiq

0 0 1010 R10 fiq

0 0 1011 R11 fiq

0 0 1100 R12 fiq

0 0 1101 SP_fiq

0 0 1110 LR fiq

0 0 1111 UNPREDICTABLE
0 1 0000 LR irq

0 1 0001 SP irq

0 1 0010 LR svc

0 1 0011 SP_svc

0 1 0100 LR abt

0 1 0101 SP_abt

0 1 0110 LR und

0 1 0111 SP_und

0 1 10xx UNPREDICTABLE
0 1 1100 LR mon

0 1 1101 SP_mon

0 1 1110 ELR hyp

0 1 1111 SP_hyp

1 0 XXX UNPREDICTABLE
1 0 10xx UNPREDICTABLE
1 0 110x UNPREDICTABLE
1 0 1110 SPSR_fiq

1 0 1111 UNPREDICTABLE
1 1 0000 SPSR_irq

1 1 0001 UNPREDICTABLE
1 1 0010 SPSR_svc

1 1 0011 UNPREDICTABLE
1 1 0100 SPSR_abt

1 1 0101 UNPREDICTABLE
1 1 0110 SPSR_und

1 1 0111 UNPREDICTABLE
1 1 10xx UNPREDICTABLE
1 1 1100 SPSR_mon

1 1 1101 UNPREDICTABLE
1 1 1110 SPSR_hyp

1 1 1111 UNPREDICTABLE

MRS (Banked register)

Page 275

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == ELO then
UNPREDICTABLE;
else
mode = PSTATE.M;
if read spsr then
SPSRaccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
case SYSm of
when '01110' RI[d]
when '10000' R[d]
when '10010' RI[d]
when '10100' RI[d]
when '10110' RI[d]
when '11100'
if 'ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
R[d] = SPSR mon;
when '11110' R[d] = SPSR_hyp<31:0>;

SPSR fig<31:0>;
SPSR_irq<31:0>;
SPSR svc<31:0>;
SPSR_abt<31:0>;
SPSR und<31:0>;

else
integer m;
BankedRegisterAccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
case SYSm of
when '00xxx' // Access the User mode registers
m = UInt(SYSm<2:0>) + 8;
R[d] = Rmode[m,M32 User];
when '01xxx' // Access the FIQ mode registers
m = UInt(SYSm<2:0>) + 8;
R[d] = Rmode[m,M32 FIQ];

when '1000x' // Access the IRQ mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
R[d] = Rmode[m,M32 IRQ];

when '1001x' // Access the Supervisor mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
R[d] = Rmode[m,M32 Svc];

when '1010x' // Access the Abort mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
R[d] = Rmode[m,M32 Abort];

when '1011x' // Access the Undefined mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
R[d] = Rmode[m,M32 Undef];

when '1110x' // Access Monitor registers
if !'ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
R[d] = Rmode[m,M32 Monitor];

when '11110° // Access ELR hyp register
R[d] = ELR hyp;

when '11111° // Access SP_hyp register

R[d] = Rmode[13,M32 Hypl;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == ELO, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MRS (Banked register) Page 276

MSR (Banked register)

Move to Banked or Special register from general-purpose register moves the value of a general-purpose register to the
Banked general-purpose register or Saved Program Status Registers (SPSRs) of the specified mode, or to ELR_hyp.

MSR (Banked register) is UNPREDICTABLE if executed in User mode.

When EL3 is using AArch64, if an MSR (Banked register) instruction that is executed in a Secure EL1 mode would
access SPSR mon, SP_mon, or LR mon, it is trapped to EL3.

The effect of using an MSR (Banked register) instruction with a register argument that is not valid for the current mode
is UNPREDICTABLE. For more information see Usage restrictions on the Banked register transfer instructions.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 0 1 O|R[1]0] M1 [(1) 1) @) @[oo]1][M][0 0 0 0] Rn |
cond

Al

MSR{<c>}{<q>} <banked reg>, <Rn>

n = UInt(Rn); write spsr = (R == '1"');

if n == 15 then UNPREDICTABLE;

SYSm = M:M1;
Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 111001110 0[R] Rn [1 of0)]o0] M1 [(0)[(0)] 1 [M](0)](0)[(0)[(0)]

Tl

MSR{<c>}{<g>} <banked reg>, <Rn>

n = UInt(Rn); write spsr = (R == '1');
if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
SYSm = M:M1;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<banked reg> Is the name of the banked register to be transferred to or from, encoded in “R:M:M1”:

MSR (Banked register) Page 277

<Rn>

R M M1 <banked reg>
0 0 0000 R8 usr

0 0 0001 RO usr

0 0 0010 R10 usr

0 0 0011 R11 usr

0 0 0100 R12 usr

0 0 0101 SP_usr

0 0 0110 LR usr

0 0 0111 UNPREDICTABLE
0 0 1000 R8 fiq

0 0 1001 RO fiq

0 0 1010 R10 fiq

0 0 1011 R11 fiq

0 0 1100 R12 fiq

0 0 1101 SP_fiq

0 0 1110 LR fiq

0 0 1111 UNPREDICTABLE
0 1 0000 LR irq

0 1 0001 SP irq

0 1 0010 LR svc

0 1 0011 SP_svc

0 1 0100 LR abt

0 1 0101 SP_abt

0 1 0110 LR und

0 1 0111 SP_und

0 1 10xx UNPREDICTABLE
0 1 1100 LR mon

0 1 1101 SP_mon

0 1 1110 ELR hyp

0 1 1111 SP_hyp

1 0 XXX UNPREDICTABLE
1 0 10xx UNPREDICTABLE
1 0 110x UNPREDICTABLE
1 0 1110 SPSR_fiq

1 0 1111 UNPREDICTABLE
1 1 0000 SPSR_irq

1 1 0001 UNPREDICTABLE
1 1 0010 SPSR_svc

1 1 0011 UNPREDICTABLE
1 1 0100 SPSR_abt

1 1 0101 UNPREDICTABLE
1 1 0110 SPSR_und

1 1 0111 UNPREDICTABLE
1 1 10xx UNPREDICTABLE
1 1 1100 SPSR_mon

1 1 1101 UNPREDICTABLE
1 1 1110 SPSR_hyp

1 1 1111 UNPREDICTABLE

Is the general-purpose source register, encoded in the "Rn" field.

MSR (Banked register)

Page 278

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == ELO then
UNPREDICTABLE;
else
mode = PSTATE.M;
if write spsr then
SPSRaccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
case SYSm of

when '01110' SPSR fig<31:0> = R[n];
when '10000' SPSR irq<31:0> = R[n];
when '10010' SPSR svc<31:0> = R[n];
when '10100' SPSR abt<31:0> = R[n];
when '10110' SPSR und<31:0> = R[n];

when '11100'
if 'ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
SPSR _mon<31:0> = R[n];

when '11110' SPSR hyp<31:0> = R[n];

else
integer m;
BankedRegisterAccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
case SYSm of
when '00xxx' // Access the User mode registers
m = UInt(SYSm<2:0>) + 8;
Rmode[m,M32 User] = R[n];
when '01xxx' // Access the FIQ mode registers
m = UInt(SYSm<2:0>) + 8;
Rmode[m,M32_FIQ] = R[n];

when '1000x' // Access the IRQ mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
Rmode[m,M32_IRQ] = R[n];

when '1001x' // Access the Supervisor mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
Rmode[m,M32 Svc] = R[n];

when '1010x' // Access the Abort mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
Rmode[m,M32 _Abort] = R[n];

when '1011x' // Access the Undefined mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
Rmode[m,M32 Undef] = R[n];

when '1110x' // Access Monitor registers

if 'ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
] =

Rmode[m,M32 Monitor R[n];

when '11110' // Access ELR hyp register
ELR hyp = R[n];

when '11111° // Access SP_hyp register

Rmode[13,M32 Hypl = R[n];
CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == ELO, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSR (Banked register) Page 279

MSR (immediate)

Move immediate value to Special register moves selected bits of an immediate value to the corresponding bits in the
APSR, CPSR, or SPSR_<current mode>.

Because of the Do-Not-Modify nature of its reserved bits, the immediate form of MSR is normally only useful at the
Application level for writing to APSR nzcvq (CPSR f).

If an MSR (immediate) moves selected bits of an immediate value to the CPSR, the PE checks whether the value being
written to PSTATE .M is legal. See Illegal changes to PSTATE.M.

An MSR (immediate) executed in User mode:

e Is CONSTRAINED UNPREDICTABLE if it attempts to update the SPSR.
¢ Otherwise, does not update any CPSR field that is accessible only at EL1 or higher,

An MSR (immediate) executed in System mode is CONSTRAINED UNPREDICTABLE if it attempts to update the SPSR.
The CPSR.E bit is writable from any mode using an MSR instruction. Arm deprecates using this to change its value.

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 1 1 O|R[1 0] mask [(D[D]W)1) imm12

cond

Al ({(R == 0 && mask == 0000))

MSR{<c>}{<q>} <spec reg>, #<imm>

if mask == '0000' && R == 'O' then SEE "Related encodings";
imm32 = A32ExpandImm(imml2); write spsr = (R == '1");
if mask == '0000' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If mask == '0000' & R == 'l1', then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Related encodings: Move Special Register and Hints (immediate).

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.

<spec reg> Is one of:
* APSR <bits>.
* CPSR <fields>.
* SPSR <fields>.

For CPSR and SPSR, <fields> is a sequence of one or more of the following:

c

mask<0> = '1"' to enable writing of bits<7:0> of the destination PSR.
x

mask<1> = "1"' to enable writing of bits<15:8> of the destination PSR.
s

mask<2> = '1' to enable writing of bits<23:16> of the destination PSR.
f

mask<3> = "1l"' to enable writing of bits<31:24> of the destination PSR.

For APSR, <bits> is one of nzcvq, g, or nzcvqg. These map to the following CPSR _<fields> values:
* APSR nzcvq is the same as CPSR f (mask== '1000").

MSR (immediate) Page 280

* APSR g is the same as CPSR s (mask == '0100").
* APSR nzcvqg is the same as CPSR fs (mask == '1100").

Arm recommends the APSR <bits> forms when only the N, Z, C, V, Q, and GE[3:0] bits are being
written. For more information, see The Application Program Status Register, APSR.

<imm> Is an immediate value. See Modified immediate constants in A32 instructions for the range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if write spsr then
if PSTATE.M IN {M32 User,M32 System} then
UNPREDICTABLE;
else
SPSRWriteByInstr(imm32, mask);

else
// Attempts to change to an illegal mode will invoke the Illegal Execution state mechanism
CPSRWriteByInstr(imm32, mask);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32 User,M32 System} && write spsr, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSR (immediate) Page 281

MSR (register)

Move general-purpose register to Special register moves selected bits of a general-purpose register to the APSR,
CPSR or SPSR_<current mode>.

Because of the Do-Not-Modify nature of its reserved bits, a read-modify-write sequence is normally required when the
MSR instruction is being used at Application level and its destination is not APSR nzcvqg (CPSR f).

If an MSR (register) moves selected bits of an immediate value to the CPSR, the PE checks whether the value being
written to PSTATE .M is legal. See Illegal changes to PSTATE.M.

An MSR (register) executed in User mode:

e Is UNPREDICTABLE if it attempts to update the SPSR.
¢ Otherwise, does not update any CPSR field that is accessible only at EL1 or higher.

An MSR (register) executed in System mode is UNPREDICTABLE if it attempts to update the SPSR.
The CPSR.E bit is writable from any mode using an MSR instruction. Arm deprecates using this to change its value.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| '=1111 |o 0 0 1 O|R|[1[0] wmask [(1)(1) (1) @|0)0)]o]0)]o 0 0 0] Rn |
cond
Al
MSR{<c>}{<g>} <spec reg>, <Rn>
n = UInt(Rn); write spsr = (R == '1');
if mask == '0000' then UNPREDICTABLE;
if n == 15 then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior
If mask == '0000', then one of the following behaviors must occur:
¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
T1
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 111001110 0[R] Rn [1 oJ[0o] mask [(0)[0) 0 [(0)](0)[(0)](0)[(0)]
Tl

MSR{<c>}{<q>} <spec reg>, <Rn>
n = UInt(Rn); write spsr = (R == '1"');

if mask == '0000' then UNPREDICTABLE;
if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If mask == '0000', then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

MSR (register) Page 282

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.

<spec reg> Is one of:
* APSR <bits>.
* CPSR <fields>.
* SPSR <fields>.

For CPSR and SPSR, <fields> is a sequence of one or more of the following:

c

mask<0> = "1"' to enable writing of bits<7:0> of the destination PSR.
X

mask<1> = "1"' to enable writing of bits<15:8> of the destination PSR.
s

mask<2> = '1' to enable writing of bits<23:16> of the destination PSR.
f

mask<3> = '1l"' to enable writing of bits<31:24> of the destination PSR.

For APSR, <bits> is one of nzcvq, g, or nzcvqgg. These map to the following CPSR _<fields> values:
* APSR nzcvq is the same as CPSR f (mask== '1000").
* APSR g is the same as CPSR s (mask == '0100").
* APSR nzcvqg is the same as CPSR fs (mask == '1100").

Arm recommends the APSR <bits> forms when only the N, Z, C, V, Q, and GE[3:0] bits are being
written. For more information, see The Application Program Status Register, APSR.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if write spsr then
if PSTATE.M IN {M32 User,M32 System} then
UNPREDICTABLE;
else
SPSRWriteByInstr(R[n], mask);

else

// Attempts to change to an illegal mode will invoke the Illegal Execution state mechanism
CPSRWriteByInstr(R[n], mask);

CONSTRAINED UNPREDICTABLE behavior

Ifwrite spsr && PSTATE.M IN {M32 User,M32 System}, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSR (register) Page 283

MUL, MULS

Multiply multiplies two register values. The least significant 32 bits of the result are

written to the destination register.

These 32 bits do not depend on whether the source register values are considered to be signed values or unsigned

values.

Optionally, it can update the condition flags based on the result. In the T32 instruction set, this option is limited to only
a few forms of the instruction. Use of this option adversely affects performance on many implementations.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 0 0[O0 O OS] Rd [(0) (0) (0) (0)] Rm [1 0 0 1] Rn |
cond
Flag setting (S == 1)
MULS{<c>}{<g>} <Rd>, <Rn>{, <Rm>}
Not flag setting (S == 0)
MUL{<c>}{<g>} <Rd>, <Rn>{, <Rm>}
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
|01 000 0[1 10 1] Rn | Rdm |
T1
MUL<c>{<g>} <Rdm>, <Rn>{, <Rdm>} // (Inside IT block)
MULS{<gq>} <Rdm>, <Rn>{, <Rdm>} // (Outside IT block)
d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm); setflags = !'InITBlock();
T2
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 11101 10[00 0] Rn [1 1 1 1] Rd |0 0]0 0] Rm |
T2

MUL<c>.W <Rd>, <Rn>{, <Rm>} // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

MUL{<c>}{<g>} <Rd>, <Rn>{, <Rm>}

= UInt(Rd); FALSE;

(UInt(Rn);
fd==15 || n

5 (| m

n m = UInt(Rm); setflags

d
i

15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints

on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

MUL, MULS

Page 284

<q> See Standard assembler syntax fields.

<Rdm> Is the second general-purpose source register holding the multiplier and the destination register,
encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field. If

omitted, <Rd> is used.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operandl = SInt(R[n]); // operandl
operand2 = SInt(R[m]); // operand2
result = operandl * operand2;
R[d] = result<31:0>;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result<31:0>);
// PSTATE.C, PSTATE.V unchanged

UInt(R[n]) produces the same final results
UInt(R[m]) produces the same final results

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MUL, MULS Page 285

MVN, MVNS (immediate)

Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to the destination register.
If the destination register is not the PC, the MVNS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:
¢« The MVN variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
¢« The MVNS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 1 1 1]1 1][S](0)(0)(0)(0) Rd | imm12

cond
MVN (S == 0)

MVN{<c>}{<g>} <Rd>, #<const>

MVNS (S == 1)

MVNS{<c>}{<qg>} <Rd>, #<const>

d = UInt(Rd); setflags = (S == '1");

(imm32, carry) = A32ExpandImm C(imml2, PSTATE.C);
T1

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 1312 1110 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0]iJoJo 0 1 1[S[1 1 1 1[0[imm3 | Rd | imm8

MVN (S == 0)
MVN{<c>}{<qg>} <Rd>, #<const>
MVNS (S == 1)

MVNS{<c>}{<q>} <Rd>, #<const>

d = UInt(Rd); setflags = (S == '1");
(imm32, carry) = T32ExpandImm C(i:imm3:imm8, PSTATE.C);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

MVN, MVNS (immediate) Page 286

<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used:
* For the MVN variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.
* For the MVNS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = NOT(imm32);
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVN, MVNS (immediate) Page 287

MVN, MVNS (register)

Bitwise NOT (register) writes the bitwise inverse of a register value to the destination register.
If the destination register is not the PC, the MVNS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:
¢« The MVN variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
¢« The MVNS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 1]1 1][S](0)(0)(0)(0) Rd | imm5 [stype] 0] Rm |
cond

MVN, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
MVN{<c>}{<q>} <Rd>, <Rm>, RRX

MVN, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
MVN{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MVNS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
MVNS{<c>}{<g>} <Rd>, <Rm>, RRX

MVNS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

MVNS{<c>}{<g>} <Rd>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift n) = DecodeImmShift(stype, imm5);
Tl
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[01 00 00[111 1] Rm | Rd |
T1

MVN<c>{<g>} <Rd>, <Rm> // (Inside IT block)
MVNS{<gq>} <Rd>, <Rm> // (Outside IT block)

= UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
shift t, shift n) = (SRType LSL, 0);

d
(

T2

MVN, MVNS (register) Page 288

0

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 12 1110 9 8 7 6 5 4 3 2 1
1 1 1 01 0 1/0 0 1 1[s[1 1 1 1[0)] imm3 | Rd [imm2]stype]| Rm

MVN, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
MVN{<c>}{<q>} <Rd>, <Rm>, RRX
MVN, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

MVN<c>.W <Rd>, <Rm> // (Inside IT block, and <Rd>, <Rm> can be represented in T1)

MVN{<c>}{<g>} <Rd>, <Rm> {, <shift> #<amount>}

MVNS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)
MVNS{<c>}{<q>} <Rd>, <Rm>, RRX

MVNS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

MVNS.W <Rd>, <Rm> // (Outside IT block, and <Rd>, <Rm> can be represented in T1)
MVNS{<c>}{<g>} <Rd>, <Rm> {, <shift> #<amount>}
d = UInt(Rd); m = UInt(Rm); setflags = (S == '1");

(shift t, shift n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints

on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates

using the PC as the destination register, but if the PC is used:

* For the MVN variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32

general-purpose registers and the PC.

* For the MVNS variant, the instruction performs an exception return, that restores PSTATE

from SPSR <current mode>.
For encoding T1 and T2: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding Al: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,

but this is deprecated.

For encoding T1 and T2: is the general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the source register, encoded in “stype”:
stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32

(when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32

(when <shift> = LSR or ASR), encoded in the "imm3:imm?2" field as <amount> modulo 32.

MVN, MVNS (register)

Page 289

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
result = NOT(shifted);
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;

// PSTATE.V unchanged

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVN, MVNS (register) Page 290

MVN, MVNS (register-shifted register)

Bitwise NOT (register-shifted register) writes the bitwise inverse of a register-shifted register value to the destination
register. It can optionally update the condition flags based on the result.

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 1]1 1][S](0)(0)(0)(0) Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)

MVNS{<c>}{<g>} <Rd>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

MVN{<c>}{<g>} <Rd>, <Rm>, <shift> <Rs>

d = UInt(Rd); m = UInt(Rm); s UInt(Rs);
setflags = (S == '1'); shift t DecodeRegShift(stype);
if d == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift n = UInt(R[s]<7:0>);
(shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
result = NOT(shifted);
R[d] = result;
if setflags then
PSTATE.N = result<31l>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

MVN, MVNS (register-shifted

register) Page 291

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVN, MVNS (register-shifted

register) Page 292

NOP

No Operation does nothing. This instruction can be used for instruction alignment purposes.

Note

The timing effects of including a NOP instruction in a program are not guaranteed. It can increase execution time,
leave it unchanged, or even reduce it. Therefore, NOP instructions are not suitable for timing loops.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| I=1111 |0 01 10 |0 |1 0 |O 0 |0 0|(1H(1ﬂ(1ﬂ(1ﬂ(0)(0)(0)(0) 0O 000 OOTP O 0|
cond
Al
NOP{<c>}{<qg>}

// No additional decoding required

Tl

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
1 011111 1[0 00 O0[0O0O0 O]

Tl

NOP{<c>}{<g>}
// No additional decoding required
T2

15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13 12 11 10 9 8 7 6 5
1 1110011101 o0/@MmOm1oloolofo o oo o0 0

[@] BN
o|w
QN
Ol
o|o

T2

NOP{<c>}.W
// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
// Do nothing

NOP Page 293

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NOP Page 294

ORN, ORNS (immediate)

Bitwise OR NOT (immediate) performs a bitwise (inclusive) OR of a register value and the complement of an
immediate value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
[1 11 1 0[iloJo 0 1 1[s| !'=1111 [0] imm3 | Rd | imm8

Rn

Flag setting (S == 1)
ORNS{<c>}{<g>} {<Rd>,} <Rn>, #<const>
Not flag setting (S == 0)

ORN{<c>}{<g>} {<Rd>,} <Rn>, #<const>

if Rn == '1111' then SEE "MVN (immediate)";

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1");

(imm32, carry) = T32ExpandImm C(i:imm3:imm8, PSTATE.C);

if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants in T32 instructions for the range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] OR NOT(imm32);
R[d] = result;
if setflags then

PSTATE.N = result<31l>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;

// PSTATE.V unchanged
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

ORN, ORNS (immediate) Page 295

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORN, ORNS (immediate) Page 296

ORN, ORNS (register)

Bitwise OR NOT (register) performs a bitwise (inclusive) OR of a register value and the complement of an optionally-
shifted register value, and writes the result to the destination register. It can optionally update the condition flags
based on the result.

Tl

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O

[1 11 010 1[0 0 1 1[s| !'=1111 [0)] imm3 | Rd [imm?2]stype] Rm |
Rn

ORN, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
ORN{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ORN, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))
ORN{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORNS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)
ORNS{<c>}{<qg>} {<Rd>,} <Rn>, <Rm>, RRX

ORNS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ORNS{<c>}{<qg>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rn == '1111' then SEE "MVN (register)";

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");

(shift _t, shift n) = DecodeImmShift(stype, imm3:imm2);

if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR
or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

ORN, ORNS (register) Page 297

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
result = R[n] OR NOT(shifted);
R[d] = result;
if setflags then
PSTATE.N = result<31l>;
PSTATE.Z IsZeroBit(result);
PSTATE.C carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORN, ORNS (register) Page 298

ORR, ORRS (immediate)

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate value, and writes the
result to the destination register.
If the destination register is not the PC, the ORRS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The ORR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
¢ The ORRS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 1 1 1[0 0]S] Rn | Rd | imm12

cond
ORR (S == 0)

ORR{<c>}{<g>} {<Rd>,} <Rn>, #<const>
ORRS (5 == 1)

ORRS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

= UInt(Rn); setflags = (S == '1");
A32ExpandImm C(imm12, PSTATE.C);

d = UInt(Rd); n
(imm32, carry) =

Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0]iloJo 0 1 o[S| '=1111 [0[imm3 | Rd | imm8

Rn
ORR (S == 0)

ORR{<c>}{<qg>} {<Rd>,} <Rn>, #<const>
ORRS (S ==1)

ORRS{<c>}{<qg>} {<Rd>,} <Rn>, #<const>

if Rn == '1111' then SEE "MOV (immediate)";

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1");

(imm32, carry) = T32ExpandImm C(i:imm3:imm8, PSTATE.C);

if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

ORR, ORRS (immediate) Page 299

Asse

mbler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:
* For the ORR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.
* For the ORRS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.
For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.
<Rn> For encoding Al: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.
<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.
Operation

if ConditionPassed() then

EncodingSpecificOperations();
result = R[n] OR imm32;
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z IsZeroBit(result);
PSTATE.C carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR, ORRS (immediate) Page 300

ORR, ORRS (register)

Bitwise OR (register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register value, and
writes the result to the destination register.
If the destination register is not the PC, the ORRS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The ORR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.
¢ The ORRS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 1[0 O]S] Rn | Rd | imm5 [stype] 0 | Rm |
cond

ORR, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
ORR{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ORR, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
ORR{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORRS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
ORRS{<c>}{<qg>} {<Rd>,} <Rn>, <Rm>, RRX

ORRS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ORRS{<c>}{<qg>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift n) = DecodeImmShift(stype, imm5);

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[01 00 0 0[110O0] Rm | Rdn |

T1

ORR<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)
ORRS{<g>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d =
(shift t, shift_n) = (SRType LSL, 0);

T2

ORR, ORRS (register) Page 301

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 01 0 1[0 0 1 0of[Ss| '=1111 [0)] imm3 | Rd [imm2]stype]| Rm |
Rn

ORR, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
ORR{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX
ORR, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ORR<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

ORR{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORRS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)
ORRS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ORRS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ORRS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)
ORRS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rn == '1111' then SEE "Related encodings";

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");

(shift _t, shift n) = DecodeImmShift(stype, imm3:imm2);

if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Related encodings: Data-processing (shifted register)

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
E(Zgﬁter is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is

* For the ORR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

* For the ORRS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1l: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1l: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

ORR, ORRS (register) Page 302

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "immb5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm?2" field as <amount> modulo 32.

In T32 assembly:

¢ OQutside an IT block, if ORRS <Rd>, <Rn>, <Rd> is written with <Rd> and <Rn> both in the range R0-R7, it
is assembled using encoding T1 as though ORRS <Rd>, <Rn> had been written.

¢ Inside an IT block, if ORR<c> <Rd>, <Rn>, <Rd> is written with <Rd> and <Rn> both in the range R0-R7,
it is assembled using encoding T1 as though ORR<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
result = R[n] OR shifted;
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;

// PSTATE.V unchanged
Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO01_31, pseudocode v2023-03 rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR, ORRS (register) Page 303

ORR, ORRS (register-shifted register)

Bitwise OR (register-shifted register) performs a bitwise (inclusive) OR of a register value and a register-shifted
register value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 1|0 O]S] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)
ORRS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>
Not flag setting (S == 0)

ORR{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

UInt(Rm); s = UInt(Rs);
DecodeReqShlft(stype)
| s

d = UInt(Rd); n = UInt(Rn);
setflags = (S == '1"); shlft
if d == 15 || n == 15 ||m——15|

== 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift n = UInt(R[s]<7:0>);
(shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
result = R[n] OR shifted;
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z IsZeroBit(result);
PSTATE.C carry;
// PSTATE.V unchanged

ORR, ORRS (register-shifted

register) Page 304

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR, ORRS (register-shifted

register) Page 305

PKHBT, PKHTB

Pack Halfword combines one halfword of its first operand with the other halfword of its shifted second operand.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5 4 2 1 0
| !1=1111 |0O 1 1 0 1 0 O O] Rn | Rd | imm5 [tb]0 1] Rm |
cond
PKHBT (tb == 0)
PKHBT{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, LSL #<imm>}
PKHTB (tb == 1)
PKHTB{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, ASR #<imm>}
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == '1");
(shift_t, shift n) = DecodeImmShift(tb:'0"', imm5);
if d =15 || n == 15 || m == 15 then UNPREDICTABLE;
T1
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
[1 11 010 1[0 1 1 0f0] Rn [(0)] imm3 | Rd [imm2[tb] 0 | Rm |
S T
PKHBT (tb == 0)
PKHBT{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, LSL #<imm>} // (tbform == FALSE)
PKHTB (tb == 1)
PKHTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ASR #<imm>} // (tbform == TRUE)
if S=="'1" || T == "1" then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == '1");

(shift_t, shift n) = DecodeImmShift(tb:'0"', imm3:imm2);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints

on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
<imm>

For encoding Al: the shift to apply to the value read from <Rm>, encoded in the "imm5" field.

For PKHBT, it is one of:

omitted
No shift, encoded as 0b00000.

PKHBT, PKHTB

Page 306

1-31
Left shift by specified number of bits, encoded as a binary number.

For PKHTB, it is one of:
omitted

Instruction is a pseudo-instruction and is assembled as though PKHBT{<c>}{<qg>} <Rd>, <Rm>,
<Rn> had been written.

1-32
Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded as 0b00000. Other
shift amounts are encoded as binary numbers.

Note

An assembler can permit <imm> = 0 to mean the same thing as omitting the shift, but this is not
standard UAL and must not be used for disassembly.

For encoding T1: the shift to apply to the value read from <Rm>, encoded in the "imm3:imm?2" field.
For PKHBT, it is one of:
omitted

No shift, encoded as 0b00000.

1-31
Left shift by specified number of bits, encoded as a binary number.

For PKHTB, it is one of:
omitted

Instruction is a pseudo-instruction and is assembled as though PKHBT{<c>}{<qg>} <Rd>, <Rm>,
<Rn> had been written.

1-32
Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded as 0b00000. Other
shift amounts are encoded as binary numbers.

Note

An assembler can permit <imm> = 0 to mean the same thing as omitting the shift, but this is not
standard UAL and must not be used for disassembly.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand2 = Shift(R[m], shift t, shift n, PSTATE.C); // PSTATE.C ignored
R[d]<15:0> = if tbform then operand2<15:0> else R[n]<15:0>;
R[d]<31:16> = if tbform then R[n]<31l:16> else operand2<31:16>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PKHBT, PKHTB Page 307

PLD (literal)

Preload Data (literal) signals the memory system that data memory accesses from a specified address are likely in the
near future. The memory system can respond by taking actions that are expected to speed up the memory accesses
when they do occur, such as preloading the cache line containing the specified address into the data cache.

The effect of a PLD instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 1110 1 of1]ujmo 1]1 1 1 1[D[D]W)]1) imm12

Al

PLD{<c>}{<g>} <label> // (Normal form)

PLD{<c>}{<q>} [PC, #{+/-}<imm>] // (Alternative form)

imm32 = ZeroExtend(imml2, 32); add = (U == '1");
Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 111100 o0fJufofOf1]1 1 1 1]1 1 1 1] imm12

Tl

PLD{<c>}{<qg>} <label> // (Preferred syntax)
PLD{<c>}{<q>} [PC, #{+/-}<imm>] // (Alternative syntax)
imm32 = ZeroExtend(imml2, 32); add = (U == '1");

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding Al: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.
<q> See Standard assembler syntax fields.

<label> The label of the literal data item that is likely to be accessed in the near future. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
The offset must be in the range -4095 to 4095.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

_U _+-
0 N
1 +

<imm> For encoding Al: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

PLD (literal) Page 308

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
Hint PreloadData(address);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PLD (literal) Page 309

PLD, PLDW (immediate)

Preload Data (immediate) signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as preloading the cache line containing the specified address into the data cache.

The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a write.
The effect of a PLD or PLDW instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 11 0 1 of1[u[rR[0 1] '=1111 [D[D[D]Q) imm12

Rn

Preload read (R == 1)
PLD{<c>}{<g>} [<Rn> {, #{+/-}<imm>}]
Preload write (R == 0)

PLDW{<c>}{<g>} [<Rn> {, #{+/-}<imm>}]

if Rn == '1111' then SEE "PLD (literal)";
n = UInt(Rn); 1imm32 = ZeroExtend(imml2, 32); add = (U == '1'); 1is pldw = (R == '0');
Tl
1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 1111000 1[0[w[1] !'=1111 [1 1 1 1] imm12
Rn

Preload read (W == 0)
PLD{<c>}{<qg>} [<Rn> {, #{+}<imm>}]
Preload write (W == 1)

PLDW{<c>}{<g>} [<Rn> {, #{+}<imm>}]

if Rn == '1111"' then SEE "PLD (literal)";
n = UInt(Rn); 1imm32 = ZeroExtend(imml2, 32); add = TRUE; is pldw = (W == '1");
T2
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
[1 1111000 o0ofJofw[1] '=1111 [1 1 1 1[1 1 0 O] imm8
Rn

PLD, PLDW (immediate) Page 310

Preload read (W == 0)

PLD{<c>}{<q>} [<Rn> {, #-<imm>}]

Preload write (W == 1)

PLDW{<c>}{<g>} [<Rn> {, #-<imm>}]

if Rn == '1111' then SEE "PLD (literal)";
n = UInt(Rn); 1imm32 = ZeroExtend(imm8, 32); add = FALSE; is pldw = (W == '1");

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c>

<qg>

<Rn>

+/-

<imm>

Operation

For encoding Al: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1 and T2: see Standard assembler syntax fields.
See Standard assembler syntax fields.
Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see PLD (literal).

Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U 4
0 -
_1]+

Specifies the offset is added to the base register.

For encoding A1l: is the optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imma8" field.

if ConditionPassed() then

EncodingSpecificOperations();

address

= if add then (R[n] + imm32) else (R[n] - imm32);

if is pldw then
Hint PreloadDataForWrite(address);

else

Hint PreloadData(address);

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PLD, PLDW (immediate) Page 311

PLD, PLDW (register)

Preload Data (register) signals the memory system that data memory accesses from a specified address are likely in

the near future. The memory system can respond by taking actions that are expected to speed up the memory

accesses when they do occur, such as preloading the cache line containing the specified address into the data cache.
The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a write.
The effect of a PLD or PLDW instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 1101 1[1[U[R[O 1] Rn [ERERERNER imm5 |stype| 0| Rm |
Preload read, optional shift or rotate (R == 1 && !(imm5 == 00000 && stype == 11))

PLD{<c>}{<qg>} [<Rn>, {+/-}<Rm> {, <shift> #<amount>}]
Preload read, rotate right with extend (R == 1 && imm5 == 00000 && stype == 11)

PLD{<c>}{<g>} [<Rn>, {+/-}<Rm> , RRX]
Preload write, optional shift or rotate (R == 0 && !(imm5 == 00000 && stype == 11))

PLDW{<c>}{<q>} [<Rn>, {+/-}<Rm> {, <shift> #<amount>}]
Preload write, rotate right with extend (R == 0 && imm5 == 00000 && stype == 11)

PLDW{<c>}{<qg>} [<Rn>, {+/-}<Rm> , RRX]

n = UInt(Rn); m = UInt(Rm); add = (U == '1"'); 1is pldw = (R == '0");

(shift t, shift n) = DecodeImmShift(stype, imm5);

if m == 15 || (n == 15 & is_pldw) then UNPREDICTABLE;
Tl

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 0
/1 1 111000 oOof0f[w[1] '=1111 [1 1 1 1/0 0 0 0 0 O][imm2] Rm |

Rn

Preload read (W == 0)
PLD{<c>}{<qg>} [<Rn>, {+}<Rm> {, LSL #<amount>}]
Preload write (W == 1)

PLDW{<c>}{<qg>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

if Rn == '1111' then SEE "PLD (literal)";

n = UInt(Rn); m = UInt(Rm); add = TRUE; is pldw = (W == '1");
(shift_t, shift n) = (SRType LSL, UInt(imm2));

if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints

on UNPREDICTABLE behaviors.

PLD, PLDW (register)

Page 312

Assembler Symbols

<c> For encoding Al: see Standard assembler syntax fields. <c> must be AL or omitted.
For encoding T1: see Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rn> For encoding Al: is the general-purpose base register, encoded in the "Rn" field. The PC can be used.

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U 4
0 -
_1]+

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the index register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "immb5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm?2"
field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift t, shift n, PSTATE.C);
address = if add then (R[n] + offset) else (R[n] - offset);
if is pldw then
Hint PreloadDataForWrite(address);
else
Hint PreloadData(address);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PLD, PLDW (register) Page 313

PLI (immediate, literal)

Preload Instruction signals the memory system that instruction memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the instruction
cache.

The effect of a PLI instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1, T2 and T3).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 11101 ofofJuf1[o 1] Rn [(D[D[D)]()] imm12

Al

PLI{<c>}{<g>} [<Rn> {, #{+/-}<imm>}]
PLI{<c>}{<q>} <label> // (Normal form)

PLI{<c>}{<q>} [PC, #{+/-}<imm>] // (Alternative form)

n = UInt(Rn); imm32 = ZeroExtend(imml2, 32); add = (U == '1');
Tl
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 1111001 1[0 0f1] !'=1111 [1 1 1 1] imm12
Rn
T1

PLI{<c>}{<qg>} [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "encoding T3";
n = UInt(Rn); imm32 = ZeroExtend(imml2, 32); add = TRUE;

T2
1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 111100100 oO0f[1] '=1111 [1 1 1 1[1 1 0 O] imm8

Rn
T2

PLI{<c>}{<qg>} [<Rn> {, #-<imm>}]

if Rn == '1111' then SEE "encoding T3";
n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE;

T3

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 111100 1Jufo 01 1 1 1 1[]1 1 1 1] imm12

PLI (immediate, literal) Page 314

T3

PLI{<c>}{<qg>} <label> // (Preferred syntax)

PLI{<c>}{<q>} [PC, #{+/-}<imm>] // (Alternative syntax)

n = 15;

imm32 = ZeroExtend(imml2, 32); add = (U == '1"');

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Cc>

<q>

<label>

<Rn>

+/-

<imm>

For encoding Al: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1, T2 and T3: see Standard assembler syntax fields.
See Standard assembler syntax fields.

The label of the instruction that is likely to be accessed in the near future. The assembler calculates the
required value of the offset from the Align(PC, 4) value of the instruction to this label. The offset must
be in the range -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

Is the general-purpose base register, encoded in the "Rn" field.

Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U 4
0 -
_1]+

Specifies the offset is added to the base register.

For encoding Al: is the optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imma8" field.

For encoding T3: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

For the literal forms of the instruction, encoding T3 is used, or Rn is encoded as Ob1111 in encoding Al, to indicate
that the PC is the base register.

The alternative literal syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then

EncodingSpecificOperations();

base
address

if n == 15 then Align(PC,4) else R[n];
= if add then (base + imm32) else (base - imm32);

Hint PreloadInstr(address);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PLI (immediate, literal) Page 315

PLI (register)

Preload Instruction signals the memory system that instruction memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the instruction
cache.

The effect of a PLI instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 11101 1][ofJuf1][o0 1] Rn [(D[D[D)]()] imm5 [stype] 0] Rm |

Rotate right with extend (imm5 == 00000 && stype == 11)
PLI{<c>}{<g>} [<Rn>, {+/-}<Rm> , RRX]
Shift or rotate by value (!(imm5 == 00000 && stype == 11))

PLI{<c>}{<g>} [<Rn>, {+/-}<Rm> {, <shift> #<amount>}]

n = UInt(Rn); m = UInt(Rm); add = (U == '1");
(shift t, shift n) = DecodeImmShift(stype, imm5);
if m == 15 then UNPREDICTABLE;

Tl

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

1 1 11100 10[0 01 '=1111 [1 1 1 1[0 0 0 0 0 O][imm2] Rm |
Rn

T1

PLI{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

if Rn == '1111' then SEE "PLI (immediate, literal)";

n = UInt(Rn); m = UInt(Rm); add = TRUE;

(shift t, shift n) = (SRType LSL, UInt(imm2));

if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding Al: see Standard assembler syntax fields. <c> must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted

and encoded in “U”:

U 4
0 -
_1]+
+ Specifies the index register is added to the base register.

PLI (register) Page 316

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the index register, encoded in “stype”:
stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm?2"
field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift t, shift n, PSTATE.C);
address = if add then (R[n] + offset) else (R[n] - offset);
Hint PreloadInstr(address);

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PLI (register) Page 317

POP

Pop Multiple Registers from Stack loads multiple general-purpose registers from the stack, loading from consecutive
memory locations starting at the address in SP, and updates SP to point just above the loaded data.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

The registers loaded can include the PC, causing a branch to a loaded address. This is an interworking branch, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 01 1]1]1 o]P] register list

T1

POP{<c>}{<q>} <registers> // (Preferred syntax)
LDM{<c>}{<g>} SP!, <registers> // (Alternate syntax)

registers = P:'0000000':register list; UnalignedAllowed = FALSE;
if BitCount(registers) < 1 then UNPREDICTABLE;
if registers<15> == '1' && InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The instruction targets an unspecified set of registers. These registers might include R15. If the instruction
specifies writeback, the modification to the base address on writeback might differ from the number of
registers loaded.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.

The registers in the list must be in the range R0O-R7, encoded in the "register list" field, and can
optionally include the PC. If the PC is in the list, the "P" field is set to 1, otherwise this field defaults to
0.

If the PC is in the list, the instruction must be either outside any IT block, or the last instruction in an
IT block.

POP Page 318

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[13];
for i =0 to 14
if registers<i> == 'l1' then
R[i] = if UnalignedAllowed then MemU[address,4] else MemA[address,4];
address = address + 4;
if registers<15> == '1' then
if UnalignedAllowed then
if address<1:0> == '00' then
LoadWritePC(MemU[address,4]);
else
UNPREDICTABLE;

else
LoadWritePC(MemA[address, 4]
if registers<13> == '0' then R[13]
if registers<13> == '1' then R[13]

R[13] + 4*BitCount(registers);
bits(32) UNKNOWN;

);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

POP Page 319

POP (multiple registers)

Pop Multiple Registers from Stack loads multiple general-purpose registers from the stack, loading from consecutive
memory locations starting at the address in SP, and updates SP to point just above the loaded data.

This is an alias of LDM, LDMIA, LDMFD. This means:

¢ The encodings in this description are named to match the encodings of LDM, LDMIA, LDMFD.
e The description of LDM, LDMIA, LDMFD gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T2).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 |1 o ofof1fof1f1]1 1 0 1] register _list
cond w Rn

Al

POP{<c>}{<qg>} <registers>
is equivalent to
LDM{<c>}{<g>} SP!, <registers>

and is the preferred disassembly when BitCount(register list) > 1.

T2
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 11 01 0 o0J]o 1]/of1f1[1 1 0 1[P[M] register _list
W Rn
T2

POP{<c>}.W <registers> // (All registers in RO-R7, PC)
POP{<c>}{<qg>} <registers>

is equivalent to

LDM{<c>}{<qg>} SP!, <registers>

and is the preferred disassembly when BitCount(P:M:register list) > 1.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.

<registers> For encoding Al: is a list of two or more registers to be loaded, separated by commas and surrounded
by { and }. The lowest-numbered register is loaded from the lowest memory address, through to the
highest-numbered register from the highest memory address. See also Encoding of lists of general-
purpose registers and the PC.
If the SP is in the list, the value of the SP after such an instruction is UNKNOWN.
The PC can be in the list. If it is, the instruction branches to the address loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.

Arm deprecates the use of this instruction with both the LR and the PC in the list.

POP (multiple registers) Page 320

For encoding T2: is a list of two or more registers to be loaded, separated by commas and surrounded
by { and }. The lowest-numbered register is loaded from the lowest memory address, through to the
highest-numbered register from the highest memory address. See also Encoding of lists of general-
purpose registers and the PC.
The registers in the list must be in the range R0-R12, encoded in the "register list" field, and can
optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1, otherwise it
defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to O.
The PC can be in the list. If it is, the instruction branches to the address loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC. If the PC is in the list:

¢ The LR must not be in the list.

¢ The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation

The description of LDM, LDMIA, LDMFD gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

POP (multiple registers) Page 321

POP (single register)

Pop Single Register from Stack loads a single general-purpose register from the stack, loading from the address in SP,
and updates SP to point just above the loaded data.

This is an alias of LDR (immediate). This means:

* The encodings in this description are named to match the encodings of LDR (immediate).
e The description of LDR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T4).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 o 1 ofof1]ofof1]1 1 0 1] Rt [0 0 OOOOOOGOTI1O0 0]
cond P U w Rn imm12
Post-indexed
POP{<c>}{<qg>} <single register list>
is equivalent to
LDR{<c>}{<g>} <Rt>, [SP], #4
and is always the preferred disassembly.
T4
15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
[1 111100001 0f[1][1 1 0 1] Rt [1]of1]1]/0 0 0 0 0 1 0 O]
Rn P UW imm8

Post-indexed

POP{<c>}{<qg>} <single register list>
is equivalent to
LDR{<c>}{<qg>} <Rt>, [SP], #4

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<single register list> Is the general-purpose register <Rt> to be loaded surrounded by { and }.

<Rt> For encoding Al: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is
an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.

For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can
be used, provided the instruction is either outside an IT block or the last instruction of an IT block. If
the PC is used, the instruction branches to the address (data) loaded to the PC. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC.

POP (single register) Page 322

Operation

The description of LDR (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

POP (single register) Page 323

PSSBB

Physical Speculative Store Bypass Barrier is a memory barrier that prevents speculative loads from bypassing earlier
stores to the same physical address under certain conditions. For more information and details of the semantics, see

Physical Speculative Store Bypass Barrier (PSSBB).
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
[1 11101010 1 1 1[@OOOOOIDIMOIOmOOOI©oo0 1 0

(@] FN
o|w
=N
Ol
ol|o

Al

PSSBB{<g>}
// No additional decoding required
T1

15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
1 111001110 1 1[OMMMm1oloolm@mmimio1 o ofo 1 0 0]

Tl

PSSBB{<q>}
if InITBlock() then UNPREDICTABLE;

Assembler Symbols
<qg> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

SpeculativeStoreBypassBarrierToPA();

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PSSBB Page 324

PUSH

Push Multiple Registers to Stack stores multiple general-purpose registers to the stack, storing to consecutive memory
locations ending just below the address in SP, and updates SP to point to the start of the stored data.

The lowest-numbered register is stored to the lowest memory address, through to the highest-numbered register to
the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

Tl

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
|1 01 1]0]1 o[M] register _list

Tl

PUSH{<c>}{<g>} <registers> // (Preferred syntax)
STMDB{<c>}{<q>} SP!, <registers> // (Alternate syntax)

registers = '0':M:'000000':register list; UnalignedAllowed = FALSE;
if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

¢ The instruction targets an unspecified set of registers. These registers might include R15. If the instruction
specifies writeback, the modification to the base address on writeback might differ from the number of
registers loaded.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by { and }.
The registers in the list must be in the range R0O-R7, encoded in the "register list" field, and can

optionally include the LR. If the LR is in the list, the "M" field is set to 1, otherwise this field defaults to
0.

PUSH Page 325

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[13] - 4*BitCount(registers);
for i =0 to 14
if registers<i> == 'l1' then
if 1 == 13 & 1 != LowestSetBit(registers) then // Only possible for encoding Al
MemA[address,4] = bits(32) UNKNOWN;
else
if UnalignedAllowed then
MemU[address,4] = R[i];
else
MemA[address,4]
address = address + 4;
if registers<15> == '1' then // Only possible for encoding Al or A2
if UnalignedAllowed then
MemU[address,4] = PCStoreValue();
else
MemA[address,4] = PCStoreValue();
R[13] = R[13] - 4*BitCount(registers);

R[1];

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PUSH Page 326

PUSH (multiple registers)

Push multiple registers to Stack stores multiple general-purpose registers to the stack, storing to consecutive memory
locations ending just below the address in SP, and updates SP to point to the start of the stored data.

This is an alias of STMDB, STMFD. This means:

¢ The encodings in this description are named to match the encodings of STMDB, STMFD.
e The description of STMDB, STMFD gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 |1 o of1fofof1]0f1 1 0 1] register _list
cond w Rn

Al

PUSH{<c>}{<q>} <registers>
is equivalent to
STMDB{<c>}{<qg>} SP!, <registers>

and is the preferred disassembly when BitCount(register list) > 1.

Tl
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 11 01 0 0]1 ofof[1][0f[1 1 0 1[0)[M] register _list
w Rn P
T1

PUSH{<c>}.W <registers> // (All registers in R0-R7, LR)
PUSH{<c>}{<g>} <registers>

is equivalent to

STMDB{<c>}{<qg>} SP!, <registers>

and is the preferred disassembly when BitCount(M:register list) > 1.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.

<registers> For encoding Al: is a list of two or more registers to be stored, separated by commas and surrounded
by { and }. The lowest-numbered register is stored to the lowest memory address, through to the
highest-numbered register to the highest memory address. See also Encoding of lists of general-
purpose registers and the PC.
The SP and PC can be in the list. However:

* Arm deprecates the use of instructions that include the PC in the list.
e Ifthe SPis in the list, and it is not the lowest-numbered register in the list, the instruction
stores an UNKNOWN value for the SP.

For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }. The lowest-numbered register is stored to the lowest memory address, through to the

PUSH (multiple registers) Page 327

highest-numbered register to the highest memory address. See also Encoding of lists of general-
purpose registers and the PC.

The registers in the list must be in the range R0-R12, encoded in the "register list" field, and can
optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

Operation

The description of STMDB, STMFD gives the operational pseudocode for this instruction.

Internal version only: isa vO1_31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PUSH (multiple registers) Page 328

PUSH (single register)

Push Single Register to Stack stores a single general-purpose register to the stack, storing to the 32-bit word below
the address in SP, and updates SP to point to the start of the stored data.

This is an alias of STR (immediate). This means:

¢ The encodings in this description are named to match the encodings of STR (immediate).
e The description of STR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T4).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 Jo 1 of1fofof1]0f1 1 0 1] Rt |0 0O OOOOOOOT1O0 0]
cond P U w Rn imm12

Pre-indexed

PUSH{<c>}{<qg>} <single register list>

is equivalent to

STR{<c>}{<g>} <Rt>, [SP, #-4]!

and is always the preferred disassembly.

T4

15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O

[1 111100001 0[0[1 1 0 1] Rt [1]1]0]1]/0 0 0 0 0 1 0 O]

Rn P UW imm8

Pre-indexed

PUSH{<c>}{<qg>} <single register list> // (Standard syntax)
is equivalent to
STR{<c>}{<g>} <Rt>, [SP, #-4]!

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<single register list> Is the general-purpose register <Rt> to be stored surrounded by { and }.

<Rt> For encoding Al: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.

For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field.

Operation

The description of STR (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

PUSH (single register) Page 329

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PUSH (single register) Page 330

QADD

Saturating Add adds two register values, saturates the result to the 32-bit signed integer range 23140 (231 - 1), and
writes the result to the destination register. If saturation occurs, it sets PSTATE.Q to 1.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 o 0 0 1 00 O[O] Rn | Rd [(O)]O)[O]0]o0 1 0 1] Rm |
cond

Al

QADD{<c>}{<g>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Tl

151413121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 1111010 1[0 0 O] Rn [1 1 1 1] Rd [1 0[O0 O] Rm |

QADD{<c>}{<g>} {<Rd>,} <Rm>, <Rn>

;oon
| n=

UInt(Rn); m = UInt(Rm);
15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

d = UInt(Rd)
if d == 15 |

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rn> Is the second general-purpose source register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
boolean sat;
(R[d], sat) = SignedSatQ(SInt(R[m]) + SInt(R[n]), 32);
if sat then
PSTATE.Q = '1"';

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QADD Page 331

QADD16

Saturating Add 16 performs two 16-bit integer additions, saturates the results to the 16-bit signed integer range -2 15
<=x <= 2151, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 |0 1 1 0 0[O0 1 O] Rn | Rd (WOWj@wjoJo of1] Rm |

cond

Al

QADD16{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
Tl

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 111010 1[0 0 1] Rn [1 1 1 1] Rd loJoJo|1] Rm |
T1

QADD16{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
suml = SInt(R[n]<15:0>) + SI t(R[m]<15:0>);
sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
R[d]<15:0> SignedSat (suml 16);
R[d]<31:16> SignedSat(sum2, 16);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QADD16 Page 332

QADDS8

Saturating Add 8 performs four 8-bit integer additions, saturates the results to the 8-bit signed integer range 27 <=x
=27 -1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 |0 1 1 0 0[O0 1 O] Rn | Rd (OO 1]o of1] Rm |
cond
Al
QADD8{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
T1
15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
1 1 1 11010 1[0 0 0] Rn [1 1 1 1] Rd loJoJo|1] Rm |
T1
QADD8{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();

suml = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
sum2 = SInt(R[n]<15:8>) + SI t(R[m]<15 8>);
sum3 = SInt(R[n]<23 16>) + t(R[m]<23 16>) ;
sumd = nt(R[n]<31:24>) + t(R[m]<31:24>);
B[d]<7:0> = SlgnedSat(suml 8);

R[d]<15:8> = SignedSat(sum2, 8);
R[d]<23:16> = SignedSat(sum3, 8);
R[d]<31:24> = SignedSat(sum4, 8);

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QADDS Page 333

QASX

Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one 16-bit

integer addition and one 16-bit subtraction, saturates the results to the 16-bit signed integer range 215 c=x<=215.
1, and writes the results to the destination register.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
['=1111 Jo 1 1 0 0J]0 1 O] Rn | Rd [(DID[D]W]o]o 1]1] Rm |

cond

Al

QASX{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
T1

1514 13121110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0
[1 1111010 1[0 1 0] Rn [1 1 1 1] Rd [o]o]o]1] Rm |
T1

QASX{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff = SInt(R[n]<15:0>) - SI t(R[m]<31:16>);
sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
B[d]<15.0> SignedSat (dlff 16) ;
R[d]<31:16> SignedSat(sum, 16);

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QASX Page 334

QDADD

Saturating Double and Add adds a doubled register value to another register value, and writes the result to the
destination register. Both the doubling and the addition have their results saturated to the 32-bit signed integer range

231 <= x <= 231 _ 1. If saturation occurs in either operation, it sets PSTATE.Q to 1.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
['=1111 o 0 0 1 0]1 O0]O] Rn | Rd [(O)]O[O]0]0 1 0 1] Rm |
cond

Al

QDADD{<c>}{<g>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d =15 || n == 15 || m == 15 then UNPREDICTABLE;
T1
1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0
[1 1111010 1[0 0 O] Rn [1 1 1 1] Rd [1 0[O0 1] Rm |
Tl

QDADD{<c>}{<g>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rn> Is the second general-purpose source register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
(doubled, satl) = SignedSatQ(2 * SInt(R[n]), 32);
boolean sat2;
(R[d], sat2) = SignedSatQ(SInt(R[m]) + SInt(doubled), 32);
if satl || sat2 then
PSTATE.Q = '1"';

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QDADD Page 335

QDSuUB

Saturating Double and Subtract subtracts a doubled register value from another register value, and writes the result
to the destination register. Both the doubling and the subtraction have their results saturated to the 32-bit signed

integer range 231 <= x <= 231 . 1. If saturation occurs in either operation, it sets PSTATE.Q to 1.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
['=1111 Jo 0 0 1 0]1 1]0] Rn | Rd [(O)]O[O]0]0 1 0 1] Rm |

cond

Al

QDSUB{<c>}{<g>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
T1

1514 13121110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0
[1 1111010 1[0 0 O] Rn [1 1 1 1] Rd [1 01 1] Rm |
T1

QDSUB{<c>}{<g>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rn> Is the second general-purpose source register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
(doubled, satl) = SignedSatQ(2 * SInt(R[n]), 32);
boolean sat2;
(R[d], sat2) = SignedSatQ(SInt(R[m]) - SInt(doubled), 32);
if satl || sat2 then
PSTATE.Q = '1"';

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QDSUB Page 336

QSAX

Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one 16-bit
integer subtraction and one 16-bit addition, saturates the results to the 16-bit signed integer range 215 c=x<=215.
1, and writes the results to the destination register.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 1 1 0 0J]0 1 O] Rn | Rd [(DID[D]W]o]1 of1] Rm |
cond

Al

QSAX{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d =15 || n == 15 || m == 15 then UNPREDICTABLE;
Tl

151413121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 1111010 1]1 1 0] Rn [1 1 1 1] Rd [o]o]o]1] Rm |
T1

QSAX{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations()
sum = SInt(R[n]<15:0>) + SI t(
diff = SInt(R[n]<31:16>) - SInt(R
R[d]<15:0> SignedSat (sum 16);
R[d]<31:16> SignedSat(diff, 16

R[m]<31:16>);
[m]<15:0>);

i

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QSAX Page 337

QSuUB

Saturating Subtract subtracts one register value from another register value, saturates the result to the 32-bit signed
integer range 231 <= x <= 231 .1, and writes the result to the destination register. If saturation occurs, it sets
PSTATE.Q to 1.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 o 0 0 1 00 1]0] Rn | Rd [(O)]O[O]0]0 1 0 1] Rm |
cond

Al

QSUB{<c>}{<g>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd), n=UInt(Rn) m = UInt(Rm);

if d==15 || n==15 || m == 15 then UNPREDICTABLE;

Tl

151413121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 1111010 1[0 0 O] Rn [1 1 1 1] Rd [1 0[1 O] Rm |

Tl

QSUB{<c>}{<g>} {<Rd>,} <Rm>, <Rn>

n

d = UInt(Rd),
501 n=

if d =

t(Rn); m = UInt(Rm);
| == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> Is the first general-purpose source register, encoded in the "Rm" field.
<Rn> Is the second general-purpose source register, encoded in the "Rn" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
boolean sat;
(R[d], sat) = SignedSatQ(SInt(R[m]) - SInt(R[n]), 32);
if sat then
PSTATE.Q = '1"';

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QSUB Page 338

QSUB16

Saturating Subtract 16 performs two 16-bit integer subtractions, saturates the results to the 16-bit signed integer
range 215 <= x <=215_1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 1 1 0 0J]0 1 O] Rn | Rd [(DID[DW]o]1 1]1] Rm |
cond

Al

QSUB16{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Tl

151413121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 1111010 1]1 0 1] Rn [1 1 1 1] Rd [o[o]o]1] Rm |

Tl

QSUB16{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
diffl = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
R[d]<15:0> = SignedSat(diffl, 16);
R[d]<31:16> = SignedSat(diff2, 16);

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QSUBI16 Page 339

QsSuUBS8

Saturating Subtract 8 performs four 8-bit integer subtractions, saturates the results to the 8-bit signed integer range
27 <=x<=27. 1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 1 1 0 0J]0 1 O] Rn | Rd (D[] 11 1]1] Rm |
cond

Al

QsSuUB8{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

Tl

151413121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 1111010 1]1 0 O] Rn [1 1 1 1] Rd [o[o]o]1] Rm |

QSuUB8{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
SInt(R[n]<7:0>) - SInt(R[m]<7:0>);

diffl =

diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
R[d]<7:0> = SignedSat(diffl, 8);

R[d]<15:8> = SignedSat(diff2, 8);

R[d]<23:16> = SignedSat(diff3, 8);

R[d]<31:24> = SignedSat(diff4, 8);

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QSUBS8 Page 340

RBIT

Reverse Bits reverses the bit order in a 32-bit register.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

| '=1111 Jo 1 1 o 1[1[1 1[DO[D[D[D)

[(D](D)](D)](1)]

cond
Al

RBIT{<c>}{<g>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;

3 2 1 0 1514 13 12 11 10 9 8

0

Tl
15 14 13 12 11 10 9 8 7 6 5 4

/11 111010 1[0 0 1] Rn 1 1 1 1]
T1

RBIT{<c>}{<qg>} <Rd>, <Rm>

Rd); m = UInt(Rm); n = UInt(Rn);
[

CONSTRAINED UNPREDICTABLE behavior

If m !'= n, then one of the following behaviors must occur:

The instruction is UNDEFINED.
The instruction executes as NOP.

¢ The instruction executes with the additional decode: m = Ulnt(Rn);.
¢ The instruction executes with the additional decode: m = UInt(Rm);.

The value in the destination register is UNKNOWN.

d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints

on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1l: is the general-purpose source register, encoded in the "Rm" field.

For encoding T1: is the general-purpose source register, encoded in the "Rm" field. It must be encoded

with an identical value in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
bits(32) result;
for i = 0 to 31
result<31l-i> = R[m]<i>;
R[d] = result;

RBIT

Page 341

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RBIT Page 342

REV

Byte-Reverse Word reverses the byte order in a 32-bit register.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 Jo 1 1 o 1[o[1 1 [D[D[D[D) Rd (WmmjoJo 1 1] Rm |
cond

Al

REV{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);

if d == 15 || m == 15 then UNPREDICTABLE;

Tl

1514 1312 1110 9 8 7 6 5 4 3 2 1 0

1 011 1010[0 0] Rm | Rd |

T1

REV{<c>}{<g>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);

T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

1 1 111010 1[0 0 1] Rn 1 1 1 1] Rd |1 0]/0 0] Rm |

REV{<c>}.W <Rd>, <Rm> // (<Rd>, <Rm> can be represented in T1)

REV{<c>}{<q>} <Rd>, <Rm>

m = UInt(Rm); n = UInt(Rn);
== 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m !'= n, then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: m = Ulnt(Rn);.

The instruction executes with the additional decode: m = Ulnt(Rm);.

The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

REV Page 343

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be encoded
with an identical value in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
bits(32) result;
result<31:24>
result<23:16>
result<15:8>
result<7:0>
R[d] = result;

R[m]<7:0>;
R[m]<15:8>;
R[m]<23:16>;
R[m]<31:24>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV Page 344

REV16

Byte-Reverse Packed Halfword reverses the byte order in each16-bit halfword of a 32-bit register.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 Jo 1 1 o 1[o[1 1 [D[D[D[D) Rd (o 1]o 1 1] Rm |
cond

Al

REV16{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);

if d == 15 || m == 15 then UNPREDICTABLE;

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

/1 0111 010[01] Rm | Rd |

T1

REV16{<c>}{<qg>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);

T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

1 1 111010 1[0 0 1] Rn 1 1 1 1] Rd |1 o]0 1] Rm |

REV16{<c>}.W <Rd>, <Rm> // (<Rd>, <Rm> can be represented in T1)

REV16{<c>}{<qg>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
i == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m !'= n, then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: m = Ulnt(Rn);.

The instruction executes with the additional decode: m = Ulnt(Rm);.

The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

REV16 Page 345

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be encoded
with an identical value in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
bits(32) result;
result<31:24>
result<23:16>
result<15:8>
result<7:0>
R[d] = result;

R[m]<23:16>;
R[m]<31:24>;
R[m]<7:0>;
R[m]<15:8>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV16 Page 346

REVSH

Byte-Reverse Signed Halfword reverses the byte order in the lower 16-bit halfword of a 32-bit register, and sign-
extends the result to 32 bits.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 Jo 1 1 o 1[1[1 1[DO[D[D[D) Rd (o 1]o 1 1] Rm |
cond

Al

REVSH{<c>}{<qg>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);

if d == 15 || m == 15 then UNPREDICTABLE;

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

/1 0111 010[1 1] Rm | Rd |

T1

REVSH{<c>}{<qg>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);

T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

1 1 111010 1[0 0 1] Rn 1 1 1 1] Rd |1 o1 1] Rm |

REVSH{<c>}.W <Rd>, <Rm> // (<Rd>, <Rm> can be represented in T1)

REVSH{<c>}{<qg>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
i == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m !'= n, then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes with the additional decode: m = Ulnt(Rn);.

The instruction executes with the additional decode: m = Ulnt(Rm);.

The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

REVSH Page 347

<q> See Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding Al and T1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be encoded
with an identical value in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
bits(32) result;
result<31:8> = SignExtend(R[m]<7:0>, 24);
result<7:0> = R[m]<15:8>;
R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REVSH Page 348

RFE, RFEDA, RFEDB, RFEIA, RFEIB

Return From Exception loads two consecutive memory locations using an address in a base register:

¢ The word loaded from the lower address is treated as an instruction address. The PE branches to it.
¢ The word loaded from the higher address is used to restore PSTATE. This word must be in the format of an
SPSR.

An address adjusted by the size of the data loaded can optionally be written back to the base register.

The PE checks the value of the word loaded from the higher address for an illegal return event. See Illegal return
events from AArch32 state.

RFE is UNDEFINED in Hyp mode and CONSTRAINED UNPREDICTABLE in User mode.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1110 of[P[U[O[W][1] Rn (0) (0) (0) (0) (1) (0) (1) (0) (0) (0) (0)[(0) (0) (0) (0) ()]

Decrement After (P == 0 && U == 0)

RFEDA{<c>}{<qg>} <Rn>{!} // (Preferred syntax)

RFEFA{<c>}{<q>} <Rn>{!} // (Alternate syntax, Full Ascending stack)
Decrement Before (P == 1 && U == 0)

RFEDB{<c>}{<g>} <Rn>{!'} // (Preferred syntax)

RFEEA{<c>}{<g>} <Rn>{!} // (Alternate syntax, Empty Ascending stack)
Increment After (P ==0 && U ==1)

RFE{IA}{<c>}{<q>} <Rn>{!} // (Preferred syntax)

RFEFD{<c>}{<g>} <Rn>{!} // (Alternate syntax, Full Descending stack)
Increment Before (P ==1 && U == 1)

RFEIB{<c>}{<qg>} <Rn>{!} // (Preferred syntax)
RFEED{<c>}{<q>} <Rn>{!} // (Alternate syntax, Empty Descending stack)
n = UInt(Rn);

wback = (W == '1"); increment = (U == '1'); wordhigher = (P == U);
if n == 15 then UNPREDICTABLE;

T1
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O 1514 1312 1110 9 8 7 6 5 4 3 2 1 O
[T 11 0100J00[0[W[I] Rn __ [M]DI0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0) (0)]
Tl

RFEDB{<c>}{<g>} <Rn>{!} // (Outside or last in IT block, preferred syntax)
RFEFA{<c>}{<g>} <Rn>{!} // (Outside or last in IT block, alternate syntax, Full Ascending stack)

n = UInt(Rn); wback = (W == '1'); increment = FALSE; wordhigher = FALSE;
if n == 15 then UNPREDICTABLE;
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

RFE, RFEDA, RFEDB, RFEIA,

RFEIB Page 349

T2

15 14 13 121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 0
[1 11010 0[1 1[0[wW[1] Rn [(1[(1)](0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)]
T2

RFE{IA}{<c>}{<q>} <Rn>{!} // (Outside or last in IT block, preferred syntax)
RFEFD{<c>}{<g>} <Rn>{!} // (Outside or last in IT block, alternate syntax, Full Descending stack)

n = UInt(Rn); wback = (W == '1"); increment = TRUE; wordhigher = FALSE;
if n == 15 then UNPREDICTABLE;
if InITBlock() && 'LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

1A For encoding A1l: is an optional suffix to indicate the Increment After variant.

For encoding T2: is an optional suffix for the Increment After form.

<c> For encoding Al: see Standard assembler syntax fields. <c> must be AL or omitted.

For encoding T1 and T2: see Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

RFEFA, RFEEA, RFEFD, and RFEED are pseudo-instructions for RFEDA, RFEDB, RFEIA, and RFEIB respectively, referring to
their use for popping data from Full Ascending, Empty Ascending, Full Descending, and Empty Descending stacks.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then
UNDEFINED;
elsif PSTATE.EL == ELO then
UNPREDICTABLE; // UNDEFINED or NOP
else
address = if increment then R[n] else R[n]-8;
if wordhigher then address = address+4;
new_pc_value = MemA[address,4];
spsr = MemA[address+4,4];
if wback then R[n] = if increment then R[n]+8 else R[n]-8;
AArch32.ExceptionReturn(new _pc value, spsr);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == ELO, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RFE, RFEDA, RFEDB, RFEIA,

RFEIB Page 350

ROR (immediate)

Rotate Right (immediate) provides the value of the contents of a register rotated by a constant value. The bits that are
rotated off the right end are inserted into the vacated bit positions on the left.

This is an alias of MOV, MOVS (register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register).
e The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T3).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| '=1111 [0 0 0 1 1[0 1]0](0)(0)(0)(0) Rd | '=00000 [1 1[0] Rm |
cond S immb5 stype

MOV, shift or rotate by value

ROR{<c>}{<g>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOV{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

T3

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

1 11 01 0 1[0 0 1 0[0[1 1 1 1[0)] imm3 | Rd [imm2]1 1| Rm |
S stype

MOV, shift or rotate by value (!(imm3 == 000 && imm2 == 00))

ROR{<c>}{<qg>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOV{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates

using the PC as the destination register, but if the PC is used, the instruction is a branch to the address
calculated by the operation. This is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding Al: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.

For encoding T3: is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding A1l: is the shift amount, in the range 1 to 31, encoded in the "immb5" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm?2" field.

ROR (immediate) Page 351

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ROR (immediate) Page 352

ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The variable number of bits is
read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted

register).

¢ The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 |0 0 0 1 1[0 1]0]/(0)(0)(0)(0) Rd | Rs [0]1 1]1] Rm |
cond S stype

Not flag setting

ROR{<c>}{<g>} {<Rd>,} <Rm>, <Rs>
is equivalent to
MOV{<c>}{<g>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|01 00 00[01 1 1] Rs | Rdm |
op

Rotate right

ROR<c>{<g>} {<Rdm>,} <Rdm>, <Rs> // (Inside IT block)
is equivalent to
MOV<c>{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when InITBlock().

T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

1 1 111010 0[1 1[0] Rm 1 1 1 1] Rd |0 0 0 0] Rs |
stype S

Not flag setting

ROR<c>.W {<Rd>,} <Rm>, <Rs> // (Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)
ROR{<c>}{<g>} {<Rd>,} <Rm>, <Rs>

is equivalent to

ROR (register) Page 353

MOV{<c>}{<g>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ROR (register) Page 354

RORS (immediate)

Rotate Right, setting flags (immediate) provides the value of the contents of a register rotated by a constant value. The
bits that are rotated off the right end are inserted into the vacated bit positions on the left.
If the destination register is not the PC, this instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

¢ The PE branches to the address written to the PC, and restores PSTATE from SPSR <current mode>.

* The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from AArch32

State.
¢ The instruction is UNDEFINED in Hyp mode.
¢ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This is an alias of MOV, MOVS (register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register).
¢ The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (Al) and T32 (T3) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 1[0 1[1](0)(0)(0)(0) Rd ['=00000 [1 1]0] Rm |
cond S imm5 stype

MOVS, shift or rotate by value

RORS{<c>}{<g>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 11 010 1[0 0 1 011 1 1 1][0)] imm3 | Rd [imm2[1 1] Rm |
S stype

MOVS, shift or rotate by value (!(imm3 == 000 && imm2 == 00))

RORS{<c>}{<g>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates

using the PC as the destination register, but if the PC is used, the instruction performs an exception
return, that restores PSTATE from SPSR <current mode>.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

RORS (immediate) Page 355

<Rm> For encoding Al: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.

For encoding T3: is the general-purpose source register, encoded in the "Rm" field.
<imm> For encoding Al: is the shift amount, in the range 1 to 31, encoded in the "immb" field.

For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm?2" field.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RORS (immediate) Page 356

RORS (register)

Rotate Right, setting flags (register) provides the value of the contents of a register rotated by a variable number of
bits, and updates the condition flags based on the result. The bits that are rotated off the right end are inserted into
the vacated bit positions on the left. The variable number of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

¢ The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 [0 0 0 1 1[0 1[1](0)(0)(0)(0) Rd | Rs [0]1 1]1] Rm |
cond S stype

Flag setting

RORS{<c>}{<g>} {<Rd>,} <Rm>, <Rs>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

|01 00 00[01 1 1] Rs | Rdm |
op

Rotate right

RORS{<g>} {<Rdm>,} <Rdm>, <Rs> // (Outside IT block)
is equivalent to
MOVS{<g>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when !InITBlock().

T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O

1 1 111010 0[1 1[1] Rm 1 1 1 1] Rd |0 0 0 0] Rs |
stype S

Flag setting

RORS.W {<Rd>,} <Rm>, <Rs> // (Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)
RORS{<c>}{<g>} {<Rd>,} <Rm>, <Rs>

is equivalent to

RORS (register) Page 357

MOVS{<c>}{<g>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RORS (register) Page 358

RRX

Rotate Right with Extend provides the value of the contents of a register shifted right by one place, with the Carry flag
shifted into bit[31].

This is an alias of MOV, MOVS (register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register).
e The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T3).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
| '=1111 [0 0 0 1 1[0 1]0](0)(0)(0)(0) Rd [0 0 00 0f[1 1[0] Rm |
cond S immb5 stype

MOV, rotate right with extend

RRX{<c>}{<q>} {<Rd>,} <Rm>
is equivalent to
MOV{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

T3
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 11 01 0 1[0 0 1 0[0[1 1 1 1[00 0 0] Rd [0 01 1] Rm |
S imm3 imm?2 stype
MOV, rotate right with extend
RRX{<c>}{<g>} {<Rd>,} <Rm>
is equivalent to
MOV{<c>}{<q>} <Rd>, <Rm>, RRX
and is always the preferred disassembly.
Assembler Symbols
<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates

using the PC as the destination register, but if the PC is used, the instruction is a branch to the address
calculated by the operation. This is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding Al: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.

For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

RRX Page 359

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RRX Page 360

RRXS

Rotate Right with Extend, setting flags provides the value of the contents of a register shifted right by one place, with
the Carry flag shifted into bit[31].
If the destination register is not the PC, this instruction updates the condition flags based on the result, and bit[0] is
shifted into the Carry flag.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

¢ The PE branches to the address written to the PC, and restores PSTATE from SPSR <current mode>.

* The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from AArch32

state.
¢ The instruction is UNDEFINED in Hyp mode.
¢ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This is an alias of MOV, MOVS (register). This means:

¢ The encodings in this description are named to match the encodings of MOV, MOVS (register).
¢ The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (Al) and T32 (T3) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 0 1 1[0 1[1](0)(0)(0)(0) Rd [0 0 00 0f[1 1]0] Rm |
cond S imm5 stype

MOVS, rotate right with extend

RRXS{<c>}{<g>} {<Rd>,} <Rm>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

T3
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
[1 11 010 1[0 01 011 1 1 1[0]0 0 0] Rd [0 01 1] Rm |
S imm3 imm2 stype
MOVS, rotate right with extend
RRXS{<c>}{<g>} {<Rd>,} <Rm>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, RRX
and is always the preferred disassembly.
Assembler Symbols
<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates

using the PC as the destination register, but if the PC is used, the instruction performs an exception
return, that restores PSTATE from SPSR <current mode>.

RRXS Page 361

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1l: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.

For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RRXS Page 362

RSB, RSBS (immediate)

Reverse Subtract (immediate) subtracts a register value from an immediate value, and writes the result to the

destination register.

If the destination register is not the PC, the RSBS variant of the instruction updates the condition flags based on the

result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM

deprecates any use of these encodings. However, when the destination register is the PC:

¢ The RSB variant of the instruction is an interworking branch, see Pseudocode description of operations on the

AArch32 general-purpose registers and the PC.

¢ The RSBS variant of the instruction performs an exception return without the use of the stack. In this case:

o The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.

o The PE checks SPSR_<current mode> for an illegal return event. See Illegal return events from

AArch32 state.
o The instruction is UNDEFINED in Hyp mode.

o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5 4 3 0
['=1111 Jo 0 1 0[O0 1 1]S] Rn | Rd |
cond

RSB (S == 0)

RSB{<c>}{<g>} {<Rd>,} <Rn>, #<const>
RSBS (S == 1)

RSBS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1"'); 1imm32 = A32ExpandImm(imml2);
T1

15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
|010000|1001| Rn|Rd|
T1

RSB<c>{<g>} {<Rd>, }<Rn>, #0 // (Inside IT block)

RSBS{<g>} {<Rd>, }<Rn>, #0 // (Outside IT block)

d = UInt(Rd); n = UInt(Rn); setflags = !'InITBlock(); imm32 = Zeros(32); // immediate
T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 6 5 4 3 0
1 1 1 1 0]i]o[1 1 1 0][S] Rn [0] imm3 |

RSB, RSBS (immediate) Page 363

RSB (S == 0)

RSB<c>.W {<Rd>,} <Rn>, #0 // (Inside IT block)

RSB{<c>}{<gq>} {<Rd>,} <Rn>, #<const>

RSBS (S ==1)

RSBS.W {<Rd>,} <Rn>, #0 // (Outside IT block)

RSBS{<c>}{<qg>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); 1imm32 = T32ExpandImm(i:imm3:imm8);
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

* For the RSB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

* For the RSBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T1 and T2: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the same as <Rn>.

<Rn> For encoding A1l: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.

For encoding T1 and T2: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(NOT(R[n]), imm32, '1');
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:

RSB, RSBS (immediate) Page 364

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSB, RSBS (immediate) Page 365

RSB, RSBS (register)

Reverse Subtract (register) subtracts a register value from an optionally-shifted register value, and writes the result to
the destination register.
If the destination register is not the PC, the RSBS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The RSB variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.
¢ The RSBS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 0[O0 1 1]S] Rn | Rd | imm5 [stype] 0 | Rm |
cond

RSB, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
RSB{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

RSB, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
RSB{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSBS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
RSBS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

RSBS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

RSBS{<c>}{<qg>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");

d =
(shift_t, shift n) = DecodeImmShift(stype, imm5);

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 11 010 1[1 1 1 0]S] Rn [(0)] imm3 | Rd [imm?2]stype]| Rm |

RSB, RSBS (register) Page 366

RSB, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSB, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))
RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSBS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)
RSBS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

RSBS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

RSBS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

* For the RSB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

* For the RSBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.

For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm?2" field as <amount> modulo 32.

RSB, RSBS (register) Page 367

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(NOT(R[n]), shifted, '1');
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

* The response of this instruction to asynchronous exceptions does not vary based on:

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSB, RSBS (register)

Page 368

RSB, RSBS (register-shifted register)

Reverse Subtract (register-shifted register) subtracts a register value from a register-shifted register value, and writes
the result to the destination register. It can optionally update the condition flags based on the result.

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 0[O0 1 1]S] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)
RSBS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>
Not flag setting (S == 0)

RSB{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift t DecodeRegShift(stype);
if d==15 || n==15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(NOT(R[n]), shifted, '1');
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

RSB, RSBS (register-shifted

register) Page 369

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSB, RSBS (register-shifted

register) Page 370

RSC, RSCS (immediate)

Reverse Subtract with Carry (immediate) subtracts a register value and the value of NOT (Carry flag) from an
immediate value, and writes the result to the destination register.
If the destination register is not the PC, the RSCS variant of the instruction updates the condition flags based on the

result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The RSC variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.
¢ The RSCS variant of the instruction performs an exception return without the use of the stack. In this case:

o

The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.

The PE checks SPSR_<current mode> for an illegal return event. See Illegal return events from
AArch32 state.

The instruction is UNDEFINED in Hyp mode.

The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 |Jo 0 1 01 1 1]S]| Rn | Rd | imm12

cond
RSC (S == 0)

RSC{<c>}{<qg>} {<Rd>,} <Rn>, #<const>

RSCS (S ==1)

RSCS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); 1imm32 = A32ExpandImm(imml2);

Assembler Symbols

<c>
<q>

<Rd>

<Rn>

<const>

See Standard assembler syntax fields.
See Standard assembler syntax fields.

Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:
* For the RSC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.
* For the RSCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

Is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is
deprecated.

An immediate value. See Modified immediate constants in A32 instructions for the range of values.

RSC, RSCS (immediate) Page 371

Operation

if ConditionPassed() then
EncodingSpecificOperations();

(result, nzcv) = AddWithCarry(NOT(R[n]), imm32,

if d == 15 then
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

PSTATE.C);

* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.

o The values of the NZCV flags.

* The response of this instruction to asynchronous exceptions does not vary based on:

o The values of the data supplied in any of its registers.

o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSC, RSCS (immediate)

Page 372

RSC, RSCS (register)

Reverse Subtract with Carry (register) subtracts a register value and the value of NOT (Carry flag) from an optionally-
shifted register value, and writes the result to the destination register.
If the destination register is not the PC, the RSCS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The RSC variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.
¢ The RSCS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| !1=1111 |Oo 0 0 01 1 1]S]| Rn | Rd | imm5 |stype| 0| Rm |
cond

RSC, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
RSC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

RSC, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
RSC{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSCS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
RSCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

RSCS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

RSCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");

d -
(shift t, shift n) = DecodeImmShift(stype, imm5);

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the

same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:
* For the RSC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.
* For the RSCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is
deprecated.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this

is deprecated.

RSC, RSCS (register) Page 373

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR
or ASR) encoded in the "imm5" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(NOT(R[n]), shifted, PSTATE.C);
if d == 15 then
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSC, RSCS (register) Page 374

RSC, RSCS (register-shifted register)

Reverse Subtract (register-shifted register) subtracts a register value and the value of NOT (Carry flag) from a
register-shifted register value, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 01 1 1]S] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)
RSCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>
Not flag setting (S == 0)

RSC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

UInt(Rm); s = UInt(Rs);
DecodeReqShlft(stype)
| s

d = UInt(Rd); n = UInt(Rn);
setflags = (S == '1"); shlft
if d == 15 || n == 15 ||m——15|

== 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(NOT(R[n]), shifted, PSTATE.C);
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

RSC, RSCS (register-shifted

register) Page 375

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSC, RSCS (register-shifted

register) Page 376

SADD16

Signed Add 16 performs two 16-bit signed integer additions, and writes the results to the destination register. It sets
PSTATE.GE according to the results of the additions.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 Jo 1 1 0 0[O0 O 1| Rn | Rd (WOmmjoJo of1] Rm |

cond

Al

SADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d =15 || n == 15 || m == 15 then UNPREDICTABLE;
T1

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
/11 111010 1[0 0 1] Rn 1 1 1 1] Rd loJoJo]o] Rm |
T1

SADD16{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
suml = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
R[d]1<15:0> = suml<15:0>;
R[d]<31:16> = sum2<15:0>;
PSTATE.GE<1:0> if suml >= 0 then '11' else '00';
PSTATE.GE<3:2> if sum2 >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

¢ The execution time of this instruction is independent of:

SADD16 Page 377

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADD16 Page 378

SADDS8

Signed Add 8 performs four 8-bit signed integer additions, and writes the results to the destination register. It sets
PSTATE.GE according to the results of the additions.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 Jo 1 1 0 0[O0 O 1| Rn | Rd (WO 1]o of1] Rm |
cond
Al
SADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
T1
15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
/11 111 0101[0 0 O] Rn 1 1 1 1] Rd loJoJo]o] Rm |
T1
SADD8{<c>}{<gq>} {<Rd>,} <Rn>, <Rm>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
SInt(R[n]<7:0>) + SInt(R[m]<7:0>);

suml =

sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
sum3 = SInt(R[n]1<23:16>) + SInt(R[m]<23:16>);
sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
R[d]<7:0> = suml<7:0>;

R[d]<15:8> = sum2<7:0>;

R[d]<23:16> = sum3<7:0>;

R[d]<31:24> = sumé4<7:0>;

PSTATE . GE<0>
PSTATE.GE<1>
PSTATE.GE<2>
PSTATE.GE<3>

if suml >= 0 then 'l' else '0';
if sum2 >= 0 then 'l' else '0';
if sum3 >= 0 then 'l' else '0';
if sum4 >= 0 then 'l' else '0';

SADDS8 Page 379

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADDS8 Page 380

SASX

Signed Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one 16-bit
integer addition and one 16-bit subtraction, and writes the results to the destination register. It sets PSTATE.GE
according to the results.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| !1=1111 Jo 1 1 0 0[O0 O 1| Rn | Rd (WmmjoJo 1]1] Rm |
cond

Al

SASX{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 0
11 111 0101[0 1 0] Rn 1 1 1 1] Rd loJoJo]o] Rm |
T1

SASX{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
R[d]1<15:0> = diff<15:0>;
R[d]<31:16> = sum<15:0>;
PSTATE.GE<1:0> = if diff >= 0 then '11' else '00';
PSTATE.GE<3:2> = if sum >= 0 then '1l1l' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

SASX Page 381

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SASX Page 382

SB

Speculation Barrier is a barrier that controls speculation.
The semantics of the Speculation Barrier are that the execution, until the barrier completes, of any instruction that
appears later in the program order than the barrier:
¢ Cannot be performed speculatively to the extent that such speculation can be observed through side-channels
as a result of control flow speculation or data value speculation.
¢ Can be speculatively executed as a result of predicting that a potentially exception generating instruction has
not generated an exception.
In particular, any instruction that appears later in the program order than the barrier cannot cause a speculative
allocation into any caching structure where the allocation of that entry could be indicative of any data value present in
memory or in the registers.
The SB instruction:
¢ Cannot be speculatively executed as a result of control flow speculation or data value speculation.
¢ Can be speculatively executed as a result of predicting that a potentially exception generating instruction has
not generated an exception. The potentially exception generating instruction can complete once it is known
not to be speculative, and all data values generated by instructions appearing in program order before the SB
instruction have their predicted values confirmed.
When the prediction of the instruction stream is not informed by data taken from the register outputs of the
speculative execution of instructions appearing in program order after an uncompleted SB instruction, the SB
instruction has no effect on the use of prediction resources to predict the instruction stream that is being fetched.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
(FEAT_SB)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 1110101 0 1 1 10OOOMOLLMLMIOOIOI0[0 1 1 _1]0)(0)(0)(0)

Al

SB{<q>}

// No additional decoding required

Tl
(FEAT_SB)

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7
[1 111001110 1 1[OMOMm1oloolmw]o

(o
e
S

=
o|w

-
—_
o
N
—_
o
=
—
(=)
=

Tl

SB{<q>}
if InITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<qg> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

SpeculationBarrier();

SB Page 383

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SB Page 384

SBC, SBCS (immediate)

Subtract with Carry (immediate) subtracts an immediate value and the value of NOT (Carry flag) from a register value,
and writes the result to the destination register.
If the destination register is not the PC, the SBCS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The SBC variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.
¢ The SBCS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 1 01 1 0]S] Rn | Rd | imm12

cond
SBC (S == 0)

SBC{<c>}{<g>} {<Rd>,} <Rn>, #<const>
SBCS (S == 1)

SBCS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1"'); 1imm32 = A32ExpandImm(imml2);

Tl

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0]ilo[1 0 1 1[S]| Rn [0] imm3 | Rd | imm8
SBC (S == 0)

SBC{<c>}{<qg>} {<Rd>,} <Rn>, #<const>
SBCS (S ==1)

SBCS{<c>}{<qg>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); 1imm32 = T32ExpandImm(i:imm3:imm8);
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

SBC, SBCS (immediate) Page 385

<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:
* For the SBC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.
* For the SBCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding Al: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[n], NOT(imm32), PSTATE.C);
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);
else
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBC, SBCS (immediate) Page 386

SBC, SBCS (register)

Subtract with Carry (register) subtracts an optionally-shifted register value and the value of NOT (Carry flag) from a
register value, and writes the result to the destination register.
If the destination register is not the PC, the SBCS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:
¢ The SBC variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.
¢ The SBCS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.
o The PE checks SPSR <current mode> for an illegal return event. See Illegal return events from
AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 0[1 1 OS] Rn | Rd | imm5 [stype] 0 | Rm |
cond

SBC, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
SBC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

SBC, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
SBC{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SBCS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
SBCS{<c>}{<qg>} {<Rd>,} <Rn>, <Rm>, RRX

SBCS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

SBCS{<c>}{<qg>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift n) = DecodeImmShift(stype, imm5);

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[01 00 0 0[01 1 0] Rm | Rdn |

T1

SBC<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)
SBCS{<g>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d =
(shift t, shift_n) = (SRType LSL, 0);

T2

SBC, SBCS (register) Page 387

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 1 010 1[1 01 1][S] Rn (0)] imm3 | Rd [imm2]stype]| Rm |

SBC, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
SBC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX
SBC, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

SBC<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

SBC{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SBCS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)
SBCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

SBCS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

SBCS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)
SBCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");

(shift t, shift n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1l: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
flzgi;.ter is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is

* For the SBC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

* For the SBCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR <current mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

SBC, SBCS (register) Page 388

<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm?2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], NOT(shifted), PSTATE.C);
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn(result);
else
ALUWritePC(result);

else
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBC, SBCS (register) Page 389

SBC, SBCS (register-shifted register)

Subtract with Carry (register-shifted register) subtracts a register-shifted register value and the value of NOT (Carry
flag) from a register value, and writes the result to the destination register. It can optionally update the condition flags
based on the result.

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 0[1 1 O0]S] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)
SBCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>
Not flag setting (S == 0)

SBC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

UInt(Rm); s = UInt(Rs);
DecodeReqShlft(stype)
| s

d = UInt(Rd); n = UInt(Rn);
setflags = (S == '1"); shlft
if d == 15 || n == 15 ||m——15|

== 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift t, shift n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], NOT(shifted), PSTATE.C);
R[d] = result;
if setflags then
PSTATE.<N,Z,C,V> = nzcv;

SBC, SBCS (register-shifted

register) Page 390

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBC, SBCS (register-shifted

register) Page 391

SBFX

Signed Bit Field Extract extracts any number of adjacent bits at any position from a register, sign-extends them to 32
bits, and writes the result to the destination register.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| '=1111 Jo 1 1 1 1[0[1] widthml | Rd | Isb |1 0 1] Rn |
cond
Al
SBFX{<c>}{<qg>} <Rd>, <Rn>, #<lsb>, #<width>
d = UInt(Rd); n = UInt(Rn);
lsbit = UInt(lsb); widthminusl = UInt(widthml);
msbit = lsbit + widthminusl;
if d == 15 || n == 15 then UNPREDICTABLE;
if msbit > 31 then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior
If msbit > 31, then one of the following behaviors must occur:
* The instruction is UNDEFINED.
* The instruction executes as NOP.
¢ The value in the destination register is UNKNOWN.
T1
15 14 1312 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 11 001 1[0 1/0]0] Rn 0] imm3 | Rd [imm2{(0)] widthml |

T1

SBFX{<c>}{<g>} <Rd>, <Rn>, #<lsb>, #<width>

d = UInt(Rd); n = UInt(Rn);

lsbit = UInt(imm3:imm2); widthminusl = UInt(widthml);

msbit = lsbit + widthminusl;

if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if msbit > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit > 31, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

e The instruction executes as NOP.

e The value in the destination register is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

SBFX Page 392

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> For encoding A1l: is the bit number of the least significant bit in the field, in the range 0 to 31, encoded
in the "Isb" field.

For encoding T1: is the bit number of the least significant bit in the field, in the range 0 to 31, encoded
in the "imm3:imm?2" field.

<width> Is the width of the field, in the range 1 to 32-<Isb>, encoded in the "widthm1" field as <width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d] = SignExtend(R[n]<msbit:lsbit>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBFX Page 393

SDIV

Signed Divide divides a 32-bit signed integer register value by a 32-bit signed integer register value, and writes the
result to the destination register. The condition flags are not affected.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).
Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 3 2 1 O

7 6 5 4
| !1=1111 Jo 1 1 1 0[O0 O 1| Rd (1) (1) (1) (1)] Rm |0 0 0]1] Rn |
cond Ra

Al

SDIV{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

m); a = UInt(Ra);
15 then UNPREDICTABLE;

d = UInt(Rd); n = UInt(Rn); m = UInt(R
ifd==15 || n==15 || m == 15 || a !=

CONSTRAINED UNPREDICTABLE behavior

IfRa != '1111', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes as described, with no change to its behavior and no additional side effects.
The instruction executes as described, and the register specified by Ra becomes UNKNOWN.

Tl
15 14 1312 1110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
1 1 111011 1/0 0 1] Rn (1) (1) (1) (1) Rd [1 1 1 1] Rm |

Ra
T1

SDIV{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
// Armv8-A removes UNPREDICTABLE for R13
ifd==15 || n==15 || m == 15 || a != 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

IfRa != '1111', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes as described, with no change to its behavior and no additional side effects.

The instruction executes as described, and the register specified by Ra becomes UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.

SDIV Page 394

<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Overflow
If the signed integer division 0x80000000 / OxFFFFFFFF is performed, the pseudocode produces the intermediate

integer result +231, that overflows the 32-bit signed integer range. No indication of this overflow case is produced,

and the 32-bit result written to <Rd> must be the bottom 32 bits of the binary representation of +231. S0 the result of
the division is 0x80000000.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
integer result;
if SInt(R[m]) == 0@ then
result = 0;
else
result = RoundTowardsZero(Real(SInt(R[n])) / Real(SInt(R[m])));
R[d] = result<31:0>;

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDIV Page 395

SEL

Select Bytes selects each byte of its result from either its first operand or its second operand, according to the values
of the PSTATE.GE flags.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 0O 1 1 0 1 0 O O] Rn | Rd (OO 1 o 1 1] Rm |
cond
Al
SEL{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
Tl
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
11 1110 101[0 1 0] Rn 1 1 1 1] Rd |1 0]/0 0] Rm |

Tl

SEL{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();

R[d]<7:0> = if PSTATE.GE<O> == '1' then R[n]<7:0> else R[m]<7:0>;

R[d]<15:8> = if PSTATE.GE<1l> == '1' then R[n]<15:8> else R[m]<15:8>;
R[d]<23:16> = if PSTATE.GE<2> == '1' then R[n]<23:16> else R[m]<23:16>;
R[d]<31:24> = if PSTATE.GE<3> == '1' then R[n]<31:24> else R[m]<31:24>;

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEL Page 396

SETEND

Set Endianness writes a new value to PSTATE .E.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[T 111000100 0 0[0OMILIOMOONOO[E]0][0]o]0]0 (0)(0)(0)(0)]

Al

SETEND{<g>} <endian specifier> // (Cannot be conditional)
set bigend = (E == '1');
T1

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
[1 011011 0 0 1/0[1D]E]IW0)(0)(0)

Tl

SETEND{<g>} <endian specifier> // (Not permitted in IT block)

set bigend = (E == '1');
if InITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<qg> See Standard assembler syntax fields.

<endian specifier> Is the endianness to be selected, and the value to be set in PSTATE.E, encoded in “E”:

E <endian_specifier>
0 LE
1 BE

Operation

EncodingSpecificOperations();
AArch32.CheckSETENDEnabled();
PSTATE.E = if set bigend then 'l' else '0';

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SETEND Page 397

SETPAN

Set Privileged Access Never writes a new value to PSTATE.PAN.

This instruction is available only in privileged mode and it is a NOP when executed in User mode.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
(FEAT_PAN)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

9

[1 11100010 0 0 1[0)O)O)0)0)]0)]0)]0)0)0)immi

8 7 6
0o 0

olun

Al

SETPAN{<q>} #<imm> // (Cannot be conditional)

if !'HavePANExt() then UNDEFINED;
value = imml;

Tl
(FEAT_PAN)

1514 13121110 9 8 7 6 5 4 3 2 1 0
[1 01 10110 0 0 0][0)immi0)0)0)

Tl

SETPAN{<q>} #<imm> // (Not permitted in IT block)
if InITBlock() then UNPREDICTABLE;

if !'HavePANExt() then UNDEFINED;
value = imml;

Assembler Symbols

<q> See Standard assembler syntax fields.
<imm> Is the unsigned immediate 0 or 1, encoded in the "imm1" field.
Operation

EncodingSpecificOperations();
if PSTATE.EL != ELO then
PSTATE.PAN = value;

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SETPAN

Page 398

SEV

Send Event is a hint instruction. It causes an event to be signaled to all PEs in the multiprocessor system. For more
information, see Wait For Event and Send Event.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| I=1111 |0 01 10 |0 |1 0 |O 0 |0 0|(1H(1ﬂ(1ﬂ(1ﬂ(0)(0)(0)(0) 0O 00OO0OOT1TDO 0|
cond
Al
SEV{<c>}{<q>}

// No additional decoding required

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/1 01 1111 1[0100[000 0]

Tl

SEV{<c>}{<g>}
// No additional decoding required
T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 12 11 10 9 8 7 6
1 1110011101 o0/@mi1ioloolojo o ofo 0

olun
[@J N
o|w
SN
o~
ol|o

T2

SEV{<c>}.W
// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
SendEvent();

Internal version only: isa v01_31, pseudocode v2023-03 rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEV Page 399

SEVL

Send Event Local is a hint instruction that causes an event to be signaled locally without requiring the event to be
signaled to other PEs in the multiprocessor system. It can prime a wait-loop which starts with a WFE instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1 and T2) .

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| I=1111 |0 01 10 |0 |1 0 |O 0 |0 0|(1H(1ﬂ(1ﬂ(1ﬂ(0)(0)(0)(0) 0O 00OO0OOT1TDO 1|
cond
Al
SEVL{<c>}{<qg>}

// No additional decoding required

Tl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
/1 01 1111 1[0101[0 0 0 O]

Tl

SEVL{<c>}{<g>}
// No additional decoding required
T2

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 12 11 10 9 8 7 6
1 1110011101 o0/@mi1ioloolojo o ofo 0

olun
[@J N
o|w
SN
o~
=)

T2

SEVL{<c>}.W
// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
SendEventlocal();

Internal version only: isa v01_31, pseudocode v2023-03 rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEVL Page 400

SHADD16

Signed Halving Add 16 performs two signed 16-bit integer additions, halves the results, and writes the results to the
destination register.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 Jo 1 1 0 0[O0 1 1| Rn | Rd (WOmmjoJo of1] Rm |

cond

Al

SHADD16{<c>}{<gq>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d =15 || n == 15 || m == 15 then UNPREDICTABLE;
T1

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
/11 111010 1[0 0 1] Rn 1 1 1 1] Rd loJo1]0] Rm |
T1

SHADD16{<c>}{<gq>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
suml = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
R[d1<15:0> = suml<l6:1>;
R[d]<31:16> = sum2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

SHADD16 Page 401

The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHADD16 Page 402

SHADDS8

Signed Halving Add 8 performs four signed 8-bit integer additions, halves the results, and writes the results to the
destination register.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 Jo 1 1 0 0[O0 1 1| Rn | Rd (WO 1]o of1] Rm |
cond
Al
SHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d =15 || n == 15 || m == 15 then UNPREDICTABLE;
T1
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
/11 111 0101[0 0 O] Rn 1 1 1 1] Rd loJo1]0] Rm |
T1
SHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
SInt(R[n]<7:0>) + SInt(R[m]<7:0>);

suml =

sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
sum3 = SInt(R[n]1<23:16>) + SInt(R[m]<23:16>);
sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
R[d]<7:0> = suml<8:1>;

R[d]<15:8> = sum2<8:1>;

R[d]<23:16> = sum3<8:1>;

R[d]<31:24> = sum4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

SHADDS Page 403

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHADDS Page 404

SHASX

Signed Halving Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
signed 16-bit integer addition and one signed 16-bit subtraction, halves the results, and writes the results to the
destination register.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 JOo 1 1 0 0[O0 1 1| Rn | Rd (WmmjoJo 1]1] Rm |
cond

Al

SHASX{<c>}{<gq>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d =15 || n == 15 || m == 15 then UNPREDICTABLE;
T1
1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
11 111 0101[0 1 0] Rn 1 1 1 1] Rd loJo1]0] Rm |
T1

SHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
R[d1<15:0> = diff<16:1>;
R[d]<31:16> sum<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.

SHASX Page 405

o The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHASX Page 406

SHSAX

Signed Halving Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
signed 16-bit integer subtraction and one signed 16-bit addition, halves the results, and writes the results to the
destination register.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 JOo 1 1 0 0[O0 1 1| Rn | Rd (WOmmjo]1 of1] Rm |

cond

Al

SHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d =15 || n == 15 || m == 15 then UNPREDICTABLE;
T1

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
11 111010 1[1 1 0] Rn 1 1 1 1] Rd loJo1]0] Rm |
T1

SHSAX{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
R[d]<15:0> = sum<16:1>;
R[d]<31:16> = diff<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.

SHSAX Page 407

o The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHSAX Page 408

SHSUB16

Signed Halving Subtract 16 performs two signed 16-bit integer subtractions, halves the results, and writes the results
to the destination register.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 .21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| !1=1111 Jo 1 1 0 0[O0 1 1| Rn | Rd (mmjo]1 1]1] Rm |

cond

Al

SHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 0
1 1 111010 1[1 0 1] Rn 1 1 1 1] Rd loJo1]0] Rm |
T1

SHSUB16{<c>}{<gq>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
diffl = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);

R[d]<15:0> diffl<16:1>;
R[d]<31:16> = diff2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

SHSUBI16 Page 409

The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHSUB16 Page 410

SHSUBS8

Signed Halving Subtract 8 performs four signed 8-bit integer subtractions, halves the results, and writes the results to
the destination register.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| !1=1111 Jo 1 1 0 0[O0 1 1| Rn | Rd (1)1 1]1] Rm |

cond

Al

SHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d =15 || n == 15 || m == 15 then UNPREDICTABLE;
T1

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
1 1 111010 1[1 0 0] Rn 1 1 1 1] Rd loJo1]0] Rm |
T1

SHSUB8{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
SInt(R[n]<7:0>) - SInt(R[m]<7:0>);

diffl =

diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
R[d]<7:0> = diffl<8:1>;

R[d]1<15:8> = diff2<8:1>;

R[d]<23:16> = diff3<8:1>;

R[d]<31:24> = diff4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

SHSUBS8 Page 411

¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHSUBS8 Page 412

SMC

Secure Monitor Call causes a Secure Monitor Call exception. For more information see Secure Monitor Call (SMC)
exception.
SMC is available only for software executing at EL1 or higher. It is UNDEFINED in User mode.
If the values of HCR.TSC and SCR.SCD are both 0, execution of an SMC instruction at EL1 or higher generates a
Secure Monitor Call exception that is taken to EL3. When EL3 is using AArch32 this exception is taken to Monitor
mode. When EL3 is using AArch64, it is the SCR_EL3.SMD bit, rather than the SCR.SCD bit, that can change the
effect of executing an SMC instruction.
If the value of HCR.TSC is 1, execution of an SMC instruction in a Non-secure EL1 mode generates an exception that is
taken to EL2, regardless of the value of SCR.SCD. When EL?2 is using AArch32, this is a Hyp Trap exception that is
taken to Hyp mode. For more information see Traps to Hyp mode of Non-secure EL1 execution of SMC instructions.
If the value of HCR.TSC is 0 and the value of SCR.SCD is 1, the SMC instruction is:

e UNDEFINED in Non-secure state.

¢ CONSTRAINED UNPREDICTABLE if executed in Secure state at EL1 or higher.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
['=1111 Jo 0 0 1 01 1]0(0)(0)(0)(0)(0)(0)(0)(0)(0)(O)(®[0 1 1 1] imm4 |
cond

Al

SMC{<c>}{<qg>} {#}<immd>
// imm4 is for assembly/disassembly only and is ignored by hardware
T1

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13 12 1110 9 8 7 6 5 4 3 2 1 O
[11 11011111 1[1] imm4 [1 0]0]0](0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)]

Tl

SMC{<c>}{<qg>} {#}<imm4>

// imm4 is for assembly/disassembly only and is ignored by hardware
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<qg> See Standard assembler syntax fields.
<imm4> Is a 4-bit unsigned immediate value, in the range 0 to 15, encoded in the "imm4" field. This is ignored

by the PE. The Secure Monitor Call exception handler (Secure Monitor code) can use this value to
determine what service is being requested, but Arm does not recommend this.

SMC Page 413

Operation

if ConditionPassed() then
EncodingSpecificOperations();

AArch32.CheckForSMCUndefOrTrap();

if !'ELUsingAArch32(EL3) then
if SCR EL3.SMD == '1' then
// SMC disabled.
UNDEFINED;

else
if SCR.SCD == '1' then

// SMC disabled

if CurrentSecurityState() == SS _Secure then
// Executes either as a NOP or UNALLOCATED.
¢ = ConstrainUnpredictable(Unpredictable SMD);
assert ¢ IN {Constraint NOP, Constraint UNDEF};
if ¢ == Constraint NOP then EndOfInstruction();

UNDEFINED;

if !'ELUsingAArch32(EL3) then
AArch64.CallSecureMonitor(Zeros(16));
else
AArch32.TakeSMCException();

CONSTRAINED UNPREDICTABLE behavior

IfSCR.SCD == '1' && CurrentSecurityState() == SS Secure, then one of the following behaviors must occur

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMC

Page 414

SMLABB, SMLABT, SMLATB, SMLATT

Signed Multiply Accumulate (halfwords) performs a signed multiply accumulate operation. The multiply acts on two
signed 16-bit quantities, taken from either the bottom or the top half of their respective source registers. The other
halves of these source registers are ignored. The 32-bit product is added to a 32-bit accumulate value and the result is
written to the destination register.

If overflow occurs during the addition of the accumulate value, the instruction sets PSTATE.Q to 1. It is not possible
for overflow to occur during the multiplication.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 0|0 O]0] Rd | Ra | Rm [1[M[N]O] Rn |
cond

SMLABB (M == 0 && N == 0)
SMLABB{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>
SMLABT (M == 1 && N == 0)
SMLABT{<c>}{<gq>} <Rd>, <Rn>, <Rm>, <Ra>
SMLATB (M == 0 && N == 1)
SMLATB{<c>}{<gq>} <Rd>, <Rn>, <Rm>, <Ra>
SMLATT (M == 1 && N == 1)

SMLATT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
n_high = (N == '1"); m high = (M == "'1");
ifd==15 || n==15 || m == 15 || a == 15 then UNPREDICTABLE;

Tl
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 111101 10[00 1] Rn ['=1111 | Rd [0 O[N][M] Rm |
Ra
SMLABB, SMLABT, SMLATB, Page 415

SMLATT

SMLABB (N == 0 && M == 0)

SMLABB{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>

SMLABT (N ==0 && M == 1)

SMLABT{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATB (N == 1 && M == 0)

SMLATB{<c>}{<gq>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATT (N == 1 && M == 1)

SMLATT{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "SMULBB, SMULBT, SMULTB, SMULTT";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
nihlgh = (N == '1'); mihlgh = (M == |1|);

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half (selected
by <x>), encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half (selected
by <y>), encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then

EncodingSpecificOperations();

operandl = if n_high then R[n]<31:16> else R[n]<15:0>;

operand2 = if m _high then R[m]<31:16> else R[m]<15:0>;

result = SInt(operandl) * SInt(operand2) + SInt(R[a]);

R[d] = result<31:0>;

if result != SInt(result<31:0>) then // Signed overflow
PSTATE.Q = '1';

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLABB, SMLABT, SMLATB,

SMLATT Page 416

SMLAD, SMLADX

Signed Multiply Accumulate Dual performs two signed 16 x 16-bit multiplications. It adds the products to a 32-bit
accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

This instruction sets PSTATE.Q to 1 if the accumulate operation overflows. Overflow cannot occur during the
multiplications.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| !1=1111 Jo 1 1 1 0[O0 O O] Rd | !=1111 | Rm |0 0o[M|1] Rn |
cond Ra

SMLAD (M == 0)

SMLAD{<c>}{<gq>} <Rd>, <Rn>, <Rm>, <Ra>

SMLADX (M == 1)

SMLADX{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "SMUAD";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
m swap = (M == '1");

if d == 15 || n==15 || m == 15 then UNPREDICTABLE;

Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
[1 111 10110[01 0] Rn | '1=1111 | Rd [0 0[0][M] Rm |
Ra
SMLAD (M == 0)
SMLAD{<c>}{<gq>} <Rd>, <Rn>, <Rm>, <Ra>
SMLADX (M == 1)
SMLADX{<c>}{<qg>} <Rd>, <Rn>, <Rm>, <Ra>
if Ra == '1111' then SEE "SMUAD";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
mswap = (M == '1");

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

SMLAD, SMLADX Page 417

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

operand2 = if m swap then ROR(R[m],16) else R[m];
productl = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);

result = productl + product2 + SInt(R[a]);

R[d] = result<31:0>;

if result != SInt(result<31:0>) then // Signed overflow
PSTATE.Q = '1';

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLAD, SMLADX Page 418

SMLAL, SMLALS

Signed Multiply Accumulate Long multiplies two signed 32-bit values to produce a 64-bit value, and accumulates this
with a 64-bit value.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 0 0]1 1 1[S|] RdHi | Rdlo | Rm [1 0 0 1] Rn |
cond
Flag setting (S == 1)
SMLALS{<c>}{<g>} <RdLo>, <RdHi>, <Rn>, <Rm>
Not flag setting (S == 0)
SMLAL{<c>}{<gq>} <RdLo>, <RdHi>, <Rn>, <Rm>
dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:
¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
e The value in the destination register is UNKNOWN.
T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
[1 1111011 1[1 0 0] Rn | Rdlo | RdHi [0 0 0 O] Rm |

Tl

SMLAL{<c>}{<g>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13

if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.

¢ The value in the destination register is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

SMLAL, SMLALS Page 419

Assembler Symbols

<c> See Standard assembler syntax fields.

<qg> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = SInt(R[n]) * SInt(R[m]) + SInt(R[dHi]:R[dLo]);
R[dHi] result<63:32>;
R[dLo] = result<31:0>;
if setflags then
PSTATE.N = result<63>;
PSTATE.Z = IsZeroBit(result<63:0>);
// PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLAL, SMLALS Page 420

SMLALBB, SMLALBT, SMLALTB, SMLALTT

Signed Multiply Accumulate Long (halfwords) multiplies two signed 16-bit values to produce a 32-bit value, and
accumulates this with a 64-bit value. The multiply acts on two signed 16-bit quantities, taken from either the bottom or
the top half of their respective source registers. The other halves of these source registers are ignored. The 32-bit
product is sign-extended and accumulated with a 64-bit accumulate value.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected if it
occurs. Instead, the result wraps around modulo 264,
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| '=1111 |0 0 0 1 0|1 O0[0| RdHi | Rdlo | Rm [1[M[N]O] Rn |
cond

SMLALBB (M == 0 && N == 0)

SMLALBB{<c>}{<gq>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALBT (M == 1 && N == 0)

SMLALBT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTB (M == 0 && N == 1)

SMLALTB{<c>}{<gq>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTT (M ==1 && N == 1)

SMLALTT{<c>}{<g>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
n_high = (N == '1"'); m high = (M == '1");
if dLo == 15 || dHi == 15 || == 15 || m == 15 then UNPREDICTABLE;

if dHi == dLo then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
e The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O

[1 1111011 1[1 0 0] Rn | Rdlo | RdHi [1 O[N[M] Rm |
SMLALBB, SMLALBT, Page 421

SMLALTB, SMLALTT

SMLALBB (N == 0 && M == 0)

SMLALBB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALBT (N ==0 && M == 1)

SMLALBT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTB (N == 1 && M == 0)

SMLALTB{<c>}{<gq>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTT (N ==1 && M == 1)

SMLALTT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

UInt(Rn); m = UInt(Rm);

dLo = UInt(RdLo); dHi = UInt(RdHi);
n_high = (N == '1"); m_high = (M == "
if dLo == 15 || dHi == 15 || n == 15 |
// Armv8-A removes UNPREDICTABLE for R
if dHi == dLo then UNPREDICTABLE;

n =
1');
| m
1

3

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.
¢ The value in the destination register is UNKNOWN.

== 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints

on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination

register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination

register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> For encoding A1l: is the first general-purpose source register holding the multiplicand in the bottom or

top half (selected by <x>), encoded in the "Rn" field.

For encoding T1: is the first general-purpose source register holding the multiplicand in the bottom or

top half (selected by <x>), encoded in the "Rn" field.

<Rm> For encoding Al: is the second general-purpose source register holding the multiplier in the bottom or

top half (selected by <y>), encoded in the "Rm" field.

For encoding T1: is the second general-purpose source register holding the multiplier in the bottom or

top half (selected by <x>), encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operandl = if n_high then R[n]<31:16> else R[n]<15:0>;
operand2 = if m _high then R[m]<31:16> else R[m]<15:0>;

result = SInt(operandl) * SInt(operand2) + SInt(R[dHi]:R[dLo]);

R[dHi] = result<63:32>;
R[dLo] = result<31:0>;

SMLALBB, SMLALBT,
SMLALTB, SMLALTT

Page 422

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLALBB, SMLALBT,

SMLALTB, SMLALTT Page 423

SMLALD, SMLALDX

Signed Multiply Accumulate Long Dual performs two signed 16 x 16-bit multiplications. It adds the products to a

64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This

produces top x bottom and bottom x top multiplication.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected if it

occurs. Instead, the result wraps around modulo 264,
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 1 1 1 0|1 0 O[] RdHi | Rdlo | Rm [0 0[M]1] Rn |
cond
SMLALD (M == 0)
SMLALD{<c>}{<g>} <RdLo>, <RdHi>, <Rn>, <Rm>
SMLALDX (M == 1)
SMLALDX{<c>}{<gq>} <RdLo>, <RdHi>, <Rn>, <Rm>
dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m swap = (M == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:
e The instruction is UNDEFINED.
e The instruction executes as NOP.
e The value in the destination register is UNKNOWN.
T1
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413 121110 9 8 7 6 5 4 3 2 1 O
[1 1111011 1]1 0 0] Rn | Rdlo | RdHi [1 1 0[M] Rm |
SMLALD (M == 0)
SMLALD{<c>}{<g>} <RdLo>, <RdHi>, <Rn>, <Rm>
SMLALDX (M == 1)
SMLALDX{<c>}{<gq>} <RdLo>, <RdHi>, <Rn>, <Rm>
dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m swap = (M == '1');

if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

SMLALD, SMLALDX

Page 424

¢ The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

operand2 = if m swap then ROR(R[m],16) else R[m];
productl = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);

result = productl + product2 + SInt(R[dHi]:R[dLo]);
R[dHi] = result<63:32>;
R[dLo] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLALD, SMLALDX Page 425

SMLAWB, SMLAWT

Signed Multiply Accumulate (word by halfword) performs a signed multiply accumulate operation. The multiply acts
on a signed 32-bit quantity and a signed 16-bit quantity. The signed 16-bit quantity is taken from either the bottom or
the top half of its source register. The other half of the second source register is ignored. The top 32 bits of the 48-bit
product are added to a 32-bit accumulate value and the result is written to the destination register. The bottom 16 bits
of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets PSTATE.Q to 1. No overflow can
occur during the multiplication.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 0 0 1 00 1]0] Rd | Ra | Rm [1[m[o0]0O] Rn |
cond

SMLAWB (M == 0)

SMLAWB{<c>}{<qgq>} <Rd>, <Rn>, <Rm>, <Ra>

SMLAWT (M == 1)

SMLAWT{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m high = (M == '1");
if d =15 || n==15 || m == 15 || a == 15 then UNPREDICTABLE;
Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1101 10[0 1 1] Rn | '=1111 | Rd |0 0]0[M]| Rm |
Ra
SMLAWB (M == 0)
SMLAWB{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>
SMLAWT (M == 1)
SMLAWT{<c>}{<gq>} <Rd>, <Rn>, <Rm>, <Ra>
if Ra == '1111' then SEE "SMULWB, SMULWT";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m _high = (M == '1");

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half (selected

by <y>), encoded in the "Rm" field.

SMLAWB, SMLAWT Page 426

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand2 = if m _high then R[m]<31:16> else R[m]<15:0>;
result = SInt(R[n]) * SInt(operand2) + (SInt(R[a]) << 16);
R[d] = result<47:16>;
if (result >> 16) !'= SInt(R[d]) then // Signed overflow
PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLAWB, SMLAWT Page 427

SMLSD, SMLSDX

Signed Multiply Subtract Dual performs two signed 16 x 16-bit multiplications. It adds the difference of the products
to a 32-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

This instruction sets PSTATE.Q to 1 if the accumulate operation overflows. Overflow cannot occur during the
multiplications or subtraction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| !1=1111 Jo 1 1 1 0[O0 O O] Rd | !=1111 | Rm [0 1[M|1] Rn |
cond Ra

SMLSD (M == 0)
SMLSD{<c>}{<gq>} <Rd>, <Rn>, <Rm>, <Ra>
SMLSDX (M == 1)

SMLSDX{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "SMUSD";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m swap = (M == '1");
if d =15 || n == 15 || m == 15 then UNPREDICTABLE;

Tl
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
[1 111101 10[]1 0 0] Rn | '1=1111 | Rd [0 0[0][M] Rm |
Ra
SMLSD (M == 0)
SMLSD{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>
SMLSDX (M == 1)
SMLSDX{<c>}{<qg>} <Rd>, <Rn>, <Rm>, <Ra>
if Ra == '1111' then SEE "SMUSD";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m swap = (M == '1");

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

SMLSD, SMLSDX Page 428

Operation

if ConditionPassed() then

EncodingSpecificOperations();

operand2 = if m _swap then ROR(R[m],16) else R[m];

productl = SInt(R[n]<15:0>) * SInt(operand2<15:0>);

product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);

result = (productl - product2) + SInt(R[a]);

R[d] = result<31:0>;

if result != SInt(result<31:0>) then // Signed overflow
PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLSD, SMLSDX Page 429

SMLSLD, SMLSLDX

Signed Multiply Subtract Long Dual performs two signed 16 x 16-bit multiplications. It adds the difference of the
products to a 64-bit accumulate operand.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected if it
occurs. Instead, the result wraps around modulo 264,
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

['=1111 Jo 1 1 1 0|1 0 O[] RdHi | Rdlo | Rm [0 1[M]1] Rn |
cond

SMLSLD (M == 0)
SMLSLD{<c>}{<g>} <RdLo>, <RdHi>, <Rn>, <Rm>
SMLSLDX (M == 1)

SMLSLDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

= UInt(Rn); m = UInt(Rm); m swap = (M == '1");
m == 15 then UNPREDICTABLE;

dLo = UInt(RdLo); dHi = UInt(RdHi); n
if dLo == 15 || dHi == 15 || n == 15 ||
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

e The instruction is UNDEFINED.
¢ The instruction executes as NOP.
e The value in the destination register is UNKNOWN.

T1

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413 121110 9 8 7 6 5 4 3 2 1 O
[1 1111011 1]1 0 1] Rn | Rdlo | RdHi [1 1 0[M] Rm |
SMLSLD (M == 0)

SMLSLD{<c>}{<g>} <RdLo>, <RdHi>, <Rn>, <Rm>
SMLSLDX (M == 1)

SMLSLDX{<c>}{<gq>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m swap = (M == '1');

if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UPREDICTABLE for R13
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

¢ The instruction is UNDEFINED.
¢ The instruction executes as NOP.

SMLSLD, SMLSLDX Page 430

¢ The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

operand2
productl
product2
result =
R[dHi] =
R[dLo] =

= if m_swap then ROR(R[m],16) else R[m];

= SInt(R[n]<15:0>) * SInt(operand2<15:0>);

= SInt(R[n]<31:16>) * SInt(operand2<31:16>);
(productl - product2) + SInt(R[dHi]:R[dLo]);
result<63:32>;

result<31:0>;

Internal version only: isa v01_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLSLD, SMLSLDX Page 431

SMMLA, SMMLAR

Signed Most Significant Word Multiply Accumulate multiplies two signed 32-bit values, extracts the most significant
32 bits of the result, and adds an accumulate value.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 1 1 1 01 0 1] Rd ['=1111 | Rm [0 O[R[1] Rn |
cond Ra
SMMLA (R == 0)
SMMLA{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>
SMMLAR (R == 1)
SMMLAR{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>
if Ra == '1111' then SEE "SMMUL";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1"');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
T1
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1101 10[1 0 1] Rn | '=1111 | Rd |0 0J]O|R] Rm |
Ra
SMMLA (R == 0)
SMMLA{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>
SMMLAR (R ==1)
SMMLAR{<c>}{<gq>} <Rd>, <Rn>, <Rm>, <Ra>
if Ra == '1111' then SEE "SMMUL";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == "'1");

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

SMMILA, SMMLAR Page 432

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = (SInt(R[a]) << 32) + SInt(R[n]) * SInt(R[m]);
if round then result = result + 0x80000000;
R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMMILA, SMMLAR Page 433

SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract multiplies two signed 32-bit values, subtracts the result from a 32-bit
accumulate value that is shifted left by 32 bits, and extracts the most significant 32 bits of the result of that
subtraction.

Optionally, the instruction can specify that the result of the instruction is rounded instead of being truncated. In this
case, the constant 0x80000000 is added to the result of the subtraction before the high word is extracted.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 1 1 1 01 0 1] Rd | Ra | Rm [1 1[R]1] Rn |
cond
SMMLS (R == 0)
SMMLS{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>
SMMLSR (R == 1)
SMMLSR{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1"');
if d =15 || n==15 || m == 15 || a == 15 then UNPREDICTABLE;
T1
15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1101 10[1 1 0] Rn | Ra | Rd |0 0J]O|R] Rm |

SMMLS (R == 0)
SMMLS{<c>}{<g>} <Rd>, <Rn>, <Rm>, <Ra>
SMMLSR (R == 1)

SMMLSR{<c>}{<gq>} <Rd>, <Rn>, <Rm>, <Ra>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == "'1");
if d==15 || n==15 || m == 15 || a == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.
<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

SMMLS, SMMLSR Page 434

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = (SInt(R[a]) << 32) - SInt(R[n]) * SInt(R[m]);
if round then result = result + 0x80000000;
R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMMLS, SMMLSR Page 435

SMMUL, SMMULR

Signed Most Significant Word Multiply multiplies two signed 32-bit values, extracts the most significant 32 bits of the

result, and writes those bits to the destination register.

Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the c
0x80000000 is added to the product before the high word is extracted.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

onstant

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 1 1 1 01 0 1] Rd [1 1 1 1] Rm [0 O[R[1] Rn |
cond
SMMUL (R == 0)
SMMUL{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
SMMULR (R == 1)
SMMULR{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); round = (R == '1");
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
T1
15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
1 1 1 1101 10[1 0 1] Rn [1 1 1 1] Rd |0 0J]O|R] Rm |
SMMUL (R == 0)
SMMUL{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
SMMULR (R == 1)
SMMULR{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); round = (R == '1"');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints

on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

SMMUL, SMMULR

Page 436

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = SInt(R[n]) * SInt(R[m]);
if round then result = result + 0x80000000;
R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMMUL, SMMULR Page 437

SMUAD, SMUADX

Signed Dual Multiply Add performs two signed 16 x 16-bit multiplications. It adds the products together, and writes
the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

This instruction sets PSTATE.Q to 1 if the addition overflows. The multiplications cannot overflow.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| !1=1111 Jo 1 1 1 0[O0 0O O] Rd 1 1 1 1] Rm |0 o[M|1] Rn |
cond

SMUAD (M == 0)

SMUAD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUADX (M == 1)

SMUADX{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m swap = (M == '1");

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
Tl

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 111101 10[01 0] Rn [1 1 1 1] Rd [0 0[0][M] Rm |

SMUAD (M == 0)

SMUAD{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

SMUADX (M == 1)

SMUADX{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m swap = (M == '1");
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

SMUAD, SMUADX Page 438

Operation

if ConditionPassed() then
EncodingSpecificOperations();

operand2 = if m _swap then ROR(R[m],16) else R[m];
productl = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);

result = productl + product2;

R[d] = result<31:0>;

if result != SInt(result<31:0>) then // Signed overflow
PSTATE.Q = '1"';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMUAD, SMUADX Page 439

SMULBB, SMULBT, SMULTB, SMULTT

Signed Multiply (halfwords) multiplies two signed 16-bit quantities, taken from either the bottom or the top half of
their respective source registers. The other halves of these source registers are ignored. The 32-bit product is written

to the destination register. No overflow is possible during this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| '=1111 |0 0 0 1 01 1]0] Rd [(0) (0) (0) (0)] Rm [1[M[N]O] Rn |
cond
SMULBB (M == 0 && N == 0)
SMULBB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
SMULBT (M == 1 && N == 0)
SMULBT{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
SMULTB (M ==0 && N ==1)
SMULTB{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
SMULTT (M ==1 && N == 1)
SMULTT{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
n_high = (N == '1'); m _high M= "1");
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
T1
15 14 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
11 11101 10[0 0 1] Rn 1 1 1 1] Rd |0 O[N[M] Rm |
SMULBB (N == 0 && M == 0)
SMULBB{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
SMULBT (N == 0 && M == 1)
SMULBT{<c>}{<qg>} {<Rd>,} <Rn>, <Rm>
SMULTB (N == 1 && M == 0)
SMULTB{<c>}{<g>} {<Rd>,} <Rn>, <Rm>
SMULTT (N ==1 && M == 1)
SMULTT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
n_high = (N == '1"'); m high = (M == '1");
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
SMULBB, SMULBT, SMULTB, Page 440

SMULTT

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half (selected

by <x>), encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half (selected
by <y>), encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operandl = if n_high then R[n]<31:16> else R[n]<15:0>;
operand2 = if m high then R[m]<31:16> else R[m]<15:0>;
result = SInt(operandl) * SInt(operand2);
R[d] = result<31:0>;
// Signed overflow cannot occur

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULBB, SMULBT, SMULTB, Page 441
SMULTT g

SMULL, SMULLS

Signed Multiply Long multiplies two 32-bit signed values to produce a 64-bit result.

In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
['=1111 Jo 0 0 0]1 1 O0[S|] RdHi | Rdlo | Rm [1 0 0 1] Rn |
cond
Flag setting (S == 1)
SMULLS{<c>}{<g>} <RdLo>, <RdHi>, <Rn>, <Rm>
Not flag setting (S == 0)
SMULL{<c>}{<gq>} <RdLo>, <RdHi>, <Rn>, <Rm>
dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior
If dHi == dLo, then one of the following behaviors must occur:
e The instruction is UNDEFINED.
¢ The instruction executes as NOP.
e The value in the destination register is UNKNOWN.
T1
15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0 1514 13 121110 9 8 7 6 5 4 3 2 1 O
[1 1111011 1[0 0 0] Rn | Rdlo | RdHi [0 0 0 O] Rm |

Tl

SMULL{<c>}{<g>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13

if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:
¢ The instruction is UNDEFINED.

¢ The instruction executes as NOP.
¢ The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

SMULL, SMULLS Page 442

<q> See Standard assembler syntax fields.

<RdLo> %s Eile general-purpose destination register for the lower 32 bits of the result, encoded in the "RdLo"
eld.

<RdHi> %s Il:ge general-purpose destination register for the upper 32 bits of the result, encoded in the "RdHi"
eld.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

result = SInt(R[n]) * SInt(R[m]);
R[dHi] = result<63:32>;
R[dLo] = result<31:0>;

if setflags then
PSTATE.N = result<63>;
PSTATE.Z = IsZeroBit(result<63:0>);
// PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:
¢ The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
¢ The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULL, SMULLS Page 443

SMULWB, SMULWT

Signed Multiply (word by halfword) multiplies a signed 32-bit quantity and a signed 16-bit quantity. The signed 16-bit
quantity is taken from either the bottom or the top half of its source register. The other half of the second source
register is ignored. The top 32 bits of the 48-bit product are written to the destination register. The bottom 16 bits of
the 48-bit product are ignored. No overflow is possible during this instruction.

It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| '=1111 |0 0 0 1 0|0 10| Rd [(0) (0) (0) (0)] Rm [1[m[1]0] Rn |
cond

SMULWB (M == 0)
SMULWB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
SMULWT (M == 1)

SMULWT{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_high = (M == '1");
if d =15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1 O
[1 1 11101 10J0 1 1] Rn [1 1 1 1] Rd [0 0[0][M] Rm |
SMULWB (M == 0)

SMULWB{<c>}{<qg>} {<Rd>,} <Rn>, <Rm>
SMULWT (M == 1)

SMULWT{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m high = (M == '1");

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half (selected

by <y>), encoded in the "Rm" field.

SMULWB, SMULWT Page 444

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
product = SInt(R[n]) * SInt(operand2);
R[d] = product<47:16>;
// Signed overflow cannot occur

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or

destination:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2023-03_rel, sve v2023-03_rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULWB, SMULWT Page 445

SMUSD, SMUSDX

Signed Multiply Subtract Dual performs two signed 16 x 16-bit multiplications. It subtracts one of the products from
the other, and writes the result to the destination register.

Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.

Overflow cannot occur.
It has encodings from the following instruction sets: A32 (Al) and T32 (T1).

Al

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

| !1=1111 Jo 1 1 1 0[O0 0O O] Rd 1 1 1 1] Rm [0 1[M|1] Rn |
cond

SMUSD (M == 0)

SMUSD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUSDX (M == 1)

SMUSDX{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m swap = (M == '1");

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
Tl

1514 13121110 9 8 7 6 5 4 3 2 1 0 1514 13121110 9 8 7 6 5 4 3 2 1 O
[1 111101 10[]1 0 0] Rn [1 1 1 1] Rd [0 0[0][M] Rm |

SMUSD (M == 0)

SMUSD{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

SMUSDX (M == 1)

SMUSDX{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m swap = (M == '1");
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.
<Rn> Is the first general-purpose source register, encoded in the "Rn" field.
<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

SMUSD, SMUSDX Page 446

Operation

if ConditionPassed() then
EncodingSpecificOperations();

operand2 = if m _swap then ROR(R[m],16) else R[m];
productl = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);

result = productl - product2;
R[d] = result<31:0>;
// Signed overflow cannot occur

Internal version only: isa vO1 31, pseudocode v2023-03 rel, sve v2023-03 rc3b ; Build timestamp: 2023-03-31T10:19

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMUSD, SMUSDX Page 447

SRS, SRSDA, SRSDB, SRSIA, SRSIB

Store Return State stores the LR <current mode> and SPSR_<current mode> to the stack of a specified mode. For
information about memory accesses see Memory accesses.

SRS is UNDEFINED in Hyp mode.

SRS is CONSTRAINED UNPREDICTABLE if it is executed in User or System mode, or if the specified mode is any of the
following:

¢ Not implemented.

¢ A mode that Table G1-5 does not show.

¢ Hyp mode.

¢ Monitor