
Copyright © 2010-2023 Arm Limited (or its affiliates). All rights reserved.
DDI 0597 (ID070623)

% PostScript code to insert PDF bookmark for title
[/Dest /BookTitle /DEST FmPD2
[/Dest /BookTitle /Title <FEFF00410072006D0020004100330032002F00540033003200200049006E0073007400720075006300740069006F006E00200053006500740020004100720063006800690074006500630074007500720065002000410072006D00760038002C00200066006F0072002000410072006D00760038002D00410020006100720063006800690074006500630074007500720065002000700072006F00660069006C0065> /F 2 /OUT FmPD2

Arm® A32/T32 Instruction Set
for A-profile architecture

ii Copyright © 2010-2023 Arm Limited (or its affiliates). All rights reserved. DDI 0597
Non-Confidential ID070623

Arm A32/T32 Instruction Set
for A-profile architecture

Copyright © 2010-2023 Arm Limited (or its affiliates). All rights reserved.

Release Information

For information on the change history and known issues for this release, see the Release Notes in the A32/T32 ISA XML for
A-profile architecture (2023-06).

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ™ or © are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Copyright © 2010-2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this release covers multiple versions of the architecture. The content relating to different versions is given
different quality ratings.

The information relating to FEAT_MEC, the 2022 Extensions of the A-profile Architecture (except for FEAT_GCS, FEAT_D128,
and the Debug and PMU 2022 features), and the rest of the Architecture is at Beta quality. Beta quality means that all major
features of the specification are described, but some details might be missing.

DDI 0597 Copyright © 2010-2023 Arm Limited (or its affiliates). All rights reserved. iii
ID070623 Non-Confidential

The information relating to FEAT_GCS, FEAT_D128, and the Debug and PMU 2022 features remains at Alpha quality. Alpha
quality means that most major features of the specification are described in this release, but some features and details might be
missing.

Web Address

http://www.arm.com

Progressive Terminology Commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives
to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find offensive terms
in this document, please contact terms@arm.com.

Feedback on this document

If you have any comments or queries about this document, create a ticket at https://support.developer.arm.com.

As part of the ticket, include:
• The title, Arm® A32/T32 Instruction Set for A-profile architecture.
• The number, DDI 0597.
• The section name to which your comments refer.
• The page number(s) to which your comments refer.
• The rule identifier(s) to which your comments refer if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

iv Copyright © 2010-2023 Arm Limited (or its affiliates). All rights reserved. DDI 0597
Non-Confidential ID070623

AArch32 -- Base Instructions (alphabetic order)

ADC, ADCS (immediate): Add with Carry (immediate).

ADC, ADCS (register): Add with Carry (register).

ADC, ADCS (register-shifted register): Add with Carry (register-shifted register).

ADD (immediate, to PC): Add to PC: an alias of ADR.

ADD, ADDS (immediate): Add (immediate).

ADD, ADDS (register): Add (register).

ADD, ADDS (register-shifted register): Add (register-shifted register).

ADD, ADDS (SP plus immediate): Add to SP (immediate).

ADD, ADDS (SP plus register): Add to SP (register).

ADR: Form PC-relative address.

AND, ANDS (immediate): Bitwise AND (immediate).

AND, ANDS (register): Bitwise AND (register).

AND, ANDS (register-shifted register): Bitwise AND (register-shifted register).

ASR (immediate): Arithmetic Shift Right (immediate): an alias of MOV, MOVS (register).

ASR (register): Arithmetic Shift Right (register): an alias of MOV, MOVS (register-shifted register).

ASRS (immediate): Arithmetic Shift Right, setting flags (immediate): an alias of MOV, MOVS (register).

ASRS (register): Arithmetic Shift Right, setting flags (register): an alias of MOV, MOVS (register-shifted register).

B: Branch.

BFC: Bit Field Clear.

BFI: Bit Field Insert.

BIC, BICS (immediate): Bitwise Bit Clear (immediate).

BIC, BICS (register): Bitwise Bit Clear (register).

BIC, BICS (register-shifted register): Bitwise Bit Clear (register-shifted register).

BKPT: Breakpoint.

BL, BLX (immediate): Branch with Link and optional Exchange (immediate).

BLX (register): Branch with Link and Exchange (register).

BX: Branch and Exchange.

BXJ: Branch and Exchange, previously Branch and Exchange Jazelle.

CBNZ, CBZ: Compare and Branch on Nonzero or Zero.

CLRBHB: Clear Branch History.

CLREX: Clear-Exclusive.

CLZ: Count Leading Zeros.

CMN (immediate): Compare Negative (immediate).

CMN (register): Compare Negative (register).

AArch32 -- Base Instructions (alphabetic order)

Page 2

CMN (register-shifted register): Compare Negative (register-shifted register).

CMP (immediate): Compare (immediate).

CMP (register): Compare (register).

CMP (register-shifted register): Compare (register-shifted register).

CPS, CPSID, CPSIE: Change PE State.

CRC32: CRC32.

CRC32C: CRC32C.

CSDB: Consumption of Speculative Data Barrier.

DBG: Debug hint.

DCPS1: Debug Change PE State to EL1.

DCPS2: Debug Change PE State to EL2.

DCPS3: Debug Change PE State to EL3.

DMB: Data Memory Barrier.

DSB: Data Synchronization Barrier.

EOR, EORS (immediate): Bitwise Exclusive-OR (immediate).

EOR, EORS (register): Bitwise Exclusive-OR (register).

EOR, EORS (register-shifted register): Bitwise Exclusive-OR (register-shifted register).

ERET: Exception Return.

ESB: Error Synchronization Barrier.

HLT: Halting Breakpoint.

HVC: Hypervisor Call.

ISB: Instruction Synchronization Barrier.

IT: If-Then.

LDA: Load-Acquire Word.

LDAB: Load-Acquire Byte.

LDAEX: Load-Acquire Exclusive Word.

LDAEXB: Load-Acquire Exclusive Byte.

LDAEXD: Load-Acquire Exclusive Doubleword.

LDAEXH: Load-Acquire Exclusive Halfword.

LDAH: Load-Acquire Halfword.

LDC (immediate): Load data to System register (immediate).

LDC (literal): Load data to System register (literal).

LDM (exception return): Load Multiple (exception return).

LDM (User registers): Load Multiple (User registers).

LDM, LDMIA, LDMFD: Load Multiple (Increment After, Full Descending).

LDMDA, LDMFA: Load Multiple Decrement After (Full Ascending).

AArch32 -- Base Instructions (alphabetic order)

Page 3

LDMDB, LDMEA: Load Multiple Decrement Before (Empty Ascending).

LDMIB, LDMED: Load Multiple Increment Before (Empty Descending).

LDR (immediate): Load Register (immediate).

LDR (literal): Load Register (literal).

LDR (register): Load Register (register).

LDRB (immediate): Load Register Byte (immediate).

LDRB (literal): Load Register Byte (literal).

LDRB (register): Load Register Byte (register).

LDRBT: Load Register Byte Unprivileged.

LDRD (immediate): Load Register Dual (immediate).

LDRD (literal): Load Register Dual (literal).

LDRD (register): Load Register Dual (register).

LDREX: Load Register Exclusive.

LDREXB: Load Register Exclusive Byte.

LDREXD: Load Register Exclusive Doubleword.

LDREXH: Load Register Exclusive Halfword.

LDRH (immediate): Load Register Halfword (immediate).

LDRH (literal): Load Register Halfword (literal).

LDRH (register): Load Register Halfword (register).

LDRHT: Load Register Halfword Unprivileged.

LDRSB (immediate): Load Register Signed Byte (immediate).

LDRSB (literal): Load Register Signed Byte (literal).

LDRSB (register): Load Register Signed Byte (register).

LDRSBT: Load Register Signed Byte Unprivileged.

LDRSH (immediate): Load Register Signed Halfword (immediate).

LDRSH (literal): Load Register Signed Halfword (literal).

LDRSH (register): Load Register Signed Halfword (register).

LDRSHT: Load Register Signed Halfword Unprivileged.

LDRT: Load Register Unprivileged.

LSL (immediate): Logical Shift Left (immediate): an alias of MOV, MOVS (register).

LSL (register): Logical Shift Left (register): an alias of MOV, MOVS (register-shifted register).

LSLS (immediate): Logical Shift Left, setting flags (immediate): an alias of MOV, MOVS (register).

LSLS (register): Logical Shift Left, setting flags (register): an alias of MOV, MOVS (register-shifted register).

LSR (immediate): Logical Shift Right (immediate): an alias of MOV, MOVS (register).

LSR (register): Logical Shift Right (register): an alias of MOV, MOVS (register-shifted register).

LSRS (immediate): Logical Shift Right, setting flags (immediate): an alias of MOV, MOVS (register).

AArch32 -- Base Instructions (alphabetic order)

Page 4

LSRS (register): Logical Shift Right, setting flags (register): an alias of MOV, MOVS (register-shifted register).

MCR: Move to System register from general-purpose register or execute a System instruction.

MCRR: Move to System register from two general-purpose registers.

MLA, MLAS: Multiply Accumulate.

MLS: Multiply and Subtract.

MOV, MOVS (immediate): Move (immediate).

MOV, MOVS (register): Move (register).

MOV, MOVS (register-shifted register): Move (register-shifted register).

MOVT: Move Top.

MRC: Move to general-purpose register from System register.

MRRC: Move to two general-purpose registers from System register.

MRS: Move Special register to general-purpose register.

MRS (Banked register): Move Banked or Special register to general-purpose register.

MSR (Banked register): Move general-purpose register to Banked or Special register.

MSR (immediate): Move immediate value to Special register.

MSR (register): Move general-purpose register to Special register.

MUL, MULS: Multiply.

MVN, MVNS (immediate): Bitwise NOT (immediate).

MVN, MVNS (register): Bitwise NOT (register).

MVN, MVNS (register-shifted register): Bitwise NOT (register-shifted register).

NOP: No Operation.

ORN, ORNS (immediate): Bitwise OR NOT (immediate).

ORN, ORNS (register): Bitwise OR NOT (register).

ORR, ORRS (immediate): Bitwise OR (immediate).

ORR, ORRS (register): Bitwise OR (register).

ORR, ORRS (register-shifted register): Bitwise OR (register-shifted register).

PKHBT, PKHTB: Pack Halfword.

PLD (literal): Preload Data (literal).

PLD, PLDW (immediate): Preload Data (immediate).

PLD, PLDW (register): Preload Data (register).

PLI (immediate, literal): Preload Instruction (immediate, literal).

PLI (register): Preload Instruction (register).

POP: Pop Multiple Registers from Stack.

POP (multiple registers): Pop Multiple Registers from Stack: an alias of LDM, LDMIA, LDMFD.

POP (single register): Pop Single Register from Stack: an alias of LDR (immediate).

PSSBB: Physical Speculative Store Bypass Barrier.

AArch32 -- Base Instructions (alphabetic order)

Page 5

PUSH: Push Multiple Registers to Stack.

PUSH (multiple registers): Push multiple registers to Stack: an alias of STMDB, STMFD.

PUSH (single register): Push Single Register to Stack: an alias of STR (immediate).

QADD: Saturating Add.

QADD16: Saturating Add 16.

QADD8: Saturating Add 8.

QASX: Saturating Add and Subtract with Exchange.

QDADD: Saturating Double and Add.

QDSUB: Saturating Double and Subtract.

QSAX: Saturating Subtract and Add with Exchange.

QSUB: Saturating Subtract.

QSUB16: Saturating Subtract 16.

QSUB8: Saturating Subtract 8.

RBIT: Reverse Bits.

REV: Byte-Reverse Word.

REV16: Byte-Reverse Packed Halfword.

REVSH: Byte-Reverse Signed Halfword.

RFE, RFEDA, RFEDB, RFEIA, RFEIB: Return From Exception.

ROR (immediate): Rotate Right (immediate): an alias of MOV, MOVS (register).

ROR (register): Rotate Right (register): an alias of MOV, MOVS (register-shifted register).

RORS (immediate): Rotate Right, setting flags (immediate): an alias of MOV, MOVS (register).

RORS (register): Rotate Right, setting flags (register): an alias of MOV, MOVS (register-shifted register).

RRX: Rotate Right with Extend: an alias of MOV, MOVS (register).

RRXS: Rotate Right with Extend, setting flags: an alias of MOV, MOVS (register).

RSB, RSBS (immediate): Reverse Subtract (immediate).

RSB, RSBS (register): Reverse Subtract (register).

RSB, RSBS (register-shifted register): Reverse Subtract (register-shifted register).

RSC, RSCS (immediate): Reverse Subtract with Carry (immediate).

RSC, RSCS (register): Reverse Subtract with Carry (register).

RSC, RSCS (register-shifted register): Reverse Subtract (register-shifted register).

SADD16: Signed Add 16.

SADD8: Signed Add 8.

SASX: Signed Add and Subtract with Exchange.

SB: Speculation Barrier.

SBC, SBCS (immediate): Subtract with Carry (immediate).

SBC, SBCS (register): Subtract with Carry (register).

AArch32 -- Base Instructions (alphabetic order)

Page 6

SBC, SBCS (register-shifted register): Subtract with Carry (register-shifted register).

SBFX: Signed Bit Field Extract.

SDIV: Signed Divide.

SEL: Select Bytes.

SETEND: Set Endianness.

SETPAN: Set Privileged Access Never.

SEV: Send Event.

SEVL: Send Event Local.

SHADD16: Signed Halving Add 16.

SHADD8: Signed Halving Add 8.

SHASX: Signed Halving Add and Subtract with Exchange.

SHSAX: Signed Halving Subtract and Add with Exchange.

SHSUB16: Signed Halving Subtract 16.

SHSUB8: Signed Halving Subtract 8.

SMC: Secure Monitor Call.

SMLABB, SMLABT, SMLATB, SMLATT: Signed Multiply Accumulate (halfwords).

SMLAD, SMLADX: Signed Multiply Accumulate Dual.

SMLAL, SMLALS: Signed Multiply Accumulate Long.

SMLALBB, SMLALBT, SMLALTB, SMLALTT: Signed Multiply Accumulate Long (halfwords).

SMLALD, SMLALDX: Signed Multiply Accumulate Long Dual.

SMLAWB, SMLAWT: Signed Multiply Accumulate (word by halfword).

SMLSD, SMLSDX: Signed Multiply Subtract Dual.

SMLSLD, SMLSLDX: Signed Multiply Subtract Long Dual.

SMMLA, SMMLAR: Signed Most Significant Word Multiply Accumulate.

SMMLS, SMMLSR: Signed Most Significant Word Multiply Subtract.

SMMUL, SMMULR: Signed Most Significant Word Multiply.

SMUAD, SMUADX: Signed Dual Multiply Add.

SMULBB, SMULBT, SMULTB, SMULTT: Signed Multiply (halfwords).

SMULL, SMULLS: Signed Multiply Long.

SMULWB, SMULWT: Signed Multiply (word by halfword).

SMUSD, SMUSDX: Signed Multiply Subtract Dual.

SRS, SRSDA, SRSDB, SRSIA, SRSIB: Store Return State.

SSAT: Signed Saturate.

SSAT16: Signed Saturate 16.

SSAX: Signed Subtract and Add with Exchange.

SSBB: Speculative Store Bypass Barrier.

AArch32 -- Base Instructions (alphabetic order)

Page 7

SSUB16: Signed Subtract 16.

SSUB8: Signed Subtract 8.

STC: Store data to System register.

STL: Store-Release Word.

STLB: Store-Release Byte.

STLEX: Store-Release Exclusive Word.

STLEXB: Store-Release Exclusive Byte.

STLEXD: Store-Release Exclusive Doubleword.

STLEXH: Store-Release Exclusive Halfword.

STLH: Store-Release Halfword.

STM (User registers): Store Multiple (User registers).

STM, STMIA, STMEA: Store Multiple (Increment After, Empty Ascending).

STMDA, STMED: Store Multiple Decrement After (Empty Descending).

STMDB, STMFD: Store Multiple Decrement Before (Full Descending).

STMIB, STMFA: Store Multiple Increment Before (Full Ascending).

STR (immediate): Store Register (immediate).

STR (register): Store Register (register).

STRB (immediate): Store Register Byte (immediate).

STRB (register): Store Register Byte (register).

STRBT: Store Register Byte Unprivileged.

STRD (immediate): Store Register Dual (immediate).

STRD (register): Store Register Dual (register).

STREX: Store Register Exclusive.

STREXB: Store Register Exclusive Byte.

STREXD: Store Register Exclusive Doubleword.

STREXH: Store Register Exclusive Halfword.

STRH (immediate): Store Register Halfword (immediate).

STRH (register): Store Register Halfword (register).

STRHT: Store Register Halfword Unprivileged.

STRT: Store Register Unprivileged.

SUB (immediate, from PC): Subtract from PC: an alias of ADR.

SUB, SUBS (immediate): Subtract (immediate).

SUB, SUBS (register): Subtract (register).

SUB, SUBS (register-shifted register): Subtract (register-shifted register).

SUB, SUBS (SP minus immediate): Subtract from SP (immediate).

SUB, SUBS (SP minus register): Subtract from SP (register).

AArch32 -- Base Instructions (alphabetic order)

Page 8

SVC: Supervisor Call.

SXTAB: Signed Extend and Add Byte.

SXTAB16: Signed Extend and Add Byte 16.

SXTAH: Signed Extend and Add Halfword.

SXTB: Signed Extend Byte.

SXTB16: Signed Extend Byte 16.

SXTH: Signed Extend Halfword.

TBB, TBH: Table Branch Byte or Halfword.

TEQ (immediate): Test Equivalence (immediate).

TEQ (register): Test Equivalence (register).

TEQ (register-shifted register): Test Equivalence (register-shifted register).

TSB CSYNC: Trace Synchronization Barrier.

TST (immediate): Test (immediate).

TST (register): Test (register).

TST (register-shifted register): Test (register-shifted register).

UADD16: Unsigned Add 16.

UADD8: Unsigned Add 8.

UASX: Unsigned Add and Subtract with Exchange.

UBFX: Unsigned Bit Field Extract.

UDF: Permanently Undefined.

UDIV: Unsigned Divide.

UHADD16: Unsigned Halving Add 16.

UHADD8: Unsigned Halving Add 8.

UHASX: Unsigned Halving Add and Subtract with Exchange.

UHSAX: Unsigned Halving Subtract and Add with Exchange.

UHSUB16: Unsigned Halving Subtract 16.

UHSUB8: Unsigned Halving Subtract 8.

UMAAL: Unsigned Multiply Accumulate Accumulate Long.

UMLAL, UMLALS: Unsigned Multiply Accumulate Long.

UMULL, UMULLS: Unsigned Multiply Long.

UQADD16: Unsigned Saturating Add 16.

UQADD8: Unsigned Saturating Add 8.

UQASX: Unsigned Saturating Add and Subtract with Exchange.

UQSAX: Unsigned Saturating Subtract and Add with Exchange.

UQSUB16: Unsigned Saturating Subtract 16.

UQSUB8: Unsigned Saturating Subtract 8.

AArch32 -- Base Instructions (alphabetic order)

Page 9

USAD8: Unsigned Sum of Absolute Differences.

USADA8: Unsigned Sum of Absolute Differences and Accumulate.

USAT: Unsigned Saturate.

USAT16: Unsigned Saturate 16.

USAX: Unsigned Subtract and Add with Exchange.

USUB16: Unsigned Subtract 16.

USUB8: Unsigned Subtract 8.

UXTAB: Unsigned Extend and Add Byte.

UXTAB16: Unsigned Extend and Add Byte 16.

UXTAH: Unsigned Extend and Add Halfword.

UXTB: Unsigned Extend Byte.

UXTB16: Unsigned Extend Byte 16.

UXTH: Unsigned Extend Halfword.

WFE: Wait For Event.

WFI: Wait For Interrupt.

YIELD: Yield hint.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AArch32 -- Base Instructions (alphabetic order)

Page 10

ADC, ADCS (immediate)

Add with Carry (immediate) adds an immediate value and the Carry flag value to a register value, and writes the result
to the destination register.
If the destination register is not the PC, the ADCS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The ADC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ADCS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 1 0 1 S Rn Rd imm12
cond

ADC (S == 0)

ADC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADCS (S == 1)

ADCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 1 0 S Rn 0 imm3 Rd imm8

ADC (S == 0)

ADC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADCS (S == 1)

ADCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

ADC, ADCS (immediate) Page 11

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the ADC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ADCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[n], imm32, PSTATE.C);
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADC, ADCS (immediate) Page 12

ADC, ADCS (register)

Add with Carry (register) adds a register value, the Carry flag value, and an optionally-shifted register value, and
writes the result to the destination register.
If the destination register is not the PC, the ADCS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The ADC variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ADCS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 1 0 1 S Rn Rd imm5 stype 0 Rm
cond

ADC, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADC, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADCS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADCS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 0 1 Rm Rdn

T1

ADC<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)

ADCS{<q>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ADC, ADCS (register) Page 13

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 1 0 S Rn (0) imm3 Rd imm2 stype Rm

ADC, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADC, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ADC<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADCS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADCS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ADCS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the ADC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ADCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.
For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

ADC, ADCS (register) Page 14

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:
• Outside an IT block, if ADCS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is

assembled using encoding T1 as though ADCS <Rd>, <Rn> had been written.
• Inside an IT block, if ADC<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is

assembled using encoding T1 as though ADC<c> <Rd>, <Rn> had been written.
To prevent either of these happening, use the .W qualifier.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], shifted, PSTATE.C);
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADC, ADCS (register) Page 15

ADC, ADCS (register-shifted register)

Add with Carry (register-shifted register) adds a register value, the Carry flag value, and a register-shifted register
value. It writes the result to the destination register, and can optionally update the condition flags based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 1 0 1 S Rn Rd Rs 0 stype 1 Rm
cond

Flag setting (S == 1)

ADCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

ADC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], shifted, PSTATE.C);
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

ADC, ADCS (register-shifted
register) Page 16

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADC, ADCS (register-shifted
register) Page 17

ADD (immediate, to PC)

Add to PC adds an immediate value to the Align(PC, 4) value to form a PC-relative address, and writes the result to the
destination register. Arm recommends that, where possible, software avoids using this alias.

This is a pseudo-instruction of ADR. This means:

• The encodings in this description are named to match the encodings of ADR.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of ADR gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any

operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 1 0 0 0 1 1 1 1 Rd imm12
cond

A1

ADD{<c>}{<q>} <Rd>, PC, #<const>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd imm8

T1

ADD{<c>}{<q>} <Rd>, PC, #<imm8>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8

T3

ADDW{<c>}{<q>} <Rd>, PC, #<imm12> // (<Rd>, <imm12> can be represented in T1)

ADD{<c>}{<q>} <Rd>, PC, #<imm12>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

ADD (immediate, to PC) Page 18

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If the PC is
used, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC.
For encoding T1 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding A1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR
instruction to this label.
If the offset is zero or positive, encoding A1 is used, with imm32 equal to the offset.
If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the use
of encoding A2 indicates that the required offset is minus the value of imm32.
Permitted values of the size of the offset are any of the constants described in Modified immediate
constants in A32 instructions.
For encoding T1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR
instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range 0 to
1020.
For encoding T3: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR
instruction to this label.
If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.
If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the use
of encoding T2 indicates that the required offset is minus the value of imm32.
Permitted values of the size of the offset are 0-4095.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as
<imm8>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants in A32 instructions for the range of values.

Operation

The description of ADR gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (immediate, to PC) Page 19

ADD, ADDS (immediate)

Add (immediate) adds an immediate value to a register value, and writes the result to the destination register.
If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ADDS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

◦ The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.

◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 , T3 and T4) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 1 0 0 S Rn Rd imm12
cond

ADD (S == 0 && Rn != 11x1)

ADD{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADDS (S == 1 && Rn != 1101)

ADDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

if Rn == '1111' && S == '0' then SEE "ADR";
if Rn == '1101' then SEE "ADD (SP plus immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 imm3 Rn Rd

T1

ADD<c>{<q>} <Rd>, <Rn>, #<imm3> // (Inside IT block)

ADDS{<q>} <Rd>, <Rn>, #<imm3> // (Outside IT block)

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 Rdn imm8

ADD, ADDS (immediate) Page 20

T2

ADD<c>{<q>} <Rdn>, #<imm8> // (Inside IT block, and <Rdn>, <imm8> can be represented in T1)

ADD<c>{<q>} {<Rdn>,} <Rdn>, #<imm8> // (Inside IT block, and <Rdn>, <imm8> cannot be represented in T1)

ADDS{<q>} <Rdn>, #<imm8> // (Outside IT block, and <Rdn>, <imm8> can be represented in T1)

ADDS{<q>} {<Rdn>,} <Rdn>, #<imm8> // (Outside IT block, and <Rdn>, <imm8> cannot be represented in T1)

d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 S != 1101 0 imm3 Rd imm8
Rn

ADD (S == 0)

ADD<c>.W {<Rd>,} <Rn>, #<const> // (Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2)

ADD{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ADDS (S == 1 && Rd != 1111)

ADDS.W {<Rd>,} <Rn>, #<const> // (Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2)

ADDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

if Rd == '1111' && S == '1' then SEE "CMN (immediate)";
if Rn == '1101' then SEE "ADD (SP plus immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 != 11x1 0 imm3 Rd imm8
Rn

T4

ADD{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // (<imm12> cannot be represented in T1, T2, or T3)

ADDW{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // (<imm12> can be represented in T1, T2, or T3)

if Rn == '1111' then SEE "ADR";
if Rn == '1101' then SEE "ADD (SP plus immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.

<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

ADD, ADDS (immediate) Page 21

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. If the PC is used:

• For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of this instruction.

For encoding T1, T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the same as <Rn>.

<Rn> For encoding A1 and T4: is the general-purpose source register, encoded in the "Rn" field. If the SP is
used, see ADD (SP plus immediate). If the PC is used, see ADR.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.
For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is used, see
ADD (SP plus immediate).

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T3: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

When multiple encodings of the same length are available for an instruction, encoding T3 is preferred to encoding T4
(if encoding T4 is required, use the ADDW syntax). Encoding T1 is preferred to encoding T2 if <Rd> is specified and
encoding T2 is preferred to encoding T1 if <Rd> is omitted.

Operation

if CurrentInstrSet() == InstrSet_A32 then
if ConditionPassed() then

EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[n], imm32, '0');
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;
else

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[n], imm32, '0');
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (immediate) Page 22

ADD, ADDS (register)

Add (register) adds a register value and an optionally-shifted register value, and writes the result to the destination
register.
If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ADDS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

◦ The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.

◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 1 0 0 S != 1101 Rd imm5 stype 0 Rm
cond Rn

ADD, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADD, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rn == '1101' then SEE "ADD (SP plus register)";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 Rm Rn Rd

T1

ADD<c>{<q>} <Rd>, <Rn>, <Rm> // (Inside IT block)

ADDS{<q>} {<Rd>,} <Rn>, <Rm> // (Outside IT block)

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

ADD, ADDS (register) Page 23

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 DN != 1101 Rdn
Rm

T2 (!(DN == 1 && Rdn == 101))

ADD<c>{<q>} <Rdn>, <Rm> // (Preferred syntax, Inside IT block)

ADD{<c>}{<q>} {<Rdn>,} <Rdn>, <Rm>

if (DN:Rdn) == '1101' || Rm == '1101' then SEE "ADD (SP plus register)";
d = UInt(DN:Rdn); n = d; m = UInt(Rm); setflags = FALSE; (shift_t, shift_n) = (SRType_LSL, 0);
if n == 15 && m == 15 then UNPREDICTABLE;
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 S != 1101 (0) imm3 Rd imm2 stype Rm
Rn

ADD, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADD, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ADD<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

ADD{<c>}.W {<Rd>,} <Rn>, <Rm> // (<Rd> == <Rn>, and <Rd>, <Rn>, <Rm> can be represented in T2)

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111)

ADDS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1 or T2)

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rd == '1111' && S == '1' then SEE "CMN (register)";
if Rn == '1101' then SEE "ADD (SP plus register)";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

ADD, ADDS (register) Page 24

<Rdn> Is the general-purpose source and destination register, encoded in the "DN:Rdn" field. If the PC is used,
the instruction is a branch to the address calculated by the operation. This is a simple branch, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
The assembler language allows <Rdn> to be specified once or twice in the assembler syntax. When
used inside an IT block, and <Rdn> and <Rm> are in the range R0 to R7, <Rdn> must be specified
once so that encoding T2 is preferred to encoding T1. In all other cases there is no difference in
behavior when <Rdn> is specified once or twice.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. If the PC is used:

• For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of this instruction.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.
When used inside an IT block, <Rd> must be specified. When used outside an IT block, <Rd> is
optional, and:

• If omitted, this register is the same as <Rn>.
• If present, encoding T1 is preferred to encoding T2.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used. If the SP is used, see ADD (SP plus register).
For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.
For encoding T3: is the first general-purpose source register, encoded in the "Rn" field. If the SP is
used, see ADD (SP plus register).

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1 and T3: is the second general-purpose source register, encoded in the "Rm" field.
For encoding T2: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Inside an IT block, if ADD<c> <Rd>, <Rn>, <Rd> cannot be assembled using encoding T1, it is assembled using
encoding T2 as though ADD<c> <Rd>, <Rn> had been written. To prevent this happening, use the .W qualifier.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], shifted, '0');
if d == 15 then

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

ADD, ADDS (register) Page 25

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (register) Page 26

ADD, ADDS (register-shifted register)

Add (register-shifted register) adds a register value and a register-shifted register value. It writes the result to the
destination register, and can optionally update the condition flags based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 1 0 0 S Rn Rd Rs 0 stype 1 Rm
cond

Flag setting (S == 1)

ADDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

ADD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], shifted, '0');
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

ADD, ADDS (register-shifted
register) Page 27

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (register-shifted
register) Page 28

ADD, ADDS (SP plus immediate)

Add to SP (immediate) adds an immediate value to the SP value, and writes the result to the destination register.
If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. However,
when the destination register is the PC:

• The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ADDS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

◦ The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.

◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 , T3 and T4) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 1 0 0 S 1 1 0 1 Rd imm12
cond

ADD (S == 0)

ADD{<c>}{<q>} {<Rd>,} SP, #<const>

ADDS (S == 1)

ADDS{<c>}{<q>} {<Rd>,} SP, #<const>

d = UInt(Rd); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 Rd imm8

T1

ADD{<c>}{<q>} <Rd>, SP, #<imm8>

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm8:'00', 32);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 imm7

T2

ADD{<c>}{<q>} {SP,} SP, #<imm7>

d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);

T3

ADD, ADDS (SP plus
immediate) Page 29

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 S 1 1 0 1 0 imm3 Rd imm8

ADD (S == 0)

ADD{<c>}.W {<Rd>,} SP, #<const> // (<Rd>, <const> can be represented in T1 or T2)

ADD{<c>}{<q>} {<Rd>,} SP, #<const>

ADDS (S == 1 && Rd != 1111)

ADDS{<c>}{<q>} {<Rd>,} SP, #<const>

if Rd == '1111' && S == '1' then SEE "CMN (immediate)";
d = UInt(Rd); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if d == 15 && !setflags then UNPREDICTABLE;

T4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 0 1 0 imm3 Rd imm8

T4

ADD{<c>}{<q>} {<Rd>,} SP, #<imm12> // (<imm12> cannot be represented in T1, T2, or T3)

ADDW{<c>}{<q>} {<Rd>,} SP, #<imm12> // (<imm12> can be represented in T1, T2, or T3)

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

SP, Is the stack pointer.

<imm7> Is the unsigned immediate, a multiple of 4, in the range 0 to 508, encoded in the "imm7" field as
<imm7>/4.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.
For encoding T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the SP.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as
<imm8>/4.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T3: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

ADD, ADDS (SP plus
immediate) Page 30

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[13], imm32, '0');
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (SP plus
immediate) Page 31

ADD, ADDS (SP plus register)

Add to SP (register) adds an optionally-shifted register value to the SP value, and writes the result to the destination
register.
If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ADDS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 1 0 0 S 1 1 0 1 Rd imm5 stype 0 Rm
cond

ADD, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

ADD{<c>}{<q>} {<Rd>,} SP, <Rm> , RRX

ADD, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

ADD{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm> , RRX

ADDS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 DM 1 1 0 1 Rdm

T1

ADD{<c>}{<q>} {<Rdm>,} SP, <Rdm>

d = UInt(DM:Rdm); m = UInt(DM:Rdm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

ADD, ADDS (SP plus register) Page 32

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 1 != 1101 1 0 1
Rm

T2

ADD{<c>}{<q>} {SP,} SP, <Rm>

if Rm == '1101' then SEE "encoding T1";
d = 13; m = UInt(Rm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 S 1 1 0 1 (0) imm3 Rd imm2 stype Rm

ADD, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

ADD{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

ADD, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ADD{<c>}.W {<Rd>,} SP, <Rm> // (<Rd>, <Rm> can be represented in T1 or T2)

ADD{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

ADDS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111)

ADDS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

if Rd == '1111' && S == '1' then SEE "CMN (register)";
d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if (d == 15 && !setflags) || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

SP, Is the stack pointer.

<Rdm> Is the general-purpose destination and second source register, encoded in the "Rdm" field. If omitted,
this register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used, the
instruction is a branch to the address calculated by the operation. This is a simple branch, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the ADD variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

ADD, ADDS (SP plus register) Page 33

• For the ADDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the SP.

<Rm> For encoding A1 and T2: is the second general-purpose source register, encoded in the "Rm" field. The
PC can be used, but this is deprecated.
For encoding T3: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[13], shifted, '0');
if d == 15 then

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (SP plus register) Page 34

ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the result
to the destination register.
This instruction is used by the alias SUB (immediate, from PC).
This instruction is used by the pseudo-instruction ADD (immediate, to PC).
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 1 0 0 0 1 1 1 1 Rd imm12
cond

A1

ADR{<c>}{<q>} <Rd>, <label>

d = UInt(Rd); imm32 = A32ExpandImm(imm12); add = TRUE;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 0 1 0 0 1 1 1 1 Rd imm12
cond

A2

ADR{<c>}{<q>} <Rd>, <label>

d = UInt(Rd); imm32 = A32ExpandImm(imm12); add = FALSE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd imm8

T1

ADR{<c>}{<q>} <Rd>, <label>

d = UInt(Rd); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8

T2

ADR{<c>}{<q>} <Rd>, <label>

d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = FALSE;
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8

ADR Page 35

T3

ADR{<c>}.W <Rd>, <label> // (<Rd>, <label> can be presented in T1)

ADR{<c>}{<q>} <Rd>, <label>

d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = TRUE;
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1 and A2: is the general-purpose destination register, encoded in the "Rd" field. If the PC
is used, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC.
For encoding T1, T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding A1 and A2: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label.
If the offset is zero or positive, encoding A1 is used, with imm32 equal to the offset.
If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the use
of encoding A2 indicates that the required offset is minus the value of imm32.
Permitted values of the size of the offset are any of the constants described in Modified immediate
constants in A32 instructions.
For encoding T1: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR
instruction to this label. Permitted values of the size of the offset are multiples of 4 in the range 0 to
1020.
For encoding T2 and T3: the label of an instruction or literal data item whose address is to be loaded
into <Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the
ADR instruction to this label.
If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.
If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the use
of encoding T2 indicates that the required offset is minus the value of imm32.
Permitted values of the size of the offset are 0-4095.

The instruction aliases permit the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Alias Conditions

Alias Of variant Is preferred when
ADD (immediate, to PC) Never

SUB (immediate, from PC) T2 i:imm3:imm8 == '000000000000'

SUB (immediate, from PC) A2 imm12 == '000000000000'

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
if d == 15 then // Can only occur for A32 encodings

ALUWritePC(result);
else

R[d] = result;

ADR Page 36

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADR Page 37

AND, ANDS (immediate)

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result to
the destination register.
If the destination register is not the PC, the ANDS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The AND variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ANDS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 0 0 0 S Rn Rd imm12
cond

AND (S == 0)

AND{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ANDS (S == 1)

ANDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 0 S Rn 0 imm3 Rd imm8

AND (S == 0)

AND{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ANDS (S == 1 && Rd != 1111)

ANDS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

if Rd == '1111' && S == '1' then SEE "TST (immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

AND, ANDS (immediate) Page 38

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the AND variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ANDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND imm32;
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND, ANDS (immediate) Page 39

AND, ANDS (register)

Bitwise AND (register) performs a bitwise AND of a register value and an optionally-shifted register value, and writes
the result to the destination register.
If the destination register is not the PC, the ANDS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The AND variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ANDS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 0 0 0 S Rn Rd imm5 stype 0 Rm
cond

AND, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

AND, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ANDS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ANDS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 0 Rm Rdn

T1

AND<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)

ANDS{<q>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

AND, ANDS (register) Page 40

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 0 S Rn (0) imm3 Rd imm2 stype Rm

AND, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

AND, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

AND<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ANDS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ANDS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111)

ANDS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rd == '1111' && S == '1' then SEE "TST (register)";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the AND variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ANDS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.
For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

AND, ANDS (register) Page 41

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:
• Outside an IT block, if ANDS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is

assembled using encoding T1 as though ANDS <Rd>, <Rn> had been written.
• Inside an IT block, if AND<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is

assembled using encoding T1 as though AND<c> <Rd>, <Rn> had been written.
To prevent either of these happening, use the .W qualifier.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = R[n] AND shifted;
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND, ANDS (register) Page 42

AND, ANDS (register-shifted register)

Bitwise AND (register-shifted register) performs a bitwise AND of a register value and a register-shifted register
value. It writes the result to the destination register, and can optionally update the condition flags based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 0 0 0 S Rn Rd Rs 0 stype 1 Rm
cond

Flag setting (S == 1)

ANDS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

AND{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = R[n] AND shifted;
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

AND, ANDS (register-shifted
register) Page 43

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND, ANDS (register-shifted
register) Page 44

ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies of its
sign bit, and writes the result to the destination register.

This is an alias of MOV, MOVS (register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).
• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd imm5 1 0 0 Rm
cond S stype

MOV, shift or rotate by value

ASR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 imm5 Rm Rd
op

T2

ASR<c>{<q>} {<Rd>,} <Rm>, #<imm> // (Inside IT block)

is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when InITBlock().

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 1 0 Rm
S stype

MOV, shift or rotate by value

ASR<c>.W {<Rd>,} <Rm>, #<imm> // (Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)

ASR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

ASR (immediate) Page 45

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used, the instruction is a branch to the address
calculated by the operation. This is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.
For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.
For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as
<imm> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as <imm>
modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (immediate) Page 46

ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its sign
bit, and writes the result to the destination register. The variable number of bits is read from the bottom byte of a
register.

This is an alias of MOV, MOVS (register-shifted register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd Rs 0 1 0 1 Rm
cond S stype

Not flag setting

ASR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 0 0 Rs Rdm
op

Arithmetic shift right

ASR<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // (Inside IT block)

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when InITBlock().

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs
stype S

Not flag setting

ASR<c>.W {<Rd>,} <Rm>, <Rs> // (Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)

ASR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

ASR (register) Page 47

MOV{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (register) Page 48

ASRS (immediate)

Arithmetic Shift Right, setting flags (immediate) shifts a register value right by an immediate number of bits, shifting
in copies of its sign bit, and writes the result to the destination register.
If the destination register is not the PC, this instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32

state.
• The instruction is UNDEFINED in Hyp mode.
• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This is an alias of MOV, MOVS (register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).
• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd imm5 1 0 0 Rm
cond S stype

MOVS, shift or rotate by value

ASRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 imm5 Rm Rd
op

T2

ASRS{<q>} {<Rd>,} <Rm>, #<imm> // (Outside IT block)

is equivalent to

MOVS{<q>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when !InITBlock().

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 1 0 Rm
S stype

ASRS (immediate) Page 49

MOVS, shift or rotate by value

ASRS.W {<Rd>,} <Rm>, #<imm> // (Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)

ASRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used, the instruction performs an exception
return, that restores PSTATE from SPSR_<current_mode>.
For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.
For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as
<imm> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as <imm>
modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASRS (immediate) Page 50

ASRS (register)

Arithmetic Shift Right, setting flags (register) shifts a register value right by a variable number of bits, shifting in
copies of its sign bit, writes the result to the destination register, and updates the condition flags based on the result.
The variable number of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd Rs 0 1 0 1 Rm
cond S stype

Flag setting

ASRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 0 0 Rs Rdm
op

Arithmetic shift right

ASRS{<q>} {<Rdm>,} <Rdm>, <Rs> // (Outside IT block)

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when !InITBlock().

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs
stype S

Flag setting

ASRS.W {<Rd>,} <Rm>, <Rs> // (Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)

ASRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

ASRS (register) Page 51

MOVS{<c>}{<q>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASRS (register) Page 52

B

Branch causes a branch to a target address.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 , T3 and T4) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 1 0 imm24
cond

A1

B{<c>}{<q>} <label>

imm32 = SignExtend(imm24:'00', 32);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 != 111x imm8
cond

T1

B<c>{<q>} <label> // (Not permitted in IT block)

if cond == '1110' then SEE "UDF";
if cond == '1111' then SEE "SVC";
imm32 = SignExtend(imm8:'0', 32);
if InITBlock() then UNPREDICTABLE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 imm11

T2

B{<c>}{<q>} <label> // (Outside or last in IT block)

imm32 = SignExtend(imm11:'0', 32);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S != 111x imm6 1 0 J1 0 J2 imm11
cond

T3

B<c>.W <label> // (Not permitted in IT block, and <label> can be represented in T1)

B<c>{<q>} <label> // (Not permitted in IT block)

if cond<3:1> == '111' then SEE "Related encodings";
imm32 = SignExtend(S:J2:J1:imm6:imm11:'0', 32);
if InITBlock() then UNPREDICTABLE;

B Page 53

T4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S imm10 1 0 J1 1 J2 imm11

T4

B{<c>}.W <label> // (<label> can be represented in T2)

B{<c>}{<q>} <label>

I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.
Related encodings: Branches and miscellaneous control.

Assembler Symbols

<c> For encoding A1, T2 and T4: see Standard assembler syntax fields.
For encoding T1: see Standard assembler syntax fields. Must not be AL or omitted.
For encoding T3: see Standard assembler syntax fields. <c> must not be AL or omitted.

<q> See Standard assembler syntax fields.

<label> For encoding A1: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an encoding
that sets imm32 to that offset.
Permitted offsets are multiples of 4 in the range –33554432 to 33554428.
For encoding T1: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an encoding
that sets imm32 to that offset. Permitted offsets are even numbers in the range –256 to 254.
For encoding T2: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an encoding
that sets imm32 to that offset. Permitted offsets are even numbers in the range –2048 to 2046.
For encoding T3: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an encoding
that sets imm32 to that offset.
Permitted offsets are even numbers in the range –1048576 to 1048574.
For encoding T4: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects an encoding
that sets imm32 to that offset.
Permitted offsets are even numbers in the range –16777216 to 16777214.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
BranchWritePC(PC + imm32, BranchType_DIR);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

B Page 54

BFC

Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting the other bits in the
register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 1 1 0 msb Rd lsb 0 0 1 1 1 1 1
cond

A1

BFC{<c>}{<q>} <Rd>, #<lsb>, #<width>

d = UInt(Rd); msbit = UInt(msb); lsbit = UInt(lsb);
if d == 15 then UNPREDICTABLE;
if msbit < lsbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 1 0 1 1 1 1 0 imm3 Rd imm2 (0) msb

T1

BFC{<c>}{<q>} <Rd>, #<lsb>, #<width>

d = UInt(Rd); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if msbit < lsbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<lsb> For encoding A1: is the least significant bit to be cleared, in the range 0 to 31, encoded in the "lsb"
field.

BFC Page 55

For encoding T1: is the least significant bit that is to be cleared, in the range 0 to 31, encoded in the
"imm3:imm2" field.

<width> Is the number of bits to be cleared, in the range 1 to 32-<lsb>, encoded in the "msb" field as
<lsb>+<width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d]<msbit:lsbit> = Replicate('0', (msbit-lsbit)+1);
// Other bits of R[d] are unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFC Page 56

BFI

Bit Field Insert copies any number of low order bits from a register into the same number of adjacent bits at any
position in the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 1 1 0 msb Rd lsb 0 0 1 != 1111
cond Rn

A1

BFI{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

if Rn == '1111' then SEE "BFC";
d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); lsbit = UInt(lsb);
if d == 15 then UNPREDICTABLE;
if msbit < lsbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 1 0 != 1111 0 imm3 Rd imm2 (0) msb
Rn

T1

BFI{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

if Rn == '1111' then SEE "BFC";
d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if msbit < lsbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit < lsbit, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

BFI Page 57

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> For encoding A1: is the least significant destination bit, in the range 0 to 31, encoded in the "lsb" field.
For encoding T1: is the least significant destination bit, in the range 0 to 31, encoded in the
"imm3:imm2" field.

<width> Is the number of bits to be copied, in the range 1 to 32-<lsb>, encoded in the "msb" field as
<lsb>+<width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d]<msbit:lsbit> = R[n]<(msbit-lsbit):0>;
// Other bits of R[d] are unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFI Page 58

BIC, BICS (immediate)

Bitwise Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an immediate value,
and writes the result to the destination register.
If the destination register is not the PC, the BICS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The BIC variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

• The BICS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 1 1 0 S Rn Rd imm12
cond

BIC (S == 0)

BIC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

BICS (S == 1)

BICS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 1 S Rn 0 imm3 Rd imm8

BIC (S == 0)

BIC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

BICS (S == 1)

BICS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

BIC, BICS (immediate) Page 59

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the BIC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the BICS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND NOT(imm32);
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC, BICS (immediate) Page 60

BIC, BICS (register)

Bitwise Bit Clear (register) performs a bitwise AND of a register value and the complement of an optionally-shifted
register value, and writes the result to the destination register.
If the destination register is not the PC, the BICS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The BIC variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

• The BICS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 0 S Rn Rd imm5 stype 0 Rm
cond

BIC, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BIC, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

BICS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BICS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 1 0 Rm Rdn

T1

BIC<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)

BICS{<q>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

BIC, BICS (register) Page 61

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 1 S Rn (0) imm3 Rd imm2 stype Rm

BIC, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BIC, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

BIC<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

BICS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

BICS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

BICS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the BIC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the BICS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.
For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

BIC, BICS (register) Page 62

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = R[n] AND NOT(shifted);
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC, BICS (register) Page 63

BIC, BICS (register-shifted register)

Bitwise Bit Clear (register-shifted register) performs a bitwise AND of a register value and the complement of a
register-shifted register value. It writes the result to the destination register, and can optionally update the condition
flags based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 0 S Rn Rd Rs 0 stype 1 Rm
cond

Flag setting (S == 1)

BICS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

BIC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = R[n] AND NOT(shifted);
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

BIC, BICS (register-shifted
register) Page 64

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC, BICS (register-shifted
register) Page 65

BKPT

Breakpoint causes a Breakpoint Instruction exception.
Breakpoint is always unconditional, even when inside an IT block.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 1 0 imm12 0 1 1 1 imm4
cond

A1

BKPT{<q>} {#}<imm>

imm16 = imm12:imm4;
if cond != '1110' then UNPREDICTABLE; // BKPT must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 imm8

T1

BKPT{<q>} {#}<imm>

imm16 = ZeroExtend(imm8, 16);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields. A BKPT instruction must be unconditional.

<imm> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. This value:

• Is recorded in the Comment field of ESR_ELx.ISS if the Software Breakpoint Instruction
exception is taken to an exception level that is using AArch64.

• Is ignored otherwise.
For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field. This
value:

• Is recorded in the Comment field of ESR_ELx.ISS if the Software Breakpoint Instruction
exception is taken to an exception level that is using AArch64.

• Is ignored otherwise.

Operation

EncodingSpecificOperations();
AArch32.SoftwareBreakpoint(imm16);

BKPT Page 66

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BKPT Page 67

BL, BLX (immediate)

Branch with Link calls a subroutine at a PC-relative address, and setting LR to the return address.
Branch with Link and Exchange Instruction Sets (immediate) calls a subroutine at a PC-relative address, setting LR to
the return address, and changes the instruction set from A32 to T32, or from T32 to A32.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 1 1 imm24
cond

A1

BL{<c>}{<q>} <label>

imm32 = SignExtend(imm24:'00', 32); targetInstrSet = InstrSet_A32;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 H imm24
cond

A2

BLX{<c>}{<q>} <label>

imm32 = SignExtend(imm24:H:'0', 32); targetInstrSet = InstrSet_T32;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S imm10 1 1 J1 1 J2 imm11

T1

BL{<c>}{<q>} <label>

I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
targetInstrSet = InstrSet_T32;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S imm10H 1 1 J1 0 J2 imm10L H

T2

BLX{<c>}{<q>} <label>

if H == '1' then UNDEFINED;
I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10H:imm10L:'00', 32);
targetInstrSet = InstrSet_A32;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

BL, BLX (immediate) Page 68

Assembler Symbols

<c> For encoding A1, T1 and T2: see Standard assembler syntax fields.
For encoding A2: see Standard assembler syntax fields. <c> must be AL or omitted.

<q> See Standard assembler syntax fields.

<label> For encoding A1: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the BL instruction to this label, then selects an
encoding that sets imm32 to that offset.
Permitted offsets are multiples of 4 in the range –33554432 to 33554428.
For encoding A2: the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the BLX instruction to this label, then selects an
encoding with imm32 set to that offset.
Permitted offsets are even numbers in the range –33554432 to 33554430.
For encoding T1: the label of the instruction that is to be branched to.
The assembler calculates the required value of the offset from the PC value of the BL instruction to this
label, then selects an encoding with imm32 set to that offset.
Permitted offsets are even numbers in the range –16777216 to 16777214.
For encoding T2: the label of the instruction that is to be branched to.
The assembler calculates the required value of the offset from the Align(PC, 4) value of the BLX
instruction to this label, then selects an encoding with imm32 set to that offset.
Permitted offsets are multiples of 4 in the range –16777216 to 16777212.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if CurrentInstrSet() == InstrSet_A32 then

LR = PC - 4;
else

LR = PC<31:1> : '1';
bits(32) targetAddress;
if targetInstrSet == InstrSet_A32 then

targetAddress = Align(PC,4) + imm32;
else

targetAddress = PC + imm32;
SelectInstrSet(targetInstrSet);
BranchWritePC(targetAddress, BranchType_DIRCALL);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BL, BLX (immediate) Page 69

BLX (register)

Branch with Link and Exchange (register) calls a subroutine at an address specified in the register, and if necessary
changes to the instruction set indicated by bit[0] of the register value. If the value in bit[0] is 0, the instruction set
after the branch will be A32. If the value in bit[0] is 1, the instruction set after the branch will be T32.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 1 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 0 0 1 1 Rm
cond

A1

BLX{<c>}{<q>} <Rm>

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 1 Rm (0) (0) (0)

T1

BLX{<c>}{<q>} <Rm>

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
target = R[m];
bits(32) next_instr_addr;
if CurrentInstrSet() == InstrSet_A32 then

next_instr_addr = PC - 4;
LR = next_instr_addr;

else
next_instr_addr = PC - 2;
LR = next_instr_addr<31:1> : '1';

BXWritePC(target, BranchType_INDCALL);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BLX (register) Page 70

BX

Branch and Exchange causes a branch to an address and instruction set specified by a register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 1 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 0 0 0 1 Rm
cond

A1

BX{<c>}{<q>} <Rm>

m = UInt(Rm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 0 Rm (0) (0) (0)

T1

BX{<c>}{<q>} <Rm>

m = UInt(Rm);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rm> For encoding A1: is the general-purpose register holding the address to be branched to, encoded in the
"Rm" field. The PC can be used.
For encoding T1: is the general-purpose register holding the address to be branched to, encoded in the
"Rm" field. The PC can be used.

Note

If <Rm> is the PC at a non word-aligned address, it results in UNPREDICTABLE behavior because the
address passed to the BXWritePC() pseudocode function has bits<1:0> = '10'.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
BXWritePC(R[m], BranchType_INDIR);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BX Page 71

BXJ

Branch and Exchange, previously Branch and Exchange Jazelle.
BXJ behaves as a BX instruction, see BX. This means it causes a branch to an address and instruction set specified by a
register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 1 0 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) 0 0 1 0 Rm
cond

A1

BXJ{<c>}{<q>} <Rm>

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 0 0 Rm 1 0 (0) 0 (1) (1) (1) (1) (0) (0) (0) (0) (0) (0) (0) (0)

T1

BXJ{<c>}{<q>} <Rm>

m = UInt(Rm);
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
BXWritePC(R[m], BranchType_INDIR);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BXJ Page 72

CBNZ, CBZ

Compare and Branch on Nonzero and Compare and Branch on Zero compare the value in a register with zero, and
conditionally branch forward a constant value. They do not affect the condition flags.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 op 0 i 1 imm5 Rn

CBNZ (op == 1)

CBNZ{<q>} <Rn>, <label>

CBZ (op == 0)

CBZ{<q>} <Rn>, <label>

n = UInt(Rn); imm32 = ZeroExtend(i:imm5:'0', 32); nonzero = (op == '1');
if InITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose register to be tested, encoded in the "Rn" field.

<label> Is the program label to be conditionally branched to. Its offset from the PC, a multiple of 2 and in the
range 0 to 126, is encoded as "i:imm5" times 2.

Operation

EncodingSpecificOperations();
if nonzero != IsZero(R[n]) then

CBWritePC(PC + imm32);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CBNZ, CBZ Page 73

CLRBHB

Clear Branch History clears the branch history for the current context to the extent that branch history information
created before the CLRBHB instruction cannot be used by code before the CLRBHB instruction to exploitatively control
the execution of any indirect branches in code in the current context that appear in program order after the
instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_CLRBHB)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 0 1 1 0
cond

A1

CLRBHB{<c>}{<q>}

if !HaveFeatCLRBHB() then EndOfInstruction(); // Instruction executes as NOP

T1
(FEAT_CLRBHB)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 1 1 0

T1

CLRBHB{<c>}{<q>}

if !HaveFeatCLRBHB() then EndOfInstruction(); // Instruction executes as NOP

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
Hint_CLRBHB();

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLRBHB Page 74

CLREX

Clear-Exclusive clears the local monitor of the executing PE.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 (1) (1) (1) (1)

A1

CLREX{<c>}{<q>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 0 1 0 (1) (1) (1) (1)

T1

CLREX{<c>}{<q>}

// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
ClearExclusiveLocal(ProcessorID());

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLREX Page 75

CLZ

Count Leading Zeros returns the number of binary zero bits before the first binary one bit in a value.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 1 1 0 (1) (1) (1) (1) Rd (1) (1) (1) (1) 0 0 0 1 Rm
cond

A1

CLZ{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 1 Rn 1 1 1 1 Rd 1 0 0 0 Rm

T1

CLZ{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as described, with no change to its behavior and no additional side effects.
• The instruction executes with the additional decode: m = UInt(Rn);.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field.
For encoding T1: is the general-purpose source register, encoded in the "Rm" field. It must be encoded
with an identical value in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = CountLeadingZeroBits(R[m]);
R[d] = result<31:0>;

CLZ Page 76

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLZ Page 77

CMN (immediate)

Compare Negative (immediate) adds a register value and an immediate value. It updates the condition flags based on
the result, and discards the result.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 1 1 1 Rn (0) (0) (0) (0) imm12
cond

A1

CMN{<c>}{<q>} <Rn>, #<const>

n = UInt(Rn); imm32 = A32ExpandImm(imm12);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8

T1

CMN{<c>}{<q>} <Rn>, #<const>

n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[n], imm32, '0');
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.

CMN (immediate) Page 78

◦ The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (immediate) Page 79

CMN (register)

Compare Negative (register) adds a register value and an optionally-shifted register value. It updates the condition
flags based on the result, and discards the result.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 1 1 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm
cond

Rotate right with extend (imm5 == 00000 && stype == 11)

CMN{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value (!(imm5 == 00000 && stype == 11))

CMN{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 1 Rm Rn

T1

CMN{<c>}{<q>} <Rn>, <Rm>

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2 stype Rm

Rotate right with extend (imm3 == 000 && imm2 == 00 && stype == 11)

CMN{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value (!(imm3 == 000 && imm2 == 00 && stype == 11))

CMN{<c>}.W <Rn>, <Rm> // (<Rn>, <Rm> can be represented in T1)

CMN{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

CMN (register) Page 80

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.
For encoding T1 and T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], shifted, '0');
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (register) Page 81

CMN (register-shifted register)

Compare Negative (register-shifted register) adds a register value and a register-shifted register value. It updates the
condition flags based on the result, and discards the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 1 1 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm
cond

A1

CMN{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift_t = DecodeRegShift(stype);
if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <type>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], shifted, '0');
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

CMN (register-shifted
register) Page 82

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (register-shifted
register) Page 83

CMP (immediate)

Compare (immediate) subtracts an immediate value from a register value. It updates the condition flags based on the
result, and discards the result.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 1 0 1 Rn (0) (0) (0) (0) imm12
cond

A1

CMP{<c>}{<q>} <Rn>, #<const>

n = UInt(Rn); imm32 = A32ExpandImm(imm12);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 Rn imm8

T1

CMP{<c>}{<q>} <Rn>, #<imm8>

n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 1 Rn 0 imm3 1 1 1 1 imm8

T2

CMP{<c>}.W <Rn>, #<const> // (<Rd>, <const> can be represented in T1)

CMP{<c>}{<q>} <Rn>, #<const>

n = UInt(Rn); imm32 = T32ExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1: is a general-purpose source register, encoded in the "Rn" field.
For encoding T2: is the general-purpose source register, encoded in the "Rn" field.

<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.

CMP (immediate) Page 84

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[n], NOT(imm32), '1');
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (immediate) Page 85

CMP (register)

Compare (register) subtracts an optionally-shifted register value from a register value. It updates the condition flags
based on the result, and discards the result.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 1 0 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm
cond

Rotate right with extend (imm5 == 00000 && stype == 11)

CMP{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value (!(imm5 == 00000 && stype == 11))

CMP{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 0 Rm Rn

T1

CMP{<c>}{<q>} <Rn>, <Rm> // (<Rn> and <Rm> both from R0-R7)

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1 N Rm Rn

T2

CMP{<c>}{<q>} <Rn>, <Rm> // (<Rn> and <Rm> not both from R0-R7)

n = UInt(N:Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);
if n < 8 && m < 8 then UNPREDICTABLE;
if n == 15 || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n < 8 && m < 8, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as described, with no change to its behavior and no additional side effects.
• The condition flags become UNKNOWN.

T3

CMP (register) Page 86

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 1 Rn (0) imm3 1 1 1 1 imm2 stype Rm

Rotate right with extend (imm3 == 000 && imm2 == 00 && stype == 11)

CMP{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value (!(imm3 == 000 && imm2 == 00 && stype == 11))

CMP{<c>}.W <Rn>, <Rm> // (<Rn>, <Rm> can be represented in T1 or T2)

CMP{<c>}{<q>} <Rn>, <Rm>, <shift> #<amount>

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.
For encoding T1 and T3: is the first general-purpose source register, encoded in the "Rn" field.
For encoding T2: is the first general-purpose source register, encoded in the "N:Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1, T2 and T3: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

CMP (register) Page 87

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (register) Page 88

CMP (register-shifted register)

Compare (register-shifted register) subtracts a register-shifted register value from a register value. It updates the
condition flags based on the result, and discards the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 1 0 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm
cond

A1

CMP{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift_t = DecodeRegShift(stype);
if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <type>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

CMP (register-shifted
register) Page 89

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (register-shifted
register) Page 90

CPS, CPSID, CPSIE

Change PE State changes one or more of the PSTATE.{A, I, F} interrupt mask bits and, optionally, the PSTATE.M
mode field, without changing any other PSTATE bits.
CPS is treated as NOP if executed in User mode unless it is defined as being CONSTRAINED UNPREDICTABLE elsewhere in
this section.
The PE checks whether the value being written to PSTATE.M is legal. See Illegal changes to PSTATE.M.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 1 0 0 0 0 imod M 0 (0) (0) (0) (0) (0) (0) (0) A I F 0 mode

Change mode (imod == 00 && M == 1)

CPS{<q>} #<mode> // (Cannot be conditional)

Interrupt disable (imod == 11 && M == 0)

CPSID{<q>} <iflags> // (Cannot be conditional)

Interrupt disable and change mode (imod == 11 && M == 1)

CPSID{<q>} <iflags> , #<mode> // (Cannot be conditional)

Interrupt enable (imod == 10 && M == 0)

CPSIE{<q>} <iflags> // (Cannot be conditional)

Interrupt enable and change mode (imod == 10 && M == 1)

CPSIE{<q>} <iflags> , #<mode> // (Cannot be conditional)

if mode != '00000' && M == '0' then UNPREDICTABLE;
if (imod<1> == '1' && A:I:F == '000') || (imod<1> == '0' && A:I:F != '000') then UNPREDICTABLE;
enable = (imod == '10'); disable = (imod == '11'); changemode = (M == '1'); pemode = mode;
affectA = (A == '1'); affectI = (I == '1'); affectF = (F == '1');
if (imod == '00' && M == '0') || imod == '01' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If imod == '01', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

If imod == '00' && M == '0', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

If mode != '00000' && M == '0', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: changemode = TRUE.
• The instruction executes as described, and the value specified by mode is ignored. There are no additional

side-effects.

If imod<1> == '1' && A:I:F == '000', then one of the following behaviors must occur:

CPS, CPSID, CPSIE Page 91

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction behaves as if imod<1> == '0'.
• The instruction behaves as if A:I:F has an UNKNOWN nonzero value.

If imod<1> == '0' && A:I:F != '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction behaves as if imod<1> == '1'.
• The instruction behaves as if A:I:F == '000'.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 0 0 1 1 im (0) A I F

Interrupt disable (im == 1)

CPSID{<q>} <iflags> // (Not permitted in IT block)

Interrupt enable (im == 0)

CPSIE{<q>} <iflags> // (Not permitted in IT block)

if A:I:F == '000' then UNPREDICTABLE;
enable = (im == '0'); disable = (im == '1'); changemode = FALSE;
affectA = (A == '1'); affectI = (I == '1'); affectF = (F == '1');
bits(5) pemode = bits(5) UNKNOWN;
if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If A:I:F == '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) imod M A I F mode

CPS, CPSID, CPSIE Page 92

Change mode (imod == 00 && M == 1)

CPS{<q>} #<mode> // (Not permitted in IT block)

Interrupt disable (imod == 11 && M == 0)

CPSID.W <iflags> // (Not permitted in IT block)

Interrupt disable and change mode (imod == 11 && M == 1)

CPSID{<q>} <iflags>, #<mode> // (Not permitted in IT block)

Interrupt enable (imod == 10 && M == 0)

CPSIE.W <iflags> // (Not permitted in IT block)

Interrupt enable and change mode (imod == 10 && M == 1)

CPSIE{<q>} <iflags>, #<mode> // (Not permitted in IT block)

if imod == '00' && M == '0' then SEE "Hint instructions";
if mode != '00000' && M == '0' then UNPREDICTABLE;
if (imod<1> == '1' && A:I:F == '000') || (imod<1> == '0' && A:I:F != '000') then UNPREDICTABLE;
enable = (imod == '10'); disable = (imod == '11'); changemode = (M == '1'); pemode = mode;
affectA = (A == '1'); affectI = (I == '1'); affectF = (F == '1');
if imod == '01' || InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If imod == '01', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

If mode != '00000' && M == '0', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: changemode = TRUE.
• The instruction executes as described, and the value specified by mode is ignored. There are no additional

side-effects.

If imod<1> == '1' && A:I:F == '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction behaves as if imod<1> == '0'.
• The instruction behaves as if A:I:F has an UNKNOWN nonzero value.

If imod<1> == '0' && A:I:F != '000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction behaves as if imod<1> == '1'.
• The instruction behaves as if A:I:F == '000'.

Hint instructions: In encoding T2, if the imod field is 00 and the M bit is 0, a hint instruction is encoded. To determine
which hint instruction, see Branches and miscellaneous control.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

CPS, CPSID, CPSIE Page 93

<iflags> Is a sequence of one or more of the following, specifying which interrupt mask bits are affected:
a

Sets the A bit in the instruction, causing the specified effect on PSTATE.A, the SError interrupt
mask bit.

i
Sets the I bit in the instruction, causing the specified effect on PSTATE.I, the IRQ interrupt mask
bit.

f
Sets the F bit in the instruction, causing the specified effect on PSTATE.F, the FIQ interrupt mask
bit.

<mode> Is the number of the mode to change to, in the range 0 to 31, encoded in the "mode" field.

Operation

if CurrentInstrSet() == InstrSet_A32 then
EncodingSpecificOperations();
if PSTATE.EL != EL0 then

if enable then
if affectA then PSTATE.A = '0';
if affectI then PSTATE.I = '0';
if affectF then PSTATE.F = '0';

if disable then
if affectA then PSTATE.A = '1';
if affectI then PSTATE.I = '1';
if affectF then PSTATE.F = '1';

if changemode then
// AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
AArch32.WriteModeByInstr(pemode);

else
EncodingSpecificOperations();
if PSTATE.EL != EL0 then

if enable then
if affectA then PSTATE.A = '0';
if affectI then PSTATE.I = '0';
if affectF then PSTATE.F = '0';

if disable then
if affectA then PSTATE.A = '1';
if affectI then PSTATE.I = '1';
if affectF then PSTATE.F = '1';

if changemode then
// AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
AArch32.WriteModeByInstr(pemode);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPS, CPSID, CPSIE Page 94

CRC32

CRC32 performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an
input CRC value in the first source operand, performs a CRC on the input value in the second source operand, and
returns the output CRC value. The second source operand can be 8, 16, or 32 bits. To align with common usage, the
bit order of the values is reversed as part of the operation, and the polynomial 0x04C11DB7 is used for the CRC
calculation.
In an Armv8.0 implementation, this is an OPTIONAL instruction. From Armv8.1, it is mandatory for all implementations
to implement this instruction.

Note

ID_ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_CRC32)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 sz 0 Rn Rd (0) (0) 0 (0) 0 1 0 0 Rm
cond C

CRC32B (sz == 00)

CRC32B{<q>} <Rd>, <Rn>, <Rm>

CRC32H (sz == 01)

CRC32H{<q>} <Rd>, <Rn>, <Rm>

CRC32W (sz == 10)

CRC32W{<q>} <Rd>, <Rn>, <Rm>

if ! HaveCRCExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
size = 8 << UInt(sz);
crc32c = (C == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;
if cond != '1110' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: size = 32;.

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

T1
(FEAT_CRC32)

CRC32 Page 95

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 1 0 sz Rm
C

CRC32B (sz == 00)

CRC32B{<q>} <Rd>, <Rn>, <Rm>

CRC32H (sz == 01)

CRC32H{<q>} <Rd>, <Rn>, <Rm>

CRC32W (sz == 10)

CRC32W{<q>} <Rd>, <Rn>, <Rm>

if InITBlock() then UNPREDICTABLE;
if ! HaveCRCExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
size = 8 << UInt(sz);
crc32c = (C == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: size = 32;.

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields. A CRC32 instruction must be unconditional.

<Rd> Is the general-purpose accumulator output register, encoded in the "Rd" field.

<Rn> Is the general-purpose accumulator input register, encoded in the "Rn" field.

<Rm> Is the general-purpose data source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

acc = R[n]; // accumulator
val = R[m]<size-1:0>; // input value
poly = (if crc32c then 0x1EDC6F41 else 0x04C11DB7)<31:0>;
tempacc = BitReverse(acc):Zeros(size);
tempval = BitReverse(val):Zeros(32);
// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
R[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

CRC32 Page 96

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32 Page 97

CRC32C

CRC32C performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an
input CRC value in the first source operand, performs a CRC on the input value in the second source operand, and
returns the output CRC value. The second source operand can be 8, 16, or 32 bits. To align with common usage, the
bit order of the values is reversed as part of the operation, and the polynomial 0x1EDC6F41 is used for the CRC
calculation.
In an Armv8.0 implementation, this is an OPTIONAL instruction. From Armv8.1, it is mandatory for all implementations
to implement this instruction.

Note

ID_ISAR5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_CRC32)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 sz 0 Rn Rd (0) (0) 1 (0) 0 1 0 0 Rm
cond C

CRC32CB (sz == 00)

CRC32CB{<q>} <Rd>, <Rn>, <Rm>

CRC32CH (sz == 01)

CRC32CH{<q>} <Rd>, <Rn>, <Rm>

CRC32CW (sz == 10)

CRC32CW{<q>} <Rd>, <Rn>, <Rm>

if ! HaveCRCExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
size = 8 << UInt(sz);
crc32c = (C == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;
if cond != '1110' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: size = 32;.

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

T1
(FEAT_CRC32)

CRC32C Page 98

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 1 0 sz Rm
C

CRC32CB (sz == 00)

CRC32CB{<q>} <Rd>, <Rn>, <Rm>

CRC32CH (sz == 01)

CRC32CH{<q>} <Rd>, <Rn>, <Rm>

CRC32CW (sz == 10)

CRC32CW{<q>} <Rd>, <Rn>, <Rm>

if InITBlock() then UNPREDICTABLE;
if ! HaveCRCExt() then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
size = 8 << UInt(sz);
crc32c = (C == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: size = 32;.

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields. A CRC32C instruction must be unconditional.

<Rd> Is the general-purpose accumulator output register, encoded in the "Rd" field.

<Rn> Is the general-purpose accumulator input register, encoded in the "Rn" field.

<Rm> Is the general-purpose data source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

acc = R[n]; // accumulator
val = R[m]<size-1:0>; // input value
poly = (if crc32c then 0x1EDC6F41 else 0x04C11DB7)<31:0>;
tempacc = BitReverse(acc):Zeros(size);
tempval = BitReverse(val):Zeros(32);
// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
R[d] = BitReverse(Poly32Mod2(tempacc EOR tempval, poly));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

CRC32C Page 99

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32C Page 100

CSDB

Consumption of Speculative Data Barrier is a memory barrier that controls speculative execution and data value
prediction.
No instruction other than branch instructions and instructions that write to the PC appearing in program order after
the CSDB can be speculatively executed using the results of any:

• Data value predictions of any instructions.
• PSTATE.{N,Z,C,V} predictions of any instructions other than conditional branch instructions and conditional

instructions that write to the PC appearing in program order before the CSDB that have not been
architecturally resolved.

Note

For purposes of the definition of CSDB, PSTATE.{N,Z,C,V} is not considered a data value. This definition permits:
• Control flow speculation before and after the CSDB.
• Speculative execution of conditional data processing instructions after the CSDB, unless they use the

results of data value or PSTATE.{N,Z,C,V} predictions of instructions appearing in program order before
the CSDB that have not been architecturally resolved.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 0 1 0 0
cond

A1

CSDB{<c>}{<q>}

if cond != '1110' then UNPREDICTABLE; // CSDB must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 1 0 0

T1

CSDB{<c>}{<q>}

if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

CSDB Page 101

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

ConsumptionOfSpeculativeDataBarrier();

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSDB Page 102

DBG

DBG executes as a NOP. Arm deprecates any use of the DBG instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 1 1 1 1 option
cond

A1

DBG{<c>}{<q>} #<option>

// DBG executes as a NOP. The 'option' field is ignored

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 1 1 1 1 option

T1

DBG{<c>}{<q>} #<option>

// DBG executes as a NOP. The 'option' field is ignored

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<option> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "option" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBG Page 103

DCPS1

Debug Change PE State to EL1 allows the debugger to move the PE into EL1 from EL0 or to a specific mode at the
current Exception level.
DCPS1 is UNDEFINED if any of:

• The PE is in Non-debug state.
• EL2 is implemented, EL2 is implemented and enabled in the current Security state, and any of:

◦ EL2 is using AArch32 and HCR.TGE is set to 1.
◦ EL2 is using AArch64 and HCR_EL2.TGE is set to 1.

When the PE executes DCPS1 at EL0, EL1 or EL3:
• If EL3 or EL1 is using AArch32, the PE enters SVC mode and LR_svc, SPSR_svc, DLR, and DSPSR become

UNKNOWN. If DCPS1 is executed in Monitor mode, SCR.NS is cleared to 0.
• If EL1 is using AArch64, the PE enters EL1 using AArch64, selects SP_EL1, and ELR_EL1, ESR_EL1,

SPSR_EL1, DLR_EL0 and DSPSR_EL0 become UNKNOWN.
When the PE executes DCPS1 at EL2 the PE does not change mode, and ELR_hyp, HSR, SPSR_hyp, DLR and DSPSR
become UNKNOWN.
For more information on the operation of the DCPS<n> instructions, see DCPS.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

T1

DCPS1

// No additional decoding required.

DCPS1 Page 104

Operation

if !Halted() then UNDEFINED;

if EL2Enabled() && PSTATE.EL == EL0 then
tge = if ELUsingAArch32(EL2) then HCR.TGE else HCR_EL2.TGE;
if tge == '1' then UNDEFINED;

if PSTATE.EL != EL0 || ELUsingAArch32(EL1) then
if PSTATE.M == M32_Monitor then SCR.NS = '0';
if PSTATE.EL != EL2 then

AArch32.WriteMode(M32_Svc);
PSTATE.E = SCTLR.EE;
if HavePANExt() && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
LR_svc = bits(32) UNKNOWN;
SPSR_svc = bits(32) UNKNOWN;

else
PSTATE.E = HSCTLR.EE;
ELR_hyp = bits(32) UNKNOWN;
HSR = bits(32) UNKNOWN;
SPSR_hyp = bits(32) UNKNOWN;

DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;

else // Targeting EL1 using AArch64
AArch64.MaybeZeroRegisterUppers();
MaybeZeroSVEUppers(EL1);
PSTATE.nRW = '0';
PSTATE.SP = '1';
PSTATE.EL = EL1;
if HavePANExt() && SCTLR_EL1.SPAN == '0' then PSTATE.PAN = '1';
if HaveUAOExt() then PSTATE.UAO = '0';

ELR_EL1 = bits(64) UNKNOWN;
ESR_EL1 = bits(64) UNKNOWN;
SPSR_EL1 = bits(64) UNKNOWN;

DLR_EL0 = bits(64) UNKNOWN;
DSPSR_EL0 = bits(64) UNKNOWN;

// SCTLR_EL1.IESB might be ignored in Debug state.
if (HaveIESB() && SCTLR_EL1.IESB == '1' &&

!ConstrainUnpredictableBool(Unpredictable_IESBinDebug)) then
SynchronizeErrors();

UpdateEDSCRFields(); // Update EDSCR PE state flags

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS1 Page 105

DCPS2

Debug Change PE State to EL2 allows the debugger to move the PE into EL2 from a lower Exception level.
DCPS2 is UNDEFINED if any of:

• The PE is in Non-debug state.
• EL2 is not implemented.
• The PE is in Secure state and any of:

◦ Secure EL2 is not implemented.
◦ Secure EL2 is implemented and Secure EL2 is disabled.

When the PE executes DCPS2:
• If EL2 is using AArch32, the PE enters Hyp mode and ELR_hyp, HSR, SPSR_hyp, DLR and DSPSR become

UNKNOWN.
• If EL2 is using AArch64, the PE enters EL2 using AArch64, selects SP_EL2, and ELR_EL2, ESR_EL2,

SPSR_EL2, DLR_EL0 and DSPSR_EL0 become UNKNOWN.
For more information on the operation of the DCPS<n> instructions, see DCPS.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

T1

DCPS2

if !HaveEL(EL2) then UNDEFINED;

Operation

if !Halted() || !EL2Enabled() then UNDEFINED;

if ELUsingAArch32(EL2) then
AArch32.WriteMode(M32_Hyp);
PSTATE.E = HSCTLR.EE;

ELR_hyp = bits(32) UNKNOWN;
HSR = bits(32) UNKNOWN;
SPSR_hyp = bits(32) UNKNOWN;

DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;

else // Targeting EL2 using AArch64
AArch64.MaybeZeroRegisterUppers();
MaybeZeroSVEUppers(EL2);
PSTATE.nRW = '0';
PSTATE.SP = '1';
PSTATE.EL = EL2;
if HavePANExt() && SCTLR_EL2.SPAN == '0' && HCR_EL2.E2H == '1' && HCR_EL2.TGE == '1' then

PSTATE.PAN = '1';
if HaveUAOExt() then PSTATE.UAO = '0';

ELR_EL2 = bits(64) UNKNOWN;
ESR_EL2 = bits(64) UNKNOWN;
SPSR_EL2 = bits(64) UNKNOWN;

DLR_EL0 = bits(64) UNKNOWN;
DSPSR_EL0 = bits(64) UNKNOWN;

// SCTLR_EL2.IESB might be ignored in Debug state.
if (HaveIESB() && SCTLR_EL2.IESB == '1' &&

!ConstrainUnpredictableBool(Unpredictable_IESBinDebug)) then
SynchronizeErrors();

UpdateEDSCRFields(); // Update EDSCR PE state flags

DCPS2 Page 106

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS2 Page 107

DCPS3

Debug Change PE State to EL3 allows the debugger to move the PE into EL3 from a lower Exception level or to a
specific mode at the current Exception level.
DCPS3 is UNDEFINED if any of:

• The PE is in Non-debug state.
• EL3 is not implemented.
• EDSCR.SDD is set to 1.

When the PE executes DCPS3:
• If EL3 is using AArch32, the PE enters Monitor mode and LR_mon, SPSR_mon, DLR and DSPSR become

UNKNOWN. If DCPS3 is executed in Monitor mode, SCR.NS is cleared to 0.
• If EL3 is using AArch64, the PE enters EL3 using AArch64, selects SP_EL3, and ELR_EL3, ESR_EL3,

SPSR_EL3, DLR_EL0 and DSPSR_EL0 become UNKNOWN.
For more information on the operation of the DCPS<n> instructions, see DCPS.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

T1

DCPS3

if !HaveEL(EL3) then UNDEFINED;

DCPS3 Page 108

Operation

if !Halted() || EDSCR.SDD == '1' then UNDEFINED;

if ELUsingAArch32(EL3) then
from_secure = CurrentSecurityState() == SS_Secure;
if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(M32_Monitor);
if HavePANExt() then

if !from_secure then
PSTATE.PAN = '0';

elsif SCTLR.SPAN == '0' then
PSTATE.PAN = '1';

PSTATE.E = SCTLR.EE;

LR_mon = bits(32) UNKNOWN;
SPSR_mon = bits(32) UNKNOWN;

DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;

else // Targeting EL3 using AArch64
AArch64.MaybeZeroRegisterUppers();
MaybeZeroSVEUppers(EL3);
PSTATE.nRW = '0';
PSTATE.SP = '1';
PSTATE.EL = EL3;
if HaveUAOExt() then PSTATE.UAO = '0';

ELR_EL3 = bits(64) UNKNOWN;
ESR_EL3 = bits(64) UNKNOWN;
SPSR_EL3 = bits(64) UNKNOWN;

DLR_EL0 = bits(64) UNKNOWN;
DSPSR_EL0 = bits(64) UNKNOWN;

sync_errors = HaveIESB() && SCTLR_EL3.IESB == '1';
if HaveDoubleFaultExt() && EffectiveEA() == '1' && SCR_EL3.NMEA == '1' then

sync_errors = TRUE;
// SCTLR_EL3.IESB might be ignored in Debug state.
if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then

sync_errors = FALSE;
if sync_errors then SynchronizeErrors();

UpdateEDSCRFields(); // Update EDSCR PE state flags

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS3 Page 109

DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data
Memory Barrier (DMB).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 1 option

A1

DMB{<c>}{<q>} {<option>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 1 option

T1

DMB{<c>}{<q>} {<option>}

// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<option> Specifies an optional limitation on the barrier operation. Values are:
SY

Full system is the required shareability domain, reads and writes are the required access types,
both before and after the barrier instruction. Can be omitted. This option is referred to as the full
system barrier. Encoded as option = 0b1111.

ST
Full system is the required shareability domain, writes are the required access type, both before
and after the barrier instruction. SYST is a synonym for ST. Encoded as option = 0b1110.

LD
Full system is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as option = 0b1011.

ISHST
Inner Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as option = 0b1010.

DMB Page 110

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b1001.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both
before and after the barrier instruction. Encoded as option = 0b0111.

NSHST
Non-shareable is the required shareability domain, writes are the required access type both before
and after the barrier instruction. Encoded as option = 0b0110.

NSHLD
Non-shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b0101.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as option = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as option = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b0001.

For more information on whether an access is before or after a barrier instruction, see Data Memory
Barrier (DMB). All other encodings of option are reserved. All unsupported and reserved options must
execute as a full system DMB operation, but software must not rely on this behavior.

Note

The instruction supports the following alternative <option> values, but Arm recommends that
software does not use these alternative values:

• SH as an alias for ISH.
• SHST as an alias for ISHST.
• UN as an alias for NSH.
• UNST as an alias for NSHST.

DMB Page 111

Operation

if ConditionPassed() then
EncodingSpecificOperations();
MBReqDomain domain;
MBReqTypes types;
case option of

when '0001' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Reads;
when '0010' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Writes;
when '0011' domain = MBReqDomain_OuterShareable; types = MBReqTypes_All;
when '0101' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Reads;
when '0110' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Writes;
when '0111' domain = MBReqDomain_Nonshareable; types = MBReqTypes_All;
when '1001' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Reads;
when '1010' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Writes;
when '1011' domain = MBReqDomain_InnerShareable; types = MBReqTypes_All;
when '1101' domain = MBReqDomain_FullSystem; types = MBReqTypes_Reads;
when '1110' domain = MBReqDomain_FullSystem; types = MBReqTypes_Writes;
otherwise domain = MBReqDomain_FullSystem; types = MBReqTypes_All;

if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
if HCR.BSU == '11' then

domain = MBReqDomain_FullSystem;
if HCR.BSU == '10' && domain != MBReqDomain_FullSystem then

domain = MBReqDomain_OuterShareable;
if HCR.BSU == '01' && domain == MBReqDomain_Nonshareable then

domain = MBReqDomain_InnerShareable;

DataMemoryBarrier(domain, types);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DMB Page 112

DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data
Synchronization Barrier (DSB).
An AArch32 DSB instruction does not require the completion of any AArch64 TLB maintenance instructions,
regardless of the nXS qualifier, appearing in program order before the AArch32 DSB.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 0 != 0x00
option

A1

DSB{<c>}{<q>} {<option>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 != 0x00
option

T1

DSB{<c>}{<q>} {<option>}

// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<option> Specifies an optional limitation on the barrier operation. Values are:
SY

Full system is the required shareability domain, reads and writes are the required access types,
both before and after the barrier instruction. Can be omitted. This option is referred to as the full
system barrier. Encoded as option = 0b1111.

ST
Full system is the required shareability domain, writes are the required access type, both before
and after the barrier instruction. SYST is a synonym for ST. Encoded as option = 0b1110.

LD
Full system is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as option = 0b1011.

DSB Page 113

ISHST
Inner Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as option = 0b1010.

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b1001.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both
before and after the barrier instruction. Encoded as option = 0b0111.

NSHST
Non-shareable is the required shareability domain, writes are the required access type both before
and after the barrier instruction. Encoded as option = 0b0110.

NSHLD
Non-shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b0101.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access
types, both before and after the barrier instruction. Encoded as option = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both
before and after the barrier instruction. Encoded as option = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the
barrier instruction, and reads and writes are the required access types after the barrier
instruction. Encoded as option = 0b0001.

For more information on whether an access is before or after a barrier instruction, see Data
Synchronization Barrier (DSB). All other encodings of option are reserved, other than the values
0b0000 and 0b0100. All unsupported and reserved options must execute as a full system DSB
operation, but software must not rely on this behavior.

Note

The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.
The instruction supports the following alternative <option> values, but Arm recommends that
software does not use these alternative values:

• SH as an alias for ISH.
• SHST as an alias for ISHST.
• UN as an alias for NSH.
• UNST as an alias for NSHST.

DSB Page 114

Operation

if ConditionPassed() then
EncodingSpecificOperations();
boolean nXS;
if HaveFeatXS() then

nXS = (PSTATE.EL IN {EL0, EL1} && !ELUsingAArch32(EL2) &&
IsHCRXEL2Enabled() && HCRX_EL2.FnXS == '1');

else
nXS = FALSE;

MBReqDomain domain;
MBReqTypes types;
case option of

when '0001' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Reads;
when '0010' domain = MBReqDomain_OuterShareable; types = MBReqTypes_Writes;
when '0011' domain = MBReqDomain_OuterShareable; types = MBReqTypes_All;
when '0101' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Reads;
when '0110' domain = MBReqDomain_Nonshareable; types = MBReqTypes_Writes;
when '0111' domain = MBReqDomain_Nonshareable; types = MBReqTypes_All;
when '1001' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Reads;
when '1010' domain = MBReqDomain_InnerShareable; types = MBReqTypes_Writes;
when '1011' domain = MBReqDomain_InnerShareable; types = MBReqTypes_All;
when '1101' domain = MBReqDomain_FullSystem; types = MBReqTypes_Reads;
when '1110' domain = MBReqDomain_FullSystem; types = MBReqTypes_Writes;
otherwise

assert !(option IN {'0x00'});
domain = MBReqDomain_FullSystem; types = MBReqTypes_All;

if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
if HCR.BSU == '11' then

domain = MBReqDomain_FullSystem;
if HCR.BSU == '10' && domain != MBReqDomain_FullSystem then

domain = MBReqDomain_OuterShareable;
if HCR.BSU == '01' && domain == MBReqDomain_Nonshareable then

domain = MBReqDomain_InnerShareable;

DataSynchronizationBarrier(domain, types, nXS);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DSB Page 115

EOR, EORS (immediate)

Bitwise Exclusive-OR (immediate) performs a bitwise exclusive-OR of a register value and an immediate value, and
writes the result to the destination register.
If the destination register is not the PC, the EORS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The EOR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The EORS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 0 0 1 S Rn Rd imm12
cond

EOR (S == 0)

EOR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

EORS (S == 1)

EORS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 1 0 0 S Rn 0 imm3 Rd imm8

EOR (S == 0)

EOR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

EORS (S == 1 && Rd != 1111)

EORS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

if Rd == '1111' && S == '1' then SEE "TEQ (immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

EOR, EORS (immediate) Page 116

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the EOR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the EORS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] EOR imm32;
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR, EORS (immediate) Page 117

EOR, EORS (register)

Bitwise Exclusive-OR (register) performs a bitwise exclusive-OR of a register value and an optionally-shifted register
value, and writes the result to the destination register.
If the destination register is not the PC, the EORS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The EOR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The EORS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 0 0 1 S Rn Rd imm5 stype 0 Rm
cond

EOR, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 1 Rm Rdn

T1

EOR<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)

EORS{<q>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

EOR, EORS (register) Page 118

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 0 0 S Rn (0) imm3 Rd imm2 stype Rm

EOR, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

EOR<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111)

EORS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rd == '1111' && S == '1' then SEE "TEQ (register)";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the EOR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the EORS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.
For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

EOR, EORS (register) Page 119

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:
• Outside an IT block, if EORS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is

assembled using encoding T1 as though EORS <Rd>, <Rn> had been written
• Inside an IT block, if EOR<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is

assembled using encoding T1 as though EOR<c> <Rd>, <Rn> had been written.
To prevent either of these happening, use the .W qualifier.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = R[n] EOR shifted;
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR, EORS (register) Page 120

EOR, EORS (register-shifted register)

Bitwise Exclusive-OR (register-shifted register) performs a bitwise exclusive-OR of a register value and a register-
shifted register value. It writes the result to the destination register, and can optionally update the condition flags
based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 0 0 1 S Rn Rd Rs 0 stype 1 Rm
cond

Flag setting (S == 1)

EORS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

EOR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = R[n] EOR shifted;
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

EOR, EORS (register-shifted
register) Page 121

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR, EORS (register-shifted
register) Page 122

ERET

Exception Return.
The PE branches to the address held in the register holding the preferred return address, and restores PSTATE from
SPSR_<current_mode>.
The register holding the preferred return address is:

• ELR_hyp, when executing in Hyp mode.
• LR, when executing in a mode other than Hyp mode, User mode, or System mode.

The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32 state.
Exception Return is CONSTRAINED UNPREDICTABLE in User mode and System mode.
In Debug state, the T1 encoding of ERET executes the DRPS operation.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 0 1 1 0 (1) (1) (1) (0)
cond

A1

ERET{<c>}{<q>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0 (0) 0 (1) (1) (1) (1) 0 0 0 0 0 0 0 0

T1

ERET{<c>}{<q>}

if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

ERET Page 123

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if !Halted() then

if PSTATE.M IN {M32_User,M32_System} then
UNPREDICTABLE; // UNDEFINED or NOP

else
new_pc_value = if PSTATE.EL == EL2 then ELR_hyp else R[14];
AArch32.ExceptionReturn(new_pc_value, SPSR_curr[]);

else // Perform DRPS operation in Debug state
if PSTATE.M == M32_User then

UNDEFINED;
elsif PSTATE.M == M32_System then

UNPREDICTABLE; // UNDEFINED or NOP
else

SynchronizeContext();
DebugRestorePSR();

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERET Page 124

ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR and VDISR. This
instruction can be used at all Exception levels and in Debug state.
In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. See Error
Synchronization Barrier in the ARM(R) Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for
Armv8-A architecture profile.
If the RAS Extension is not implemented, this instruction executes as a NOP.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_RAS)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 0 0 0 0
cond

A1

ESB{<c>}{<q>}

if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
if cond != '1110' then UNPREDICTABLE; // ESB must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

T1
(FEAT_RAS)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 0 0 0

T1

ESB{<c>}{<q>}

if !HaveRASExt() then EndOfInstruction(); // Instruction executes as NOP
if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

ESB Page 125

Operation

if ConditionPassed() then
EncodingSpecificOperations();

SynchronizeErrors();
AArch32.ESBOperation();
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then AArch32.vESBOperation();
TakeUnmaskedSErrorInterrupts();

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESB Page 126

HLT

Halting breakpoint causes a software breakpoint to occur.
Halting breakpoint is always unconditional, even inside an IT block.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 0 0 imm12 0 1 1 1 imm4
cond

A1

HLT{<q>} {#}<imm>

if EDSCR.HDE == '0' || !HaltingAllowed() then UNDEFINED;
if cond != '1110' then UNPREDICTABLE; // HLT must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 1 0 imm6

T1

HLT{<q>} {#}<imm>

if EDSCR.HDE == '0' || !HaltingAllowed() then UNDEFINED;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields. An HLT instruction must be unconditional.

<imm> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. This value is for assembly and disassembly only. It is ignored by the PE, but can be
used by a debugger to store more information about the halting breakpoint.
For encoding T1: is a 6-bit unsigned immediate, in the range 0 to 63, encoded in the "imm6" field. This
value is for assembly and disassembly only. It is ignored by the PE, but can be used by a debugger to
store more information about the halting breakpoint.

Operation

EncodingSpecificOperations();
boolean is_async = FALSE;
FaultRecord fault = NoFault();
Halt(DebugHalt_HaltInstruction, is_async, fault);

HLT Page 127

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HLT Page 128

HVC

Hypervisor Call causes a Hypervisor Call exception. For more information, see Hypervisor Call (HVC) exception.
Software executing at EL1 can use this instruction to call the hypervisor to request a service.
The HVC instruction is UNDEFINED:

• When EL3 is implemented and using AArch64, and SCR_EL3.HCE is set to 0.
• In Non-secure EL1 modes when EL3 is implemented and using AArch32, and SCR.HCE is set to 0.
• When EL3 is not implemented and either HCR_EL2.HCD is set to 1 or HCR.HCD is set to 1.
• When EL2 is not implemented.
• In Secure state, if EL2 is not enabled in the current Security state.
• In User mode.

The HVC instruction is CONSTRAINED UNPREDICTABLE in Hyp mode when EL3 is implemented and using AArch32, and
SCR.HCE is set to 0.
On executing an HVC instruction, the HSR, Hyp Syndrome Register reports the exception as a Hypervisor Call
exception, using the EC value 0x12, and captures the value of the immediate argument, see Use of the HSR.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 1 0 0 imm12 0 1 1 1 imm4
cond

A1

HVC{<q>} {#}<imm16>

if cond != '1110' then UNPREDICTABLE;
imm16 = imm12:imm4;

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1 1 1 1 0 imm4 1 0 0 0 imm12

T1

HVC{<q>} {#}<imm16>

imm16 = imm4:imm12;
if InITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields. An HVC instruction must be unconditional.

<imm16> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. This value is for assembly and disassembly only. It is reported in the HSR but

HVC Page 129

otherwise is ignored by hardware. An HVC handler might interpret imm16, for example to determine
the required service.
For encoding T1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field. This value is for assembly and disassembly only. It is reported in the HSR but
otherwise is ignored by hardware. An HVC handler might interpret imm16, for example to determine
the required service.

Operation

EncodingSpecificOperations();
if PSTATE.EL IN {EL0, EL3} || !EL2Enabled() then

UNDEFINED;

bit hvc_enable;
if HaveEL(EL3) then

if ELUsingAArch32(EL3) && SCR.HCE == '0' && PSTATE.EL == EL2 then
UNPREDICTABLE;

else
hvc_enable = SCR_curr[].HCE;

else
hvc_enable = if ELUsingAArch32(EL2) then NOT(HCR.HCD) else NOT(HCR_EL2.HCD);

if hvc_enable == '0' then
UNDEFINED;

else
AArch32.CallHypervisor(imm16);

CONSTRAINED UNPREDICTABLE behavior

If ELUsingAArch32(EL3) && SCR.HCE == '0' && PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HVC Page 130

ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more
information, see Instruction Synchronization Barrier (ISB).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 1 0 option

A1

ISB{<c>}{<q>} {<option>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 1 0 option

T1

ISB{<c>}{<q>} {<option>}

// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<option> Specifies an optional limitation on the barrier operation. Values are:
SY

Full system barrier operation, encoded as option = 0b1111. Can be omitted.

All other encodings of option are reserved. The corresponding instructions execute as full system
barrier operations, but must not be relied upon by software.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
InstructionSynchronizationBarrier();

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ISB Page 131

IT

If-Then makes up to four following instructions (the IT block) conditional. The conditions for the instructions in the IT
block are the same as, or the inverse of, the condition the IT instruction specifies for the first instruction in the block.
The IT instruction itself does not affect the condition flags, but the execution of the instructions in the IT block can
change the condition flags.
16-bit instructions in the IT block, other than CMP, CMN and TST, do not set the condition flags. An IT instruction with
the AL condition can change the behavior without conditional execution.
The architecture permits exception return to an instruction in the IT block only if the restoration of the CPSR restores
PSTATE.IT to a state consistent with the conditions specified by the IT instruction. Any other exception return to an
instruction in an IT block is UNPREDICTABLE. Any branch to a target instruction in an IT block is not permitted, and if
such a branch is made it is UNPREDICTABLE what condition is used when executing that target instruction and any
subsequent instruction in the IT block.
Many uses of the IT instruction are deprecated for performance reasons, and an implementation might include ITD
controls that can disable those uses of IT, making them UNDEFINED.
For more information see Conditional execution and Conditional instructions. The first of these sections includes more
information about the ITD controls.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 firstcond != 0000
mask

T1

IT{<x>{<y>{<z>}}}{<q>} <cond>

if mask == '0000' then SEE "Related encodings";
if firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1) then UNPREDICTABLE;
if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1), then one of the following behaviors
must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The '1111' condition is treated as being the same as the '1110' condition, meaning always, and the ITSTATE

state machine is progressed in the same way as for any other cond_base value.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.
Related encodings: Miscellaneous 16-bit instructions.

Assembler Symbols

<x> The condition for the second instruction in the IT block. If omitted, the "mask" field is set to 0b1000. If
present it is encoded in the "mask[3]" field:
T

firstcond[0]

E
NOT firstcond[0]

<y> The condition for the third instruction in the IT block. If omitted and <x> is present, the "mask[2:0]"
field is set to 0b100. If <y> is present it is encoded in the "mask[2]" field:
T

firstcond[0]

IT Page 132

E
NOT firstcond[0]

<z> The condition for the fourth instruction in the IT block. If omitted and <y> is present, the "mask[1:0]"
field is set to 0b10. If <z> is present, the "mask[0]" field is set to 1, and it is encoded in the "mask[1]"
field:
T

firstcond[0]

E
NOT firstcond[0]

<q> See Standard assembler syntax fields.

<cond> The condition for the first instruction in the IT block, encoded in the "firstcond" field. See Condition
codes for the range of conditions available, and the encodings.

The conditions specified in an IT instruction must match those specified in the syntax of the instructions in its IT
block. When assembling to A32 code, assemblers check IT instruction syntax for validity but do not generate
assembled instructions for them. See Conditional instructions.

Operation

EncodingSpecificOperations();
AArch32.CheckITEnabled(mask);
PSTATE.IT<7:0> = firstcond:mask;
ShouldAdvanceIT = FALSE;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IT Page 133

LDA

Load-Acquire Word loads a word from memory and writes it to a register. The instruction also has memory ordering
semantics as described in Load-Acquire, Store-Release
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 0 1 Rn Rt (1) (1) 0 0 1 0 0 1 (1) (1) (1) (1)
cond

A1

LDA{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 1 0 (1) (1) (1) (1)

T1

LDA{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
R[t] = MemO[address, 4];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDA Page 134

LDAB

Load-Acquire Byte loads a byte from memory, zero-extends it to form a 32-bit word and writes it to a register. The
instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 0 1 Rn Rt (1) (1) 0 0 1 0 0 1 (1) (1) (1) (1)
cond

A1

LDAB{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 0 (1) (1) (1) (1)

T1

LDAB{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
R[t] = ZeroExtend(MemO[address, 1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAB Page 135

LDAEX

Load-Acquire Exclusive Word loads a word from memory, writes it to a register and:
• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the

executing PE in a global monitor.
• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 0 1 Rn Rt (1) (1) 1 0 1 0 0 1 (1) (1) (1) (1)
cond

A1

LDAEX{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 1 0 (1) (1) (1) (1)

T1

LDAEX{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
AArch32.SetExclusiveMonitors(address, 4);
R[t] = MemO[address, 4];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

LDAEX Page 136

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAEX Page 137

LDAEXB

Load-Acquire Exclusive Byte loads a byte from memory, zero-extends it to form a 32-bit word, writes it to a register
and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.
The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 0 1 Rn Rt (1) (1) 1 0 1 0 0 1 (1) (1) (1) (1)
cond

A1

LDAEXB{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 0 0 (1) (1) (1) (1)

T1

LDAEXB{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
AArch32.SetExclusiveMonitors(address, 1);
R[t] = ZeroExtend(MemO[address, 1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

LDAEXB Page 138

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAEXB Page 139

LDAEXD

Load-Acquire Exclusive Doubleword loads a doubleword from memory, writes it to two registers and:
• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the

executing PE in a global monitor
• Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also acts as a barrier instruction with the ordering requirements described in Load-Acquire, Store-
Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 1 Rn Rt (1) (1) 1 0 1 0 0 1 (1) (1) (1) (1)
cond

A1

LDAEXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]

t = UInt(Rt); t2 = t + 1; n = UInt(Rn);
if Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: t<0> = '0'.
• The instruction executes with the additional decode: t2 = t.
• The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction is handled as described in Using R15.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt Rt2 1 1 1 1 (1) (1) (1) (1)

T1

LDAEXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]

t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
if t == 15 || t2 == 15 || t == t2 || n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The load instruction executes but the destination register takes an UNKNOWN value.

LDAEXD Page 140

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. <Rt>
must be even-numbered and not R14.
For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.
For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
AArch32.SetExclusiveMonitors(address, 8);
value = MemO[address, 8];
// Extract words from 64-bit loaded value such that R[t] is
// loaded from address and R[t2] from address+4.
R[t] = if BigEndian(AccessType_GPR) then value<63:32> else value<31:0>;
R[t2] = if BigEndian(AccessType_GPR) then value<31:0> else value<63:32>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAEXD Page 141

LDAEXH

Load-Acquire Exclusive Halfword loads a halfword from memory, zero-extends it to form a 32-bit word, writes it to a
register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.
The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 1 1 Rn Rt (1) (1) 1 0 1 0 0 1 (1) (1) (1) (1)
cond

A1

LDAEXH{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 1 0 1 (1) (1) (1) (1)

T1

LDAEXH{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
AArch32.SetExclusiveMonitors(address, 2);
R[t] = ZeroExtend(MemO[address, 2], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

LDAEXH Page 142

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAEXH Page 143

LDAH

Load-Acquire Halfword loads a halfword from memory, zero-extends it to form a 32-bit word and writes it to a register.
The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 1 1 Rn Rt (1) (1) 0 0 1 0 0 1 (1) (1) (1) (1)
cond

A1

LDAH{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)

T1

LDAH{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on
UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
R[t] = ZeroExtend(MemO[address, 2], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAH Page 144

LDC (immediate)

Load data to System register (immediate) calculates an address from a base register value and an immediate offset,
loads a word from memory, and writes it to the DBGDTRTXint System register. It can use offset, post-indexed, pre-
indexed, or unindexed addressing. For information about memory accesses see Memory accesses.
In an implementation that includes EL2, the permitted LDC access to DBGDTRTXint can be trapped to Hyp mode,
meaning that an attempt to execute an LDC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see
Trapping general Non-secure System register accesses to debug registers.
For simplicity, the LDC pseudocode does not show this possible trap to Hyp mode.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 P U 0 W 1 != 1111 0 1 0 1 1 1 1 0 imm8
cond Rn

Offset (P == 1 && W == 0)

LDC{<c>}{<q>} p14, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 1)

LDC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDC{<c>}{<q>} p14, c5, [<Rn>, #{+/-}<imm>]!

Unindexed (P == 0 && U == 1 && W == 0)

LDC{<c>}{<q>} p14, c5, [<Rn>], <option>

if Rn == '1111' then SEE "LDC (literal)";
if P == '0' && U == '0' && W == '0' then UNDEFINED;
n = UInt(Rn); cp = 14;
imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U 0 W 1 != 1111 0 1 0 1 1 1 1 0 imm8
Rn

LDC (immediate) Page 145

Offset (P == 1 && W == 0)

LDC{<c>}{<q>} p14, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 1)

LDC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDC{<c>}{<q>} p14, c5, [<Rn>, #{+/-}<imm>]!

Unindexed (P == 0 && U == 1 && W == 0)

LDC{<c>}{<q>} p14, c5, [<Rn>], <option>

if Rn == '1111' then SEE "LDC (literal)";
if P == '0' && U == '0' && W == '0' then UNDEFINED;
n = UInt(Rn); cp = 14;
imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see LDC (literal).

<option> Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value of
this field is ignored when executing this instruction.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting to 0
and encoded in the "imm8" field, as <imm>/4.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];

// System register write to DBGDTRTXint.
AArch32.SysRegWriteM(cp, ThisInstr(), address);

if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDC (immediate) Page 146

LDC (literal)

Load data to System register (literal) calculates an address from the PC value and an immediate offset, loads a word
from memory, and writes it to the DBGDTRTXint System register. For information about memory accesses see Memory
accesses.
In an implementation that includes EL2, the permitted LDC access to DBGDTRTXint can be trapped to Hyp mode,
meaning that an attempt to execute an LDC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see
Trapping general Non-secure System register accesses to debug registers.
For simplicity, the LDC pseudocode does not show this possible trap to Hyp mode.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 P U 0 W 1 1 1 1 1 0 1 0 1 1 1 1 0 imm8
cond

A1 (!(P == 0 && U == 0 && W == 0))

LDC{<c>}{<q>} p14, c5, <label>

LDC{<c>}{<q>} p14, c5, [PC, #{+/-}<imm>]

LDC{<c>}{<q>} p14, c5, [PC], <option>

if P == '0' && U == '0' && W == '0' then UNDEFINED;
index = (P == '1'); add = (U == '1'); cp = 14; imm32 = ZeroExtend(imm8:'00', 32);
if W == '1' || (P == '0' && CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U 0 W 1 1 1 1 1 0 1 0 1 1 1 1 0 imm8

T1 (!(P == 0 && U == 0 && W == 0))

LDC{<c>}{<q>} p14, c5, <label>

LDC{<c>}{<q>} p14, c5, [PC, #{+/-}<imm>]

if P == '0' && U == '0' && W == '0' then UNDEFINED;
index = (P == '1'); add = (U == '1'); cp = 14; imm32 = ZeroExtend(imm8:'00', 32);
if W == '1' || (P == '0' && CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If W == '1' || P == '0', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.

LDC (literal) Page 147

• The instruction executes as LDC (immediate) with writeback to the PC. The instruction is handled as described
in Using R15.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<option> Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value of
this field is ignored when executing this instruction.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the
offset are multiples of 4 in the range -1020 to 1020.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE (encoded as U == 1).
If the offset is negative, imm32 is equal to minus the offset and add == FALSE (encoded as U == 0).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting to 0
and encoded in the "imm8" field, as <imm>/4.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
address = if index then offset_addr else Align(PC,4);

// System register write to DBGDTRTXint.
AArch32.SysRegWriteM(cp, ThisInstr(), address);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDC (literal) Page 148

LDM (exception return)

Load Multiple (exception return) loads multiple registers from consecutive memory locations using an address from a
base register. The SPSR of the current mode is copied to the CPSR. An address adjusted by the size of the data loaded
can optionally be written back to the base register.
The registers loaded include the PC. The word loaded for the PC is treated as an address and a branch occurs to that
address.
The PE checks the encoding that is copied to the CPSR for an illegal return event. See Illegal return events from
AArch32 state.
Load Multiple (exception return) is:

• UNDEFINED in Hyp mode.
• UNPREDICTABLE in debug state, and in User mode and System mode.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 P U 1 W 1 Rn 1 register_list
cond

A1

LDM{<amode>}{<c>}{<q>} <Rn>{!}, <registers_with_pc>^

n = UInt(Rn); registers = register_list;
wback = (W == '1'); increment = (U == '1'); wordhigher = (P == U);
if n == 15 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all the loads using the specified addressing mode and the content of the register

being written back is UNKNOWN. In addition, if an exception occurs during the execution of this instruction,
the base address might be corrupted so that the instruction cannot be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<amode> is one of:
DA

Decrement After. The consecutive memory addresses end at the address in the base register.
Encoded as P = 0, U = 0.

FA
Full Ascending. For this instruction, a synonym for DA.

DB
Decrement Before. The consecutive memory addresses end one word below the address in the
base register. Encoded as P = 1, U = 0.

EA
Empty Ascending. For this instruction, a synonym for DB.

IA
Increment After. The consecutive memory addresses start at the address in the base register. This
is the default. Encoded as P = 0, U = 1.

FD
Full Descending. For this instruction, a synonym for IA.

LDM (exception return) Page 149

IB
Increment Before. The consecutive memory addresses start one word above the address in the
base register. Encoded as P = 1, U = 1.

ED
Empty Descending. For this instruction, a synonym for IB.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers_with_pc> Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies
the set of registers to be loaded. The registers are loaded with the lowest-numbered register
from the lowest memory address, through to the highest-numbered register from the highest
memory address. The PC must be specified in the register list, and the instruction causes a
branch to the address (data) loaded into the PC. See also Encoding of lists of general-purpose
registers and the PC.

Instructions with similar syntax but without the PC included in the registers list are described in LDM (User registers).

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.M IN {M32_User,M32_System} then

UNPREDICTABLE; // UNDEFINED or NOP
else

length = 4*BitCount(registers) + 4;
address = if increment then R[n] else R[n]-length;
if wordhigher then address = address+4;

for i = 0 to 14
if registers<i> == '1' then

R[i] = MemS[address,4]; address = address + 4;
new_pc_value = MemS[address,4];

if wback && registers<n> == '0' then R[n] = if increment then R[n]+length else R[n]-length;
if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

AArch32.ExceptionReturn(new_pc_value, SPSR_curr[]);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDM (exception return) Page 150

LDM (User registers)

In an EL1 mode other than System mode, Load Multiple (User registers) loads multiple User mode registers from
consecutive memory locations using an address from a base register. The registers loaded cannot include the PC. The
PE reads the base register value normally, using the current mode to determine the correct Banked version of the
register. This instruction cannot writeback to the base register.
Load Multiple (User registers) is UNDEFINED in Hyp mode, and UNPREDICTABLE in User and System modes.
Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see
FEAT_LSMAOC.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 P U 1 (0) 1 Rn 0 register_list
cond

A1

LDM{<amode>}{<c>}{<q>} <Rn>, <registers_without_pc>^

n = UInt(Rn); registers = register_list; increment = (U == '1'); wordhigher = (P == U);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of

registers. These registers might include R15.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<amode> is one of:
DA

Decrement After. The consecutive memory addresses end at the address in the base register.
Encoded as P = 0, U = 0.

FA
Full Ascending. For this instruction, a synonym for DA.

DB
Decrement Before. The consecutive memory addresses end one word below the address in the
base register. Encoded as P = 1, U = 0.

EA
Empty Ascending. For this instruction, a synonym for DB.

IA
Increment After. The consecutive memory addresses start at the address in the base register. This
is the default. Encoded as P = 0, U = 1.

FD
Full Descending. For this instruction, a synonym for IA.

IB
Increment Before. The consecutive memory addresses start one word above the address in the
base register. Encoded as P = 1, U = 1.

LDM (User registers) Page 151

ED
Empty Descending. For this instruction, a synonym for IB.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<registers_without_pc> Is a list of one or more registers, separated by commas and surrounded by { and }. It
specifies the set of registers to be loaded by the LDM instruction. The registers are loaded
with the lowest-numbered register from the lowest memory address, through to the
highest-numbered register from the highest memory address. The PC must not be in the
register list. See also Encoding of lists of general-purpose registers and the PC.

Instructions with similar syntax but with the PC included in <registers_without_pc> are described in LDM (exception
return).

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNDEFINED;
elsif PSTATE.M IN {M32_User,M32_System} then UNPREDICTABLE;
else

length = 4*BitCount(registers);
address = if increment then R[n] else R[n]-length;
if wordhigher then address = address+4;
for i = 0 to 14

if registers<i> == '1' then // Load User mode register
Rmode[i, M32_User] = MemS[address,4]; address = address + 4;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of

registers. These registers might include R15.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDM (User registers) Page 152

LDM, LDMIA, LDMFD

Load Multiple (Increment After, Full Descending) loads multiple registers from consecutive memory locations using an
address from a base register. The consecutive memory locations start at this address, and the address just above the
highest of those locations can optionally be written back to the base register.
The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.
Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see
FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
Related system instructions are LDM (User registers) and LDM (exception return).
This instruction is used by the alias POP (multiple registers).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 0 1 0 W 1 Rn register_list
cond

A1

LDM{IA}{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

LDMFD{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack)

n = UInt(Rn); registers = register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.

These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 Rn register_list

T1

LDM{IA}{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

LDMFD{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack)

n = UInt(Rn); registers = '00000000':register_list; wback = (registers<n> == '0');
if BitCount(registers) < 1 then UNPREDICTABLE;

LDM, LDMIA, LDMFD Page 153

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.

These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 W 1 Rn P M register_list

T2

LDM{IA}{<c>}.W <Rn>{!}, <registers> // (Preferred syntax, if <Rn>, '!' and <registers> can be represented in T1)

LDMFD{<c>}.W <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack, if <Rn>, '!' and <registers> can be represented in T1)

LDM{IA}{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

LDMFD{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack)

n = UInt(Rn); registers = P:M:register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;
if registers<13> == '1' then UNPREDICTABLE;
if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.

These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction loads a single register using the specified addressing modes.
• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.

These registers might include R15.

If registers<13> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode, but R13 is UNKNOWN.

If P == '1' && M == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

LDM, LDMIA, LDMFD Page 154

• The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

IA Is an optional suffix for the Increment After form.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! For encoding A1 and T2: the address adjusted by the size of the data loaded is written back to the base
register. If specified, it is encoded in the "W" field as 1, otherwise this field defaults to 0.
For encoding T1: the address adjusted by the size of the data loaded is written back to the base register.
It is omitted if <Rn> is included in <registers>, otherwise it must be present.

<registers> For encoding A1: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }.
The PC can be in the list.
Arm deprecates using these instructions with both the LR and the PC in the list.
For encoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field.
For encoding T2: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R12, encoded in the "register_list" field,
and can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.
If the PC is in the list:

• The LR must not be in the list.
• The instruction must be either outside any IT block, or the last instruction in an IT block.

Alias Conditions

Alias Of
variant Is preferred when

POP (multiple
registers)

T2 W == '1' && Rn == '1101' && BitCount(P:M:register_list) > 1

POP (multiple
registers)

A1 W == '1' && Rn == '1101' && BitCount(register_list) > 1

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
for i = 0 to 14

if registers<i> == '1' then
R[i] = MemS[address,4]; address = address + 4;

if registers<15> == '1' then
LoadWritePC(MemS[address,4]);

if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDM, LDMIA, LDMFD Page 155

LDMDA, LDMFA

Load Multiple Decrement After (Full Ascending) loads multiple registers from consecutive memory locations using an
address from a base register. The consecutive memory locations end at this address, and the address just below the
lowest of those locations can optionally be written back to the base register.
The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.
Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see
FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
Related system instructions are LDM (User registers) and LDM (exception return).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 0 0 0 W 1 Rn register_list
cond

A1

LDMDA{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

LDMFA{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Full Ascending stack)

n = UInt(Rn); registers = register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of

registers. These registers might include R15. If the instruction specifies writeback, the modification to the
base address on writeback might differ from the number of registers loaded.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.
The PC can be in the list.
Arm deprecates using these instructions with both the LR and the PC in the list.

LDMDA, LDMFA Page 156

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] - 4*BitCount(registers) + 4;
for i = 0 to 14

if registers<i> == '1' then
R[i] = MemS[address,4]; address = address + 4;

if registers<15> == '1' then
LoadWritePC(MemS[address,4]);

if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDMDA, LDMFA Page 157

LDMDB, LDMEA

Load Multiple Decrement Before (Empty Ascending) loads multiple registers from consecutive memory locations using
an address from a base register. The consecutive memory locations end just below this address, and the address of the
lowest of those locations can optionally be written back to the base register.
The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.
Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see
FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
Related system instructions are LDM (User registers) and LDM (exception return).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 1 0 0 W 1 Rn register_list
cond

A1

LDMDB{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

LDMEA{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Empty Ascending stack)

n = UInt(Rn); registers = register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.

These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0 W 1 Rn P M register_list

T1

LDMDB{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

LDMEA{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Empty Ascending stack)

n = UInt(Rn); registers = P:M:register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;
if registers<13> == '1' then UNPREDICTABLE;
if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

LDMDB, LDMEA Page 158

CONSTRAINED UNPREDICTABLE behavior

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.

These registers might include R15. If the instruction specifies writeback, the modification to the base address
on writeback might differ from the number of registers loaded.

If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction loads a single register using the specified addressing modes.
• The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers.

These registers might include R15.

If registers<13> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode, but R13 is UNKNOWN.

If P == '1' && M == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> For encoding A1: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }.
The PC can be in the list.
Arm deprecates using these instructions with both the LR and the PC in the list.
For encoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R12, encoded in the "register_list" field,
and can optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1,
otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.
If the PC is in the list:

• The LR must not be in the list.
• The instruction must be either outside any IT block, or the last instruction in an IT block.

LDMDB, LDMEA Page 159

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] - 4*BitCount(registers);
for i = 0 to 14

if registers<i> == '1' then
R[i] = MemS[address,4]; address = address + 4;

if registers<15> == '1' then
LoadWritePC(MemS[address,4]);

if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDMDB, LDMEA Page 160

LDMIB, LDMED

Load Multiple Increment Before (Empty Descending) loads multiple registers from consecutive memory locations
using an address from a base register. The consecutive memory locations start just above this address, and the
address of the last of those locations can optionally be written back to the base register.
The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.
Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see
FEAT_LSMAOC. The registers loaded can include the PC, causing a branch to a loaded address. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
Related system instructions are LDM (User registers) and LDM (exception return).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 1 1 0 W 1 Rn register_list
cond

A1

LDMIB{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

LDMED{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Empty Descending stack)

n = UInt(Rn); registers = register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of

registers. These registers might include R15. If the instruction specifies writeback, the modification to the
base address on writeback might differ from the number of registers loaded.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.
The PC can be in the list.
Arm deprecates using these instructions with both the LR and the PC in the list.

LDMIB, LDMED Page 161

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + 4;
for i = 0 to 14

if registers<i> == '1' then
R[i] = MemS[address,4]; address = address + 4;

if registers<15> == '1' then
LoadWritePC(MemS[address,4]);

if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDMIB, LDMED Page 162

LDR (immediate)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads a word
from memory, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. For information
about memory accesses see Memory accesses.
This instruction is used by the alias POP (single register).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 , T3 and T4) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 0 P U 0 W 1 != 1111 Rt imm12
cond Rn

Offset (P == 1 && W == 0)

LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

LDR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDR (literal)";
if P == '0' && W == '1' then SEE "LDRT";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
if wback && n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 imm5 Rn Rt

T1

LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
index = TRUE; add = TRUE; wback = FALSE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 Rt imm8

LDR (immediate) Page 163

T2

LDR{<c>}{<q>} <Rt>, [SP{, #{+}<imm>}]

t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
index = TRUE; add = TRUE; wback = FALSE;

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 1 0 1 != 1111 Rt imm12
Rn

T3

LDR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // (<Rt>, <Rn>, <imm> can be represented in T1 or T2)

LDR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDR (literal)";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); index = TRUE; add = TRUE;
wback = FALSE; if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 != 1111 Rt 1 P U W imm8
Rn

Offset (P == 1 && U == 0 && W == 0)

LDR{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W == 1)

LDR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDR (literal)";
if P == '1' && U == '1' && W == '0' then SEE "LDRT";
if P == '0' && W == '0' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn);
imm32 = ZeroExtend(imm8, 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');
if (wback && n == t) || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

LDR (immediate) Page 164

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is
an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.
For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt" field.
For encoding T3 and T4: is the general-purpose register to be transferred, encoded in the "Rt" field. The
PC can be used, provided the instruction is either outside an IT block or the last instruction of an IT
block. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.

<Rn> For encoding A1, T3 and T4: is the general-purpose base register, encoded in the "Rn" field. For PC use
see LDR (literal).
For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if
omitted, and encoded in the "imm12" field.
For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4, in the range 0
to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.
For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in the range 0
to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.
For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.
For encoding T4: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm8" field.

Alias Conditions

Alias Of
variant Is preferred when

POP
(single
register)

A1
(post-
indexed)

P == '0' && U == '1' && W == '0' && Rn == '1101' && imm12 == '000000000100'

POP
(single
register)

T4
(post-
indexed)

Rn == '1101' && P == '0' && U == '1' && W == '1' && imm8 == '00000100'

LDR (immediate) Page 165

Operation

if CurrentInstrSet() == InstrSet_A32 then
if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,4];
if wback then R[n] = offset_addr;
if t == 15 then

if address<1:0> == '00' then
LoadWritePC(data);

else
UNPREDICTABLE;

else
R[t] = data;

else
if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,4];
if wback then R[n] = offset_addr;
if t == 15 then

if address<1:0> == '00' then
LoadWritePC(data);

else
UNPREDICTABLE;

else
R[t] = data;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (immediate) Page 166

LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory,
and writes it to a register. For information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 0 P U 0 W 1 1 1 1 1 Rt imm12
cond

A1 (!(P == 0 && W == 1))

LDR{<c>}{<q>} <Rt>, <label> // (Normal form)

LDR{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' && W == '1' then SEE "LDRT";
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32);
add = (U == '1'); wback = (P == '0') || (W == '1');
if wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: wback = FALSE;.
• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing

mode as described in LDR (immediate). The instruction uses post-indexed addressing when P == '0' and uses
pre-indexed addressing otherwise. The instruction is handled as described in Using R15.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 Rt imm8

T1

LDR{<c>}{<q>} <Rt>, <label> // (Normal form)

t = UInt(Rt); imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 1 0 1 1 1 1 1 Rt imm12

T2

LDR{<c>}.W <Rt>, <label> // (Preferred syntax, and <Rt>, <label> can be represented in T1)

LDR{<c>}{<q>} <Rt>, <label> // (Preferred syntax)

LDR{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)

t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

LDR (literal) Page 167

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is
an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.
For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.
For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The SP can
be used. The PC can be used, provided the instruction is either outside an IT block or the last
instruction of an IT block. If the PC is used, the instruction branches to the address (data) loaded to the
PC. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-
purpose registers and the PC.

<label> For encoding A1 and T2: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.
For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are Multiples of four in the range 0 to 1020.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if
omitted, and encoded in the "imm12" field.
For encoding T2: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,4];
if t == 15 then

if address<1:0> == '00' then
LoadWritePC(data);

else
UNPREDICTABLE;

else
R[t] = data;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (literal) Page 168

LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word
from memory, and writes it to a register. The offset register value can optionally be shifted. For information about
memory accesses, see Memory accesses.
The T32 form of LDR (register) does not support register writeback.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 P U 0 W 1 Rn Rt imm5 stype 0 Rm
cond

Offset (P == 1 && W == 0)

LDR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed (P == 0 && W == 0)

LDR{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed (P == 1 && W == 1)

LDR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

if P == '0' && W == '1' then SEE "LDRT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
if m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 Rm Rn Rt

T1

LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 != 1111 Rt 0 0 0 0 0 0 imm2 Rm
Rn

LDR (register) Page 169

T2

LDR{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)

LDR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rn == '1111' then SEE "LDR (literal)";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This
branch is an interworking branch, see Pseudocode description of operations on the AArch32 general-
purpose registers and the PC.
For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.
For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can
be used, provided the instruction is either outside an IT block or the last instruction of an IT block. If
the PC is used, the instruction branches to the address (data) loaded to the PC. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in
the offset variant.
For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U +/-
0 -
1 +

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is
encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

LDR (register) Page 170

Operation

if CurrentInstrSet() == InstrSet_A32 then
if ConditionPassed() then

EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,4];
if wback then R[n] = offset_addr;
if t == 15 then

if address<1:0> == '00' then
LoadWritePC(data);

else
UNPREDICTABLE;

else
R[t] = data;

else
if ConditionPassed() then

EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
offset_addr = (R[n] + offset);
address = offset_addr;
data = MemU[address,4];
if t == 15 then

if address<1:0> == '00' then
LoadWritePC(data);

else
UNPREDICTABLE;

else
R[t] = data;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (register) Page 171

LDRB (immediate)

Load Register Byte (immediate) calculates an address from a base register value and an immediate offset, loads a byte
from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed, or pre-
indexed addressing. For information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 0 P U 1 W 1 != 1111 Rt imm12
cond Rn

Offset (P == 1 && W == 0)

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

LDRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRB (literal)";
if P == '0' && W == '1' then SEE "LDRBT";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 imm5 Rn Rt

T1

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
index = TRUE; add = TRUE; wback = FALSE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 0 1 != 1111 != 1111 imm12
Rn Rt

LDRB (immediate) Page 172

T2

LDRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // (<Rt>, <Rn>, <imm> can be represented in T1)

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rt == '1111' then SEE "PLD";
if Rn == '1111' then SEE "LDRB (literal)";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
// Armv8-A removes UNPREDICTABLE for R13

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 != 1111 Rt 1 P U W imm8
Rn

Offset (Rt != 1111 && P == 1 && U == 0 && W == 0)

LDRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W == 1)

LDRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLD, PLDW (immediate)";
if Rn == '1111' then SEE "LDRB (literal)";
if P == '1' && U == '1' && W == '0' then SEE "LDRBT";
if P == '0' && W == '0' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC use
see LDRB (literal).
For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

LDRB (immediate) Page 173

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if
omitted, and encoded in the "imm12" field.
For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting to
0 and encoded in the "imm5" field.
For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.
For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm8" field.

Operation

if CurrentInstrSet() == InstrSet_A32 then
if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
R[t] = ZeroExtend(MemU[address,1], 32);
if wback then R[n] = offset_addr;

else
if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
R[t] = ZeroExtend(MemU[address,1], 32);
if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (immediate) Page 174

LDRB (literal)

Load Register Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte from
memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses see
Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 0 P U 1 W 1 1 1 1 1 Rt imm12
cond

A1 (!(P == 0 && W == 1))

LDRB{<c>}{<q>} <Rt>, <label> // (Normal form)

LDRB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' && W == '1' then SEE "LDRBT";
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32);
add = (U == '1'); wback = (P == '0') || (W == '1');
if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: wback = FALSE;.
• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing

mode as described in LDRB (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 0 1 1 1 1 1 != 1111 imm12
Rt

T1

LDRB{<c>}{<q>} <Rt>, <label> // (Preferred syntax)

LDRB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)

if Rt == '1111' then SEE "PLD";
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

LDRB (literal) Page 175

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the
offset are -4095 to 4095.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if
omitted, and encoded in the "imm12" field.
For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
R[t] = ZeroExtend(MemU[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (literal) Page 176

LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can
optionally be shifted. For information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 P U 1 W 1 Rn Rt imm5 stype 0 Rm
cond

Offset (P == 1 && W == 0)

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed (P == 0 && W == 0)

LDRB{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed (P == 1 && W == 1)

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

if P == '0' && W == '1' then SEE "LDRBT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 0 Rm Rn Rt

T1

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 != 1111 != 1111 0 0 0 0 0 0 imm2 Rm
Rn Rt

LDRB (register) Page 177

T2

LDRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)

LDRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rt == '1111' then SEE "PLD";
if Rn == '1111' then SEE "LDRB (literal)";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in
the offset variant.
For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U +/-
0 -
1 +

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is
encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
R[t] = ZeroExtend(MemU[address,1],32);
if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (register) Page 178

LDRBT

Load Register Byte Unprivileged loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a
register. For information about memory accesses see Memory accesses.
The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually
running in User mode.
LDRBT is UNPREDICTABLE in Hyp mode.
The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.
The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 0 0 U 1 1 1 Rn Rt imm12
cond

A1

LDRBT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in

Using R15.
• The instruction uses immediate offset addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 U 1 1 1 Rn Rt imm5 stype 0 Rm
cond

A2

LDRBT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(stype, imm5);
bits(32) imm32 = bits(32) UNKNOWN;
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

LDRBT Page 179

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 != 1111 Rt 1 1 1 0 imm8
Rn

T1

LDRBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDRB (literal)";
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.
For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if
omitted and encoded in “U”:

U +/-
0 -
1 +

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in “U”:

U +/-
0 -
1 +

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if
omitted, and encoded in the "imm12" field.
For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to
0 and encoded in the "imm8" field.

LDRBT Page 180

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
R[t] = ZeroExtend(MemU_unpriv[address,1],32);
if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as LDRB (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRBT Page 181

LDRD (immediate)

Load Register Dual (immediate) calculates an address from a base register value and an immediate offset, loads two
words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 1 W 0 != 1111 Rt imm4H 1 1 0 1 imm4L
cond Rn

Offset (P == 1 && W == 0)

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRD (literal)";
if Rt<0> == '1' then UNPREDICTABLE;
t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
if P == '0' && W == '1' then UNPREDICTABLE;
if wback && (n == t || n == t2) then UNPREDICTABLE;
if t2 == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If P == '0' && W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: t<0> = '0'.
• The instruction executes with the additional decode: t2 = t.
• The instruction executes as described, with no change to its behavior and no additional side-effects. This does

not apply when Rt == '1111'.

T1

LDRD (immediate) Page 182

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 W 1 != 1111 Rt Rt2 imm8
Rn

Offset (P == 1 && W == 0)

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 1)

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

if P == '0' && W == '0' then SEE "Related encodings";
if Rn == '1111' then SEE "LDRD (literal)";
t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if wback && (n == t || n == t2) then UNPREDICTABLE;
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The load instruction executes but the destination register takes an UNKNOWN value.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.
Related encodings: Load/store dual, load/store exclusive, table branch.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. This
register must be even-numbered and not R14.
For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. This register must be
<R(t+1)>.
For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRD (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

LDRD (immediate) Page 183

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is the unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020,
defaulting to 0 if omitted, and encoded in the "imm8" field as <imm>/4.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
if IsAligned(address, 8) then

data = MemA[address,8];
if BigEndian(AccessType_GPR) then

R[t] = data<63:32>;
R[t2] = data<31:0>;

else
R[t] = data<31:0>;
R[t2] = data<63:32>;

else
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];

if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRD (immediate) Page 184

LDRD (literal)

Load Register Dual (literal) calculates an address from the PC value and an immediate offset, loads two words from
memory, and writes them to two registers. For information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 (1) U 1 (0) 0 1 1 1 1 Rt imm4H 1 1 0 1 imm4L
cond

A1

LDRD{<c>}{<q>} <Rt>, <Rt2>, <label> // (Normal form)

LDRD{<c>}{<q>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // (Alternative form)

if Rt<0> == '1' then UNPREDICTABLE;
t = UInt(Rt); t2 = t+1; imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == '1');
if t2 == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: t<0> = '0';.
• The instruction executes with the additional decode: t2 = t;.
• The instruction executes as described, with no change to its behavior and no additional side-effects. This does

not apply when Rt == '1111'.

If P == '0' || W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as if P == 1 and W == 0.'

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 W 1 1 1 1 1 Rt Rt2 imm8

T1 (!(P == 0 && W == 0))

LDRD{<c>}{<q>} <Rt>, <Rt2>, <label> // (Normal form)

LDRD{<c>}{<q>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' && W == '0' then SEE "Related encodings";
t = UInt(Rt); t2 = UInt(Rt2);
imm32 = ZeroExtend(imm8:'00', 32); add = (U == '1');
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if W == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

LDRD (literal) Page 185

• The load instruction executes but the destination register takes an UNKNOWN value.

If W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses post-indexed addressing when P == '0' and uses pre-indexed addressing otherwise. The

instruction is handled as described in Using R15.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.
Related encodings: Load/Store dual, Load/Store-Exclusive, Load-Acquire/Store-Release, table branch.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. This
register must be even-numbered and not R14.
For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. This register must be
<R(t+1)>.
For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<label> For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.
For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are multiples of 4 in the range -1020 to 1020.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is the optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting
to 0 and encoded in the "imm8" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

LDRD (literal) Page 186

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
if IsAligned(address, 8) then

data = MemA[address,8];
if BigEndian(AccessType_GPR) then

R[t] = data<63:32>;
R[t2] = data<31:0>;

else
R[t] = data<31:0>;
R[t2] = data<63:32>;

else
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRD (literal) Page 187

LDRD (register)

Load Register Dual (register) calculates an address from a base register value and a register offset, loads two words
from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 0 W 0 Rn Rt (0) (0) (0) (0) 1 1 0 1 Rm
cond

Offset (P == 1 && W == 0)

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]

Post-indexed (P == 0 && W == 0)

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], {+/-}<Rm>

Pre-indexed (P == 1 && W == 1)

LDRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]!

if Rt<0> == '1' then UNPREDICTABLE;
t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
if P == '0' && W == '1' then UNPREDICTABLE;
if t2 == 15 || m == 15 || m == t || m == t2 then UNPREDICTABLE;
if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

If P == '0' && W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

If m == t || m == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction loads register Rm with an UNKNOWN value.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: t<0> = '0'.
• The instruction executes with the additional decode: t2 = t.
• The instruction executes as described, with no change to its behavior and no additional side-effects. This does

not apply when Rt == '1111'.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

LDRD (register) Page 188

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must be
even-numbered and not R14.

<Rt2> Is the second general-purpose register to be transferred. This register must be <R(t+1)>.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U +/-
0 -
1 +

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
address = if index then offset_addr else R[n];
if IsAligned(address, 8) then

data = MemA[address,8];
if BigEndian(AccessType_GPR) then

R[t] = data<63:32>;
R[t2] = data<31:0>;

else
R[t] = data<31:0>;
R[t2] = data<63:32>;

else
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];

if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRD (register) Page 189

LDREX

Load Register Exclusive calculates an address from a base register value and an immediate offset, loads a word from
memory, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 0 1 Rn Rt (1) (1) 1 1 1 0 0 1 (1) (1) (1) (1)
cond

A1

LDREX{<c>}{<q>} <Rt>, [<Rn> {, {#}<imm>}]

t = UInt(Rt); n = UInt(Rn); imm32 = Zeros(32); // Zero offset
if t == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 1 0 1 Rn Rt (1) (1) (1) (1) imm8

T1

LDREX{<c>}{<q>} <Rt>, [<Rn> {, #<imm>}]

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<imm> For encoding A1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can
only be 0 or omitted.
For encoding T1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can
be omitted, meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
AArch32.SetExclusiveMonitors(address,4);
R[t] = MemA[address,4];

LDREX Page 190

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDREX Page 191

LDREXB

Load Register Exclusive Byte derives an address from a base register value, loads a byte from memory, zero-extends it
to form a 32-bit word, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 0 1 Rn Rt (1) (1) 1 1 1 0 0 1 (1) (1) (1) (1)
cond

A1

LDREXB{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 0 (1) (1) (1) (1)

T1

LDREXB{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
AArch32.SetExclusiveMonitors(address,1);
R[t] = ZeroExtend(MemA[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

LDREXB Page 192

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDREXB Page 193

LDREXD

Load Register Exclusive Doubleword derives an address from a base register value, loads a 64-bit doubleword from
memory, writes it to two registers and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 1 Rn Rt (1) (1) 1 1 1 0 0 1 (1) (1) (1) (1)
cond

A1

LDREXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]

t = UInt(Rt); t2 = t + 1; n = UInt(Rn);
if Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: t<0> = '0'.
• The instruction executes with the additional decode: t2 = t.
• The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction is handled as described in Using R15.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt Rt2 0 1 1 1 (1) (1) (1) (1)

T1

LDREXD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>]

t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
if t == 15 || t2 == 15 || t == t2 || n == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The load instruction executes but the destination register takes an UNKNOWN value.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

LDREXD Page 194

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. <Rt>
must be even-numbered and not R14.
For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.
For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
AArch32.SetExclusiveMonitors(address,8);
value = MemA[address,8];

// Extract words from 64-bit loaded value such that R[t] is
// loaded from address and R[t2] from address+4.
R[t] = if BigEndian(AccessType_GPR) then value<63:32> else value<31:0>;
R[t2] = if BigEndian(AccessType_GPR) then value<31:0> else value<63:32>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDREXD Page 195

LDREXH

Load Register Exclusive Halfword derives an address from a base register value, loads a halfword from memory, zero-
extends it to form a 32-bit word, writes it to a register and:

• If the address has the Shared Memory attribute, marks the physical address as exclusive access for the
executing PE in a global monitor.

• Causes the executing PE to indicate an active exclusive access in the local monitor.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 1 1 Rn Rt (1) (1) 1 1 1 0 0 1 (1) (1) (1) (1)
cond

A1

LDREXH{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 1 (1) (1) (1) (1)

T1

LDREXH{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
AArch32.SetExclusiveMonitors(address,2);
R[t] = ZeroExtend(MemA[address,2], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

LDREXH Page 196

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDREXH Page 197

LDRH (immediate)

Load Register Halfword (immediate) calculates an address from a base register value and an immediate offset, loads a
halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed,
or pre-indexed addressing. For information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 1 W 1 != 1111 Rt imm4H 1 0 1 1 imm4L
cond Rn

Offset (P == 1 && W == 0)

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

LDRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRH (literal)";
if P == '0' && W == '1' then SEE "LDRHT";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 imm5 Rn Rt

T1

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
index = TRUE; add = TRUE; wback = FALSE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 1 1 != 1111 != 1111 imm12
Rn Rt

LDRH (immediate) Page 198

T2

LDRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // (<Rt>, <Rn>, <imm> can be represented in T1)

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rt == '1111' then SEE "PLD (immediate)";
if Rn == '1111' then SEE "LDRH (literal)";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
// Armv8-A removes UNPREDICTABLE for R13

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 != 1111 Rt 1 P U W imm8
Rn

Offset (Rt != 1111 && P == 1 && U == 0 && W == 0)

LDRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W == 1)

LDRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRH (literal)";
if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLDW (immediate)";
if P == '1' && U == '1' && W == '0' then SEE "LDRHT";
if P == '0' && W == '0' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC use
see LDRH (literal).
For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

LDRH (immediate) Page 199

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2, in the range 0
to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.
For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.
For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm8" field.

Operation

if CurrentInstrSet() == InstrSet_A32 then
if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
R[t] = ZeroExtend(data, 32);

else
if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (immediate) Page 200

LDRH (literal)

Load Register Halfword (literal) calculates an address from the PC value and an immediate offset, loads a halfword
from memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses
see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 1 W 1 1 1 1 1 Rt imm4H 1 0 1 1 imm4L
cond

A1 (!(P == 0 && W == 1))

LDRH{<c>}{<q>} <Rt>, <label> // (Normal form)

LDRH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' && W == '1' then SEE "LDRHT";
t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32);
add = (U == '1'); wback = (P == '0') || (W == '1');
if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: wback = FALSE;.
• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing

mode as described in LDRH (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 1 1 1 1 1 1 != 1111 imm12
Rt

T1

LDRH{<c>}{<q>} <Rt>, <label> // (Preferred syntax)

LDRH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)

if Rt == '1111' then SEE "PLD (literal)";
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

LDRH (literal) Page 201

<label> For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.
For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,2];
R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (literal) Page 202

LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads a
halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can
be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 0 W 1 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm
cond

Offset (P == 1 && W == 0)

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed (P == 0 && W == 0)

LDRH{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed (P == 1 && W == 1)

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]!

if P == '0' && W == '1' then SEE "LDRHT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
(shift_t, shift_n) = (SRType_LSL, 0);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 1 Rm Rn Rt

T1

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 != 1111 != 1111 0 0 0 0 0 0 imm2 Rm
Rn Rt

LDRH (register) Page 203

T2

LDRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)

LDRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rn == '1111' then SEE "LDRH (literal)";
if Rt == '1111' then SEE "PLDW (register)";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in
the offset variant.
For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U +/-
0 -
1 +

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is
encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (register) Page 204

LDRHT

Load Register Halfword Unprivileged loads a halfword from memory, zero-extends it to form a 32-bit word, and writes
it to a register. For information about memory accesses see Memory accesses.
The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually
running in User mode.
LDRHT is UNPREDICTABLE in Hyp mode.
The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.
The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 U 1 1 1 Rn Rt imm4H 1 0 1 1 imm4L
cond

A1

LDRHT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
integer m = integer UNKNOWN;
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in

Using R15.
• The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset

addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 U 0 1 1 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm
cond

A2

LDRHT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
register_form = TRUE;
bits(32) imm32 = bits(32) UNKNOWN;
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

LDRHT Page 205

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 != 1111 Rt 1 1 1 0 imm8
Rn

T1

LDRHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDRH (literal)";
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
integer m = integer UNKNOWN;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if
omitted and encoded in “U”:

U +/-
0 -
1 +

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in “U”:

U +/-
0 -
1 +

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to
0 and encoded in the "imm8" field.

LDRHT Page 206

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
offset = if register_form then R[m] else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
data = MemU_unpriv[address,2];
if postindex then R[n] = offset_addr;
R[t] = ZeroExtend(data, 32);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as LDRH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRHT Page 207

LDRSB (immediate)

Load Register Signed Byte (immediate) calculates an address from a base register value and an immediate offset,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-
indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 1 W 1 != 1111 Rt imm4H 1 1 0 1 imm4L
cond Rn

Offset (P == 1 && W == 0)

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

LDRSB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRSB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRSB (literal)";
if P == '0' && W == '1' then SEE "LDRSBT";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 0 1 != 1111 != 1111 imm12
Rn Rt

T1

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rt == '1111' then SEE "PLI";
if Rn == '1111' then SEE "LDRSB (literal)";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
// Armv8-A removes UNPREDICTABLE for R13

T2

LDRSB (immediate) Page 208

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 != 1111 Rt 1 P U W imm8
Rn

Offset (Rt != 1111 && P == 1 && U == 0 && W == 0)

LDRSB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W == 1)

LDRSB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRSB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "PLI";
if Rn == '1111' then SEE "LDRSB (literal)";
if P == '1' && U == '1' && W == '0' then SEE "LDRSBT";
if P == '0' && W == '0' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSB (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.
For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm8" field.

LDRSB (immediate) Page 209

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
R[t] = SignExtend(MemU[address,1], 32);
if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (immediate) Page 210

LDRSB (literal)

Load Register Signed Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte from
memory, sign-extends it to form a 32-bit word, and writes it to a register. For information about memory accesses see
Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 1 W 1 1 1 1 1 Rt imm4H 1 1 0 1 imm4L
cond

A1 (!(P == 0 && W == 1))

LDRSB{<c>}{<q>} <Rt>, <label> // (Normal form)

LDRSB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' && W == '1' then SEE "LDRSBT";
t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32);
add = (U == '1'); wback = (P == '0') || (W == '1');
if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: wback = FALSE;.
• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing

mode as described in LDRSB (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 != 1111 imm12
Rt

T1

LDRSB{<c>}{<q>} <Rt>, <label> // (Preferred syntax)

LDRSB{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)

if Rt == '1111' then SEE "PLI";
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

LDRSB (literal) Page 211

<label> For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.
For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
R[t] = SignExtend(MemU[address,1], 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (literal) Page 212

LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register value
can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 0 W 1 Rn Rt (0) (0) (0) (0) 1 1 0 1 Rm
cond

Offset (P == 1 && W == 0)

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed (P == 0 && W == 0)

LDRSB{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed (P == 1 && W == 1)

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]!

if P == '0' && W == '1' then SEE "LDRSBT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
(shift_t, shift_n) = (SRType_LSL, 0);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 1 Rm Rn Rt

T1

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 != 1111 != 1111 0 0 0 0 0 0 imm2 Rm
Rn Rt

LDRSB (register) Page 213

T2

LDRSB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)

LDRSB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rt == '1111' then SEE "PLI";
if Rn == '1111' then SEE "LDRSB (literal)";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in
the offset variant.
For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U +/-
0 -
1 +

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is
encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
R[t] = SignExtend(MemU[address,1], 32);
if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (register) Page 214

LDRSBT

Load Register Signed Byte Unprivileged loads a byte from memory, sign-extends it to form a 32-bit word, and writes it
to a register. For information about memory accesses see Memory accesses.
The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually
running in User mode.
LDRSBT is UNPREDICTABLE in Hyp mode.
The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.
The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 U 1 1 1 Rn Rt imm4H 1 1 0 1 imm4L
cond

A1

LDRSBT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
integer m = integer UNKNOWN;
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in

Using R15.
• The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset

addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 U 0 1 1 Rn Rt (0) (0) (0) (0) 1 1 0 1 Rm
cond

A2

LDRSBT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
register_form = TRUE;
bits(32) imm32 = bits(32) UNKNOWN;
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

LDRSBT Page 215

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 != 1111 Rt 1 1 1 0 imm8
Rn

T1

LDRSBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDRSB (literal)";
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
integer m = integer UNKNOWN;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if
omitted and encoded in “U”:

U +/-
0 -
1 +

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in “U”:

U +/-
0 -
1 +

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to
0 and encoded in the "imm8" field.

LDRSBT Page 216

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
offset = if register_form then R[m] else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
R[t] = SignExtend(MemU_unpriv[address,1], 32);
if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as LDRSB (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSBT Page 217

LDRSH (immediate)

Load Register Signed Halfword (immediate) calculates an address from a base register value and an immediate offset,
loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-
indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 1 W 1 != 1111 Rt imm4H 1 1 1 1 imm4L
cond Rn

Offset (P == 1 && W == 0)

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

LDRSH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRSH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRSH (literal)";
if P == '0' && W == '1' then SEE "LDRSHT";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 1 1 != 1111 != 1111 imm12
Rn Rt

T1

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDRSH (literal)";
if Rt == '1111' then SEE "Related instructions";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
// Armv8-A removes UNPREDICTABLE for R13

T2

LDRSH (immediate) Page 218

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 != 1111 Rt 1 P U W imm8
Rn

Offset (Rt != 1111 && P == 1 && U == 0 && W == 0)

LDRSH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W == 1)

LDRSH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

LDRSH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRSH (literal)";
if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Related instructions";
if P == '1' && U == '1' && W == '0' then SEE "LDRSHT";
if P == '0' && W == '0' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if (t == 15 && W == '1') || (wback && n == t) then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such an instruction, the base
address might be corrupted so that the instruction cannot be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.
Related instructions: Load/store single.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSH (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.
For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm8" field.

LDRSH (immediate) Page 219

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSH (immediate) Page 220

LDRSH (literal)

Load Register Signed Halfword (literal) calculates an address from the PC value and an immediate offset, loads a
halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. For information about memory
accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 1 W 1 1 1 1 1 Rt imm4H 1 1 1 1 imm4L
cond

A1 (!(P == 0 && W == 1))

LDRSH{<c>}{<q>} <Rt>, <label> // (Normal form)

LDRSH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' && W == '1' then SEE "LDRSHT";
t = UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32);
add = (U == '1'); wback = (P == '0') || (W == '1');
if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: wback = FALSE;.
• The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing

mode as described in LDRSH (immediate). The instruction uses post-indexed addressing when P == '0' and
uses pre-indexed addressing otherwise. The instruction is handled as described in Using R15.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 1 1 1 1 1 1 != 1111 imm12
Rt

T1

LDRSH{<c>}{<q>} <Rt>, <label> // (Preferred syntax)

LDRSH{<c>}{<q>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)

if Rt == '1111' then SEE "Related instructions";
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.
Related instructions: Load, signed (literal).

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

LDRSH (literal) Page 221

<label> For encoding A1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Any value in the range -255 to 255 is permitted.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If
the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.
For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
Permitted values of the offset are -4095 to 4095.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,2];
R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSH (literal) Page 222

LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register value,
loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register
value can be shifted left by 0, 1, 2, or 3 bits. For information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 0 W 1 Rn Rt (0) (0) (0) (0) 1 1 1 1 Rm
cond

Offset (P == 1 && W == 0)

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed (P == 0 && W == 0)

LDRSH{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed (P == 1 && W == 1)

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]!

if P == '0' && W == '1' then SEE "LDRSHT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
(shift_t, shift_n) = (SRType_LSL, 0);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is <arm-defined-word>unknown</arm-defined-word>. In addition, if an exception occurs
during such as instruction, the base address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 Rm Rn Rt

T1

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 != 1111 != 1111 0 0 0 0 0 0 imm2 Rm
Rn Rt

LDRSH (register) Page 223

T2

LDRSH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)

LDRSH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rn == '1111' then SEE "LDRSH (literal)";
if Rt == '1111' then SEE "Related instructions";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.
Related instructions: Load/store, signed (register offset).

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in
the offset variant.
For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U +/-
0 -
1 +

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is
encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
R[t] = SignExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSH (register) Page 224

LDRSHT

Load Register Signed Halfword Unprivileged loads a halfword from memory, sign-extends it to form a 32-bit word, and
writes it to a register. For information about memory accesses see Memory accesses.
The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually
running in User mode.
LDRSHT is UNPREDICTABLE in Hyp mode.
The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.
The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 U 1 1 1 Rn Rt imm4H 1 1 1 1 imm4L
cond

A1

LDRSHT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
integer m = integer UNKNOWN;
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in

Using R15.
• The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset

addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 U 0 1 1 Rn Rt (0) (0) (0) (0) 1 1 1 1 Rm
cond

A2

LDRSHT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
register_form = TRUE;
bits(32) imm32 = bits(32) UNKNOWN;
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

LDRSHT Page 225

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 != 1111 Rt 1 1 1 0 imm8
Rn

T1

LDRSHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDRSH (literal)";
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
integer m = integer UNKNOWN;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if
omitted and encoded in “U”:

U +/-
0 -
1 +

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in “U”:

U +/-
0 -
1 +

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to
0 and encoded in the "imm8" field.

LDRSHT Page 226

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
offset = if register_form then R[m] else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
data = MemU_unpriv[address,2];
if postindex then R[n] = offset_addr;
R[t] = SignExtend(data, 32);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as LDRSH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSHT Page 227

LDRT

Load Register Unprivileged loads a word from memory, and writes it to a register. For information about memory
accesses see Memory accesses.
The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually
running in User mode.
LDRT is UNPREDICTABLE in Hyp mode.
The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.
The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 0 0 U 0 1 1 Rn Rt imm12
cond

A1

LDRT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in

Using R15.
• The instruction is treated as if bit[24] == '1' and bit[21] == '0'. The instruction uses immediate offset

addressing with the base register as PC, without writeback.

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 U 0 1 1 Rn Rt imm5 stype 0 Rm
cond

A2

LDRT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(stype, imm5);
bits(32) imm32 = bits(32) UNKNOWN;
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

LDRT Page 228

CONSTRAINED UNPREDICTABLE behavior

If n == t && n != 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs all of the loads using the specified addressing mode and the content of the register

that is written back is UNKNOWN. In addition, if an exception occurs during such as instruction, the base
address might be corrupted so that the instruction cannot be repeated.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 != 1111 Rt 1 1 1 0 imm8
Rn

T1

LDRT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDR (literal)";
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.
For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if
omitted and encoded in “U”:

U +/-
0 -
1 +

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in “U”:

U +/-
0 -
1 +

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if
omitted, and encoded in the "imm12" field.
For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to
0 and encoded in the "imm8" field.

LDRT Page 229

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
data = MemU_unpriv[address,4];
if postindex then R[n] = offset_addr;
R[t] = data;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as LDR (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRT Page 230

LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and writes
the result to the destination register.

This is an alias of MOV, MOVS (register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).
• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd != 00000 0 0 0 Rm
cond S imm5 stype

MOV, shift or rotate by value

LSL{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 != 00000 Rm Rd
op imm5

T2

LSL<c>{<q>} {<Rd>,} <Rm>, #<imm> // (Inside IT block)

is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when InITBlock().

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 0 0 Rm
S stype

MOV, shift or rotate by value

LSL<c>.W {<Rd>,} <Rm>, #<imm> // (Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)

LSL{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

LSL (immediate) Page 231

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used, the instruction is a branch to the address
calculated by the operation. This is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.
For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.
For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: is the shift amount, in the range 0 to 31, encoded in the "imm5" field as <imm>
modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field as <amount>
modulo 32.
For encoding T3: is the shift amount, in the range 0 to 31, encoded in the "imm3:imm2" field as <imm>
modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (immediate) Page 232

LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The variable number of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd Rs 0 0 0 1 Rm
cond S stype

Not flag setting

LSL{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 0 Rs Rdm
op

Logical shift left

LSL<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // (Inside IT block)

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when InITBlock().

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs
stype S

Not flag setting

LSL<c>.W {<Rd>,} <Rm>, <Rs> // (Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)

LSL{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

LSL (register) Page 233

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSL (register) Page 234

LSLS (immediate)

Logical Shift Left, setting flags (immediate) shifts a register value left by an immediate number of bits, shifting in
zeros, and writes the result to the destination register.
If the destination register is not the PC, this instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32

state.
• The instruction is UNDEFINED in Hyp mode.
• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This is an alias of MOV, MOVS (register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).
• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd != 00000 0 0 0 Rm
cond S imm5 stype

MOVS, shift or rotate by value

LSLS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 != 00000 Rm Rd
op imm5

T2

LSLS{<q>} {<Rd>,} <Rm>, #<imm> // (Outside IT block)

is equivalent to

MOVS{<q>} <Rd>, <Rm>, LSL #<imm>

and is the preferred disassembly when !InITBlock().

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 0 0 Rm
S stype

LSLS (immediate) Page 235

MOVS, shift or rotate by value

LSLS.W {<Rd>,} <Rm>, #<imm> // (Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)

LSLS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL #<imm>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used, the instruction performs an exception
return, that restores PSTATE from SPSR_<current_mode>.
For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.
For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: is the shift amount, in the range 0 to 31, encoded in the "imm5" field as <imm>
modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31, encoded in the "imm5" field as <amount>
modulo 32.
For encoding T3: is the shift amount, in the range 0 to 31, encoded in the "imm3:imm2" field as <imm>
modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSLS (immediate) Page 236

LSLS (register)

Logical Shift Left, setting flags (register) shifts a register value left by a variable number of bits, shifting in zeros,
writes the result to the destination register, and updates the condition flags based on the result. The variable number
of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd Rs 0 0 0 1 Rm
cond S stype

Flag setting

LSLS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 0 Rs Rdm
op

Logical shift left

LSLS{<q>} {<Rdm>,} <Rdm>, <Rs> // (Outside IT block)

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs>

and is the preferred disassembly when !InITBlock().

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs
stype S

Flag setting

LSLS.W {<Rd>,} <Rm>, <Rs> // (Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)

LSLS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

LSLS (register) Page 237

MOVS{<c>}{<q>} <Rd>, <Rm>, LSL <Rs>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSLS (register) Page 238

LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and
writes the result to the destination register.

This is an alias of MOV, MOVS (register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).
• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd imm5 0 1 0 Rm
cond S stype

MOV, shift or rotate by value

LSR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 imm5 Rm Rd
op

T2

LSR<c>{<q>} {<Rd>,} <Rm>, #<imm> // (Inside IT block)

is equivalent to

MOV<c>{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when InITBlock().

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 0 1 Rm
S stype

MOV, shift or rotate by value

LSR<c>.W {<Rd>,} <Rm>, #<imm> // (Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)

LSR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

LSR (immediate) Page 239

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used, the instruction is a branch to the address
calculated by the operation. This is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.
For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.
For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as
<imm> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as <imm>
modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (immediate) Page 240

LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The variable number of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd Rs 0 0 1 1 Rm
cond S stype

Not flag setting

LSR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 1 Rs Rdm
op

Logical shift right

LSR<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // (Inside IT block)

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when InITBlock().

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs
stype S

Not flag setting

LSR<c>.W {<Rd>,} <Rm>, <Rs> // (Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)

LSR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

LSR (register) Page 241

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSR (register) Page 242

LSRS (immediate)

Logical Shift Right, setting flags (immediate) shifts a register value right by an immediate number of bits, shifting in
zeros, and writes the result to the destination register.
If the destination register is not the PC, this instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32

state.
• The instruction is UNDEFINED in Hyp mode.
• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This is an alias of MOV, MOVS (register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).
• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd imm5 0 1 0 Rm
cond S stype

MOVS, shift or rotate by value

LSRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 imm5 Rm Rd
op

T2

LSRS{<q>} {<Rd>,} <Rm>, #<imm> // (Outside IT block)

is equivalent to

MOVS{<q>} <Rd>, <Rm>, LSR #<imm>

and is the preferred disassembly when !InITBlock().

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 0 1 Rm
S stype

LSRS (immediate) Page 243

MOVS, shift or rotate by value

LSRS.W {<Rd>,} <Rm>, #<imm> // (Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)

LSRS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR #<imm>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used, the instruction performs an exception
return, that restores PSTATE from SPSR_<current_mode>.
For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.
For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as
<imm> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as <imm>
modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSRS (immediate) Page 244

LSRS (register)

Logical Shift Right, setting flags (register) shifts a register value right by an immediate number of bits, shifting in
zeros, writes the result to the destination register, and updates the condition flags based on the result. The variable
number of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd Rs 0 0 1 1 Rm
cond S stype

Flag setting

LSRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 1 Rs Rdm
op

Logical shift right

LSRS{<q>} {<Rdm>,} <Rdm>, <Rs> // (Outside IT block)

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs>

and is the preferred disassembly when !InITBlock().

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs
stype S

Flag setting

LSRS.W {<Rd>,} <Rm>, <Rs> // (Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)

LSRS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

LSRS (register) Page 245

MOVS{<c>}{<q>} <Rd>, <Rm>, LSR <Rs>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LSRS (register) Page 246

MCR

Move to System register from general-purpose register or execute a System instruction. This instruction copies the
value of a general-purpose register to a System register, or executes a System instruction.
The System register and System instruction descriptions identify valid encodings for this instruction. Other encodings
are UNDEFINED. For more information see About the AArch32 System register interface and General behavior of
System registers.
In an implementation that includes EL2, MCR accesses to System registers can be trapped to Hyp mode, meaning that
an attempt to execute an MCR instruction in a Non-secure mode other than Hyp mode, that would be permitted in the
absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2 configurable
instruction enables, disables, and traps.
Because of the range of possible traps to Hyp mode, the MCR pseudocode does not show these possible traps.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 opc1 0 CRn Rt 1 1 1 coproc<0> opc2 1 CRm
cond coproc<3:1>

A1

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 0 CRn Rt 1 1 1 coproc<0> opc2 1 CRm
coproc<3:1>

T1

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<coproc> Is the System register encoding space, encoded in “coproc<0>”:

coproc<0> <coproc>
0 p14
1 p15

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to7, encoded in the
"opc1" field.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<CRn> Is the CRn parameter within the System register encoding space, in the range c0 to c15, encoded in the
"CRn" field.

MCR Page 247

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

<opc2> Is the opc2 parameter within the System register encoding space, in the range 0 to7, encoded in the
"opc2" field.

The possible values of { <coproc>, <opc1>, <CRn>, <CRm>, <opc2> } encode the entire System register and
System instruction encoding space. Not all of this space is allocated, and the System register and System instruction
descriptions identify the allocated encodings.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
AArch32.SysRegWrite(cp, ThisInstr(), t);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MCR Page 248

MCRR

Move to System register from two general-purpose registers. This instruction copies the values of two general-purpose
registers to a System register.
The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For
more information see About the AArch32 System register interface and General behavior of System registers.
In an implementation that includes EL2, MCRR accesses to System registers can be trapped to Hyp mode, meaning that
an attempt to execute an MCRR instruction in a Non-secure mode other than Hyp mode, that would be permitted in the
absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2 configurable
instruction enables, disables, and traps.
Because of the range of possible traps to Hyp mode, the MCRR pseudocode does not show these possible traps.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 0 0 1 0 0 Rt2 Rt 1 1 1 coproc<0> opc1 CRm
cond coproc<3:1>

A1

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<0> == '0' then 14 else 15;
if t == 15 || t2 == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 0 Rt2 Rt 1 1 1 coproc<0> opc1 CRm
coproc<3:1>

T1

MCRR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<0> == '0' then 14 else 15;
if t == 15 || t2 == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<coproc> Is the System register encoding space, encoded in “coproc<0>”:

coproc<0> <coproc>
0 p14
1 p15

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to 15, encoded in the
"opc1" field.

<Rt> Is the first general-purpose register that is transferred into, encoded in the "Rt" field.

<Rt2> Is the second general-purpose register that is transferred into, encoded in the "Rt2" field.

MCRR Page 249

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

The possible values of { <coproc>, <opc1>, <CRm> } encode the entire System register encoding space. Not all of
this space is allocated, and the System register descriptions identify the allocated encodings.
For the permitted uses of these instructions, as described in this manual, <Rt2> transfers bits[63:32] of the selected
System register, while <Rt> transfers bits[31:0].

Operation

if ConditionPassed() then
EncodingSpecificOperations();
AArch32.SysRegWrite64(cp, ThisInstr(), t, t2);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MCRR Page 250

MLA, MLAS

Multiply Accumulate multiplies two register values, and adds a third register value. The least significant 32 bits of the
result are written to the destination register. These 32 bits do not depend on whether the source register values are
considered to be signed values or unsigned values.
In an A32 instruction, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 0 0 1 S Rd Ra Rm 1 0 0 1 Rn
cond

Flag setting (S == 1)

MLAS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

Not flag setting (S == 0)

MLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = (S == '1');
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn != 1111 Rd 0 0 0 0 Rm
Ra

T1

MLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "MUL";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = FALSE;
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

MLA, MLAS Page 251

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
result = operand1 * operand2 + addend;
R[d] = result<31:0>;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result<31:0>);
// PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLA, MLAS Page 252

MLS

Multiply and Subtract multiplies two register values, and subtracts the product from a third register value. The least
significant 32 bits of the result are written to the destination register. These 32 bits do not depend on whether the
source register values are considered to be signed values or unsigned values.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 0 1 1 0 Rd Ra Rm 1 0 0 1 Rn
cond

A1

MLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn Ra Rd 0 0 0 1 Rm

T1

MLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the minuend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
result = addend - operand1 * operand2;
R[d] = result<31:0>;

MLS Page 253

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MLS Page 254

MOV, MOVS (immediate)

Move (immediate) writes an immediate value to the destination register.
If the destination register is not the PC, the MOVS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The MOV variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The MOVS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 1 0 1 S (0) (0) (0) (0) Rd imm12
cond

MOV (S == 0)

MOV{<c>}{<q>} <Rd>, #<const>

MOVS (S == 1)

MOVS{<c>}{<q>} <Rd>, #<const>

d = UInt(Rd); setflags = (S == '1'); (imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 0 0 imm4 Rd imm12
cond

A2

MOV{<c>}{<q>} <Rd>, #<imm16> // (<imm16> can not be represented in A1)

MOVW{<c>}{<q>} <Rd>, #<imm16> // (<imm16> can be represented in A1)

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:imm12, 32);
bit carry = bit UNKNOWN;
if d == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 Rd imm8

MOV, MOVS (immediate) Page 255

T1

MOV<c>{<q>} <Rd>, #<imm8> // (Inside IT block)

MOVS{<q>} <Rd>, #<imm8> // (Outside IT block)

d = UInt(Rd); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = PSTATE.C;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 0 S 1 1 1 1 0 imm3 Rd imm8

MOV (S == 0)

MOV<c>.W <Rd>, #<const> // (Inside IT block, and <Rd>, <const> can be represented in T1)

MOV{<c>}{<q>} <Rd>, #<const>

MOVS (S == 1)

MOVS.W <Rd>, #<const> // (Outside IT block, and <Rd>, <const> can be represented in T1)

MOVS{<c>}{<q>} <Rd>, #<const>

d = UInt(Rd); setflags = (S == '1'); (imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 1 0 0 imm4 0 imm3 Rd imm8

T3

MOV{<c>}{<q>} <Rd>, #<imm16> // (<imm16> cannot be represented in T1 or T2)

MOVW{<c>}{<q>} <Rd>, #<imm16> // (<imm16> can be represented in T1 or T2)

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
bit carry = bit UNKNOWN;
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used:

• For the MOV variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the MOVS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding A2, T1, T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<imm16> For encoding A2: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field.

MOV, MOVS (immediate) Page 256

For encoding T3: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T2: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = imm32;
if d == 15 then // Can only occur for encoding A1

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV, MOVS (immediate) Page 257

MOV, MOVS (register)

Move (register) copies a value from a register to the destination register.
If the destination register is not the PC, the MOVS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The MOV variant of the instruction is a branch. In the T32 instruction set (encoding T1) this is a simple
branch, and in the A32 instruction set it is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.

• The MOVS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This instruction is used by the aliases ASRS (immediate), ASR (immediate), LSLS (immediate), LSL (immediate), LSRS
(immediate), LSR (immediate), RORS (immediate), ROR (immediate), RRXS, and RRX.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd imm5 stype 0 Rm
cond

MOV, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

MOV, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

MOV{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

MOVS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 D Rm Rd

T1

MOV{<c>}{<q>} <Rd>, <Rm>

d = UInt(D:Rd); m = UInt(Rm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

MOV, MOVS (register) Page 258

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 != 11 imm5 Rm Rd
op

T2

MOV<c>{<q>} <Rd>, <Rm> {, <shift> #<amount>} // (Inside IT block)

MOVS{<q>} <Rd>, <Rm> {, <shift> #<amount>} // (Outside IT block)

d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = DecodeImmShift(op, imm5);
if op == '00' && imm5 == '00000' && InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If op == '00' && imm5 == '00000' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passed its condition code check.
• The instruction executes as NOP, as if it failed its condition code check.
• The instruction executes as MOV Rd, Rm.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) imm3 Rd imm2 stype Rm

MOV, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

MOV, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

MOV{<c>}.W <Rd>, <Rm> {, LSL #0} // (<Rd>, <Rm> can be represented in T1)

MOV<c>.W <Rd>, <Rm> {, <shift> #<amount>} // (Inside IT block, and <Rd>, <Rm>, <shift>, <amount> can be represented in T2)

MOV{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MOVS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

MOVS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

MOVS.W <Rd>, <Rm> {, <shift> #<amount>} // (Outside IT block, and <Rd>, <Rm>, <shift>, <amount> can be represented in T1 or T2)

MOVS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

MOV, MOVS (register) Page 259

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If the PC is
used:

• For the MOV variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC. Arm deprecates use of the instruction if <Rn> is the
PC.

• For the MOVS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of the instruction if <Rn> is not the LR, or
if the optional shift or RRX argument is specified.

For encoding T1: is the general-purpose destination register, encoded in the "D:Rd" field. If the PC is
used:

• The instruction causes a branch to the address moved to the PC. This is a simple branch, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

• The instruction must either be outside an IT block or the last instruction of an IT block.
For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field. The PC can
be used. Arm deprecates use of the instruction if <Rd> is the PC.
For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<shift> For encoding A1 and T3: is the type of shift to be applied to the source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

For encoding T2: is the type of shift to be applied to the source register, encoded in “op”:

op <shift>
00 LSL
01 LSR
10 ASR

<amount> For encoding A1: is the shift amount, in the range 0 to 31 (when <shift> = LSL), or 1 to 31 (when
<shift> = ROR) or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm5" field as <amount>
modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.
For encoding T3: is the shift amount, in the range 0 to 31 (when <shift> = LSL) or 1 to 31 (when
<shift> = ROR), or 1 to 32 (when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as
<amount> modulo 32.

Alias Conditions

Alias Of variant Is preferred when
ASRS
(immediate)

T3 (MOVS, shift
or rotate by
value), A1
(MOVS, shift or
rotate by value)

S == '1' && stype == '10'

ASRS
(immediate)

T2 op == '10' && !InITBlock()

ASR
(immediate)

T3 (MOV, shift
or rotate by
value), A1 (MOV,
shift or rotate by
value)

S == '0' && stype == '10'

ASR
(immediate)

T2 op == '10' && InITBlock()

MOV, MOVS (register) Page 260

Alias Of variant Is preferred when
LSLS
(immediate)

T3 (MOVS, shift
or rotate by
value)

S == '1' && imm3:Rd:imm2 != '000xxxx00' && stype == '00'

LSLS
(immediate)

A1 (MOVS, shift
or rotate by
value)

S == '1' && imm5 != '00000' && stype == '00'

LSLS
(immediate)

T2 op == '00' && imm5 != '00000' && !InITBlock()

LSL
(immediate)

T3 (MOV, shift
or rotate by
value)

S == '0' && imm3:Rd:imm2 != '000xxxx00' && stype == '00'

LSL
(immediate)

A1 (MOV, shift
or rotate by
value)

S == '0' && imm5 != '00000' && stype == '00'

LSL
(immediate)

T2 op == '00' && imm5 != '00000' && InITBlock()

LSRS
(immediate)

T3 (MOVS, shift
or rotate by
value), A1
(MOVS, shift or
rotate by value)

S == '1' && stype == '01'

LSRS
(immediate)

T2 op == '01' && !InITBlock()

LSR
(immediate)

T3 (MOV, shift
or rotate by
value), A1 (MOV,
shift or rotate by
value)

S == '0' && stype == '01'

LSR
(immediate)

T2 op == '01' && InITBlock()

RORS
(immediate)

T3 (MOVS, shift
or rotate by
value)

S == '1' && imm3:Rd:imm2 != '000xxxx00' && stype == '11'

RORS
(immediate)

A1 (MOVS, shift
or rotate by
value)

S == '1' && imm5 != '00000' && stype == '11'

ROR
(immediate)

T3 (MOV, shift
or rotate by
value)

S == '0' && imm3:Rd:imm2 != '000xxxx00' && stype == '11'

ROR
(immediate)

A1 (MOV, shift
or rotate by
value)

S == '0' && imm5 != '00000' && stype == '11'

RRXS T3 (MOVS,
rotate right with
extend)

S == '1' && imm3 == '000' && imm2 == '00' && stype == '11'

RRXS A1 (MOVS,
rotate right with
extend)

S == '1' && imm5 == '00000' && stype == '11'

RRX T3 (MOV, rotate
right with
extend)

S == '0' && imm3 == '000' && imm2 == '00' && stype == '11'

RRX A1 (MOV, rotate
right with
extend)

S == '0' && imm5 == '00000' && stype == '11'

MOV, MOVS (register) Page 261

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = shifted;
if d == 15 then

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV, MOVS (register) Page 262

MOV, MOVS (register-shifted register)

Move (register-shifted register) copies a register-shifted register value to the destination register. It can optionally
update the condition flags based on the value.
This instruction is used by the aliases ASRS (register), ASR (register), LSLS (register), LSL (register), LSRS (register),
LSR (register), RORS (register), and ROR (register).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 S (0) (0) (0) (0) Rd Rs 0 stype 1 Rm
cond

Flag setting (S == 1)

MOVS{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

MOV{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || m == 15 || s == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 x x x Rs Rdm
op

Arithmetic shift right (op == 0100)

MOV<c>{<q>} <Rdm>, <Rdm>, ASR <Rs> // (Inside IT block)

MOVS{<q>} <Rdm>, <Rdm>, ASR <Rs> // (Outside IT block)

Logical shift left (op == 0010)

MOV<c>{<q>} <Rdm>, <Rdm>, LSL <Rs> // (Inside IT block)

MOVS{<q>} <Rdm>, <Rdm>, LSL <Rs> // (Outside IT block)

Logical shift right (op == 0011)

MOV<c>{<q>} <Rdm>, <Rdm>, LSR <Rs> // (Inside IT block)

MOVS{<q>} <Rdm>, <Rdm>, LSR <Rs> // (Outside IT block)

Rotate right (op == 0111)

MOV<c>{<q>} <Rdm>, <Rdm>, ROR <Rs> // (Inside IT block)

MOVS{<q>} <Rdm>, <Rdm>, ROR <Rs> // (Outside IT block)

if !(op IN {'0010', '0011', '0100', '0111'}) then SEE "Related encodings";
d = UInt(Rdm); m = UInt(Rdm); s = UInt(Rs);
setflags = !InITBlock(); shift_t = DecodeRegShift(op<2>:op<0>);

MOV, MOVS (register-shifted
register) Page 263

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 stype S Rm 1 1 1 1 Rd 0 0 0 0 Rs

Flag setting (S == 1)

MOVS.W <Rd>, <Rm>, <shift> <Rs> // (Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)

MOVS{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

MOV<c>.W <Rd>, <Rm>, <shift> <Rs> // (Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)

MOV{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || m == 15 || s == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

Related encodings: In encoding T1, for an op field value that is not described above, see Data-processing (two low
registers).
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Alias Conditions

Alias Of variant Is preferred when
ASRS (register) A1 (flag setting) S == '1' && stype == '10'

ASRS (register) T1 (arithmetic shift right) op == '0100' && !InITBlock()

ASRS (register) T2 (flag setting) stype == '10' && S == '1'

ASR (register) A1 (not flag setting) S == '0' && stype == '10'

ASR (register) T1 (arithmetic shift right) op == '0100' && InITBlock()

ASR (register) T2 (not flag setting) stype == '10' && S == '0'

LSLS (register) A1 (flag setting) S == '1' && stype == '00'

LSLS (register) T1 (logical shift left) op == '0010' && !InITBlock()

LSLS (register) T2 (flag setting) stype == '00' && S == '1'

LSL (register) A1 (not flag setting) S == '0' && stype == '00'

MOV, MOVS (register-shifted
register) Page 264

Alias Of variant Is preferred when
LSL (register) T1 (logical shift left) op == '0010' && InITBlock()

LSL (register) T2 (not flag setting) stype == '00' && S == '0'

LSRS (register) A1 (flag setting) S == '1' && stype == '01'

LSRS (register) T1 (logical shift right) op == '0011' && !InITBlock()

LSRS (register) T2 (flag setting) stype == '01' && S == '1'

LSR (register) A1 (not flag setting) S == '0' && stype == '01'

LSR (register) T1 (logical shift right) op == '0011' && InITBlock()

LSR (register) T2 (not flag setting) stype == '01' && S == '0'

RORS (register) A1 (flag setting) S == '1' && stype == '11'

RORS (register) T1 (rotate right) op == '0111' && !InITBlock()

RORS (register) T2 (flag setting) stype == '11' && S == '1'

ROR (register) A1 (not flag setting) S == '0' && stype == '11'

ROR (register) T1 (rotate right) op == '0111' && InITBlock()

ROR (register) T2 (not flag setting) stype == '11' && S == '0'

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(result, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOV, MOVS (register-shifted
register) Page 265

MOVT

Move Top writes an immediate value to the top halfword of the destination register. It does not affect the contents of
the bottom halfword.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 1 0 0 imm4 Rd imm12
cond

A1

MOVT{<c>}{<q>} <Rd>, #<imm16>

d = UInt(Rd); imm16 = imm4:imm12;
if d == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 1 0 0 imm4 0 imm3 Rd imm8

T1

MOVT{<c>}{<q>} <Rd>, #<imm16>

d = UInt(Rd); imm16 = imm4:i:imm3:imm8;
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm16> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field.
For encoding T1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:i:imm3:imm8" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d]<31:16> = imm16;
// R[d]<15:0> unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

MOVT Page 266

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MOVT Page 267

MRC

Move to general-purpose register from System register. This instruction copies the value of a System register to a
general-purpose register.
The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For
more information see About the AArch32 System register interface and General behavior of System registers.
In an implementation that includes EL2, MRC accesses to system control registers can be trapped to Hyp mode,
meaning that an attempt to execute an MRC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2
configurable instruction enables, disables, and traps.
Because of the range of possible traps to Hyp mode, the MRC pseudocode does not show these possible traps.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 opc1 1 CRn Rt 1 1 1 coproc<0> opc2 1 CRm
cond coproc<3:1>

A1

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
// Armv8-A removes UNPREDICTABLE for R13

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 1 CRn Rt 1 1 1 coproc<0> opc2 1 CRm
coproc<3:1>

T1

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

t = UInt(Rt); cp = if coproc<0> == '0' then 14 else 15;
// Armv8-A removes UNPREDICTABLE for R13

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<coproc> Is the System register encoding space, encoded in “coproc<0>”:

coproc<0> <coproc>
0 p14
1 p15

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to7, encoded in the
"opc1" field.

<Rt> Is the general-purpose register to be transferred or APSR_nzcv (encoded as 0b1111), encoded in the
"Rt" field. If APSR_nzcv is used, bits [31:28] of the transferred value are written to the PSTATE
condition flags.

<CRn> Is the CRn parameter within the System register encoding space, in the range c0 to c15, encoded in the
"CRn" field.

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

MRC Page 268

<opc2> Is the opc2 parameter within the System register encoding space, in the range 0 to7, encoded in the
"opc2" field.

The possible values of { <coproc>, <opc1>, <CRn>, <CRm>, <opc2> } encode the entire System register and
System instruction encoding space. Not all of this space is allocated, and the System register and System instruction
descriptions identify the allocated encodings.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

if t != 15 || AArch32.SysRegReadCanWriteAPSR(cp, ThisInstr()) then
AArch32.SysRegRead(cp, ThisInstr(), t);

else
UNPREDICTABLE;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MRC Page 269

MRRC

Move to two general-purpose registers from System register. This instruction copies the value of a System register to
two general-purpose registers.
The System register descriptions identify valid encodings for this instruction. Other encodings are UNDEFINED. For
more information see About the AArch32 System register interface and General behavior of System registers.
In an implementation that includes EL2, MRRC accesses to System registers can be trapped to Hyp mode, meaning that
an attempt to execute an MRRC instruction in a Non-secure mode other than Hyp mode, that would be permitted in the
absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see EL2 configurable
instruction enables, disables, and traps.
Because of the range of possible traps to Hyp mode, the MRRC pseudocode does not show these possible traps.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 0 0 1 0 1 Rt2 Rt 1 1 1 coproc<0> opc1 CRm
cond coproc<3:1>

A1

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<0> == '0' then 14 else 15;
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 1 Rt2 Rt 1 1 1 coproc<0> opc1 CRm
coproc<3:1>

T1

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

t = UInt(Rt); t2 = UInt(Rt2); cp = if coproc<0> == '0' then 14 else 15;
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

MRRC Page 270

<q> See Standard assembler syntax fields.

<coproc> Is the System register encoding space, encoded in “coproc<0>”:

coproc<0> <coproc>
0 p14
1 p15

<opc1> Is the opc1 parameter within the System register encoding space, in the range 0 to 15, encoded in the
"opc1" field.

<Rt> Is the first general-purpose register that is transferred into, encoded in the "Rt" field.

<Rt2> Is the second general-purpose register that is transferred into, encoded in the "Rt2" field.

<CRm> Is the CRm parameter within the System register encoding space, in the range c0 to c15, encoded in
the "CRm" field.

The possible values of { <coproc>, <opc1>, <CRm> } encode the entire System register encoding space. Not all of
this space is allocated, and the System register descriptions identify the allocated encodings.
For the permitted uses of these instructions, as described in this manual, <Rt2> transfers bits[63:32] of the selected
System register, while <Rt> transfers bits[31:0].

Operation

if ConditionPassed() then
EncodingSpecificOperations();
AArch32.SysRegRead64(cp, ThisInstr(), t, t2);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MRRC Page 271

MRS

Move Special register to general-purpose register moves the value of the APSR, CPSR, or SPSR_<current_mode> into
a general-purpose register.
Arm recommends the APSR form when only the N, Z, C, V, Q, and GE[3:0] bits are being written. For more information,
see APSR.
An MRS that accesses the SPSRs is UNPREDICTABLE if executed in User mode or System mode.
An MRS that is executed in User mode and accesses the CPSR returns an UNKNOWN value for the CPSR.{E, A, I, F, M}
fields.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 R 0 0 (1) (1) (1) (1) Rd (0) (0) 0 (0) 0 0 0 0 (0) (0) (0) (0)
cond

A1

MRS{<c>}{<q>} <Rd>, <spec_reg>

d = UInt(Rd); read_spsr = (R == '1');
if d == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 1 R (1) (1) (1) (1) 1 0 (0) 0 Rd (0) (0) 0 (0) (0) (0) (0) (0)

T1

MRS{<c>}{<q>} <Rd>, <spec_reg>

d = UInt(Rd); read_spsr = (R == '1');
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<spec_reg> Is the special register to be accessed, encoded in “R”:

R <spec_reg>
0 CPSR|APSR
1 SPSR

MRS Page 272

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if read_spsr then

if PSTATE.M IN {M32_User,M32_System} then
UNPREDICTABLE;

else
R[d] = SPSR_curr[];

else
// CPSR has same bit assignments as SPSR, but with the IT, J, SS, IL, and T bits masked out.
bits(32) mask = '11111000 11101111 00000011 11011111';
psr_val = GetPSRFromPSTATE(AArch32_NonDebugState, 32) AND mask;
if PSTATE.EL == EL0 then

// If accessed from User mode return UNKNOWN values for E, A, I, F bits, bits<9:6>,
// and for the M field, bits<4:0>
psr_val<22> = bits(1) UNKNOWN;
psr_val<9:6> = bits(4) UNKNOWN;
psr_val<4:0> = bits(5) UNKNOWN;

R[d] = psr_val;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User, M32_System} && read_spsr, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MRS Page 273

MRS (Banked register)

Move to Register from Banked or Special register moves the value from the Banked general-purpose register or Saved
Program Status Registers (SPSRs) of the specified mode, or the value of ELR_hyp, to a general-purpose register.
MRS (Banked register) is UNPREDICTABLE if executed in User mode.
When EL3 is using AArch64, if an MRS (Banked register) instruction that is executed in a Secure EL1 mode would
access SPSR_mon, SP_mon, or LR_mon, it is trapped to EL3.
The effect of using an MRS (Banked register) instruction with a register argument that is not valid for the current mode
is UNPREDICTABLE. For more information see Usage restrictions on the Banked register transfer instructions.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 R 0 0 M1 Rd (0) (0) 1 M 0 0 0 0 (0) (0) (0) (0)
cond

A1

MRS{<c>}{<q>} <Rd>, <banked_reg>

d = UInt(Rd); read_spsr = (R == '1');
if d == 15 then UNPREDICTABLE;
SYSm = M:M1;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 1 R M1 1 0 (0) 0 Rd (0) (0) 1 M (0) (0) (0) (0)

T1

MRS{<c>}{<q>} <Rd>, <banked_reg>

d = UInt(Rd); read_spsr = (R == '1');
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
SYSm = M:M1;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<banked_reg> Is the name of the banked register to be transferred to or from, encoded in “R:M:M1”:

MRS (Banked register) Page 274

R M M1 <banked_reg>
0 0 0000 R8_usr
0 0 0001 R9_usr
0 0 0010 R10_usr
0 0 0011 R11_usr
0 0 0100 R12_usr
0 0 0101 SP_usr
0 0 0110 LR_usr
0 0 0111 UNPREDICTABLE
0 0 1000 R8_fiq
0 0 1001 R9_fiq
0 0 1010 R10_fiq
0 0 1011 R11_fiq
0 0 1100 R12_fiq
0 0 1101 SP_fiq
0 0 1110 LR_fiq
0 0 1111 UNPREDICTABLE
0 1 0000 LR_irq
0 1 0001 SP_irq
0 1 0010 LR_svc
0 1 0011 SP_svc
0 1 0100 LR_abt
0 1 0101 SP_abt
0 1 0110 LR_und
0 1 0111 SP_und
0 1 10xx UNPREDICTABLE
0 1 1100 LR_mon
0 1 1101 SP_mon
0 1 1110 ELR_hyp
0 1 1111 SP_hyp
1 0 0xxx UNPREDICTABLE
1 0 10xx UNPREDICTABLE
1 0 110x UNPREDICTABLE
1 0 1110 SPSR_fiq
1 0 1111 UNPREDICTABLE
1 1 0000 SPSR_irq
1 1 0001 UNPREDICTABLE
1 1 0010 SPSR_svc
1 1 0011 UNPREDICTABLE
1 1 0100 SPSR_abt
1 1 0101 UNPREDICTABLE
1 1 0110 SPSR_und
1 1 0111 UNPREDICTABLE
1 1 10xx UNPREDICTABLE
1 1 1100 SPSR_mon
1 1 1101 UNPREDICTABLE
1 1 1110 SPSR_hyp
1 1 1111 UNPREDICTABLE

MRS (Banked register) Page 275

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL0 then

UNPREDICTABLE;
else

mode = PSTATE.M;
if read_spsr then

SPSRaccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
case SYSm of

when '01110' R[d] = SPSR_fiq<31:0>;
when '10000' R[d] = SPSR_irq<31:0>;
when '10010' R[d] = SPSR_svc<31:0>;
when '10100' R[d] = SPSR_abt<31:0>;
when '10110' R[d] = SPSR_und<31:0>;
when '11100'

if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
R[d] = SPSR_mon;

when '11110' R[d] = SPSR_hyp<31:0>;
else

integer m;
BankedRegisterAccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
case SYSm of

when '00xxx' // Access the User mode registers
m = UInt(SYSm<2:0>) + 8;
R[d] = Rmode[m,M32_User];

when '01xxx' // Access the FIQ mode registers
m = UInt(SYSm<2:0>) + 8;
R[d] = Rmode[m,M32_FIQ];

when '1000x' // Access the IRQ mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
R[d] = Rmode[m,M32_IRQ];

when '1001x' // Access the Supervisor mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
R[d] = Rmode[m,M32_Svc];

when '1010x' // Access the Abort mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
R[d] = Rmode[m,M32_Abort];

when '1011x' // Access the Undefined mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
R[d] = Rmode[m,M32_Undef];

when '1110x' // Access Monitor registers
if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
R[d] = Rmode[m,M32_Monitor];

when '11110' // Access ELR_hyp register
R[d] = ELR_hyp;

when '11111' // Access SP_hyp register
R[d] = Rmode[13,M32_Hyp];

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MRS (Banked register) Page 276

MSR (Banked register)

Move to Banked or Special register from general-purpose register moves the value of a general-purpose register to the
Banked general-purpose register or Saved Program Status Registers (SPSRs) of the specified mode, or to ELR_hyp.
MSR (Banked register) is UNPREDICTABLE if executed in User mode.
When EL3 is using AArch64, if an MSR (Banked register) instruction that is executed in a Secure EL1 mode would
access SPSR_mon, SP_mon, or LR_mon, it is trapped to EL3.
The effect of using an MSR (Banked register) instruction with a register argument that is not valid for the current mode
is UNPREDICTABLE. For more information see Usage restrictions on the Banked register transfer instructions.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 R 1 0 M1 (1) (1) (1) (1) (0) (0) 1 M 0 0 0 0 Rn
cond

A1

MSR{<c>}{<q>} <banked_reg>, <Rn>

n = UInt(Rn); write_spsr = (R == '1');
if n == 15 then UNPREDICTABLE;
SYSm = M:M1;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 0 R Rn 1 0 (0) 0 M1 (0) (0) 1 M (0) (0) (0) (0)

T1

MSR{<c>}{<q>} <banked_reg>, <Rn>

n = UInt(Rn); write_spsr = (R == '1');
if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
SYSm = M:M1;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<banked_reg> Is the name of the banked register to be transferred to or from, encoded in “R:M:M1”:

MSR (Banked register) Page 277

R M M1 <banked_reg>
0 0 0000 R8_usr
0 0 0001 R9_usr
0 0 0010 R10_usr
0 0 0011 R11_usr
0 0 0100 R12_usr
0 0 0101 SP_usr
0 0 0110 LR_usr
0 0 0111 UNPREDICTABLE
0 0 1000 R8_fiq
0 0 1001 R9_fiq
0 0 1010 R10_fiq
0 0 1011 R11_fiq
0 0 1100 R12_fiq
0 0 1101 SP_fiq
0 0 1110 LR_fiq
0 0 1111 UNPREDICTABLE
0 1 0000 LR_irq
0 1 0001 SP_irq
0 1 0010 LR_svc
0 1 0011 SP_svc
0 1 0100 LR_abt
0 1 0101 SP_abt
0 1 0110 LR_und
0 1 0111 SP_und
0 1 10xx UNPREDICTABLE
0 1 1100 LR_mon
0 1 1101 SP_mon
0 1 1110 ELR_hyp
0 1 1111 SP_hyp
1 0 0xxx UNPREDICTABLE
1 0 10xx UNPREDICTABLE
1 0 110x UNPREDICTABLE
1 0 1110 SPSR_fiq
1 0 1111 UNPREDICTABLE
1 1 0000 SPSR_irq
1 1 0001 UNPREDICTABLE
1 1 0010 SPSR_svc
1 1 0011 UNPREDICTABLE
1 1 0100 SPSR_abt
1 1 0101 UNPREDICTABLE
1 1 0110 SPSR_und
1 1 0111 UNPREDICTABLE
1 1 10xx UNPREDICTABLE
1 1 1100 SPSR_mon
1 1 1101 UNPREDICTABLE
1 1 1110 SPSR_hyp
1 1 1111 UNPREDICTABLE

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

MSR (Banked register) Page 278

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL0 then

UNPREDICTABLE;
else

mode = PSTATE.M;
if write_spsr then

SPSRaccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
case SYSm of

when '01110' SPSR_fiq<31:0> = R[n];
when '10000' SPSR_irq<31:0> = R[n];
when '10010' SPSR_svc<31:0> = R[n];
when '10100' SPSR_abt<31:0> = R[n];
when '10110' SPSR_und<31:0> = R[n];
when '11100'

if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
SPSR_mon<31:0> = R[n];

when '11110' SPSR_hyp<31:0> = R[n];
else

integer m;
BankedRegisterAccessValid(SYSm, mode); // Check for UNPREDICTABLE cases
case SYSm of

when '00xxx' // Access the User mode registers
m = UInt(SYSm<2:0>) + 8;
Rmode[m,M32_User] = R[n];

when '01xxx' // Access the FIQ mode registers
m = UInt(SYSm<2:0>) + 8;
Rmode[m,M32_FIQ] = R[n];

when '1000x' // Access the IRQ mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
Rmode[m,M32_IRQ] = R[n];

when '1001x' // Access the Supervisor mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
Rmode[m,M32_Svc] = R[n];

when '1010x' // Access the Abort mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
Rmode[m,M32_Abort] = R[n];

when '1011x' // Access the Undefined mode registers
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
Rmode[m,M32_Undef] = R[n];

when '1110x' // Access Monitor registers
if !ELUsingAArch32(EL3) then AArch64.MonitorModeTrap();
m = 14 - UInt(SYSm<0>); // LR when SYSm<0> == 0, otherwise SP
Rmode[m,M32_Monitor] = R[n];

when '11110' // Access ELR_hyp register
ELR_hyp = R[n];

when '11111' // Access SP_hyp register
Rmode[13,M32_Hyp] = R[n];

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSR (Banked register) Page 279

MSR (immediate)

Move immediate value to Special register moves selected bits of an immediate value to the corresponding bits in the
APSR, CPSR, or SPSR_<current_mode>.
Because of the Do-Not-Modify nature of its reserved bits, the immediate form of MSR is normally only useful at the
Application level for writing to APSR_nzcvq (CPSR_f).
If an MSR (immediate) moves selected bits of an immediate value to the CPSR, the PE checks whether the value being
written to PSTATE.M is legal. See Illegal changes to PSTATE.M.
An MSR (immediate) executed in User mode:

• Is CONSTRAINED UNPREDICTABLE if it attempts to update the SPSR.
• Otherwise, does not update any CPSR field that is accessible only at EL1 or higher,

An MSR (immediate) executed in System mode is CONSTRAINED UNPREDICTABLE if it attempts to update the SPSR.
The CPSR.E bit is writable from any mode using an MSR instruction. Arm deprecates using this to change its value.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 R 1 0 mask (1) (1) (1) (1) imm12
cond

A1 (!(R == 0 && mask == 0000))

MSR{<c>}{<q>} <spec_reg>, #<imm>

if mask == '0000' && R == '0' then SEE "Related encodings";
imm32 = A32ExpandImm(imm12); write_spsr = (R == '1');
if mask == '0000' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If mask == '0000' && R == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.
Related encodings: Move Special Register and Hints (immediate).

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<spec_reg> Is one of:
• APSR_<bits>.
• CPSR_<fields>.
• SPSR_<fields>.

For CPSR and SPSR, <fields> is a sequence of one or more of the following:
c

mask<0> = '1' to enable writing of bits<7:0> of the destination PSR.

x
mask<1> = '1' to enable writing of bits<15:8> of the destination PSR.

s
mask<2> = '1' to enable writing of bits<23:16> of the destination PSR.

f
mask<3> = '1' to enable writing of bits<31:24> of the destination PSR.

For APSR, <bits> is one of nzcvq, g, or nzcvqg. These map to the following CPSR_<fields> values:
• APSR_nzcvq is the same as CPSR_f (mask== '1000').

MSR (immediate) Page 280

• APSR_g is the same as CPSR_s (mask == '0100').
• APSR_nzcvqg is the same as CPSR_fs (mask == '1100').

Arm recommends the APSR_<bits> forms when only the N, Z, C, V, Q, and GE[3:0] bits are being
written. For more information, see The Application Program Status Register, APSR.

<imm> Is an immediate value. See Modified immediate constants in A32 instructions for the range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if write_spsr then

if PSTATE.M IN {M32_User,M32_System} then
UNPREDICTABLE;

else
SPSRWriteByInstr(imm32, mask);

else
// Attempts to change to an illegal mode will invoke the Illegal Execution state mechanism
CPSRWriteByInstr(imm32, mask);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System} && write_spsr, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSR (immediate) Page 281

MSR (register)

Move general-purpose register to Special register moves selected bits of a general-purpose register to the APSR,
CPSR or SPSR_<current_mode>.
Because of the Do-Not-Modify nature of its reserved bits, a read-modify-write sequence is normally required when the
MSR instruction is being used at Application level and its destination is not APSR_nzcvq (CPSR_f).
If an MSR (register) moves selected bits of an immediate value to the CPSR, the PE checks whether the value being
written to PSTATE.M is legal. See Illegal changes to PSTATE.M.
An MSR (register) executed in User mode:

• Is UNPREDICTABLE if it attempts to update the SPSR.
• Otherwise, does not update any CPSR field that is accessible only at EL1 or higher.

An MSR (register) executed in System mode is UNPREDICTABLE if it attempts to update the SPSR.
The CPSR.E bit is writable from any mode using an MSR instruction. Arm deprecates using this to change its value.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 R 1 0 mask (1) (1) (1) (1) (0) (0) 0 (0) 0 0 0 0 Rn
cond

A1

MSR{<c>}{<q>} <spec_reg>, <Rn>

n = UInt(Rn); write_spsr = (R == '1');
if mask == '0000' then UNPREDICTABLE;
if n == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If mask == '0000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 0 R Rn 1 0 (0) 0 mask (0) (0) 0 (0) (0) (0) (0) (0)

T1

MSR{<c>}{<q>} <spec_reg>, <Rn>

n = UInt(Rn); write_spsr = (R == '1');
if mask == '0000' then UNPREDICTABLE;
if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If mask == '0000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

MSR (register) Page 282

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<spec_reg> Is one of:
• APSR_<bits>.
• CPSR_<fields>.
• SPSR_<fields>.

For CPSR and SPSR, <fields> is a sequence of one or more of the following:
c

mask<0> = '1' to enable writing of bits<7:0> of the destination PSR.

x
mask<1> = '1' to enable writing of bits<15:8> of the destination PSR.

s
mask<2> = '1' to enable writing of bits<23:16> of the destination PSR.

f
mask<3> = '1' to enable writing of bits<31:24> of the destination PSR.

For APSR, <bits> is one of nzcvq, g, or nzcvqg. These map to the following CPSR_<fields> values:
• APSR_nzcvq is the same as CPSR_f (mask== '1000').
• APSR_g is the same as CPSR_s (mask == '0100').
• APSR_nzcvqg is the same as CPSR_fs (mask == '1100').

Arm recommends the APSR_<bits> forms when only the N, Z, C, V, Q, and GE[3:0] bits are being
written. For more information, see The Application Program Status Register, APSR.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if write_spsr then

if PSTATE.M IN {M32_User,M32_System} then
UNPREDICTABLE;

else
SPSRWriteByInstr(R[n], mask);

else
// Attempts to change to an illegal mode will invoke the Illegal Execution state mechanism
CPSRWriteByInstr(R[n], mask);

CONSTRAINED UNPREDICTABLE behavior

If write_spsr && PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MSR (register) Page 283

MUL, MULS

Multiply multiplies two register values. The least significant 32 bits of the result are written to the destination register.
These 32 bits do not depend on whether the source register values are considered to be signed values or unsigned
values.
Optionally, it can update the condition flags based on the result. In the T32 instruction set, this option is limited to only
a few forms of the instruction. Use of this option adversely affects performance on many implementations.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 0 0 0 S Rd (0) (0) (0) (0) Rm 1 0 0 1 Rn
cond

Flag setting (S == 1)

MULS{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

Not flag setting (S == 0)

MUL{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 0 1 Rn Rdm

T1

MUL<c>{<q>} <Rdm>, <Rn>{, <Rdm>} // (Inside IT block)

MULS{<q>} <Rdm>, <Rn>{, <Rdm>} // (Outside IT block)

d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm); setflags = !InITBlock();

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T2

MUL<c>.W <Rd>, <Rn>{, <Rm>} // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

MUL{<c>}{<q>} <Rd>, <Rn>{, <Rm>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

MUL, MULS Page 284

<q> See Standard assembler syntax fields.

<Rdm> Is the second general-purpose source register holding the multiplier and the destination register,
encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field. If
omitted, <Rd> is used.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
result = operand1 * operand2;
R[d] = result<31:0>;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result<31:0>);
// PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MUL, MULS Page 285

MVN, MVNS (immediate)

Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to the destination register.
If the destination register is not the PC, the MVNS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The MVN variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The MVNS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 1 1 1 S (0) (0) (0) (0) Rd imm12
cond

MVN (S == 0)

MVN{<c>}{<q>} <Rd>, #<const>

MVNS (S == 1)

MVNS{<c>}{<q>} <Rd>, #<const>

d = UInt(Rd); setflags = (S == '1');
(imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 1 S 1 1 1 1 0 imm3 Rd imm8

MVN (S == 0)

MVN{<c>}{<q>} <Rd>, #<const>

MVNS (S == 1)

MVNS{<c>}{<q>} <Rd>, #<const>

d = UInt(Rd); setflags = (S == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

MVN, MVNS (immediate) Page 286

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used:

• For the MVN variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the MVNS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = NOT(imm32);
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVN, MVNS (immediate) Page 287

MVN, MVNS (register)

Bitwise NOT (register) writes the bitwise inverse of a register value to the destination register.
If the destination register is not the PC, the MVNS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The MVN variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The MVNS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 1 S (0) (0) (0) (0) Rd imm5 stype 0 Rm
cond

MVN, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

MVN{<c>}{<q>} <Rd>, <Rm>, RRX

MVN, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

MVN{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MVNS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

MVNS{<c>}{<q>} <Rd>, <Rm>, RRX

MVNS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

MVNS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 1 1 Rm Rd

T1

MVN<c>{<q>} <Rd>, <Rm> // (Inside IT block)

MVNS{<q>} <Rd>, <Rm> // (Outside IT block)

d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

MVN, MVNS (register) Page 288

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 1 S 1 1 1 1 (0) imm3 Rd imm2 stype Rm

MVN, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

MVN{<c>}{<q>} <Rd>, <Rm>, RRX

MVN, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

MVN<c>.W <Rd>, <Rm> // (Inside IT block, and <Rd>, <Rm> can be represented in T1)

MVN{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

MVNS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)

MVNS{<c>}{<q>} <Rd>, <Rm>, RRX

MVNS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

MVNS.W <Rd>, <Rm> // (Outside IT block, and <Rd>, <Rm> can be represented in T1)

MVNS{<c>}{<q>} <Rd>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used:

• For the MVN variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the MVNS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1 and T2: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.
For encoding T1 and T2: is the general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

MVN, MVNS (register) Page 289

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = NOT(shifted);
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVN, MVNS (register) Page 290

MVN, MVNS (register-shifted register)

Bitwise NOT (register-shifted register) writes the bitwise inverse of a register-shifted register value to the destination
register. It can optionally update the condition flags based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 1 S (0) (0) (0) (0) Rd Rs 0 stype 1 Rm
cond

Flag setting (S == 1)

MVNS{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

MVN{<c>}{<q>} <Rd>, <Rm>, <shift> <Rs>

d = UInt(Rd); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = NOT(shifted);
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

MVN, MVNS (register-shifted
register) Page 291

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MVN, MVNS (register-shifted
register) Page 292

NOP

No Operation does nothing. This instruction can be used for instruction alignment purposes.

Note

The timing effects of including a NOP instruction in a program are not guaranteed. It can increase execution time,
leave it unchanged, or even reduce it. Therefore, NOP instructions are not suitable for timing loops.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 0 0
cond

A1

NOP{<c>}{<q>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

T1

NOP{<c>}{<q>}

// No additional decoding required

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 0

T2

NOP{<c>}.W

// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
// Do nothing

NOP Page 293

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

NOP Page 294

ORN, ORNS (immediate)

Bitwise OR NOT (immediate) performs a bitwise (inclusive) OR of a register value and the complement of an
immediate value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 1 S != 1111 0 imm3 Rd imm8
Rn

Flag setting (S == 1)

ORNS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

Not flag setting (S == 0)

ORN{<c>}{<q>} {<Rd>,} <Rn>, #<const>

if Rn == '1111' then SEE "MVN (immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<const> An immediate value. See Modified immediate constants in T32 instructions for the range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] OR NOT(imm32);
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

ORN, ORNS (immediate) Page 295

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORN, ORNS (immediate) Page 296

ORN, ORNS (register)

Bitwise OR NOT (register) performs a bitwise (inclusive) OR of a register value and the complement of an optionally-
shifted register value, and writes the result to the destination register. It can optionally update the condition flags
based on the result.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 1 S != 1111 (0) imm3 Rd imm2 stype Rm
Rn

ORN, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORN, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ORN{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORNS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORNS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ORNS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rn == '1111' then SEE "MVN (register)";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR
or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

ORN, ORNS (register) Page 297

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = R[n] OR NOT(shifted);
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORN, ORNS (register) Page 298

ORR, ORRS (immediate)

Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate value, and writes the
result to the destination register.
If the destination register is not the PC, the ORRS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The ORR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ORRS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 1 0 0 S Rn Rd imm12
cond

ORR (S == 0)

ORR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ORRS (S == 1)

ORRS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 0 S != 1111 0 imm3 Rd imm8
Rn

ORR (S == 0)

ORR{<c>}{<q>} {<Rd>,} <Rn>, #<const>

ORRS (S == 1)

ORRS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

if Rn == '1111' then SEE "MOV (immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

ORR, ORRS (immediate) Page 299

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the ORR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ORRS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] OR imm32;
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR, ORRS (immediate) Page 300

ORR, ORRS (register)

Bitwise OR (register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register value, and
writes the result to the destination register.
If the destination register is not the PC, the ORRS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The ORR variant of the instruction is an interworking branch, see Pseudocode description of operations on
the AArch32 general-purpose registers and the PC.

• The ORRS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 0 S Rn Rd imm5 stype 0 Rm
cond

ORR, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORR, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORRS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORRS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 0 0 Rm Rdn

T1

ORR<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)

ORRS{<q>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

ORR, ORRS (register) Page 301

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S != 1111 (0) imm3 Rd imm2 stype Rm
Rn

ORR, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORR, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ORR<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ORRS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

ORRS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ORRS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rn == '1111' then SEE "Related encodings";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.
Related encodings: Data-processing (shifted register)

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the ORR variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the ORRS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.
For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

ORR, ORRS (register) Page 302

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm5" field as <amount> modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

In T32 assembly:
• Outside an IT block, if ORRS <Rd>, <Rn>, <Rd> is written with <Rd> and <Rn> both in the range R0-R7, it

is assembled using encoding T1 as though ORRS <Rd>, <Rn> had been written.
• Inside an IT block, if ORR<c> <Rd>, <Rn>, <Rd> is written with <Rd> and <Rn> both in the range R0-R7,

it is assembled using encoding T1 as though ORR<c> <Rd>, <Rn> had been written.
To prevent either of these happening, use the .W qualifier.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = R[n] OR shifted;
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR, ORRS (register) Page 303

ORR, ORRS (register-shifted register)

Bitwise OR (register-shifted register) performs a bitwise (inclusive) OR of a register value and a register-shifted
register value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 0 S Rn Rd Rs 0 stype 1 Rm
cond

Flag setting (S == 1)

ORRS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

ORR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs"
field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = R[n] OR shifted;
R[d] = result;
if setflags then

PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

ORR, ORRS (register-shifted
register) Page 304

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ORR, ORRS (register-shifted
register) Page 305

PKHBT, PKHTB

Pack Halfword combines one halfword of its first operand with the other halfword of its shifted second operand.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 0 0 0 Rn Rd imm5 tb 0 1 Rm
cond

PKHBT (tb == 0)

PKHBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, LSL #<imm>}

PKHTB (tb == 1)

PKHTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ASR #<imm>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == '1');
(shift_t, shift_n) = DecodeImmShift(tb:'0', imm5);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 1 0 0 Rn (0) imm3 Rd imm2 tb 0 Rm
S T

PKHBT (tb == 0)

PKHBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, LSL #<imm>} // (tbform == FALSE)

PKHTB (tb == 1)

PKHTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ASR #<imm>} // (tbform == TRUE)

if S == '1' || T == '1' then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == '1');
(shift_t, shift_n) = DecodeImmShift(tb:'0', imm3:imm2);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: the shift to apply to the value read from <Rm>, encoded in the "imm5" field.
For PKHBT, it is one of:
omitted

No shift, encoded as 0b00000.

PKHBT, PKHTB Page 306

1-31
Left shift by specified number of bits, encoded as a binary number.

For PKHTB, it is one of:
omitted

Instruction is a pseudo-instruction and is assembled as though PKHBT{<c>}{<q>} <Rd>, <Rm>,
<Rn> had been written.

1-32
Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded as 0b00000. Other
shift amounts are encoded as binary numbers.

Note

An assembler can permit <imm> = 0 to mean the same thing as omitting the shift, but this is not
standard UAL and must not be used for disassembly.

For encoding T1: the shift to apply to the value read from <Rm>, encoded in the "imm3:imm2" field.
For PKHBT, it is one of:
omitted

No shift, encoded as 0b00000.

1-31
Left shift by specified number of bits, encoded as a binary number.

For PKHTB, it is one of:
omitted

Instruction is a pseudo-instruction and is assembled as though PKHBT{<c>}{<q>} <Rd>, <Rm>,
<Rn> had been written.

1-32
Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded as 0b00000. Other
shift amounts are encoded as binary numbers.

Note

An assembler can permit <imm> = 0 to mean the same thing as omitting the shift, but this is not
standard UAL and must not be used for disassembly.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand2 = Shift(R[m], shift_t, shift_n, PSTATE.C); // PSTATE.C ignored
R[d]<15:0> = if tbform then operand2<15:0> else R[n]<15:0>;
R[d]<31:16> = if tbform then R[n]<31:16> else operand2<31:16>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PKHBT, PKHTB Page 307

PLD (literal)

Preload Data (literal) signals the memory system that data memory accesses from a specified address are likely in the
near future. The memory system can respond by taking actions that are expected to speed up the memory accesses
when they do occur, such as preloading the cache line containing the specified address into the data cache.
The effect of a PLD instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 U (1) 0 1 1 1 1 1 (1) (1) (1) (1) imm12

A1

PLD{<c>}{<q>} <label> // (Normal form)

PLD{<c>}{<q>} [PC, #{+/-}<imm>] // (Alternative form)

imm32 = ZeroExtend(imm12, 32); add = (U == '1');

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 (0) 1 1 1 1 1 1 1 1 1 imm12

T1

PLD{<c>}{<q>} <label> // (Preferred syntax)

PLD{<c>}{<q>} [PC, #{+/-}<imm>] // (Alternative syntax)

imm32 = ZeroExtend(imm12, 32); add = (U == '1');

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<label> The label of the literal data item that is likely to be accessed in the near future. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the instruction to this label.
The offset must be in the range –4095 to 4095.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.
For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

PLD (literal) Page 308

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
Hint_PreloadData(address);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PLD (literal) Page 309

PLD, PLDW (immediate)

Preload Data (immediate) signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as preloading the cache line containing the specified address into the data cache.
The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a write.
The effect of a PLD or PLDW instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 U R 0 1 != 1111 (1) (1) (1) (1) imm12
Rn

Preload read (R == 1)

PLD{<c>}{<q>} [<Rn> {, #{+/-}<imm>}]

Preload write (R == 0)

PLDW{<c>}{<q>} [<Rn> {, #{+/-}<imm>}]

if Rn == '1111' then SEE "PLD (literal)";
n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = (U == '1'); is_pldw = (R == '0');

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 W 1 != 1111 1 1 1 1 imm12
Rn

Preload read (W == 0)

PLD{<c>}{<q>} [<Rn> {, #{+}<imm>}]

Preload write (W == 1)

PLDW{<c>}{<q>} [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "PLD (literal)";
n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE; is_pldw = (W == '1');

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 W 1 != 1111 1 1 1 1 1 1 0 0 imm8
Rn

PLD, PLDW (immediate) Page 310

Preload read (W == 0)

PLD{<c>}{<q>} [<Rn> {, #-<imm>}]

Preload write (W == 1)

PLDW{<c>}{<q>} [<Rn> {, #-<imm>}]

if Rn == '1111' then SEE "PLD (literal)";
n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE; is_pldw = (W == '1');

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see PLD (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.
For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm8" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = if add then (R[n] + imm32) else (R[n] - imm32);
if is_pldw then

Hint_PreloadDataForWrite(address);
else

Hint_PreloadData(address);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PLD, PLDW (immediate) Page 311

PLD, PLDW (register)

Preload Data (register) signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as preloading the cache line containing the specified address into the data cache.
The PLD instruction signals that the likely memory access is a read, and the PLDW instruction signals that it is a write.
The effect of a PLD or PLDW instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1 U R 0 1 Rn (1) (1) (1) (1) imm5 stype 0 Rm

Preload read, optional shift or rotate (R == 1 && !(imm5 == 00000 && stype == 11))

PLD{<c>}{<q>} [<Rn>, {+/-}<Rm> {, <shift> #<amount>}]

Preload read, rotate right with extend (R == 1 && imm5 == 00000 && stype == 11)

PLD{<c>}{<q>} [<Rn>, {+/-}<Rm> , RRX]

Preload write, optional shift or rotate (R == 0 && !(imm5 == 00000 && stype == 11))

PLDW{<c>}{<q>} [<Rn>, {+/-}<Rm> {, <shift> #<amount>}]

Preload write, rotate right with extend (R == 0 && imm5 == 00000 && stype == 11)

PLDW{<c>}{<q>} [<Rn>, {+/-}<Rm> , RRX]

n = UInt(Rn); m = UInt(Rm); add = (U == '1'); is_pldw = (R == '0');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
if m == 15 || (n == 15 && is_pldw) then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 W 1 != 1111 1 1 1 1 0 0 0 0 0 0 imm2 Rm
Rn

Preload read (W == 0)

PLD{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

Preload write (W == 1)

PLDW{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

if Rn == '1111' then SEE "PLD (literal)";
n = UInt(Rn); m = UInt(Rm); add = TRUE; is_pldw = (W == '1');
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

PLD, PLDW (register) Page 312

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. <c> must be AL or omitted.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used.
For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U +/-
0 -
1 +

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the index register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T1: is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm2"
field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
address = if add then (R[n] + offset) else (R[n] - offset);
if is_pldw then

Hint_PreloadDataForWrite(address);
else

Hint_PreloadData(address);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PLD, PLDW (register) Page 313

PLI (immediate, literal)

Preload Instruction signals the memory system that instruction memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the instruction
cache.
The effect of a PLI instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 U 1 0 1 Rn (1) (1) (1) (1) imm12

A1

PLI{<c>}{<q>} [<Rn> {, #{+/-}<imm>}]

PLI{<c>}{<q>} <label> // (Normal form)

PLI{<c>}{<q>} [PC, #{+/-}<imm>] // (Alternative form)

n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = (U == '1');

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 0 1 != 1111 1 1 1 1 imm12
Rn

T1

PLI{<c>}{<q>} [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "encoding T3";
n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 != 1111 1 1 1 1 1 1 0 0 imm8
Rn

T2

PLI{<c>}{<q>} [<Rn> {, #-<imm>}]

if Rn == '1111' then SEE "encoding T3";
n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE;

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 1 1 1 1 imm12

PLI (immediate, literal) Page 314

T3

PLI{<c>}{<q>} <label> // (Preferred syntax)

PLI{<c>}{<q>} [PC, #{+/-}<imm>] // (Alternative syntax)

n = 15; imm32 = ZeroExtend(imm12, 32); add = (U == '1');

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.
For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<label> The label of the instruction that is likely to be accessed in the near future. The assembler calculates the
required value of the offset from the Align(PC, 4) value of the instruction to this label. The offset must
be in the range –4095 to 4095.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the optional 12-bit unsigned immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.
For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.
For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm8" field.
For encoding T3: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the
"imm12" field.

For the literal forms of the instruction, encoding T3 is used, or Rn is encoded as 0b1111 in encoding A1, to indicate
that the PC is the base register.
The alternative literal syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = if n == 15 then Align(PC,4) else R[n];
address = if add then (base + imm32) else (base - imm32);
Hint_PreloadInstr(address);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PLI (immediate, literal) Page 315

PLI (register)

Preload Instruction signals the memory system that instruction memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the instruction
cache.
The effect of a PLI instruction is IMPLEMENTATION DEFINED. For more information, see Preloading caches.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 0 U 1 0 1 Rn (1) (1) (1) (1) imm5 stype 0 Rm

Rotate right with extend (imm5 == 00000 && stype == 11)

PLI{<c>}{<q>} [<Rn>, {+/-}<Rm> , RRX]

Shift or rotate by value (!(imm5 == 00000 && stype == 11))

PLI{<c>}{<q>} [<Rn>, {+/-}<Rm> {, <shift> #<amount>}]

n = UInt(Rn); m = UInt(Rm); add = (U == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
if m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 != 1111 1 1 1 1 0 0 0 0 0 0 imm2 Rm
Rn

T1

PLI{<c>}{<q>} [<Rn>, {+}<Rm> {, LSL #<amount>}]

if Rn == '1111' then SEE "PLI (immediate, literal)";
n = UInt(Rn); m = UInt(Rm); add = TRUE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. <c> must be AL or omitted.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U +/-
0 -
1 +

+ Specifies the index register is added to the base register.

PLI (register) Page 316

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the index register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T1: is the shift amount, in the range 0 to 3, defaulting to 0 and encoded in the "imm2"
field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
address = if add then (R[n] + offset) else (R[n] - offset);
Hint_PreloadInstr(address);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PLI (register) Page 317

POP

Pop Multiple Registers from Stack loads multiple general-purpose registers from the stack, loading from consecutive
memory locations starting at the address in SP, and updates SP to point just above the loaded data.
The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.
The registers loaded can include the PC, causing a branch to a loaded address. This is an interworking branch, see
Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 0 P register_list

T1

POP{<c>}{<q>} <registers> // (Preferred syntax)

LDM{<c>}{<q>} SP!, <registers> // (Alternate syntax)

registers = P:'0000000':register_list; UnalignedAllowed = FALSE;
if BitCount(registers) < 1 then UNPREDICTABLE;
if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction targets an unspecified set of registers. These registers might include R15. If the instruction

specifies writeback, the modification to the base address on writeback might differ from the number of
registers loaded.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.
The registers in the list must be in the range R0-R7, encoded in the "register_list" field, and can
optionally include the PC. If the PC is in the list, the "P" field is set to 1, otherwise this field defaults to
0.
If the PC is in the list, the instruction must be either outside any IT block, or the last instruction in an
IT block.

POP Page 318

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[13];
for i = 0 to 14

if registers<i> == '1' then
R[i] = if UnalignedAllowed then MemU[address,4] else MemA[address,4];
address = address + 4;

if registers<15> == '1' then
if UnalignedAllowed then

if address<1:0> == '00' then
LoadWritePC(MemU[address,4]);

else
UNPREDICTABLE;

else
LoadWritePC(MemA[address,4]);

if registers<13> == '0' then R[13] = R[13] + 4*BitCount(registers);
if registers<13> == '1' then R[13] = bits(32) UNKNOWN;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

POP Page 319

POP (multiple registers)

Pop Multiple Registers from Stack loads multiple general-purpose registers from the stack, loading from consecutive
memory locations starting at the address in SP, and updates SP to point just above the loaded data.

This is an alias of LDM, LDMIA, LDMFD. This means:

• The encodings in this description are named to match the encodings of LDM, LDMIA, LDMFD.
• The description of LDM, LDMIA, LDMFD gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 0 1 0 1 1 1 1 0 1 register_list
cond W Rn

A1

POP{<c>}{<q>} <registers>

is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 P M register_list
W Rn

T2

POP{<c>}.W <registers> // (All registers in R0-R7, PC)

POP{<c>}{<q>} <registers>

is equivalent to

LDM{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(P:M:register_list) > 1.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<registers> For encoding A1: is a list of two or more registers to be loaded, separated by commas and surrounded
by { and }. The lowest-numbered register is loaded from the lowest memory address, through to the
highest-numbered register from the highest memory address. See also Encoding of lists of general-
purpose registers and the PC.
If the SP is in the list, the value of the SP after such an instruction is UNKNOWN.
The PC can be in the list. If it is, the instruction branches to the address loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.
Arm deprecates the use of this instruction with both the LR and the PC in the list.

POP (multiple registers) Page 320

For encoding T2: is a list of two or more registers to be loaded, separated by commas and surrounded
by { and }. The lowest-numbered register is loaded from the lowest memory address, through to the
highest-numbered register from the highest memory address. See also Encoding of lists of general-
purpose registers and the PC.
The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain one of the LR or the PC. If the LR is in the list, the "M" field is set to 1, otherwise it
defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.
The PC can be in the list. If it is, the instruction branches to the address loaded to the PC. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC. If the PC is in the list:

• The LR must not be in the list.
• The instruction must be either outside any IT block, or the last instruction in an IT block.

Operation

The description of LDM, LDMIA, LDMFD gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

POP (multiple registers) Page 321

POP (single register)

Pop Single Register from Stack loads a single general-purpose register from the stack, loading from the address in SP,
and updates SP to point just above the loaded data.

This is an alias of LDR (immediate). This means:

• The encodings in this description are named to match the encodings of LDR (immediate).
• The description of LDR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T4) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 0 0 1 0 0 1 1 1 0 1 Rt 0 0 0 0 0 0 0 0 0 1 0 0
cond P U W Rn imm12

Post-indexed

POP{<c>}{<q>} <single_register_list>

is equivalent to

LDR{<c>}{<q>} <Rt>, [SP], #4

and is always the preferred disassembly.

T4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 1 Rt 1 0 1 1 0 0 0 0 0 1 0 0
Rn P U W imm8

Post-indexed

POP{<c>}{<q>} <single_register_list>

is equivalent to

LDR{<c>}{<q>} <Rt>, [SP], #4

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<single_register_list> Is the general-purpose register <Rt> to be loaded surrounded by { and }.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used. If the PC is used, the instruction branches to the address (data) loaded to the PC. This is
an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.
For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can
be used, provided the instruction is either outside an IT block or the last instruction of an IT block. If
the PC is used, the instruction branches to the address (data) loaded to the PC. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC.

POP (single register) Page 322

Operation

The description of LDR (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

POP (single register) Page 323

PSSBB

Physical Speculative Store Bypass Barrier is a memory barrier that prevents speculative loads from bypassing earlier
stores to the same physical address under certain conditions. For more information and details of the semantics, see
Physical Speculative Store Bypass Barrier (PSSBB).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 0 0 1 0 0

A1

PSSBB{<q>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 0 1 0 0

T1

PSSBB{<q>}

if InITBlock() then UNPREDICTABLE;

Assembler Symbols

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
SpeculativeStoreBypassBarrierToPA();

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PSSBB Page 324

PUSH

Push Multiple Registers to Stack stores multiple general-purpose registers to the stack, storing to consecutive memory
locations ending just below the address in SP, and updates SP to point to the start of the stored data.
The lowest-numbered register is stored to the lowest memory address, through to the highest-numbered register to
the highest memory address. See also Encoding of lists of general-purpose registers and the PC.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 0 M register_list

T1

PUSH{<c>}{<q>} <registers> // (Preferred syntax)

STMDB{<c>}{<q>} SP!, <registers> // (Alternate syntax)

registers = '0':M:'000000':register_list; UnalignedAllowed = FALSE;
if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction targets an unspecified set of registers. These registers might include R15. If the instruction

specifies writeback, the modification to the base address on writeback might differ from the number of
registers loaded.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by { and }.
The registers in the list must be in the range R0-R7, encoded in the "register_list" field, and can
optionally include the LR. If the LR is in the list, the "M" field is set to 1, otherwise this field defaults to
0.

PUSH Page 325

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[13] - 4*BitCount(registers);
for i = 0 to 14

if registers<i> == '1' then
if i == 13 && i != LowestSetBit(registers) then // Only possible for encoding A1

MemA[address,4] = bits(32) UNKNOWN;
else

if UnalignedAllowed then
MemU[address,4] = R[i];

else
MemA[address,4] = R[i];

address = address + 4;
if registers<15> == '1' then // Only possible for encoding A1 or A2

if UnalignedAllowed then
MemU[address,4] = PCStoreValue();

else
MemA[address,4] = PCStoreValue();

R[13] = R[13] - 4*BitCount(registers);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PUSH Page 326

PUSH (multiple registers)

Push multiple registers to Stack stores multiple general-purpose registers to the stack, storing to consecutive memory
locations ending just below the address in SP, and updates SP to point to the start of the stored data.

This is an alias of STMDB, STMFD. This means:

• The encodings in this description are named to match the encodings of STMDB, STMFD.
• The description of STMDB, STMFD gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 1 0 0 1 0 1 1 0 1 register_list
cond W Rn

A1

PUSH{<c>}{<q>} <registers>

is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(register_list) > 1.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 (0) M register_list
W Rn P

T1

PUSH{<c>}.W <registers> // (All registers in R0-R7, LR)

PUSH{<c>}{<q>} <registers>

is equivalent to

STMDB{<c>}{<q>} SP!, <registers>

and is the preferred disassembly when BitCount(M:register_list) > 1.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<registers> For encoding A1: is a list of two or more registers to be stored, separated by commas and surrounded
by { and }. The lowest-numbered register is stored to the lowest memory address, through to the
highest-numbered register to the highest memory address. See also Encoding of lists of general-
purpose registers and the PC.
The SP and PC can be in the list. However:

• Arm deprecates the use of instructions that include the PC in the list.
• If the SP is in the list, and it is not the lowest-numbered register in the list, the instruction

stores an UNKNOWN value for the SP.
For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }. The lowest-numbered register is stored to the lowest memory address, through to the

PUSH (multiple registers) Page 327

highest-numbered register to the highest memory address. See also Encoding of lists of general-
purpose registers and the PC.
The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

Operation

The description of STMDB, STMFD gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PUSH (multiple registers) Page 328

PUSH (single register)

Push Single Register to Stack stores a single general-purpose register to the stack, storing to the 32-bit word below
the address in SP, and updates SP to point to the start of the stored data.

This is an alias of STR (immediate). This means:

• The encodings in this description are named to match the encodings of STR (immediate).
• The description of STR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T4) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 0 1 0 0 1 0 1 1 0 1 Rt 0 0 0 0 0 0 0 0 0 1 0 0
cond P U W Rn imm12

Pre-indexed

PUSH{<c>}{<q>} <single_register_list>

is equivalent to

STR{<c>}{<q>} <Rt>, [SP, #-4]!

and is always the preferred disassembly.

T4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 1 1 0 1 Rt 1 1 0 1 0 0 0 0 0 1 0 0
Rn P U W imm8

Pre-indexed

PUSH{<c>}{<q>} <single_register_list> // (Standard syntax)

is equivalent to

STR{<c>}{<q>} <Rt>, [SP, #-4]!

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<single_register_list> Is the general-purpose register <Rt> to be stored surrounded by { and }.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.
For encoding T4: is the general-purpose register to be transferred, encoded in the "Rt" field.

Operation

The description of STR (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

PUSH (single register) Page 329

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

PUSH (single register) Page 330

QADD

Saturating Add adds two register values, saturates the result to the 32-bit signed integer range -231 to (231 - 1), and
writes the result to the destination register. If saturation occurs, it sets PSTATE.Q to 1.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 0 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
cond

A1

QADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm

T1

QADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
boolean sat;
(R[d], sat) = SignedSatQ(SInt(R[m]) + SInt(R[n]), 32);
if sat then

PSTATE.Q = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QADD Page 331

QADD16

Saturating Add 16 performs two 16-bit integer additions, saturates the results to the 16-bit signed integer range -215

<= x <= 215 - 1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
cond

A1

QADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1

QADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
R[d]<15:0> = SignedSat(sum1, 16);
R[d]<31:16> = SignedSat(sum2, 16);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QADD16 Page 332

QADD8

Saturating Add 8 performs four 8-bit integer additions, saturates the results to the 8-bit signed integer range -27 <= x
<= 27 - 1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
cond

A1

QADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1

QADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
R[d]<7:0> = SignedSat(sum1, 8);
R[d]<15:8> = SignedSat(sum2, 8);
R[d]<23:16> = SignedSat(sum3, 8);
R[d]<31:24> = SignedSat(sum4, 8);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QADD8 Page 333

QASX

Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one 16-bit
integer addition and one 16-bit subtraction, saturates the results to the 16-bit signed integer range -215 <= x <= 215 -
1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
cond

A1

QASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1

QASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
R[d]<15:0> = SignedSat(diff, 16);
R[d]<31:16> = SignedSat(sum, 16);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QASX Page 334

QDADD

Saturating Double and Add adds a doubled register value to another register value, and writes the result to the
destination register. Both the doubling and the addition have their results saturated to the 32-bit signed integer range
-231 <= x <= 231 - 1. If saturation occurs in either operation, it sets PSTATE.Q to 1.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 1 0 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
cond

A1

QDADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 0 1 Rm

T1

QDADD{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
boolean sat2;
(R[d], sat2) = SignedSatQ(SInt(R[m]) + SInt(doubled), 32);
if sat1 || sat2 then

PSTATE.Q = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QDADD Page 335

QDSUB

Saturating Double and Subtract subtracts a doubled register value from another register value, and writes the result
to the destination register. Both the doubling and the subtraction have their results saturated to the 32-bit signed
integer range -231 <= x <= 231 - 1. If saturation occurs in either operation, it sets PSTATE.Q to 1.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 1 1 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
cond

A1

QDSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 1 Rm

T1

QDSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(doubled, sat1) = SignedSatQ(2 * SInt(R[n]), 32);
boolean sat2;
(R[d], sat2) = SignedSatQ(SInt(R[m]) - SInt(doubled), 32);
if sat1 || sat2 then

PSTATE.Q = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QDSUB Page 336

QSAX

Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one 16-bit
integer subtraction and one 16-bit addition, saturates the results to the 16-bit signed integer range -215 <= x <= 215 -
1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
cond

A1

QSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1

QSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
R[d]<15:0> = SignedSat(sum, 16);
R[d]<31:16> = SignedSat(diff, 16);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QSAX Page 337

QSUB

Saturating Subtract subtracts one register value from another register value, saturates the result to the 32-bit signed
integer range -231 <= x <= 231 - 1, and writes the result to the destination register. If saturation occurs, it sets
PSTATE.Q to 1.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 1 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
cond

A1

QSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 1 0 1 0 Rm

T1

QSUB{<c>}{<q>} {<Rd>,} <Rm>, <Rn>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rn> Is the second general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
boolean sat;
(R[d], sat) = SignedSatQ(SInt(R[m]) - SInt(R[n]), 32);
if sat then

PSTATE.Q = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QSUB Page 338

QSUB16

Saturating Subtract 16 performs two 16-bit integer subtractions, saturates the results to the 16-bit signed integer
range -215 <= x <= 215 - 1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
cond

A1

QSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1

QSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
R[d]<15:0> = SignedSat(diff1, 16);
R[d]<31:16> = SignedSat(diff2, 16);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QSUB16 Page 339

QSUB8

Saturating Subtract 8 performs four 8-bit integer subtractions, saturates the results to the 8-bit signed integer range
-27 <= x <= 27 - 1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 1 0 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
cond

A1

QSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 1 Rm

T1

QSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);
diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
R[d]<7:0> = SignedSat(diff1, 8);
R[d]<15:8> = SignedSat(diff2, 8);
R[d]<23:16> = SignedSat(diff3, 8);
R[d]<31:24> = SignedSat(diff4, 8);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

QSUB8 Page 340

RBIT

Reverse Bits reverses the bit order in a 32-bit register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 1 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 0 0 1 1 Rm
cond

A1

RBIT{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 1 0 1 0 Rm

T1

RBIT{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: m = UInt(Rn);.
• The instruction executes with the additional decode: m = UInt(Rm);.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field.
For encoding T1: is the general-purpose source register, encoded in the "Rm" field. It must be encoded
with an identical value in the "Rn" field.

RBIT Page 341

Operation

if ConditionPassed() then
EncodingSpecificOperations();
bits(32) result;
for i = 0 to 31

result<31-i> = R[m]<i>;
R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RBIT Page 342

REV

Byte-Reverse Word reverses the byte order in a 32-bit register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 0 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 0 0 1 1 Rm
cond

A1

REV{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 0 0 Rm Rd

T1

REV{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 1 0 0 0 Rm

T2

REV{<c>}.W <Rd>, <Rm> // (<Rd>, <Rm> can be represented in T1)

REV{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: m = UInt(Rn);.
• The instruction executes with the additional decode: m = UInt(Rm);.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

REV Page 343

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field.
For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be encoded
with an identical value in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
bits(32) result;
result<31:24> = R[m]<7:0>;
result<23:16> = R[m]<15:8>;
result<15:8> = R[m]<23:16>;
result<7:0> = R[m]<31:24>;
R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV Page 344

REV16

Byte-Reverse Packed Halfword reverses the byte order in each16-bit halfword of a 32-bit register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 0 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 1 0 1 1 Rm
cond

A1

REV16{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 0 1 Rm Rd

T1

REV16{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 1 0 0 1 Rm

T2

REV16{<c>}.W <Rd>, <Rm> // (<Rd>, <Rm> can be represented in T1)

REV16{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: m = UInt(Rn);.
• The instruction executes with the additional decode: m = UInt(Rm);.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

REV16 Page 345

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field.
For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be encoded
with an identical value in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
bits(32) result;
result<31:24> = R[m]<23:16>;
result<23:16> = R[m]<31:24>;
result<15:8> = R[m]<7:0>;
result<7:0> = R[m]<15:8>;
R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REV16 Page 346

REVSH

Byte-Reverse Signed Halfword reverses the byte order in the lower 16-bit halfword of a 32-bit register, and sign-
extends the result to 32 bits.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 1 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) 1 0 1 1 Rm
cond

A1

REVSH{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 1 1 Rm Rd

T1

REVSH{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 1 0 1 1 Rm

T2

REVSH{<c>}.W <Rd>, <Rm> // (<Rd>, <Rm> can be represented in T1)

REVSH{<c>}{<q>} <Rd>, <Rm>

d = UInt(Rd); m = UInt(Rm); n = UInt(Rn);
if m != n || d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If m != n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: m = UInt(Rn);.
• The instruction executes with the additional decode: m = UInt(Rm);.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

REVSH Page 347

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1 and T1: is the general-purpose source register, encoded in the "Rm" field.
For encoding T2: is the general-purpose source register, encoded in the "Rm" field. It must be encoded
with an identical value in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
bits(32) result;
result<31:8> = SignExtend(R[m]<7:0>, 24);
result<7:0> = R[m]<15:8>;
R[d] = result;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

REVSH Page 348

RFE, RFEDA, RFEDB, RFEIA, RFEIB

Return From Exception loads two consecutive memory locations using an address in a base register:
• The word loaded from the lower address is treated as an instruction address. The PE branches to it.
• The word loaded from the higher address is used to restore PSTATE. This word must be in the format of an

SPSR.
An address adjusted by the size of the data loaded can optionally be written back to the base register.
The PE checks the value of the word loaded from the higher address for an illegal return event. See Illegal return
events from AArch32 state.
RFE is UNDEFINED in Hyp mode and CONSTRAINED UNPREDICTABLE in User mode.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 P U 0 W 1 Rn (0) (0) (0) (0) (1) (0) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0)

Decrement After (P == 0 && U == 0)

RFEDA{<c>}{<q>} <Rn>{!} // (Preferred syntax)

RFEFA{<c>}{<q>} <Rn>{!} // (Alternate syntax, Full Ascending stack)

Decrement Before (P == 1 && U == 0)

RFEDB{<c>}{<q>} <Rn>{!} // (Preferred syntax)

RFEEA{<c>}{<q>} <Rn>{!} // (Alternate syntax, Empty Ascending stack)

Increment After (P == 0 && U == 1)

RFE{IA}{<c>}{<q>} <Rn>{!} // (Preferred syntax)

RFEFD{<c>}{<q>} <Rn>{!} // (Alternate syntax, Full Descending stack)

Increment Before (P == 1 && U == 1)

RFEIB{<c>}{<q>} <Rn>{!} // (Preferred syntax)

RFEED{<c>}{<q>} <Rn>{!} // (Alternate syntax, Empty Descending stack)

n = UInt(Rn);
wback = (W == '1'); increment = (U == '1'); wordhigher = (P == U);
if n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 0 W 1 Rn (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

T1

RFEDB{<c>}{<q>} <Rn>{!} // (Outside or last in IT block, preferred syntax)

RFEFA{<c>}{<q>} <Rn>{!} // (Outside or last in IT block, alternate syntax, Full Ascending stack)

n = UInt(Rn); wback = (W == '1'); increment = FALSE; wordhigher = FALSE;
if n == 15 then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

RFE, RFEDA, RFEDB, RFEIA,
RFEIB Page 349

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 1 0 W 1 Rn (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

T2

RFE{IA}{<c>}{<q>} <Rn>{!} // (Outside or last in IT block, preferred syntax)

RFEFD{<c>}{<q>} <Rn>{!} // (Outside or last in IT block, alternate syntax, Full Descending stack)

n = UInt(Rn); wback = (W == '1'); increment = TRUE; wordhigher = FALSE;
if n == 15 then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

IA For encoding A1: is an optional suffix to indicate the Increment After variant.
For encoding T2: is an optional suffix for the Increment After form.

<c> For encoding A1: see Standard assembler syntax fields. <c> must be AL or omitted.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

RFEFA, RFEEA, RFEFD, and RFEED are pseudo-instructions for RFEDA, RFEDB, RFEIA, and RFEIB respectively, referring to
their use for popping data from Full Ascending, Empty Ascending, Full Descending, and Empty Descending stacks.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL0 then

UNPREDICTABLE; // UNDEFINED or NOP
else

address = if increment then R[n] else R[n]-8;
if wordhigher then address = address+4;
new_pc_value = MemA[address,4];
spsr = MemA[address+4,4];
if wback then R[n] = if increment then R[n]+8 else R[n]-8;
AArch32.ExceptionReturn(new_pc_value, spsr);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RFE, RFEDA, RFEDB, RFEIA,
RFEIB Page 350

ROR (immediate)

Rotate Right (immediate) provides the value of the contents of a register rotated by a constant value. The bits that are
rotated off the right end are inserted into the vacated bit positions on the left.

This is an alias of MOV, MOVS (register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).
• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd != 00000 1 1 0 Rm
cond S imm5 stype

MOV, shift or rotate by value

ROR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) imm3 Rd imm2 1 1 Rm
S stype

MOV, shift or rotate by value (!(imm3 == 000 && imm2 == 00))

ROR{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used, the instruction is a branch to the address
calculated by the operation. This is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.
For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.
For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.
For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

ROR (immediate) Page 351

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ROR (immediate) Page 352

ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits. The bits
that are rotated off the right end are inserted into the vacated bit positions on the left. The variable number of bits is
read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd Rs 0 1 1 1 Rm
cond S stype

Not flag setting

ROR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 1 1 Rs Rdm
op

Rotate right

ROR<c>{<q>} {<Rdm>,} <Rdm>, <Rs> // (Inside IT block)

is equivalent to

MOV<c>{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when InITBlock().

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 1 0 Rm 1 1 1 1 Rd 0 0 0 0 Rs
stype S

Not flag setting

ROR<c>.W {<Rd>,} <Rm>, <Rs> // (Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)

ROR{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

ROR (register) Page 353

MOV{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ROR (register) Page 354

RORS (immediate)

Rotate Right, setting flags (immediate) provides the value of the contents of a register rotated by a constant value. The
bits that are rotated off the right end are inserted into the vacated bit positions on the left.
If the destination register is not the PC, this instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32

state.
• The instruction is UNDEFINED in Hyp mode.
• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This is an alias of MOV, MOVS (register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).
• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd != 00000 1 1 0 Rm
cond S imm5 stype

MOVS, shift or rotate by value

RORS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) imm3 Rd imm2 1 1 Rm
S stype

MOVS, shift or rotate by value (!(imm3 == 000 && imm2 == 00))

RORS{<c>}{<q>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR #<imm>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used, the instruction performs an exception
return, that restores PSTATE from SPSR_<current_mode>.
For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

RORS (immediate) Page 355

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.
For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1: is the shift amount, in the range 1 to 31, encoded in the "imm5" field.
For encoding T3: is the shift amount, in the range 1 to 31, encoded in the "imm3:imm2" field.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RORS (immediate) Page 356

RORS (register)

Rotate Right, setting flags (register) provides the value of the contents of a register rotated by a variable number of
bits, and updates the condition flags based on the result. The bits that are rotated off the right end are inserted into
the vacated bit positions on the left. The variable number of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted
register).

• The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd Rs 0 1 1 1 Rm
cond S stype

Flag setting

RORS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 1 1 Rs Rdm
op

Rotate right

RORS{<q>} {<Rdm>,} <Rdm>, <Rs> // (Outside IT block)

is equivalent to

MOVS{<q>} <Rdm>, <Rdm>, ROR <Rs>

and is the preferred disassembly when !InITBlock().

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 1 1 Rm 1 1 1 1 Rd 0 0 0 0 Rs
stype S

Flag setting

RORS.W {<Rd>,} <Rm>, <Rs> // (Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)

RORS{<c>}{<q>} {<Rd>,} <Rm>, <Rs>

is equivalent to

RORS (register) Page 357

MOVS{<c>}{<q>} <Rd>, <Rm>, ROR <Rs>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a rotate amount in its bottom 8 bits, encoded in
the "Rs" field.

Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RORS (register) Page 358

RRX

Rotate Right with Extend provides the value of the contents of a register shifted right by one place, with the Carry flag
shifted into bit[31].

This is an alias of MOV, MOVS (register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).
• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 0 (0) (0) (0) (0) Rd 0 0 0 0 0 1 1 0 Rm
cond S imm5 stype

MOV, rotate right with extend

RRX{<c>}{<q>} {<Rd>,} <Rm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 (0) 0 0 0 Rd 0 0 1 1 Rm
S imm3 imm2 stype

MOV, rotate right with extend

RRX{<c>}{<q>} {<Rd>,} <Rm>

is equivalent to

MOV{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used, the instruction is a branch to the address
calculated by the operation. This is an interworking branch, see Pseudocode description of operations
on the AArch32 general-purpose registers and the PC.
For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.
For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

RRX Page 359

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RRX Page 360

RRXS

Rotate Right with Extend, setting flags provides the value of the contents of a register shifted right by one place, with
the Carry flag shifted into bit[31].
If the destination register is not the PC, this instruction updates the condition flags based on the result, and bit[0] is
shifted into the Carry flag.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm
deprecates any use of these encodings. However, when the destination register is the PC:

• The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current_mode>.
• The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from AArch32

state.
• The instruction is UNDEFINED in Hyp mode.
• The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This is an alias of MOV, MOVS (register). This means:

• The encodings in this description are named to match the encodings of MOV, MOVS (register).
• The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 1 (0) (0) (0) (0) Rd 0 0 0 0 0 1 1 0 Rm
cond S imm5 stype

MOVS, rotate right with extend

RRXS{<c>}{<q>} {<Rd>,} <Rm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 1 (0) 0 0 0 Rd 0 0 1 1 Rm
S imm3 imm2 stype

MOVS, rotate right with extend

RRXS{<c>}{<q>} {<Rd>,} <Rm>

is equivalent to

MOVS{<c>}{<q>} <Rd>, <Rm>, RRX

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates
using the PC as the destination register, but if the PC is used, the instruction performs an exception
return, that restores PSTATE from SPSR_<current_mode>.

RRXS Page 361

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field. The PC can be used,
but this is deprecated.
For encoding T3: is the general-purpose source register, encoded in the "Rm" field.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RRXS Page 362

RSB, RSBS (immediate)

Reverse Subtract (immediate) subtracts a register value from an immediate value, and writes the result to the
destination register.
If the destination register is not the PC, the RSBS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The RSB variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

• The RSBS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 0 1 1 S Rn Rd imm12
cond

RSB (S == 0)

RSB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

RSBS (S == 1)

RSBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 0 1 Rn Rd

T1

RSB<c>{<q>} {<Rd>, }<Rn>, #0 // (Inside IT block)

RSBS{<q>} {<Rd>, }<Rn>, #0 // (Outside IT block)

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = Zeros(32); // immediate = #0

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 1 0 S Rn 0 imm3 Rd imm8

RSB, RSBS (immediate) Page 363

RSB (S == 0)

RSB<c>.W {<Rd>,} <Rn>, #0 // (Inside IT block)

RSB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

RSBS (S == 1)

RSBS.W {<Rd>,} <Rn>, #0 // (Outside IT block)

RSBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the RSB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the RSBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1 and T2: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1 and T2: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T2: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(NOT(R[n]), imm32, '1');
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

RSB, RSBS (immediate) Page 364

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSB, RSBS (immediate) Page 365

RSB, RSBS (register)

Reverse Subtract (register) subtracts a register value from an optionally-shifted register value, and writes the result to
the destination register.
If the destination register is not the PC, the RSBS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The RSB variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

• The RSBS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 0 1 1 S Rn Rd imm5 stype 0 Rm
cond

RSB, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSB, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSBS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSBS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 1 0 S Rn (0) imm3 Rd imm2 stype Rm

RSB, RSBS (register) Page 366

RSB, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSB, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSBS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSBS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the RSB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the RSBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.
For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

RSB, RSBS (register) Page 367

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(NOT(R[n]), shifted, '1');
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSB, RSBS (register) Page 368

RSB, RSBS (register-shifted register)

Reverse Subtract (register-shifted register) subtracts a register value from a register-shifted register value, and writes
the result to the destination register. It can optionally update the condition flags based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 0 1 1 S Rn Rd Rs 0 stype 1 Rm
cond

Flag setting (S == 1)

RSBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

RSB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(NOT(R[n]), shifted, '1');
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

RSB, RSBS (register-shifted
register) Page 369

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSB, RSBS (register-shifted
register) Page 370

RSC, RSCS (immediate)

Reverse Subtract with Carry (immediate) subtracts a register value and the value of NOT (Carry flag) from an
immediate value, and writes the result to the destination register.
If the destination register is not the PC, the RSCS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The RSC variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

• The RSCS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 1 1 1 S Rn Rd imm12
cond

RSC (S == 0)

RSC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

RSCS (S == 1)

RSCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the RSC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the RSCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

<Rn> Is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is
deprecated.

<const> An immediate value. See Modified immediate constants in A32 instructions for the range of values.

RSC, RSCS (immediate) Page 371

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(NOT(R[n]), imm32, PSTATE.C);
if d == 15 then

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSC, RSCS (immediate) Page 372

RSC, RSCS (register)

Reverse Subtract with Carry (register) subtracts a register value and the value of NOT (Carry flag) from an optionally-
shifted register value, and writes the result to the destination register.
If the destination register is not the PC, the RSCS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The RSC variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

• The RSCS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 1 1 1 S Rn Rd imm5 stype 0 Rm
cond

RSC, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

RSC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSC, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

RSC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

RSCS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

RSCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

RSCS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

RSCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the RSC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the RSCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is
deprecated.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this
is deprecated.

RSC, RSCS (register) Page 373

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> Is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR
or ASR) encoded in the "imm5" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(NOT(R[n]), shifted, PSTATE.C);
if d == 15 then

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSC, RSCS (register) Page 374

RSC, RSCS (register-shifted register)

Reverse Subtract (register-shifted register) subtracts a register value and the value of NOT (Carry flag) from a
register-shifted register value, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 1 1 1 S Rn Rd Rs 0 stype 1 Rm
cond

Flag setting (S == 1)

RSCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

RSC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(NOT(R[n]), shifted, PSTATE.C);
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

RSC, RSCS (register-shifted
register) Page 375

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

RSC, RSCS (register-shifted
register) Page 376

SADD16

Signed Add 16 performs two 16-bit signed integer additions, and writes the results to the destination register. It sets
PSTATE.GE according to the results of the additions.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
cond

A1

SADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1

SADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
R[d]<15:0> = sum1<15:0>;
R[d]<31:16> = sum2<15:0>;
PSTATE.GE<1:0> = if sum1 >= 0 then '11' else '00';
PSTATE.GE<3:2> = if sum2 >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:

SADD16 Page 377

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADD16 Page 378

SADD8

Signed Add 8 performs four 8-bit signed integer additions, and writes the results to the destination register. It sets
PSTATE.GE according to the results of the additions.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
cond

A1

SADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1

SADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
R[d]<7:0> = sum1<7:0>;
R[d]<15:8> = sum2<7:0>;
R[d]<23:16> = sum3<7:0>;
R[d]<31:24> = sum4<7:0>;
PSTATE.GE<0> = if sum1 >= 0 then '1' else '0';
PSTATE.GE<1> = if sum2 >= 0 then '1' else '0';
PSTATE.GE<2> = if sum3 >= 0 then '1' else '0';
PSTATE.GE<3> = if sum4 >= 0 then '1' else '0';

SADD8 Page 379

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SADD8 Page 380

SASX

Signed Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one 16-bit
integer addition and one 16-bit subtraction, and writes the results to the destination register. It sets PSTATE.GE
according to the results.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
cond

A1

SASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1

SASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
R[d]<15:0> = diff<15:0>;
R[d]<31:16> = sum<15:0>;
PSTATE.GE<1:0> = if diff >= 0 then '11' else '00';
PSTATE.GE<3:2> = if sum >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

SASX Page 381

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SASX Page 382

SB

Speculation Barrier is a barrier that controls speculation.
The semantics of the Speculation Barrier are that the execution, until the barrier completes, of any instruction that
appears later in the program order than the barrier:

• Cannot be performed speculatively to the extent that such speculation can be observed through side-channels
as a result of control flow speculation or data value speculation.

• Can be speculatively executed as a result of predicting that a potentially exception generating instruction has
not generated an exception.

In particular, any instruction that appears later in the program order than the barrier cannot cause a speculative
allocation into any caching structure where the allocation of that entry could be indicative of any data value present in
memory or in the registers.
The SB instruction:

• Cannot be speculatively executed as a result of control flow speculation or data value speculation.
• Can be speculatively executed as a result of predicting that a potentially exception generating instruction has

not generated an exception. The potentially exception generating instruction can complete once it is known
not to be speculative, and all data values generated by instructions appearing in program order before the SB
instruction have their predicted values confirmed.

When the prediction of the instruction stream is not informed by data taken from the register outputs of the
speculative execution of instructions appearing in program order after an uncompleted SB instruction, the SB
instruction has no effect on the use of prediction resources to predict the instruction stream that is being fetched.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_SB)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 1 1 (0) (0) (0) (0)

A1

SB{<q>}

// No additional decoding required

T1
(FEAT_SB)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 1 1 (0) (0) (0) (0)

T1

SB{<q>}

if InITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
SpeculationBarrier();

SB Page 383

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SB Page 384

SBC, SBCS (immediate)

Subtract with Carry (immediate) subtracts an immediate value and the value of NOT (Carry flag) from a register value,
and writes the result to the destination register.
If the destination register is not the PC, the SBCS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The SBC variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

• The SBCS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 1 1 0 S Rn Rd imm12
cond

SBC (S == 0)

SBC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SBCS (S == 1)

SBCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 1 1 S Rn 0 imm3 Rd imm8

SBC (S == 0)

SBC{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SBCS (S == 1)

SBCS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

SBC, SBCS (immediate) Page 385

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the SBC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the SBCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[n], NOT(imm32), PSTATE.C);
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBC, SBCS (immediate) Page 386

SBC, SBCS (register)

Subtract with Carry (register) subtracts an optionally-shifted register value and the value of NOT (Carry flag) from a
register value, and writes the result to the destination register.
If the destination register is not the PC, the SBCS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. ARM
deprecates any use of these encodings. However, when the destination register is the PC:

• The SBC variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

• The SBCS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 1 1 0 S Rn Rd imm5 stype 0 Rm
cond

SBC, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBC, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SBCS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBCS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 1 0 Rm Rdn

T1

SBC<c>{<q>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)

SBCS{<q>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

T2

SBC, SBCS (register) Page 387

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 1 1 S Rn (0) imm3 Rd imm2 stype Rm

SBC, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBC, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

SBC<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SBCS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SBCS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

SBCS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the SBC variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the SBCS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.
For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

SBC, SBCS (register) Page 388

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], NOT(shifted), PSTATE.C);
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBC, SBCS (register) Page 389

SBC, SBCS (register-shifted register)

Subtract with Carry (register-shifted register) subtracts a register-shifted register value and the value of NOT (Carry
flag) from a register value, and writes the result to the destination register. It can optionally update the condition flags
based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 1 1 0 S Rn Rd Rs 0 stype 1 Rm
cond

Flag setting (S == 1)

SBCS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

SBC{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], NOT(shifted), PSTATE.C);
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

SBC, SBCS (register-shifted
register) Page 390

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBC, SBCS (register-shifted
register) Page 391

SBFX

Signed Bit Field Extract extracts any number of adjacent bits at any position from a register, sign-extends them to 32
bits, and writes the result to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 1 0 1 widthm1 Rd lsb 1 0 1 Rn
cond

A1

SBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

d = UInt(Rd); n = UInt(Rn);
lsbit = UInt(lsb); widthminus1 = UInt(widthm1);
msbit = lsbit + widthminus1;
if d == 15 || n == 15 then UNPREDICTABLE;
if msbit > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1

T1

SBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

d = UInt(Rd); n = UInt(Rn);
lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
msbit = lsbit + widthminus1;
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if msbit > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

SBFX Page 392

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> For encoding A1: is the bit number of the least significant bit in the field, in the range 0 to 31, encoded
in the "lsb" field.
For encoding T1: is the bit number of the least significant bit in the field, in the range 0 to 31, encoded
in the "imm3:imm2" field.

<width> Is the width of the field, in the range 1 to 32-<lsb>, encoded in the "widthm1" field as <width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d] = SignExtend(R[n]<msbit:lsbit>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SBFX Page 393

SDIV

Signed Divide divides a 32-bit signed integer register value by a 32-bit signed integer register value, and writes the
result to the destination register. The condition flags are not affected.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 0 0 0 1 Rd (1) (1) (1) (1) Rm 0 0 0 1 Rn
cond Ra

A1

SDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as described, with no change to its behavior and no additional side effects.
• The instruction executes as described, and the register specified by Ra becomes UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 0 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm
Ra

T1

SDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
// Armv8-A removes UNPREDICTABLE for R13
if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as described, with no change to its behavior and no additional side effects.
• The instruction executes as described, and the register specified by Ra becomes UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.

SDIV Page 394

<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.
Overflow
If the signed integer division 0x80000000 / 0xFFFFFFFF is performed, the pseudocode produces the intermediate
integer result +231, that overflows the 32-bit signed integer range. No indication of this overflow case is produced,
and the 32-bit result written to <Rd> must be the bottom 32 bits of the binary representation of +231. So the result of
the division is 0x80000000.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
integer result;
if SInt(R[m]) == 0 then

result = 0;
else

result = RoundTowardsZero(Real(SInt(R[n])) / Real(SInt(R[m])));
R[d] = result<31:0>;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SDIV Page 395

SEL

Select Bytes selects each byte of its result from either its first operand or its second operand, according to the values
of the PSTATE.GE flags.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 0 0 0 Rn Rd (1) (1) (1) (1) 1 0 1 1 Rm
cond

A1

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 1 0 0 0 Rm

T1

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d]<7:0> = if PSTATE.GE<0> == '1' then R[n]<7:0> else R[m]<7:0>;
R[d]<15:8> = if PSTATE.GE<1> == '1' then R[n]<15:8> else R[m]<15:8>;
R[d]<23:16> = if PSTATE.GE<2> == '1' then R[n]<23:16> else R[m]<23:16>;
R[d]<31:24> = if PSTATE.GE<3> == '1' then R[n]<31:24> else R[m]<31:24>;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEL Page 396

SETEND

Set Endianness writes a new value to PSTATE.E.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 1 0 0 0 0 (0) (0) (0) 1 (0) (0) (0) (0) (0) (0) E (0) 0 0 0 0 (0) (0) (0) (0)

A1

SETEND{<q>} <endian_specifier> // (Cannot be conditional)

set_bigend = (E == '1');

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 0 0 1 0 (1) E (0) (0) (0)

T1

SETEND{<q>} <endian_specifier> // (Not permitted in IT block)

set_bigend = (E == '1');
if InITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

<endian_specifier> Is the endianness to be selected, and the value to be set in PSTATE.E, encoded in “E”:

E <endian_specifier>
0 LE
1 BE

Operation

EncodingSpecificOperations();
AArch32.CheckSETENDEnabled();
PSTATE.E = if set_bigend then '1' else '0';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SETEND Page 397

SETPAN

Set Privileged Access Never writes a new value to PSTATE.PAN.
This instruction is available only in privileged mode and it is a NOP when executed in User mode.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_PAN)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 1 0 0 0 1 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) imm1 (0) 0 0 0 0 (0) (0) (0) (0)

A1

SETPAN{<q>} #<imm> // (Cannot be conditional)

if !HavePANExt() then UNDEFINED;
value = imm1;

T1
(FEAT_PAN)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 0 0 0 0 (1) imm1 (0) (0) (0)

T1

SETPAN{<q>} #<imm> // (Not permitted in IT block)

if InITBlock() then UNPREDICTABLE;
if !HavePANExt() then UNDEFINED;
value = imm1;

Assembler Symbols

<q> See Standard assembler syntax fields.

<imm> Is the unsigned immediate 0 or 1, encoded in the "imm1" field.

Operation

EncodingSpecificOperations();
if PSTATE.EL != EL0 then

PSTATE.PAN = value;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SETPAN Page 398

SEV

Send Event is a hint instruction. It causes an event to be signaled to all PEs in the multiprocessor system. For more
information, see Wait For Event and Send Event.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 1 0 0
cond

A1

SEV{<c>}{<q>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0

T1

SEV{<c>}{<q>}

// No additional decoding required

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 1 0 0

T2

SEV{<c>}.W

// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
SendEvent();

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEV Page 399

SEVL

Send Event Local is a hint instruction that causes an event to be signaled locally without requiring the event to be
signaled to other PEs in the multiprocessor system. It can prime a wait-loop which starts with a WFE instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 1 0 1
cond

A1

SEVL{<c>}{<q>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0

T1

SEVL{<c>}{<q>}

// No additional decoding required

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 1 0 1

T2

SEVL{<c>}.W

// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
SendEventLocal();

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SEVL Page 400

SHADD16

Signed Halving Add 16 performs two signed 16-bit integer additions, halves the results, and writes the results to the
destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
cond

A1

SHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1

SHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum1 = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
R[d]<15:0> = sum1<16:1>;
R[d]<31:16> = sum2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

SHADD16 Page 401

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHADD16 Page 402

SHADD8

Signed Halving Add 8 performs four signed 8-bit integer additions, halves the results, and writes the results to the
destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
cond

A1

SHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1

SHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum1 = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
R[d]<7:0> = sum1<8:1>;
R[d]<15:8> = sum2<8:1>;
R[d]<23:16> = sum3<8:1>;
R[d]<31:24> = sum4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

SHADD8 Page 403

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHADD8 Page 404

SHASX

Signed Halving Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
signed 16-bit integer addition and one signed 16-bit subtraction, halves the results, and writes the results to the
destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
cond

A1

SHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1

SHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff = SInt(R[n]<15:0>) - SInt(R[m]<31:16>);
sum = SInt(R[n]<31:16>) + SInt(R[m]<15:0>);
R[d]<15:0> = diff<16:1>;
R[d]<31:16> = sum<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.

SHASX Page 405

◦ The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHASX Page 406

SHSAX

Signed Halving Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
signed 16-bit integer subtraction and one signed 16-bit addition, halves the results, and writes the results to the
destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
cond

A1

SHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1

SHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
R[d]<15:0> = sum<16:1>;
R[d]<31:16> = diff<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.

SHSAX Page 407

◦ The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHSAX Page 408

SHSUB16

Signed Halving Subtract 16 performs two signed 16-bit integer subtractions, halves the results, and writes the results
to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
cond

A1

SHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1

SHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
R[d]<15:0> = diff1<16:1>;
R[d]<31:16> = diff2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

SHSUB16 Page 409

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHSUB16 Page 410

SHSUB8

Signed Halving Subtract 8 performs four signed 8-bit integer subtractions, halves the results, and writes the results to
the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 1 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
cond

A1

SHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 1 0 Rm

T1

SHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);
diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
R[d]<7:0> = diff1<8:1>;
R[d]<15:8> = diff2<8:1>;
R[d]<23:16> = diff3<8:1>;
R[d]<31:24> = diff4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

SHSUB8 Page 411

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHSUB8 Page 412

SMC

Secure Monitor Call causes a Secure Monitor Call exception. For more information see Secure Monitor Call (SMC)
exception.
SMC is available only for software executing at EL1 or higher. It is UNDEFINED in User mode.
If the values of HCR.TSC and SCR.SCD are both 0, execution of an SMC instruction at EL1 or higher generates a
Secure Monitor Call exception that is taken to EL3. When EL3 is using AArch32 this exception is taken to Monitor
mode. When EL3 is using AArch64, it is the SCR_EL3.SMD bit, rather than the SCR.SCD bit, that can change the
effect of executing an SMC instruction.
If the value of HCR.TSC is 1, execution of an SMC instruction in a Non-secure EL1 mode generates an exception that is
taken to EL2, regardless of the value of SCR.SCD. When EL2 is using AArch32, this is a Hyp Trap exception that is
taken to Hyp mode. For more information see Traps to Hyp mode of Non-secure EL1 execution of SMC instructions.
If the value of HCR.TSC is 0 and the value of SCR.SCD is 1, the SMC instruction is:

• UNDEFINED in Non-secure state.
• CONSTRAINED UNPREDICTABLE if executed in Secure state at EL1 or higher.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 1 1 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 0 1 1 1 imm4
cond

A1

SMC{<c>}{<q>} {#}<imm4>

// imm4 is for assembly/disassembly only and is ignored by hardware

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1 1 1 1 1 imm4 1 0 0 0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

T1

SMC{<c>}{<q>} {#}<imm4>

// imm4 is for assembly/disassembly only and is ignored by hardware
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<imm4> Is a 4-bit unsigned immediate value, in the range 0 to 15, encoded in the "imm4" field. This is ignored
by the PE. The Secure Monitor Call exception handler (Secure Monitor code) can use this value to
determine what service is being requested, but Arm does not recommend this.

SMC Page 413

Operation

if ConditionPassed() then
EncodingSpecificOperations();

AArch32.CheckForSMCUndefOrTrap();

if !ELUsingAArch32(EL3) then
if SCR_EL3.SMD == '1' then

// SMC disabled.
UNDEFINED;

else
if SCR.SCD == '1' then

// SMC disabled
if CurrentSecurityState() == SS_Secure then

// Executes either as a NOP or UNALLOCATED.
c = ConstrainUnpredictable(Unpredictable_SMD);
assert c IN {Constraint_NOP, Constraint_UNDEF};
if c == Constraint_NOP then EndOfInstruction();

UNDEFINED;

if !ELUsingAArch32(EL3) then
AArch64.CallSecureMonitor(Zeros(16));

else
AArch32.TakeSMCException();

CONSTRAINED UNPREDICTABLE behavior

If SCR.SCD == '1' && CurrentSecurityState() == SS_Secure, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMC Page 414

SMLABB, SMLABT, SMLATB, SMLATT

Signed Multiply Accumulate (halfwords) performs a signed multiply accumulate operation. The multiply acts on two
signed 16-bit quantities, taken from either the bottom or the top half of their respective source registers. The other
halves of these source registers are ignored. The 32-bit product is added to a 32-bit accumulate value and the result is
written to the destination register.
If overflow occurs during the addition of the accumulate value, the instruction sets PSTATE.Q to 1. It is not possible
for overflow to occur during the multiplication.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 0 0 Rd Ra Rm 1 M N 0 Rn
cond

SMLABB (M == 0 && N == 0)

SMLABB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLABT (M == 1 && N == 0)

SMLABT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATB (M == 0 && N == 1)

SMLATB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATT (M == 1 && N == 1)

SMLATT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
n_high = (N == '1'); m_high = (M == '1');
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 1 Rn != 1111 Rd 0 0 N M Rm
Ra

SMLABB, SMLABT, SMLATB,
SMLATT Page 415

SMLABB (N == 0 && M == 0)

SMLABB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLABT (N == 0 && M == 1)

SMLABT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATB (N == 1 && M == 0)

SMLATB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLATT (N == 1 && M == 1)

SMLATT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "SMULBB, SMULBT, SMULTB, SMULTT";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
n_high = (N == '1'); m_high = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half (selected
by <x>), encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half (selected
by <y>), encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
result = SInt(operand1) * SInt(operand2) + SInt(R[a]);
R[d] = result<31:0>;
if result != SInt(result<31:0>) then // Signed overflow

PSTATE.Q = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLABB, SMLABT, SMLATB,
SMLATT Page 416

SMLAD, SMLADX

Signed Multiply Accumulate Dual performs two signed 16 x 16-bit multiplications. It adds the products to a 32-bit
accumulate operand.
Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.
This instruction sets PSTATE.Q to 1 if the accumulate operation overflows. Overflow cannot occur during the
multiplications.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 0 0 0 0 Rd != 1111 Rm 0 0 M 1 Rn
cond Ra

SMLAD (M == 0)

SMLAD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLADX (M == 1)

SMLADX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "SMUAD";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
m_swap = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 0 Rn != 1111 Rd 0 0 0 M Rm
Ra

SMLAD (M == 0)

SMLAD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLADX (M == 1)

SMLADX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "SMUAD";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
m_swap = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

SMLAD, SMLADX Page 417

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand2 = if m_swap then ROR(R[m],16) else R[m];
product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
result = product1 + product2 + SInt(R[a]);
R[d] = result<31:0>;
if result != SInt(result<31:0>) then // Signed overflow

PSTATE.Q = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLAD, SMLADX Page 418

SMLAL, SMLALS

Signed Multiply Accumulate Long multiplies two signed 32-bit values to produce a 64-bit value, and accumulates this
with a 64-bit value.
In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 1 1 1 S RdHi RdLo Rm 1 0 0 1 Rn
cond

Flag setting (S == 1)

SMLALS{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting (S == 0)

SMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 0 0 0 0 Rm

T1

SMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

SMLAL, SMLALS Page 419

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = SInt(R[n]) * SInt(R[m]) + SInt(R[dHi]:R[dLo]);
R[dHi] = result<63:32>;
R[dLo] = result<31:0>;
if setflags then

PSTATE.N = result<63>;
PSTATE.Z = IsZeroBit(result<63:0>);
// PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLAL, SMLALS Page 420

SMLALBB, SMLALBT, SMLALTB, SMLALTT

Signed Multiply Accumulate Long (halfwords) multiplies two signed 16-bit values to produce a 32-bit value, and
accumulates this with a 64-bit value. The multiply acts on two signed 16-bit quantities, taken from either the bottom or
the top half of their respective source registers. The other halves of these source registers are ignored. The 32-bit
product is sign-extended and accumulated with a 64-bit accumulate value.
Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected if it
occurs. Instead, the result wraps around modulo 264.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 1 0 0 RdHi RdLo Rm 1 M N 0 Rn
cond

SMLALBB (M == 0 && N == 0)

SMLALBB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALBT (M == 1 && N == 0)

SMLALBT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTB (M == 0 && N == 1)

SMLALTB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTT (M == 1 && N == 1)

SMLALTT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
n_high = (N == '1'); m_high = (M == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 0 N M Rm

SMLALBB, SMLALBT,
SMLALTB, SMLALTT Page 421

SMLALBB (N == 0 && M == 0)

SMLALBB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALBT (N == 0 && M == 1)

SMLALBT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTB (N == 1 && M == 0)

SMLALTB{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALTT (N == 1 && M == 1)

SMLALTT{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
n_high = (N == '1'); m_high = (M == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> For encoding A1: is the first general-purpose source register holding the multiplicand in the bottom or
top half (selected by <x>), encoded in the "Rn" field.
For encoding T1: is the first general-purpose source register holding the multiplicand in the bottom or
top half (selected by <x>), encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register holding the multiplier in the bottom or
top half (selected by <y>), encoded in the "Rm" field.
For encoding T1: is the second general-purpose source register holding the multiplier in the bottom or
top half (selected by <x>), encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
result = SInt(operand1) * SInt(operand2) + SInt(R[dHi]:R[dLo]);
R[dHi] = result<63:32>;
R[dLo] = result<31:0>;

SMLALBB, SMLALBT,
SMLALTB, SMLALTT Page 422

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLALBB, SMLALBT,
SMLALTB, SMLALTT Page 423

SMLALD, SMLALDX

Signed Multiply Accumulate Long Dual performs two signed 16 x 16-bit multiplications. It adds the products to a
64-bit accumulate operand.
Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.
Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected if it
occurs. Instead, the result wraps around modulo 264.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 0 1 0 0 RdHi RdLo Rm 0 0 M 1 Rn
cond

SMLALD (M == 0)

SMLALD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALDX (M == 1)

SMLALDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 1 1 0 M Rm

SMLALD (M == 0)

SMLALD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLALDX (M == 1)

SMLALDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

SMLALD, SMLALDX Page 424

• The value in the destination register is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand2 = if m_swap then ROR(R[m],16) else R[m];
product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
result = product1 + product2 + SInt(R[dHi]:R[dLo]);
R[dHi] = result<63:32>;
R[dLo] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLALD, SMLALDX Page 425

SMLAWB, SMLAWT

Signed Multiply Accumulate (word by halfword) performs a signed multiply accumulate operation. The multiply acts
on a signed 32-bit quantity and a signed 16-bit quantity. The signed 16-bit quantity is taken from either the bottom or
the top half of its source register. The other half of the second source register is ignored. The top 32 bits of the 48-bit
product are added to a 32-bit accumulate value and the result is written to the destination register. The bottom 16 bits
of the 48-bit product are ignored.
If overflow occurs during the addition of the accumulate value, the instruction sets PSTATE.Q to 1. No overflow can
occur during the multiplication.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 1 0 Rd Ra Rm 1 M 0 0 Rn
cond

SMLAWB (M == 0)

SMLAWB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLAWT (M == 1)

SMLAWT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_high = (M == '1');
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 1 Rn != 1111 Rd 0 0 0 M Rm
Ra

SMLAWB (M == 0)

SMLAWB{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLAWT (M == 1)

SMLAWT{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "SMULWB, SMULWT";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_high = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half (selected
by <y>), encoded in the "Rm" field.

SMLAWB, SMLAWT Page 426

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
result = SInt(R[n]) * SInt(operand2) + (SInt(R[a]) << 16);
R[d] = result<47:16>;
if (result >> 16) != SInt(R[d]) then // Signed overflow

PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLAWB, SMLAWT Page 427

SMLSD, SMLSDX

Signed Multiply Subtract Dual performs two signed 16 x 16-bit multiplications. It adds the difference of the products
to a 32-bit accumulate operand.
Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.
This instruction sets PSTATE.Q to 1 if the accumulate operation overflows. Overflow cannot occur during the
multiplications or subtraction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 0 0 0 0 Rd != 1111 Rm 0 1 M 1 Rn
cond Ra

SMLSD (M == 0)

SMLSD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLSDX (M == 1)

SMLSDX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "SMUSD";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_swap = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 0 Rn != 1111 Rd 0 0 0 M Rm
Ra

SMLSD (M == 0)

SMLSD{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMLSDX (M == 1)

SMLSDX{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "SMUSD";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); m_swap = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

SMLSD, SMLSDX Page 428

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand2 = if m_swap then ROR(R[m],16) else R[m];
product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
result = (product1 - product2) + SInt(R[a]);
R[d] = result<31:0>;
if result != SInt(result<31:0>) then // Signed overflow

PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLSD, SMLSDX Page 429

SMLSLD, SMLSLDX

Signed Multiply Subtract Long Dual performs two signed 16 x 16-bit multiplications. It adds the difference of the
products to a 64-bit accumulate operand.
Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.
Overflow is possible during this instruction, but only as a result of the 64-bit addition. This overflow is not detected if it
occurs. Instead, the result wraps around modulo 264.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 0 1 0 0 RdHi RdLo Rm 0 1 M 1 Rn
cond

SMLSLD (M == 0)

SMLSLD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLSLDX (M == 1)

SMLSLDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 1 Rn RdLo RdHi 1 1 0 M Rm

SMLSLD (M == 0)

SMLSLD{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

SMLSLDX (M == 1)

SMLSLDX{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UPREDICTABLE for R13
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

SMLSLD, SMLSLDX Page 430

• The value in the destination register is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand2 = if m_swap then ROR(R[m],16) else R[m];
product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
result = (product1 - product2) + SInt(R[dHi]:R[dLo]);
R[dHi] = result<63:32>;
R[dLo] = result<31:0>;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMLSLD, SMLSLDX Page 431

SMMLA, SMMLAR

Signed Most Significant Word Multiply Accumulate multiplies two signed 32-bit values, extracts the most significant
32 bits of the result, and adds an accumulate value.
Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 0 1 0 1 Rd != 1111 Rm 0 0 R 1 Rn
cond Ra

SMMLA (R == 0)

SMMLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLAR (R == 1)

SMMLAR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "SMMUL";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 1 Rn != 1111 Rd 0 0 0 R Rm
Ra

SMMLA (R == 0)

SMMLA{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLAR (R == 1)

SMMLAR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "SMMUL";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

SMMLA, SMMLAR Page 432

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = (SInt(R[a]) << 32) + SInt(R[n]) * SInt(R[m]);
if round then result = result + 0x80000000;
R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMMLA, SMMLAR Page 433

SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract multiplies two signed 32-bit values, subtracts the result from a 32-bit
accumulate value that is shifted left by 32 bits, and extracts the most significant 32 bits of the result of that
subtraction.
Optionally, the instruction can specify that the result of the instruction is rounded instead of being truncated. In this
case, the constant 0x80000000 is added to the result of the subtraction before the high word is extracted.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 0 1 0 1 Rd Ra Rm 1 1 R 1 Rn
cond

SMMLS (R == 0)

SMMLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLSR (R == 1)

SMMLSR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 1 0 Rn Ra Rd 0 0 0 R Rm

SMMLS (R == 0)

SMMLS{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

SMMLSR (R == 1)

SMMLSR{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); round = (R == '1');
if d == 15 || n == 15 || m == 15 || a == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

SMMLS, SMMLSR Page 434

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = (SInt(R[a]) << 32) - SInt(R[n]) * SInt(R[m]);
if round then result = result + 0x80000000;
R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMMLS, SMMLSR Page 435

SMMUL, SMMULR

Signed Most Significant Word Multiply multiplies two signed 32-bit values, extracts the most significant 32 bits of the
result, and writes those bits to the destination register.
Optionally, the instruction can specify that the result is rounded instead of being truncated. In this case, the constant
0x80000000 is added to the product before the high word is extracted.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 0 1 0 1 Rd 1 1 1 1 Rm 0 0 R 1 Rn
cond

SMMUL (R == 0)

SMMUL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMMULR (R == 1)

SMMULR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); round = (R == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 1 Rn 1 1 1 1 Rd 0 0 0 R Rm

SMMUL (R == 0)

SMMUL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMMULR (R == 1)

SMMULR{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); round = (R == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

SMMUL, SMMULR Page 436

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = SInt(R[n]) * SInt(R[m]);
if round then result = result + 0x80000000;
R[d] = result<63:32>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMMUL, SMMULR Page 437

SMUAD, SMUADX

Signed Dual Multiply Add performs two signed 16 x 16-bit multiplications. It adds the products together, and writes
the result to the destination register.
Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.
This instruction sets PSTATE.Q to 1 if the addition overflows. The multiplications cannot overflow.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 0 0 0 0 Rd 1 1 1 1 Rm 0 0 M 1 Rn
cond

SMUAD (M == 0)

SMUAD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUADX (M == 1)

SMUADX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 0 Rn 1 1 1 1 Rd 0 0 0 M Rm

SMUAD (M == 0)

SMUAD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUADX (M == 1)

SMUADX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

SMUAD, SMUADX Page 438

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand2 = if m_swap then ROR(R[m],16) else R[m];
product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
result = product1 + product2;
R[d] = result<31:0>;
if result != SInt(result<31:0>) then // Signed overflow

PSTATE.Q = '1';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMUAD, SMUADX Page 439

SMULBB, SMULBT, SMULTB, SMULTT

Signed Multiply (halfwords) multiplies two signed 16-bit quantities, taken from either the bottom or the top half of
their respective source registers. The other halves of these source registers are ignored. The 32-bit product is written
to the destination register. No overflow is possible during this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 1 1 0 Rd (0) (0) (0) (0) Rm 1 M N 0 Rn
cond

SMULBB (M == 0 && N == 0)

SMULBB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULBT (M == 1 && N == 0)

SMULBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTB (M == 0 && N == 1)

SMULTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTT (M == 1 && N == 1)

SMULTT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
n_high = (N == '1'); m_high = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 1 Rn 1 1 1 1 Rd 0 0 N M Rm

SMULBB (N == 0 && M == 0)

SMULBB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULBT (N == 0 && M == 1)

SMULBT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTB (N == 1 && M == 0)

SMULTB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULTT (N == 1 && M == 1)

SMULTT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
n_high = (N == '1'); m_high = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

SMULBB, SMULBT, SMULTB,
SMULTT Page 440

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand in the bottom or top half (selected
by <x>), encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half (selected
by <y>), encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand1 = if n_high then R[n]<31:16> else R[n]<15:0>;
operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
result = SInt(operand1) * SInt(operand2);
R[d] = result<31:0>;
// Signed overflow cannot occur

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULBB, SMULBT, SMULTB,
SMULTT Page 441

SMULL, SMULLS

Signed Multiply Long multiplies two 32-bit signed values to produce a 64-bit result.
In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 1 1 0 S RdHi RdLo Rm 1 0 0 1 Rn
cond

Flag setting (S == 1)

SMULLS{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting (S == 0)

SMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 0 0 Rn RdLo RdHi 0 0 0 0 Rm

T1

SMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

SMULL, SMULLS Page 442

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose destination register for the lower 32 bits of the result, encoded in the "RdLo"
field.

<RdHi> Is the general-purpose destination register for the upper 32 bits of the result, encoded in the "RdHi"
field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = SInt(R[n]) * SInt(R[m]);
R[dHi] = result<63:32>;
R[dLo] = result<31:0>;
if setflags then

PSTATE.N = result<63>;
PSTATE.Z = IsZeroBit(result<63:0>);
// PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULL, SMULLS Page 443

SMULWB, SMULWT

Signed Multiply (word by halfword) multiplies a signed 32-bit quantity and a signed 16-bit quantity. The signed 16-bit
quantity is taken from either the bottom or the top half of its source register. The other half of the second source
register is ignored. The top 32 bits of the 48-bit product are written to the destination register. The bottom 16 bits of
the 48-bit product are ignored. No overflow is possible during this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 1 0 Rd (0) (0) (0) (0) Rm 1 M 1 0 Rn
cond

SMULWB (M == 0)

SMULWB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULWT (M == 1)

SMULWT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_high = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 1 1 Rn 1 1 1 1 Rd 0 0 0 M Rm

SMULWB (M == 0)

SMULWB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMULWT (M == 1)

SMULWT{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_high = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier in the bottom or top half (selected
by <y>), encoded in the "Rm" field.

SMULWB, SMULWT Page 444

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand2 = if m_high then R[m]<31:16> else R[m]<15:0>;
product = SInt(R[n]) * SInt(operand2);
R[d] = product<47:16>;
// Signed overflow cannot occur

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMULWB, SMULWT Page 445

SMUSD, SMUSDX

Signed Multiply Subtract Dual performs two signed 16 x 16-bit multiplications. It subtracts one of the products from
the other, and writes the result to the destination register.
Optionally, the instruction can exchange the halfwords of the second operand before performing the arithmetic. This
produces top x bottom and bottom x top multiplication.
Overflow cannot occur.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 0 0 0 0 Rd 1 1 1 1 Rm 0 1 M 1 Rn
cond

SMUSD (M == 0)

SMUSD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUSDX (M == 1)

SMUSDX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 0 0 Rn 1 1 1 1 Rd 0 0 0 M Rm

SMUSD (M == 0)

SMUSD{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

SMUSDX (M == 1)

SMUSDX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); m_swap = (M == '1');
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

SMUSD, SMUSDX Page 446

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand2 = if m_swap then ROR(R[m],16) else R[m];
product1 = SInt(R[n]<15:0>) * SInt(operand2<15:0>);
product2 = SInt(R[n]<31:16>) * SInt(operand2<31:16>);
result = product1 - product2;
R[d] = result<31:0>;
// Signed overflow cannot occur

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SMUSD, SMUSDX Page 447

SRS, SRSDA, SRSDB, SRSIA, SRSIB

Store Return State stores the LR_<current_mode> and SPSR_<current_mode> to the stack of a specified mode. For
information about memory accesses see Memory accesses.
SRS is UNDEFINED in Hyp mode.
SRS is CONSTRAINED UNPREDICTABLE if it is executed in User or System mode, or if the specified mode is any of the
following:

• Not implemented.
• A mode that Table G1-5 does not show.
• Hyp mode.
• Monitor mode, if the SRS instruction is executed in Non-secure state.

If EL3 is using AArch64 and an SRS instruction that is executed in a Secure EL1 mode specifies Monitor mode, it is
trapped to EL3.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 P U 1 W 0 (1) (1) (0) (1) (0) (0) (0) (0) (0) (1) (0) (1) (0) (0) (0) mode

Decrement After (P == 0 && U == 0)

SRSDA{<c>}{<q>} SP{!}, #<mode>

Decrement Before (P == 1 && U == 0)

SRSDB{<c>}{<q>} SP{!}, #<mode>

Increment After (P == 0 && U == 1)

SRS{IA}{<c>}{<q>} SP{!}, #<mode>

Increment Before (P == 1 && U == 1)

SRSIB{<c>}{<q>} SP{!}, #<mode>

wback = (W == '1'); increment = (U == '1'); wordhigher = (P == U);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 0 W 0 (1) (1) (0) (1) (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) mode

T1

SRSDB{<c>}{<q>} SP{!}, #<mode>

wback = (W == '1'); increment = FALSE; wordhigher = FALSE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 1 0 W 0 (1) (1) (0) (1) (1) (1) (0) (0) (0) (0) (0) (0) (0) (0) (0) mode

SRS, SRSDA, SRSDB, SRSIA,
SRSIB Page 448

T2

SRS{IA}{<c>}{<q>} SP{!}, #<mode>

wback = (W == '1'); increment = TRUE; wordhigher = FALSE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly SRS (T32) and SRS (A32).

Assembler Symbols

IA For encoding A1: is an optional suffix to indicate the Increment After variant.
For encoding T2: is an optional suffix for the Increment After form.

<c> For encoding A1: see Standard assembler syntax fields. <c> must be AL or omitted.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

<mode> Is the number of the mode whose Banked SP is used as the base register, encoded in the "mode" field.
For details of PE modes and their numbers see AArch32 PE mode descriptions.

SRSFA, SRSEA, SRSFD, and SRSED are pseudo-instructions for SRSIB, SRSIA, SRSDB, and SRSDA respectively, referring to
their use for pushing data onto Full Ascending, Empty Ascending, Full Descending, and Empty Descending stacks.

SRS, SRSDA, SRSDB, SRSIA,
SRSIB Page 449

Operation

if CurrentInstrSet() == InstrSet_A32 then
if ConditionPassed() then

EncodingSpecificOperations();
if PSTATE.EL == EL2 then // UNDEFINED at EL2

UNDEFINED;

// Check for UNPREDICTABLE cases. The definition of UNPREDICTABLE does not permit these
// to be security holes
if PSTATE.M IN {M32_User,M32_System} then

UNPREDICTABLE;
elsif mode == M32_Hyp then // Check for attempt to access Hyp mode SP

UNPREDICTABLE;
elsif mode == M32_Monitor then // Check for attempt to access Monitor mode SP

if !HaveEL(EL3) || CurrentSecurityState() != SS_Secure then
UNPREDICTABLE;

elsif !ELUsingAArch32(EL3) then
AArch64.MonitorModeTrap();

elsif BadMode(mode) then
UNPREDICTABLE;

base = Rmode[13,mode];
address = if increment then base else base-8;
if wordhigher then address = address+4;
MemA[address,4] = LR;
MemA[address+4,4] = SPSR_curr[];
if wback then Rmode[13,mode] = if increment then base+8 else base-8;

else
if ConditionPassed() then

EncodingSpecificOperations();
if PSTATE.EL == EL2 then // UNDEFINED at EL2

UNDEFINED;

// Check for UNPREDICTABLE cases. The definition of UNPREDICTABLE does not permit these
// to be security holes
if PSTATE.M IN {M32_User,M32_System} then

UNPREDICTABLE;
elsif mode == M32_Hyp then // Check for attempt to access Hyp mode SP

UNPREDICTABLE;
elsif mode == M32_Monitor then // Check for attempt to access Monitor mode SP

if !HaveEL(EL3) || CurrentSecurityState() != SS_Secure then
UNPREDICTABLE;

elsif !ELUsingAArch32(EL3) then
AArch64.MonitorModeTrap();

elsif BadMode(mode) then
UNPREDICTABLE;

base = Rmode[13,mode];
address = if increment then base else base-8;
if wordhigher then address = address+4;
MemA[address,4] = LR;
MemA[address+4,4] = SPSR_curr[];
if wback then Rmode[13,mode] = if increment then base+8 else base-8;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

If mode == M32_Hyp, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

If mode == M32_Monitor && (!HaveEL(EL3) || CurrentSecurityState() != SS_Secure), then one of the following
behaviors must occur:

SRS, SRSDA, SRSDB, SRSIA,
SRSIB Page 450

• The instruction is UNDEFINED.
• The instruction executes as NOP.

If BadMode(mode), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction stores to the stack of the mode in which it is executed.
• The instruction stores to an UNKNOWN address, and if the instruction specifies writeback then any general-

purpose register that can be accessed from the current Exception level without a privilege violation becomes
UNKNOWN.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SRS, SRSDA, SRSDB, SRSIA,
SRSIB Page 451

SSAT

Signed Saturate saturates an optionally-shifted signed value to a selectable signed range.
This instruction sets PSTATE.Q to 1 if the operation saturates.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 0 1 sat_imm Rd imm5 sh 0 1 Rn
cond

Arithmetic shift right (sh == 1)

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left (sh == 0)

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
(shift_t, shift_n) = DecodeImmShift(sh:'0', imm5);
if d == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm

Arithmetic shift right (sh == 1 && !(imm3 == 000 && imm2 == 00))

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left (sh == 0)

SSAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

if sh == '1' && (imm3:imm2) == '00000' then SEE "SSAT16";
d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
(shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 1 to 32, encoded in the "sat_imm" field as <imm>-1.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<amount> For encoding A1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm5" field.
For encoding A1: is the shift amount, in the range 1 to 32 encoded in the "imm5" field as <amount>
modulo 32.

SSAT Page 452

For encoding T1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm3:imm2" field.
For encoding T1: is the shift amount, in the range 1 to 31 encoded in the "imm3:imm2" field as
<amount>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand = Shift(R[n], shift_t, shift_n, PSTATE.C); // PSTATE.C ignored
(result, sat) = SignedSatQ(SInt(operand), saturate_to);
R[d] = SignExtend(result, 32);
if sat then

PSTATE.Q = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSAT Page 453

SSAT16

Signed Saturate 16 saturates two signed 16-bit values to a selected signed range.
This instruction sets PSTATE.Q to 1 if the operation saturates.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 0 1 0 sat_imm Rd (1) (1) (1) (1) 0 0 1 1 Rn
cond

A1

SSAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
if d == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm

T1

SSAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 1 to 16, encoded in the "sat_imm" field as <imm>-1.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result1, sat1) = SignedSatQ(SInt(R[n]<15:0>), saturate_to);
(result2, sat2) = SignedSatQ(SInt(R[n]<31:16>), saturate_to);
R[d]<15:0> = SignExtend(result1, 16);
R[d]<31:16> = SignExtend(result2, 16);
if sat1 || sat2 then

PSTATE.Q = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSAT16 Page 454

SSAX

Signed Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one 16-bit
integer subtraction and one 16-bit addition, and writes the results to the destination register. It sets PSTATE.GE
according to the results.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
cond

A1

SSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1

SSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum = SInt(R[n]<15:0>) + SInt(R[m]<31:16>);
diff = SInt(R[n]<31:16>) - SInt(R[m]<15:0>);
R[d]<15:0> = sum<15:0>;
R[d]<31:16> = diff<15:0>;
PSTATE.GE<1:0> = if sum >= 0 then '11' else '00';
PSTATE.GE<3:2> = if diff >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

SSAX Page 455

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSAX Page 456

SSBB

Speculative Store Bypass Barrier is a memory barrier that prevents speculative loads from bypassing earlier stores to
the same virtual address under certain conditions. For more information and details of the semantics, see Speculative
Store Bypass Barrier (SSBB).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) 0 1 0 0 0 0 0 0

A1

SSBB{<q>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 0 0 0 0

T1

SSBB{<q>}

if InITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
SpeculativeStoreBypassBarrierToVA();

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSBB Page 457

SSUB16

Signed Subtract 16 performs two 16-bit signed integer subtractions, and writes the results to the destination register.
It sets PSTATE.GE according to the results of the subtractions.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
cond

A1

SSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1

SSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff1 = SInt(R[n]<15:0>) - SInt(R[m]<15:0>);
diff2 = SInt(R[n]<31:16>) - SInt(R[m]<31:16>);
R[d]<15:0> = diff1<15:0>;
R[d]<31:16> = diff2<15:0>;
PSTATE.GE<1:0> = if diff1 >= 0 then '11' else '00';
PSTATE.GE<3:2> = if diff2 >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:

SSUB16 Page 458

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSUB16 Page 459

SSUB8

Signed Subtract 8 performs four 8-bit signed integer subtractions, and writes the results to the destination register. It
sets PSTATE.GE according to the results of the subtractions.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 0 0 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
cond

A1

SSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1

SSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff1 = SInt(R[n]<7:0>) - SInt(R[m]<7:0>);
diff2 = SInt(R[n]<15:8>) - SInt(R[m]<15:8>);
diff3 = SInt(R[n]<23:16>) - SInt(R[m]<23:16>);
diff4 = SInt(R[n]<31:24>) - SInt(R[m]<31:24>);
R[d]<7:0> = diff1<7:0>;
R[d]<15:8> = diff2<7:0>;
R[d]<23:16> = diff3<7:0>;
R[d]<31:24> = diff4<7:0>;
PSTATE.GE<0> = if diff1 >= 0 then '1' else '0';
PSTATE.GE<1> = if diff2 >= 0 then '1' else '0';
PSTATE.GE<2> = if diff3 >= 0 then '1' else '0';
PSTATE.GE<3> = if diff4 >= 0 then '1' else '0';

SSUB8 Page 460

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SSUB8 Page 461

STC

Store data to System register calculates an address from a base register value and an immediate offset, and stores a
word from the DBGDTRRXint System register to memory. It can use offset, post-indexed, pre-indexed, or unindexed
addressing. For information about memory accesses, see Memory accesses.
In an implementation that includes EL2, the permitted STC access to DBGDTRRXint can be trapped to Hyp mode,
meaning that an attempt to execute an STC instruction in a Non-secure mode other than Hyp mode, that would be
permitted in the absence of the Hyp trap controls, generates a Hyp Trap exception. For more information, see
Trapping general Non-secure System register accesses to debug registers.
For simplicity, the STC pseudocode does not show this possible trap to Hyp mode.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 P U 0 W 0 Rn 0 1 0 1 1 1 1 0 imm8
cond

Offset (P == 1 && W == 0)

STC{<c>}{<q>} p14, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 1)

STC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

STC{<c>}{<q>} p14, c5, [<Rn>, #{+/-}<imm>]!

Unindexed (P == 0 && U == 1 && W == 0)

STC{<c>}{<q>} p14, c5, [<Rn>], <option>

if P == '0' && U == '0' && W == '0' then UNDEFINED;
n = UInt(Rn); cp = 14;
imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U 0 W 0 Rn 0 1 0 1 1 1 1 0 imm8

STC Page 462

Offset (P == 1 && W == 0)

STC{<c>}{<q>} p14, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 1)

STC{<c>}{<q>} p14, c5, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

STC{<c>}{<q>} p14, c5, [<Rn>, #{+/-}<imm>]!

Unindexed (P == 0 && U == 1 && W == 0)

STC{<c>}{<q>} p14, c5, [<Rn>], <option>

if P == '0' && U == '0' && W == '0' then UNDEFINED;
n = UInt(Rn); cp = 14;
imm32 = ZeroExtend(imm8:'00', 32); index = (P == '1'); add = (U == '1'); wback = (W == '1');
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For the offset or unindexed variant: is the general-purpose base register, encoded in the "Rn" field. The
PC can be used, but this is deprecated.
For the offset, post-indexed or pre-indexed variant: is the general-purpose base register, encoded in the
"Rn" field.

<option> Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value of
this field is ignored when executing this instruction.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting to 0
and encoded in the "imm8" field, as <imm>/4.

STC Page 463

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];

// System register read from DBGDTRRXint.
AArch32.SysRegRead(cp, ThisInstr(), address<31:0>);
if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STC Page 464

STL

Store-Release Word stores a word from a register to memory. The instruction also has memory ordering semantics as
described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 0 0 Rn (1) (1) (1) (1) (1) (1) 0 0 1 0 0 1 Rt
cond

A1

STL{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 1 0 (1) (1) (1) (1)

T1

STL{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
MemO[address, 4] = R[t];

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STL Page 465

STLB

Store-Release Byte stores a byte from a register to memory. The instruction also has memory ordering semantics as
described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 0 0 Rn (1) (1) (1) (1) (1) (1) 0 0 1 0 0 1 Rt
cond

A1

STLB{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 0 0 (1) (1) (1) (1)

T1

STLB{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
MemO[address, 1] = R[t]<7:0>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLB Page 466

STLEX

Store-Release Exclusive Word stores a word from a register to memory if the executing PE has exclusive access to the
memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.
The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 0 0 Rn Rd (1) (1) 1 0 1 0 0 1 Rt
cond

A1

STLEX{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 1 0 Rd

T1

STLEX{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

STLEX Page 467

• The instruction performs the store to an UNKNOWN address.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is written,
encoded in the "Rd" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Rd> is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the
following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
if AArch32.ExclusiveMonitorsPass(address,4) then

MemO[address, 4] = R[t];
R[d] = ZeroExtend('0', 32);

else
R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLEX Page 468

STLEXB

Store-Release Exclusive Byte stores a byte from a register to memory if the executing PE has exclusive access to the
memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.
The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 0 0 Rn Rd (1) (1) 1 0 1 0 0 1 Rt
cond

A1

STLEXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 0 0 Rd

T1

STLEXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

STLEXB Page 469

• The instruction performs the store to an UNKNOWN address.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is written,
encoded in the "Rd" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Aborts
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Rd> is not updated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
if AArch32.ExclusiveMonitorsPass(address,1) then

MemO[address, 1] = R[t]<7:0>;
R[d] = ZeroExtend('0', 32);

else
R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLEXB Page 470

STLEXD

Store-Release Exclusive Doubleword stores a doubleword from two registers to memory if the executing PE has
exclusive access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no
store was performed.
The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 0 Rn Rd (1) (1) 1 0 1 0 0 1 Rt
cond

A1

STLEXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); t2 = t+1; n = UInt(Rn);
if d == 15 || Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t || d == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: Rt<0> = '0'.
• The instruction executes with the additional decode: t2 = t.
• The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction is handled as described in Using R15.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt Rt2 1 1 1 1 Rd

STLEXD Page 471

T1

STLEXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
if d == 15 || t == 15 || t2 == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t || d == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is written,
encoded in the "Rd" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. <Rt>
must be even-numbered and not R14.
For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.
For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Rd> is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the
following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

STLEXD Page 472

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
// Create doubleword to store such that R[t] will be stored at address and R[t2] at address+4.
value = if BigEndian(AccessType_GPR) then R[t]:R[t2] else R[t2]:R[t];
if AArch32.ExclusiveMonitorsPass(address, 8) then

MemO[address, 8] = value;
R[d] = ZeroExtend('0', 32);

else
R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLEXD Page 473

STLEXH

Store-Release Exclusive Halfword stores a halfword from a register to memory if the executing PE has exclusive
access to the memory at that address, and returns a status value of 0 if the store was successful, or of 1 if no store was
performed.
The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 1 0 Rn Rd (1) (1) 1 0 1 0 0 1 Rt
cond

A1

STLEXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 1 0 1 Rd

T1

STLEXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

STLEXH Page 474

• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is written,
encoded in the "Rd" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated
• <Rd> is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the
following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
if AArch32.ExclusiveMonitorsPass(address,2) then

MemO[address, 2] = R[t]<15:0>;
R[d] = ZeroExtend('0', 32);

else
R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLEXH Page 475

STLH

Store-Release Halfword stores a halfword from a register to memory. The instruction also has memory ordering
semantics as described in Load-Acquire, Store-Release.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 1 0 Rn (1) (1) (1) (1) (1) (1) 0 0 1 0 0 1 Rt
cond

A1

STLH{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 1 0 0 1 (1) (1) (1) (1)

T1

STLH{<c>}{<q>} <Rt>, [<Rn>]

t = UInt(Rt); n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
MemO[address, 2] = R[t]<15:0>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STLH Page 476

STM (User registers)

In an EL1 mode other than System mode, Store Multiple (User registers) stores multiple User mode registers to
consecutive memory locations using an address from a base register. The PE reads the base register value normally,
using the current mode to determine the correct Banked version of the register. This instruction cannot writeback to
the base register.
Store Multiple (User registers) is UNDEFINED in Hyp mode, and CONSTRAINED UNPREDICTABLE in User or System modes.
Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 P U 1 (0) 0 Rn register_list
cond

A1

STM{<amode>}{<c>}{<q>} <Rn>, <registers>^

n = UInt(Rn); registers = register_list; increment = (U == '1'); wordhigher = (P == U);
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of

registers. These registers might include R15.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<amode> is one of:
DA

Decrement After. The consecutive memory addresses end at the address in the base register.
Encoded as P = 0, U = 0.

ED
Empty Descending. For this instruction, a synonym for DA.

DB
Decrement Before. The consecutive memory addresses end one word below the address in the
base register. Encoded as P = 1, U = 0.

FD
Full Descending. For this instruction, a synonym for DB.

IA
Increment After. The consecutive memory addresses start at the address in the base register. This
is the default. Encoded as P = 0, U = 1.

EA
Empty Ascending. For this instruction, a synonym for IA.

IB
Increment Before. The consecutive memory addresses start one word above the address in the
base register. Encoded as P = 1, U = 1.

STM (User registers) Page 477

FA
Full Ascending. For this instruction, a synonym for IB.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<registers> Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies the set
of registers to be stored by the STM instruction. The registers are stored with the lowest-numbered
register to the lowest memory address, through to the highest-numbered register to the highest
memory address. See also Encoding of lists of general-purpose registers and the PC.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.M IN {M32_User,M32_System} then

UNPREDICTABLE;
else

length = 4*BitCount(registers);
address = if increment then R[n] else R[n]-length;
if wordhigher then address = address+4;
for i = 0 to 14

if registers<i> == '1' then // Store User mode register
MemS[address,4] = Rmode[i, M32_User];
address = address + 4;

if registers<15> == '1' then
MemS[address,4] = PCStoreValue();

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32_User,M32_System}, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of

registers. These registers might include R15.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STM (User registers) Page 478

STM, STMIA, STMEA

Store Multiple (Increment After, Empty Ascending) stores multiple registers to consecutive memory locations using an
address from a base register. The consecutive memory locations start at this address, and the address just above the
last of those locations can optionally be written back to the base register.
The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.
Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. For details of related system instructions see STM (User registers).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 0 1 0 W 0 Rn register_list
cond

A1

STM{IA}{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

STMEA{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Empty Ascending stack)

n = UInt(Rn); registers = register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of

registers. These registers might include R15. If the instruction specifies writeback, the modification to the
base address on writeback might differ from the number of registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 Rn register_list

T1

STM{IA}{<c>}{<q>} <Rn>!, <registers> // (Preferred syntax)

STMEA{<c>}{<q>} <Rn>!, <registers> // (Alternate syntax, Empty Ascending stack)

n = UInt(Rn); registers = '00000000':register_list; wback = TRUE;
if BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

STM, STMIA, STMEA Page 479

• The instruction executes as NOP.
• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of

registers. These registers might include R15. If the instruction specifies writeback, the modification to the
base address on writeback might differ from the number of registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 W 0 Rn (0) M register_list
P

T2

STM{IA}{<c>}.W <Rn>{!}, <registers> // (Preferred syntax, if <Rn>, '!' and <registers> can be represented in T1)

STMEA{<c>}.W <Rn>{!}, <registers> // (Alternate syntax, Empty Ascending stack, if <Rn>, '!' and <registers> can be represented in T1)

STM{IA}{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

STMEA{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Empty Ascending stack)

n = UInt(Rn); registers = P:M:register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;
if registers<13> == '1' then UNPREDICTABLE;
if registers<15> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of

registers. These registers might include R15. If the instruction specifies writeback, the modification to the
base address on writeback might differ from the number of registers stored.

If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as described, with no change to its behavior and no additional side effects.
• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of

registers. These registers might include R15.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored for the base register is UNKNOWN.

If registers<13> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs all of the stores using the specified addressing mode but the value of R13 is

UNKNOWN.

If registers<15> == '1', then one of the following behaviors must occur:

STM, STMIA, STMEA Page 480

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs all of the stores using the specified addressing mode but the value of R15 is

UNKNOWN.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction executes with writeback to the PC. The instruction is handled as described in Using R15.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

IA Is an optional suffix for the Increment After form.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> For encoding A1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }.
The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in the
list.
If base register writeback is specified, and the base register is not the lowest-numbered register in the
list, such an instruction stores an UNKNOWN value for the base register.
For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }. The registers in the list must be in the range R0-R7, encoded in the "register_list" field. If
the base register is not the lowest-numbered register in the list, such an instruction stores an UNKNOWN
value for the base register.
For encoding T2: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }.
The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
for i = 0 to 14

if registers<i> == '1' then
if i == n && wback && i != LowestSetBit(registers) then

MemS[address,4] = bits(32) UNKNOWN; // Only possible for encodings T1 and A1
else

MemS[address,4] = R[i];
address = address + 4;

if registers<15> == '1' then // Only possible for encoding A1
MemS[address,4] = PCStoreValue();

if wback then R[n] = R[n] + 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STM, STMIA, STMEA Page 481

STMDA, STMED

Store Multiple Decrement After (Empty Descending) stores multiple registers to consecutive memory locations using
an address from a base register. The consecutive memory locations end at this address, and the address just below the
lowest of those locations can optionally be written back to the base register.
The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.
Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 0 0 0 W 0 Rn register_list
cond

A1

STMDA{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

STMED{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Empty Descending stack)

n = UInt(Rn); registers = register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction targets an unspecified set of registers. These registers might include R15. If the instruction

specifies writeback, the modification to the base address on writeback might differ from the number of
registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by { and }.
The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in the
list.
If base register writeback is specified, and the base register is not the lowest-numbered register in the
list, such an instruction stores an UNKNOWN value for the base register.

STMDA, STMED Page 482

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] - 4*BitCount(registers) + 4;
for i = 0 to 14

if registers<i> == '1' then
if i == n && wback && i != LowestSetBit(registers) then

MemS[address,4] = bits(32) UNKNOWN;
else

MemS[address,4] = R[i];
address = address + 4;

if registers<15> == '1' then
MemS[address,4] = PCStoreValue();

if wback then R[n] = R[n] - 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STMDA, STMED Page 483

STMDB, STMFD

Store Multiple Decrement Before (Full Descending) stores multiple registers to consecutive memory locations using an
address from a base register. The consecutive memory locations end just below this address, and the address of the
first of those locations can optionally be written back to the base register.
The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.
Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. For details of related system instructions see STM (User registers).
This instruction is used by the alias PUSH (multiple registers).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 1 0 0 W 0 Rn register_list
cond

A1

STMDB{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

STMFD{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack)

n = UInt(Rn); registers = register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of

registers. These registers might include R15. If the instruction specifies writeback, the modification to the
base address on writeback might differ from the number of registers stored.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0 W 0 Rn (0) M register_list
P

T1

STMDB{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

STMFD{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack)

n = UInt(Rn); registers = P:M:register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;
if registers<13> == '1' then UNPREDICTABLE;
if registers<15> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

STMDB, STMFD Page 484

• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of
registers. These registers might include R15. If the instruction specifies writeback, the modification to the
base address on writeback might differ from the number of registers stored.

If wback && registers<n> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored for the base register is UNKNOWN.

If BitCount(registers) == 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as described, with no change to its behavior and no additional side effects.
• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of

registers. These registers might include R15.

If registers<13> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as described, with no change to its behavior and no additional side effects.
• The store instruction performs all of the stores using the specified addressing mode but the value of R13 is

UNKNOWN.

If registers<15> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs all of the stores using the specified addressing mode but the value of R15 is

UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> For encoding A1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }.
The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in the
list.
If base register writeback is specified, and the base register is not the lowest-numbered register in the
list, such an instruction stores an UNKNOWN value for the base register.
For encoding T1: is a list of one or more registers to be stored, separated by commas and surrounded
by { and }.
The registers in the list must be in the range R0-R12, encoded in the "register_list" field, and can
optionally contain the LR. If the LR is in the list, the "M" field is set to 1, otherwise it defaults to 0.

Alias Conditions

Alias Of
variant Is preferred when

PUSH (multiple
registers)

T1 W == '1' && Rn == '1101' && BitCount(M:register_list) > 1

PUSH (multiple
registers)

A1 W == '1' && Rn == '1101' && BitCount(register_list) > 1

STMDB, STMFD Page 485

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] - 4*BitCount(registers);
for i = 0 to 14

if registers<i> == '1' then
if i == n && wback && i != LowestSetBit(registers) then

MemS[address,4] = bits(32) UNKNOWN; // Only possible for encoding A1
else

MemS[address,4] = R[i];
address = address + 4;

if registers<15> == '1' then // Only possible for encoding A1
MemS[address,4] = PCStoreValue();

if wback then R[n] = R[n] - 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STMDB, STMFD Page 486

STMIB, STMFA

Store Multiple Increment Before (Full Ascending) stores multiple registers to consecutive memory locations using an
address from a base register. The consecutive memory locations start just above this address, and the address of the
last of those locations can optionally be written back to the base register.
The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register
from the highest memory address. See also Encoding of lists of general-purpose registers and the PC.
Armv8.2 permits the deprecation of some Store Multiple ordering behaviors in AArch32 state, for more information
see FEAT_LSMAOC. For details of related system instructions see STM (User registers).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 1 1 0 W 0 Rn register_list
cond

A1

STMIB{<c>}{<q>} <Rn>{!}, <registers> // (Preferred syntax)

STMFA{<c>}{<q>} <Rn>{!}, <registers> // (Alternate syntax, Full Ascending stack)

n = UInt(Rn); registers = register_list; wback = (W == '1');
if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount(registers) < 1, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as an STM with the same addressing mode but targeting an unspecified set of

registers. These registers might include R15. If the instruction specifies writeback, the modification to the
base address on writeback might differ from the number of registers stored.

If n == 15 && wback, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be stored, separated by commas and surrounded by { and }.
The PC can be in the list. However, Arm deprecates the use of instructions that include the PC in the
list.
If base register writeback is specified, and the base register is not the lowest-numbered register in the
list, such an instruction stores an UNKNOWN value for the base register.

STMIB, STMFA Page 487

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + 4;
for i = 0 to 14

if registers<i> == '1' then
if i == n && wback && i != LowestSetBit(registers) then

MemS[address,4] = bits(32) UNKNOWN;
else

MemS[address,4] = R[i];
address = address + 4;

if registers<15> == '1' then
MemS[address,4] = PCStoreValue();

if wback then R[n] = R[n] + 4*BitCount(registers);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STMIB, STMFA Page 488

STR (immediate)

Store Register (immediate) calculates an address from a base register value and an immediate offset, and stores a
word from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For information about
memory accesses see Memory accesses.
This instruction is used by the alias PUSH (single register).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 , T3 and T4) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 0 P U 0 W 0 Rn Rt imm12
cond

Offset (P == 1 && W == 0)

STR{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

STR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

STR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if P == '0' && W == '1' then SEE "STRT";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 imm5 Rn Rt

T1

STR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
index = TRUE; add = TRUE; wback = FALSE;

STR (immediate) Page 489

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 Rt imm8

T2

STR{<c>}{<q>} <Rt>, [SP{, #{+}<imm>}]

t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
index = TRUE; add = TRUE; wback = FALSE;

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 1 0 0 != 1111 Rt imm12
Rn

T3

STR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // (<Rt>, <Rn>, <imm> can be represented in T1 or T2)

STR{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

T4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 != 1111 Rt 1 P U W imm8
Rn

Offset (P == 1 && U == 0 && W == 0)

STR{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W == 1)

STR{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

STR{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if P == '1' && U == '1' && W == '0' then SEE "STRT";
if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t == 15 || (wback && n == t) then UNPREDICTABLE;

STR (immediate) Page 490

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.
For encoding T1, T2, T3 and T4: is the general-purpose register to be transferred, encoded in the "Rt"
field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in
the offset variant, but this is deprecated.
For encoding T1, T3 and T4: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if
omitted, and encoded in the "imm12" field.
For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4, in the range 0
to 124, defaulting to 0 and encoded in the "imm5" field as <imm>/4.
For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in the range 0
to 1020, defaulting to 0 and encoded in the "imm8" field as <imm>/4.
For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.
For encoding T4: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm8" field.

Alias Conditions

Alias Of
variant Is preferred when

PUSH
(single
register)

A1 (pre-
indexed)

P == '1' && U == '0' && W == '1' && Rn == '1101' && imm12 == '000000000100'

PUSH
(single
register)

T4 (pre-
indexed)

Rn == '1101' && P == '1' && U == '0' && W == '1' && imm8 == '00000100'

STR (immediate) Page 491

Operation

if CurrentInstrSet() == InstrSet_A32 then
if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
if wback then R[n] = offset_addr;

else
if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
MemU[address,4] = R[t];
if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (immediate) Page 492

STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, stores a word
from a register to memory. The offset register value can optionally be shifted. For information about memory accesses
see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 P U 0 W 0 Rn Rt imm5 stype 0 Rm
cond

Offset (P == 1 && W == 0)

STR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed (P == 0 && W == 0)

STR{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed (P == 1 && W == 1)

STR{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

if P == '0' && W == '1' then SEE "STRT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
if m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt

T1

STR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

STR (register) Page 493

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 != 1111 Rt 0 0 0 0 0 0 imm2 Rm
Rn

T2

STR{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)

STR{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.
For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in
the offset variant, but this is deprecated.
For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U +/-
0 -
1 +

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is
encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

STR (register) Page 494

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
bits(32) data;
if t == 15 then // Only possible for encoding A1

data = PCStoreValue();
else

data = R[t];
MemU[address,4] = data;
if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STR (register) Page 495

STRB (immediate)

Store Register Byte (immediate) calculates an address from a base register value and an immediate offset, and stores
a byte from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 0 P U 1 W 0 Rn Rt imm12
cond

Offset (P == 1 && W == 0)

STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

STRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

STRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if P == '0' && W == '1' then SEE "STRBT";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
if t == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 imm5 Rn Rt

STRB (immediate) Page 496

T1

STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
index = TRUE; add = TRUE; wback = FALSE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 0 0 != 1111 Rt imm12
Rn

T2

STRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // (<Rt>, <Rn>, <imm> can be represented in T1)

STRB{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 != 1111 Rt 1 P U W imm8
Rn

Offset (P == 1 && U == 0 && W == 0)

STRB{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W == 1)

STRB{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

STRB{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if P == '1' && U == '1' && W == '0' then SEE "STRBT";
if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t == 15 || (wback && n == t) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

STRB (immediate) Page 497

• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in
the offset variant, but this is deprecated.
For encoding T1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if
omitted, and encoded in the "imm12" field.
For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting to
0 and encoded in the "imm5" field.
For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.
For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm8" field.

Operation

if CurrentInstrSet() == InstrSet_A32 then
if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
MemU[address,1] = R[t]<7:0>;
if wback then R[n] = offset_addr;

else
if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
MemU[address,1] = R[t]<7:0>;
if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRB (immediate) Page 498

STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value, and stores
a byte from a register to memory. The offset register value can optionally be shifted. For information about memory
accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 P U 1 W 0 Rn Rt imm5 stype 0 Rm
cond

Offset (P == 1 && W == 0)

STRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed (P == 0 && W == 0)

STRB{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed (P == 1 && W == 1)

STRB{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

if P == '0' && W == '1' then SEE "STRBT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 Rm Rn Rt

STRB (register) Page 499

T1

STRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 != 1111 Rt 0 0 0 0 0 0 imm2 Rm
Rn

T2

STRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)

STRB{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in
the offset variant, but this is deprecated.
For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U +/-
0 -
1 +

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is
encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

STRB (register) Page 500

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
MemU[address,1] = R[t]<7:0>;
if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRB (register) Page 501

STRBT

Store Register Byte Unprivileged stores a byte from a register to memory. For information about memory accesses see
Memory accesses.
The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually
running in User mode.
STRBT is UNPREDICTABLE in Hyp mode.
The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.
The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 0 0 U 1 1 0 Rn Rt imm12
cond

A1

STRBT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in

Using R15.
• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset

addressing with the base register as PC, without writeback.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 U 1 1 0 Rn Rt imm5 stype 0 Rm
cond

STRBT Page 502

A2

STRBT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(stype, imm5);
bits(32) imm32 = bits(32) UNKNOWN;
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in

Using R15.
• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset

addressing with the base register as PC, without writeback.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 != 1111 Rt 1 1 1 0 imm8
Rn

T1

STRBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

STRBT Page 503

<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC
can be used, but this is deprecated.
For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if
omitted and encoded in “U”:

U +/-
0 -
1 +

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in “U”:

U +/-
0 -
1 +

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if
omitted, and encoded in the "imm12" field.
For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to
0 and encoded in the "imm8" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
MemU_unpriv[address,1] = R[t]<7:0>;
if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as STRB (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRBT Page 504

STRD (immediate)

Store Register Dual (immediate) calculates an address from a base register value and an immediate offset, and stores
two words from two registers to memory. It can use offset, post-indexed, or pre-indexed addressing. For information
about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 1 W 0 Rn Rt imm4H 1 1 1 1 imm4L
cond

Offset (P == 1 && W == 0)

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

if Rt<0> == '1' then UNPREDICTABLE;
t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
if P == '0' && W == '1' then UNPREDICTABLE;
if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
if t2 == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15 || t2 == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: t<0> = '0'.
• The instruction executes with the additional decode: t2 = t.
• The instruction executes as described, with no change to its behavior and no additional side-effects. This does

not apply when Rt == '1111'.

STRD (immediate) Page 505

If P == '0' && W == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 W 0 != 1111 Rt Rt2 imm8
Rn

Offset (P == 1 && W == 0)

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 1)

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

if P == '0' && W == '0' then SEE "Related encodings";
t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if wback && (n == t || n == t2) then UNPREDICTABLE;
if n == 15 || t == 15 || t2 == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15 || t2 == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.
Related encodings: Load/store dual, load/store exclusive, table branch.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. This
register must be even-numbered and not R14.
For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

STRD (immediate) Page 506

<Rt2> For encoding A1: is the second general-purpose register to be transferred. This register must be
<R(t+1)>.
For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in
the offset variant, but this is deprecated.
For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is the unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020,
defaulting to 0 if omitted, and encoded in the "imm8" field as <imm>/4.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
if IsAligned(address, 8) then

bits(64) data;
if BigEndian(AccessType_GPR) then

data<63:32> = R[t];
data<31:0> = R[t2];

else
data<31:0> = R[t];
data<63:32> = R[t2];

MemA[address,8] = data;
else

MemA[address,4] = R[t];
MemA[address+4,4] = R[t2];

if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRD (immediate) Page 507

STRD (register)

Store Register Dual (register) calculates an address from a base register value and a register offset, and stores two
words from two registers to memory. It can use offset, post-indexed, or pre-indexed addressing. For information about
memory accesses see Memory accesses.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 0 W 0 Rn Rt (0) (0) (0) (0) 1 1 1 1 Rm
cond

Offset (P == 1 && W == 0)

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]

Post-indexed (P == 0 && W == 0)

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>], {+/-}<Rm>

Pre-indexed (P == 1 && W == 1)

STRD{<c>}{<q>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]!

if Rt<0> == '1' then UNPREDICTABLE;
t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
if P == '0' && W == '1' then UNPREDICTABLE;
if t2 == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15 || t2 == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

If wback && (n == t || n == t2), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: t<0> = '0'.
• The instruction executes with the additional decode: t2 = t.
• The instruction executes as described, with no change to its behavior and no additional side-effects. This does

not apply when Rt == '1111'.

If P == '0' && W == '1', then one of the following behaviors must occur:

STRD (register) Page 508

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: P = '1'; W = '0'.
• The instruction executes with the additional decode: P = '1'; W = '1'.
• The instruction executes with the additional decode: P = '0'; W = '0'.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must be
even-numbered and not R14.

<Rt2> Is the second general-purpose register to be transferred. This register must be <R(t+1)>.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant,
but this is deprecated.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U +/-
0 -
1 +

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
address = if index then offset_addr else R[n];
if IsAligned(address, 8) then

bits(64) data;
if BigEndian(AccessType_GPR) then

data<63:32> = R[t];
data<31:0> = R[t2];

else
data<31:0> = R[t];
data<63:32> = R[t2];

MemA[address,8] = data;
else

MemA[address,4] = R[t];
MemA[address+4,4] = R[t2];

if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRD (register) Page 509

STREX

Store Register Exclusive calculates an address from a base register value and an immediate offset, stores a word from
a register to the calculated address if the PE has exclusive access to the memory at that address, and returns a status
value of 0 if the store was successful, or of 1 if no store was performed.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 0 0 Rn Rd (1) (1) 1 1 1 0 0 1 Rt
cond

A1

STREX{<c>}{<q>} <Rd>, <Rt>, [<Rn> {, {#}<imm>}]

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = Zeros(32); // Zero offset
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 1 0 0 Rn Rt Rd imm8

T1

STREX{<c>}{<q>} <Rd>, <Rt>, [<Rn> {, #<imm>}]

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

STREX Page 510

• The instruction performs the store to an UNKNOWN address.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is written,
encoded in the "Rd" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<imm> For encoding A1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can
only be 0 or omitted.
For encoding T1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can
be omitted, meaning an offset of 0. Values are multiples of 4 in the range 0-1020.

Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Rd> is not updated.

A non word-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to the
following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
if AArch32.ExclusiveMonitorsPass(address,4) then

MemA[address,4] = R[t];
R[d] = ZeroExtend('0', 32);

else
R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STREX Page 511

STREXB

Store Register Exclusive Byte derives an address from a base register value, stores a byte from a register to the
derived address if the executing PE has exclusive access to the memory at that address, and returns a status value of 0
if the store was successful, or of 1 if no store was performed.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 0 0 Rn Rd (1) (1) 1 1 1 0 0 1 Rt
cond

A1

STREXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 0 Rd

T1

STREXB{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

STREXB Page 512

• The instruction performs the store to an UNKNOWN address.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is written,
encoded in the "Rd" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Aborts
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Rd> is not updated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
if AArch32.ExclusiveMonitorsPass(address,1) then

MemA[address,1] = R[t]<7:0>;
R[d] = ZeroExtend('0', 32);

else
R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STREXB Page 513

STREXD

Store Register Exclusive Doubleword derives an address from a base register value, stores a 64-bit doubleword from
two registers to the derived address if the executing PE has exclusive access to the memory at that address, and
returns a status value of 0 if the store was successful, or of 1 if no store was performed.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 0 1 0 Rn Rd (1) (1) 1 1 1 0 0 1 Rt
cond

A1

STREXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); t2 = t+1; n = UInt(Rn);
if d == 15 || Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t || d == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

If Rt<0> == '1', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes with the additional decode: Rt<0> = '0'.
• The instruction executes with the additional decode: t2 = t.
• The instruction executes as described, with no change to its behavior and no additional side effects.

If Rt == '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction is handled as described in Using R15.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt Rt2 0 1 1 1 Rd

STREXD Page 514

T1

STREXD{<c>}{<q>} <Rd>, <Rt>, <Rt2>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn);
if d == 15 || t == 15 || t2 == 15 || n == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if d == n || d == t || d == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is written,
encoded in the "Rd" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

<Rd> must not be the same as <Rn>, <Rt>, or <Rt2>.

<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. <Rt>
must be even-numbered and not R14.
For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding A1: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.
For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Rd> is not updated.

A non doubleword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to
the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

STREXD Page 515

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];

// Create doubleword to store such that R[t] will be stored at address and R[t2] at address+4.
value = if BigEndian(AccessType_GPR) then R[t]:R[t2] else R[t2]:R[t];

if AArch32.ExclusiveMonitorsPass(address,8) then
MemA[address,8] = value;
R[d] = ZeroExtend('0', 32);

else
R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STREXD Page 516

STREXH

Store Register Exclusive Halfword derives an address from a base register value, stores a halfword from a register to
the derived address if the executing PE has exclusive access to the memory at that address, and returns a status value
of 0 if the store was successful, or of 1 if no store was performed.
For more information about support for shared memory see Synchronization and semaphores. For information about
memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 1 1 0 Rn Rd (1) (1) 1 1 1 0 0 1 Rt
cond

A1

STREXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction performs the store to an UNKNOWN address.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 1 Rd

T1

STREXH{<c>}{<q>} <Rd>, <Rt>, [<Rn>]

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d == 15 || t == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if d == n || d == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If d == n, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

STREXH Page 517

• The instruction performs the store to an UNKNOWN address.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the destination general-purpose register into which the status result of the store exclusive is written,
encoded in the "Rd" field. The value returned is:
0

If the operation updates memory.

1
If the operation fails to update memory.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Aborts and alignment
If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.
• <Rd> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject to
the following rules:

• If AArch32.ExclusiveMonitorsPass() returns TRUE, the exception is generated.
• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch32.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
if AArch32.ExclusiveMonitorsPass(address,2) then

MemA[address,2] = R[t]<15:0>;
R[d] = ZeroExtend('0', 32);

else
R[d] = ZeroExtend('1', 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STREXH Page 518

STRH (immediate)

Store Register Halfword (immediate) calculates an address from a base register value and an immediate offset, and
stores a halfword from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. For
information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 1 W 0 Rn Rt imm4H 1 0 1 1 imm4L
cond

Offset (P == 1 && W == 0)

STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

STRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

STRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if P == '0' && W == '1' then SEE "STRHT";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
if t == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 imm5 Rn Rt

STRH (immediate) Page 519

T1

STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
index = TRUE; add = TRUE; wback = FALSE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 1 0 != 1111 Rt imm12
Rn

T2

STRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // (<Rt>, <Rn>, <imm> can be represented in T1)

STRH{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 != 1111 Rt 1 P U W imm8
Rn

Offset (P == 1 && U == 0 && W == 0)

STRH{<c>}{<q>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W == 1)

STRH{<c>}{<q>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P == 1 && W == 1)

STRH{<c>}{<q>} <Rt>, [<Rn>, #{+/-}<imm>]!

if P == '1' && U == '1' && W == '0' then SEE "STRHT";
if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t == 15 || (wback && n == t) then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

STRH (immediate) Page 520

• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in
the offset variant, but this is deprecated.
For encoding A1, T1, T2, T3: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2, in the range 0
to 62, defaulting to 0 and encoded in the "imm5" field as <imm>/2.
For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting
to 0 and encoded in the "imm12" field.
For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm8" field.

Operation

if CurrentInstrSet() == InstrSet_A32 then
if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
MemU[address,2] = R[t]<15:0>;
if wback then R[n] = offset_addr;

else
if ConditionPassed() then

EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
MemU[address,2] = R[t]<15:0>;
if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRH (immediate) Page 521

STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register value, and
stores a halfword from a register to memory. The offset register value can be shifted left by 0, 1, 2, or 3 bits. For
information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 0 W 0 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm
cond

Offset (P == 1 && W == 0)

STRH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]

Post-indexed (P == 0 && W == 0)

STRH{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

Pre-indexed (P == 1 && W == 1)

STRH{<c>}{<q>} <Rt>, [<Rn>, {+/-}<Rm>]!

if P == '0' && W == '1' then SEE "STRHT";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
(shift_t, shift_n) = (SRType_LSL, 0);
if t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

If wback && n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If wback && n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes without writeback of the base address.
• The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 Rm Rn Rt

STRH (register) Page 522

T1

STRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>]

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 != 1111 Rt 0 0 0 0 0 0 imm2 Rm
Rn

T2

STRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)

STRH{<c>}{<q>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in
the offset variant, but this is deprecated.
For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted
and encoded in “U”:

U +/-
0 -
1 +

+ Specifies the index register is added to the base register.

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is
encoded in imm2. If absent, no shift is specified and imm2 is encoded as 0b00.

STRH (register) Page 523

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, PSTATE.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
MemU[address,2] = R[t]<15:0>;
if wback then R[n] = offset_addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRH (register) Page 524

STRHT

Store Register Halfword Unprivileged stores a halfword from a register to memory. For information about memory
accesses see Memory accesses.
The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually
running in User mode.
STRHT is UNPREDICTABLE in Hyp mode.
The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.
The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or a register value.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 U 1 1 0 Rn Rt imm4H 1 0 1 1 imm4L
cond

A1

STRHT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
register_form = FALSE; imm32 = ZeroExtend(imm4H:imm4L, 32);
integer m = integer UNKNOWN;
if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in

Using R15.
• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset

addressing with the base register as PC, without writeback.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 U 0 1 0 Rn Rt (0) (0) (0) (0) 1 0 1 1 Rm
cond

STRHT Page 525

A2

STRHT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
register_form = TRUE;
bits(32) imm32 = bits(32) UNKNOWN;
if t == 15 || n == 15 || n == t || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in

Using R15.
• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset

addressing with the base register as PC, without writeback.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 != 1111 Rt 1 1 1 0 imm8
Rn

T1

STRHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
integer m = integer UNKNOWN;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

STRHT Page 526

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if
omitted and encoded in “U”:

U +/-
0 -
1 +

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in “U”:

U +/-
0 -
1 +

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if
omitted, and encoded in the "imm4H:imm4L" field.
For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to
0 and encoded in the "imm8" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
offset = if register_form then R[m] else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
MemU_unpriv[address,2] = R[t]<15:0>;
if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as STRH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRHT Page 527

STRT

Store Register Unprivileged stores a word from a register to memory. For information about memory accesses see
Memory accesses.
The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually
running in User mode.
STRT is UNPREDICTABLE in Hyp mode.
The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a
base register value and an immediate offset, and leaves the base register unchanged.
The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the
memory access, and calculates a new address from a base register value and an offset and writes it back to the base
register. The offset can be an immediate value or an optionally-shifted register value.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 0 0 U 0 1 0 Rn Rt imm12
cond

A1

STRT{<c>}{<q>} <Rt>, [<Rn>] {, #{+/-}<imm>}

t = UInt(Rt); n = UInt(Rn); postindex = TRUE; add = (U == '1');
register_form = FALSE; imm32 = ZeroExtend(imm12, 32);
integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
if n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in

Using R15.
• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset

addressing with the base register as PC, without writeback.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 U 0 1 0 Rn Rt imm5 stype 0 Rm
cond

A2

STRT{<c>}{<q>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm); postindex = TRUE; add = (U == '1');
register_form = TRUE; (shift_t, shift_n) = DecodeImmShift(stype, imm5);
bits(32) imm32 = bits(32) UNKNOWN;
if n == 15 || n == t || m == 15 then UNPREDICTABLE;

STRT Page 528

CONSTRAINED UNPREDICTABLE behavior

If n == t, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction executes but the value stored is UNKNOWN.

If n == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction uses post-indexed addressing with the base register as PC. This is handled as described in

Using R15.
• The instruction is treated as if bit[24] == 1 and bit[21] == 0. The instruction uses immediate offset

addressing with the base register as PC, without writeback.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 != 1111 Rt 1 1 1 0 imm8
Rn

T1

STRT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
integer m = integer UNKNOWN; integer shift_n = integer UNKNOWN; SRType shift_t = SRType UNKNOWN;
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == 15, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The store instruction performs the store using the specified addressing mode but the value corresponding to

R15 is UNKNOWN.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding A1 and A2: is the general-purpose register to be transferred, encoded in the "Rt" field.
The PC can be used, but this is deprecated.
For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if
omitted and encoded in “U”:

U +/-
0 -
1 +

STRT Page 529

For encoding A2: specifies the index register is added to or subtracted from the base register,
defaulting to + if omitted and encoded in “U”:

U +/-
0 -
1 +

<Rm> Is the general-purpose index register, encoded in the "Rm" field.

<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts
applied to a register.

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if
omitted, and encoded in the "imm12" field.
For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to
0 and encoded in the "imm8" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
offset = if register_form then Shift(R[m], shift_t, shift_n, PSTATE.C) else imm32;
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if postindex then R[n] else offset_addr;
bits(32) data;
if t == 15 then // Only possible for encodings A1 and A2

data = PCStoreValue();
else

data = R[t];
MemU_unpriv[address,4] = data;
if postindex then R[n] = offset_addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as STR (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

STRT Page 530

SUB (immediate, from PC)

Subtract from PC subtracts an immediate value from the Align(PC, 4) value to form a PC-relative address, and writes
the result to the destination register. Arm recommends that, where possible, software avoids using this alias.

This is an alias of ADR. This means:

• The encodings in this description are named to match the encodings of ADR.
• The description of ADR gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any

operational information for this instruction.
It has encodings from the following instruction sets: A32 (A2) and T32 (T2) .

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 0 1 0 0 1 1 1 1 Rd imm12
cond

A2

SUB{<c>}{<q>} <Rd>, PC, #<const>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is the preferred disassembly when imm12 == '000000000000'.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8

T2

SUB{<c>}{<q>} <Rd>, PC, #<imm12>

is equivalent to

ADR{<c>}{<q>} <Rd>, <label>

and is the preferred disassembly when i:imm3:imm8 == '000000000000'.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A2: is the general-purpose destination register, encoded in the "Rd" field. If the PC is
used, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the
PC.
For encoding T2: is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding A2: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR
instruction to this label.
If the offset is zero or positive, encoding A1 is used, with imm32 equal to the offset.
If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the use
of encoding A2 indicates that the required offset is minus the value of imm32.
Permitted values of the size of the offset are any of the constants described in Modified immediate
constants in A32 instructions.

SUB (immediate, from PC) Page 531

For encoding T2: the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC, 4) value of the ADR
instruction to this label.
If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.
If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the use
of encoding T2 indicates that the required offset is minus the value of imm32.
Permitted values of the size of the offset are 0-4095.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> An immediate value. See Modified immediate constants in A32 instructions for the range of values.

Operation

The description of ADR gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB (immediate, from PC) Page 532

SUB, SUBS (immediate)

Subtract (immediate) subtracts an immediate value from a register value, and writes the result to the destination
register.
If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

• The SUBS variant of the instruction performs an exception return without the use of the stack. In this case:
◦ The PE branches to the address written to the PC, and restores PSTATE from

SPSR_<current_mode>.
◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from

AArch32 state.
◦ The instruction is UNDEFINED in Hyp mode, except for encoding T5 with <imm8> set to zero, which

is the encoding for the ERET instruction, see ERET.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 , T3 , T4 and T5) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 0 1 0 S Rn Rd imm12
cond

SUB (S == 0 && Rn != 11x1)

SUB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SUBS (S == 1 && Rn != 1101)

SUBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

if Rn == '1111' && S == '0' then SEE "ADR";
if Rn == '1101' then SEE "SUB (SP minus immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 imm3 Rn Rd

T1

SUB<c>{<q>} <Rd>, <Rn>, #<imm3> // (Inside IT block)

SUBS{<q>} <Rd>, <Rn>, #<imm3> // (Outside IT block)

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 Rdn imm8

SUB, SUBS (immediate) Page 533

T2

SUB<c>{<q>} <Rdn>, #<imm8> // (Inside IT block, and <Rdn>, <imm8> can be represented in T1)

SUB<c>{<q>} {<Rdn>,} <Rdn>, #<imm8> // (Inside IT block, and <Rdn>, <imm8> cannot be represented in T1)

SUBS{<q>} <Rdn>, #<imm8> // (Outside IT block, and <Rdn>, <imm8> can be represented in T1)

SUBS{<q>} {<Rdn>,} <Rdn>, #<imm8> // (Outside IT block, and <Rdn>, <imm8> cannot be represented in T1)

d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 S != 1101 0 imm3 Rd imm8
Rn

SUB (S == 0)

SUB<c>.W {<Rd>,} <Rn>, #<const> // (Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2)

SUB{<c>}{<q>} {<Rd>,} <Rn>, #<const>

SUBS (S == 1 && Rd != 1111)

SUBS.W {<Rd>,} <Rn>, #<const> // (Outside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or T2)

SUBS{<c>}{<q>} {<Rd>,} <Rn>, #<const>

if Rd == '1111' && S == '1' then SEE "CMP (immediate)";
if Rn == '1101' then SEE "SUB (SP minus immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 != 11x1 0 imm3 Rd imm8
Rn

T4

SUB{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // (<imm12> cannot be represented in T1, T2, or T3)

SUBW{<c>}{<q>} {<Rd>,} <Rn>, #<imm12> // (<imm12> can be represented in T1, T2, or T3)

if Rn == '1111' then SEE "ADR";
if Rn == '1101' then SEE "SUB (SP minus immediate)";
d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 0 1 Rn 1 0 (0) 0 (1) (1) (1) (1) imm8

SUB, SUBS (immediate) Page 534

T5 (!(Rn == 1110 && imm8 == 00000000))

SUBS{<c>}{<q>} PC, LR, #<imm8>

if Rn == '1110' && IsZero(imm8) then SEE "ERET";
d = 15; n = UInt(Rn); setflags = TRUE; imm32 = ZeroExtend(imm8, 32);
if n != 14 then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly SUBS PC. LR and related instructions (A32) and SUBS PC, LR and
related instructions (T32).

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.

<imm8> For encoding T2: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
For encoding T5: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field. If
<Rn> is the LR, and zero is used, see ERET.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. If the PC is used:

• For the SUB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the SUBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of this instruction unless <Rn> is the LR.

For encoding T1, T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the same as <Rn>.

<Rn> For encoding A1 and T4: is the general-purpose source register, encoded in the "Rn" field. If the SP is
used, see SUB (SP minus immediate). If the PC is used, see ADR.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.
For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is used, see
SUB (SP minus immediate).

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T3: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

In the T32 instruction set, MOVS{<c>}{<q>} PC, LR is a pseudo-instruction for SUBS{<c>}{<q>} PC, LR, #0.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[n], NOT(imm32), '1');
if d == 15 then

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

SUB, SUBS (immediate) Page 535

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB, SUBS (immediate) Page 536

SUB, SUBS (register)

Subtract (register) subtracts an optionally-shifted register value from a register value, and writes the result to the
destination register.
If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. However,
when the destination register is the PC:

• The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

• The SUBS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

◦ The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.

◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 0 1 0 S != 1101 Rd imm5 stype 0 Rm
cond Rn

SUB, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUB, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUBS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rn == '1101' then SEE "SUB (SP minus register)";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 1 Rm Rn Rd

T1

SUB<c>{<q>} <Rd>, <Rn>, <Rm> // (Inside IT block)

SUBS{<q>} {<Rd>,} <Rn>, <Rm> // (Outside IT block)

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

SUB, SUBS (register) Page 537

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 S != 1101 (0) imm3 Rd imm2 stype Rm
Rn

SUB, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUB, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

SUB<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, RRX

SUBS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111)

SUBS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rd == '1111' && S == '1' then SEE "CMP (register)";
if Rn == '1101' then SEE "SUB (SP minus register)";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the same as <Rn>. Arm deprecates using the PC as the destination register, but if the PC is
used:

• For the SUB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the SUBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1 and T2: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the same as <Rn>.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated. If the SP is used, see SUB (SP minus register).
For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.
For encoding T2: is the first general-purpose source register, encoded in the "Rn" field. If the SP is
used, see SUB (SP minus register).

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

SUB, SUBS (register) Page 538

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB, SUBS (register) Page 539

SUB, SUBS (register-shifted register)

Subtract (register-shifted register) subtracts a register-shifted register value from a register value, and writes the
result to the destination register. It can optionally update the condition flags based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 0 1 0 S Rn Rd Rs 0 stype 1 Rm
cond

Flag setting (S == 1)

SUBS{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

SUB{<c>}{<q>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
setflags = (S == '1'); shift_t = DecodeRegShift(stype);
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1');
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

SUB, SUBS (register-shifted
register) Page 540

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB, SUBS (register-shifted
register) Page 541

SUB, SUBS (SP minus immediate)

Subtract from SP (immediate) subtracts an immediate value from the SP value, and writes the result to the destination
register.
If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

• The SUBS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

◦ The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.

◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 0 1 0 S 1 1 0 1 Rd imm12
cond

SUB (S == 0)

SUB{<c>}{<q>} {<Rd>,} SP, #<const>

SUBS (S == 1)

SUBS{<c>}{<q>} {<Rd>,} SP, #<const>

d = UInt(Rd); setflags = (S == '1'); imm32 = A32ExpandImm(imm12);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 1 imm7

T1

SUB{<c>}{<q>} {SP,} SP, #<imm7>

d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 S 1 1 0 1 0 imm3 Rd imm8

SUB, SUBS (SP minus
immediate) Page 542

SUB (S == 0)

SUB{<c>}.W {<Rd>,} SP, #<const> // (<Rd>, <const> can be represented in T1)

SUB{<c>}{<q>} {<Rd>,} SP, #<const>

SUBS (S == 1 && Rd != 1111)

SUBS{<c>}{<q>} {<Rd>,} SP, #<const>

if Rd == '1111' && S == '1' then SEE "CMP (immediate)";
d = UInt(Rd); setflags = (S == '1'); imm32 = T32ExpandImm(i:imm3:imm8);
if d == 15 && !setflags then UNPREDICTABLE;

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 0 1 0 imm3 Rd imm8

T3

SUB{<c>}{<q>} {<Rd>,} SP, #<imm12> // (<imm12> cannot be represented in T1, T2, or T3)

SUBW{<c>}{<q>} {<Rd>,} SP, #<imm12> // (<imm12> can be represented in T1, T2, or T3)

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

SP, Is the stack pointer.

<imm7> Is the unsigned immediate, a multiple of 4, in the range 0 to 508, encoded in the "imm7" field as
<imm7>/4.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the SP. If the PC is used:

• For the SUB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the SUBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>. Arm deprecates use of this instruction unless <Rn> is the LR.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field. If
omitted, this register is the SP.

<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T2: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

SUB, SUBS (SP minus
immediate) Page 543

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, nzcv) = AddWithCarry(R[13], NOT(imm32), '1');
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB, SUBS (SP minus
immediate) Page 544

SUB, SUBS (SP minus register)

Subtract from SP (register) subtracts an optionally-shifted register value from the SP value, and writes the result to
the destination register.
If the destination register is not the PC, the SUBS variant of the instruction updates the condition flags based on the
result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the
destination register is the PC:

• The SUB variant of the instruction is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

• The SUBS variant of the instruction performs an exception return without the use of the stack. Arm
deprecates use of this instruction. However, in this case:

◦ The PE branches to the address written to the PC, and restores PSTATE from
SPSR_<current_mode>.

◦ The PE checks SPSR_<current_mode> for an illegal return event. See Illegal return events from
AArch32 state.

◦ The instruction is UNDEFINED in Hyp mode.
◦ The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 0 1 0 S 1 1 0 1 Rd imm5 stype 0 Rm
cond

SUB, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)

SUB{<c>}{<q>} {<Rd>,} SP, <Rm> , RRX

SUB, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))

SUB{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm> , RRX

SUBS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 S 1 1 0 1 (0) imm3 Rd imm2 stype Rm

SUB, SUBS (SP minus
register) Page 545

SUB, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

SUB{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUB, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

SUB{<c>}.W {<Rd>,} SP, <Rm> // (<Rd>, <Rm> can be represented in T1 or T2)

SUB{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

SUBS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm>, RRX

SUBS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111)

SUBS{<c>}{<q>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

if Rd == '1111' && S == '1' then SEE "CMP (register)";
d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if (d == 15 && !setflags) || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the SP. Arm deprecates using the PC as the destination register, but if the PC is used:

• For the SUB variant, the instruction is a branch to the address calculated by the operation.
This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

• For the SUBS variant, the instruction performs an exception return, that restores PSTATE
from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this
register is the SP.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

SUB, SUBS (SP minus
register) Page 546

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, PSTATE.C);
(result, nzcv) = AddWithCarry(R[13], NOT(shifted), '1');
if d == 15 then // Can only occur for A32 encoding

if setflags then
ALUExceptionReturn(result);

else
ALUWritePC(result);

else
R[d] = result;
if setflags then

PSTATE.<N,Z,C,V> = nzcv;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SUB, SUBS (SP minus
register) Page 547

SVC

Supervisor Call causes a Supervisor Call exception. For more information, see Supervisor Call (SVC) exception.

Note

SVC was previously called SWI, Software Interrupt, and this name is still found in some documentation.

Software can use this instruction as a call to an operating system to provide a service.
In the following cases, the Supervisor Call exception generated by the SVC instruction is taken to Hyp mode:

• If the SVC is executed in Hyp mode.
• If HCR.TGE is set to 1, and the SVC is executed in Non-secure User mode. For more information, see

Supervisor Call exception, when HCR.TGE is set to 1
In these cases, the HSR, Hyp Syndrome Register identifies that the exception entry was caused by a Supervisor Call
exception, EC value 0x11, see Use of the HSR. The immediate field in the HSR:

• If the SVC is unconditional:
◦ For the T32 instruction, is the zero-extended value of the imm8 field.
◦ For the A32 instruction, is the least-significant 16 bits the imm24 field.

• If the SVC is conditional, is UNKNOWN.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 1 imm24
cond

A1

SVC{<c>}{<q>} {#}<imm>

imm32 = ZeroExtend(imm24, 32);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 1 1 1 imm8

T1

SVC{<c>}{<q>} {#}<imm>

imm32 = ZeroExtend(imm8, 32);

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<imm> For encoding A1: is a 24-bit unsigned immediate, in the range 0 to 16777215, encoded in the "imm24"
field. This value is for assembly and disassembly only. SVC handlers in some systems interpret imm24 in
software, for example to determine the required service.
For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field. This
value is for assembly and disassembly only. SVC handlers in some systems interpret imm8 in software,
for example to determine the required service.

SVC Page 548

Operation

if ConditionPassed() then
EncodingSpecificOperations();
AArch32.CheckForSVCTrap(imm32<15:0>);
AArch32.CallSupervisor(imm32<15:0>);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SVC Page 549

SXTAB

Signed Extend and Add Byte extracts an 8-bit value from a register, sign-extends it to 32 bits, adds the result to the
value in another register, and writes the final result to the destination register. The instruction can specify a rotation
by 0, 8, 16, or 24 bits before extracting the 8-bit value.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 0 1 0 != 1111 Rd rotate (0) (0) 0 1 1 1 Rm
cond Rn

A1

SXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

if Rn == '1111' then SEE "SXTB";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 0 != 1111 1 1 1 1 Rd 1 (0) rotate Rm
Rn

T1

SXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

if Rn == '1111' then SEE "SXTB";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in “rotate”:

rotate <amount>
00 (omitted)
01 8
10 16
11 24

SXTAB Page 550

Operation

if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d] = R[n] + SignExtend(rotated<7:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTAB Page 551

SXTAB16

Signed Extend and Add Byte 16 extracts two 8-bit values from a register, sign-extends them to 16 bits each, adds the
results to two 16-bit values from another register, and writes the final results to the destination register. The
instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 0 0 0 != 1111 Rd rotate (0) (0) 0 1 1 1 Rm
cond Rn

A1

SXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

if Rn == '1111' then SEE "SXTB16";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 0 != 1111 1 1 1 1 Rd 1 (0) rotate Rm
Rn

T1

SXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

if Rn == '1111' then SEE "SXTB16";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in “rotate”:

rotate <amount>
00 (omitted)
01 8
10 16
11 24

SXTAB16 Page 552

Operation

if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d]<15:0> = R[n]<15:0> + SignExtend(rotated<7:0>, 16);
R[d]<31:16> = R[n]<31:16> + SignExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTAB16 Page 553

SXTAH

Signed Extend and Add Halfword extracts a 16-bit value from a register, sign-extends it to 32 bits, adds the result to a
value from another register, and writes the final result to the destination register. The instruction can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 0 1 1 != 1111 Rd rotate (0) (0) 0 1 1 1 Rm
cond Rn

A1

SXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

if Rn == '1111' then SEE "SXTH";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 0 != 1111 1 1 1 1 Rd 1 (0) rotate Rm
Rn

T1

SXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

if Rn == '1111' then SEE "SXTH";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in “rotate”:

rotate <amount>
00 (omitted)
01 8
10 16
11 24

SXTAH Page 554

Operation

if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d] = R[n] + SignExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTAH Page 555

SXTB

Signed Extend Byte extracts an 8-bit value from a register, sign-extends it to 32 bits, and writes the result to the
destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 0 1 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
cond

A1

SXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 0 1 Rm Rd

T1

SXTB{<c>}{<q>} {<Rd>,} <Rm>

d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

T2

SXTB{<c>}.W {<Rd>,} <Rm> // (<Rd>, <Rm> can be represented in T1)

SXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in “rotate”:

SXTB Page 556

rotate <amount>
00 (omitted)
01 8
10 16
11 24

Operation

if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d] = SignExtend(rotated<7:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTB Page 557

SXTB16

Signed Extend Byte 16 extracts two 8-bit values from a register, sign-extends them to 16 bits each, and writes the
results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the
8-bit values.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 0 0 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
cond

A1

SXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

T1

SXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in “rotate”:

rotate <amount>
00 (omitted)
01 8
10 16
11 24

Operation

if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d]<15:0> = SignExtend(rotated<7:0>, 16);
R[d]<31:16> = SignExtend(rotated<23:16>, 16);

SXTB16 Page 558

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTB16 Page 559

SXTH

Signed Extend Halfword extracts a 16-bit value from a register, sign-extends it to 32 bits, and writes the result to the
destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 0 1 1 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
cond

A1

SXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 0 0 Rm Rd

T1

SXTH{<c>}{<q>} {<Rd>,} <Rm>

d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

T2

SXTH{<c>}.W {<Rd>,} <Rm> // (<Rd>, <Rm> can be represented in T1)

SXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in “rotate”:

SXTH Page 560

rotate <amount>
00 (omitted)
01 8
10 16
11 24

Operation

if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d] = SignExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SXTH Page 561

TBB, TBH

Table Branch Byte or Halfword causes a PC-relative forward branch using a table of single byte or halfword offsets. A
base register provides a pointer to the table, and a second register supplies an index into the table. The branch length
is twice the value returned from the table.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 H Rm

Byte (H == 0)

TBB{<c>}{<q>} [<Rn>, <Rm>] // (Outside or last in IT block)

Halfword (H == 1)

TBH{<c>}{<q>} [<Rn>, <Rm>, LSL #1] // (Outside or last in IT block)

n = UInt(Rn); m = UInt(Rm); is_tbh = (H == '1');
if m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register holding the address of the table of branch lengths, encoded in the
"Rn" field. The PC can be used. If it is, the table immediately follows this instruction.

<Rm> For the byte variant: is the general-purpose index register, encoded in the "Rm" field. This register
contains an integer pointing to a single byte in the table. The offset in the table is the value of the index.
For the halfword variant: is the general-purpose index register, encoded in the "Rm" field. This register
contains an integer pointing to a halfword in the table. The offset in the table is twice the value of the
index.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
integer halfwords;
if is_tbh then

halfwords = UInt(MemU[R[n]+LSL(R[m],1), 2]);
else

halfwords = UInt(MemU[R[n]+R[m], 1]);
BranchWritePC(PC + 2*halfwords, BranchType_INDIR);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TBB, TBH Page 562

TEQ (immediate)

Test Equivalence (immediate) performs a bitwise exclusive OR operation on a register value and an immediate value.
It updates the condition flags based on the result, and discards the result.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 1 1 Rn (0) (0) (0) (0) imm12
cond

A1

TEQ{<c>}{<q>} <Rn>, #<const>

n = UInt(Rn);
(imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 1 0 0 1 Rn 0 imm3 1 1 1 1 imm8

T1

TEQ{<c>}{<q>} <Rn>, #<const>

n = UInt(Rn);
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] EOR imm32;
PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

TEQ (immediate) Page 563

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TEQ (immediate) Page 564

TEQ (register)

Test Equivalence (register) performs a bitwise exclusive-OR operation on a register value and an optionally-shifted
register value. It updates the condition flags based on the result, and discards the result.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 1 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm
cond

Rotate right with extend (imm5 == 00000 && stype == 11)

TEQ{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value (!(imm5 == 00000 && stype == 11))

TEQ{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 0 0 1 Rn (0) imm3 1 1 1 1 imm2 stype Rm

Rotate right with extend (imm3 == 000 && imm2 == 00 && stype == 11)

TEQ{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value (!(imm3 == 000 && imm2 == 00 && stype == 11))

TEQ{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.
For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

TEQ (register) Page 565

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = R[n] EOR shifted;
PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TEQ (register) Page 566

TEQ (register-shifted register)

Test Equivalence (register-shifted register) performs a bitwise exclusive-OR operation on a register value and a
register-shifted register value. It updates the condition flags based on the result, and discards the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 1 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm
cond

A1

TEQ{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift_t = DecodeRegShift(stype);
if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <type>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = R[n] EOR shifted;
PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.

TEQ (register-shifted
register) Page 567

◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TEQ (register-shifted
register) Page 568

TSB CSYNC

Trace Synchronization Barrier. This instruction is a barrier that synchronizes the trace operations of instructions, see
Trace Synchronization Buffer (TSB CSYNC).
If FEAT_TRF is not implemented, this instruction executes as a NOP.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_TRF)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 1 0 0 1 0
cond

A1

TSB{<c>}{<q>} CSYNC

if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
if cond != '1110' then UNPREDICTABLE; // TSB must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

T1
(FEAT_TRF)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 1 0 0 1 0

T1

TSB{<c>}{<q>} CSYNC

if !HaveSelfHostedTrace() then EndOfInstruction(); // Instruction executes as NOP
if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes unconditionally.
• The instruction executes conditionally.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

TSB CSYNC Page 569

Operation

if ConditionPassed() then
EncodingSpecificOperations();
TraceSynchronizationBarrier();

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TSB CSYNC Page 570

TST (immediate)

Test (immediate) performs a bitwise AND operation on a register value and an immediate value. It updates the
condition flags based on the result, and discards the result.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 0 1 Rn (0) (0) (0) (0) imm12
cond

A1

TST{<c>}{<q>} <Rn>, #<const>

n = UInt(Rn);
(imm32, carry) = A32ExpandImm_C(imm12, PSTATE.C);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8

T1

TST{<c>}{<q>} <Rn>, #<const>

n = UInt(Rn);
(imm32, carry) = T32ExpandImm_C(i:imm3:imm8, PSTATE.C);
if n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used,
but this is deprecated.
For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the
range of values.
For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the
range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND imm32;
PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

TST (immediate) Page 571

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TST (immediate) Page 572

TST (register)

Test (register) performs a bitwise AND operation on a register value and an optionally-shifted register value. It
updates the condition flags based on the result, and discards the result.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 0 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm
cond

Rotate right with extend (imm5 == 00000 && stype == 11)

TST{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value (!(imm5 == 00000 && stype == 11))

TST{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(stype, imm5);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 0 0 Rm Rn

T1

TST{<c>}{<q>} <Rn>, <Rm>

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2 stype Rm

Rotate right with extend (imm3 == 000 && imm2 == 00 && stype == 11)

TST{<c>}{<q>} <Rn>, <Rm>, RRX

Shift or rotate by value (!(imm3 == 000 && imm2 == 00 && stype == 11))

TST{<c>}.W <Rn>, <Rm> // (<Rn>, <Rm> can be represented in T1)

TST{<c>}{<q>} <Rn>, <Rm> {, <shift> #<amount>}

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(stype, imm3:imm2);
if n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

TST (register) Page 573

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> For encoding A1: is the first general-purpose source register, encoded in the "Rn" field. The PC can be
used, but this is deprecated.
For encoding T1 and T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can
be used, but this is deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR

<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR) encoded in the "imm5" field as <amount> modulo 32.
For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32
(when <shift> = LSR or ASR), encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = R[n] AND shifted;
PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TST (register) Page 574

TST (register-shifted register)

Test (register-shifted register) performs a bitwise AND operation on a register value and a register-shifted register
value. It updates the condition flags based on the result, and discards the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 0 0 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm
cond

A1

TST{<c>}{<q>} <Rn>, <Rm>, <type> <Rs>

n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
shift_t = DecodeRegShift(stype);
if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <type>
00 LSL
01 LSR
10 ASR
11 ROR

<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the
"Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[s]<7:0>);
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, PSTATE.C);
result = R[n] AND shifted;
PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit(result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.

TST (register-shifted register) Page 575

◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

TST (register-shifted register) Page 576

UADD16

Unsigned Add 16 performs two 16-bit unsigned integer additions, and writes the results to the destination register. It
sets PSTATE.GE according to the results of the additions.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
cond

A1

UADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1

UADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);
sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
R[d]<15:0> = sum1<15:0>;
R[d]<31:16> = sum2<15:0>;
PSTATE.GE<1:0> = if sum1 >= 0x10000 then '11' else '00';
PSTATE.GE<3:2> = if sum2 >= 0x10000 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:

UADD16 Page 577

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UADD16 Page 578

UADD8

Unsigned Add 8 performs four unsigned 8-bit integer additions, and writes the results to the destination register. It
sets PSTATE.GE according to the results of the additions.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
cond

A1

UADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1

UADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);
sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
R[d]<7:0> = sum1<7:0>;
R[d]<15:8> = sum2<7:0>;
R[d]<23:16> = sum3<7:0>;
R[d]<31:24> = sum4<7:0>;
PSTATE.GE<0> = if sum1 >= 0x100 then '1' else '0';
PSTATE.GE<1> = if sum2 >= 0x100 then '1' else '0';
PSTATE.GE<2> = if sum3 >= 0x100 then '1' else '0';
PSTATE.GE<3> = if sum4 >= 0x100 then '1' else '0';

UADD8 Page 579

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UADD8 Page 580

UASX

Unsigned Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
unsigned 16-bit integer addition and one unsigned 16-bit subtraction, and writes the results to the destination register.
It sets PSTATE.GE according to the results.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
cond

A1

UASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1

UASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
R[d]<15:0> = diff<15:0>;
R[d]<31:16> = sum<15:0>;
PSTATE.GE<1:0> = if diff >= 0 then '11' else '00';
PSTATE.GE<3:2> = if sum >= 0x10000 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

UASX Page 581

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UASX Page 582

UBFX

Unsigned Bit Field Extract extracts any number of adjacent bits at any position from a register, zero-extends them to
32 bits, and writes the result to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 1 1 1 widthm1 Rd lsb 1 0 1 Rn
cond

A1

UBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

d = UInt(Rd); n = UInt(Rn);
lsbit = UInt(lsb); widthminus1 = UInt(widthm1);
msbit = lsbit + widthminus1;
if d == 15 || n == 15 then UNPREDICTABLE;
if msbit > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1

T1

UBFX{<c>}{<q>} <Rd>, <Rn>, #<lsb>, #<width>

d = UInt(Rd); n = UInt(Rn);
lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
msbit = lsbit + widthminus1;
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if msbit > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If msbit > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

UBFX Page 583

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<lsb> For encoding A1: is the bit number of the least significant bit in the field, in the range 0 to 31, encoded
in the "lsb" field.
For encoding T1: is the bit number of the least significant bit in the field, in the range 0 to 31, encoded
in the "imm3:imm2" field.

<width> Is the width of the field, in the range 1 to 32-<lsb>, encoded in the "widthm1" field as <width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d] = ZeroExtend(R[n]<msbit:lsbit>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UBFX Page 584

UDF

Permanently Undefined generates an Undefined Instruction exception.
The encodings for UDF used in this section are defined as permanently UNDEFINED. However:

• With the T32 instruction set, Arm deprecates using the UDF instruction in an IT block.
• In the A32 instruction set, UDF is not conditional.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 1 1 1 1 1 1 1 imm12 1 1 1 1 imm4
cond

A1

UDF{<c>}{<q>} {#}<imm>

imm32 = ZeroExtend(imm12:imm4, 32);
// imm32 is for assembly and disassembly only, and is ignored by hardware.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 1 1 0 imm8

T1

UDF{<c>}{<q>} {#}<imm>

imm32 = ZeroExtend(imm8, 32);
// imm32 is for assembly and disassembly only, and is ignored by hardware.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1 1 1 1 1 imm4 1 0 1 0 imm12

T2

UDF{<c>}.W {#}<imm> // (<imm> can be represented in T1)

UDF{<c>}{<q>} {#}<imm>

imm32 = ZeroExtend(imm4:imm12, 32);
// imm32 is for assembly and disassembly only, and is ignored by hardware.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. <c> must be AL or omitted.
For encoding T1 and T2: see Standard assembler syntax fields. Arm deprecates using any <c> value
other than AL.

<q> See Standard assembler syntax fields.

<imm> For encoding A1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm12:imm4" field. The PE ignores the value of this constant.
For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field. The
PE ignores the value of this constant.

UDF Page 585

For encoding T2: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the
"imm4:imm12" field. The PE ignores the value of this constant.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
UNDEFINED;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UDF Page 586

UDIV

Unsigned Divide divides a 32-bit unsigned integer register value by a 32-bit unsigned integer register value, and
writes the result to the destination register. The condition flags are not affected.
See Divide instructions for more information about this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 0 0 1 1 Rd (1) (1) (1) (1) Rm 0 0 0 1 Rn
cond Ra

A1

UDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as described, with no change to its behavior and no additional side effects.
• The instruction performs a divide and the register specified by Ra becomes UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 1 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm
Ra

T1

UDIV{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
// Armv8-A removes UNPREDICTABLE for R13
if d == 15 || n == 15 || m == 15 || a != 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If Ra != '1111', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction executes as described, with no change to its behavior and no additional side effects.
• The instruction performs a divide and the register specified by Ra becomes UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

UDIV Page 587

<Rn> Is the first general-purpose source register holding the dividend, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the divisor, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
integer result;
if UInt(R[m]) == 0 then

result = 0;
else

result = RoundTowardsZero(Real(UInt(R[n])) / Real(UInt(R[m])));
R[d] = result<31:0>;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UDIV Page 588

UHADD16

Unsigned Halving Add 16 performs two unsigned 16-bit integer additions, halves the results, and writes the results to
the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
cond

A1

UHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1

UHADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);
sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
R[d]<15:0> = sum1<16:1>;
R[d]<31:16> = sum2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

UHADD16 Page 589

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UHADD16 Page 590

UHADD8

Unsigned Halving Add 8 performs four unsigned 8-bit integer additions, halves the results, and writes the results to
the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
cond

A1

UHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1

UHADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);
sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
R[d]<7:0> = sum1<8:1>;
R[d]<15:8> = sum2<8:1>;
R[d]<23:16> = sum3<8:1>;
R[d]<31:24> = sum4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

UHADD8 Page 591

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UHADD8 Page 592

UHASX

Unsigned Halving Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
unsigned 16-bit integer addition and one unsigned 16-bit subtraction, halves the results, and writes the results to the
destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
cond

A1

UHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1

UHASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
R[d]<15:0> = diff<16:1>;
R[d]<31:16> = sum<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.

UHASX Page 593

◦ The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UHASX Page 594

UHSAX

Unsigned Halving Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
unsigned 16-bit integer subtraction and one unsigned 16-bit addition, halves the results, and writes the results to the
destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
cond

A1

UHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1

UHSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
R[d]<15:0> = sum<16:1>;
R[d]<31:16> = diff<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.

UHSAX Page 595

◦ The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UHSAX Page 596

UHSUB16

Unsigned Halving Subtract 16 performs two unsigned 16-bit integer subtractions, halves the results, and writes the
results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
cond

A1

UHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1

UHSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
R[d]<15:0> = diff1<16:1>;
R[d]<31:16> = diff2<16:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

UHSUB16 Page 597

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UHSUB16 Page 598

UHSUB8

Unsigned Halving Subtract 8 performs four unsigned 8-bit integer subtractions, halves the results, and writes the
results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 1 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
cond

A1

UHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 1 0 Rm

T1

UHSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
R[d]<7:0> = diff1<8:1>;
R[d]<15:8> = diff2<8:1>;
R[d]<23:16> = diff3<8:1>;
R[d]<31:24> = diff4<8:1>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

UHSUB8 Page 599

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UHSUB8 Page 600

UMAAL

Unsigned Multiply Accumulate Accumulate Long multiplies two unsigned 32-bit values to produce a 64-bit value, adds
two unsigned 32-bit values, and writes the 64-bit result to two registers.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 0 1 0 0 RdHi RdLo Rm 1 0 0 1 Rn
cond

A1

UMAAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 1 1 0 Rm

T1

UMAAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm);
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the first addend and the destination register for the
lower 32 bits of the result, encoded in the "RdLo" field.

UMAAL Page 601

<RdHi> Is the general-purpose source register holding the second addend and the destination register for the
upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]) + UInt(R[dLo]);
R[dHi] = result<63:32>;
R[dLo] = result<31:0>;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMAAL Page 602

UMLAL, UMLALS

Unsigned Multiply Accumulate Long multiplies two unsigned 32-bit values to produce a 64-bit value, and accumulates
this with a 64-bit value.
In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 1 0 1 S RdHi RdLo Rm 1 0 0 1 Rn
cond

Flag setting (S == 1)

UMLALS{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting (S == 0)

UMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 0 0 0 Rm

T1

UMLAL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

UMLAL, UMLALS Page 603

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose source register holding the lower 32 bits of the addend, and the destination
register for the lower 32 bits of the result, encoded in the "RdLo" field.

<RdHi> Is the general-purpose source register holding the upper 32 bits of the addend, and the destination
register for the upper 32 bits of the result, encoded in the "RdHi" field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]:R[dLo]);
R[dHi] = result<63:32>;
R[dLo] = result<31:0>;
if setflags then

PSTATE.N = result<63>;
PSTATE.Z = IsZeroBit(result<63:0>);
// PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMLAL, UMLALS Page 604

UMULL, UMULLS

Unsigned Multiply Long multiplies two 32-bit unsigned values to produce a 64-bit result.
In A32 instructions, the condition flags can optionally be updated based on the result. Use of this option adversely
affects performance on many implementations.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 1 0 0 S RdHi RdLo Rm 1 0 0 1 Rn
cond

Flag setting (S == 1)

UMULLS{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

Not flag setting (S == 0)

UMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 1 0 Rn RdLo RdHi 0 0 0 0 Rm

T1

UMULL{<c>}{<q>} <RdLo>, <RdHi>, <Rn>, <Rm>

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo == 15 || dHi == 15 || n == 15 || m == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13
if dHi == dLo then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If dHi == dLo, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

UMULL, UMULLS Page 605

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<RdLo> Is the general-purpose destination register for the lower 32 bits of the result, encoded in the "RdLo"
field.

<RdHi> Is the general-purpose destination register for the upper 32 bits of the result, encoded in the "RdHi"
field.

<Rn> Is the first general-purpose source register holding the multiplicand, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register holding the multiplier, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = UInt(R[n]) * UInt(R[m]);
R[dHi] = result<63:32>;
R[dLo] = result<31:0>;
if setflags then

PSTATE.N = result<63>;
PSTATE.Z = IsZeroBit(result<63:0>);
// PSTATE.C, PSTATE.V unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UMULL, UMULLS Page 606

UQADD16

Unsigned Saturating Add 16 performs two unsigned 16-bit integer additions, saturates the results to the 16-bit
unsigned integer range 0 <= x <= 216 - 1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 0 0 1 Rm
cond

A1

UQADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1

UQADD16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum1 = UInt(R[n]<15:0>) + UInt(R[m]<15:0>);
sum2 = UInt(R[n]<31:16>) + UInt(R[m]<31:16>);
R[d]<15:0> = UnsignedSat(sum1, 16);
R[d]<31:16> = UnsignedSat(sum2, 16);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQADD16 Page 607

UQADD8

Unsigned Saturating Add 8 performs four unsigned 8-bit integer additions, saturates the results to the 8-bit unsigned
integer range 0 <= x <= 28 - 1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 1 0 0 1 Rm
cond

A1

UQADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1

UQADD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum1 = UInt(R[n]<7:0>) + UInt(R[m]<7:0>);
sum2 = UInt(R[n]<15:8>) + UInt(R[m]<15:8>);
sum3 = UInt(R[n]<23:16>) + UInt(R[m]<23:16>);
sum4 = UInt(R[n]<31:24>) + UInt(R[m]<31:24>);
R[d]<7:0> = UnsignedSat(sum1, 8);
R[d]<15:8> = UnsignedSat(sum2, 8);
R[d]<23:16> = UnsignedSat(sum3, 8);
R[d]<31:24> = UnsignedSat(sum4, 8);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQADD8 Page 608

UQASX

Unsigned Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs
one unsigned 16-bit integer addition and one unsigned 16-bit subtraction, saturates the results to the 16-bit unsigned
integer range 0 <= x <= 216 - 1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 0 1 1 Rm
cond

A1

UQASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1

UQASX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff = UInt(R[n]<15:0>) - UInt(R[m]<31:16>);
sum = UInt(R[n]<31:16>) + UInt(R[m]<15:0>);
R[d]<15:0> = UnsignedSat(diff, 16);
R[d]<31:16> = UnsignedSat(sum, 16);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQASX Page 609

UQSAX

Unsigned Saturating Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs
one unsigned 16-bit integer subtraction and one unsigned 16-bit addition, saturates the results to the 16-bit unsigned
integer range 0 <= x <= 216 - 1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
cond

A1

UQSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1

UQSAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
R[d]<15:0> = UnsignedSat(sum, 16);
R[d]<31:16> = UnsignedSat(diff, 16);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQSAX Page 610

UQSUB16

Unsigned Saturating Subtract 16 performs two unsigned 16-bit integer subtractions, saturates the results to the 16-bit
unsigned integer range 0 <= x <= 216 - 1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
cond

A1

UQSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1

UQSUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
R[d]<15:0> = UnsignedSat(diff1, 16);
R[d]<31:16> = UnsignedSat(diff2, 16);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQSUB16 Page 611

UQSUB8

Unsigned Saturating Subtract 8 performs four unsigned 8-bit integer subtractions, saturates the results to the 8-bit
unsigned integer range 0 <= x <= 28 - 1, and writes the results to the destination register.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 1 0 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
cond

A1

UQSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 1 Rm

T1

UQSUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
R[d]<7:0> = UnsignedSat(diff1, 8);
R[d]<15:8> = UnsignedSat(diff2, 8);
R[d]<23:16> = UnsignedSat(diff3, 8);
R[d]<31:24> = UnsignedSat(diff4, 8);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UQSUB8 Page 612

USAD8

Unsigned Sum of Absolute Differences performs four unsigned 8-bit subtractions, and adds the absolute values of the
differences together.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 1 0 0 0 Rd 1 1 1 1 Rm 0 0 0 1 Rn
cond

A1

USAD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 1 1 Rn 1 1 1 1 Rd 0 0 0 0 Rm

T1

USAD8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
absdiff1 = Abs(UInt(R[n]<7:0>) - UInt(R[m]<7:0>));
absdiff2 = Abs(UInt(R[n]<15:8>) - UInt(R[m]<15:8>));
absdiff3 = Abs(UInt(R[n]<23:16>) - UInt(R[m]<23:16>));
absdiff4 = Abs(UInt(R[n]<31:24>) - UInt(R[m]<31:24>));
result = absdiff1 + absdiff2 + absdiff3 + absdiff4;
R[d] = result<31:0>;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USAD8 Page 613

USADA8

Unsigned Sum of Absolute Differences and Accumulate performs four unsigned 8-bit subtractions, and adds the
absolute values of the differences to a 32-bit accumulate operand.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 1 0 0 0 Rd != 1111 Rm 0 0 0 1 Rn
cond Ra

A1

USADA8{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "USAD8";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 1 1 1 Rn != 1111 Rd 0 0 0 0 Rm
Ra

T1

USADA8{<c>}{<q>} <Rd>, <Rn>, <Rm>, <Ra>

if Ra == '1111' then SEE "USAD8";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<Ra> Is the third general-purpose source register holding the addend, encoded in the "Ra" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
absdiff1 = Abs(UInt(R[n]<7:0>) - UInt(R[m]<7:0>));
absdiff2 = Abs(UInt(R[n]<15:8>) - UInt(R[m]<15:8>));
absdiff3 = Abs(UInt(R[n]<23:16>) - UInt(R[m]<23:16>));
absdiff4 = Abs(UInt(R[n]<31:24>) - UInt(R[m]<31:24>));
result = UInt(R[a]) + absdiff1 + absdiff2 + absdiff3 + absdiff4;
R[d] = result<31:0>;

USADA8 Page 614

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USADA8 Page 615

USAT

Unsigned Saturate saturates an optionally-shifted signed value to a selected unsigned range.
This instruction sets PSTATE.Q to 1 if the operation saturates.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 1 1 sat_imm Rd imm5 sh 0 1 Rn
cond

Arithmetic shift right (sh == 1)

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left (sh == 0)

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
(shift_t, shift_n) = DecodeImmShift(sh:'0', imm5);
if d == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm

Arithmetic shift right (sh == 1 && !(imm3 == 000 && imm2 == 00))

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn>, ASR #<amount>

Logical shift left (sh == 0)

USAT{<c>}{<q>} <Rd>, #<imm>, <Rn> {, LSL #<amount>}

if sh == '1' && (imm3:imm2) == '00000' then SEE "USAT16";
d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
(shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 0 to 31, encoded in the "sat_imm" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

<amount> For encoding A1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm5" field.
For encoding A1: is the shift amount, in the range 1 to 32 encoded in the "imm5" field as <amount>
modulo 32.

USAT Page 616

For encoding T1: is the optional shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm3:imm2" field.
For encoding T1: is the shift amount, in the range 1 to 31 encoded in the "imm3:imm2" field as
<amount>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand = Shift(R[n], shift_t, shift_n, PSTATE.C); // PSTATE.C ignored
(result, sat) = UnsignedSatQ(SInt(operand), saturate_to);
R[d] = ZeroExtend(result, 32);
if sat then

PSTATE.Q = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USAT Page 617

USAT16

Unsigned Saturate 16 saturates two signed 16-bit values to a selected unsigned range.
This instruction sets PSTATE.Q to 1 if the operation saturates.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 1 1 0 sat_imm Rd (1) (1) (1) (1) 0 0 1 1 Rn
cond

A1

USAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
if d == 15 || n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 0 1 0 Rn 0 0 0 0 Rd 0 0 (0) (0) sat_imm

T1

USAT16{<c>}{<q>} <Rd>, #<imm>, <Rn>

d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
if d == 15 || n == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<imm> Is the bit position for saturation, in the range 0 to 15, encoded in the "sat_imm" field.

<Rn> Is the general-purpose source register, encoded in the "Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result1, sat1) = UnsignedSatQ(SInt(R[n]<15:0>), saturate_to);
(result2, sat2) = UnsignedSatQ(SInt(R[n]<31:16>), saturate_to);
R[d]<15:0> = ZeroExtend(result1, 16);
R[d]<31:16> = ZeroExtend(result2, 16);
if sat1 || sat2 then

PSTATE.Q = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USAT16 Page 618

USAX

Unsigned Subtract and Add with Exchange exchanges the two halfwords of the second operand, performs one
unsigned 16-bit integer subtraction and one unsigned 16-bit addition, and writes the results to the destination register.
It sets PSTATE.GE according to the results.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 1 0 1 Rm
cond

A1

USAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 1 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1

USAX{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
sum = UInt(R[n]<15:0>) + UInt(R[m]<31:16>);
diff = UInt(R[n]<31:16>) - UInt(R[m]<15:0>);
R[d]<15:0> = sum<15:0>;
R[d]<31:16> = diff<15:0>;
PSTATE.GE<1:0> = if sum >= 0x10000 then '11' else '00';
PSTATE.GE<3:2> = if diff >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

USAX Page 619

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USAX Page 620

USUB16

Unsigned Subtract 16 performs two 16-bit unsigned integer subtractions, and writes the results to the destination
register. It sets PSTATE.GE according to the results of the subtractions.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 0 1 1 1 Rm
cond

A1

USUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 1 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1

USUB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff1 = UInt(R[n]<15:0>) - UInt(R[m]<15:0>);
diff2 = UInt(R[n]<31:16>) - UInt(R[m]<31:16>);
R[d]<15:0> = diff1<15:0>;
R[d]<31:16> = diff2<15:0>;
PSTATE.GE<1:0> = if diff1 >= 0 then '11' else '00';
PSTATE.GE<3:2> = if diff2 >= 0 then '11' else '00';

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:

USUB16 Page 621

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USUB16 Page 622

USUB8

Unsigned Subtract 8 performs four 8-bit unsigned integer subtractions, and writes the results to the destination
register. It sets PSTATE.GE according to the results of the subtractions.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 1 0 1 Rn Rd (1) (1) (1) (1) 1 1 1 1 Rm
cond

A1

USUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 1 0 0 Rn 1 1 1 1 Rd 0 1 0 0 Rm

T1

USUB8{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d == 15 || n == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
diff1 = UInt(R[n]<7:0>) - UInt(R[m]<7:0>);
diff2 = UInt(R[n]<15:8>) - UInt(R[m]<15:8>);
diff3 = UInt(R[n]<23:16>) - UInt(R[m]<23:16>);
diff4 = UInt(R[n]<31:24>) - UInt(R[m]<31:24>);
R[d]<7:0> = diff1<7:0>;
R[d]<15:8> = diff2<7:0>;
R[d]<23:16> = diff3<7:0>;
R[d]<31:24> = diff4<7:0>;
PSTATE.GE<0> = if diff1 >= 0 then '1' else '0';
PSTATE.GE<1> = if diff2 >= 0 then '1' else '0';
PSTATE.GE<2> = if diff3 >= 0 then '1' else '0';
PSTATE.GE<3> = if diff4 >= 0 then '1' else '0';

USUB8 Page 623

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

USUB8 Page 624

UXTAB

Unsigned Extend and Add Byte extracts an 8-bit value from a register, zero-extends it to 32 bits, adds the result to the
value in another register, and writes the final result to the destination register. The instruction can specify a rotation
by 0, 8, 16, or 24 bits before extracting the 8-bit value.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 1 1 0 != 1111 Rd rotate (0) (0) 0 1 1 1 Rm
cond Rn

A1

UXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

if Rn == '1111' then SEE "UXTB";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 1 != 1111 1 1 1 1 Rd 1 (0) rotate Rm
Rn

T1

UXTAB{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

if Rn == '1111' then SEE "UXTB";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in “rotate”:

rotate <amount>
00 (omitted)
01 8
10 16
11 24

UXTAB Page 625

Operation

if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d] = R[n] + ZeroExtend(rotated<7:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UXTAB Page 626

UXTAB16

Unsigned Extend and Add Byte 16 extracts two 8-bit values from a register, zero-extends them to 16 bits each, adds
the results to two 16-bit values from another register, and writes the final results to the destination register. The
instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit values.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 1 0 0 != 1111 Rd rotate (0) (0) 0 1 1 1 Rm
cond Rn

A1

UXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

if Rn == '1111' then SEE "UXTB16";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 1 != 1111 1 1 1 1 Rd 1 (0) rotate Rm
Rn

T1

UXTAB16{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

if Rn == '1111' then SEE "UXTB16";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in “rotate”:

rotate <amount>
00 (omitted)
01 8
10 16
11 24

UXTAB16 Page 627

Operation

if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d]<15:0> = R[n]<15:0> + ZeroExtend(rotated<7:0>, 16);
R[d]<31:16> = R[n]<31:16> + ZeroExtend(rotated<23:16>, 16);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UXTAB16 Page 628

UXTAH

Unsigned Extend and Add Halfword extracts a 16-bit value from a register, zero-extends it to 32 bits, adds the result to
a value from another register, and writes the final result to the destination register. The instruction can specify a
rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 1 1 1 != 1111 Rd rotate (0) (0) 0 1 1 1 Rm
cond Rn

A1

UXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

if Rn == '1111' then SEE "UXTH";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 1 != 1111 1 1 1 1 Rd 1 (0) rotate Rm
Rn

T1

UXTAH{<c>}{<q>} {<Rd>,} <Rn>, <Rm> {, ROR #<amount>}

if Rn == '1111' then SEE "UXTH";
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in “rotate”:

rotate <amount>
00 (omitted)
01 8
10 16
11 24

UXTAH Page 629

Operation

if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d] = R[n] + ZeroExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UXTAH Page 630

UXTB

Unsigned Extend Byte extracts an 8-bit value from a register, zero-extends it to 32 bits, and writes the result to the
destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 1 1 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
cond

A1

UXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 1 1 Rm Rd

T1

UXTB{<c>}{<q>} {<Rd>,} <Rm>

d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

T2

UXTB{<c>}.W {<Rd>,} <Rm> // (<Rd>, <Rm> can be represented in T1)

UXTB{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in “rotate”:

UXTB Page 631

rotate <amount>
00 (omitted)
01 8
10 16
11 24

Operation

if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d] = ZeroExtend(rotated<7:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UXTB Page 632

UXTB16

Unsigned Extend Byte 16 extracts two 8-bit values from a register, zero-extends them to 16 bits each, and writes the
results to the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the
8-bit values.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 1 0 0 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
cond

A1

UXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

T1

UXTB16{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field.
For encoding T1: is the second general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in “rotate”:

rotate <amount>
00 (omitted)
01 8
10 16
11 24

Operation

if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d]<15:0> = ZeroExtend(rotated<7:0>, 16);
R[d]<31:16> = ZeroExtend(rotated<23:16>, 16);

UXTB16 Page 633

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UXTB16 Page 634

UXTH

Unsigned Extend Halfword extracts a 16-bit value from a register, zero-extends it to 32 bits, and writes the result to
the destination register. The instruction can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 1 1 1 1 1 1 1 Rd rotate (0) (0) 0 1 1 1 Rm
cond

A1

UXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 1 0 Rm Rd

T1

UXTH{<c>}{<q>} {<Rd>,} <Rm>

d = UInt(Rd); m = UInt(Rm); rotation = 0;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm

T2

UXTH{<c>}.W {<Rd>,} <Rm> // (<Rd>, <Rm> can be represented in T1)

UXTH{<c>}{<q>} {<Rd>,} <Rm> {, ROR #<amount>}

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d == 15 || m == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the general-purpose source register, encoded in the "Rm" field.

<amount> Is the rotate amount, encoded in “rotate”:

UXTH Page 635

rotate <amount>
00 (omitted)
01 8
10 16
11 24

Operation

if ConditionPassed() then
EncodingSpecificOperations();
rotated = ROR(R[m], rotation);
R[d] = ZeroExtend(rotated<15:0>, 32);

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or
destination:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

UXTH Page 636

WFE

Wait For Event is a hint instruction that indicates that the PE can enter a low-power state and remain there until a
wakeup event occurs. Wakeup events include the event signaled as a result of executing the SEV instruction on any PE
in the multiprocessor system. For more information, see Wait For Event and Send Event.
As described in Wait For Event and Send Event, the execution of a WFE instruction that would otherwise cause entry to
a low-power state can be trapped to a higher Exception level, see:

• Traps to Undefined mode of PL0 execution of WFE and WFI instructions.
• Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions.
• Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 1 0
cond

A1

WFE{<c>}{<q>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0

T1

WFE{<c>}{<q>}

// No additional decoding required

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 0

T2

WFE{<c>}.W

// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

WFE Page 637

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if IsEventRegisterSet() then

ClearEventRegister();
else

if PSTATE.EL == EL0 then
// Check for traps described by the OS.
AArch32.CheckForWFxTrap(EL1, WFxType_WFE);

if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
// Check for traps described by the Hypervisor.
AArch32.CheckForWFxTrap(EL2, WFxType_WFE);

if HaveEL(EL3) && PSTATE.M != M32_Monitor then
// Check for traps described by the Secure Monitor.
AArch32.CheckForWFxTrap(EL3, WFxType_WFE);

integer localtimeout = 1 << 64; // No local timeout event is generated
WaitForEvent(localtimeout);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

WFE Page 638

WFI

Wait For Interrupt is a hint instruction that indicates that the PE can enter a low-power state and remain there until a
wakeup event occurs. For more information, see Wait For Interrupt.
As described in Wait For Interrupt, the execution of a WFI instruction that would otherwise cause entry to a low-power
state can be trapped to a higher Exception level, see:

• Traps to Undefined mode of PL0 execution of WFE and WFI instructions.
• Traps to Hyp mode of Non-secure EL0 and EL1 execution of WFE and WFI instructions.
• Traps to Monitor mode of the execution of WFE and WFI instructions in modes other than Monitor mode.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 1 1
cond

A1

WFI{<c>}{<q>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0

T1

WFI{<c>}{<q>}

// No additional decoding required

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 1

T2

WFI{<c>}.W

// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

WFI Page 639

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if !InterruptPending() then

if PSTATE.EL == EL0 then
// Check for traps described by the OS.
AArch32.CheckForWFxTrap(EL1, WFxType_WFI);

if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
// Check for traps described by the Hypervisor.
AArch32.CheckForWFxTrap(EL2, WFxType_WFI);

if HaveEL(EL3) && PSTATE.M != M32_Monitor then
// Check for traps described by the Secure Monitor.
AArch32.CheckForWFxTrap(EL3, WFxType_WFI);

integer localtimeout = 1 << 64; // No local timeout event is generated
WaitForInterrupt(localtimeout);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

WFI Page 640

YIELD

YIELD is a hint instruction. Software with a multithreading capability can use a YIELD instruction to indicate to the PE
that it is performing a task, for example a spin-lock, that could be swapped out to improve overall system performance.
The PE can use this hint to suspend and resume multiple software threads if it supports the capability.
For more information about the recommended use of this instruction see The Yield instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 0 1 0 0 0 0 0 (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 0 0 0 0 1
cond

A1

YIELD{<c>}{<q>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0

T1

YIELD{<c>}{<q>}

// No additional decoding required

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 1

T2

YIELD{<c>}.W

// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
Hint_Yield();

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

YIELD Page 641

AArch32 -- SIMD&FP Instructions (alphabetic order)

AESD: AES single round decryption.

AESE: AES single round encryption.

AESIMC: AES inverse mix columns.

AESMC: AES mix columns.

FLDM*X (FLDMDBX, FLDMIAX): FLDM*X.

FSTMDBX, FSTMIAX: FSTMX.

SHA1C: SHA1 hash update (choose).

SHA1H: SHA1 fixed rotate.

SHA1M: SHA1 hash update (majority).

SHA1P: SHA1 hash update (parity).

SHA1SU0: SHA1 schedule update 0.

SHA1SU1: SHA1 schedule update 1.

SHA256H: SHA256 hash update part 1.

SHA256H2: SHA256 hash update part 2.

SHA256SU0: SHA256 schedule update 0.

SHA256SU1: SHA256 schedule update 1.

VABA: Vector Absolute Difference and Accumulate.

VABAL: Vector Absolute Difference and Accumulate Long.

VABD (floating-point): Vector Absolute Difference (floating-point).

VABD (integer): Vector Absolute Difference (integer).

VABDL (integer): Vector Absolute Difference Long (integer).

VABS: Vector Absolute.

VACGE: Vector Absolute Compare Greater Than or Equal.

VACGT: Vector Absolute Compare Greater Than.

VACLE: Vector Absolute Compare Less Than or Equal: an alias of VACGE.

VACLT: Vector Absolute Compare Less Than: an alias of VACGT.

VADD (floating-point): Vector Add (floating-point).

VADD (integer): Vector Add (integer).

VADDHN: Vector Add and Narrow, returning High Half.

VADDL: Vector Add Long.

VADDW: Vector Add Wide.

VAND (immediate): Vector Bitwise AND (immediate): an alias of VBIC (immediate).

VAND (register): Vector Bitwise AND (register).

VBIC (immediate): Vector Bitwise Bit Clear (immediate).

AArch32 -- SIMD&FP Instructions (alphabetic order)

Page 642

VBIC (register): Vector Bitwise Bit Clear (register).

VBIF: Vector Bitwise Insert if False.

VBIT: Vector Bitwise Insert if True.

VBSL: Vector Bitwise Select.

VCADD: Vector Complex Add.

VCEQ (immediate #0): Vector Compare Equal to Zero.

VCEQ (register): Vector Compare Equal.

VCGE (immediate #0): Vector Compare Greater Than or Equal to Zero.

VCGE (register): Vector Compare Greater Than or Equal.

VCGT (immediate #0): Vector Compare Greater Than Zero.

VCGT (register): Vector Compare Greater Than.

VCLE (immediate #0): Vector Compare Less Than or Equal to Zero.

VCLE (register): Vector Compare Less Than or Equal: an alias of VCGE (register).

VCLS: Vector Count Leading Sign Bits.

VCLT (immediate #0): Vector Compare Less Than Zero.

VCLT (register): Vector Compare Less Than: an alias of VCGT (register).

VCLZ: Vector Count Leading Zeros.

VCMLA: Vector Complex Multiply Accumulate.

VCMLA (by element): Vector Complex Multiply Accumulate (by element).

VCMP: Vector Compare.

VCMPE: Vector Compare, raising Invalid Operation on NaN.

VCNT: Vector Count Set Bits.

VCVT (between double-precision and single-precision): Convert between double-precision and single-precision.

VCVT (between floating-point and fixed-point, Advanced SIMD): Vector Convert between floating-point and fixed-point.

VCVT (between floating-point and fixed-point, floating-point): Convert between floating-point and fixed-point.

VCVT (between floating-point and integer, Advanced SIMD): Vector Convert between floating-point and integer.

VCVT (between half-precision and single-precision, Advanced SIMD): Vector Convert between half-precision and
single-precision.

VCVT (floating-point to integer, floating-point): Convert floating-point to integer with Round towards Zero.

VCVT (from single-precision to BFloat16, Advanced SIMD): Vector Convert from single-precision to BFloat16.

VCVT (integer to floating-point, floating-point): Convert integer to floating-point.

VCVTA (Advanced SIMD): Vector Convert floating-point to integer with Round to Nearest with Ties to Away.

VCVTA (floating-point): Convert floating-point to integer with Round to Nearest with Ties to Away.

VCVTB: Convert to or from a half-precision value in the bottom half of a single-precision register.

VCVTB (BFloat16): Converts from a single-precision value to a BFloat16 value in the bottom half of a single-precision
register.

VCVTM (Advanced SIMD): Vector Convert floating-point to integer with Round towards -Infinity.

AArch32 -- SIMD&FP Instructions (alphabetic order)

Page 643

VCVTM (floating-point): Convert floating-point to integer with Round towards -Infinity.

VCVTN (Advanced SIMD): Vector Convert floating-point to integer with Round to Nearest.

VCVTN (floating-point): Convert floating-point to integer with Round to Nearest.

VCVTP (Advanced SIMD): Vector Convert floating-point to integer with Round towards +Infinity.

VCVTP (floating-point): Convert floating-point to integer with Round towards +Infinity.

VCVTR: Convert floating-point to integer.

VCVTT: Convert to or from a half-precision value in the top half of a single-precision register.

VCVTT (BFloat16): Converts from a single-precision value to a BFloat16 value in the top half of a single-precision
register..

VDIV: Divide.

VDOT (by element): BFloat16 floating-point indexed dot product (vector, by element).

VDOT (vector): BFloat16 floating-point (BF16) dot product (vector).

VDUP (general-purpose register): Duplicate general-purpose register to vector.

VDUP (scalar): Duplicate vector element to vector.

VEOR: Vector Bitwise Exclusive-OR.

VEXT (byte elements): Vector Extract.

VEXT (multibyte elements): Vector Extract: an alias of VEXT (byte elements).

VFMA: Vector Fused Multiply Accumulate.

VFMAB, VFMAT (BFloat16, by scalar): BFloat16 floating-point widening multiply-add long (by scalar).

VFMAB, VFMAT (BFloat16, vector): BFloat16 floating-point widening multiply-add long (vector).

VFMAL (by scalar): Vector Floating-point Multiply-Add Long to accumulator (by scalar).

VFMAL (vector): Vector Floating-point Multiply-Add Long to accumulator (vector).

VFMS: Vector Fused Multiply Subtract.

VFMSL (by scalar): Vector Floating-point Multiply-Subtract Long from accumulator (by scalar).

VFMSL (vector): Vector Floating-point Multiply-Subtract Long from accumulator (vector).

VFNMA: Vector Fused Negate Multiply Accumulate.

VFNMS: Vector Fused Negate Multiply Subtract.

VHADD: Vector Halving Add.

VHSUB: Vector Halving Subtract.

VINS: Vector move Insertion.

VJCVT: Javascript Convert to signed fixed-point, rounding toward Zero.

VLD1 (multiple single elements): Load multiple single 1-element structures to one, two, three, or four registers.

VLD1 (single element to all lanes): Load single 1-element structure and replicate to all lanes of one register.

VLD1 (single element to one lane): Load single 1-element structure to one lane of one register.

VLD2 (multiple 2-element structures): Load multiple 2-element structures to two or four registers.

VLD2 (single 2-element structure to all lanes): Load single 2-element structure and replicate to all lanes of two
registers.

AArch32 -- SIMD&FP Instructions (alphabetic order)

Page 644

VLD2 (single 2-element structure to one lane): Load single 2-element structure to one lane of two registers.

VLD3 (multiple 3-element structures): Load multiple 3-element structures to three registers.

VLD3 (single 3-element structure to all lanes): Load single 3-element structure and replicate to all lanes of three
registers.

VLD3 (single 3-element structure to one lane): Load single 3-element structure to one lane of three registers.

VLD4 (multiple 4-element structures): Load multiple 4-element structures to four registers.

VLD4 (single 4-element structure to all lanes): Load single 4-element structure and replicate to all lanes of four
registers.

VLD4 (single 4-element structure to one lane): Load single 4-element structure to one lane of four registers.

VLDM, VLDMDB, VLDMIA: Load Multiple SIMD&FP registers.

VLDR (immediate): Load SIMD&FP register (immediate).

VLDR (literal): Load SIMD&FP register (literal).

VMAX (floating-point): Vector Maximum (floating-point).

VMAX (integer): Vector Maximum (integer).

VMAXNM: Floating-point Maximum Number.

VMIN (floating-point): Vector Minimum (floating-point).

VMIN (integer): Vector Minimum (integer).

VMINNM: Floating-point Minimum Number.

VMLA (by scalar): Vector Multiply Accumulate (by scalar).

VMLA (floating-point): Vector Multiply Accumulate (floating-point).

VMLA (integer): Vector Multiply Accumulate (integer).

VMLAL (by scalar): Vector Multiply Accumulate Long (by scalar).

VMLAL (integer): Vector Multiply Accumulate Long (integer).

VMLS (by scalar): Vector Multiply Subtract (by scalar).

VMLS (floating-point): Vector Multiply Subtract (floating-point).

VMLS (integer): Vector Multiply Subtract (integer).

VMLSL (by scalar): Vector Multiply Subtract Long (by scalar).

VMLSL (integer): Vector Multiply Subtract Long (integer).

VMMLA: BFloat16 floating-point matrix multiply-accumulate.

VMOV (between general-purpose register and half-precision): Copy 16 bits of a general-purpose register to or from a
32-bit SIMD&FP register.

VMOV (between general-purpose register and single-precision): Copy a general-purpose register to or from a 32-bit
SIMD&FP register.

VMOV (between two general-purpose registers and a doubleword floating-point register): Copy two general-purpose
registers to or from a SIMD&FP register.

VMOV (between two general-purpose registers and two single-precision registers): Copy two general-purpose
registers to a pair of 32-bit SIMD&FP registers.

VMOV (general-purpose register to scalar): Copy a general-purpose register to a vector element.

VMOV (immediate): Copy immediate value to a SIMD&FP register.

AArch32 -- SIMD&FP Instructions (alphabetic order)

Page 645

VMOV (register): Copy between FP registers.

VMOV (register, SIMD): Copy between SIMD registers: an alias of VORR (register).

VMOV (scalar to general-purpose register): Copy a vector element to a general-purpose register with sign or zero
extension.

VMOVL: Vector Move Long.

VMOVN: Vector Move and Narrow.

VMOVX: Vector Move extraction.

VMRS: Move SIMD&FP Special register to general-purpose register.

VMSR: Move general-purpose register to SIMD&FP Special register.

VMUL (by scalar): Vector Multiply (by scalar).

VMUL (floating-point): Vector Multiply (floating-point).

VMUL (integer and polynomial): Vector Multiply (integer and polynomial).

VMULL (by scalar): Vector Multiply Long (by scalar).

VMULL (integer and polynomial): Vector Multiply Long (integer and polynomial).

VMVN (immediate): Vector Bitwise NOT (immediate).

VMVN (register): Vector Bitwise NOT (register).

VNEG: Vector Negate.

VNMLA: Vector Negate Multiply Accumulate.

VNMLS: Vector Negate Multiply Subtract.

VNMUL: Vector Negate Multiply.

VORN (immediate): Vector Bitwise OR NOT (immediate): an alias of VORR (immediate).

VORN (register): Vector bitwise OR NOT (register).

VORR (immediate): Vector Bitwise OR (immediate).

VORR (register): Vector bitwise OR (register).

VPADAL: Vector Pairwise Add and Accumulate Long.

VPADD (floating-point): Vector Pairwise Add (floating-point).

VPADD (integer): Vector Pairwise Add (integer).

VPADDL: Vector Pairwise Add Long.

VPMAX (floating-point): Vector Pairwise Maximum (floating-point).

VPMAX (integer): Vector Pairwise Maximum (integer).

VPMIN (floating-point): Vector Pairwise Minimum (floating-point).

VPMIN (integer): Vector Pairwise Minimum (integer).

VPOP: Pop SIMD&FP registers from stack: an alias of VLDM, VLDMDB, VLDMIA.

VPUSH: Push SIMD&FP registers to stack: an alias of VSTM, VSTMDB, VSTMIA.

VQABS: Vector Saturating Absolute.

VQADD: Vector Saturating Add.

VQDMLAL: Vector Saturating Doubling Multiply Accumulate Long.

AArch32 -- SIMD&FP Instructions (alphabetic order)

Page 646

VQDMLSL: Vector Saturating Doubling Multiply Subtract Long.

VQDMULH: Vector Saturating Doubling Multiply Returning High Half.

VQDMULL: Vector Saturating Doubling Multiply Long.

VQMOVN, VQMOVUN: Vector Saturating Move and Narrow.

VQNEG: Vector Saturating Negate.

VQRDMLAH: Vector Saturating Rounding Doubling Multiply Accumulate Returning High Half.

VQRDMLSH: Vector Saturating Rounding Doubling Multiply Subtract Returning High Half.

VQRDMULH: Vector Saturating Rounding Doubling Multiply Returning High Half.

VQRSHL: Vector Saturating Rounding Shift Left.

VQRSHRN (zero): Vector Saturating Rounding Shift Right, Narrow: an alias of VQMOVN, VQMOVUN.

VQRSHRN, VQRSHRUN: Vector Saturating Rounding Shift Right, Narrow.

VQRSHRUN (zero): Vector Saturating Rounding Shift Right, Narrow: an alias of VQMOVN, VQMOVUN.

VQSHL (register): Vector Saturating Shift Left (register).

VQSHL, VQSHLU (immediate): Vector Saturating Shift Left (immediate).

VQSHRN (zero): Vector Saturating Shift Right, Narrow: an alias of VQMOVN, VQMOVUN.

VQSHRN, VQSHRUN: Vector Saturating Shift Right, Narrow.

VQSHRUN (zero): Vector Saturating Shift Right, Narrow: an alias of VQMOVN, VQMOVUN.

VQSUB: Vector Saturating Subtract.

VRADDHN: Vector Rounding Add and Narrow, returning High Half.

VRECPE: Vector Reciprocal Estimate.

VRECPS: Vector Reciprocal Step.

VREV16: Vector Reverse in halfwords.

VREV32: Vector Reverse in words.

VREV64: Vector Reverse in doublewords.

VRHADD: Vector Rounding Halving Add.

VRINTA (Advanced SIMD): Vector Round floating-point to integer towards Nearest with Ties to Away.

VRINTA (floating-point): Round floating-point to integer to Nearest with Ties to Away.

VRINTM (Advanced SIMD): Vector Round floating-point to integer towards -Infinity.

VRINTM (floating-point): Round floating-point to integer towards -Infinity.

VRINTN (Advanced SIMD): Vector Round floating-point to integer to Nearest.

VRINTN (floating-point): Round floating-point to integer to Nearest.

VRINTP (Advanced SIMD): Vector Round floating-point to integer towards +Infinity.

VRINTP (floating-point): Round floating-point to integer towards +Infinity.

VRINTR: Round floating-point to integer.

VRINTX (Advanced SIMD): Vector round floating-point to integer inexact.

VRINTX (floating-point): Round floating-point to integer inexact.

AArch32 -- SIMD&FP Instructions (alphabetic order)

Page 647

VRINTZ (Advanced SIMD): Vector round floating-point to integer towards Zero.

VRINTZ (floating-point): Round floating-point to integer towards Zero.

VRSHL: Vector Rounding Shift Left.

VRSHR: Vector Rounding Shift Right.

VRSHR (zero): Vector Rounding Shift Right: an alias of VORR (register).

VRSHRN: Vector Rounding Shift Right and Narrow.

VRSHRN (zero): Vector Rounding Shift Right and Narrow: an alias of VMOVN.

VRSQRTE: Vector Reciprocal Square Root Estimate.

VRSQRTS: Vector Reciprocal Square Root Step.

VRSRA: Vector Rounding Shift Right and Accumulate.

VRSUBHN: Vector Rounding Subtract and Narrow, returning High Half.

VSDOT (by element): Dot Product index form with signed integers..

VSDOT (vector): Dot Product vector form with signed integers..

VSELEQ, VSELGE, VSELGT, VSELVS: Floating-point conditional select.

VSHL (immediate): Vector Shift Left (immediate).

VSHL (register): Vector Shift Left (register).

VSHLL: Vector Shift Left Long.

VSHR: Vector Shift Right.

VSHR (zero): Vector Shift Right: an alias of VORR (register).

VSHRN: Vector Shift Right Narrow.

VSHRN (zero): Vector Shift Right Narrow: an alias of VMOVN.

VSLI: Vector Shift Left and Insert.

VSMMLA: Widening 8-bit signed integer matrix multiply-accumulate into 2x2 matrix.

VSQRT: Square Root.

VSRA: Vector Shift Right and Accumulate.

VSRI: Vector Shift Right and Insert.

VST1 (multiple single elements): Store multiple single elements from one, two, three, or four registers.

VST1 (single element from one lane): Store single element from one lane of one register.

VST2 (multiple 2-element structures): Store multiple 2-element structures from two or four registers.

VST2 (single 2-element structure from one lane): Store single 2-element structure from one lane of two registers.

VST3 (multiple 3-element structures): Store multiple 3-element structures from three registers.

VST3 (single 3-element structure from one lane): Store single 3-element structure from one lane of three registers.

VST4 (multiple 4-element structures): Store multiple 4-element structures from four registers.

VST4 (single 4-element structure from one lane): Store single 4-element structure from one lane of four registers.

VSTM, VSTMDB, VSTMIA: Store multiple SIMD&FP registers.

VSTR: Store SIMD&FP register.

AArch32 -- SIMD&FP Instructions (alphabetic order)

Page 648

VSUB (floating-point): Vector Subtract (floating-point).

VSUB (integer): Vector Subtract (integer).

VSUBHN: Vector Subtract and Narrow, returning High Half.

VSUBL: Vector Subtract Long.

VSUBW: Vector Subtract Wide.

VSUDOT (by element): Dot Product index form with signed and unsigned integers (by element).

VSWP: Vector Swap.

VTBL, VTBX: Vector Table Lookup and Extension.

VTRN: Vector Transpose.

VTST: Vector Test Bits.

VUDOT (by element): Dot Product index form with unsigned integers..

VUDOT (vector): Dot Product vector form with unsigned integers..

VUMMLA: Widening 8-bit unsigned integer matrix multiply-accumulate into 2x2 matrix.

VUSDOT (by element): Dot Product index form with unsigned and signed integers (by element).

VUSDOT (vector): Dot Product vector form with mixed-sign integers.

VUSMMLA: Widening 8-bit mixed integer matrix multiply-accumulate into 2x2 matrix.

VUZP: Vector Unzip.

VUZP (alias): Vector Unzip: an alias of VTRN.

VZIP: Vector Zip.

VZIP (alias): Vector Zip: an alias of VTRN.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AArch32 -- SIMD&FP Instructions (alphabetic order)

Page 649

AESD

AES single round decryption.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AES)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 0 1 M 0 Vm

A1

AESD.<dt> <Qd>, <Qm>

if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

T1
(FEAT_AES)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 0 1 M 0 Vm

T1

AESD.<dt> <Qd>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<dt> Is the data type, encoded in “size”:

size <dt>
00 8
01 RESERVED
1x RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckCryptoEnabled32();
op1 = Q[d>>1]; op2 = Q[m>>1];
Q[d>>1] = AESInvSubBytes(AESInvShiftRows(op1 EOR op2));

AESD Page 650

Operational information

If CPSR.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESD Page 651

AESE

AES single round encryption.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AES)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 0 0 M 0 Vm

A1

AESE.<dt> <Qd>, <Qm>

if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

T1
(FEAT_AES)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 0 0 M 0 Vm

T1

AESE.<dt> <Qd>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<dt> Is the data type, encoded in “size”:

size <dt>
00 8
01 RESERVED
1x RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckCryptoEnabled32();
op1 = Q[d>>1]; op2 = Q[m>>1];
Q[d>>1] = AESSubBytes(AESShiftRows(op1 EOR op2));

AESE Page 652

Operational information

If CPSR.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESE Page 653

AESIMC

AES inverse mix columns.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AES)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 1 1 M 0 Vm

A1

AESIMC.<dt> <Qd>, <Qm>

if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

T1
(FEAT_AES)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 1 1 M 0 Vm

T1

AESIMC.<dt> <Qd>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

Assembler Symbols

<dt> Is the data type, encoded in “size”:

size <dt>
00 8
01 RESERVED
1x RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckCryptoEnabled32();
Q[d>>1] = AESInvMixColumns(Q[m>>1]);

Operational information

If CPSR.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.

AESIMC Page 654

◦ The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESIMC Page 655

AESMC

AES mix columns.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AES)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 1 0 M 0 Vm

A1

AESMC.<dt> <Qd>, <Qm>

if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

T1
(FEAT_AES)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 1 1 0 M 0 Vm

T1

AESMC.<dt> <Qd>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveAESExt() then UNDEFINED;
if size != '00' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<dt> Is the data type, encoded in “size”:

size <dt>
00 8
01 RESERVED
1x RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckCryptoEnabled32();
Q[d>>1] = AESMixColumns(Q[m>>1]);

AESMC Page 656

Operational information

If CPSR.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AESMC Page 657

FLDM*X (FLDMDBX, FLDMIAX)

FLDMDBX is the Decrement Before variant of this instruction, and FLDMIAX is the Increment After variant. FLDM*X
loads multiple SIMD&FP registers from consecutive locations in the Advanced SIMD and floating-point register file
using an address from a general-purpose register.
Arm deprecates use of FLDMDBX and FLDMIAX, except for disassembly purposes, and reassembly of disassembled
code.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 1
cond imm8<0>

Decrement Before (P == 1 && U == 0 && W == 1)

FLDMDBX{<c>}{<q>} <Rn>!, <dreglist>

Increment After (P == 0 && U == 1)

FLDMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE "VLDR";
if P == U && W == '1' then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FLDM*X".
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If regs > 16 || (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 1
imm8<0>

FLDM*X (FLDMDBX,
FLDMIAX) Page 658

Decrement Before (P == 1 && U == 0 && W == 1)

FLDMDBX{<c>}{<q>} <Rn>!, <dreglist>

Increment After (P == 0 && U == 1)

FLDMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE "VLDR";
if P == U && W == '1' then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FLDM*X".
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If regs > 16 || (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.
Related encodings: See Advanced SIMD and floating-point 64-bit move for the T32 instruction set, or Advanced SIMD
and floating-point 64-bit move for the A32 instruction set.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC can
be used.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register in
the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list plus one. The
list must contain at least one register, all registers must be in the range D0-D15, and must not contain
more than 16 registers.

FLDM*X (FLDMDBX,
FLDMIAX) Page 659

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckVFPEnabled(TRUE);
address = if add then R[n] else R[n]-imm32;

for r = 0 to regs-1
if single_regs then

S[d+r] = MemA[address,4];
address = address+4;

else
word1 = MemA[address,4];
word2 = MemA[address+4,4];
address = address+8;

// Combine the word-aligned words in the correct order for current endianness.
D[d+r] = if BigEndian(AccessType_ASIMD) then word1:word2 else word2:word1;

if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FLDM*X (FLDMDBX,
FLDMIAX) Page 660

FSTMDBX, FSTMIAX

FSTMX stores multiple SIMD&FP registers from the Advanced SIMD and floating-point register file to consecutive
locations in using an address from a general-purpose register.
Arm deprecates use of FSTMDBX and FSTMIAX, except for disassembly purposes, and reassembly of disassembled
code.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 1
cond imm8<0>

Decrement Before (P == 1 && U == 0 && W == 1)

FSTMDBX{<c>}{<q>} <Rn>!, <dreglist>

Increment After (P == 0 && U == 1)

FSTMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE "VSTR";
if P == U && W == '1' then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 1
imm8<0>

FSTMDBX, FSTMIAX Page 661

Decrement Before (P == 1 && U == 0 && W == 1)

FSTMDBX{<c>}{<q>} <Rn>!, <dreglist>

Increment After (P == 0 && U == 1)

FSTMIAX{<c>}{<q>} <Rn>{!}, <dreglist>

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE "VSTR";
if P == U && W == '1' then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d+regs) > 16, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.
Related encodings: See Advanced SIMD and floating-point 64-bit move for the T32 instruction set, or Advanced SIMD
and floating-point 64-bit move for the A32 instruction set.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC can
be used. However, Arm deprecates use of the PC.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register in
the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list plus one. The
list must contain at least one register, all registers must be in the range D0-D15, and must not contain
more than 16 registers.

FSTMDBX, FSTMIAX Page 662

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
address = if add then R[n] else R[n]-imm32;
for r = 0 to regs-1

if single_regs then
MemA[address,4] = S[d+r];
address = address+4;

else
// Store as two word-aligned words in the correct order for current endianness.
if BigEndian(AccessType_ASIMD) then

MemA[address,4] = D[d+r]<63:32>;
MemA[address+4,4] = D[d+r]<31:0>;

else
MemA[address,4] = D[d+r]<31:0>;
MemA[address+4,4] = D[d+r]<63:32>;

address = address+8;

if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FSTMDBX, FSTMIAX Page 663

SHA1C

SHA1 hash update (choose).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_SHA1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm

A1

SHA1C.32 <Qd>, <Qn>, <Qm>

if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1
(FEAT_SHA1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm

T1

SHA1C.32 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckCryptoEnabled32();
x = Q[d>>1];
y = Q[n>>1]<31:0>; // Note: 32 bits wide
w = Q[m>>1];
for e = 0 to 3

t = SHAchoose(x<63:32>, x<95:64>, x<127:96>);
y = y + ROL(x<31:0>, 5) + t + Elem[w, e, 32];
x<63:32> = ROL(x<63:32>, 30);
<y, x> = ROL(y:x, 32);

Q[d>>1] = x;

SHA1C Page 664

Operational information

If CPSR.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1C Page 665

SHA1H

SHA1 fixed rotate.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_SHA1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 0 1 0 1 1 M 0 Vm

A1

SHA1H.32 <Qd>, <Qm>

if !HaveSHA1Ext() then UNDEFINED;
if size != '10' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

T1
(FEAT_SHA1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 0 1 0 1 1 M 0 Vm

T1

SHA1H.32 <Qd>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveSHA1Ext() then UNDEFINED;
if size != '10' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckCryptoEnabled32();
Q[d>>1] = ZeroExtend(ROL(Q[m>>1]<31:0>, 30), 128);

Operational information

If CPSR.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

SHA1H Page 666

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1H Page 667

SHA1M

SHA1 hash update (majority).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_SHA1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 1 1 0 0 N Q M 0 Vm

A1

SHA1M.32 <Qd>, <Qn>, <Qm>

if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1
(FEAT_SHA1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 1 1 0 0 N Q M 0 Vm

T1

SHA1M.32 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckCryptoEnabled32();
x = Q[d>>1];
y = Q[n>>1]<31:0>; // Note: 32 bits wide
w = Q[m>>1];
for e = 0 to 3

t = SHAmajority(x<63:32>, x<95:64>, x<127:96>);
y = y + ROL(x<31:0>, 5) + t + Elem[w, e, 32];
x<63:32> = ROL(x<63:32>, 30);
<y, x> = ROL(y:x, 32);

Q[d>>1] = x;

SHA1M Page 668

Operational information

If CPSR.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1M Page 669

SHA1P

SHA1 hash update (parity).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_SHA1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 1 Vn Vd 1 1 0 0 N Q M 0 Vm

A1

SHA1P.32 <Qd>, <Qn>, <Qm>

if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1
(FEAT_SHA1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 1 Vn Vd 1 1 0 0 N Q M 0 Vm

T1

SHA1P.32 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckCryptoEnabled32();
x = Q[d>>1];
y = Q[n>>1]<31:0>; // Note: 32 bits wide
w = Q[m>>1];
for e = 0 to 3

t = SHAparity(x<63:32>, x<95:64>, x<127:96>);
y = y + ROL(x<31:0>, 5) + t + Elem[w, e, 32];
x<63:32> = ROL(x<63:32>, 30);
<y, x> = ROL(y:x, 32);

Q[d>>1] = x;

SHA1P Page 670

Operational information

If CPSR.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1P Page 671

SHA1SU0

SHA1 schedule update 0.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_SHA1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 1 Vn Vd 1 1 0 0 N Q M 0 Vm

A1

SHA1SU0.32 <Qd>, <Qn>, <Qm>

if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1
(FEAT_SHA1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 1 Vn Vd 1 1 0 0 N Q M 0 Vm

T1

SHA1SU0.32 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveSHA1Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckCryptoEnabled32();
op1 = Q[d>>1]; op2 = Q[n>>1]; op3 = Q[m>>1];
op2 = op2<63:0> : op1<127:64>;
Q[d>>1] = op1 EOR op2 EOR op3;

Operational information

If CPSR.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

SHA1SU0 Page 672

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1SU0 Page 673

SHA1SU1

SHA1 schedule update 1.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_SHA1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 1 0 M 0 Vm

A1

SHA1SU1.32 <Qd>, <Qm>

if !HaveSHA1Ext() then UNDEFINED;
if size != '10' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

T1
(FEAT_SHA1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 1 0 M 0 Vm

T1

SHA1SU1.32 <Qd>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveSHA1Ext() then UNDEFINED;
if size != '10' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckCryptoEnabled32();
X = Q[d>>1]; Y = Q[m>>1];
T = X EOR LSR(Y, 32);
W0 = ROL(T<31:0>, 1);
W1 = ROL(T<63:32>, 1);
W2 = ROL(T<95:64>, 1);
W3 = ROL(T<127:96>, 1) EOR ROL(T<31:0>, 2);
Q[d>>1] = W3:W2:W1:W0;

Operational information

If CPSR.DIT is 1:
• The execution time of this instruction is independent of:

SHA1SU1 Page 674

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA1SU1 Page 675

SHA256H

SHA256 hash update part 1.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_SHA256)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm

A1

SHA256H.32 <Qd>, <Qn>, <Qm>

if !HaveSHA256Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1
(FEAT_SHA256)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 0 Vn Vd 1 1 0 0 N Q M 0 Vm

T1

SHA256H.32 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveSHA256Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckCryptoEnabled32();
X = Q[d>>1]; Y = Q[n>>1]; W = Q[m>>1]; part1 = TRUE;
Q[d>>1] = SHA256hash(X, Y, W, part1);

Operational information

If CPSR.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

SHA256H Page 676

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA256H Page 677

SHA256H2

SHA256 hash update part 2.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_SHA256)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 1 Vn Vd 1 1 0 0 N Q M 0 Vm

A1

SHA256H2.32 <Qd>, <Qn>, <Qm>

if !HaveSHA256Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1
(FEAT_SHA256)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 1 Vn Vd 1 1 0 0 N Q M 0 Vm

T1

SHA256H2.32 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveSHA256Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckCryptoEnabled32();
X = Q[n>>1]; Y = Q[d>>1]; W = Q[m>>1]; part1 = FALSE;
Q[d>>1] = SHA256hash(X, Y, W, part1);

Operational information

If CPSR.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

SHA256H2 Page 678

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA256H2 Page 679

SHA256SU0

SHA256 schedule update 0.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_SHA256)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 1 1 M 0 Vm

A1

SHA256SU0.32 <Qd>, <Qm>

if !HaveSHA256Ext() then UNDEFINED;
if size != '10' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

T1
(FEAT_SHA256)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 1 1 M 0 Vm

T1

SHA256SU0.32 <Qd>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveSHA256Ext() then UNDEFINED;
if size != '10' then UNDEFINED;
if Vd<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
bits(128) result;
EncodingSpecificOperations(); CheckCryptoEnabled32();
x = Q[d>>1]; y = Q[m>>1];
t = y<31:0> : x<127:32>;
for e = 0 to 3

elt = Elem[t, e, 32];
elt = ROR(elt, 7) EOR ROR(elt, 18) EOR LSR(elt, 3);
Elem[result, e, 32] = elt + Elem[x, e, 32];

Q[d>>1] = result;

Operational information

If CPSR.DIT is 1:

SHA256SU0 Page 680

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA256SU0 Page 681

SHA256SU1

SHA256 schedule update 1.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_SHA256)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 1 0 Vn Vd 1 1 0 0 N Q M 0 Vm

A1

SHA256SU1.32 <Qd>, <Qn>, <Qm>

if !HaveSHA256Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1
(FEAT_SHA256)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 0 Vn Vd 1 1 0 0 N Q M 0 Vm

T1

SHA256SU1.32 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveSHA256Ext() then UNDEFINED;
if Q != '1' then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

SHA256SU1 Page 682

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckCryptoEnabled32();
bits(32) elt;
bits(128) result;
x = Q[d>>1]; y = Q[n>>1]; z = Q[m>>1];
T0 = z<31:0> : y<127:32>;

T1 = z<127:64>;
for e = 0 to 1

elt = Elem[T1, e, 32];
elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
elt = elt + Elem[x, e, 32] + Elem[T0, e, 32];
Elem[result, e, 32] = elt;

T1 = result<63:0>;
for e = 2 to 3

elt = Elem[T1, e - 2, 32];
elt = ROR(elt, 17) EOR ROR(elt, 19) EOR LSR(elt, 10);
elt = elt + Elem[x, e, 32] + Elem[T0, e, 32];
Elem[result, e, 32] = elt;

Q[d>>1] = result;

Operational information

If CPSR.DIT is 1:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SHA256SU1 Page 683

VABA

Vector Absolute Difference and Accumulate subtracts the elements of one vector from the corresponding elements of
another vector, and accumulates the absolute values of the results into the elements of the destination vector.
Operand and result elements are all integers of the same length.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VABA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VABA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1'); long_destination = FALSE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VABA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VABA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1'); long_destination = FALSE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “U:size”:

VABA Page 684

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[Din[n+r],e,esize];
op2 = Elem[Din[m+r],e,esize];
absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
if long_destination then

Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + absdiff;
else

Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + absdiff;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VABA Page 685

VABAL

Vector Absolute Difference and Accumulate Long subtracts the elements of one vector from the corresponding
elements of another vector, and accumulates the absolute values of the results into the elements of the destination
vector.
Operand elements are all integers of the same length, and the result elements are double the length of the operands.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 11 Vn Vd 0 1 0 1 N 0 M 0 Vm
size

A1

VABAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 11 Vn Vd 0 1 0 1 N 0 M 0 Vm
size

T1

VABAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “U:size”:

VABAL Page 686

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[Din[n+r],e,esize];
op2 = Elem[Din[m+r],e,esize];
absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
if long_destination then

Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + absdiff;
else

Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + absdiff;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VABAL Page 687

VABD (floating-point)

Vector Absolute Difference (floating-point) subtracts the elements of one vector from the corresponding elements of
another vector, and places the absolute values of the results in the elements of the destination vector.
Operand and result elements are floating-point numbers of the same size.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.

VABD (floating-point) Page 688

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
Elem[D[d+r],e,esize] = FPAbs(FPSub(op1,op2,StandardFPSCRValue()));

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VABD (floating-point) Page 689

VABD (integer)

Vector Absolute Difference (integer) subtracts the elements of one vector from the corresponding elements of another
vector, and places the absolute values of the results in the elements of the destination vector.
Operand and result elements are all integers of the same length.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1'); long_destination = FALSE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VABD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VABD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1'); long_destination = FALSE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “U:size”:

VABD (integer) Page 690

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[Din[n+r],e,esize];
op2 = Elem[Din[m+r],e,esize];
absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
if long_destination then

Elem[Q[d>>1],e,2*esize] = absdiff<2*esize-1:0>;
else

Elem[D[d+r],e,esize] = absdiff<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VABD (integer) Page 691

VABDL (integer)

Vector Absolute Difference Long (integer) subtracts the elements of one vector from the corresponding elements of
another vector, and places the absolute values of the results in the elements of the destination vector.
Operand elements are all integers of the same length, and the result elements are double the length of the operands.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 11 Vn Vd 0 1 1 1 N 0 M 0 Vm
size

A1

VABDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 11 Vn Vd 0 1 1 1 N 0 M 0 Vm
size

T1

VABDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

VABDL (integer) Page 692

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[Din[n+r],e,esize];
op2 = Elem[Din[m+r],e,esize];
absdiff = Abs(Int(op1,unsigned) - Int(op2,unsigned));
if long_destination then

Elem[Q[d>>1],e,2*esize] = absdiff<2*esize-1:0>;
else

Elem[D[d+r],e,esize] = absdiff<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VABDL (integer) Page 693

VABS

Vector Absolute takes the absolute value of each element in a vector, and places the results in a second vector. The
floating-point version only clears the sign bit.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VABS{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
advsimd = TRUE; floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 size 1 1 M 0 Vm
cond

Half-precision scalar (size == 01)
(FEAT_FP16)

VABS{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VABS{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VABS{<c>}{<q>}.F64 <Dd>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
advsimd = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

VABS Page 694

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VABS{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
advsimd = TRUE; floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 size 1 1 M 0 Vm

VABS Page 695

Half-precision scalar (size == 01)
(FEAT_FP16)

VABS{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VABS{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VABS{<c>}{<q>}.F64 <Dd>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
advsimd = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “F:size”:

F size <dt>
0 00 S8
0 01 S16
0 10 S32
1 01 F16
1 10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

VABS Page 696

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if advsimd then // Advanced SIMD instruction

for r = 0 to regs-1
for e = 0 to elements-1

if floating_point then
Elem[D[d+r],e,esize] = FPAbs(Elem[D[m+r],e,esize]);

else
result = Abs(SInt(Elem[D[m+r],e,esize]));
Elem[D[d+r],e,esize] = result<esize-1:0>;

else // VFP instruction
case esize of

when 16 S[d] = Zeros(16) : FPAbs(S[m]<15:0>);
when 32 S[d] = FPAbs(S[m]);
when 64 D[d] = FPAbs(D[m]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VABS Page 697

VACGE

Vector Absolute Compare Greater Than or Equal takes the absolute value of each element in a vector, and compares it
with the absolute value of the corresponding element of a second vector. If the first is greater than or equal to the
second, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.
The operands and result can be quadword or doubleword vectors. They must all be the same size.
The operand vector elements are floating-point numbers. The result vector elements are the same size as the operand
vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
This instruction is used by the pseudo-instruction VACLE.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VACGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VACGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
or_equal = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 1 Vm
op

VACGE Page 698

64-bit SIMD vector (Q == 0)

VACGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VACGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
or_equal = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = FPAbs(Elem[D[n+r],e,esize]); op2 = FPAbs(Elem[D[m+r],e,esize]);
boolean test_passed;
if or_equal then

test_passed = FPCompareGE(op1, op2, StandardFPSCRValue());
else

test_passed = FPCompareGT(op1, op2, StandardFPSCRValue());
Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

VACGE Page 699

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VACGE Page 700

VACGT

Vector Absolute Compare Greater Than takes the absolute value of each element in a vector, and compares it with the
absolute value of the corresponding element of a second vector. If the first is greater than the second, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.
The operands and result can be quadword or doubleword vectors. They must all be the same size.
The operand vector elements are floating-point numbers. The result vector elements are the same size as the operand
vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
This instruction is used by the pseudo-instruction VACLT.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VACGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VACGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
or_equal = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 1 Vm
op

VACGT Page 701

64-bit SIMD vector (Q == 0)

VACGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VACGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
or_equal = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = FPAbs(Elem[D[n+r],e,esize]); op2 = FPAbs(Elem[D[m+r],e,esize]);
boolean test_passed;
if or_equal then

test_passed = FPCompareGE(op1, op2, StandardFPSCRValue());
else

test_passed = FPCompareGT(op1, op2, StandardFPSCRValue());
Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

VACGT Page 702

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VACGT Page 703

VACLE

Vector Absolute Compare Less Than or Equal takes the absolute value of each element in a vector, and compares it
with the absolute value of the corresponding element of a second vector. If the first is less than or equal to the second,
the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

This is a pseudo-instruction of VACGE. This means:

• The encodings in this description are named to match the encodings of VACGE.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VACGE gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and

any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VACLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VACGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VACLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VACGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VACLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VACGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VACLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VACGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

Assembler Symbols

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VACLE Page 704

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation

The description of VACGE gives the operational pseudocode for this instruction.

Operational information

The description of VACGE gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VACLE Page 705

VACLT

Vector Absolute Compare Less Than takes the absolute value of each element in a vector, and compares it with the
absolute value of the corresponding element of a second vector. If the first is less than the second, the corresponding
element in the destination vector is set to all ones. Otherwise, it is set to all zeros.

This is a pseudo-instruction of VACGT. This means:

• The encodings in this description are named to match the encodings of VACGT.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VACGT gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and

any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VACLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VACGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VACLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VACGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VACLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VACGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VACLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VACGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

Assembler Symbols

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VACLT Page 706

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation

The description of VACGT gives the operational pseudocode for this instruction.

Operational information

The description of VACGT gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VACLT Page 707

VADD (floating-point)

Vector Add (floating-point) adds corresponding elements in two vectors, and places the results in the destination
vector.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
advsimd = TRUE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 0 M 0 Vm
cond

VADD (floating-point) Page 708

Half-precision scalar (size == 01)
(FEAT_FP16)

VADD{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar (size == 10)

VADD{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar (size == 11)

VADD{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
advsimd = FALSE;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
advsimd = TRUE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

VADD (floating-point) Page 709

• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 0 M 0 Vm

Half-precision scalar (size == 01)
(FEAT_FP16)

VADD{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar (size == 10)

VADD{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar (size == 11)

VADD{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
advsimd = FALSE;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

VADD (floating-point) Page 710

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if advsimd then // Advanced SIMD instruction

for r = 0 to regs-1
for e = 0 to elements-1

Elem[D[d+r],e,esize] = FPAdd(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize],
StandardFPSCRValue());

else // VFP instruction
case esize of

when 16
S[d] = Zeros(16) : FPAdd(S[n]<15:0>, S[m]<15:0>, FPSCR[]);

when 32
S[d] = FPAdd(S[n], S[m], FPSCR[]);

when 64
D[d] = FPAdd(D[n], D[m], FPSCR[]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VADD (floating-point) Page 711

VADD (integer)

Vector Add (integer) adds corresponding elements in two vectors, and places the results in the destination vector.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “size”:

size <dt>
00 I8
01 I16
10 I32
11 I64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

VADD (integer) Page 712

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = Elem[D[n+r],e,esize] + Elem[D[m+r],e,esize];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VADD (integer) Page 713

VADDHN

Vector Add and Narrow, returning High Half adds corresponding elements in two quadword vectors, and places the
most significant half of each result in a doubleword vector. The results are truncated. For rounded results, see
VRADDHN.
The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D != 11 Vn Vd 0 1 0 0 N 0 M 0 Vm
size

A1

VADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D != 11 Vn Vd 0 1 0 0 N 0 M 0 Vm
size

T1

VADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

size <dt>
00 I16
01 I32
10 I64

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

VADDHN Page 714

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1

result = Elem[Qin[n>>1],e,2*esize] + Elem[Qin[m>>1],e,2*esize];
Elem[D[d],e,esize] = result<2*esize-1:esize>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VADDHN Page 715

VADDL

Vector Add Long adds corresponding elements in two doubleword vectors, and places the results in a quadword
vector. Before adding, it sign-extends or zero-extends the elements of both operands.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 11 Vn Vd 0 0 0 0 N 0 M 0 Vm
size op

A1

VADDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize; is_vaddw = (op == '1');
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 11 Vn Vd 0 0 0 0 N 0 M 0 Vm
size op

T1

VADDL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize; is_vaddw = (op == '1');
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the second operand vector, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

VADDL Page 716

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1

integer op1;
if is_vaddw then

op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
else

op1 = Int(Elem[Din[n],e,esize], unsigned);
result = op1 + Int(Elem[Din[m],e,esize],unsigned);
Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VADDL Page 717

VADDW

Vector Add Wide adds corresponding elements in one quadword and one doubleword vector, and places the results in a
quadword vector. Before adding, it sign-extends or zero-extends the elements of the doubleword operand.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 11 Vn Vd 0 0 0 1 N 0 M 0 Vm
size op

A1

VADDW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize; is_vaddw = (op == '1');
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 11 Vn Vd 0 0 0 1 N 0 M 0 Vm
size op

T1

VADDW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize; is_vaddw = (op == '1');
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the second operand vector, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

VADDW Page 718

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1

integer op1;
if is_vaddw then

op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
else

op1 = Int(Elem[Din[n],e,esize], unsigned);
result = op1 + Int(Elem[Din[m],e,esize],unsigned);
Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VADDW Page 719

VAND (immediate)

Vector Bitwise AND (immediate) performs a bitwise AND between a register value and an immediate value, and
returns the result into the destination vector.

This is a pseudo-instruction of VBIC (immediate). This means:

• The encodings in this description are named to match the encodings of VBIC (immediate).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VBIC (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 1 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VAND{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

is equivalent to

VBIC{<c>}{<q>}.I16 <Dd>, #~<imm>

128-bit SIMD vector (Q == 1)

VAND{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

is equivalent to

VBIC{<c>}{<q>}.I16 <Qd>, #~<imm>

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 1 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VAND{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

is equivalent to

VBIC{<c>}{<q>}.I32 <Dd>, #~<imm>

128-bit SIMD vector (Q == 1)

VAND{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

is equivalent to

VBIC{<c>}{<q>}.I32 <Qd>, #~<imm>

T1

VAND (immediate) Page 720

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 1 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VAND{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

is equivalent to

VBIC{<c>}{<q>}.I16 <Dd>, #~<imm>

128-bit SIMD vector (Q == 1)

VAND{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

is equivalent to

VBIC{<c>}{<q>}.I16 <Qd>, #~<imm>

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 1 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VAND{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

is equivalent to

VBIC{<c>}{<q>}.I32 <Dd>, #~<imm>

128-bit SIMD vector (Q == 1)

VAND{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

is equivalent to

VBIC{<c>}{<q>}.I32 <Qd>, #~<imm>

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32 and
A32 Advanced SIMD instructions.

Operation

The description of VBIC (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VAND (immediate) Page 721

VAND (register)

Vector Bitwise AND (register) performs a bitwise AND operation between two registers, and places the result in the
destination register.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VAND{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VAND{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VAND{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VAND{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VAND (register) Page 722

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

D[d+r] = D[n+r] AND D[m+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VAND (register) Page 723

VBIC (immediate)

Vector Bitwise Bit Clear (immediate) performs a bitwise AND between a register value and the complement of an
immediate value, and returns the result into the destination vector.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
This instruction is used by the pseudo-instruction VAND (immediate).
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 1 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VBIC{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VBIC{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 1 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VBIC{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VBIC{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 1 1 imm4
cmode

VBIC (immediate) Page 724

64-bit SIMD vector (Q == 0)

VBIC{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VBIC{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 1 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VBIC{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VBIC{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

if cmode<0> == '0' || cmode<3:2> == '11' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32 and
A32 Advanced SIMD instructions.

The I8, I64, and F32 data types are permitted as pseudo-instructions, if the immediate can be represented by this
instruction, and are encoded using a permitted encoding of the I16 or I32 data type.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

D[d+r] = D[d+r] AND NOT(imm64);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.

VBIC (immediate) Page 725

◦ The values of the NZCV flags.
• The response of this instruction to asynchronous exceptions does not vary based on:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VBIC (immediate) Page 726

VBIC (register)

Vector Bitwise Bit Clear (register) performs a bitwise AND between a register value and the complement of a register
value, and places the result in the destination register.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VBIC{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VBIC{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VBIC{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VBIC{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VBIC (register) Page 727

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

D[d+r] = D[n+r] AND NOT(D[m+r]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VBIC (register) Page 728

VBIF

Vector Bitwise Insert if False inserts each bit from the first source register into the destination register if the
corresponding bit of the second source register is 0, otherwise leaves the bit in the destination register unchanged.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VBIF{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VBIF{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if op == '00' then SEE "VEOR";
if op == '01' then operation = VBitOps_VBSL;
if op == '10' then operation = VBitOps_VBIT;
if op == '11' then operation = VBitOps_VBIF;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VBIF{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VBIF{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if op == '00' then SEE "VEOR";
if op == '01' then operation = VBitOps_VBSL;
if op == '10' then operation = VBitOps_VBIT;
if op == '11' then operation = VBitOps_VBIF;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

VBIF Page 729

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

case operation of
when VBitOps_VBIF D[d+r] = (D[d+r] AND D[m+r]) OR (D[n+r] AND NOT(D[m+r]));
when VBitOps_VBIT D[d+r] = (D[n+r] AND D[m+r]) OR (D[d+r] AND NOT(D[m+r]));
when VBitOps_VBSL D[d+r] = (D[n+r] AND D[d+r]) OR (D[m+r] AND NOT(D[d+r]));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VBIF Page 730

VBIT

Vector Bitwise Insert if True inserts each bit from the first source register into the destination register if the
corresponding bit of the second source register is 1, otherwise leaves the bit in the destination register unchanged.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VBIT{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VBIT{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if op == '00' then SEE "VEOR";
if op == '01' then operation = VBitOps_VBSL;
if op == '10' then operation = VBitOps_VBIT;
if op == '11' then operation = VBitOps_VBIF;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VBIT{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VBIT{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if op == '00' then SEE "VEOR";
if op == '01' then operation = VBitOps_VBSL;
if op == '10' then operation = VBitOps_VBIT;
if op == '11' then operation = VBitOps_VBIF;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

VBIT Page 731

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

case operation of
when VBitOps_VBIF D[d+r] = (D[d+r] AND D[m+r]) OR (D[n+r] AND NOT(D[m+r]));
when VBitOps_VBIT D[d+r] = (D[n+r] AND D[m+r]) OR (D[d+r] AND NOT(D[m+r]));
when VBitOps_VBSL D[d+r] = (D[n+r] AND D[d+r]) OR (D[m+r] AND NOT(D[d+r]));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VBIT Page 732

VBSL

Vector Bitwise Select sets each bit in the destination to the corresponding bit from the first source operand when the
original destination bit was 1, otherwise from the second source operand.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VBSL{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VBSL{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if op == '00' then SEE "VEOR";
if op == '01' then operation = VBitOps_VBSL;
if op == '10' then operation = VBitOps_VBIT;
if op == '11' then operation = VBitOps_VBIF;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 1 Vn Vd 0 0 0 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VBSL{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VBSL{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if op == '00' then SEE "VEOR";
if op == '01' then operation = VBitOps_VBSL;
if op == '10' then operation = VBitOps_VBIT;
if op == '11' then operation = VBitOps_VBIF;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

VBSL Page 733

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

case operation of
when VBitOps_VBIF D[d+r] = (D[d+r] AND D[m+r]) OR (D[n+r] AND NOT(D[m+r]));
when VBitOps_VBIT D[d+r] = (D[n+r] AND D[m+r]) OR (D[d+r] AND NOT(D[m+r]));
when VBitOps_VBSL D[d+r] = (D[n+r] AND D[d+r]) OR (D[m+r] AND NOT(D[d+r]));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VBSL Page 734

VCADD

Vector Complex Add.
This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 90 or 270 degrees.

• The rotated complex number is added to the complex number from the first source register.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_FCMA)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 rot 1 D 0 S Vn Vd 1 0 0 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCADD{<q>}.<dt> <Dd>, <Dn>, <Dm>, #<rotate>

128-bit SIMD vector (Q == 1)

VCADD{<q>}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>

if !HaveFCADDExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 16 << UInt(S);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
elements = 64 DIV esize;
regs = if Q == '0' then 1 else 2;

T1
(FEAT_FCMA)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 rot 1 D 0 S Vn Vd 1 0 0 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCADD{<q>}.<dt> <Dd>, <Dn>, <Dm>, #<rotate>

128-bit SIMD vector (Q == 1)

VCADD{<q>}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>

if InITBlock() then UNPREDICTABLE;
if !HaveFCADDExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 16 << UInt(S);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
elements = 64 DIV esize;
regs = if Q == '0' then 1 else 2;

VCADD Page 735

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “S”:

S <dt>
0 F16
1 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<rotate> Is the rotation to be applied to elements in the second SIMD&FP source register, encoded in “rot”:

rot <rotate>
0 90
1 270

Operation

EncodingSpecificOperations();
CheckAdvSIMDEnabled();
for r = 0 to regs-1

operand1 = D[n+r];
operand2 = D[m+r];
for e = 0 to (elements DIV 2)-1

bits(esize) element1;
bits(esize) element3;
case rot of

when '0'
element1 = FPNeg(Elem[operand2,e*2+1,esize]);
element3 = Elem[operand2,e*2,esize];

when '1'
element1 = Elem[operand2,e*2+1,esize];
element3 = FPNeg(Elem[operand2,e*2,esize]);

result1 = FPAdd(Elem[operand1,e*2,esize],element1,StandardFPSCRValue());
result2 = FPAdd(Elem[operand1,e*2+1,esize],element3,StandardFPSCRValue());
Elem[D[d+r],e*2,esize] = result1;
Elem[D[d+r],e*2+1,esize] = result2;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCADD Page 736

VCEQ (immediate #0)

Vector Compare Equal to Zero takes each element in a vector, and compares it with zero. If it is equal to zero, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.
The operand vector elements are the same type, and are integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCEQ{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector (Q == 1)

VCEQ{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCEQ{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector (Q == 1)

VCEQ{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

VCEQ (immediate #0) Page 737

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “F:size”:

F size <dt>
0 00 I8
0 01 I16
0 10 I32
1 01 F16
1 10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
boolean test_passed;
if floating_point then

bits(esize) zero = FPZero('0', esize);
test_passed = FPCompareEQ(Elem[D[m+r],e,esize], zero, StandardFPSCRValue());

else
test_passed = (Elem[D[m+r],e,esize] == Zeros(esize));

Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCEQ (immediate #0) Page 738

VCEQ (register)

Vector Compare Equal takes each element in a vector, and compares it with the corresponding element of a second
vector. If they are equal, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to
all zeros.
The operand vector elements are the same type, and are integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
int_operation = TRUE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
int_operation = FALSE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm

VCEQ (register) Page 739

64-bit SIMD vector (Q == 0)

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
int_operation = TRUE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCEQ{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VCEQ{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
int_operation = FALSE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For encoding A1 and T1: is the data type for the elements of the vectors, encoded in “size”:

size <dt>
00 I8
01 I16
10 I32

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in “sz”:

VCEQ (register) Page 740

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
boolean test_passed;
if int_operation then

test_passed = (op1 == op2);
else

test_passed = FPCompareEQ(op1, op2, StandardFPSCRValue());
Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCEQ (register) Page 741

VCGE (immediate #0)

Vector Compare Greater Than or Equal to Zero takes each element in a vector, and compares it with zero. If it is
greater than or equal to zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set
to all zeros.
The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCGE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector (Q == 1)

VCGE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCGE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector (Q == 1)

VCGE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

VCGE (immediate #0) Page 742

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “F:size”:

F size <dt>
0 00 S8
0 01 S16
0 10 S32
1 01 F16
1 10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
boolean test_passed;
if floating_point then

bits(esize) zero = FPZero('0', esize);
test_passed = FPCompareGE(Elem[D[m+r],e,esize], zero, StandardFPSCRValue());

else
test_passed = (SInt(Elem[D[m+r],e,esize]) >= 0);

Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCGE (immediate #0) Page 743

VCGE (register)

Vector Compare Greater Than or Equal takes each element in a vector, and compares it with the corresponding
element of a second vector. If the first is greater than or equal to the second, the corresponding element in the
destination vector is set to all ones. Otherwise, it is set to all zeros.
The operand vector elements are the same type, and are signed integers, unsigned integers, or floating-point numbers.
The result vector elements are fields the same size as the operand vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
This instruction is used by the pseudo-instruction VCLE (register).
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
vtype = if U == '1' then VCGEType_unsigned else VCGEType_signed;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
vtype = VCGEType_fp;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm

VCGE (register) Page 744

64-bit SIMD vector (Q == 0)

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
vtype = if U == '1' then VCGEType_unsigned else VCGEType_signed;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCGE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VCGE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
vtype = VCGEType_fp;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For encoding A1 and T1: is the data type for the elements of the operands, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

VCGE (register) Page 745

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
boolean test_passed;
case vtype of

when VCGEType_signed test_passed = (SInt(op1) >= SInt(op2));
when VCGEType_unsigned test_passed = (UInt(op1) >= UInt(op2));
when VCGEType_fp test_passed = FPCompareGE(op1, op2, StandardFPSCRValue());

Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCGE (register) Page 746

VCGT (immediate #0)

Vector Compare Greater Than Zero takes each element in a vector, and compares it with zero. If it is greater than
zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.
The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCGT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector (Q == 1)

VCGT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 0 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCGT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector (Q == 1)

VCGT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

VCGT (immediate #0) Page 747

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “F:size”:

F size <dt>
0 00 S8
0 01 S16
0 10 S32
1 01 F16
1 10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
boolean test_passed;
if floating_point then

bits(esize) zero = FPZero('0', esize);
test_passed = FPCompareGT(Elem[D[m+r],e,esize], zero, StandardFPSCRValue());

else
test_passed = (SInt(Elem[D[m+r],e,esize]) > 0);

Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCGT (immediate #0) Page 748

VCGT (register)

Vector Compare Greater Than takes each element in a vector, and compares it with the corresponding element of a
second vector. If the first is greater than the second, the corresponding element in the destination vector is set to all
ones. Otherwise, it is set to all zeros.
The operand vector elements are the same type, and are signed integers, unsigned integers, or floating-point numbers.
The result vector elements are fields the same size as the operand vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
This instruction is used by the pseudo-instruction VCLT (register).
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VCGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
vtype = if U == '1' then VCGTtype_unsigned else VCGTtype_signed;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VCGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
vtype = VCGTtype_fp;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm

VCGT (register) Page 749

64-bit SIMD vector (Q == 0)

VCGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VCGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
vtype = if U == '1' then VCGTtype_unsigned else VCGTtype_signed;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCGT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VCGT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
vtype = VCGTtype_fp;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For encoding A1 and T1: is the data type for the elements of the operands, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

VCGT (register) Page 750

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
boolean test_passed;
case vtype of

when VCGTtype_signed test_passed = (SInt(op1) > SInt(op2));
when VCGTtype_unsigned test_passed = (UInt(op1) > UInt(op2));
when VCGTtype_fp test_passed = FPCompareGT(op1, op2, StandardFPSCRValue());

Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCGT (register) Page 751

VCLE (immediate #0)

Vector Compare Less Than or Equal to Zero takes each element in a vector, and compares it with zero. If it is less than
or equal to zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.
The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCLE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector (Q == 1)

VCLE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 0 1 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCLE{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector (Q == 1)

VCLE{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

VCLE (immediate #0) Page 752

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “F:size”:

F size <dt>
0 00 S8
0 01 S16
0 10 S32
1 01 F16
1 10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
boolean test_passed;
if floating_point then

bits(esize) zero = FPZero('0', esize);
test_passed = FPCompareGE(zero, Elem[D[m+r],e,esize], StandardFPSCRValue());

else
test_passed = (SInt(Elem[D[m+r],e,esize]) <= 0);

Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCLE (immediate #0) Page 753

VCLE (register)

Vector Compare Less Than or Equal takes each element in a vector, and compares it with the corresponding element
of a second vector. If the first is less than or equal to the second, the corresponding element in the destination vector
is set to all ones. Otherwise, it is set to all zeros.

This is a pseudo-instruction of VCGE (register). This means:

• The encodings in this description are named to match the encodings of VCGE (register).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VCGE (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VCLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VCGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VCLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VCGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VCGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VCLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VCGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 1 Vm

VCLE (register) Page 754

64-bit SIMD vector (Q == 0)

VCLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VCGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VCLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VCGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCLE{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VCGE{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VCLE{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VCGE{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

Assembler Symbols

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For encoding A1 and T1: is the data type for the elements of the operands, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in “sz”:

VCLE (register) Page 755

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation

The description of VCGE (register) gives the operational pseudocode for this instruction.

Operational information

The description of VCGE_r gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCLE (register) Page 756

VCLS

Vector Count Leading Sign Bits counts the number of consecutive bits following the topmost bit, that are the same as
the topmost bit, in each element in a vector, and places the results in a second vector. The count does not include the
topmost bit itself.
The operand vector elements can be any one of 8-bit, 16-bit, or 32-bit signed integers.
The result vector elements are the same data type as the operand vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCLS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCLS{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCLS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCLS{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

VCLS Page 757

size <dt>
00 S8
01 S16
10 S32
11 RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = CountLeadingSignBits(Elem[D[m+r],e,esize])<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCLS Page 758

VCLT (immediate #0)

Vector Compare Less Than Zero takes each element in a vector, and compares it with zero. If it is less than zero, the
corresponding element in the destination vector is set to all ones. Otherwise, it is set to all zeros.
The operand vector elements are the same type, and are signed integers or floating-point numbers. The result vector
elements are fields the same size as the operand vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 1 0 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCLT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector (Q == 1)

VCLT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 1 0 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCLT{<c>}{<q>}.<dt> {<Dd>,} <Dm>, #0

128-bit SIMD vector (Q == 1)

VCLT{<c>}{<q>}.<dt> {<Qd>,} <Qm>, #0

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

VCLT (immediate #0) Page 759

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “F:size”:

F size <dt>
0 00 S8
0 01 S16
0 10 S32
1 01 F16
1 10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
boolean test_passed;
if floating_point then

bits(esize) zero = FPZero('0', esize);
test_passed = FPCompareGT(zero, Elem[D[m+r],e,esize], StandardFPSCRValue());

else
test_passed = (SInt(Elem[D[m+r],e,esize]) < 0);

Elem[D[d+r],e,esize] = if test_passed then Ones(esize) else Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCLT (immediate #0) Page 760

VCLT (register)

Vector Compare Less Than takes each element in a vector, and compares it with the corresponding element of a
second vector. If the first is less than the second, the corresponding element in the destination vector is set to all ones.
Otherwise, it is set to all zeros.

This is a pseudo-instruction of VCGT (register). This means:

• The encodings in this description are named to match the encodings of VCGT (register).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VCGT (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VCGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VCLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VCGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VCGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VCLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VCGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 1 N Q M 0 Vm

VCLT (register) Page 761

64-bit SIMD vector (Q == 0)

VCLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VCGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VCLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VCGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCLT{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

is equivalent to

VCGT{<c>}{<q>}.<dt> <Dd>, <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VCLT{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

is equivalent to

VCGT{<c>}{<q>}.<dt> <Qd>, <Qm>, <Qn>

Assembler Symbols

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For encoding A1 and T1: is the data type for the elements of the operands, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

For encoding A2 and T2: is the data type for the elements of the vectors, encoded in “sz”:

VCLT (register) Page 762

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

Operation

The description of VCGT (register) gives the operational pseudocode for this instruction.

Operational information

The description of VCGT_r gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCLT (register) Page 763

VCLZ

Vector Count Leading Zeros counts the number of consecutive zeros, starting from the most significant bit, in each
element in a vector, and places the results in a second vector.
The operand vector elements can be any one of 8-bit, 16-bit, or 32-bit integers. There is no distinction between signed
and unsigned integers.
The result vector elements are the same data type as the operand vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCLZ{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCLZ{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 0 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCLZ{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCLZ{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

VCLZ Page 764

size <dt>
00 I8
01 I16
10 I32
11 RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = CountLeadingZeroBits(Elem[D[m+r],e,esize])<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCLZ Page 765

VCMLA

Vector Complex Multiply Accumulate.
This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on the
corresponding complex number element pairs from the two source registers and the destination register:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 0, 90, 180, or 270 degrees.

• The two elements of the transformed complex number are multiplied by:
◦ The real element of the complex number from the first source register, if the transformation was a

rotation by 0 or 180 degrees.
◦ The imaginary element of the complex number from the first source register, if the transformation

was a rotation by 90 or 270 degrees.
• The complex number resulting from that multiplication is added to the complex number from the destination

register.
The multiplication and addition operations are performed as a fused multiply-add, without any intermediate rounding.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_FCMA)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 rot D 1 S Vn Vd 1 0 0 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCMLA{<q>}.<dt> <Dd>, <Dn>, <Dm>, #<rotate>

128-bit SIMD vector (Q == 1)

VCMLA{<q>}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>

if !HaveFCADDExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 16 << UInt(S);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
elements = 64 DIV esize;
regs = if Q == '0' then 1 else 2;

T1
(FEAT_FCMA)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 rot D 1 S Vn Vd 1 0 0 0 N Q M 0 Vm

VCMLA Page 766

64-bit SIMD vector (Q == 0)

VCMLA{<q>}.<dt> <Dd>, <Dn>, <Dm>, #<rotate>

128-bit SIMD vector (Q == 1)

VCMLA{<q>}.<dt> <Qd>, <Qn>, <Qm>, #<rotate>

if InITBlock() then UNPREDICTABLE;
if !HaveFCADDExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 16 << UInt(S);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
elements = 64 DIV esize;
regs = if Q == '0' then 1 else 2;

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “S”:

S <dt>
0 F16
1 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<rotate> Is the rotation to be applied to elements in the second SIMD&FP source register, encoded in “rot”:

rot <rotate>
00 0
01 90
10 180
11 270

VCMLA Page 767

Operation

EncodingSpecificOperations();
CheckAdvSIMDEnabled();
for r = 0 to regs-1

operand1 = D[n+r];
operand2 = D[m+r];
operand3 = D[d+r];
for e = 0 to (elements DIV 2)-1

bits(esize) element1;
bits(esize) element2;
bits(esize) element3;
bits(esize) element4;
case rot of

when '00'
element1 = Elem[operand2,e*2,esize];
element2 = Elem[operand1,e*2,esize];
element3 = Elem[operand2,e*2+1,esize];
element4 = Elem[operand1,e*2,esize];

when '01'
element1 = FPNeg(Elem[operand2,e*2+1,esize]);
element2 = Elem[operand1,e*2+1,esize];
element3 = Elem[operand2,e*2,esize];
element4 = Elem[operand1,e*2+1,esize];

when '10'
element1 = FPNeg(Elem[operand2,e*2,esize]);
element2 = Elem[operand1,e*2,esize];
element3 = FPNeg(Elem[operand2,e*2+1,esize]);
element4 = Elem[operand1,e*2,esize];

when '11'
element1 = Elem[operand2,e*2+1,esize];
element2 = Elem[operand1,e*2+1,esize];
element3 = FPNeg(Elem[operand2,e*2,esize]);
element4 = Elem[operand1,e*2+1,esize];

result1 = FPMulAdd(Elem[operand3,e*2,esize],element2,element1, StandardFPSCRValue());
result2 = FPMulAdd(Elem[operand3,e*2+1,esize],element4,element3, StandardFPSCRValue());
Elem[D[d+r],e*2,esize] = result1;
Elem[D[d+r],e*2+1,esize] = result2;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCMLA Page 768

VCMLA (by element)

Vector Complex Multiply Accumulate (by element).
This instruction operates on complex numbers that are represented in SIMD&FP registers as pairs of elements, with
the more significant element holding the imaginary part of the number and the less significant element holding the
real part of the number. Each element holds a floating-point value. It performs the following computation on complex
numbers from the first source register and the destination register with the specified complex number from the
second source register:

• Considering the complex number from the second source register on an Argand diagram, the number is
rotated counterclockwise by 0, 90, 180, or 270 degrees.

• The two elements of the transformed complex number are multiplied by:
◦ The real element of the complex number from the first source register, if the transformation was a

rotation by 0 or 180 degrees.
◦ The imaginary element of the complex number from the first source register, if the transformation

was a rotation by 90 or 270 degrees.
• The complex number resulting from that multiplication is added to the complex number from the destination

register.
The multiplication and addition operations are performed as a fused multiply-add, without any intermediate rounding.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_FCMA)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 S D rot Vn Vd 1 0 0 0 N Q M 0 Vm

64-bit SIMD vector of half-precision floating-point (S == 0 && Q == 0)

VCMLA{<q>}.F16 <Dd>, <Dn>, <Dm>[<index>], #<rotate>

64-bit SIMD vector of single-precision floating-point (S == 1 && Q == 0)

VCMLA{<q>}.F32 <Dd>, <Dn>, <Dm>[0], #<rotate>

128-bit SIMD vector of half-precision floating-point (S == 0 && Q == 1)

VCMLA{<q>}.F16 <Qd>, <Qn>, <Dm>[<index>], #<rotate>

128-bit SIMD vector of single-precision floating-point (S == 1 && Q == 1)

VCMLA{<q>}.F32 <Qd>, <Qn>, <Dm>[0], #<rotate>

if !HaveFCADDExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn);
m = if S=='1' then UInt(M:Vm) else UInt(Vm);
esize = 16 << UInt(S);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
elements = 64 DIV esize;
regs = if Q == '0' then 1 else 2;
index = if S=='1' then 0 else UInt(M);

T1
(FEAT_FCMA)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 S D rot Vn Vd 1 0 0 0 N Q M 0 Vm

VCMLA (by element) Page 769

64-bit SIMD vector of half-precision floating-point (S == 0 && Q == 0)

VCMLA{<q>}.F16 <Dd>, <Dn>, <Dm>[<index>], #<rotate>

64-bit SIMD vector of single-precision floating-point (S == 1 && Q == 0)

VCMLA{<q>}.F32 <Dd>, <Dn>, <Dm>[0], #<rotate>

128-bit SIMD vector of half-precision floating-point (S == 0 && Q == 1)

VCMLA{<q>}.F16 <Qd>, <Qn>, <Dm>[<index>], #<rotate>

128-bit SIMD vector of single-precision floating-point (S == 1 && Q == 1)

VCMLA{<q>}.F32 <Qd>, <Qn>, <Dm>[0], #<rotate>

if InITBlock() then UNPREDICTABLE;
if !HaveFCADDExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn);
m = if S=='1' then UInt(M:Vm) else UInt(Vm);
esize = 16 << UInt(S);
if !HaveFP16Ext() && esize == 16 then UNDEFINED;
elements = 64 DIV esize;
regs = if Q == '0' then 1 else 2;
index = if S=='1' then 0 else UInt(M);

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> For the half-precision scalar variant: is the 64-bit name of the second SIMD&FP source register,
encoded in the "Vm" field.
For the single-precision scalar variant: is the 64-bit name of the second SIMD&FP source register,
encoded in the "M:Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

<rotate> Is the rotation to be applied to elements in the second SIMD&FP source register, encoded in “rot”:

rot <rotate>
00 0
01 90
10 180
11 270

VCMLA (by element) Page 770

Operation

EncodingSpecificOperations();
CheckAdvSIMDEnabled();
for r = 0 to regs-1

operand1 = D[n+r];
operand2 = Din[m];
operand3 = D[d+r];
for e = 0 to (elements DIV 2)-1

bits(esize) element1;
bits(esize) element2;
bits(esize) element3;
bits(esize) element4;
case rot of

when '00'
element1 = Elem[operand2,index*2,esize];
element2 = Elem[operand1,e*2,esize];
element3 = Elem[operand2,index*2+1,esize];
element4 = Elem[operand1,e*2,esize];

when '01'
element1 = FPNeg(Elem[operand2,index*2+1,esize]);
element2 = Elem[operand1,e*2+1,esize];
element3 = Elem[operand2,index*2,esize];
element4 = Elem[operand1,e*2+1,esize];

when '10'
element1 = FPNeg(Elem[operand2,index*2,esize]);
element2 = Elem[operand1,e*2,esize];
element3 = FPNeg(Elem[operand2,index*2+1,esize]);
element4 = Elem[operand1,e*2,esize];

when '11'
element1 = Elem[operand2,index*2+1,esize];
element2 = Elem[operand1,e*2+1,esize];
element3 = FPNeg(Elem[operand2,index*2,esize]);
element4 = Elem[operand1,e*2+1,esize];

result1 = FPMulAdd(Elem[operand3,e*2,esize],element2,element1, StandardFPSCRValue());
result2 = FPMulAdd(Elem[operand3,e*2+1,esize],element4,element3,StandardFPSCRValue());
Elem[D[d+r],e*2,esize] = result1;
Elem[D[d+r],e*2+1,esize] = result2;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCMLA (by element) Page 771

VCMP

Vector Compare compares two floating-point registers, or one floating-point register and zero. It writes the result to
the FPSCR flags. These are normally transferred to the PSTATE.{N, Z, C, V} Condition flags by a subsequent VMRS
instruction.
This instruction raises an Invalid Operation floating-point exception if either or both of the operands is a signaling
NaN.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size 0 1 M 0 Vm
cond E

Half-precision scalar (size == 01)
(FEAT_FP16)

VCMP{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VCMP{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VCMP{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size 0 1 (0) 0 (0) (0) (0) (0)
cond E

VCMP Page 772

Half-precision scalar (size == 01)
(FEAT_FP16)

VCMP{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar (size == 10)

VCMP{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar (size == 11)

VCMP{<c>}{<q>}.F64 <Dd>, #0.0

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = TRUE;
integer esize;
integer d;
case size of

when '01' esize = 16; d = UInt(Vd:D);
when '10' esize = 32; d = UInt(Vd:D);
when '11' esize = 64; d = UInt(D:Vd);

integer m = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size 0 1 M 0 Vm
E

Half-precision scalar (size == 01)
(FEAT_FP16)

VCMP{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VCMP{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VCMP{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

VCMP Page 773

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size 0 1 (0) 0 (0) (0) (0) (0)
E

Half-precision scalar (size == 01)
(FEAT_FP16)

VCMP{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar (size == 10)

VCMP{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar (size == 11)

VCMP{<c>}{<q>}.F64 <Dd>, #0.0

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = TRUE;
integer esize;
integer d;
case size of

when '01' esize = 16; d = UInt(Vd:D);
when '10' esize = 32; d = UInt(Vd:D);
when '11' esize = 64; d = UInt(D:Vd);

integer m = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

VCMP Page 774

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
bits(4) nzcv;
case esize of

when 16
bits(16) op16 = if with_zero then FPZero('0', 16) else S[m]<15:0>;
nzcv = FPCompare(S[d]<15:0>, op16, quiet_nan_exc, FPSCR[]);

when 32
bits(32) op32 = if with_zero then FPZero('0', 32) else S[m];
nzcv = FPCompare(S[d], op32, quiet_nan_exc, FPSCR[]);

when 64
bits(64) op64 = if with_zero then FPZero('0', 64) else D[m];
nzcv = FPCompare(D[d], op64, quiet_nan_exc, FPSCR[]);

FPSCR<31:28> = nzcv; // FPSCR.<N,Z,C,V> set to nzcv

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or
both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2)
and (Operand1 > Operand2) are false. An unordered comparison sets the FPSCR condition flags to N=0, Z=0, C=1,
and V=1.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCMP Page 775

VCMPE

Vector Compare, raising Invalid Operation on NaN compares two floating-point registers, or one floating-point register
and zero. It writes the result to the FPSCR flags. These are normally transferred to the PSTATE.{N, Z, C, V} Condition
flags by a subsequent VMRS instruction.
This instruction raises an Invalid Operation floating-point exception if either or both of the operands is any type of
NaN.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size 1 1 M 0 Vm
cond E

Half-precision scalar (size == 01)
(FEAT_FP16)

VCMPE{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VCMPE{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VCMPE{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size 1 1 (0) 0 (0) (0) (0) (0)
cond E

VCMPE Page 776

Half-precision scalar (size == 01)
(FEAT_FP16)

VCMPE{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar (size == 10)

VCMPE{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar (size == 11)

VCMPE{<c>}{<q>}.F64 <Dd>, #0.0

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = TRUE;
integer esize;
integer d;
case size of

when '01' esize = 16; d = UInt(Vd:D);
when '10' esize = 32; d = UInt(Vd:D);
when '11' esize = 64; d = UInt(D:Vd);

integer m = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 0 Vd 1 0 size 1 1 M 0 Vm
E

Half-precision scalar (size == 01)
(FEAT_FP16)

VCMPE{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VCMPE{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VCMPE{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

VCMPE Page 777

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 0 1 Vd 1 0 size 1 1 (0) 0 (0) (0) (0) (0)
E

Half-precision scalar (size == 01)
(FEAT_FP16)

VCMPE{<c>}{<q>}.F16 <Sd>, #0.0

Single-precision scalar (size == 10)

VCMPE{<c>}{<q>}.F32 <Sd>, #0.0

Double-precision scalar (size == 11)

VCMPE{<c>}{<q>}.F64 <Dd>, #0.0

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
quiet_nan_exc = (E == '1'); with_zero = TRUE;
integer esize;
integer d;
case size of

when '01' esize = 16; d = UInt(Vd:D);
when '10' esize = 32; d = UInt(Vd:D);
when '11' esize = 64; d = UInt(D:Vd);

integer m = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

VCMPE Page 778

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
bits(4) nzcv;
case esize of

when 16
bits(16) op16 = if with_zero then FPZero('0', 16) else S[m]<15:0>;
nzcv = FPCompare(S[d]<15:0>, op16, quiet_nan_exc, FPSCR[]);

when 32
bits(32) op32 = if with_zero then FPZero('0', 32) else S[m];
nzcv = FPCompare(S[d], op32, quiet_nan_exc, FPSCR[]);

when 64
bits(64) op64 = if with_zero then FPZero('0', 64) else D[m];
nzcv = FPCompare(D[d], op64, quiet_nan_exc, FPSCR[]);

FPSCR<31:28> = nzcv; // FPSCR.<N,Z,C,V> set to nzcv

Operational information

The IEEE 754 standard specifies that the result of a comparison is precisely one of <, ==, > or unordered. If either or
both of the operands is a NaN, they are unordered, and all three of (Operand1 < Operand2), (Operand1 == Operand2)
and (Operand1 > Operand2) are false. An unordered comparison sets the FPSCR condition flags to N=0, Z=0, C=1,
and V=1.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCMPE Page 779

VCNT

Vector Count Set Bits counts the number of bits that are one in each element in a vector, and places the results in a
second vector.
The operand vector elements must be 8-bit fields.
The result vector elements are 8-bit integers.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCNT{<c>}{<q>}.8 <Dd>, <Dm> // (Encoded as Q = 0)

128-bit SIMD vector (Q == 1)

VCNT{<c>}{<q>}.8 <Qd>, <Qm> // (Encoded as Q = 1)

if size != '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8; elements = 8;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCNT{<c>}{<q>}.8 <Dd>, <Dm> // (Encoded as Q = 0)

128-bit SIMD vector (Q == 1)

VCNT{<c>}{<q>}.8 <Qd>, <Qm> // (Encoded as Q = 1)

if size != '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8; elements = 8;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

VCNT Page 780

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = BitCount(Elem[D[m+r],e,esize])<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCNT Page 781

VCVT (between double-precision and single-precision)

Convert between double-precision and single-precision does one of the following:
• Converts the value in a double-precision register to single-precision and writes the result to a single-precision

register.
• Converts the value in a single-precision register to double-precision and writes the result to a double-

precision register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 1 x 1 1 M 0 Vm
cond size

Single-precision to double-precision (size == 10)

VCVT{<c>}{<q>}.F64.F32 <Dd>, <Sm>

Double-precision to single-precision (size == 11)

VCVT{<c>}{<q>}.F32.F64 <Sd>, <Dm>

double_to_single = (size == '11');
d = if double_to_single then UInt(Vd:D) else UInt(D:Vd);
m = if double_to_single then UInt(M:Vm) else UInt(Vm:M);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 1 x 1 1 M 0 Vm
size

Single-precision to double-precision (size == 10)

VCVT{<c>}{<q>}.F64.F32 <Dd>, <Sm>

Double-precision to single-precision (size == 11)

VCVT{<c>}{<q>}.F32.F64 <Sd>, <Dm>

double_to_single = (size == '11');
d = if double_to_single then UInt(Vd:D) else UInt(D:Vd);
m = if double_to_single then UInt(M:Vm) else UInt(Vm:M);

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

VCVT (between double-
precision and single-

precision)
Page 782

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
if double_to_single then

S[d] = FPConvert(D[m], FPSCR[], 32);
else

D[d] = FPConvert(S[m], FPSCR[], 64);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVT (between double-
precision and single-

precision)
Page 783

VCVT (between floating-point and fixed-point, Advanced SIMD)

Vector Convert between floating-point and fixed-point converts each element in a vector from floating-point to fixed-
point, or from fixed-point to floating-point, and places the results in a second vector.
The vector elements are the same type, and are floating-point numbers or integers. Signed and unsigned integers are
distinct.
The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-
point operation uses the Round to Nearest rounding mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 1 op 0 Q M 1 Vm

64-bit SIMD vector (imm6 != 000xxx && Q == 0)

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>, #<fbits>

128-bit SIMD vector (imm6 != 000xxx && Q == 1)

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>, #<fbits>

if imm6 IN {'000xxx'} then SEE "Related encodings";
if op<1> == '0' && !HaveFP16Ext() then UNDEFINED;
if op<1> == '0' && imm6 IN {'10xxxx'} then UNDEFINED;
if imm6 IN {'0xxxxx'} then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
to_fixed = (op<0> == '1'); frac_bits = 64 - UInt(imm6);
unsigned = (U == '1');
integer esize;
integer elements;
case op<1> of

when '0' esize = 16; elements = 4;
when '1' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 1 op 0 Q M 1 Vm

VCVT (between floating-point
and fixed-point, Advanced

SIMD)
Page 784

64-bit SIMD vector (imm6 != 000xxx && Q == 0)

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>, #<fbits>

128-bit SIMD vector (imm6 != 000xxx && Q == 1)

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>, #<fbits>

if imm6 IN {'000xxx'} then SEE "Related encodings";
if op<1> == '0' && !HaveFP16Ext() then UNDEFINED;
if op<1> == '0' && imm6 IN {'10xxxx'} then UNDEFINED;
if imm6 IN {'0xxxxx'} then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
to_fixed = (op<0> == '1'); frac_bits = 64 - UInt(imm6);
unsigned = (U == '1');
integer esize;
integer elements;
case op<1> of

when '0' esize = 16; elements = 4;
when '1' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt1> Is the data type for the elements of the destination vector, encoded in “op:U”:

op U <dt1>
00 x F16
01 0 S16
01 1 U16
10 x F32
11 0 S32
11 1 U32

<dt2> Is the data type for the elements of the source vector, encoded in “op:U”:

op U <dt2>
00 0 S16
00 1 U16
01 x F16
10 0 S32
10 1 U32
11 x F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<fbits> The number of fraction bits in the fixed point number, in the range 1 to 32 for 32-bit elements, or in the
range 1 to 16 for 16-bit elements:

• (64 - <fbits>) is encoded in imm6.
An assembler can permit an <fbits> value of 0. This is encoded as floating-point to integer or integer to
floating-point instruction, see VCVT (between floating-point and integer, Advanced SIMD).

VCVT (between floating-point
and fixed-point, Advanced

SIMD)
Page 785

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(esize) result;
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[m+r],e,esize];
if to_fixed then

result = FPToFixed(op1, frac_bits, unsigned, StandardFPSCRValue(),
FPRounding_ZERO, esize);

else
result = FixedToFP(op1, frac_bits, unsigned, StandardFPSCRValue(),

FPRounding_TIEEVEN, esize);
Elem[D[d+r],e,esize] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVT (between floating-point
and fixed-point, Advanced

SIMD)
Page 786

VCVT (between floating-point and fixed-point, floating-point)

Convert between floating-point and fixed-point converts a value in a register from floating-point to fixed-point, or from
fixed-point to floating-point. Software can specify the fixed-point value as either signed or unsigned.
The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the low-
order bits of the source register and ignore any remaining bits. Signed conversions to fixed-point values sign-extend
the result value to the destination register width. Unsigned conversions to fixed-point values zero-extend the result
value to the destination register width.
The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-
point operation uses the Round to Nearest rounding mode.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 1 op 1 U Vd 1 0 sf sx 1 i 0 imm4
cond

Half-precision scalar (op == 0 && sf == 01)
(FEAT_FP16)

VCVT{<c>}{<q>}.F16.<dt> <Sdm>, <Sdm>, #<fbits>

Half-precision scalar (op == 1 && sf == 01)
(FEAT_FP16)

VCVT{<c>}{<q>}.<dt>.F16 <Sdm>, <Sdm>, #<fbits>

Single-precision scalar (op == 0 && sf == 10)

VCVT{<c>}{<q>}.F32.<dt> <Sdm>, <Sdm>, #<fbits>

Single-precision scalar (op == 1 && sf == 10)

VCVT{<c>}{<q>}.<dt>.F32 <Sdm>, <Sdm>, #<fbits>

Double-precision scalar (op == 0 && sf == 11)

VCVT{<c>}{<q>}.F64.<dt> <Ddm>, <Ddm>, #<fbits>

Double-precision scalar (op == 1 && sf == 11)

VCVT{<c>}{<q>}.<dt>.F64 <Ddm>, <Ddm>, #<fbits>

if sf == '00' || (sf == '01' && !HaveFP16Ext()) then UNDEFINED;
if sf == '01' && cond != '1110' then UNPREDICTABLE;
to_fixed = (op == '1'); unsigned = (U == '1');
size = if sx == '0' then 16 else 32;
frac_bits = size - UInt(imm4:i);
integer fp_size;
integer d;
case sf of

when '01' fp_size = 16; d = UInt(Vd:D);
when '10' fp_size = 32; d = UInt(Vd:D);
when '11' fp_size = 64; d = UInt(D:Vd);

if frac_bits < 0 then UNPREDICTABLE;

VCVT (between floating-point
and fixed-point, floating-

point)
Page 787

CONSTRAINED UNPREDICTABLE behavior

If frac_bits < 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1 op 1 U Vd 1 0 sf sx 1 i 0 imm4

Half-precision scalar (op == 0 && sf == 01)
(FEAT_FP16)

VCVT{<c>}{<q>}.F16.<dt> <Sdm>, <Sdm>, #<fbits>

Half-precision scalar (op == 1 && sf == 01)
(FEAT_FP16)

VCVT{<c>}{<q>}.<dt>.F16 <Sdm>, <Sdm>, #<fbits>

Single-precision scalar (op == 0 && sf == 10)

VCVT{<c>}{<q>}.F32.<dt> <Sdm>, <Sdm>, #<fbits>

Single-precision scalar (op == 1 && sf == 10)

VCVT{<c>}{<q>}.<dt>.F32 <Sdm>, <Sdm>, #<fbits>

Double-precision scalar (op == 0 && sf == 11)

VCVT{<c>}{<q>}.F64.<dt> <Ddm>, <Ddm>, #<fbits>

Double-precision scalar (op == 1 && sf == 11)

VCVT{<c>}{<q>}.<dt>.F64 <Ddm>, <Ddm>, #<fbits>

if sf == '00' || (sf == '01' && !HaveFP16Ext()) then UNDEFINED;
if sf == '01' && InITBlock() then UNPREDICTABLE;
to_fixed = (op == '1'); unsigned = (U == '1');
size = if sx == '0' then 16 else 32;
frac_bits = size - UInt(imm4:i);
integer fp_size;
integer d;
case sf of

when '01' fp_size = 16; d = UInt(Vd:D);
when '10' fp_size = 32; d = UInt(Vd:D);
when '11' fp_size = 64; d = UInt(D:Vd);

if frac_bits < 0 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If frac_bits < 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VCVT (between floating-point and fixed-point).

VCVT (between floating-point
and fixed-point, floating-

point)
Page 788

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the fixed-point number, encoded in “U:sx”:

U sx <dt>
0 0 S16
0 1 S32
1 0 U16
1 1 U32

<Sdm> Is the 32-bit name of the SIMD&FP destination and source register, encoded in the "Vd:D" field.

<Ddm> Is the 64-bit name of the SIMD&FP destination and source register, encoded in the "D:Vd" field.

<fbits> The number of fraction bits in the fixed-point number:
• If <dt> is S16 or U16, <fbits> must be in the range 0-16. (16 - <fbits>) is encoded in [imm4,

i]
• If <dt> is S32 or U32, <fbits> must be in the range 1-32. (32 - <fbits>) is encoded in [imm4,

i].

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
if to_fixed then

bits(size) result;
case fp_size of

when 16
result = FPToFixed(S[d]<15:0>, frac_bits, unsigned, FPSCR[],

FPRounding_ZERO, size);
S[d] = Extend(result, 32, unsigned);

when 32
result = FPToFixed(S[d], frac_bits, unsigned, FPSCR[], FPRounding_ZERO, size);
S[d] = Extend(result, 32, unsigned);

when 64
result = FPToFixed(D[d], frac_bits, unsigned, FPSCR[], FPRounding_ZERO, size);
D[d] = Extend(result, 64, unsigned);

else
case fp_size of

when 16
bits(16) fp16 = FixedToFP(S[d]<size-1:0>, frac_bits, unsigned, FPSCR[],

FPRounding_TIEEVEN, 16);
S[d] = Zeros(16):fp16;

when 32
S[d] = FixedToFP(S[d]<size-1:0>, frac_bits, unsigned, FPSCR[],

FPRounding_TIEEVEN, 32);
when 64

D[d] = FixedToFP(D[d]<size-1:0>, frac_bits, unsigned, FPSCR[],
FPRounding_TIEEVEN, 64);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVT (between floating-point
and fixed-point, floating-

point)
Page 789

VCVT (between floating-point and integer, Advanced SIMD)

Vector Convert between floating-point and integer converts each element in a vector from floating-point to integer, or
from integer to floating-point, and places the results in a second vector.
The vector elements are the same type, and are floating-point numbers or integers. Signed and unsigned integers are
distinct.
The floating-point to integer operation uses the Round towards Zero rounding mode. The integer to floating-point
operation uses the Round to Nearest rounding mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 1 1 op Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
to_integer = (op<1> == '1'); unsigned = (op<0> == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 1 1 op Q M 0 Vm

64-bit SIMD vector (Q == 0)

VCVT{<c>}{<q>}.<dt1>.<dt2> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCVT{<c>}{<q>}.<dt1>.<dt2> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
to_integer = (op<1> == '1'); unsigned = (op<0> == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VCVT (between floating-point
and integer, Advanced SIMD) Page 790

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt1> Is the data type for the elements of the destination vector, encoded in “size:op”:

size op <dt1>
01 0x F16
01 10 S16
01 11 U16
10 0x F32
10 10 S32
10 11 U32

<dt2> Is the data type for the elements of the source vector, encoded in “size:op”:

size op <dt2>
01 00 S16
01 01 U16
01 1x F16
10 00 S32
10 01 U32
10 1x F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(esize) result;
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[m+r],e,esize];
if to_integer then

result = FPToFixed(op1, 0, unsigned, StandardFPSCRValue(),
FPRounding_ZERO, esize);

else
result = FixedToFP(op1, 0, unsigned, StandardFPSCRValue(),

FPRounding_TIEEVEN, esize);
Elem[D[d+r],e,esize] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVT (between floating-point
and integer, Advanced SIMD) Page 791

VCVT (between half-precision and single-precision, Advanced SIMD)

Vector Convert between half-precision and single-precision converts each element in a vector from single-precision to
half-precision floating-point, or from half-precision to single-precision, and places the results in a second vector.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 1 op 0 0 M 0 Vm

Half-precision to single-precision (op == 1)

VCVT{<c>}{<q>}.F32.F16 <Qd>, <Dm> // (Encoded as op = 1)

Single-precision to half-precision (op == 0)

VCVT{<c>}{<q>}.F16.F32 <Dd>, <Qm> // (Encoded as op = 0)

if size != '01' then UNDEFINED;
half_to_single = (op == '1');
if half_to_single && Vd<0> == '1' then UNDEFINED;
if !half_to_single && Vm<0> == '1' then UNDEFINED;
esize = 16; elements = 4;
m = UInt(M:Vm); d = UInt(D:Vd);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 1 op 0 0 M 0 Vm

Half-precision to single-precision (op == 1)

VCVT{<c>}{<q>}.F32.F16 <Qd>, <Dm> // (Encoded as op = 1)

Single-precision to half-precision (op == 0)

VCVT{<c>}{<q>}.F16.F32 <Dd>, <Qm> // (Encoded as op = 0)

if size != '01' then UNDEFINED;
half_to_single = (op == '1');
if half_to_single && Vd<0> == '1' then UNDEFINED;
if !half_to_single && Vm<0> == '1' then UNDEFINED;
esize = 16; elements = 4;
m = UInt(M:Vm); d = UInt(D:Vd);

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

VCVT (between half-precision
and single-precision,

Advanced SIMD)
Page 792

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1

if half_to_single then
Elem[Q[d>>1],e,32] = FPConvert(Elem[Din[m],e,16], StandardFPSCRValue(), 32);

else
Elem[D[d],e,16] = FPConvert(Elem[Qin[m>>1],e,32], StandardFPSCRValue(), 16);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVT (between half-precision
and single-precision,

Advanced SIMD)
Page 793

VCVT (floating-point to integer, floating-point)

Convert floating-point to integer with Round towards Zero converts a value in a register from floating-point to a 32-bit
integer, using the Round towards Zero rounding mode, and places the result in a second register.
VCVT (between floating-point and fixed-point, floating-point) describes conversions between floating-point and 16-bit
integers.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 size 1 1 M 0 Vm
cond opc2 op

VCVT (floating-point to
integer, floating-point) Page 794

Half-precision scalar (opc2 == 100 && size == 01)
(FEAT_FP16)

VCVT{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar (opc2 == 101 && size == 01)
(FEAT_FP16)

VCVT{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar (opc2 == 100 && size == 10)

VCVT{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar (opc2 == 101 && size == 10)

VCVT{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar (opc2 == 100 && size == 11)

VCVT{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar (opc2 == 101 && size == 11)

VCVT{<c>}{<q>}.S32.F64 <Sd>, <Dm>

if opc2 != '000' && !(opc2 IN {'10x'}) then SEE "Related encodings";
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
integer d;
integer esize;
integer m;
boolean unsigned;
FPRounding rounding;
to_integer = (opc2<2> == '1');
if to_integer then

unsigned = (opc2<0> == '0');
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
d = UInt(Vd:D);
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

else
unsigned = (op == '0');
rounding = FPRoundingMode(FPSCR[]);
m = UInt(Vm:M);
case size of

when '01' esize = 16; d = UInt(Vd:D);
when '10' esize = 32; d = UInt(Vd:D);
when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

VCVT (floating-point to
integer, floating-point) Page 795

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 size 1 1 M 0 Vm
opc2 op

Half-precision scalar (opc2 == 100 && size == 01)
(FEAT_FP16)

VCVT{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar (opc2 == 101 && size == 01)
(FEAT_FP16)

VCVT{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar (opc2 == 100 && size == 10)

VCVT{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar (opc2 == 101 && size == 10)

VCVT{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar (opc2 == 100 && size == 11)

VCVT{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar (opc2 == 101 && size == 11)

VCVT{<c>}{<q>}.S32.F64 <Sd>, <Dm>

if opc2 != '000' && !(opc2 IN {'10x'}) then SEE "Related encodings";
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
integer esize;
integer m;
integer d;
boolean unsigned;
FPRounding rounding;
to_integer = (opc2<2> == '1');
if to_integer then

unsigned = (opc2<0> == '0');
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
d = UInt(Vd:D);
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

else
unsigned = (op == '0');
rounding = FPRoundingMode(FPSCR[]);
m = UInt(Vm:M);
case size of

when '01' esize = 16; d = UInt(Vd:D);
when '10' esize = 32; d = UInt(Vd:D);
when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

VCVT (floating-point to
integer, floating-point) Page 796

Related encodings: See Floating-point data-processing for the T32 instruction set, or Floating-point data-processing
for the A32 instruction set.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
if to_integer then

case esize of
when 16

S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding, 32);
when 32

S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding, 32);
when 64

S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding, 32);
else

case esize of
when 16

bits(16) fp16 = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding, 16);
S[d] = Zeros(16):fp16;

when 32
S[d] = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding, 32);

when 64
D[d] = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding, 64);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVT (floating-point to
integer, floating-point) Page 797

VCVT (from single-precision to BFloat16, Advanced SIMD)

Vector Convert from single-precision to BFloat16 converts each 32-bit element in a vector from single-precision
floating-point to BFloat16 format, and writes the result into a second vector. The result vector elements are half the
width of the source vector elements.
Unlike the BFloat16 multiplication instructions, this instruction uses the Round to Nearest rounding mode, and can
generate a floating-point exception that causes cumulative exception bits in the FPSCR to be set.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 0 1 1 0 Vd 0 1 1 0 0 1 M 0 Vm

A1

VCVT{<c>}{<q>}.BF16.F32 <Dd>, <Qm>

if !HaveAArch32BF16Ext() then UNDEFINED;
if Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer m = UInt(M:Vm);

T1
(FEAT_AA32BF16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 0 1 1 0 Vd 0 1 1 0 0 1 M 0 Vm

T1

VCVT{<c>}{<q>}.BF16.F32 <Dd>, <Qm>

if !HaveAArch32BF16Ext() then UNDEFINED;
if Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer m = UInt(M:Vm);

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

VCVT (from single-precision
to BFloat16, Advanced SIMD) Page 798

Operation

bits(128) operand;
bits(64) result;

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

operand = Q[m>>1];
for e = 0 to 3

bits(32) op = Elem[operand, e, 32];
Elem[result, e, 16] = FPConvertBF(op, StandardFPSCRValue());

D[d] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVT (from single-precision
to BFloat16, Advanced SIMD) Page 799

VCVT (integer to floating-point, floating-point)

Convert integer to floating-point converts a 32-bit integer to floating-point using the rounding mode specified by the
FPSCR, and places the result in a second register.
VCVT (between floating-point and fixed-point, floating-point) describes conversions between floating-point and 16-bit
integers.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 size op 1 M 0 Vm
cond opc2

Half-precision scalar (size == 01)
(FEAT_FP16)

VCVT{<c>}{<q>}.F16.<dt> <Sd>, <Sm>

Single-precision scalar (size == 10)

VCVT{<c>}{<q>}.F32.<dt> <Sd>, <Sm>

Double-precision scalar (size == 11)

VCVT{<c>}{<q>}.F64.<dt> <Dd>, <Sm>

if opc2 != '000' && !(opc2 IN {'10x'}) then SEE "Related encodings";
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
integer d;
integer esize;
integer m;
boolean unsigned;
FPRounding rounding;
to_integer = (opc2<2> == '1');
if to_integer then

unsigned = (opc2<0> == '0');
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
d = UInt(Vd:D);
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

else
unsigned = (op == '0');
rounding = FPRoundingMode(FPSCR[]);
m = UInt(Vm:M);
case size of

when '01' esize = 16; d = UInt(Vd:D);
when '10' esize = 32; d = UInt(Vd:D);
when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.

VCVT (integer to floating-
point, floating-point) Page 800

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 size op 1 M 0 Vm
opc2

Half-precision scalar (size == 01)
(FEAT_FP16)

VCVT{<c>}{<q>}.F16.<dt> <Sd>, <Sm>

Single-precision scalar (size == 10)

VCVT{<c>}{<q>}.F32.<dt> <Sd>, <Sm>

Double-precision scalar (size == 11)

VCVT{<c>}{<q>}.F64.<dt> <Dd>, <Sm>

if opc2 != '000' && !(opc2 IN {'10x'}) then SEE "Related encodings";
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
integer esize;
integer m;
integer d;
boolean unsigned;
FPRounding rounding;
to_integer = (opc2<2> == '1');
if to_integer then

unsigned = (opc2<0> == '0');
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
d = UInt(Vd:D);
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

else
unsigned = (op == '0');
rounding = FPRoundingMode(FPSCR[]);
m = UInt(Vm:M);
case size of

when '01' esize = 16; d = UInt(Vd:D);
when '10' esize = 32; d = UInt(Vd:D);
when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Related encodings: See Floating-point data-processing for the T32 instruction set, or Floating-point data-processing
for the A32 instruction set.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VCVT (integer to floating-
point, floating-point) Page 801

<dt> Is the data type for the operand, encoded in “op”:

op <dt>
0 U32
1 S32

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
if to_integer then

case esize of
when 16

S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding, 32);
when 32

S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding, 32);
when 64

S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding, 32);
else

case esize of
when 16

bits(16) fp16 = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding, 16);
S[d] = Zeros(16):fp16;

when 32
S[d] = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding, 32);

when 64
D[d] = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding, 64);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVT (integer to floating-
point, floating-point) Page 802

VCVTA (Advanced SIMD)

Vector Convert floating-point to integer with Round to Nearest with Ties to Away converts each element in a vector
from floating-point to integer using the Round to Nearest with Ties to Away rounding mode, and places the results in a
second vector.
The operand vector elements are floating-point numbers.
The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned
integers are distinct.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 0 0 0 op Q M 0 Vm
RM

64-bit SIMD vector (Q == 0)

VCVTA{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCVTA{<q>}.<dt>.<dt2> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 0 0 0 op Q M 0 Vm
RM

64-bit SIMD vector (Q == 0)

VCVTA{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCVTA{<q>}.<dt>.<dt2> <Qd>, <Qm>

if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VCVTA (Advanced SIMD) Page 803

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in “op:size”:

op size <dt>
0 01 S16
0 10 S32
1 01 U16
1 10 U32

<dt2> Is the data type for the elements of the source vector, encoded in “size”:

size <dt2>
01 F16
10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(esize) result;
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,

StandardFPSCRValue(), rounding, esize);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVTA (Advanced SIMD) Page 804

VCVTA (floating-point)

Convert floating-point to integer with Round to Nearest with Ties to Away converts a value in a register from floating-
point to a 32-bit integer using the Round to Nearest with Ties to Away rounding mode, and places the result in a
second register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 0 Vd 1 0 != 00 op 1 M 0 Vm
RM size

Half-precision scalar (size == 01)
(FEAT_FP16)

VCVTA{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VCVTA{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VCVTA{<q>}.<dt>.F64 <Sd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '0');
d = UInt(Vd:D);
integer esize;
integer m;
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 0 Vd 1 0 != 00 op 1 M 0 Vm
RM size

VCVTA (floating-point) Page 805

Half-precision scalar (size == 01)
(FEAT_FP16)

VCVTA{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VCVTA{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VCVTA{<q>}.<dt>.F64 <Sd>, <Dm>

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '0');
d = UInt(Vd:D);
integer esize;
integer m;
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in “op”:

op <dt>
0 U32
1 S32

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding, 32);

when 32
S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding, 32);

when 64
S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding, 32);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVTA (floating-point) Page 806

VCVTB

Convert to or from a half-precision value in the bottom half of a single-precision register does one of the following:
• Converts the half-precision value in the bottom half of a single-precision register to single-precision and

writes the result to a single-precision register.
• Converts the half-precision value in the bottom half of a single-precision register to double-precision and

writes the result to a double-precision register.
• Converts the single-precision value in a single-precision register to half-precision and writes the result into

the bottom half of a single-precision register, preserving the other half of the destination register.
• Converts the double-precision value in a double-precision register to half-precision and writes the result into

the bottom half of a single-precision register, preserving the other half of the destination register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 0 1 M 0 Vm
cond T

Half-precision to single-precision (op == 0 && sz == 0)

VCVTB{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Half-precision to double-precision (op == 0 && sz == 1)

VCVTB{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Single-precision to half-precision (op == 1 && sz == 0)

VCVTB{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision to half-precision (op == 1 && sz == 1)

VCVTB{<c>}{<q>}.F16.F64 <Sd>, <Dm>

uses_double = (sz == '1'); convert_from_half = (op == '0');
lowbit = (if T == '1' then 16 else 0);
integer d;
integer m;
if uses_double then

if convert_from_half then
d = UInt(D:Vd); m = UInt(Vm:M);

else
d = UInt(Vd:D); m = UInt(M:Vm);

else
d = UInt(Vd:D); m = UInt(Vm:M);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 0 1 M 0 Vm
T

VCVTB Page 807

Half-precision to single-precision (op == 0 && sz == 0)

VCVTB{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Half-precision to double-precision (op == 0 && sz == 1)

VCVTB{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Single-precision to half-precision (op == 1 && sz == 0)

VCVTB{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision to half-precision (op == 1 && sz == 1)

VCVTB{<c>}{<q>}.F16.F64 <Sd>, <Dm>

uses_double = (sz == '1'); convert_from_half = (op == '0');
lowbit = (if T == '1' then 16 else 0);
integer d;
integer m;
if uses_double then

if convert_from_half then
d = UInt(D:Vd); m = UInt(Vm:M);

else
d = UInt(Vd:D); m = UInt(M:Vm);

else
d = UInt(Vd:D); m = UInt(Vm:M);

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
bits(16) hp;
if convert_from_half then

hp = S[m]<lowbit+15:lowbit>;
if uses_double then

D[d] = FPConvert(hp, FPSCR[], 64);
else

S[d] = FPConvert(hp, FPSCR[], 32);
else

if uses_double then
hp = FPConvert(D[m], FPSCR[], 16);

else
hp = FPConvert(S[m], FPSCR[], 16);

S[d]<lowbit+15:lowbit> = hp;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVTB Page 808

VCVTB (BFloat16)

Converts the single-precision value in a single-precision register to BFloat16 format and writes the result into the
bottom half of a single precision register, preserving the top 16 bits of the destination register.
Unlike the BFloat16 multiplication instructions, this instruction honors all the control bits in the FPSCR that apply to
single-precision arithmetic, including the rounding mode. This instruction can generate a floating-point exception
which causes a cumulative exception bit in the FPSCR to be set, or a synchronous exception to be taken, depending on
the enable bits in the FPSCR.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 0 1 1 Vd 1 0 0 1 0 1 M 0 Vm
cond

A1

VCVTB{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

if !HaveAArch32BF16Ext() then UNDEFINED;
integer d = UInt(Vd:D);
integer m = UInt(Vm:M);

T1
(FEAT_AA32BF16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 1 Vd 1 0 0 1 0 1 M 0 Vm

T1

VCVTB{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

if !HaveAArch32BF16Ext() then UNDEFINED;
integer d = UInt(Vd:D);
integer m = UInt(Vm:M);

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckVFPEnabled(TRUE);

S[d]<15:0> = FPConvertBF(S[m], FPSCR[]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVTB (BFloat16) Page 809

VCVTM (Advanced SIMD)

Vector Convert floating-point to integer with Round towards -Infinity converts each element in a vector from floating-
point to integer using the Round towards -Infinity rounding mode, and places the results in a second vector.
The operand vector elements are floating-point numbers.
The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned
integers are distinct.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 0 1 1 op Q M 0 Vm
RM

64-bit SIMD vector (Q == 0)

VCVTM{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCVTM{<q>}.<dt>.<dt2> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 0 1 1 op Q M 0 Vm
RM

64-bit SIMD vector (Q == 0)

VCVTM{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCVTM{<q>}.<dt>.<dt2> <Qd>, <Qm>

if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VCVTM (Advanced SIMD) Page 810

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in “op:size”:

op size <dt>
0 01 S16
0 10 S32
1 01 U16
1 10 U32

<dt2> Is the data type for the elements of the source vector, encoded in “size”:

size <dt2>
01 F16
10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(esize) result;
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,

StandardFPSCRValue(), rounding, esize);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVTM (Advanced SIMD) Page 811

VCVTM (floating-point)

Convert floating-point to integer with Round towards -Infinity converts a value in a register from floating-point to a
32-bit integer using the Round towards -Infinity rounding mode, and places the result in a second register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 1 Vd 1 0 != 00 op 1 M 0 Vm
RM size

Half-precision scalar (size == 01)
(FEAT_FP16)

VCVTM{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VCVTM{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VCVTM{<q>}.<dt>.F64 <Sd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '0');
d = UInt(Vd:D);
integer esize;
integer m;
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 1 Vd 1 0 != 00 op 1 M 0 Vm
RM size

VCVTM (floating-point) Page 812

Half-precision scalar (size == 01)
(FEAT_FP16)

VCVTM{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VCVTM{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VCVTM{<q>}.<dt>.F64 <Sd>, <Dm>

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '0');
d = UInt(Vd:D);
integer esize;
integer m;
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in “op”:

op <dt>
0 U32
1 S32

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding, 32);

when 32
S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding, 32);

when 64
S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding, 32);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVTM (floating-point) Page 813

VCVTN (Advanced SIMD)

Vector Convert floating-point to integer with Round to Nearest converts each element in a vector from floating-point to
integer using the Round to Nearest rounding mode, and places the results in a second vector.
The operand vector elements are floating-point numbers.
The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned
integers are distinct.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 0 0 1 op Q M 0 Vm
RM

64-bit SIMD vector (Q == 0)

VCVTN{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCVTN{<q>}.<dt>.<dt2> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 0 0 1 op Q M 0 Vm
RM

64-bit SIMD vector (Q == 0)

VCVTN{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCVTN{<q>}.<dt>.<dt2> <Qd>, <Qm>

if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VCVTN (Advanced SIMD) Page 814

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in “op:size”:

op size <dt>
0 01 S16
0 10 S32
1 01 U16
1 10 U32

<dt2> Is the data type for the elements of the source vector, encoded in “size”:

size <dt2>
01 F16
10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(esize) result;
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,

StandardFPSCRValue(), rounding, esize);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVTN (Advanced SIMD) Page 815

VCVTN (floating-point)

Convert floating-point to integer with Round to Nearest converts a value in a register from floating-point to a 32-bit
integer using the Round to Nearest rounding mode, and places the result in a second register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 1 Vd 1 0 != 00 op 1 M 0 Vm
RM size

Half-precision scalar (size == 01)
(FEAT_FP16)

VCVTN{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VCVTN{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VCVTN{<q>}.<dt>.F64 <Sd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '0');
d = UInt(Vd:D);
integer esize;
integer m;
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 0 1 Vd 1 0 != 00 op 1 M 0 Vm
RM size

VCVTN (floating-point) Page 816

Half-precision scalar (size == 01)
(FEAT_FP16)

VCVTN{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VCVTN{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VCVTN{<q>}.<dt>.F64 <Sd>, <Dm>

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '0');
d = UInt(Vd:D);
integer esize;
integer m;
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in “op”:

op <dt>
0 U32
1 S32

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding, 32);

when 32
S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding, 32);

when 64
S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding, 32);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVTN (floating-point) Page 817

VCVTP (Advanced SIMD)

Vector Convert floating-point to integer with Round towards +Infinity converts each element in a vector from floating-
point to integer using the Round towards +Infinity rounding mode, and places the results in a second vector.
The operand vector elements are floating-point numbers.
The result vector elements are integers, and the same size as the operand vector elements. Signed and unsigned
integers are distinct.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 0 1 0 op Q M 0 Vm
RM

64-bit SIMD vector (Q == 0)

VCVTP{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCVTP{<q>}.<dt>.<dt2> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 0 1 0 op Q M 0 Vm
RM

64-bit SIMD vector (Q == 0)

VCVTP{<q>}.<dt>.<dt2> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VCVTP{<q>}.<dt>.<dt2> <Qd>, <Qm>

if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VCVTP (Advanced SIMD) Page 818

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in “op:size”:

op size <dt>
0 01 S16
0 10 S32
1 01 U16
1 10 U32

<dt2> Is the data type for the elements of the source vector, encoded in “size”:

size <dt2>
01 F16
10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(esize) result;
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = FPToFixed(Elem[D[m+r],e,esize], 0, unsigned,

StandardFPSCRValue(), rounding, esize);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVTP (Advanced SIMD) Page 819

VCVTP (floating-point)

Convert floating-point to integer with Round towards +Infinity converts a value in a register from floating-point to a
32-bit integer using the Round towards +Infinity rounding mode, and places the result in a second register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 0 Vd 1 0 != 00 op 1 M 0 Vm
RM size

Half-precision scalar (size == 01)
(FEAT_FP16)

VCVTP{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VCVTP{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VCVTP{<q>}.<dt>.F64 <Sd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '0');
d = UInt(Vd:D);
integer esize;
integer m;
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 1 1 0 Vd 1 0 != 00 op 1 M 0 Vm
RM size

VCVTP (floating-point) Page 820

Half-precision scalar (size == 01)
(FEAT_FP16)

VCVTP{<q>}.<dt>.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VCVTP{<q>}.<dt>.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VCVTP{<q>}.<dt>.F64 <Sd>, <Dm>

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); unsigned = (op == '0');
d = UInt(Vd:D);
integer esize;
integer m;
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the destination, encoded in “op”:

op <dt>
0 U32
1 S32

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding, 32);

when 32
S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding, 32);

when 64
S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding, 32);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVTP (floating-point) Page 821

VCVTR

Convert floating-point to integer converts a value in a register from floating-point to a 32-bit integer, using the
rounding mode specified by the FPSCR and places the result in a second register.
VCVT (between floating-point and fixed-point, floating-point) describes conversions between floating-point and 16-bit
integers.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 size 0 1 M 0 Vm
cond opc2 op

VCVTR Page 822

Half-precision scalar (opc2 == 100 && size == 01)
(FEAT_FP16)

VCVTR{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar (opc2 == 101 && size == 01)
(FEAT_FP16)

VCVTR{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar (opc2 == 100 && size == 10)

VCVTR{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar (opc2 == 101 && size == 10)

VCVTR{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar (opc2 == 100 && size == 11)

VCVTR{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar (opc2 == 101 && size == 11)

VCVTR{<c>}{<q>}.S32.F64 <Sd>, <Dm>

if opc2 != '000' && !(opc2 IN {'10x'}) then SEE "Related encodings";
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
integer d;
integer esize;
integer m;
boolean unsigned;
FPRounding rounding;
to_integer = (opc2<2> == '1');
if to_integer then

unsigned = (opc2<0> == '0');
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
d = UInt(Vd:D);
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

else
unsigned = (op == '0');
rounding = FPRoundingMode(FPSCR[]);
m = UInt(Vm:M);
case size of

when '01' esize = 16; d = UInt(Vd:D);
when '10' esize = 32; d = UInt(Vd:D);
when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

VCVTR Page 823

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1 1 0 x Vd 1 0 size 0 1 M 0 Vm
opc2 op

Half-precision scalar (opc2 == 100 && size == 01)
(FEAT_FP16)

VCVTR{<c>}{<q>}.U32.F16 <Sd>, <Sm>

Half-precision scalar (opc2 == 101 && size == 01)
(FEAT_FP16)

VCVTR{<c>}{<q>}.S32.F16 <Sd>, <Sm>

Single-precision scalar (opc2 == 100 && size == 10)

VCVTR{<c>}{<q>}.U32.F32 <Sd>, <Sm>

Single-precision scalar (opc2 == 101 && size == 10)

VCVTR{<c>}{<q>}.S32.F32 <Sd>, <Sm>

Double-precision scalar (opc2 == 100 && size == 11)

VCVTR{<c>}{<q>}.U32.F64 <Sd>, <Dm>

Double-precision scalar (opc2 == 101 && size == 11)

VCVTR{<c>}{<q>}.S32.F64 <Sd>, <Dm>

if opc2 != '000' && !(opc2 IN {'10x'}) then SEE "Related encodings";
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
integer esize;
integer m;
integer d;
boolean unsigned;
FPRounding rounding;
to_integer = (opc2<2> == '1');
if to_integer then

unsigned = (opc2<0> == '0');
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
d = UInt(Vd:D);
case size of

when '01' esize = 16; m = UInt(Vm:M);
when '10' esize = 32; m = UInt(Vm:M);
when '11' esize = 64; m = UInt(M:Vm);

else
unsigned = (op == '0');
rounding = FPRoundingMode(FPSCR[]);
m = UInt(Vm:M);
case size of

when '01' esize = 16; d = UInt(Vd:D);
when '10' esize = 32; d = UInt(Vd:D);
when '11' esize = 64; d = UInt(D:Vd);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

VCVTR Page 824

Related encodings: See Floating-point data-processing for the T32 instruction set, or Floating-point data-processing
for the A32 instruction set.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
if to_integer then

case esize of
when 16

S[d] = FPToFixed(S[m]<15:0>, 0, unsigned, FPSCR[], rounding, 32);
when 32

S[d] = FPToFixed(S[m], 0, unsigned, FPSCR[], rounding, 32);
when 64

S[d] = FPToFixed(D[m], 0, unsigned, FPSCR[], rounding, 32);
else

case esize of
when 16

bits(16) fp16 = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding, 16);
S[d] = Zeros(16):fp16;

when 32
S[d] = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding, 32);

when 64
D[d] = FixedToFP(S[m], 0, unsigned, FPSCR[], rounding, 64);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVTR Page 825

VCVTT

Convert to or from a half-precision value in the top half of a single-precision register does one of the following:
• Converts the half-precision value in the top half of a single-precision register to single-precision and writes

the result to a single-precision register.
• Converts the half-precision value in the top half of a single-precision register to double-precision and writes

the result to a double-precision register.
• Converts the single-precision value in a single-precision register to half-precision and writes the result into

the top half of a single-precision register, preserving the other half of the destination register.
• Converts the double-precision value in a double-precision register to half-precision and writes the result into

the top half of a single-precision register, preserving the other half of the destination register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 1 1 M 0 Vm
cond T

Half-precision to single-precision (op == 0 && sz == 0)

VCVTT{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Half-precision to double-precision (op == 0 && sz == 1)

VCVTT{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Single-precision to half-precision (op == 1 && sz == 0)

VCVTT{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision to half-precision (op == 1 && sz == 1)

VCVTT{<c>}{<q>}.F16.F64 <Sd>, <Dm>

uses_double = (sz == '1'); convert_from_half = (op == '0');
lowbit = (if T == '1' then 16 else 0);
integer d;
integer m;
if uses_double then

if convert_from_half then
d = UInt(D:Vd); m = UInt(Vm:M);

else
d = UInt(Vd:D); m = UInt(M:Vm);

else
d = UInt(Vd:D); m = UInt(Vm:M);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 op Vd 1 0 1 sz 1 1 M 0 Vm
T

VCVTT Page 826

Half-precision to single-precision (op == 0 && sz == 0)

VCVTT{<c>}{<q>}.F32.F16 <Sd>, <Sm>

Half-precision to double-precision (op == 0 && sz == 1)

VCVTT{<c>}{<q>}.F64.F16 <Dd>, <Sm>

Single-precision to half-precision (op == 1 && sz == 0)

VCVTT{<c>}{<q>}.F16.F32 <Sd>, <Sm>

Double-precision to half-precision (op == 1 && sz == 1)

VCVTT{<c>}{<q>}.F16.F64 <Sd>, <Dm>

uses_double = (sz == '1'); convert_from_half = (op == '0');
lowbit = (if T == '1' then 16 else 0);
integer d;
integer m;
if uses_double then

if convert_from_half then
d = UInt(D:Vd); m = UInt(Vm:M);

else
d = UInt(Vd:D); m = UInt(M:Vm);

else
d = UInt(Vd:D); m = UInt(Vm:M);

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
bits(16) hp;
if convert_from_half then

hp = S[m]<lowbit+15:lowbit>;
if uses_double then

D[d] = FPConvert(hp, FPSCR[], 64);
else

S[d] = FPConvert(hp, FPSCR[], 32);
else

if uses_double then
hp = FPConvert(D[m], FPSCR[], 16);

else
hp = FPConvert(S[m], FPSCR[], 16);

S[d]<lowbit+15:lowbit> = hp;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVTT Page 827

VCVTT (BFloat16)

Converts the single-precision value in a single-precision register to BFloat16 format and writes the result in the top
half of a single-precision register, preserving the bottom 16 bits of the register.
Unlike the BFloat16 multiplication instructions, this instruction honors all the control bits in the FPSCR that apply to
single-precision arithmetic, including the rounding mode. This instruction can generate a floating-point exception
which causes a cumulative exception bit in the FPSCR to be set, or a synchronous exception to be taken, depending on
the enable bits in the FPSCR.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 0 1 1 Vd 1 0 0 1 1 1 M 0 Vm
cond

A1

VCVTT{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

if !HaveAArch32BF16Ext() then UNDEFINED;
integer d = UInt(Vd:D);
integer m = UInt(Vm:M);

T1
(FEAT_AA32BF16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 1 1 Vd 1 0 0 1 1 1 M 0 Vm

T1

VCVTT{<c>}{<q>}.BF16.F32 <Sd>, <Sm>

if !HaveAArch32BF16Ext() then UNDEFINED;
integer d = UInt(Vd:D);
integer m = UInt(Vm:M);

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckVFPEnabled(TRUE);

S[d]<31:16> = FPConvertBF(S[m], FPSCR[]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VCVTT (BFloat16) Page 828

VDIV

Divide divides one floating-point value by another floating-point value and writes the result to a third floating-point
register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm
cond

Half-precision scalar (size == 01)
(FEAT_FP16)

VDIV{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar (size == 10)

VDIV{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar (size == 11)

VDIV{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm

VDIV Page 829

Half-precision scalar (size == 01)
(FEAT_FP16)

VDIV{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar (size == 10)

VDIV{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar (size == 11)

VDIV{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

if size == '01' && InITBlock() then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
S[d] = Zeros(16) : FPDiv(S[n]<15:0>, S[m]<15:0>, FPSCR[]);

when 32
S[d] = FPDiv(S[n], S[m], FPSCR[]);

when 64
D[d] = FPDiv(D[n], D[m], FPSCR[]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VDIV Page 830

VDOT (by element)

BFloat16 floating-point indexed dot product (vector, by element). This instruction delimits the source vectors into pairs
of 16-bit BF16 elements. Each pair of elements in the first source vector is multiplied by the indexed pair of elements
in the second source vector. The resulting single-precision products are then summed and added destructively to the
single-precision element in the destination vector which aligns with the pair of BFloat16 values in the first source
vector. The instruction does not update the FPSCR exception status.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector (Q == 1)

VDOT{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

if !HaveAArch32BF16Ext() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm);
integer i = UInt(M);
integer regs = if Q == '1' then 2 else 1;

T1
(FEAT_AA32BF16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector (Q == 1)

VDOT{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32BF16Ext() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm);
integer i = UInt(M);
integer regs = if Q == '1' then 2 else 1;

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

VDOT (by element) Page 831

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation

bits(64) operand1;
bits(64) operand2;
bits(64) result;

CheckAdvSIMDEnabled();

operand2 = Din[m];
for r = 0 to regs-1

operand1 = Din[n+r];
result = Din[d+r];
for e = 0 to 1

bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
bits(16) elt2_a = Elem[operand2, 2 * i + 0, 16];
bits(16) elt2_b = Elem[operand2, 2 * i + 1, 16];
bits(32) sum = FPAdd_BF16(BFMulH(elt1_a, elt2_a), BFMulH(elt1_b, elt2_b));
Elem[result, e, 32] = FPAdd_BF16(Elem[result, e, 32], sum);

D[d+r] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VDOT (by element) Page 832

VDOT (vector)

BFloat16 floating-point (BF16) dot product (vector). This instruction delimits the source vectors into pairs of 16-bit
BF16 elements. Within each pair, the elements in the first source vector are multiplied by the corresponding elements
in the second source vector. The resulting single-precision products are then summed and added destructively to the
single-precision element in the destination vector which aligns with the pair of BF16 values in the first source vector.
The instruction does not update the FPSCR exception status.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VDOT{<q>}.BF16 <Qd>, <Qn>, <Qm>

if !HaveAArch32BF16Ext() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer regs = if Q == '1' then 2 else 1;

T1
(FEAT_AA32BF16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VDOT{<q>}.BF16 <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VDOT{<q>}.BF16 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32BF16Ext() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer regs = if Q == '1' then 2 else 1;

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

VDOT (vector) Page 833

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

bits(64) operand1;
bits(64) operand2;
bits(64) result;

CheckAdvSIMDEnabled();

for r = 0 to regs-1
operand1 = Din[n+r];
operand2 = Din[m+r];
result = Din[d+r];
for e = 0 to 1

bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
bits(32) sum = FPAdd_BF16(BFMulH(elt1_a, elt2_a), BFMulH(elt1_b, elt2_b));
Elem[result, e, 32] = FPAdd_BF16(Elem[result, e, 32], sum);

D[d+r] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VDOT (vector) Page 834

VDUP (general-purpose register)

Duplicate general-purpose register to vector duplicates an element from a general-purpose register into every element
of the destination vector.
The destination vector elements can be 8-bit, 16-bit, or 32-bit fields. The source element is the least significant 8, 16,
or 32 bits of the general-purpose register. There is no distinction between data types.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 B Q 0 Vd Rt 1 0 1 1 D 0 E 1 (0) (0) (0) (0)
cond

A1

VDUP{<c>}{<q>}.<size> <Qd>, <Rt> // (Encoded as Q = 1)

VDUP{<c>}{<q>}.<size> <Dd>, <Rt> // (Encoded as Q = 0)

if Q == '1' && Vd<0> == '1' then UNDEFINED;
d = UInt(D:Vd); t = UInt(Rt); regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
case B:E of

when '00' esize = 32; elements = 2;
when '01' esize = 16; elements = 4;
when '10' esize = 8; elements = 8;
when '11' UNDEFINED;

if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 B Q 0 Vd Rt 1 0 1 1 D 0 E 1 (0) (0) (0) (0)

T1

VDUP{<c>}{<q>}.<size> <Qd>, <Rt> // (Encoded as Q = 1)

VDUP{<c>}{<q>}.<size> <Dd>, <Rt> // (Encoded as Q = 0)

if Q == '1' && Vd<0> == '1' then UNDEFINED;
d = UInt(D:Vd); t = UInt(Rt); regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
case B:E of

when '00' esize = 32; elements = 2;
when '01' esize = 16; elements = 4;
when '10' esize = 8; elements = 8;
when '11' UNDEFINED;

if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

VDUP (general-purpose
register) Page 835

Assembler Symbols

<c> See Standard assembler syntax fields. Arm strongly recommends that any VDUP instruction is
unconditional, see Conditional execution.

<q> See Standard assembler syntax fields.

<size> The data size for the elements of the destination vector. It must be one of:
8

Encoded as [b, e] = 0b10.

16
Encoded as [b, e] = 0b01.

32
Encoded as [b, e] = 0b00.

<Qd> The destination vector for a quadword operation.

<Dd> The destination vector for a doubleword operation.

<Rt> The Arm source register.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
scalar = R[t]<esize-1:0>;
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = scalar;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VDUP (general-purpose
register) Page 836

VDUP (scalar)

Duplicate vector element to vector duplicates a single element of a vector into every element of the destination vector.
The scalar, and the destination vector elements, can be any one of 8-bit, 16-bit, or 32-bit fields. There is no distinction
between data types.
For more information about scalars see Advanced SIMD scalars.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 imm4 Vd 1 1 0 0 0 Q M 0 Vm

(Q == 0)

VDUP{<c>}{<q>}.<size> <Dd>, <Dm[x]>

(Q == 1)

VDUP{<c>}{<q>}.<size> <Qd>, <Dm[x]>

if imm4 IN {'x000'} then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;
integer esize;
integer elements;
integer index;
case imm4 of

when 'xxx1' esize = 8; elements = 8; index = UInt(imm4<3:1>);
when 'xx10' esize = 16; elements = 4; index = UInt(imm4<3:2>);
when 'x100' esize = 32; elements = 2; index = UInt(imm4<3>);

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 imm4 Vd 1 1 0 0 0 Q M 0 Vm

(Q == 0)

VDUP{<c>}{<q>}.<size> <Dd>, <Dm[x]>

(Q == 1)

VDUP{<c>}{<q>}.<size> <Qd>, <Dm[x]>

if imm4 IN {'x000'} then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;
integer esize;
integer elements;
integer index;
case imm4 of

when 'xxx1' esize = 8; elements = 8; index = UInt(imm4<3:1>);
when 'xx10' esize = 16; elements = 4; index = UInt(imm4<3:2>);
when 'x100' esize = 32; elements = 2; index = UInt(imm4<3>);

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VDUP (scalar) Page 837

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> The data size. It must be one of:
8

Encoded as imm4<0> = '1'. imm4<3:1> encodes the index[x] of the scalar.

16
Encoded as imm4<1:0> = '10'. imm4<3:2> encodes the index [x] of the scalar.

32
Encoded as imm4<2:0> = '100'. imm4<3> encodes the index [x] of the scalar.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm[x]> The scalar. For details of how [x] is encoded, see the description of <size>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
scalar = Elem[D[m],index,esize];
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = scalar;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VDUP (scalar) Page 838

VEOR

Vector Bitwise Exclusive-OR performs a bitwise exclusive-OR operation between two registers, and places the result in
the destination register. The operand and result registers can be quadword or doubleword. They must all be the same
size.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VEOR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VEOR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 0 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VEOR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VEOR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VEOR Page 839

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

D[d+r] = D[n+r] EOR D[m+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VEOR Page 840

VEXT (byte elements)

Vector Extract extracts elements from the bottom end of the second operand vector and the top end of the first,
concatenates them and places the result in the destination vector.
The elements of the vectors are treated as being 8-bit fields. There is no distinction between data types.
The following figure shows an example of the operation of VEXT doubleword operation for imm = 3.

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0
Vm Vn

Vd

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
This instruction is used by the pseudo-instruction VEXT (multibyte elements).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D 1 1 Vn Vd imm4 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm>

128-bit SIMD vector (Q == 1)

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #<imm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if Q == '0' && imm4<3> == '1' then UNDEFINED;
quadword_operation = (Q == '1'); position = 8 * UInt(imm4);
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D 1 1 Vn Vd imm4 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm>

128-bit SIMD vector (Q == 1)

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #<imm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if Q == '0' && imm4<3> == '1' then UNDEFINED;
quadword_operation = (Q == '1'); position = 8 * UInt(imm4);
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

VEXT (byte elements) Page 841

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<imm> For the 64-bit SIMD vector variant: is the location of the extracted result in the concatenation of the
operands, as a number of bytes from the least significant end, in the range 0 to 7, encoded in the
"imm4" field.
For the 128-bit SIMD vector variant: is the location of the extracted result in the concatenation of the
operands, as a number of bytes from the least significant end, in the range 0 to 15, encoded in the
"imm4" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
if quadword_operation then

Q[d>>1] = (Q[m>>1]:Q[n>>1])<position+127:position>;
else

D[d] = (D[m]:D[n])<position+63:position>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VEXT (byte elements) Page 842

VEXT (multibyte elements)

Vector Extract extracts elements from the bottom end of the second operand vector and the top end of the first,
concatenates them and places the result in the destination vector.

This is a pseudo-instruction of VEXT (byte elements). This means:

• The encodings in this description are named to match the encodings of VEXT (byte elements).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VEXT (byte elements) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D 1 1 Vn Vd imm4 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VEXT{<c>}{<q>}.<size> {<Dd>,} <Dn>, <Dm>, #<imm>

is equivalent to

VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm*(size/8)>

128-bit SIMD vector (Q == 1)

VEXT{<c>}{<q>}.<size> {<Qd>,} <Qn>, <Qm>, #<imm>

is equivalent to

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #<imm*(size/8)>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D 1 1 Vn Vd imm4 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VEXT{<c>}{<q>}.<size> {<Dd>,} <Dn>, <Dm>, #<imm>

is equivalent to

VEXT{<c>}{<q>}.8 {<Dd>,} <Dn>, <Dm>, #<imm*(size/8)>

128-bit SIMD vector (Q == 1)

VEXT{<c>}{<q>}.<size> {<Qd>,} <Qn>, <Qm>, #<imm>

is equivalent to

VEXT{<c>}{<q>}.8 {<Qd>,} <Qn>, <Qm>, #<imm*(size/8)>

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VEXT (multibyte elements) Page 843

<size> For the 64-bit SIMD vector variant: is the size of the operation, and can be one of 16 or 32.
For the 128-bit SIMD vector variant: is the size of the operation, and can be one of 16, 32 or 64.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<imm> For the 64-bit SIMD vector variant: is the location of the extracted result in the concatenation of the
operands, as a number of bytes from the least significant end, in the range 0 to (128/<size>)-1.
For the 128-bit SIMD vector variant: is the location of the extracted result in the concatenation of the
operands, as a number of bytes from the least significant end, in the range 0 to (64/<size>)-1.

Operation

The description of VEXT (byte elements) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VEXT (multibyte elements) Page 844

VFMA

Vector Fused Multiply Accumulate multiplies corresponding elements of two vectors, and accumulates the results into
the elements of the destination vector. The instruction does not round the result of the multiply before the
accumulation.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 0 0 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VFMA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VFMA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
advsimd = TRUE; op1_neg = (op == '1');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm
cond op

VFMA Page 845

Half-precision scalar (size == 01)
(FEAT_FP16)

VFMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VFMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VFMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
advsimd = FALSE; op1_neg = (op == '1');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 0 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VFMA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VFMA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
advsimd = TRUE; op1_neg = (op == '1');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
regs = if Q == '0' then 1 else 2;

VFMA Page 846

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm
op

Half-precision scalar (size == 01)
(FEAT_FP16)

VFMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VFMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VFMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
advsimd = FALSE; op1_neg = (op == '1');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

VFMA Page 847

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if advsimd then // Advanced SIMD instruction

for r = 0 to regs-1
for e = 0 to elements-1

bits(esize) op1 = Elem[D[n+r],e,esize];
if op1_neg then op1 = FPNeg(op1);
Elem[D[d+r],e,esize] = FPMulAdd(Elem[D[d+r],e,esize],

op1, Elem[D[m+r],e,esize], StandardFPSCRValue());

else // VFP instruction
case esize of

when 16
op16 = if op1_neg then FPNeg(S[n]<15:0>) else S[n]<15:0>;
S[d] = Zeros(16) : FPMulAdd(S[d]<15:0>, op16, S[m]<15:0>, FPSCR[]);

when 32
op32 = if op1_neg then FPNeg(S[n]) else S[n];
S[d] = FPMulAdd(S[d], op32, S[m], FPSCR[]);

when 64
op64 = if op1_neg then FPNeg(D[n]) else D[n];
D[d] = FPMulAdd(D[d], op64, D[m], FPSCR[]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VFMA Page 848

VFMAB, VFMAT (BFloat16, by scalar)

The BFloat16 floating-point widening multiply-add long instruction widens the even-numbered (bottom) or odd-
numbered (top) 16-bit elements in the first source vector, and an indexed element in the second source vector from
Bfloat16 to single-precision format. The instruction then multiplies and adds these values to the overlapping single-
precision elements of the destination vector.
Unlike other BFloat16 multiplication instructions, this performs a fused multiply-add, without intermediate rounding
that uses the Round to Nearest rounding mode and can generate a floating-point exception that causes cumulative
exception bits in the FPSCR to be set.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 1 1 Vn Vd 1 0 0 0 N Q M 1 Vm

A1

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

if !HaveAArch32BF16Ext() then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm<2:0>);
integer i = UInt(M:Vm<3>);
integer elements = 128 DIV 32;
integer sel = UInt(Q);

T1
(FEAT_AA32BF16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 1 1 Vn Vd 1 0 0 0 N Q M 1 Vm

T1

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Dm>[<index>]

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32BF16Ext() then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm<2:0>);
integer i = UInt(M:Vm<3>);
integer elements = 128 DIV 32;
integer sel = UInt(Q);

Assembler Symbols

<bt> Is the bottom or top element specifier, encoded in “Q”:

Q <bt>
0 B
1 T

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

VFMAB, VFMAT (BFloat16,
by scalar) Page 849

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field.

Operation

CheckAdvSIMDEnabled();
bits(128) operand1 = Q[n>>1];
bits(64) operand2 = D[m];
bits(128) operand3 = Q[d>>1];
bits(128) result;

bits(32) element2 = Elem[operand2, i, 16] : Zeros(16);

for e = 0 to elements-1
bits(32) element1 = Elem[operand1, 2 * e + sel, 16] : Zeros(16);
bits(32) addend = Elem[operand3, e, 32];
Elem[result, e, 32] = FPMulAdd(addend, element1, element2,

StandardFPSCRValue());

Q[d>>1] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VFMAB, VFMAT (BFloat16,
by scalar) Page 850

VFMAB, VFMAT (BFloat16, vector)

The Bfloat16 floating-point widening multiply-add long instruction widens the even-numbered (bottom) or odd-
numbered (top) 16-bit elements in the first and second source vectors from Bfloat16 to single-precision format. The
instruction then multiplies and adds these values to the overlapping single-precision elements of the destination
vector.
Unlike other BFloat16 multiplication instructions, this performs a fused multiply-add, without intermediate rounding
that uses the Round to Nearest rounding mode and can generate a floating-point exception that causes cumulative
exception bits in the FPSCR to be set.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 1 1 Vn Vd 1 0 0 0 N Q M 1 Vm

A1

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Qm>

if !HaveAArch32BF16Ext() then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer elements = 128 DIV 32;
integer sel = UInt(Q);

T1
(FEAT_AA32BF16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 1 1 Vn Vd 1 0 0 0 N Q M 1 Vm

T1

VFMA<bt>{<q>}.BF16 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32BF16Ext() then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer elements = 128 DIV 32;
integer sel = UInt(Q);

Assembler Symbols

<bt> Is the bottom or top element specifier, encoded in “Q”:

Q <bt>
0 B
1 T

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

VFMAB, VFMAT (BFloat16,
vector) Page 851

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

CheckAdvSIMDEnabled();
bits(128) operand1 = Q[n>>1];
bits(128) operand2 = Q[m>>1];
bits(128) operand3 = Q[d>>1];
bits(128) result;

for e = 0 to elements-1
bits(32) element1 = Elem[operand1, 2 * e + sel, 16] : Zeros(16);
bits(32) element2 = Elem[operand2, 2 * e + sel, 16] : Zeros(16);
bits(32) addend = Elem[operand3, e, 32];
Elem[result, e, 32] = FPMulAdd(addend, element1, element2,

StandardFPSCRValue());

Q[d>>1] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VFMAB, VFMAT (BFloat16,
vector) Page 852

VFMAL (by scalar)

Vector Floating-point Multiply-Add Long to accumulator (by scalar). This instruction multiplies the vector elements in
the first source SIMD&FP register by the specified value in the second source SIMD&FP register, and accumulates the
product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round the
result of the multiply before the accumulation.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_FHM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 0 0 Vn Vd 1 0 0 0 N Q M 1 Vm
S

64-bit SIMD vector (Q == 0)

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector (Q == 1)

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;

integer d = UInt(D:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);

integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';

T1
(FEAT_FHM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 0 0 Vn Vd 1 0 0 0 N Q M 1 Vm
S

VFMAL (by scalar) Page 853

64-bit SIMD vector (Q == 0)

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector (Q == 1)

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

if InITBlock() then UNPREDICTABLE;
if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;

integer d = UInt(D:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);

integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>:M" field.

<index> For the 64-bit SIMD vector variant: is the element index in the range 0 to 1, encoded in the "Vm<3>"
field.
For the 128-bit SIMD vector variant: is the element index in the range 0 to 3, encoded in the
"M:Vm<3>" field.

Operation

CheckAdvSIMDEnabled();
bits(datasize) operand1 ;
bits(datasize) operand2 ;
bits(64) operand3;
bits(64) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2;

if Q=='0' then
operand1 = S[n]<datasize-1:0>;
operand2 = S[m]<datasize-1:0>;

else
operand1 = D[n]<datasize-1:0>;
operand2 = D[m]<datasize-1:0>;

element2 = Elem[operand2, index, esize DIV 2];
for r = 0 to regs-1

operand3 = D[d+r];
for e = 0 to 1

element1 = Elem[operand1, 2*r+e, esize DIV 2];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2,

StandardFPSCRValue());
D[d+r] = result;

VFMAL (by scalar) Page 854

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VFMAL (by scalar) Page 855

VFMAL (vector)

Vector Floating-point Multiply-Add Long to accumulator (vector). This instruction multiplies corresponding values in
the vectors in the two source SIMD&FP registers, and accumulates the product to the corresponding vector element
of the destination SIMD&FP register. The instruction does not round the result of the multiply before the
accumulation.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_FHM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 0 0 0 N Q M 1 Vm
S

64-bit SIMD vector (Q == 0)

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector (Q == 1)

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;

integer d = UInt(D:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';

T1
(FEAT_FHM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 0 0 0 N Q M 1 Vm
S

VFMAL (vector) Page 856

64-bit SIMD vector (Q == 0)

VFMAL{<q>}.F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector (Q == 1)

VFMAL{<q>}.F16 <Qd>, <Dn>, <Dm>

if InITBlock() then UNPREDICTABLE;
if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;

integer d = UInt(D:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

CheckAdvSIMDEnabled();
bits(datasize) operand1 ;
bits(datasize) operand2 ;
bits(64) operand3;
bits(64) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2;

if Q=='0' then
operand1 = S[n]<datasize-1:0>;
operand2 = S[m]<datasize-1:0>;

else
operand1 = D[n]<datasize-1:0>;
operand2 = D[m]<datasize-1:0>;

for r = 0 to regs-1
operand3 = D[d+r];
for e = 0 to 1

element1 = Elem[operand1, 2*r+e, esize DIV 2];
element2 = Elem[operand2, 2*r+e, esize DIV 2];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2,

StandardFPSCRValue());
D[d+r] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VFMAL (vector) Page 857

VFMS

Vector Fused Multiply Subtract negates the elements of one vector and multiplies them with the corresponding
elements of another vector, adds the products to the corresponding elements of the destination vector, and places the
results in the destination vector. The instruction does not round the result of the multiply before the addition.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 0 0 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VFMS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VFMS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
advsimd = TRUE; op1_neg = (op == '1');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm
cond op

VFMS Page 858

Half-precision scalar (size == 01)
(FEAT_FP16)

VFMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VFMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VFMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
advsimd = FALSE; op1_neg = (op == '1');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 0 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VFMS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VFMS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
advsimd = TRUE; op1_neg = (op == '1');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
regs = if Q == '0' then 1 else 2;

VFMS Page 859

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm
op

Half-precision scalar (size == 01)
(FEAT_FP16)

VFMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VFMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VFMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
advsimd = FALSE; op1_neg = (op == '1');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

VFMS Page 860

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if advsimd then // Advanced SIMD instruction

for r = 0 to regs-1
for e = 0 to elements-1

bits(esize) op1 = Elem[D[n+r],e,esize];
if op1_neg then op1 = FPNeg(op1);
Elem[D[d+r],e,esize] = FPMulAdd(Elem[D[d+r],e,esize],

op1, Elem[D[m+r],e,esize], StandardFPSCRValue());

else // VFP instruction
case esize of

when 16
op16 = if op1_neg then FPNeg(S[n]<15:0>) else S[n]<15:0>;
S[d] = Zeros(16) : FPMulAdd(S[d]<15:0>, op16, S[m]<15:0>, FPSCR[]);

when 32
op32 = if op1_neg then FPNeg(S[n]) else S[n];
S[d] = FPMulAdd(S[d], op32, S[m], FPSCR[]);

when 64
op64 = if op1_neg then FPNeg(D[n]) else D[n];
D[d] = FPMulAdd(D[d], op64, D[m], FPSCR[]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VFMS Page 861

VFMSL (by scalar)

Vector Floating-point Multiply-Subtract Long from accumulator (by scalar). This instruction multiplies the negated
vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register,
and accumulates the product to the corresponding vector element of the destination SIMD&FP register. The
instruction does not round the result of the multiply before the accumulation.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_FHM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 0 1 Vn Vd 1 0 0 0 N Q M 1 Vm
S

64-bit SIMD vector (Q == 0)

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector (Q == 1)

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;

integer d = UInt(D:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);

integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';

T1
(FEAT_FHM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 0 1 Vn Vd 1 0 0 0 N Q M 1 Vm
S

VFMSL (by scalar) Page 862

64-bit SIMD vector (Q == 0)

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>[<index>]

128-bit SIMD vector (Q == 1)

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>[<index>]

if InITBlock() then UNPREDICTABLE;
if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;

integer d = UInt(D:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(Vm<2:0>) else UInt(Vm<2:0>:M);

integer index = if Q == '1' then UInt(M:Vm<3>) else UInt(Vm<3>);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>:M" field.

<index> For the 64-bit SIMD vector variant: is the element index in the range 0 to 1, encoded in the "Vm<3>"
field.
For the 128-bit SIMD vector variant: is the element index in the range 0 to 3, encoded in the
"M:Vm<3>" field.

Operation

CheckAdvSIMDEnabled();
bits(datasize) operand1 ;
bits(datasize) operand2 ;
bits(64) operand3;
bits(64) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2;

if Q=='0' then
operand1 = S[n]<datasize-1:0>;
operand2 = S[m]<datasize-1:0>;

else
operand1 = D[n]<datasize-1:0>;
operand2 = D[m]<datasize-1:0>;

element2 = Elem[operand2, index, esize DIV 2];
for r = 0 to regs-1

operand3 = D[d+r];
for e = 0 to 1

element1 = Elem[operand1, 2*r+e, esize DIV 2];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2,

StandardFPSCRValue());
D[d+r] = result;

VFMSL (by scalar) Page 863

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VFMSL (by scalar) Page 864

VFMSL (vector)

Vector Floating-point Multiply-Subtract Long from accumulator (vector). This instruction negates the values in the
vector of one SIMD&FP register, multiplies these with the corresponding values in another vector, and accumulates
the product to the corresponding vector element of the destination SIMD&FP register. The instruction does not round
the result of the multiply before the accumulation.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.

Note

ID_ISAR6.FHM indicates whether this instruction is supported.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_FHM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 0 0 0 N Q M 1 Vm
S

64-bit SIMD vector (Q == 0)

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector (Q == 1)

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>

if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;

integer d = UInt(D:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';

T1
(FEAT_FHM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 0 0 0 N Q M 1 Vm
S

VFMSL (vector) Page 865

64-bit SIMD vector (Q == 0)

VFMSL{<q>}.F16 <Dd>, <Sn>, <Sm>

128-bit SIMD vector (Q == 1)

VFMSL{<q>}.F16 <Qd>, <Dn>, <Dm>

if InITBlock() then UNPREDICTABLE;
if !HaveFP16MulNoRoundingToFP32Ext() then UNDEFINED;
if Q == '1' && Vd<0> == '1' then UNDEFINED;

integer d = UInt(D:Vd);
integer n = if Q == '1' then UInt(N:Vn) else UInt(Vn:N);
integer m = if Q == '1' then UInt(M:Vm) else UInt(Vm:M);
integer esize = 32;
integer regs = if Q=='1' then 2 else 1;
integer datasize = if Q=='1' then 64 else 32;
boolean sub_op = S=='1';

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

CheckAdvSIMDEnabled();
bits(datasize) operand1 ;
bits(datasize) operand2 ;
bits(64) operand3;
bits(64) result;
bits(esize DIV 2) element1;
bits(esize DIV 2) element2;

if Q=='0' then
operand1 = S[n]<datasize-1:0>;
operand2 = S[m]<datasize-1:0>;

else
operand1 = D[n]<datasize-1:0>;
operand2 = D[m]<datasize-1:0>;

for r = 0 to regs-1
operand3 = D[d+r];
for e = 0 to 1

element1 = Elem[operand1, 2*r+e, esize DIV 2];
element2 = Elem[operand2, 2*r+e, esize DIV 2];
if sub_op then element1 = FPNeg(element1);
Elem[result, e, esize] = FPMulAddH(Elem[operand3, e, esize], element1, element2,

StandardFPSCRValue());
D[d+r] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VFMSL (vector) Page 866

VFNMA

Vector Fused Negate Multiply Accumulate negates one floating-point register value and multiplies it by another
floating-point register value, adds the negation of the floating-point value in the destination register to the product,
and writes the result back to the destination register. The instruction does not round the result of the multiply before
the addition.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N 1 M 0 Vm
cond op

Half-precision scalar (size == 01)
(FEAT_FP16)

VFNMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VFNMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VFNMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
op1_neg = (op == '1');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N 1 M 0 Vm
op

VFNMA Page 867

Half-precision scalar (size == 01)
(FEAT_FP16)

VFNMA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VFNMA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VFNMA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
op1_neg = (op == '1');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
op16 = if op1_neg then FPNeg(S[n]<15:0>) else S[n]<15:0>;
S[d] = Zeros(16) : FPMulAdd(FPNeg(S[d]<15:0>), op16, S[m]<15:0>, FPSCR[]);

when 32
op32 = if op1_neg then FPNeg(S[n]) else S[n];
S[d] = FPMulAdd(FPNeg(S[d]), op32, S[m], FPSCR[]);

when 64
op64 = if op1_neg then FPNeg(D[n]) else D[n];
D[d] = FPMulAdd(FPNeg(D[d]), op64, D[m], FPSCR[]);

VFNMA Page 868

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VFNMA Page 869

VFNMS

Vector Fused Negate Multiply Subtract multiplies together two floating-point register values, adds the negation of the
floating-point value in the destination register to the product, and writes the result back to the destination register.
The instruction does not round the result of the multiply before the addition.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N 0 M 0 Vm
cond op

Half-precision scalar (size == 01)
(FEAT_FP16)

VFNMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VFNMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VFNMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
op1_neg = (op == '1');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 0 1 Vn Vd 1 0 size N 0 M 0 Vm
op

VFNMS Page 870

Half-precision scalar (size == 01)
(FEAT_FP16)

VFNMS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VFNMS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VFNMS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
op1_neg = (op == '1');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
op16 = if op1_neg then FPNeg(S[n]<15:0>) else S[n]<15:0>;
S[d] = Zeros(16) : FPMulAdd(FPNeg(S[d]<15:0>), op16, S[m]<15:0>, FPSCR[]);

when 32
op32 = if op1_neg then FPNeg(S[n]) else S[n];
S[d] = FPMulAdd(FPNeg(S[d]), op32, S[m], FPSCR[]);

when 64
op64 = if op1_neg then FPNeg(D[n]) else D[n];
D[d] = FPMulAdd(FPNeg(D[d]), op64, D[m], FPSCR[]);

VFNMS Page 871

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VFNMS Page 872

VHADD

Vector Halving Add adds corresponding elements in two vectors of integers, shifts each result right one bit, and places
the final results in the destination vector. The results of the halving operations are truncated. For rounded results, see
VRHADD).
The operand and result elements are all the same type, and can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.
• 8-bit, 16-bit, or 32-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 0 0 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
add = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 0 0 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
add = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VHADD Page 873

<dt> Is the data type for the elements of the operands, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Int(Elem[D[n+r],e,esize], unsigned);
op2 = Int(Elem[D[m+r],e,esize], unsigned);
result = (if add then op1+op2 else op1-op2) >> 1;
Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VHADD Page 874

VHSUB

Vector Halving Subtract subtracts the elements of the second operand from the corresponding elements of the first
operand, shifts each result right one bit, and places the final results in the destination vector. The results of the
halving operations are truncated. There is no rounding version.
The operand and result elements are all the same type, and can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.
• 8-bit, 16-bit, or 32-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 0 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VHSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VHSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
add = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 0 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VHSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VHSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
add = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VHSUB Page 875

<dt> Is the data type for the elements of the operands, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Int(Elem[D[n+r],e,esize], unsigned);
op2 = Int(Elem[D[m+r],e,esize], unsigned);
result = (if add then op1+op2 else op1-op2) >> 1;
Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VHSUB Page 876

VINS

Vector move Insertion. This instruction copies the lower 16 bits of the 32-bit source SIMD&FP register into the upper
16 bits of the 32-bit destination SIMD&FP register, while preserving the values in the remaining bits.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 1 1 M 0 Vm

A1

VINS{<q>}.F16 <Sd>, <Sm>

if !HaveFP16Ext() then UNDEFINED;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
d = UInt(Vd:D); m = UInt(Vm:M);

T1
(FEAT_FP16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 1 1 M 0 Vm

T1

VINS{<q>}.F16 <Sd>, <Sm>

if InITBlock() then UNPREDICTABLE;
if !HaveFP16Ext() then UNDEFINED;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
d = UInt(Vd:D); m = UInt(Vm:M);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
S[d] = S[m]<15:0> : S[d]<15:0>;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

VINS Page 877

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VINS Page 878

VJCVT

Javascript Convert to signed fixed-point, rounding toward Zero. This instruction converts the double-precision floating-
point value in the SIMD&FP source register to a 32-bit signed integer using the Round towards Zero rounding mode,
and writes the result to the SIMD&FP destination register. If the result is too large to be accommodated as a signed
32-bit integer, then the result is the integer modulo 232, as held in a 32-bit signed integer.
This instruction can generate a floating-point exception. Depending on the settings in FPSCR, the exception results in
either a flag being set or a synchronous exception being generated. For more information, see Floating-point
exceptions and exception traps.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_JSCVT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 1 0 0 1 Vd 1 0 1 1 1 1 M 0 Vm
cond

A1

VJCVT{<q>}.S32.F64 <Sd>, <Dm>

if !HaveFJCVTZSExt() then UNDEFINED;
if cond != '1110' then UNPREDICTABLE;
d = UInt(Vd:D); m = UInt(M:Vm);

T1
(FEAT_JSCVT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 1 0 0 1 Vd 1 0 1 1 1 1 M 0 Vm

T1

VJCVT{<q>}.S32.F64 <Sd>, <Dm>

if !HaveFJCVTZSExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
d = UInt(Vd:D); m = UInt(M:Vm);

Assembler Symbols

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations();
CheckVFPEnabled(TRUE);
bits(64) fltval = D[m];
bits(32) intval;
bit Z;
(intval, Z) = FPToFixedJS(fltval, FPSCR[], FALSE, 32);
FPSCR<31:28> = '0':Z:'00';
S[d] = intval;

VJCVT Page 879

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VJCVT Page 880

VLD1 (multiple single elements)

Load multiple single 1-element structures to one, two, three, or four registers loads elements from memory into one,
two, three, or four registers, without de-interleaving. Every element of each register is loaded. For details of the
addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 , A2 , A3 and A4) and T32 (T1 , T2 , T3 and T4) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 1 1 1 size align Rm

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 1; if align<1> == '1' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 1 0 1 0 size align Rm

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 2; if align == '11' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

VLD1 (multiple single
elements) Page 881

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 1 1 0 size align Rm

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 3; if align<1> == '1' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 0 1 0 size align Rm

VLD1 (multiple single
elements) Page 882

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 4;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 1 1 1 size align Rm

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 1; if align<1> == '1' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 1 0 1 0 size align Rm

VLD1 (multiple single
elements) Page 883

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 2; if align == '11' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 1 1 0 size align Rm

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 3; if align<1> == '1' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T4

VLD1 (multiple single
elements) Page 884

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 0 1 0 size align Rm

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 4;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VLD1 (multiple single elements).
Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced SIMD
element or structure load/store for the A32 instruction set.

Assembler Symbols

<c> For encoding A1, A2, A3 and A4: see Standard assembler syntax fields. This encoding must be
unconditional.
For encoding T1, T2, T3 and T4: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32
11 64

<list> Is a list containing the 64-bit names of the SIMD&FP registers.
The list must be one of:
{ <Dd> }

Single register. Selects the A1 and T1 encodings of the instruction.

{ <Dd>, <Dd+1> }
Two single-spaced registers. Selects the A2 and T2 encodings of the instruction.

{ <Dd>, <Dd+1>, <Dd+2> }
Three single-spaced registers. Selects the A3 and T3 encodings of the instruction.

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }
Four single-spaced registers. Selects the A4 and T4 encodings of the instruction.

VLD1 (multiple single
elements) Page 885

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.
Whenever <align> is present, the permitted values are:
64

64-bit alignment, encoded in the "align" field as 0b01.

128
128-bit alignment, encoded in the "align" field as 0b10. Available only if <list> contains two or four
registers.

256
256-bit alignment, encoded in the "align" field as 0b11. Available only if <list> contains four
registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

for r = 0 to regs-1
for e = 0 to elements-1

bits(ebytes*8) data;
if ebytes != 8 then

data = MemU[address,ebytes];
else

if !IsAligned(address, ebytes) && AlignmentEnforced() then
AArch32.Abort(address, AlignmentFault(accdesc));

if BigEndian(AccessType_ASIMD) then
data<31:0> = MemU[address+4,4];
data<63:32> = MemU[address,4];

else
data<31:0> = MemU[address,4];
data<63:32> = MemU[address+4,4];

Elem[D[d+r],e,8*ebytes] = data;
address = address + ebytes;

if wback then
if register_index then

R[n] = R[n] + R[m];
else

R[n] = R[n] + 8*regs;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

VLD1 (multiple single
elements) Page 886

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLD1 (multiple single
elements) Page 887

VLD1 (single element to all lanes)

Load single 1-element structure and replicate to all lanes of one register loads one element from memory into every
element of one or two vectors. For details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 0 0 size T a Rm

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}],<Rm>

if size == '11' || (size == '00' && a == '1') then UNDEFINED;
ebytes = 1 << UInt(size); regs = if T == '0' then 1 else 2;
alignment = if a == '0' then 1 else ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 0 0 size T a Rm

VLD1 (single element to all
lanes) Page 888

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' || (size == '00' && a == '1') then UNDEFINED;
ebytes = 1 << UInt(size); regs = if T == '0' then 1 else 2;
alignment = if a == '0' then 1 else ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VLD1 (single element to all lanes).

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32
11 RESERVED

<list> Is a list containing the 64-bit names of the SIMD&FP registers.
The list must be one of:
{ <Dd>[] }

Encoded in the "T" field as 0.

{ <Dd>[], <Dd+1>[] }
Encoded in the "T" field as 1.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> When <size> == 8, <align> must be omitted, otherwise it is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "a" field as 0.
Whenever <align> is present, the permitted values and encoding depend on <size>:
<size> == 16

<align> is 16, meaning 16-bit alignment, encoded in the "a" field as 1.

VLD1 (single element to all
lanes) Page 889

<size> == 32
<align> is 32, meaning 32-bit alignment, encoded in the "a" field as 1.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

constant integer esize = 8 * ebytes;
bits(esize) element = MemU[address,ebytes];
bits(64) replicated_element = Replicate(element, 64 DIV esize);
for r = 0 to regs-1

D[d+r] = replicated_element;
if wback then

if register_index then
R[n] = R[n] + R[m];

else
R[n] = R[n] + ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLD1 (single element to all
lanes) Page 890

VLD1 (single element to one lane)

Load single 1-element structure to one lane of one register loads one element from memory into one element of a
register. Elements of the register that are not loaded are unchanged. For details of the addressing mode, see Advanced
SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 , A2 and A3) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 0 0 0 index_align Rm
size

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD1 (single element to all lanes)";
if index_align<0> != '0' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 1 0 0 index_align Rm
size

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD1 (single element to all lanes)";
if index_align<1> != '0' then UNDEFINED;
ebytes = 2; index = UInt(index_align<3:2>);
alignment = if index_align<0> == '0' then 1 else 2;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

VLD1 (single element to one
lane) Page 891

A3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 0 0 0 index_align Rm
size

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD1 (single element to all lanes)";
if index_align<2> != '0' then UNDEFINED;
if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
alignment = if index_align<1:0> == '00' then 1 else 4;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 0 0 0 index_align Rm
size

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD1 (single element to all lanes)";
if index_align<0> != '0' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 1 0 0 index_align Rm
size

VLD1 (single element to one
lane) Page 892

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD1 (single element to all lanes)";
if index_align<1> != '0' then UNDEFINED;
ebytes = 2; index = UInt(index_align<3:2>);
alignment = if index_align<0> == '0' then 1 else 2;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 0 0 0 index_align Rm
size

Offset (Rm == 1111)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD1 (single element to all lanes)";
if index_align<2> != '0' then UNDEFINED;
if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
alignment = if index_align<1:0> == '00' then 1 else 4;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

VLD1 (single element to one
lane) Page 893

size <size>
00 8
01 16
10 32

<list> Is a list containing the single 64-bit name of the SIMD&FP register holding the element.
The list must be { <Dd>[<index>] }.
The register <Dd> is encoded in the "D:Vd" field.
The permitted values and encoding of <index> depend on <size>:
<size> == 8

<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16
<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32
<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> When <size> == 8, <align> must be omitted, otherwise it is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and the
encoding depends on <size>:
<size> == 8

Encoded in the "index_align<0>" field as 0.

<size> == 16
Encoded in the "index_align<1:0>" field as 0b00.

<size> == 32
Encoded in the "index_align<2:0>" field as 0b000.

Whenever <align> is present, the permitted values and encoding depend on <size>:
<size> == 16

<align> is 16, meaning 16-bit alignment, encoded in the "index_align<1:0>" field as 0b01.

<size> == 32
<align> is 32, meaning 32-bit alignment, encoded in the "index_align<2:0>" field as 0b011.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

Elem[D[d],index,8*ebytes] = MemU[address,ebytes];
if wback then

if register_index then
R[n] = R[n] + R[m];

else
R[n] = R[n] + ebytes;

VLD1 (single element to one
lane) Page 894

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLD1 (single element to one
lane) Page 895

VLD2 (multiple 2-element structures)

Load multiple 2-element structures to two or four registers loads multiple 2-element structures from memory into two
or four registers, with de-interleaving. For more information, see Element and structure load/store instructions. Every
element of each register is loaded. For details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 1 0 0 x size align Rm
itype

Offset (Rm == 1111)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

pairs = 1; if align == '11' then UNDEFINED;
if size == '11' then UNDEFINED;
inc = if itype == '1001' then 2 else 1;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 0 1 1 size align Rm

VLD2 (multiple 2-element
structures) Page 896

Offset (Rm == 1111)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

pairs = 2; inc = 2;
if size == '11' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 1 0 0 x size align Rm
itype

Offset (Rm == 1111)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

pairs = 1; if align == '11' then UNDEFINED;
if size == '11' then UNDEFINED;
inc = if itype == '1001' then 2 else 1;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

VLD2 (multiple 2-element
structures) Page 897

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the
base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 0 1 1 size align Rm

Offset (Rm == 1111)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

pairs = 2; inc = 2;
if size == '11' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VLD2 (multiple 2-element structures).
Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced SIMD
element or structure load/store for the A32 instruction set.

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32
11 RESERVED

<list> Is a list containing the 64-bit names of the SIMD&FP registers.
The list must be one of:
{ <Dd>, <Dd+1> }

Two single-spaced registers. Selects the A1 and T1 encodings of the instruction, and encoded in
the "itype" field as 0b1000.

VLD2 (multiple 2-element
structures) Page 898

{ <Dd>, <Dd+2> }
Two double-spaced registers. Selects the A1 and T1 encodings of the instruction, and encoded in
the "itype" field as 0b1001.

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }
Three single-spaced registers. Selects the A2 and T2 encodings of the instruction.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.
Whenever <align> is present, the permitted values are:
64

64-bit alignment, encoded in the "align" field as 0b01.

128
128-bit alignment, encoded in the "align" field as 0b10.

256
256-bit alignment, encoded in the "align" field as 0b11. Available only if <list> contains four
registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

for r = 0 to pairs-1
for e = 0 to elements-1

Elem[D[d+r], e,8*ebytes] = MemU[address,ebytes];
Elem[D[d2+r],e,8*ebytes] = MemU[address+ebytes,ebytes];
address = address + 2*ebytes;

if wback then
if register_index then

R[n] = R[n] + R[m];
else

R[n] = R[n] + 16*pairs;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLD2 (multiple 2-element
structures) Page 899

VLD2 (single 2-element structure to all lanes)

Load single 2-element structure and replicate to all lanes of two registers loads one 2-element structure from memory
into all lanes of two registers. For details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 0 1 size T a Rm

Offset (Rm == 1111)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}],<Rm>

if size == '11' then UNDEFINED;
ebytes = 1 << UInt(size);
alignment = if a == '0' then 1 else 2*ebytes;
inc = if T == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 0 1 size T a Rm

VLD2 (single 2-element
structure to all lanes) Page 900

Offset (Rm == 1111)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
ebytes = 1 << UInt(size);
alignment = if a == '0' then 1 else 2*ebytes;
inc = if T == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VLD2 (single 2-element structure to all lanes).

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32
11 RESERVED

<list> Is a list containing the 64-bit names of two SIMD&FP registers.
The list must be one of:
{ <Dd>[], <Dd+1>[] }

Single-spaced registers, encoded in the "T" field as 0.

{ <Dd>[], <Dd+2>[] }
Double-spaced registers, encoded in the "T" field as 1.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "a" field as 0.
Whenever <align> is present, the permitted values and encoding depend on <size>:
<size> == 8

<align> is 16, meaning 16-bit alignment, encoded in the "a" field as 1.

VLD2 (single 2-element
structure to all lanes) Page 901

<size> == 16
<align> is 32, meaning 32-bit alignment, encoded in the "a" field as 1.

<size> == 32
<align> is 64, meaning 64-bit alignment, encoded in the "a" field as 1.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

constant integer esize = 8 * ebytes;
bits(esize) element1 = MemU[address, ebytes];
bits(esize) element2 = MemU[address+ebytes, ebytes];
D[d] = Replicate(element1, 64 DIV esize);
D[d2] = Replicate(element2, 64 DIV esize);

if wback then
if register_index then

R[n] = R[n] + R[m];
else

R[n] = R[n] + 2*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLD2 (single 2-element
structure to all lanes) Page 902

VLD2 (single 2-element structure to one lane)

Load single 2-element structure to one lane of two registers loads one 2-element structure from memory into
corresponding elements of two registers. Elements of the registers that are not loaded are unchanged. For details of
the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 , A2 and A3) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 0 0 1 index_align Rm
size

Offset (Rm == 1111)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
alignment = if index_align<0> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 1 0 1 index_align Rm
size

VLD2 (single 2-element
structure to one lane) Page 903

Offset (Rm == 1111)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 4;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 0 0 1 index_align Rm
size

Offset (Rm == 1111)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
if index_align<1> != '0' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 8;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

VLD2 (single 2-element
structure to one lane) Page 904

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the
base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 0 0 1 index_align Rm
size

Offset (Rm == 1111)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
alignment = if index_align<0> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 1 0 1 index_align Rm
size

Offset (Rm == 1111)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 4;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

VLD2 (single 2-element
structure to one lane) Page 905

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 0 0 1 index_align Rm
size

Offset (Rm == 1111)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD2 (single 2-element structure to all lanes)";
if index_align<1> != '0' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 8;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VLD2 (single 2-element structure to one lane).

Assembler Symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32

<list> Is a list containing the 64-bit names of the two SIMD&FP registers holding the element.

VLD2 (single 2-element
structure to one lane) Page 906

The list must be one of:
{ <Dd>[<index>], <Dd+1>[<index>] }

Single-spaced registers, encoded as "spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>] }
Double-spaced registers, encoded as "spacing" = 1. Not permitted when <size> == 8.

The encoding of "spacing" depends on <size>:
<size> == 16

"spacing" is encoded in the "index_align<1>" field.

<size> == 32
"spacing" is encoded in the "index_align<2>" field.

The register <Dd> is encoded in the "D:Vd" field.
The permitted values and encoding of <index> depend on <size>:
<size> == 8

<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16
<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32
<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and the
encoding depends on <size>:
<size> == 8

Encoded in the "index_align<0>" field as 0.

<size> == 16
Encoded in the "index_align<0>" field as 0.

<size> == 32
Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:
<size> == 8

<align> is 16, meaning 16-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 16
<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 32
<align> is 64, meaning 64-bit alignment, encoded in the "index_align<1:0>" field as 0b01.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

VLD2 (single 2-element
structure to one lane) Page 907

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

Elem[D[d], index,8*ebytes] = MemU[address,ebytes];
Elem[D[d2],index,8*ebytes] = MemU[address+ebytes,ebytes];
if wback then

if register_index then
R[n] = R[n] + R[m];

else
R[n] = R[n] + 2*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLD2 (single 2-element
structure to one lane) Page 908

VLD3 (multiple 3-element structures)

Load multiple 3-element structures to three registers loads multiple 3-element structures from memory into three
registers, with de-interleaving. For more information, see Element and structure load/store instructions. Every
element of each register is loaded. For details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 1 0 x size align Rm
itype

Offset (Rm == 1111)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

integer inc;
case itype of

when '0100'
inc = 1;

when '0101'
inc = 2;

otherwise
SEE "Related encodings";

if size == '11' || align<1> == '1' then UNDEFINED;
alignment = if align<0> == '0' then 1 else 8;
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 1 0 x size align Rm
itype

VLD3 (multiple 3-element
structures) Page 909

Offset (Rm == 1111)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

integer inc;
case itype of

when '0100'
inc = 1;

when '0101'
inc = 2;

otherwise
SEE "Related encodings";

if size == '11' || align<1> == '1' then UNDEFINED;
alignment = if align<0> == '0' then 1 else 8;
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VLD3 (multiple 3-element structures).
Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced SIMD
element or structure load/store for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32
11 RESERVED

<list> Is a list containing the 64-bit names of the SIMD&FP registers.
The list must be one of:
{ <Dd>, <Dd+1>, <Dd+2> }

Single-spaced registers, encoded in the "itype" field as 0b0100.

{ <Dd>, <Dd+2>, <Dd+4> }
Double-spaced registers, encoded in the "itype" field as 0b0101.

The register <Dd> is encoded in the "D:Vd" field.

VLD3 (multiple 3-element
structures) Page 910

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.
Whenever <align> is present, the only permitted values is 64, meaning 64-bit alignment, encoded in the
"align" field as 0b01.
: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

for e = 0 to elements-1
Elem[D[d], e,8*ebytes] = MemU[address,ebytes];
Elem[D[d2],e,8*ebytes] = MemU[address+ebytes,ebytes];
Elem[D[d3],e,8*ebytes] = MemU[address+2*ebytes,ebytes];
address = address + 3*ebytes;

if wback then
if register_index then

R[n] = R[n] + R[m];
else

R[n] = R[n] + 24;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLD3 (multiple 3-element
structures) Page 911

VLD3 (single 3-element structure to all lanes)

Load single 3-element structure and replicate to all lanes of three registers loads one 3-element structure from
memory into all lanes of three registers. For details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 1 0 size T 0 Rm
a

Offset (Rm == 1111)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' || a == '1' then UNDEFINED;
ebytes = 1 << UInt(size);
inc = if T == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 1 0 size T 0 Rm
a

VLD3 (single 3-element
structure to all lanes) Page 912

Offset (Rm == 1111)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' || a == '1' then UNDEFINED;
ebytes = 1 << UInt(size);
inc = if T == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VLD3 (single 3-element structure to all lanes).

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32
11 RESERVED

<list> Is a list containing the 64-bit names of three SIMD&FP registers.
The list must be one of:
{ <Dd>[], <Dd+1>[], <Dd+2>[] }

Single-spaced registers, encoded in the "T" field as 0.

{ <Dd>[], <Dd+2>[], <Dd+4>[] }
Double-spaced registers, encoded in the "T" field as 1.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.
Alignment
Standard alignment rules apply, see Alignment support.

VLD3 (single 3-element
structure to all lanes) Page 913

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
address = R[n];
constant integer esize = ebytes * 8;
bits(esize) element1 = MemU[address, ebytes];
bits(esize) element2 = MemU[address+ebytes,ebytes];
bits(esize) element3 = MemU[address+2*ebytes,ebytes];

D[d] = Replicate(element1, 64 DIV esize);
D[d2] = Replicate(element2, 64 DIV esize);
D[d3] = Replicate(element3, 64 DIV esize);
if wback then

if register_index then
R[n] = R[n] + R[m];

else
R[n] = R[n] + 3*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLD3 (single 3-element
structure to all lanes) Page 914

VLD3 (single 3-element structure to one lane)

Load single 3-element structure to one lane of three registers loads one 3-element structure from memory into
corresponding elements of three registers. Elements of the registers that are not loaded are unchanged. For details of
the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 , A2 and A3) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 0 1 0 index_align Rm
size

Offset (Rm == 1111)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
if index_align<0> != '0' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 1 1 0 index_align Rm
size

VLD3 (single 3-element
structure to one lane) Page 915

Offset (Rm == 1111)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
if index_align<0> != '0' then UNDEFINED;
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 0 1 0 index_align Rm
size

Offset (Rm == 1111)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
if index_align<1:0> != '00' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

VLD3 (single 3-element
structure to one lane) Page 916

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the
base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 0 1 0 index_align Rm
size

Offset (Rm == 1111)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
if index_align<0> != '0' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 1 1 0 index_align Rm
size

Offset (Rm == 1111)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
if index_align<0> != '0' then UNDEFINED;
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

VLD3 (single 3-element
structure to one lane) Page 917

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 0 1 0 index_align Rm
size

Offset (Rm == 1111)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VLD3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' then SEE "VLD3 (single 3-element structure to all lanes)";
if index_align<1:0> != '00' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VLD3 (single 3-element structure to one lane).

Assembler Symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32

<list> Is a list containing the 64-bit names of the three SIMD&FP registers holding the element.
The list must be one of:

VLD3 (single 3-element
structure to one lane) Page 918

{ <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>] }
Single-spaced registers, encoded as "spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>] }
Double-spaced registers, encoded as "spacing" = 1. Not permitted when <size> == 8.

The encoding of "spacing" depends on <size>:
<size> == 8

"spacing" is encoded in the "index_align<0>" field.

<size> == 16
"spacing" is encoded in the "index_align<1>" field, and "index_align<0>" is set to 0.

<size> == 32
"spacing" is encoded in the "index_align<2>" field, and "index_align<1:0>" is set to 0b00.

The register <Dd> is encoded in the "D:Vd" field.
The permitted values and encoding of <index> depend on <size>:
<size> == 8

<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16
<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32
<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.
Alignment
Standard alignment rules apply, see Alignment support.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
address = R[n];
Elem[D[d], index,8*ebytes] = MemU[address,ebytes];
Elem[D[d2],index,8*ebytes] = MemU[address+ebytes,ebytes];
Elem[D[d3],index,8*ebytes] = MemU[address+2*ebytes,ebytes];
if wback then

if register_index then
R[n] = R[n] + R[m];

else
R[n] = R[n] + 3*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLD3 (single 3-element
structure to one lane) Page 919

VLD4 (multiple 4-element structures)

Load multiple 4-element structures to four registers loads multiple 4-element structures from memory into four
registers, with de-interleaving. For more information, see Element and structure load/store instructions. Every
element of each register is loaded. For details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 1 0 Rn Vd 0 0 0 x size align Rm
itype

Offset (Rm == 1111)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

integer inc;
case itype of

when '0000'
inc = 1;

when '0001'
inc = 2;

otherwise
SEE "Related encodings";

if size == '11' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 1 0 Rn Vd 0 0 0 x size align Rm
itype

VLD4 (multiple 4-element
structures) Page 920

Offset (Rm == 1111)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

integer inc;
case itype of

when '0000'
inc = 1;

when '0001'
inc = 2;

otherwise
SEE "Related encodings";

if size == '11' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VLD4 (multiple 4-element structures).
Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced SIMD
element or structure load/store for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32
11 RESERVED

<list> Is a list containing the 64-bit names of the SIMD&FP registers.
The list must be one of:
{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }

Single-spaced registers, encoded in the "itype" field as 0b0000.

{ <Dd>, <Dd+2>, <Dd+4>, <Dd+6> }
Double-spaced registers, encoded in the "itype" field as 0b0001.

The register <Dd> is encoded in the "D:Vd" field.

VLD4 (multiple 4-element
structures) Page 921

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.
Whenever <align> is present, the permitted values are:
64

64-bit alignment, encoded in the "align" field as 0b01.

128
128-bit alignment, encoded in the "align" field as 0b10.

256
256-bit alignment, encoded in the "align" field as 0b11.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

for e = 0 to elements-1
Elem[D[d], e,8*ebytes] = MemU[address,ebytes];
Elem[D[d2],e,8*ebytes] = MemU[address+ebytes,ebytes];
Elem[D[d3],e,8*ebytes] = MemU[address+2*ebytes,ebytes];
Elem[D[d4],e,8*ebytes] = MemU[address+3*ebytes,ebytes];
address = address + 4*ebytes;

if wback then
if register_index then

R[n] = R[n] + R[m];
else

R[n] = R[n] + 32;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLD4 (multiple 4-element
structures) Page 922

VLD4 (single 4-element structure to all lanes)

Load single 4-element structure and replicate to all lanes of four registers loads one 4-element structure from memory
into all lanes of four registers. For details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 1 1 1 size T a Rm

Offset (Rm == 1111)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}],<Rm>

if size == '11' && a == '0' then UNDEFINED;
integer ebytes;
integer alignment;
if size == '11' then

ebytes = 4; alignment = 16;
else

ebytes = 1 << UInt(size);
if size == '10' then

alignment = if a == '0' then 1 else 8;
else

alignment = if a == '0' then 1 else 4*ebytes;
inc = if T == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 1 1 1 size T a Rm

VLD4 (single 4-element
structure to all lanes) Page 923

Offset (Rm == 1111)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' && a == '0' then UNDEFINED;
integer ebytes;
integer alignment;
if size == '11' then

ebytes = 4; alignment = 16;
else

ebytes = 1 << UInt(size);
if size == '10' then

alignment = if a == '0' then 1 else 8;
else

alignment = if a == '0' then 1 else 4*ebytes;
inc = if T == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VLD4 (single 4-element structure to all lanes).

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
1x 32

<list> Is a list containing the 64-bit names of four SIMD&FP registers.
The list must be one of:
{ <Dd>[], <Dd+1>[], <Dd+2>[], <Dd+3>[] }

Single-spaced registers, encoded in the "T" field as 0.

{ <Dd>[], <Dd+2>[], <Dd+4>[], <Dd+6>[] }
Double-spaced registers, encoded in the "T" field as 1.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.

VLD4 (single 4-element
structure to all lanes) Page 924

Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "a" field as 0.
Whenever <align> is present, the permitted values and encoding depend on <size>:
<size> == 8

<align> is 32, meaning 32-bit alignment, encoded in the "a" field as 1.

<size> == 16
<align> is 64, meaning 64-bit alignment, encoded in the "a" field as 1.

<size> == 32
<align> can be 64 or 128. 64-bit alignment is encoded in the "a:size<0>" field as 0b10, and
128-bit alignment is encoded in the "a:size<0>" field as 0b11.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

constant integer esize = ebytes * 8;
bits(esize) element1 = MemU[address, ebytes];
bits(esize) element2 = MemU[address+ebytes,ebytes];
bits(esize) element3 = MemU[address+2*ebytes,ebytes];
bits(esize) element4 = MemU[address+3*ebytes,ebytes];
D[d] = Replicate(element1, 64 DIV esize);
D[d2] = Replicate(element2, 64 DIV esize);
D[d3] = Replicate(element3, 64 DIV esize);
D[d4] = Replicate(element4, 64 DIV esize);
if wback then

if register_index then
R[n] = R[n] + R[m];

else
R[n] = R[n] + 4*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLD4 (single 4-element
structure to all lanes) Page 925

VLD4 (single 4-element structure to one lane)

Load single 4-element structure to one lane of four registers loads one 4-element structure from memory into
corresponding elements of four registers. Elements of the registers that are not loaded are unchanged. For details of
the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 , A2 and A3) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 0 1 1 index_align Rm
size

Offset (Rm == 1111)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
alignment = if index_align<0> == '0' then 1 else 4;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 0 1 1 1 index_align Rm
size

VLD4 (single 4-element
structure to one lane) Page 926

Offset (Rm == 1111)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 8;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 1 0 Rn Vd 1 0 1 1 index_align Rm
size

Offset (Rm == 1111)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
if index_align<1:0> == '11' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

VLD4 (single 4-element
structure to one lane) Page 927

• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the
base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 0 1 1 index_align Rm
size

Offset (Rm == 1111)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
alignment = if index_align<0> == '0' then 1 else 4;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 0 1 1 1 index_align Rm
size

Offset (Rm == 1111)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 8;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

VLD4 (single 4-element
structure to one lane) Page 928

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 1 0 Rn Vd 1 0 1 1 index_align Rm
size

Offset (Rm == 1111)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VLD4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then SEE "VLD4 (single 4-element structure to all lanes)";
if index_align<1:0> == '11' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VLD4 (single 4-element structure to one lane).

Assembler Symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32

<list> Is a list containing the 64-bit names of the four SIMD&FP registers holding the element.

VLD4 (single 4-element
structure to one lane) Page 929

The list must be one of:
{ <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>], <Dd+3>[<index>] }

Single-spaced registers, encoded as "spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>], <Dd+6>[<index>] }
Double-spaced registers, encoded as "spacing" = 1. Not permitted when <size> == 8.

The encoding of "spacing" depends on <size>:
<size> == 16

"spacing" is encoded in the "index_align<1>" field.

<size> == 32
"spacing" is encoded in the "index_align<2>" field.

The register <Dd> is encoded in the "D:Vd" field.
The permitted values and encoding of <index> depend on <size>:
<size> == 8

<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16
<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32
<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and the
encoding depends on <size>:
<size> == 8

Encoded in the "index_align<0>" field as 0.

<size> == 16
Encoded in the "index_align<0>" field as 0.

<size> == 32
Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:
<size> == 8

<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 16
<align> is 64, meaning 64-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 32
<align> can be 64 or 128. 64-bit alignment is encoded in the "index_align<1:0>" field as 0b01,
and 128-bit alignment is encoded in the "index_align<1:0>" field as 0b10.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

VLD4 (single 4-element
structure to one lane) Page 930

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_LOAD, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

Elem[D[d], index,8*ebytes] = MemU[address,ebytes];
Elem[D[d2],index,8*ebytes] = MemU[address+ebytes,ebytes];
Elem[D[d3],index,8*ebytes] = MemU[address+2*ebytes,ebytes];
Elem[D[d4],index,8*ebytes] = MemU[address+3*ebytes,ebytes];
if wback then

if register_index then
R[n] = R[n] + R[m];

else
R[n] = R[n] + 4*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLD4 (single 4-element
structure to one lane) Page 931

VLDM, VLDMDB, VLDMIA

Load Multiple SIMD&FP registers loads multiple registers from consecutive locations in the Advanced SIMD and
floating-point register file using an address from a general-purpose register.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
This instruction is used by the alias VPOP.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 0
cond imm8<0>

Decrement Before (P == 1 && U == 0 && W == 1)

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After (P == 0 && U == 1)

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE "VLDR";
if P == U && W == '1' then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FLDM*X".
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 P U D W 1 Rn Vd 1 0 1 0 imm8
cond

VLDM, VLDMDB, VLDMIA Page 932

Decrement Before (P == 1 && U == 0 && W == 1)

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After (P == 0 && U == 1)

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE "VLDR";
if P == U && W == '1' then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 1 imm8<7:1> 0
imm8<0>

Decrement Before (P == 1 && U == 0 && W == 1)

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After (P == 0 && U == 1)

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE "VLDR";
if P == U && W == '1' then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FLDM*X".
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

VLDM, VLDMDB, VLDMIA Page 933

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn Vd 1 0 1 0 imm8

Decrement Before (P == 1 && U == 0 && W == 1)

VLDMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After (P == 0 && U == 1)

VLDM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

VLDMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE "VLDR";
if P == U && W == '1' then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as a VLDM with the same addressing mode but loads no registers.

If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. If the instruction specifies writeback, the

base register becomes UNKNOWN. This behavior does not affect any general-purpose registers.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VLDM.
Related encodings: See Advanced SIMD and floating-point 64-bit move for the T32 instruction set, or Advanced SIMD
and floating-point 64-bit move for the A32 instruction set.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC can
be used.

VLDM, VLDMDB, VLDMIA Page 934

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register in
the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must
contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register in
the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The list must
contain at least one register, and must not contain more than 16 registers.

Alias Conditions

Alias Is preferred when
VPOP P == '0' && U == '1' && W == '1' && Rn == '1101'

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckVFPEnabled(TRUE);
address = if add then R[n] else R[n]-imm32;

for r = 0 to regs-1
if single_regs then

S[d+r] = MemA[address,4];
address = address+4;

else
word1 = MemA[address,4];
word2 = MemA[address+4,4];
address = address+8;

// Combine the word-aligned words in the correct order for current endianness.
D[d+r] = if BigEndian(AccessType_ASIMD) then word1:word2 else word2:word1;

if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLDM, VLDMDB, VLDMIA Page 935

VLDR (immediate)

Load SIMD&FP register (immediate) loads a single register from the Advanced SIMD and floating-point register file,
using an address from a general-purpose register, with an optional offset.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 1 U D 0 1 != 1111 Vd 1 0 size imm8
cond Rn

Half-precision scalar (size == 01)
(FEAT_FP16)

VLDR{<c>}{<q>}.16 <Sd>, [<Rn> {, #{+/-}<imm>}]

Single-precision scalar (size == 10)

VLDR{<c>}{<q>}{.32} <Sd>, [<Rn> {, #{+/-}<imm>}]

Double-precision scalar (size == 11)

VLDR{<c>}{<q>}{.64} <Dd>, [<Rn> {, #{+/-}<imm>}]

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
esize = 8 << UInt(size); add = (U == '1');
imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
integer d;
case size of

when '01' d = UInt(Vd:D);
when '10' d = UInt(Vd:D);
when '11' d = UInt(D:Vd);

n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 1 != 1111 Vd 1 0 size imm8
Rn

VLDR (immediate) Page 936

Half-precision scalar (size == 01)
(FEAT_FP16)

VLDR{<c>}{<q>}.16 <Sd>, [<Rn> {, #{+/-}<imm>}]

Single-precision scalar (size == 10)

VLDR{<c>}{<q>}{.32} <Sd>, [<Rn> {, #{+/-}<imm>}]

Double-precision scalar (size == 11)

VLDR{<c>}{<q>}{.64} <Dd>, [<Rn> {, #{+/-}<imm>}]

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
esize = 8 << UInt(size); add = (U == '1');
imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
integer d;
case size of

when '01' d = UInt(Vd:D);
when '10' d = UInt(Vd:D);
when '11' d = UInt(D:Vd);

n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

.64 Is an optional data size specifier for 64-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

.32 Is an optional data size specifier for 32-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

<imm> For the single-precision scalar or double-precision scalar variants: is the optional unsigned immediate
byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0, and encoded in the "imm8" field as
<imm>/4.
For the half-precision scalar variant: is the optional unsigned immediate byte offset, a multiple of 2, in
the range 0 to 510, defaulting to 0, and encoded in the "imm8" field as <imm>/2.

VLDR (immediate) Page 937

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckVFPEnabled(TRUE);
base = if n == 15 then Align(PC,4) else R[n];
address = if add then (base + imm32) else (base - imm32);
case esize of

when 16
S[d] = Zeros(16) : MemA[address,2];

when 32
S[d] = MemA[address,4];

when 64
word1 = MemA[address,4];
word2 = MemA[address+4,4];
// Combine the word-aligned words in the correct order for current endianness.
D[d] = if BigEndian(AccessType_ASIMD) then word1:word2 else word2:word1;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLDR (immediate) Page 938

VLDR (literal)

Load SIMD&FP register (literal) loads a single register from the Advanced SIMD and floating-point register file, using
an address from the PC value and an immediate offset.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 1 U D 0 1 1 1 1 1 Vd 1 0 size imm8
cond Rn

Half-precision scalar (size == 01)
(FEAT_FP16)

VLDR{<c>}{<q>}.16 <Sd>, <label>

VLDR{<c>}{<q>}.16 <Sd>, [PC, #{+/-}<imm>]

Single-precision scalar (size == 10)

VLDR{<c>}{<q>}{.32} <Sd>, <label>

VLDR{<c>}{<q>}{.32} <Sd>, [PC, #{+/-}<imm>]

Double-precision scalar (size == 11)

VLDR{<c>}{<q>}{.64} <Dd>, <label>

VLDR{<c>}{<q>}{.64} <Dd>, [PC, #{+/-}<imm>]

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
esize = 8 << UInt(size); add = (U == '1');
imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
integer d;
case size of

when '01' d = UInt(Vd:D);
when '10' d = UInt(Vd:D);
when '11' d = UInt(D:Vd);

n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 1 1 1 1 1 Vd 1 0 size imm8
Rn

VLDR (literal) Page 939

Half-precision scalar (size == 01)
(FEAT_FP16)

VLDR{<c>}{<q>}.16 <Sd>, <label>

VLDR{<c>}{<q>}.16 <Sd>, [PC, #{+/-}<imm>]

Single-precision scalar (size == 10)

VLDR{<c>}{<q>}{.32} <Sd>, <label>

VLDR{<c>}{<q>}{.32} <Sd>, [PC, #{+/-}<imm>]

Double-precision scalar (size == 11)

VLDR{<c>}{<q>}{.64} <Dd>, <label>

VLDR{<c>}{<q>}{.64} <Dd>, [PC, #{+/-}<imm>]

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
esize = 8 << UInt(size); add = (U == '1');
imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
integer d;
case size of

when '01' d = UInt(Vd:D);
when '10' d = UInt(Vd:D);
when '11' d = UInt(D:Vd);

n = UInt(Rn);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

.64 Is an optional data size specifier for 64-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

.32 Is an optional data size specifier for 32-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<label> The label of the literal data item to be loaded.
For the single-precision scalar or double-precision scalar variants: the assembler calculates the
required value of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values
are multiples of 4 in the range -1020 to 1020.
For the half-precision scalar variant: the assembler calculates the required value of the offset from the
Align(PC, 4) value of the instruction to this label. Permitted values are multiples of 2 in the range -510
to 510.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

VLDR (literal) Page 940

U +/-
0 -
1 +

<imm> For the single-precision scalar or double-precision scalar variants: is the optional unsigned immediate
byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0, and encoded in the "imm8" field as
<imm>/4.
For the half-precision scalar variant: is the optional unsigned immediate byte offset, a multiple of 2, in
the range 0 to 510, defaulting to 0, and encoded in the "imm8" field as <imm>/2.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckVFPEnabled(TRUE);
base = if n == 15 then Align(PC,4) else R[n];
address = if add then (base + imm32) else (base - imm32);
case esize of

when 16
S[d] = Zeros(16) : MemA[address,2];

when 32
S[d] = MemA[address,4];

when 64
word1 = MemA[address,4];
word2 = MemA[address+4,4];
// Combine the word-aligned words in the correct order for current endianness.
D[d] = if BigEndian(AccessType_ASIMD) then word1:word2 else word2:word1;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VLDR (literal) Page 941

VMAX (floating-point)

Vector Maximum compares corresponding elements in two vectors, and copies the larger of each pair into the
corresponding element in the destination vector.
The operand vector elements are floating-point numbers.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 1 1 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 1 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
maximum = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VMAX (floating-point) Page 942

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.
Floating-point maximum and minimum

• max(+0.0, -0.0) = +0.0
• If any input is a NaN, the corresponding result element is the default NaN.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
if maximum then

Elem[D[d+r],e,esize] = FPMax(op1, op2, StandardFPSCRValue());
else

Elem[D[d+r],e,esize] = FPMin(op1, op2, StandardFPSCRValue());

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMAX (floating-point) Page 943

VMAX (integer)

Vector Maximum compares corresponding elements in two vectors, and copies the larger of each pair into the
corresponding element in the destination vector.
The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.
• 8-bit, 16-bit, or 32-bit unsigned integers.

The result vector elements are the same size as the operand vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 0 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
maximum = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 0 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMAX{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
maximum = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VMAX (integer) Page 944

<dt> Is the data type for the elements of the operands, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Int(Elem[D[n+r],e,esize], unsigned);
op2 = Int(Elem[D[m+r],e,esize], unsigned);
result = if maximum then Max(op1,op2) else Min(op1,op2);
Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMAX (integer) Page 945

VMAXNM

This instruction determines the floating-point maximum number.
It handles NaNs in consistence with the IEEE754-2008 specification. It returns the numerical operand when one
operand is numerical and the other is a quiet NaN, but otherwise the result is identical to floating-point VMAX.
This instruction is not conditional.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VMAXNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMAXNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
advsimd = TRUE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 != 00 N 0 M 0 Vm
size op

VMAXNM Page 946

Half-precision scalar (size == 01)
(FEAT_FP16)

VMAXNM{<q>}.F16 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Single-precision scalar (size == 10)

VMAXNM{<q>}.F32 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Double-precision scalar (size == 11)

VMAXNM{<q>}.F64 <Dd>, <Dn>, <Dm> // (Cannot be conditional)

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
advsimd = FALSE;
maximum = (op == '0');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VMAXNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMAXNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
advsimd = TRUE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

VMAXNM Page 947

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 != 00 N 0 M 0 Vm
size op

Half-precision scalar (size == 01)
(FEAT_FP16)

VMAXNM{<q>}.F16 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Single-precision scalar (size == 10)

VMAXNM{<q>}.F32 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Double-precision scalar (size == 11)

VMAXNM{<q>}.F64 <Dd>, <Dn>, <Dm> // (Not permitted in IT block)

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
advsimd = FALSE;
maximum = (op == '0');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

VMAXNM Page 948

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if advsimd then // Advanced SIMD instruction

for r = 0 to regs-1
for e = 0 to elements-1

op1 = Elem[D[n+r], e, esize]; op2 = Elem[D[m+r], e, esize];
if maximum then

Elem[D[d+r], e, esize] = FPMaxNum(op1, op2, StandardFPSCRValue());
else

Elem[D[d+r], e, esize] = FPMinNum(op1, op2, StandardFPSCRValue());
else // VFP instruction

case esize of
when 16

if maximum then
S[d] = Zeros(16) : FPMaxNum(S[n]<15:0>, S[m]<15:0>, FPSCR[]);

else
S[d] = Zeros(16) : FPMinNum(S[n]<15:0>, S[m]<15:0>, FPSCR[]);

when 32
if maximum then

S[d] = FPMaxNum(S[n], S[m], FPSCR[]);
else

S[d] = FPMinNum(S[n], S[m], FPSCR[]);
when 64

if maximum then
D[d] = FPMaxNum(D[n], D[m], FPSCR[]);

else
D[d] = FPMinNum(D[n], D[m], FPSCR[]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMAXNM Page 949

VMIN (floating-point)

Vector Minimum compares corresponding elements in two vectors, and copies the smaller of each pair into the
corresponding element in the destination vector.
The operand vector elements are floating-point numbers.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 1 1 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 1 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
maximum = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VMIN (floating-point) Page 950

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.
Floating-point minimum

• min(+0.0, -0.0) = -0.0
• If any input is a NaN, the corresponding result element is the default NaN.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[n+r],e,esize]; op2 = Elem[D[m+r],e,esize];
if maximum then

Elem[D[d+r],e,esize] = FPMax(op1, op2, StandardFPSCRValue());
else

Elem[D[d+r],e,esize] = FPMin(op1, op2, StandardFPSCRValue());

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMIN (floating-point) Page 951

VMIN (integer)

Vector Minimum compares corresponding elements in two vectors, and copies the smaller of each pair into the
corresponding element in the destination vector.
The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.
• 8-bit, 16-bit, or 32-bit unsigned integers.

The result vector elements are the same size as the operand vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 1 0 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
maximum = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 1 0 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMIN{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
maximum = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VMIN (integer) Page 952

<dt> Is the data type for the elements of the operands, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Int(Elem[D[n+r],e,esize], unsigned);
op2 = Int(Elem[D[m+r],e,esize], unsigned);
result = if maximum then Max(op1,op2) else Min(op1,op2);
Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMIN (integer) Page 953

VMINNM

This instruction determines the floating point minimum number.
It handles NaNs in consistence with the IEEE754-2008 specification. It returns the numerical operand when one
operand is numerical and the other is a quiet NaN, but otherwise the result is identical to floating-point VMIN.
This instruction is not conditional.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VMINNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMINNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
advsimd = TRUE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 != 00 N 1 M 0 Vm
size op

VMINNM Page 954

Half-precision scalar (size == 01)
(FEAT_FP16)

VMINNM{<q>}.F16 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Single-precision scalar (size == 10)

VMINNM{<q>}.F32 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Double-precision scalar (size == 11)

VMINNM{<q>}.F64 <Dd>, <Dn>, <Dm> // (Cannot be conditional)

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
advsimd = FALSE;
maximum = (op == '0');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VMINNM{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMINNM{<q>}.<dt> <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
advsimd = TRUE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

VMINNM Page 955

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 != 00 N 1 M 0 Vm
size op

Half-precision scalar (size == 01)
(FEAT_FP16)

VMINNM{<q>}.F16 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Single-precision scalar (size == 10)

VMINNM{<q>}.F32 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Double-precision scalar (size == 11)

VMINNM{<q>}.F64 <Dd>, <Dn>, <Dm> // (Not permitted in IT block)

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
advsimd = FALSE;
maximum = (op == '0');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

VMINNM Page 956

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if advsimd then // Advanced SIMD instruction

for r = 0 to regs-1
for e = 0 to elements-1

op1 = Elem[D[n+r], e, esize]; op2 = Elem[D[m+r], e, esize];
if maximum then

Elem[D[d+r], e, esize] = FPMaxNum(op1, op2, StandardFPSCRValue());
else

Elem[D[d+r], e, esize] = FPMinNum(op1, op2, StandardFPSCRValue());
else // VFP instruction

case esize of
when 16

if maximum then
S[d] = Zeros(16) : FPMaxNum(S[n]<15:0>, S[m]<15:0>, FPSCR[]);

else
S[d] = Zeros(16) : FPMinNum(S[n]<15:0>, S[m]<15:0>, FPSCR[]);

when 32
if maximum then

S[d] = FPMaxNum(S[n], S[m], FPSCR[]);
else

S[d] = FPMinNum(S[n], S[m], FPSCR[]);
when 64

if maximum then
D[d] = FPMaxNum(D[n], D[m], FPSCR[]);

else
D[d] = FPMinNum(D[n], D[m], FPSCR[]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMINNM Page 957

VMLA (by scalar)

Vector Multiply Accumulate multiplies elements of a vector by a scalar, and adds the products to corresponding
elements of the destination vector.
For more information about scalars see Advanced SIMD scalars.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 Q 1 D != 11 Vn Vd 0 0 0 F N 1 M 0 Vm
size op

64-bit SIMD vector (Q == 0)

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector (Q == 1)

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 Q 1 1 1 1 1 D != 11 Vn Vd 0 0 0 F N 1 M 0 Vm
size op

VMLA (by scalar) Page 958

64-bit SIMD vector (Q == 0)

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector (Q == 1)

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in “F:size”:

F size <dt>
0 01 I16
0 10 I32
1 01 F16
1 10 F32

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field
as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is I16 or F16, Dm
is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is I32 or
F32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

VMLA (by scalar) Page 959

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
if floating_point then

fp_addend = (if add then FPMul(op1,op2,StandardFPSCRValue())
else FPNeg(FPMul(op1,op2,StandardFPSCRValue())));

Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend,
StandardFPSCRValue());

else
addend = if add then op1val*op2val else -op1val*op2val;
if long_destination then

Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
else

Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMLA (by scalar) Page 960

VMLA (floating-point)

Vector Multiply Accumulate multiplies corresponding elements in two vectors, and accumulates the results into the
elements of the destination vector.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
advsimd = TRUE; add = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm
cond op

VMLA (floating-point) Page 961

Half-precision scalar (size == 01)
(FEAT_FP16)

VMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
advsimd = FALSE; add = (op == '0');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
advsimd = TRUE; add = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VMLA (floating-point) Page 962

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N 0 M 0 Vm
op

Half-precision scalar (size == 01)
(FEAT_FP16)

VMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
advsimd = FALSE; add = (op == '0');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

VMLA (floating-point) Page 963

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if advsimd then // Advanced SIMD instruction

for r = 0 to regs-1
for e = 0 to elements-1

product = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], StandardFPSCRValue());
addend = if add then product else FPNeg(product);
Elem[D[d+r],e,esize] = FPAdd(Elem[D[d+r],e,esize], addend, StandardFPSCRValue());

else // VFP instruction
case esize of

when 16
addend16 = (if add then FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[])

else FPNeg(FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[])));
S[d] = Zeros(16) : FPAdd(S[d]<15:0>, addend16, FPSCR[]);

when 32
addend32 = (if add then FPMul(S[n], S[m], FPSCR[])

else FPNeg(FPMul(S[n], S[m], FPSCR[])));
S[d] = FPAdd(S[d], addend32, FPSCR[]);

when 64
addend64 = (if add then FPMul(D[n], D[m], FPSCR[])

else FPNeg(FPMul(D[n], D[m], FPSCR[])));
D[d] = FPAdd(D[d], addend64, FPSCR[]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMLA (floating-point) Page 964

VMLA (integer)

Vector Multiply Accumulate multiplies corresponding elements in two vectors, and adds the products to the
corresponding elements of the destination vector.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
add = (op == '0'); long_destination = FALSE;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VMLA{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMLA{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
add = (op == '0'); long_destination = FALSE;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

VMLA (integer) Page 965

size <dt>
00 I8
01 I16
10 I32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
addend = if add then product else -product;
if long_destination then

Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
else

Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMLA (integer) Page 966

VMLAL (by scalar)

Vector Multiply Accumulate Long multiplies elements of a vector by a scalar, and adds the products to corresponding
elements of the destination vector. The destination vector elements are twice as long as the elements that are
multiplied.
For more information about scalars see Advanced SIMD scalars.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 11 Vn Vd 0 0 1 0 N 1 M 0 Vm
size op

A1

VMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 11 Vn Vd 0 0 1 0 N 1 M 0 Vm
size op

T1

VMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VMLAL (by scalar) Page 967

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in “U:size”:

U size <dt>
0 01 S16
0 10 S32
1 01 U16
1 10 U32

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field
as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16 or U16,
Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is
S32 or U32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
if floating_point then

fp_addend = (if add then FPMul(op1,op2,StandardFPSCRValue())
else FPNeg(FPMul(op1,op2,StandardFPSCRValue())));

Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend,
StandardFPSCRValue());

else
addend = if add then op1val*op2val else -op1val*op2val;
if long_destination then

Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
else

Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMLAL (by scalar) Page 968

VMLAL (integer)

Vector Multiply Accumulate Long multiplies corresponding elements in two vectors, and add the products to the
corresponding element of the destination vector. The destination vector element is twice as long as the elements that
are multiplied.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 11 Vn Vd 1 0 0 0 N 0 M 0 Vm
size op

A1

VMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 11 Vn Vd 1 0 0 0 N 0 M 0 Vm
size op

T1

VMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

VMLAL (integer) Page 969

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
addend = if add then product else -product;
if long_destination then

Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
else

Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMLAL (integer) Page 970

VMLS (by scalar)

Vector Multiply Subtract multiplies elements of a vector by a scalar, and either subtracts the products from
corresponding elements of the destination vector.
For more information about scalars see Advanced SIMD scalars.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 Q 1 D != 11 Vn Vd 0 1 0 F N 1 M 0 Vm
size op

64-bit SIMD vector (Q == 0)

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector (Q == 1)

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 Q 1 1 1 1 1 D != 11 Vn Vd 0 1 0 F N 1 M 0 Vm
size op

VMLS (by scalar) Page 971

64-bit SIMD vector (Q == 0)

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector (Q == 1)

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
add = (op == '0'); floating_point = (F == '1'); long_destination = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in “F:size”:

F size <dt>
0 01 I16
0 10 I32
1 01 F16
1 10 F32

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field
as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is I16 or F16, Dm
is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is I32 or
F32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

VMLS (by scalar) Page 972

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
if floating_point then

fp_addend = (if add then FPMul(op1,op2,StandardFPSCRValue())
else FPNeg(FPMul(op1,op2,StandardFPSCRValue())));

Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend,
StandardFPSCRValue());

else
addend = if add then op1val*op2val else -op1val*op2val;
if long_destination then

Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
else

Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMLS (by scalar) Page 973

VMLS (floating-point)

Vector Multiply Subtract multiplies corresponding elements in two vectors, subtracts the products from corresponding
elements of the destination vector, and places the results in the destination vector.

Note

Arm recommends that software does not use the VMLS instruction in the Round towards Plus Infinity and Round
towards Minus Infinity rounding modes, because the rounding of the product and of the sum can change the result
of the instruction in opposite directions, defeating the purpose of these rounding modes.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 0 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
advsimd = TRUE; add = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N 1 M 0 Vm
cond op

VMLS (floating-point) Page 974

Half-precision scalar (size == 01)
(FEAT_FP16)

VMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
advsimd = FALSE; add = (op == '0');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 1 Vm
op

64-bit SIMD vector (Q == 0)

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
advsimd = TRUE; add = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VMLS (floating-point) Page 975

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 0 Vn Vd 1 0 size N 1 M 0 Vm
op

Half-precision scalar (size == 01)
(FEAT_FP16)

VMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
advsimd = FALSE; add = (op == '0');
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

VMLS (floating-point) Page 976

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if advsimd then // Advanced SIMD instruction

for r = 0 to regs-1
for e = 0 to elements-1

product = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize], StandardFPSCRValue());
addend = if add then product else FPNeg(product);
Elem[D[d+r],e,esize] = FPAdd(Elem[D[d+r],e,esize], addend, StandardFPSCRValue());

else // VFP instruction
case esize of

when 16
addend16 = (if add then FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[])

else FPNeg(FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[])));
S[d] = Zeros(16) : FPAdd(S[d]<15:0>, addend16, FPSCR[]);

when 32
addend32 = (if add then FPMul(S[n], S[m], FPSCR[])

else FPNeg(FPMul(S[n], S[m], FPSCR[])));
S[d] = FPAdd(S[d], addend32, FPSCR[]);

when 64
addend64 = (if add then FPMul(D[n], D[m], FPSCR[])

else FPNeg(FPMul(D[n], D[m], FPSCR[])));
D[d] = FPAdd(D[d], addend64, FPSCR[]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMLS (floating-point) Page 977

VMLS (integer)

Vector Multiply Subtract multiplies corresponding elements in two vectors, and subtracts the products from the
corresponding elements of the destination vector.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
add = (op == '0'); long_destination = FALSE;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 0 1 N Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VMLS{<c>}{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMLS{<c>}{<q>}.<dt> <Qd>, <Qn>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
add = (op == '0'); long_destination = FALSE;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

VMLS (integer) Page 978

size <dt>
00 I8
01 I16
10 I32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
addend = if add then product else -product;
if long_destination then

Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
else

Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMLS (integer) Page 979

VMLSL (by scalar)

Vector Multiply Subtract Long multiplies elements of a vector by a scalar, and subtracts the products from
corresponding elements of the destination vector. The destination vector elements are twice as long as the elements
that are multiplied.
For more information about scalars see Advanced SIMD scalars.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 11 Vn Vd 0 1 1 0 N 1 M 0 Vm
size op

A1

VMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 11 Vn Vd 0 1 1 0 N 1 M 0 Vm
size op

T1

VMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); add = (op == '0'); floating_point = FALSE; long_destination = TRUE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VMLSL (by scalar) Page 980

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in “U:size”:

U size <dt>
0 01 S16
0 10 S32
1 01 U16
1 10 U32

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field
as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16 or U16,
Dm is restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is
S32 or U32, Dm is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
if floating_point then

fp_addend = (if add then FPMul(op1,op2,StandardFPSCRValue())
else FPNeg(FPMul(op1,op2,StandardFPSCRValue())));

Elem[D[d+r],e,esize] = FPAdd(Elem[Din[d+r],e,esize], fp_addend,
StandardFPSCRValue());

else
addend = if add then op1val*op2val else -op1val*op2val;
if long_destination then

Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
else

Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMLSL (by scalar) Page 981

VMLSL (integer)

Vector Multiply Subtract Long multiplies corresponding elements in two vectors, and subtract the products from the
corresponding elements of the destination vector. The destination vector element is twice as long as the elements that
are multiplied.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 11 Vn Vd 1 0 1 0 N 0 M 0 Vm
size op

A1

VMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 11 Vn Vd 1 0 1 0 N 0 M 0 Vm
size op

T1

VMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
add = (op == '0'); long_destination = TRUE; unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

VMLSL (integer) Page 982

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
product = Int(Elem[Din[n+r],e,esize],unsigned) * Int(Elem[Din[m+r],e,esize],unsigned);
addend = if add then product else -product;
if long_destination then

Elem[Q[d>>1],e,2*esize] = Elem[Qin[d>>1],e,2*esize] + addend;
else

Elem[D[d+r],e,esize] = Elem[Din[d+r],e,esize] + addend;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMLSL (integer) Page 983

VMMLA

BFloat16 floating-point matrix multiply-accumulate. This instruction multiplies the 2x4 matrix of BF16 values in the
first 128-bit source vector by the 4x2 BF16 matrix in the second 128-bit source vector. The resulting 2x2 single-
precision matrix product is then added destructively to the 2x2 single-precision matrix in the 128-bit destination
vector. This is equivalent to performing a 4-way dot product per destination element. The instruction does not update
the FPSCR exception status.

Note

Arm expects that the VMMLA instruction will deliver a peak BF16 multiply throughput that is at least as high as
can be achieved using two VDOT instructions, with a goal that it should have significantly higher throughput.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32BF16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 0 0 Vn Vd 1 1 0 0 N 1 M 0 Vm

A1

VMMLA{<q>}.BF16 <Qd>, <Qn>, <Qm>

if !HaveAArch32BF16Ext() then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer regs = 2;

T1
(FEAT_AA32BF16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 0 0 Vn Vd 1 1 0 0 N 1 M 0 Vm

T1

VMMLA{<q>}.BF16 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32BF16Ext() then UNDEFINED;
if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer regs = 2;

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

VMMLA Page 984

Operation

CheckAdvSIMDEnabled();

bits(128) op1 = Q[n>>1];
bits(128) op2 = Q[m>>1];
bits(128) acc = Q[d>>1];

Q[d>>1] = BFMatMulAdd(acc, op1, op2);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMMLA Page 985

VMOV (between general-purpose register and half-precision)

Copy 16 bits of a general-purpose register to or from a 32-bit SIMD&FP register. This instruction transfers the value
held in the bottom 16 bits of a 32-bit SIMD&FP register to the bottom 16 bits of a general-purpose register, or the
value held in the bottom 16 bits of a general-purpose register to the bottom 16 bits of a 32-bit SIMD&FP register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 0 0 0 op Vn Rt 1 0 0 1 N (0) (0) 1 (0) (0) (0) (0)
cond

From general-purpose register (op == 0)

VMOV{<c>}{<q>}.F16 <Sn>, <Rt>

To general-purpose register (op == 1)

VMOV{<c>}{<q>}.F16 <Rt>, <Sn>

if !HaveFP16Ext() then UNDEFINED;
if cond != '1110' then UNPREDICTABLE;
to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1
(FEAT_FP16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 0 0 op Vn Rt 1 0 0 1 N (0) (0) 1 (0) (0) (0) (0)

From general-purpose register (op == 0)

VMOV{<c>}{<q>}.F16 <Sn>, <Rt>

To general-purpose register (op == 1)

VMOV{<c>}{<q>}.F16 <Rt>, <Sn>

if !HaveFP16Ext() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

VMOV (between general-
purpose register and half-

precision)
Page 986

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Rt> Is the general-purpose register that <Sn> will be transferred to or from, encoded in the "Rt" field.

<Sn> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Vn:N" field.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
if to_arm_register then

R[t] = Zeros(16) : S[n]<15:0>;
else

S[n] = Zeros(16) : R[t]<15:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMOV (between general-
purpose register and half-

precision)
Page 987

VMOV (between general-purpose register and single-precision)

Copy a general-purpose register to or from a 32-bit SIMD&FP register. This instruction transfers the value held in a
32-bit SIMD&FP register to a general-purpose register, or the value held in a general-purpose register to a 32-bit
SIMD&FP register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 0 0 0 op Vn Rt 1 0 1 0 N (0) (0) 1 (0) (0) (0) (0)
cond

From general-purpose register (op == 0)

VMOV{<c>}{<q>} <Sn>, <Rt>

To general-purpose register (op == 1)

VMOV{<c>}{<q>} <Rt>, <Sn>

to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 0 0 op Vn Rt 1 0 1 0 N (0) (0) 1 (0) (0) (0) (0)

From general-purpose register (op == 0)

VMOV{<c>}{<q>} <Sn>, <Rt>

To general-purpose register (op == 1)

VMOV{<c>}{<q>} <Rt>, <Sn>

to_arm_register = (op == '1'); t = UInt(Rt); n = UInt(Vn:N);
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<Rt> Is the general-purpose register that <Sn> will be transferred to or from, encoded in the "Rt" field.

<Sn> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Vn:N" field.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VMOV (between general-
purpose register and single-

precision)
Page 988

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
if to_arm_register then

R[t] = S[n];
else

S[n] = R[t];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMOV (between general-
purpose register and single-

precision)
Page 989

VMOV (between two general-purpose registers and a doubleword floating-point register)

Copy two general-purpose registers to or from a SIMD&FP register copies two words from two general-purpose
registers into a doubleword register in the Advanced SIMD and floating-point register file, or from a doubleword
register in the Advanced SIMD and floating-point register file to two general-purpose registers.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 1 0 0 M 1 Vm
cond

From general-purpose registers (op == 0)

VMOV{<c>}{<q>} <Dm>, <Rt>, <Rt2>

To general-purpose registers (op == 1)

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Dm>

to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(M:Vm);
if t == 15 || t2 == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 1 0 0 M 1 Vm

From general-purpose registers (op == 0)

VMOV{<c>}{<q>} <Dm>, <Rt>, <Rt2>

To general-purpose registers (op == 1)

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Dm>

to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(M:Vm);
if t == 15 || t2 == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13
if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

VMOV (between two general-
purpose registers and a Page 990

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VMOV (between two general-purpose registers and a doubleword
floating-point register).

Assembler Symbols

<Dm> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "M:Vm" field.

<Rt2> Is the second general-purpose register that <Dm>[63:32] will be transferred to or from, encoded in the
"Rt2" field.

<Rt> Is the first general-purpose register that <Dm>[31:0] will be transferred to or from, encoded in the "Rt"
field.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
if to_arm_registers then

R[t] = D[m]<31:0>;
R[t2] = D[m]<63:32>;

else
D[m]<31:0> = R[t];
D[m]<63:32> = R[t2];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMOV (between two general-
purpose registers and a Page 991

VMOV (between two general-purpose registers and two single-precision registers)

Copy two general-purpose registers to a pair of 32-bit SIMD&FP registers transfers the contents of two consecutively
numbered single-precision Floating-point registers to two general-purpose registers, or the contents of two general-
purpose registers to a pair of single-precision Floating-point registers. The general-purpose registers do not have to be
contiguous.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 0 0 0 M 1 Vm
cond

From general-purpose registers (op == 0)

VMOV{<c>}{<q>} <Sm>, <Sm1>, <Rt>, <Rt2>

To general-purpose registers (op == 1)

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Sm>, <Sm1>

to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(Vm:M);
if t == 15 || t2 == 15 || m == 31 then UNPREDICTABLE;
if to_arm_registers && t == t2 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

If m == 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the single-precision registers become UNKNOWN for a move to the single-precision register.

The general-purpose registers listed in the instruction become UNKNOWN for a move from the single-precision
registers. This behavior does not affect any other general-purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 op Rt2 Rt 1 0 1 0 0 0 M 1 Vm

From general-purpose registers (op == 0)

VMOV{<c>}{<q>} <Sm>, <Sm1>, <Rt>, <Rt2>

To general-purpose registers (op == 1)

VMOV{<c>}{<q>} <Rt>, <Rt2>, <Sm>, <Sm1>

to_arm_registers = (op == '1'); t = UInt(Rt); t2 = UInt(Rt2); m = UInt(Vm:M);
if t == 15 || t2 == 15 || m == 31 then UNPREDICTABLE;
if to_arm_registers && t == t2 then UNPREDICTABLE;

VMOV (between two general-
purpose registers and two
single-precision registers)

Page 992

CONSTRAINED UNPREDICTABLE behavior

If to_arm_registers && t == t2, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The value in the destination register is UNKNOWN.

If m == 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the single-precision registers become UNKNOWN for a move to the single-precision register.

The general-purpose registers listed in the instruction become UNKNOWN for a move from the single-precision
registers. This behavior does not affect any other general-purpose registers.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VMOV (between two general-purpose registers and two single-
precision registers).

Assembler Symbols

<Rt2> Is the second general-purpose register that <Sm1> will be transferred to or from, encoded in the "Rt2"
field.

<Rt> Is the first general-purpose register that <Sm> will be transferred to or from, encoded in the "Rt" field.

<Sm1> Is the 32-bit name of the second SIMD&FP register to be transferred. This is the next SIMD&FP
register after <Sm>.

<Sm> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Vm:M" field.

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
if to_arm_registers then

R[t] = S[m];
R[t2] = S[m+1];

else
S[m] = R[t];
S[m+1] = R[t2];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMOV (between two general-
purpose registers and two
single-precision registers)

Page 993

VMOV (general-purpose register to scalar)

Copy a general-purpose register to a vector element copies a byte, halfword, or word from a general-purpose register
into an Advanced SIMD scalar.
On a Floating-point-only system, this instruction transfers one word to the upper or lower half of a double-precision
floating-point register from a general-purpose register. This is an identical operation to the Advanced SIMD single
word transfer.
For more information about scalars see Advanced SIMD scalars.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 0 opc1 0 Vd Rt 1 0 1 1 D opc2 1 (0) (0) (0) (0)
cond

A1

VMOV{<c>}{<q>}{.<size>} <Dd[x]>, <Rt>

boolean advsimd;
integer esize;
integer index;
case opc1:opc2 of

when '1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
when '0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
when '0x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
when '0x10' UNDEFINED;

d = UInt(D:Vd); t = UInt(Rt);
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 opc1 0 Vd Rt 1 0 1 1 D opc2 1 (0) (0) (0) (0)

T1

VMOV{<c>}{<q>}{.<size>} <Dd[x]>, <Rt>

boolean advsimd;
integer esize;
integer index;
case opc1:opc2 of

when '1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
when '0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
when '0x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
when '0x10' UNDEFINED;

d = UInt(D:Vd); t = UInt(Rt);
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VMOV (general-purpose
register to scalar) Page 994

<size> The data size. It must be one of:
8

Encoded as opc1<1> = 1. [x] is encoded in opc1<0>, opc2.

16
Encoded as opc1<1> = 0, opc2<0> = 1. [x] is encoded in opc1<0>, opc2<1>.

32
Encoded as opc1<1> = 0, opc2 = 0b00. [x] is encoded in opc1<0>.

omitted
Equivalent to 32.

<Dd[x]> The scalar. The register <Dd> is encoded in D:Vd. For details of how [x] is encoded, see the description
of <size>.

<Rt> The source general-purpose register.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
Elem[D[d],index,esize] = R[t]<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMOV (general-purpose
register to scalar) Page 995

VMOV (immediate)

Copy immediate value to a SIMD&FP register places an immediate constant into every element of the destination
register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 , A2 , A3 , A4 and A5) and T32 (T1 , T2 , T3 , T4 and T5
) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 0 0 Q 0 1 imm4
cmode op

64-bit SIMD vector (Q == 0)

VMOV{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMOV{<c>}{<q>}.I32 <Qd>, #<imm>

if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
if op == '1' && cmode != '1110' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
bits(32) imm32 = bits(32) UNKNOWN;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L
cond

VMOV (immediate) Page 996

Half-precision scalar (size == 01)
(FEAT_FP16)

VMOV{<c>}{<q>}.F16 <Sd>, #<imm>

Single-precision scalar (size == 10)

VMOV{<c>}{<q>}.F32 <Sd>, #<imm>

Double-precision scalar (size == 11)

VMOV{<c>}{<q>}.F64 <Dd>, #<imm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
single_register = (size != '11'); advsimd = FALSE;
bits(16) imm16;
bits(32) imm32;
bits(64) imm64;
integer d;
integer regs;
case size of

when '01' d = UInt(Vd:D); imm16 = VFPExpandImm(imm4H:imm4L, 16); imm32 = Zeros(16) : imm16;
when '10' d = UInt(Vd:D); imm32 = VFPExpandImm(imm4H:imm4L, 32);
when '11' d = UInt(D:Vd); imm64 = VFPExpandImm(imm4H:imm4L, 64); regs = 1;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

A3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 0 0 Q 0 1 imm4
cmode op

64-bit SIMD vector (Q == 0)

VMOV{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMOV{<c>}{<q>}.I16 <Qd>, #<imm>

if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
if op == '1' && cmode != '1110' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
bits(32) imm32 = bits(32) UNKNOWN;

A4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 1 x x 0 Q 0 1 imm4
cmode op

VMOV (immediate) Page 997

64-bit SIMD vector (Q == 0)

VMOV{<c>}{<q>}.<dt> <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMOV{<c>}{<q>}.<dt> <Qd>, #<imm>

if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
if op == '1' && cmode != '1110' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
bits(32) imm32 = bits(32) UNKNOWN;

A5

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 1 1 0 0 Q 1 1 imm4
cmode op

64-bit SIMD vector (Q == 0)

VMOV{<c>}{<q>}.I64 <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMOV{<c>}{<q>}.I64 <Qd>, #<imm>

if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
if op == '1' && cmode != '1110' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
bits(32) imm32 = bits(32) UNKNOWN;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 0 0 Q 0 1 imm4
cmode op

64-bit SIMD vector (Q == 0)

VMOV{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMOV{<c>}{<q>}.I32 <Qd>, #<imm>

if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
if op == '1' && cmode != '1110' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
bits(32) imm32 = bits(32) UNKNOWN;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L

VMOV (immediate) Page 998

Half-precision scalar (size == 01)
(FEAT_FP16)

VMOV{<c>}{<q>}.F16 <Sd>, #<imm>

Single-precision scalar (size == 10)

VMOV{<c>}{<q>}.F32 <Sd>, #<imm>

Double-precision scalar (size == 11)

VMOV{<c>}{<q>}.F64 <Dd>, #<imm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
single_register = (size != '11'); advsimd = FALSE;
bits(16) imm16;
bits(32) imm32;
bits(64) imm64;
integer d;
integer regs;
case size of

when '01' d = UInt(Vd:D); imm16 = VFPExpandImm(imm4H:imm4L, 16); imm32 = Zeros(16) : imm16;
when '10' d = UInt(Vd:D); imm32 = VFPExpandImm(imm4H:imm4L, 32);
when '11' d = UInt(D:Vd); imm64 = VFPExpandImm(imm4H:imm4L, 64); regs = 1;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 0 0 Q 0 1 imm4
cmode op

64-bit SIMD vector (Q == 0)

VMOV{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMOV{<c>}{<q>}.I16 <Qd>, #<imm>

if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
if op == '1' && cmode != '1110' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
bits(32) imm32 = bits(32) UNKNOWN;

T4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 1 x x 0 Q 0 1 imm4
cmode op

VMOV (immediate) Page 999

64-bit SIMD vector (Q == 0)

VMOV{<c>}{<q>}.<dt> <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMOV{<c>}{<q>}.<dt> <Qd>, #<imm>

if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
if op == '1' && cmode != '1110' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
bits(32) imm32 = bits(32) UNKNOWN;

T5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 1 1 0 0 Q 1 1 imm4
cmode op

64-bit SIMD vector (Q == 0)

VMOV{<c>}{<q>}.I64 <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMOV{<c>}{<q>}.I64 <Qd>, #<imm>

if op == '0' && cmode<0> == '1' && cmode<3:2> != '11' then SEE "VORR (immediate)";
if op == '1' && cmode != '1110' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
single_register = FALSE; advsimd = TRUE; imm64 = AdvSIMDExpandImm(op, cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;
bits(32) imm32 = bits(32) UNKNOWN;

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1, A3, A4 and A5: see Standard assembler syntax fields. This encoding must be
unconditional.
For encoding A2, T1, T2, T3, T4 and T5: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> The data type, encoded in “cmode”:

cmode <dt>
110x I32
1110 I8
1111 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<imm> For encoding A1, A3, A4, A5, T1, T3, T4 and T5: is a constant of the specified type that is replicated to
fill the destination register. For details of the range of constants available and the encoding of <imm>,
see Modified immediate constants in T32 and A32 Advanced SIMD instructions.

VMOV (immediate) Page 1000

For encoding A2 and T2: is a signed floating-point constant with 3-bit exponent and normalized 4 bits of
precision, encoded in "imm4H:imm4L". For details of the range of constants available and the encoding
of <imm>, see Modified immediate constants in T32 and A32 floating-point instructions.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if single_register then

S[d] = imm32;
else

for r = 0 to regs-1
D[d+r] = imm64;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMOV (immediate) Page 1001

VMOV (register)

Copy between FP registers copies the contents of one FP register to another.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A2) and T32 (T2) .

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 x 0 1 M 0 Vm
cond size

Single-precision scalar (size == 10)

VMOV{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VMOV{<c>}{<q>}.F64 <Dd>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
single_register = (size == '10'); advsimd = FALSE;
integer d;
integer m;
integer regs;
if single_register then

d = UInt(Vd:D); m = UInt(Vm:M);
else

d = UInt(D:Vd); m = UInt(M:Vm); regs = 1;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 x 0 1 M 0 Vm
size

Single-precision scalar (size == 10)

VMOV{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VMOV{<c>}{<q>}.F64 <Dd>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
single_register = (size == '10'); advsimd = FALSE;
integer d;
integer m;
integer regs;
if single_register then

d = UInt(Vd:D); m = UInt(Vm:M);
else

d = UInt(D:Vd); m = UInt(M:Vm); regs = 1;

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VMOV (register) Page 1002

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if single_register then

S[d] = S[m];
else

for r = 0 to regs-1
D[d+r] = D[m+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMOV (register) Page 1003

VMOV (register, SIMD)

Copy between SIMD registers copies the contents of one SIMD register to another.

This is an alias of VORR (register). This means:

• The encodings in this description are named to match the encodings of VORR (register).
• The description of VORR (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VMOV{<c>}{<q>}{.<dt>} <Dd>, <Dm>

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is the preferred disassembly when N:Vn == M:Vm.

128-bit SIMD vector (Q == 1)

VMOV{<c>}{<q>}{.<dt>} <Qd>, <Qm>

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is the preferred disassembly when N:Vn == M:Vm.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VMOV{<c>}{<q>}{.<dt>} <Dd>, <Dm>

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

and is the preferred disassembly when N:Vn == M:Vm.

128-bit SIMD vector (Q == 1)

VMOV{<c>}{<q>}{.<dt>} <Qd>, <Qm>

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

and is the preferred disassembly when N:Vn == M:Vm.

VMOV (register, SIMD) Page 1004

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. <dt> must not be F64, but it is otherwise ignored.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field.

Operation

The description of VORR (register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMOV (register, SIMD) Page 1005

VMOV (scalar to general-purpose register)

Copy a vector element to a general-purpose register with sign or zero extension copies a byte, halfword, or word from
an Advanced SIMD scalar to a general-purpose register. Bytes and halfwords can be either zero-extended or sign-
extended.
On a Floating-point-only system, this instruction transfers one word from the upper or lower half of a double-precision
floating-point register to a general-purpose register. This is an identical operation to the Advanced SIMD single word
transfer.
For more information about scalars see Advanced SIMD scalars.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 U opc1 1 Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)
cond

A1

VMOV{<c>}{<q>}{.<dt>} <Rt>, <Dn[x]>

boolean advsimd;
integer esize;
integer index;
case U:opc1:opc2 of

when 'x1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
when 'x0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
when '00x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
when '10x00' UNDEFINED;
when 'x0x10' UNDEFINED;

t = UInt(Rt); n = UInt(N:Vn); unsigned = (U == '1');
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 U opc1 1 Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)

T1

VMOV{<c>}{<q>}{.<dt>} <Rt>, <Dn[x]>

boolean advsimd;
integer esize;
integer index;
case U:opc1:opc2 of

when 'x1xxx' advsimd = TRUE; esize = 8; index = UInt(opc1<0>:opc2);
when 'x0xx1' advsimd = TRUE; esize = 16; index = UInt(opc1<0>:opc2<1>);
when '00x00' advsimd = FALSE; esize = 32; index = UInt(opc1<0>);
when '10x00' UNDEFINED;
when 'x0x10' UNDEFINED;

t = UInt(Rt); n = UInt(N:Vn); unsigned = (U == '1');
if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

VMOV (scalar to general-
purpose register) Page 1006

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> The data type. It must be one of:
S8

Encoded as U = 0, opc1<1> = 1. [x] is encoded in opc1<0>, opc2.

S16
Encoded as U = 0, opc1<1> = 0, opc2<0> = 1. [x] is encoded in opc1<0>, opc2<1>.

U8
Encoded as U = 1, opc1<1> = 1. [x] is encoded in opc1<0>, opc2.

U16
Encoded as U = 1, opc1<1> = 0, opc2<0> = 1. [x] is encoded in opc1<0>, opc2<1>.

32
Encoded as U = 0, opc1<1> = 0, opc2 = 0b00. [x] is encoded in opc1<0>.

omitted
Equivalent to 32.

<Rt> The destination general-purpose register.

<Dn[x]> The scalar. For details of how [x] is encoded see the description of <dt>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if unsigned then

R[t] = ZeroExtend(Elem[D[n],index,esize], 32);
else

R[t] = SignExtend(Elem[D[n],index,esize], 32);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMOV (scalar to general-
purpose register) Page 1007

VMOVL

Vector Move Long takes each element in a doubleword vector, sign or zero-extends them to twice their original length,
and places the results in a quadword vector.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 000 0 0 0 Vd 1 0 1 0 0 0 M 1 Vm
imm3H

A1

VMOVL{<c>}{<q>}.<dt> <Qd>, <Dm>

if imm3H == '000' then SEE "Related encodings";
if imm3H != '001' && imm3H != '010' && imm3H != '100' then SEE "VSHLL";
if Vd<0> == '1' then UNDEFINED;
esize = 8 * UInt(imm3H);
unsigned = (U == '1'); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 000 0 0 0 Vd 1 0 1 0 0 0 M 1 Vm
imm3H

T1

VMOVL{<c>}{<q>}.<dt> <Qd>, <Dm>

if imm3H == '000' then SEE "Related encodings";
if imm3H != '001' && imm3H != '010' && imm3H != '100' then SEE "VSHLL";
if Vd<0> == '1' then UNDEFINED;
esize = 8 * UInt(imm3H);
unsigned = (U == '1'); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm);

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in “U:imm3H”:

VMOVL Page 1008

U imm3H <dt>
0 001 S8
0 010 S16
0 100 S32
1 001 U8
1 010 U16
1 100 U32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1

result = Int(Elem[Din[m],e,esize], unsigned);
Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMOVL Page 1009

VMOVN

Vector Move and Narrow copies the least significant half of each element of a quadword vector into the corresponding
elements of a doubleword vector.
The operand vector elements can be any one of 16-bit, 32-bit, or 64-bit integers. There is no distinction between
signed and unsigned integers.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
This instruction is used by the pseudo-instructions VRSHRN (zero), and VSHRN (zero).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm

A1

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

if size == '11' then UNDEFINED;
if Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm

T1

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

if size == '11' then UNDEFINED;
if Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm);

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in “size”:

size <dt>
00 I16
01 I32
10 I64
11 RESERVED

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

VMOVN Page 1010

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1

Elem[D[d],e,esize] = Elem[Qin[m>>1],e,2*esize]<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMOVN Page 1011

VMOVX

Vector Move extraction. This instruction copies the upper 16 bits of the 32-bit source SIMD&FP register into the lower
16 bits of the 32-bit destination SIMD&FP register, while clearing the remaining bits to zero.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_FP16)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 0 1 M 0 Vm

A1

VMOVX{<q>}.F16 <Sd>, <Sm>

if !HaveFP16Ext() then UNDEFINED;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
d = UInt(Vd:D); m = UInt(Vm:M);

T1
(FEAT_FP16)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 1 0 0 1 M 0 Vm

T1

VMOVX{<q>}.F16 <Sd>, <Sm>

if InITBlock() then UNPREDICTABLE;
if !HaveFP16Ext() then UNDEFINED;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
d = UInt(Vd:D); m = UInt(Vm:M);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
S[d] = Zeros(16) : S[m]<31:16>;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

VMOVX Page 1012

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMOVX Page 1013

VMRS

Move SIMD&FP Special register to general-purpose register moves the value of an Advanced SIMD and floating-point
System register to a general-purpose register. When the specified System register is the FPSCR, a form of the
instruction transfers the FPSCR.{N, Z, C, V} condition flags to the APSR.{N, Z, C, V} condition flags.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
When these settings permit the execution of Advanced SIMD and floating-point instructions, if the specified floating-
point System register is not the FPSCR, the instruction is UNDEFINED if executed in User mode.
In an implementation that includes EL2, when HCR.TID0 is set to 1, any VMRS access to FPSID from a Non-secure EL1
mode that would be permitted if HCR.TID0 was set to 0 generates a Hyp Trap exception. For more information, see ID
group 0, Primary device identification registers.
For simplicity, the VMRS pseudocode does not show the possible trap to Hyp mode.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 1 1 1 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)
cond

A1

VMRS{<c>}{<q>} <Rt>, <spec_reg>

t = UInt(Rt);
if !(reg IN {'000x', '0101', '011x', '1000'}) then UNPREDICTABLE;
if t == 15 && reg != '0001' then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If !(reg IN {'000x', '0101', '011x', '1000'}), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction transfers an UNKNOWN value to the specified target register. When the Rt field holds the value

0b1111, the specified target register is the APSR.{N, Z, C, V} bits, and these bits become UNKNOWN.
Otherwise, the specified target register is the register specified by the Rt field, R0 - R14.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1 1 1 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

T1

VMRS{<c>}{<q>} <Rt>, <spec_reg>

t = UInt(Rt);
if !(reg IN {'000x', '0101', '011x', '1000'}) then UNPREDICTABLE;
if t == 15 && reg != '0001' then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If !(reg IN {'000x', '0101', '011x', '1000'}), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

VMRS Page 1014

• The instruction transfers an UNKNOWN value to the specified target register. When the Rt field holds the value
0b1111, the specified target register is the APSR.{N, Z, C, V} bits, and these bits become UNKNOWN.
Otherwise, the specified target register is the register specified by the Rt field, R0 - R14.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose destination register, encoded in the "Rt" field. Is one of:
R0-R14

General-purpose register.

APSR_nzcv
Permitted only when <spec_reg> is FPSCR. Encoded as 0b1111. The instruction transfers the
FPSCR.{N, Z, C, V} condition flags to the APSR.{N, Z, C, V} condition flags.

<spec_reg> Is the source Advanced SIMD and floating-point System register, encoded in “reg”:

reg <spec_reg>
0000 FPSID
0001 FPSCR
001x UNPREDICTABLE
0100 UNPREDICTABLE
0101 MVFR2
0110 MVFR1
0111 MVFR0
1000 FPEXC
1001 UNPREDICTABLE
101x UNPREDICTABLE
11xx UNPREDICTABLE

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if reg == '0001' then // FPSCR

CheckVFPEnabled(TRUE);
if t == 15 then

PSTATE.<N,Z,C,V> = FPSR.<N,Z,C,V>;
else

R[t] = FPSCR;
elsif PSTATE.EL == EL0 then

UNDEFINED; // Non-FPSCR registers accessible only at PL1 or above
else

CheckVFPEnabled(FALSE); // Non-FPSCR registers are not affected by FPEXC.EN
AArch32.CheckAdvSIMDOrFPRegisterTraps(reg);
case reg of

when '0000' R[t] = FPSID;
when '0101' R[t] = MVFR2;
when '0110' R[t] = MVFR1;
when '0111' R[t] = MVFR0;
when '1000' R[t] = FPEXC;
otherwise Unreachable(); // Dealt with above or in encoding-specific pseudocode

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMRS Page 1015

VMSR

Move general-purpose register to SIMD&FP Special register moves the value of a general-purpose register to a
floating-point System register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
When these settings permit the execution of Advanced SIMD and floating-point instructions:

• If the specified floating-point System register is FPSID or FPEXC, the instruction is UNDEFINED if executed in
User mode.

• If the specified floating-point System register is the FPSID and the instruction is executed in a mode other
than User mode, the instruction is ignored.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 1 1 0 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)
cond

A1

VMSR{<c>}{<q>} <spec_reg>, <Rt>

t = UInt(Rt);
if !(reg IN {'000x'}) && reg != '1000' then

Constraint c = ConstrainUnpredictable(Unpredictable_VMSR);
assert c IN {Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNDEF
UNDEFINED;

when Constraint_NOP
EndOfInstruction();

if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If reg != '000x' && reg != '1000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction transfers the value in the general-purpose register to one of the allocated registers accessible

using VMSR at the same Exception level.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1 1 0 reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

VMSR Page 1016

T1

VMSR{<c>}{<q>} <spec_reg>, <Rt>

t = UInt(Rt);
if !(reg IN {'000x'}) && reg != '1000' then

Constraint c = ConstrainUnpredictable(Unpredictable_VMSR);
assert c IN {Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNDEF
UNDEFINED;

when Constraint_NOP
EndOfInstruction();

if t == 15 then UNPREDICTABLE; // Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If reg != '000x' && reg != '1000', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction transfers the value in the general-purpose register to one of the allocated registers accessible

using VMSR at the same Exception level.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<spec_reg> Is the destination Advanced SIMD and floating-point System register, encoded in “reg”:

reg <spec_reg>
0000 FPSID
0001 FPSCR
001x UNPREDICTABLE
01xx UNPREDICTABLE
1000 FPEXC
1001 UNPREDICTABLE
101x UNPREDICTABLE
11xx UNPREDICTABLE

<Rt> Is the general-purpose source register, encoded in the "Rt" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if reg == '0001' then // FPSCR

CheckVFPEnabled(TRUE);
FPSCR = R[t];

elsif PSTATE.EL == EL0 then
UNDEFINED; // Non-FPSCR registers accessible only at PL1 or above

else
CheckVFPEnabled(FALSE); // Non-FPSCR registers are not affected by FPEXC.EN
case reg of

when '0000' // VMSR access to FPSID is ignored
when '1000'

FPEXC = R[t];
otherwise

Unreachable(); // Dealt with above or in encoding-specific pseudocode

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

VMSR Page 1017

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMSR Page 1018

VMUL (by scalar)

Vector Multiply multiplies each element in a vector by a scalar, and places the results in a second vector.
For more information about scalars see Advanced SIMD scalars.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 Q 1 D != 11 Vn Vd 1 0 0 F N 1 M 0 Vm
size

64-bit SIMD vector (Q == 0)

VMUL{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>[<index>]

128-bit SIMD vector (Q == 1)

VMUL{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>[<index>]

if size == '11' then SEE "Related encodings";
if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
floating_point = (F == '1'); long_destination = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 Q 1 1 1 1 1 D != 11 Vn Vd 1 0 0 F N 1 M 0 Vm
size

VMUL (by scalar) Page 1019

64-bit SIMD vector (Q == 0)

VMUL{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>[<index>]

128-bit SIMD vector (Q == 1)

VMUL{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>[<index>]

if size == '11' then SEE "Related encodings";
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if size == '00' || (F == '1' && size == '01' && !HaveFP16Ext()) then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
floating_point = (F == '1'); long_destination = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in “F:size”:

F size <dt>
0 01 I16
0 10 I32
1 01 F16
1 10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register. When <dt> is I16 or F16, this is encoded in
the "Vm<2:0>" field. Otherwise it is encoded in the "Vm" field.

<index> Is the element index. When <dt> is I16 or F16, this is in the range 0 to 3 and is encoded in the
"M:Vm<3>" field. Otherwise it is in the range 0 to 1 and is encoded in the "M" field.

VMUL (by scalar) Page 1020

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
if floating_point then

Elem[D[d+r],e,esize] = FPMul(op1, op2, StandardFPSCRValue());
else

if long_destination then
Elem[Q[d>>1],e,2*esize] = (op1val*op2val)<2*esize-1:0>;

else
Elem[D[d+r],e,esize] = (op1val*op2val)<esize-1:0>;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMUL (by scalar) Page 1021

VMUL (floating-point)

Vector Multiply multiplies corresponding elements in two vectors, and places the results in the destination vector.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
advsimd = TRUE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm
cond

VMUL (floating-point) Page 1022

Half-precision scalar (size == 01)
(FEAT_FP16)

VMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar (size == 10)

VMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar (size == 11)

VMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
advsimd = FALSE;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if sz == '1' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
advsimd = TRUE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

VMUL (floating-point) Page 1023

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 0 M 0 Vm

Half-precision scalar (size == 01)
(FEAT_FP16)

VMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar (size == 10)

VMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar (size == 11)

VMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

if size == '01' && InITBlock() then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
advsimd = FALSE;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

VMUL (floating-point) Page 1024

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if advsimd then // Advanced SIMD instruction

for r = 0 to regs-1
for e = 0 to elements-1

Elem[D[d+r],e,esize] = FPMul(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize],
StandardFPSCRValue());

else // VFP instruction
case esize of

when 16
S[d] = Zeros(16) : FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[]);

when 32
S[d] = FPMul(S[n], S[m], FPSCR[]);

when 64
D[d] = FPMul(D[n], D[m], FPSCR[]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMUL (floating-point) Page 1025

VMUL (integer and polynomial)

Vector Multiply multiplies corresponding elements in two vectors.
For information about multiplying polynomials, see Polynomial arithmetic over {0, 1}.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 op 0 D size Vn Vd 1 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if size == '11' || (op == '1' && size != '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
polynomial = (op == '1'); long_destination = FALSE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 op 1 1 1 1 0 D size Vn Vd 1 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VMUL{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VMUL{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if size == '11' || (op == '1' && size != '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = FALSE; // "Don't care" value: TRUE produces same functionality
polynomial = (op == '1'); long_destination = FALSE;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “op:size”:

VMUL (integer and
polynomial) Page 1026

op size <dt>
0 00 I8
0 01 I16
0 10 I32
1 00 P8

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
op2 = Elem[Din[m+r],e,esize]; op2val = Int(op2, unsigned);
bits(2 * esize) product;
if polynomial then

product = PolynomialMult(op1,op2);
else

product = (op1val*op2val)<2*esize-1:0>;
if long_destination then

Elem[Q[d>>1],e,2*esize] = product;
else

Elem[D[d+r],e,esize] = product<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMUL (integer and
polynomial) Page 1027

VMULL (by scalar)

Vector Multiply Long multiplies each element in a vector by a scalar, and places the results in a second vector. The
destination vector elements are twice as long as the elements that are multiplied.
For more information about scalars see Advanced SIMD scalars.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 11 Vn Vd 1 0 1 0 N 1 M 0 Vm
size

A1

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); long_destination = TRUE; floating_point = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
integer esize;
integer elements;
integer index;
integer m;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 11 Vn Vd 1 0 1 0 N 1 M 0 Vm
size

T1

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
unsigned = (U == '1'); long_destination = TRUE; floating_point = FALSE;
d = UInt(D:Vd); n = UInt(N:Vn); regs = 1;
integer esize;
integer elements;
integer index;
integer m;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VMULL (by scalar) Page 1028

<dt> Is the data type for the scalar and the elements of the operand vector, encoded in “U:size”:

U size <dt>
0 01 S16
0 10 S32
1 01 U16
1 10 U32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm<2:0>" field when <dt>
is S16 or U16, otherwise the "Vm" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field when <dt> is S16 or U16,
otherwise in range 0 to 1, encoded in the "M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
op2 = Elem[Din[m],index,esize]; op2val = Int(op2, unsigned);
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
if floating_point then

Elem[D[d+r],e,esize] = FPMul(op1, op2, StandardFPSCRValue());
else

if long_destination then
Elem[Q[d>>1],e,2*esize] = (op1val*op2val)<2*esize-1:0>;

else
Elem[D[d+r],e,esize] = (op1val*op2val)<esize-1:0>;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMULL (by scalar) Page 1029

VMULL (integer and polynomial)

Vector Multiply Long multiplies corresponding elements in two vectors. The destination vector elements are twice as
long as the elements that are multiplied.
For information about multiplying polynomials see Polynomial arithmetic over {0, 1}.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 11 Vn Vd 1 1 op 0 N 0 M 0 Vm
size

A1

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
unsigned = (U == '1'); polynomial = (op == '1'); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
if polynomial then

if U == '1' || size == '01' then UNDEFINED;
if size == '10' then // .p64

if !HaveBit128PMULLExt() then UNDEFINED;
esize = 64; elements = 1;

if Vd<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 11 Vn Vd 1 1 op 0 N 0 M 0 Vm
size

T1

VMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
unsigned = (U == '1'); polynomial = (op == '1'); long_destination = TRUE;
esize = 8 << UInt(size); elements = 64 DIV esize;
if polynomial then

if U == '1' || size == '01' then UNDEFINED;
if size == '10' then // .p64

if InITBlock() then UNPREDICTABLE;
if !HaveBit128PMULLExt() then UNDEFINED;
esize = 64; elements = 1;

if Vd<0> == '1' then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = 1;

CONSTRAINED UNPREDICTABLE behavior

If op == '1' && size == '10' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

VMULL (integer and
polynomial) Page 1030

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “op:U:size”:

op U size <dt>
0 0 00 S8
0 0 01 S16
0 0 10 S32
0 1 00 U8
0 1 01 U16
0 1 10 U32
1 0 00 P8
1 0 10 P64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[Din[n+r],e,esize]; op1val = Int(op1, unsigned);
op2 = Elem[Din[m+r],e,esize]; op2val = Int(op2, unsigned);
bits(2 * esize) product;
if polynomial then

product = PolynomialMult(op1,op2);
else

product = (op1val*op2val)<2*esize-1:0>;
if long_destination then

Elem[Q[d>>1],e,2*esize] = product;
else

Elem[D[d+r],e,esize] = product<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMULL (integer and
polynomial) Page 1031

VMVN (immediate)

Vector Bitwise NOT (immediate) places the bitwise inverse of an immediate integer constant into every element of the
destination register.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 , A2 and A3) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 0 0 Q 1 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VMVN{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 0 0 Q 1 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VMVN{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMVN{<c>}{<q>}.I16 <Qd>, #<imm>

if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 1 0 x 0 Q 1 1 imm4
cmode

VMVN (immediate) Page 1032

64-bit SIMD vector (Q == 0)

VMVN{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 0 0 Q 1 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VMVN{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 0 0 Q 1 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VMVN{<c>}{<q>}.I16 <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMVN{<c>}{<q>}.I16 <Qd>, #<imm>

if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 1 0 x 0 Q 1 1 imm4
cmode

VMVN (immediate) Page 1033

64-bit SIMD vector (Q == 0)

VMVN{<c>}{<q>}.I32 <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VMVN{<c>}{<q>}.I32 <Qd>, #<imm>

if (cmode<0> == '1' && cmode<3:2> != '11') || cmode<3:1> == '111' then SEE "Related encodings";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('1', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32 and
A32 Advanced SIMD instructions.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

D[d+r] = NOT(imm64);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMVN (immediate) Page 1034

VMVN (register)

Vector Bitwise NOT (register) takes a value from a register, inverts the value of each bit, and places the result in the
destination register. The registers can be either doubleword or quadword.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VMVN{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VMVN{<c>}{<q>}{.<dt>} <Qd>, <Qm>

if size != '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 0 1 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VMVN{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VMVN{<c>}{<q>}{.<dt>} <Qd>, <Qm>

if size != '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

VMVN (register) Page 1035

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

D[d+r] = NOT(D[m+r]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VMVN (register) Page 1036

VNEG

Vector Negate negates each element in a vector, and places the results in a second vector. The floating-point version
only inverts the sign bit.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
advsimd = TRUE; floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 0 1 M 0 Vm
cond

Half-precision scalar (size == 01)
(FEAT_FP16)

VNEG{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VNEG{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VNEG{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
advsimd = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

VNEG Page 1037

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 1 Vd 0 F 1 1 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if F == '1' && ((size == '01' && !HaveFP16Ext()) || size == '00') then UNDEFINED;
if F == '1' && size == '01' && InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
advsimd = TRUE; floating_point = (F == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If F == '1' && size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 0 1 M 0 Vm

VNEG Page 1038

Half-precision scalar (size == 01)
(FEAT_FP16)

VNEG{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VNEG{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VNEG{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
advsimd = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

boolean floating_point = boolean UNKNOWN;
integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “F:size”:

F size <dt>
0 00 S8
0 01 S16
0 10 S32
1 01 F16
1 10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

VNEG Page 1039

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if advsimd then // Advanced SIMD instruction

for r = 0 to regs-1
for e = 0 to elements-1

if floating_point then
Elem[D[d+r],e,esize] = FPNeg(Elem[D[m+r],e,esize]);

else
result = -SInt(Elem[D[m+r],e,esize]);
Elem[D[d+r],e,esize] = result<esize-1:0>;

else // VFP instruction
case esize of

when 16 S[d] = Zeros(16) : FPNeg(S[m]<15:0>);
when 32 S[d] = FPNeg(S[m]);
when 64 D[d] = FPNeg(D[m]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check and is operating only on integer vector
elements, then the following apply:

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VNEG Page 1040

VNMLA

Vector Negate Multiply Accumulate multiplies together two floating-point register values, adds the negation of the
floating-point value in the destination register to the negation of the product, and writes the result back to the
destination register.

Note

Arm recommends that software does not use the VNMLA instruction in the Round towards Plus Infinity and Round
towards Minus Infinity rounding modes, because the rounding of the product and of the sum can change the result
of the instruction in opposite directions, defeating the purpose of these rounding modes.

Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N 1 M 0 Vm
cond op

Half-precision scalar (size == 01)
(FEAT_FP16)

VNMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VNMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VNMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

VNMLA Page 1041

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N 1 M 0 Vm
op

Half-precision scalar (size == 01)
(FEAT_FP16)

VNMLA{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VNMLA{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VNMLA{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VNMLA Page 1042

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
product16 = FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
case vtype of

when VFPNegMul_VNMLA S[d] = (Zeros(16) : FPAdd(FPNeg(S[d]<15:0>),
FPNeg(product16), FPSCR[]));

when VFPNegMul_VNMLS S[d] = (Zeros(16) : FPAdd(FPNeg(S[d]<15:0>),
product16, FPSCR[]));

when VFPNegMul_VNMUL S[d] = Zeros(16) : FPNeg(product16);
when 32

product32 = FPMul(S[n], S[m], FPSCR[]);
case vtype of

when VFPNegMul_VNMLA S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), FPSCR[]);
when VFPNegMul_VNMLS S[d] = FPAdd(FPNeg(S[d]), product32, FPSCR[]);
when VFPNegMul_VNMUL S[d] = FPNeg(product32);

when 64
product64 = FPMul(D[n], D[m], FPSCR[]);
case vtype of

when VFPNegMul_VNMLA D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), FPSCR[]);
when VFPNegMul_VNMLS D[d] = FPAdd(FPNeg(D[d]), product64, FPSCR[]);
when VFPNegMul_VNMUL D[d] = FPNeg(product64);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VNMLA Page 1043

VNMLS

Vector Negate Multiply Subtract multiplies together two floating-point register values, adds the negation of the
floating-point value in the destination register to the product, and writes the result back to the destination register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N 0 M 0 Vm
cond op

Half-precision scalar (size == 01)
(FEAT_FP16)

VNMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VNMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VNMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 0 1 Vn Vd 1 0 size N 0 M 0 Vm
op

VNMLS Page 1044

Half-precision scalar (size == 01)
(FEAT_FP16)

VNMLS{<c>}{<q>}.F16 <Sd>, <Sn>, <Sm>

Single-precision scalar (size == 10)

VNMLS{<c>}{<q>}.F32 <Sd>, <Sn>, <Sm>

Double-precision scalar (size == 11)

VNMLS{<c>}{<q>}.F64 <Dd>, <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
vtype = if op == '1' then VFPNegMul_VNMLA else VFPNegMul_VNMLS;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VNMLS Page 1045

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
product16 = FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
case vtype of

when VFPNegMul_VNMLA S[d] = (Zeros(16) : FPAdd(FPNeg(S[d]<15:0>),
FPNeg(product16), FPSCR[]));

when VFPNegMul_VNMLS S[d] = (Zeros(16) : FPAdd(FPNeg(S[d]<15:0>),
product16, FPSCR[]));

when VFPNegMul_VNMUL S[d] = Zeros(16) : FPNeg(product16);
when 32

product32 = FPMul(S[n], S[m], FPSCR[]);
case vtype of

when VFPNegMul_VNMLA S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), FPSCR[]);
when VFPNegMul_VNMLS S[d] = FPAdd(FPNeg(S[d]), product32, FPSCR[]);
when VFPNegMul_VNMUL S[d] = FPNeg(product32);

when 64
product64 = FPMul(D[n], D[m], FPSCR[]);
case vtype of

when VFPNegMul_VNMLA D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), FPSCR[]);
when VFPNegMul_VNMLS D[d] = FPAdd(FPNeg(D[d]), product64, FPSCR[]);
when VFPNegMul_VNMUL D[d] = FPNeg(product64);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VNMLS Page 1046

VNMUL

Vector Negate Multiply multiplies together two floating-point register values, and writes the negation of the result to
the destination register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm
cond

Half-precision scalar (size == 01)
(FEAT_FP16)

VNMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar (size == 10)

VNMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar (size == 11)

VNMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '01' && !HaveFP16Ext() then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
vtype = VFPNegMul_VNMUL;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 0 Vn Vd 1 0 size N 1 M 0 Vm

VNMUL Page 1047

Half-precision scalar (size == 01)
(FEAT_FP16)

VNMUL{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar (size == 10)

VNMUL{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar (size == 11)

VNMUL{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '01' && !HaveFP16Ext() then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
vtype = VFPNegMul_VNMUL;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VNMUL Page 1048

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
product16 = FPMul(S[n]<15:0>, S[m]<15:0>, FPSCR[]);
case vtype of

when VFPNegMul_VNMLA S[d] = (Zeros(16) : FPAdd(FPNeg(S[d]<15:0>),
FPNeg(product16), FPSCR[]));

when VFPNegMul_VNMLS S[d] = (Zeros(16) : FPAdd(FPNeg(S[d]<15:0>),
product16, FPSCR[]));

when VFPNegMul_VNMUL S[d] = Zeros(16) : FPNeg(product16);
when 32

product32 = FPMul(S[n], S[m], FPSCR[]);
case vtype of

when VFPNegMul_VNMLA S[d] = FPAdd(FPNeg(S[d]), FPNeg(product32), FPSCR[]);
when VFPNegMul_VNMLS S[d] = FPAdd(FPNeg(S[d]), product32, FPSCR[]);
when VFPNegMul_VNMUL S[d] = FPNeg(product32);

when 64
product64 = FPMul(D[n], D[m], FPSCR[]);
case vtype of

when VFPNegMul_VNMLA D[d] = FPAdd(FPNeg(D[d]), FPNeg(product64), FPSCR[]);
when VFPNegMul_VNMLS D[d] = FPAdd(FPNeg(D[d]), product64, FPSCR[]);
when VFPNegMul_VNMUL D[d] = FPNeg(product64);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VNMUL Page 1049

VORN (immediate)

Vector Bitwise OR NOT (immediate) performs a bitwise OR between a register value and the complement of an
immediate value, and returns the result into the destination vector.

This is a pseudo-instruction of VORR (immediate). This means:

• The encodings in this description are named to match the encodings of VORR (immediate).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VORR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 0 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VORN{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

is equivalent to

VORR{<c>}{<q>}.I16 <Dd>, #~<imm>

128-bit SIMD vector (Q == 1)

VORN{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

is equivalent to

VORR{<c>}{<q>}.I16 <Qd>, #~<imm>

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 0 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VORN{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

is equivalent to

VORR{<c>}{<q>}.I32 <Dd>, #~<imm>

128-bit SIMD vector (Q == 1)

VORN{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

is equivalent to

VORR{<c>}{<q>}.I32 <Qd>, #~<imm>

T1

VORN (immediate) Page 1050

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 0 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VORN{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

is equivalent to

VORR{<c>}{<q>}.I16 <Dd>, #~<imm>

128-bit SIMD vector (Q == 1)

VORN{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

is equivalent to

VORR{<c>}{<q>}.I16 <Qd>, #~<imm>

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 0 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VORN{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

is equivalent to

VORR{<c>}{<q>}.I32 <Dd>, #~<imm>

128-bit SIMD vector (Q == 1)

VORN{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

is equivalent to

VORR{<c>}{<q>}.I32 <Qd>, #~<imm>

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32 and
A32 Advanced SIMD instructions.

Operation

The description of VORR (immediate) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VORN (immediate) Page 1051

VORN (register)

Vector bitwise OR NOT (register) performs a bitwise OR NOT operation between two registers, and places the result
in the destination register. The operand and result registers can be quadword or doubleword. They must all be the
same size.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VORN{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VORN{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 1 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VORN{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VORN{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VORN (register) Page 1052

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

D[d+r] = D[n+r] OR NOT(D[m+r]);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VORN (register) Page 1053

VORR (immediate)

Vector Bitwise OR (immediate) performs a bitwise OR between a register value and an immediate value, and returns
the result into the destination vector.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
This instruction is used by the pseudo-instruction VORN (immediate).
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 0 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VORR{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VORR{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 0 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VORR{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VORR{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 0 x x 1 0 Q 0 1 imm4
cmode

VORR (immediate) Page 1054

64-bit SIMD vector (Q == 0)

VORR{<c>}{<q>}.I32 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VORR{<c>}{<q>}.I32 {<Qd>,} <Qd>, #<imm>

if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd 1 0 x 1 0 Q 0 1 imm4
cmode

64-bit SIMD vector (Q == 0)

VORR{<c>}{<q>}.I16 {<Dd>,} <Dd>, #<imm>

128-bit SIMD vector (Q == 1)

VORR{<c>}{<q>}.I16 {<Qd>,} <Qd>, #<imm>

if cmode<0> == '0' || cmode<3:2> == '11' then SEE "VMOV (immediate)";
if Q == '1' && Vd<0> == '1' then UNDEFINED;
imm64 = AdvSIMDExpandImm('0', cmode, i:imm3:imm4);
d = UInt(D:Vd); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<imm> Is a constant of the specified type that is replicated to fill the destination register. For details of the
range of constants available and the encoding of <imm>, see Modified immediate constants in T32 and
A32 Advanced SIMD instructions.

The I8, I64, and F32 data types are permitted as pseudo-instructions, if the immediate can be represented by this
instruction, and are encoded using a permitted encoding of the I16 or I32 data type.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

D[d+r] = D[d+r] OR imm64;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.

VORR (immediate) Page 1055

◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VORR (immediate) Page 1056

VORR (register)

Vector bitwise OR (register) performs a bitwise OR operation between two registers, and places the result in the
destination register. The operand and result registers can be quadword or doubleword. They must all be the same size.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
This instruction is used by the alias VMOV (register, SIMD).
This instruction is used by the pseudo-instructions VRSHR (zero), and VSHR (zero).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VORR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VORR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VORR{<c>}{<q>}{.<dt>} {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VORR{<c>}{<q>}{.<dt>} {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VORR (register) Page 1057

Alias Conditions

Alias Is preferred when
VMOV (register, SIMD) N:Vn == M:Vm

VRSHR (zero) Never

VSHR (zero) Never

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

D[d+r] = D[n+r] OR D[m+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VORR (register) Page 1058

VPADAL

Vector Pairwise Add and Accumulate Long adds adjacent pairs of elements of a vector, and accumulates the results
into the elements of the destination vector.
The vectors can be doubleword or quadword. The operand elements can be 8-bit, 16-bit, or 32-bit integers. The result
elements are twice the length of the operand elements.
The following figure shows an example of the operation of VPADAL doubleword operation for data type S16.
Dm

Dd

+ +

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 1 0 op Q M 0 Vm

64-bit SIMD vector (Q == 0)

VPADAL{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VPADAL{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (op == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 1 0 op Q M 0 Vm

64-bit SIMD vector (Q == 0)

VPADAL{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VPADAL{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (op == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VPADAL Page 1059

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “op:size”:

op size <dt>
0 00 S8
0 01 S16
0 10 S32
0 11 RESERVED
1 00 U8
1 01 U16
1 10 U32
1 11 RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
h = elements DIV 2;

for r = 0 to regs-1
for e = 0 to h-1

op1 = Elem[D[m+r],2*e,esize]; op2 = Elem[D[m+r],2*e+1,esize];
result = Int(op1, unsigned) + Int(op2, unsigned);
Elem[D[d+r],e,2*esize] = Elem[D[d+r],e,2*esize] + result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPADAL Page 1060

VPADD (floating-point)

Vector Pairwise Add (floating-point) adds adjacent pairs of elements of two vectors, and places the results in the
destination vector.
The operands and result are doubleword vectors.
The operand and result elements are floating-point numbers.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm

A1

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

if Q == '1' then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 0 Vm

T1

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

if Q == '1' then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

VPADD (floating-point) Page 1061

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(64) dest;
h = elements DIV 2;

for e = 0 to h-1
Elem[dest,e,esize] = FPAdd(Elem[D[n],2*e,esize], Elem[D[n],2*e+1,esize],

StandardFPSCRValue());
Elem[dest,e+h,esize] = FPAdd(Elem[D[m],2*e,esize], Elem[D[m],2*e+1,esize],

StandardFPSCRValue());

D[d] = dest;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPADD (floating-point) Page 1062

VPADD (integer)

Vector Pairwise Add (integer) adds adjacent pairs of elements of two vectors, and places the results in the destination
vector.
The operands and result are doubleword vectors.
The operand and result elements must all be the same type, and can be 8-bit, 16-bit, or 32-bit integers. There is no
distinction between signed and unsigned integers.
The following figure shows an example of the operation of VPADD doubleword operation for data type I16.
Dm

Dd

+ +

Dn

+ +

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm

A1

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

if size == '11' || Q == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm

T1

VPADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

if size == '11' || Q == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “size”:

size <dt>
00 I8
01 I16
10 I32

VPADD (integer) Page 1063

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(64) dest;
h = elements DIV 2;

for e = 0 to h-1
Elem[dest,e,esize] = Elem[D[n],2*e,esize] + Elem[D[n],2*e+1,esize];
Elem[dest,e+h,esize] = Elem[D[m],2*e,esize] + Elem[D[m],2*e+1,esize];

D[d] = dest;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPADD (integer) Page 1064

VPADDL

Vector Pairwise Add Long adds adjacent pairs of elements of two vectors, and places the results in the destination
vector.
The vectors can be doubleword or quadword. The operand elements can be 8-bit, 16-bit, or 32-bit integers. The result
elements are twice the length of the operand elements.
The following figure shows an example of the operation of VPADDL doubleword operation for data type S16.
Dm

Dd

+ +

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 1 0 op Q M 0 Vm

64-bit SIMD vector (Q == 0)

VPADDL{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VPADDL{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (op == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 1 0 op Q M 0 Vm

64-bit SIMD vector (Q == 0)

VPADDL{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VPADDL{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (op == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VPADDL Page 1065

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “op:size”:

op size <dt>
0 00 S8
0 01 S16
0 10 S32
0 11 RESERVED
1 00 U8
1 01 U16
1 10 U32
1 11 RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
h = elements DIV 2;

for r = 0 to regs-1
for e = 0 to h-1

op1 = Elem[D[m+r],2*e,esize]; op2 = Elem[D[m+r],2*e+1,esize];
result = Int(op1, unsigned) + Int(op2, unsigned);
Elem[D[d+r],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPADDL Page 1066

VPMAX (floating-point)

Vector Pairwise Maximum compares adjacent pairs of elements in two doubleword vectors, and copies the larger of
each pair into the corresponding element in the destination doubleword vector.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 1 1 N 0 M 0 Vm
op

A1

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 1 N 0 M 0 Vm
op

T1

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
maximum = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

VPMAX (floating-point) Page 1067

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(64) dest;
h = elements DIV 2;

for e = 0 to h-1
op1 = Elem[D[n],2*e,esize]; op2 = Elem[D[n],2*e+1,esize];
Elem[dest,e,esize] = (if maximum then FPMax(op1,op2,StandardFPSCRValue())

else FPMin(op1,op2,StandardFPSCRValue()));
op1 = Elem[D[m],2*e,esize]; op2 = Elem[D[m],2*e+1,esize];
Elem[dest,e+h,esize] = (if maximum then FPMax(op1,op2,StandardFPSCRValue())

else FPMin(op1,op2,StandardFPSCRValue()));

D[d] = dest;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPMAX (floating-point) Page 1068

VPMAX (integer)

Vector Pairwise Maximum compares adjacent pairs of elements in two doubleword vectors, and copies the larger of
each pair into the corresponding element in the destination doubleword vector.
The following figure shows an example of the operation of VPMAX doubleword operation for data type S16 or U16.
Dm

Dd

max max

Dn

max max

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 1 0 1 0 N 0 M 0 Vm
op

A1

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

if size == '11' then UNDEFINED;
maximum = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 1 0 1 0 N 0 M 0 Vm
op

T1

VPMAX{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

if size == '11' then UNDEFINED;
maximum = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “U:size”:

VPMAX (integer) Page 1069

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(64) dest;
h = elements DIV 2;

for e = 0 to h-1
op1 = Int(Elem[D[n],2*e,esize], unsigned);
op2 = Int(Elem[D[n],2*e+1,esize], unsigned);
result = if maximum then Max(op1,op2) else Min(op1,op2);
Elem[dest,e,esize] = result<esize-1:0>;
op1 = Int(Elem[D[m],2*e,esize], unsigned);
op2 = Int(Elem[D[m],2*e+1,esize], unsigned);
result = if maximum then Max(op1,op2) else Min(op1,op2);
Elem[dest,e+h,esize] = result<esize-1:0>;

D[d] = dest;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPMAX (integer) Page 1070

VPMIN (floating-point)

Vector Pairwise Minimum compares adjacent pairs of elements in two doubleword vectors, and copies the smaller of
each pair into the corresponding element in the destination doubleword vector.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D 1 sz Vn Vd 1 1 1 1 N 0 M 0 Vm
op

A1

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

if sz == '1' && !HaveFP16Ext() then UNDEFINED;
maximum = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 1 N 0 M 0 Vm
op

T1

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
maximum = (op == '0');
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

VPMIN (floating-point) Page 1071

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(64) dest;
h = elements DIV 2;

for e = 0 to h-1
op1 = Elem[D[n],2*e,esize]; op2 = Elem[D[n],2*e+1,esize];
Elem[dest,e,esize] = (if maximum then FPMax(op1,op2,StandardFPSCRValue())

else FPMin(op1,op2,StandardFPSCRValue()));
op1 = Elem[D[m],2*e,esize]; op2 = Elem[D[m],2*e+1,esize];
Elem[dest,e+h,esize] = (if maximum then FPMax(op1,op2,StandardFPSCRValue())

else FPMin(op1,op2,StandardFPSCRValue()));

D[d] = dest;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPMIN (floating-point) Page 1072

VPMIN (integer)

Vector Pairwise Minimum compares adjacent pairs of elements in two doubleword vectors, and copies the smaller of
each pair into the corresponding element in the destination doubleword vector.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 1 0 1 0 N 0 M 1 Vm
op

A1

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

if size == '11' then UNDEFINED;
maximum = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 1 0 1 0 N 0 M 1 Vm
op

T1

VPMIN{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

if size == '11' then UNDEFINED;
maximum = (op == '0'); unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VPMIN (integer) Page 1073

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(64) dest;
h = elements DIV 2;

for e = 0 to h-1
op1 = Int(Elem[D[n],2*e,esize], unsigned);
op2 = Int(Elem[D[n],2*e+1,esize], unsigned);
result = if maximum then Max(op1,op2) else Min(op1,op2);
Elem[dest,e,esize] = result<esize-1:0>;
op1 = Int(Elem[D[m],2*e,esize], unsigned);
op2 = Int(Elem[D[m],2*e+1,esize], unsigned);
result = if maximum then Max(op1,op2) else Min(op1,op2);
Elem[dest,e+h,esize] = result<esize-1:0>;

D[d] = dest;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPMIN (integer) Page 1074

VPOP

Pop SIMD&FP registers from stack loads multiple consecutive Advanced SIMD and floating-point register file registers
from the stack.

This is an alias of VLDM, VLDMDB, VLDMIA. This means:

• The encodings in this description are named to match the encodings of VLDM, VLDMDB, VLDMIA.
• The description of VLDM, VLDMDB, VLDMIA gives the operational pseudocode, any CONSTRAINED

UNPREDICTABLE behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0
cond P U W Rn imm8<0>

Increment After

VPOP{<c>}{<q>}{.<size>} <dreglist>

is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 0 imm8
cond P U W Rn

Increment After

VPOP{<c>}{<q>}{.<size>} <sreglist>

is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0
P U W Rn imm8<0>

Increment After

VPOP{<c>}{<q>}{.<size>} <dreglist>

is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

VPOP Page 1075

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 1 D 1 1 1 1 0 1 Vd 1 0 1 0 imm8
P U W Rn

Increment After

VPOP{<c>}{<q>}{.<size>} <sreglist>

is equivalent to

VLDM{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register in
the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must
contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register in
the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The list must
contain at least one register, and must not contain more than 16 registers.

Operation

The description of VLDM, VLDMDB, VLDMIA gives the operational pseudocode for this instruction.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPOP Page 1076

VPUSH

Push SIMD&FP registers to stack stores multiple consecutive registers from the Advanced SIMD and floating-point
register file to the stack.

This is an alias of VSTM, VSTMDB, VSTMIA. This means:

• The encodings in this description are named to match the encodings of VSTM, VSTMDB, VSTMIA.
• The description of VSTM, VSTMDB, VSTMIA gives the operational pseudocode, any CONSTRAINED

UNPREDICTABLE behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0
cond P U W Rn imm8<0>

Decrement Before

VPUSH{<c>}{<q>}{.<size>} <dreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 0 imm8
cond P U W Rn

Decrement Before

VPUSH{<c>}{<q>}{.<size>} <sreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 1 imm8<7:1> 0
P U W Rn imm8<0>

Decrement Before

VPUSH{<c>}{<q>}{.<size>} <dreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <dreglist>

and is always the preferred disassembly.

VPUSH Page 1077

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 0 D 1 0 1 1 0 1 Vd 1 0 1 0 imm8
P U W Rn

Decrement Before

VPUSH{<c>}{<q>}{.<size>} <sreglist>

is equivalent to

VSTMDB{<c>}{<q>}{.<size>} SP!, <sreglist>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register in
the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must
contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register in
the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The list must
contain at least one register, and must not contain more than 16 registers.

Operation

The description of VSTM, VSTMDB, VSTMIA gives the operational pseudocode for this instruction.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VPUSH Page 1078

VQABS

Vector Saturating Absolute takes the absolute value of each element in a vector, and places the results in the
destination vector.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VQABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VQABS{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VQABS{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VQABS{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “size”:

VQABS Page 1079

size <dt>
00 S8
01 S16
10 S32
11 RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
result = Abs(SInt(Elem[D[m+r],e,esize]));
boolean sat;
(Elem[D[d+r],e,esize], sat) = SignedSatQ(result, esize);
if sat then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQABS Page 1080

VQADD

Vector Saturating Add adds the values of corresponding elements of two vectors, and places the results in the
destination vector.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 0 0 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VQADD{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VQADD{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 0 0 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VQADD{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VQADD{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “U:size”:

VQADD Page 1081

U size <dt>
0 00 S8
0 01 S16
0 10 S32
0 11 S64
1 00 U8
1 01 U16
1 10 U32
1 11 U64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
sum = Int(Elem[D[n+r],e,esize], unsigned) + Int(Elem[D[m+r],e,esize], unsigned);
boolean sat;
(Elem[D[d+r],e,esize], sat) = SatQ(sum, esize, unsigned);
if sat then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQADD Page 1082

VQDMLAL

Vector Saturating Doubling Multiply Accumulate Long multiplies corresponding elements in two doubleword vectors,
doubles the products, and accumulates the results into the elements of a quadword vector.
The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D != 11 Vn Vd 1 0 0 1 N 0 M 0 Vm
size op

A1

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;
integer index = integer UNKNOWN;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D != 11 Vn Vd 0 0 1 1 N 1 M 0 Vm
size op

A2

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D != 11 Vn Vd 1 0 0 1 N 0 M 0 Vm
size op

VQDMLAL Page 1083

T1

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;
integer index = integer UNKNOWN;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D != 11 Vn Vd 0 0 1 1 N 1 M 0 Vm
size op

T2

VQDMLAL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

size <dt>
01 S16
10 S32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> For encoding A1 and T1: is the 64-bit name of the second SIMD&FP source register, encoded in the
"M:Vm" field.
For encoding A2 and T2: is the 64-bit name of the second SIMD&FP source register, encoded in the
"Vm<2:0>" field when <dt> is S16, otherwise the "Vm" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field when <dt> is S16, otherwise
in range 0 to 1, encoded in the "M" field.

VQDMLAL Page 1084

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
integer op2;
if scalar_form then op2 = SInt(Elem[Din[m],index,esize]);
for e = 0 to elements-1

if !scalar_form then op2 = SInt(Elem[Din[m],e,esize]);
op1 = SInt(Elem[Din[n],e,esize]);
// The following only saturates if both op1 and op2 equal -(2^(esize-1))
(product, sat1) = SignedSatQ(2*op1*op2, 2*esize);
integer result;
if add then

result = SInt(Elem[Qin[d>>1],e,2*esize]) + SInt(product);
else

result = SInt(Elem[Qin[d>>1],e,2*esize]) - SInt(product);
boolean sat2;
(Elem[Q[d>>1],e,2*esize], sat2) = SignedSatQ(result, 2*esize);
if sat1 || sat2 then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQDMLAL Page 1085

VQDMLSL

Vector Saturating Doubling Multiply Subtract Long multiplies corresponding elements in two doubleword vectors,
subtracts double the products from corresponding elements of a quadword vector, and places the results in the same
quadword vector.
The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D != 11 Vn Vd 1 0 1 1 N 0 M 0 Vm
size op

A1

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;
integer index = integer UNKNOWN;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D != 11 Vn Vd 0 1 1 1 N 1 M 0 Vm
size op

A2

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D != 11 Vn Vd 1 0 1 1 N 0 M 0 Vm
size op

VQDMLSL Page 1086

T1

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;
integer index = integer UNKNOWN;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D != 11 Vn Vd 0 1 1 1 N 1 M 0 Vm
size op

T2

VQDMLSL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>[<index>]

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
add = (op == '0');
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

size <dt>
01 S16
10 S32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> For encoding A1 and T1: is the 64-bit name of the second SIMD&FP source register, encoded in the
"M:Vm" field.
For encoding A2 and T2: is the 64-bit name of the second SIMD&FP source register, encoded in the
"Vm<2:0>" field when <dt> is S16, otherwise the "Vm" field.

<index> Is the element index in the range 0 to 3, encoded in the "M:Vm<3>" field when <dt> is S16, otherwise
in range 0 to 1, encoded in the "M" field.

VQDMLSL Page 1087

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
integer op2;
if scalar_form then op2 = SInt(Elem[Din[m],index,esize]);
for e = 0 to elements-1

if !scalar_form then op2 = SInt(Elem[Din[m],e,esize]);
op1 = SInt(Elem[Din[n],e,esize]);
// The following only saturates if both op1 and op2 equal -(2^(esize-1))
(product, sat1) = SignedSatQ(2*op1*op2, 2*esize);
integer result;
if add then

result = SInt(Elem[Qin[d>>1],e,2*esize]) + SInt(product);
else

result = SInt(Elem[Qin[d>>1],e,2*esize]) - SInt(product);
boolean sat2;
(Elem[Q[d>>1],e,2*esize], sat2) = SignedSatQ(result, 2*esize);
if sat1 || sat2 then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQDMLSL Page 1088

VQDMULH

Vector Saturating Doubling Multiply Returning High Half multiplies corresponding elements in two vectors, doubles
the results, and places the most significant half of the final results in the destination vector. The results are truncated,
for rounded results see VQRDMULH.
The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VQDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VQDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
integer index = integer UNKNOWN;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 Q 1 D != 11 Vn Vd 1 1 0 0 N 1 M 0 Vm
size

64-bit SIMD vector (Q == 0)

VQDMULH{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector (Q == 1)

VQDMULH{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

VQDMULH Page 1089

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VQDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VQDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
integer index = integer UNKNOWN;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 Q 1 1 1 1 1 D != 11 Vn Vd 1 1 0 0 N 1 M 0 Vm
size

64-bit SIMD vector (Q == 0)

VQDMULH{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector (Q == 1)

VQDMULH{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

size <dt>
01 S16
10 S32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

VQDMULH Page 1090

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32, Dm
is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
integer op2;
if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
for r = 0 to regs-1

for e = 0 to elements-1
if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
op1 = SInt(Elem[D[n+r],e,esize]);
// The following only saturates if both op1 and op2 equal -(2^(esize-1))
(result, sat) = SignedSatQ((2*op1*op2) >> esize, esize);
Elem[D[d+r],e,esize] = result;
if sat then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQDMULH Page 1091

VQDMULL

Vector Saturating Doubling Multiply Long multiplies corresponding elements in two doubleword vectors, doubles the
products, and places the results in a quadword vector.
The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D != 11 Vn Vd 1 1 0 1 N 0 M 0 Vm
size

A1

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;
integer index = integer UNKNOWN;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D != 11 Vn Vd 1 0 1 1 N 1 M 0 Vm
size

A2

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D != 11 Vn Vd 1 1 0 1 N 0 M 0 Vm
size

VQDMULL Page 1092

T1

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
scalar_form = FALSE; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
esize = 8 << UInt(size); elements = 64 DIV esize;
integer index = integer UNKNOWN;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D != 11 Vn Vd 1 0 1 1 N 1 M 0 Vm
size

T2

VQDMULL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' || Vd<0> == '1' then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn);
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

size <dt>
01 S16
10 S32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32, Dm
is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VQDMULL Page 1093

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
integer op2;
if scalar_form then op2 = SInt(Elem[Din[m],index,esize]);
for e = 0 to elements-1

if !scalar_form then op2 = SInt(Elem[Din[m],e,esize]);
op1 = SInt(Elem[Din[n],e,esize]);
// The following only saturates if both op1 and op2 equal -(2^(esize-1))
(product, sat) = SignedSatQ(2*op1*op2, 2*esize);
Elem[Q[d>>1],e,2*esize] = product;
if sat then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQDMULL Page 1094

VQMOVN, VQMOVUN

Vector Saturating Move and Narrow copies each element of the operand vector to the corresponding element of the
destination vector.
The operand is a quadword vector. The elements can be any one of:

• 16-bit, 32-bit, or 64-bit signed integers.
• 16-bit, 32-bit, or 64-bit unsigned integers.

The result is a doubleword vector. The elements are half the length of the operand vector elements. If the operand is
unsigned, the results are unsigned. If the operand is signed, the results can be signed or unsigned.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
This instruction is used by the pseudo-instructions VQRSHRN (zero), VQRSHRUN (zero), VQSHRN (zero), and
VQSHRUN (zero).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 op M 0 Vm

Signed result (op == 1x)

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Unsigned result (op == 01)

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

if op == '00' then SEE "VMOVN";
if size == '11' || Vm<0> == '1' then UNDEFINED;
src_unsigned = (op == '11'); dest_unsigned = (op<0> == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 op M 0 Vm

Signed result (op == 1x)

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Unsigned result (op == 01)

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

if op == '00' then SEE "VMOVN";
if size == '11' || Vm<0> == '1' then UNDEFINED;
src_unsigned = (op == '11'); dest_unsigned = (op<0> == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm);

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

VQMOVN, VQMOVUN Page 1095

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For the signed result variant: is the data type for the elements of the operand, encoded in “op<0>:size”:

op<0> size <dt>
0 00 S16
0 01 S32
0 10 S64
0 11 RESERVED
1 00 U16
1 01 U32
1 10 U64
1 11 RESERVED

For the unsigned result variant: is the data type for the elements of the operand, encoded in “size”:

size <dt>
00 S16
01 S32
10 S64
11 RESERVED

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1

operand = Int(Elem[Qin[m>>1],e,2*esize], src_unsigned);
boolean sat;
(Elem[D[d],e,esize], sat) = SatQ(operand, esize, dest_unsigned);
if sat then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQMOVN, VQMOVUN Page 1096

VQNEG

Vector Saturating Negate negates each element in a vector, and places the results in the destination vector.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VQNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VQNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 1 1 1 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VQNEG{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VQNEG{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “size”:

VQNEG Page 1097

size <dt>
00 S8
01 S16
10 S32
11 RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
result = -SInt(Elem[D[m+r],e,esize]);
boolean sat;
(Elem[D[d+r],e,esize], sat) = SignedSatQ(result, esize);
if sat then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQNEG Page 1098

VQRDMLAH

Vector Saturating Rounding Doubling Multiply Accumulate Returning High Half. This instruction multiplies the vector
elements of the first source SIMD&FP register with either the corresponding vector elements of the second source
SIMD&FP register or the value of a vector element of the second source SIMD&FP register, without saturating the
multiply results, doubles the results, and accumulates the most significant half of the final results with the vector
elements of the destination SIMD&FP register. The results are rounded.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1
(FEAT_RDM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Qm>

if !HaveQRDMLAHExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
add = TRUE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
integer index = integer UNKNOWN;

A2
(FEAT_RDM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 Q 1 D != 11 Vn Vd 1 1 1 0 N 1 M 0 Vm
size

VQRDMLAH Page 1099

64-bit SIMD vector (Q == 0)

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector (Q == 1)

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

if !HaveQRDMLAHExt() then UNDEFINED;
if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
add = TRUE; scalar_form = TRUE;
d = UInt(D:Vd); n = UInt(N:Vn);
regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1
(FEAT_RDM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Qm>

if !HaveQRDMLAHExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
add = TRUE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
integer index = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2
(FEAT_RDM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 Q 1 1 1 1 1 D != 11 Vn Vd 1 1 1 0 N 1 M 0 Vm
size

VQRDMLAH Page 1100

64-bit SIMD vector (Q == 0)

VQRDMLAH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector (Q == 1)

VQRDMLAH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

if !HaveQRDMLAHExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
add = TRUE; scalar_form = TRUE;
d = UInt(D:Vd); n = UInt(N:Vn);
regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

size <dt>
01 S16
10 S32

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field
as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32, Dm
is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VQRDMLAH Page 1101

Operation

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
integer op2;
boolean round = TRUE;
if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
for r = 0 to regs-1

for e = 0 to elements-1
op1 = SInt(Elem[D[n+r],e,esize]);
op3 = SInt(Elem[D[d+r],e,esize]) << esize;
if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
integer rdmlah = RShr(op3 + 2*(op1*op2), esize, round);
(result, sat) = SignedSatQ(rdmlah, esize);
Elem[D[d+r],e,esize] = result;
if sat then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQRDMLAH Page 1102

VQRDMLSH

Vector Saturating Rounding Doubling Multiply Subtract Returning High Half. This instruction multiplies the vector
elements of the first source SIMD&FP register with either the corresponding vector elements of the second source
SIMD&FP register or the value of a vector element of the second source SIMD&FP register, without saturating the
multiply results, doubles the results, and subtracts the most significant half of the final results from the vector
elements of the destination SIMD&FP register. The results are rounded.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1
(FEAT_RDM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 1 0 0 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Qm>

if !HaveQRDMLAHExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
add = FALSE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
integer index = integer UNKNOWN;

A2
(FEAT_RDM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 Q 1 D != 11 Vn Vd 1 1 1 1 N 1 M 0 Vm
size

VQRDMLSH Page 1103

64-bit SIMD vector (Q == 0)

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector (Q == 1)

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

if !HaveQRDMLAHExt() then UNDEFINED;
if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
add = FALSE; scalar_form = TRUE;
d = UInt(D:Vd); n = UInt(N:Vn);
regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1
(FEAT_RDM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 1 0 0 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Qm>

if !HaveQRDMLAHExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
add = FALSE; scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
integer index = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2
(FEAT_RDM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 Q 1 1 1 1 1 D != 11 Vn Vd 1 1 1 1 N 1 M 0 Vm
size

VQRDMLSH Page 1104

64-bit SIMD vector (Q == 0)

VQRDMLSH{<q>}.<dt> <Dd>, <Dn>, <Dm[x]>

128-bit SIMD vector (Q == 1)

VQRDMLSH{<q>}.<dt> <Qd>, <Qn>, <Dm[x]>

if !HaveQRDMLAHExt() then UNDEFINED;
if InITBlock() then UNPREDICTABLE;
if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
add = FALSE; scalar_form = TRUE;
d = UInt(D:Vd); n = UInt(N:Vn);
regs = if Q == '0' then 1 else 2;
integer esize;
integer m;
integer index;
integer elements;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

size <dt>
01 S16
10 S32

<Qd> Is the 128-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field
as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP register holding the accumulate vector, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32, Dm
is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

VQRDMLSH Page 1105

Operation

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
integer op2;
boolean round = TRUE;
if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
for r = 0 to regs-1

for e = 0 to elements-1
op1 = SInt(Elem[D[n+r],e,esize]);
op3 = SInt(Elem[D[d+r],e,esize]) << esize;
if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
integer rdmlsh = RShr(op3 - 2*(op1*op2), esize, round);
(result, sat) = SignedSatQ(rdmlsh, esize);
Elem[D[d+r],e,esize] = result;
if sat then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQRDMLSH Page 1106

VQRDMULH

Vector Saturating Rounding Doubling Multiply Returning High Half multiplies corresponding elements in two vectors,
doubles the results, and places the most significant half of the final results in the destination vector. The results are
rounded. For truncated results see VQDMULH.
The second operand can be a scalar instead of a vector. For more information about scalars see Advanced SIMD
scalars.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VQRDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VQRDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
integer index = integer UNKNOWN;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 Q 1 D != 11 Vn Vd 1 1 0 1 N 1 M 0 Vm
size

64-bit SIMD vector (Q == 0)

VQRDMULH{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector (Q == 1)

VQRDMULH{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

T1

VQRDMULH Page 1107

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 1 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VQRDMULH{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VQRDMULH{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '00' || size == '11' then UNDEFINED;
scalar_form = FALSE; esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
integer index = integer UNKNOWN;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 Q 1 1 1 1 1 D != 11 Vn Vd 1 1 0 1 N 1 M 0 Vm
size

64-bit SIMD vector (Q == 0)

VQRDMULH{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm[x]>

128-bit SIMD vector (Q == 1)

VQRDMULH{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm[x]>

if size == '11' then SEE "Related encodings";
if size == '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
scalar_form = TRUE; d = UInt(D:Vd); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;
integer esize;
integer elements;
integer m;
integer index;
if size == '01' then esize = 16; elements = 4; m = UInt(Vm<2:0>); index = UInt(M:Vm<3>);
if size == '10' then esize = 32; elements = 2; m = UInt(Vm); index = UInt(M);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

size <dt>
01 S16
10 S32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

VQRDMULH Page 1108

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm[x]> Is the 64-bit name of the second SIMD&FP source register holding the scalar. If <dt> is S16, Dm is
restricted to D0-D7. Dm is encoded in "Vm<2:0>", and x is encoded in "M:Vm<3>". If <dt> is S32, Dm
is restricted to D0-D15. Dm is encoded in "Vm", and x is encoded in "M".

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
integer op2;
boolean round = TRUE;
if scalar_form then op2 = SInt(Elem[D[m],index,esize]);
for r = 0 to regs-1

for e = 0 to elements-1
op1 = SInt(Elem[D[n+r],e,esize]);
if !scalar_form then op2 = SInt(Elem[D[m+r],e,esize]);
integer rdmulh = RShr(2*op1*op2, esize, round);
(result, sat) = SignedSatQ(rdmulh, esize);
Elem[D[d+r],e,esize] = result;
if sat then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQRDMULH Page 1109

VQRSHL

Vector Saturating Rounding Shift Left takes each element in a vector, shifts them by a value from the least significant
byte of the corresponding element of a second vector, and places the results in the destination vector. If the shift value
is positive, the operation is a left shift. Otherwise, it is a right shift.
For truncated results see VQSHL (register).
The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is a signed integer of the same size.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VQRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VQRSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VQRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VQRSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VQRSHL Page 1110

<dt> Is the data type for the elements of the vectors, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
0 11 S64
1 00 U8
1 01 U16
1 10 U32
1 11 U64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
bits(esize) result;
boolean sat;
for r = 0 to regs-1

for e = 0 to elements-1
integer element = Int(Elem[D[m+r], e, esize], unsigned);
integer shift = SInt(Elem[D[n+r], e, esize]<7:0>);
if shift >= 0 then // left shift

element = element << shift;
else // rounding right shift

shift = -shift;
element = (element + (1 << (shift - 1))) >> shift;

(result, sat) = SatQ(element, esize, unsigned);
Elem[D[d+r], e, esize] = result;
if sat then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQRSHL Page 1111

VQRSHRN (zero)

Vector Saturating Rounding Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them
by an immediate value, and places the signed rounded results in a doubleword vector.

This is a pseudo-instruction of VQMOVN, VQMOVUN. This means:

• The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VQMOVN, VQMOVUN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 1 x M 0 Vm
op

Signed result

VQRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 1 x M 0 Vm
op

Signed result

VQRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in “op<0>:size”:

op<0> size <dt>
0 00 S16
0 01 S32
0 10 S64
0 11 RESERVED
1 00 U16
1 01 U32
1 10 U64
1 11 RESERVED

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

VQRSHRN (zero) Page 1112

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQRSHRN (zero) Page 1113

VQRSHRN, VQRSHRUN

Vector Saturating Rounding Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them
by an immediate value, and places the rounded results in a doubleword vector.
For truncated results, see VQSHRN and VQSHRUN.
The operand elements must all be the same size, and can be any one of:

• 16-bit, 32-bit, or 64-bit signed integers.
• 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are half the width of the operand elements. If the operand elements are signed, the results can be
either signed or unsigned. If the operand elements are unsigned, the result elements must also be unsigned.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 0 0 op 0 1 M 1 Vm

Signed result (!(imm6 == 000xxx) && op == 1)

VQRSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result (U == 1 && !(imm6 == 000xxx) && op == 0)

VQRSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

if imm6 IN {'000xxx'} then SEE "Related encodings";
if U == '0' && op == '0' then SEE "VRSHRN";
if Vm<0> == '1' then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case imm6 of

when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);

src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 0 0 op 0 1 M 1 Vm

VQRSHRN, VQRSHRUN Page 1114

Signed result (!(imm6 == 000xxx) && op == 1)

VQRSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result (U == 1 && !(imm6 == 000xxx) && op == 0)

VQRSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

if imm6 IN {'000xxx'} then SEE "Related encodings";
if U == '0' && op == '0' then SEE "VRSHRN";
if Vm<0> == '1' then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case imm6 of

when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);

src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
d = UInt(D:Vd); m = UInt(M:Vm);

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> For the signed result variant: is the data type for the elements of the vectors, encoded in “U”:

U <type>
0 S
1 U

For the unsigned result variant: is the data type for the elements of the vectors, encoded in “U”:

U <type>
1 S

<size> Is the data size for the elements of the vectors, encoded in “imm6<5:3>”:

imm6<5:3> <size>
001 16
01x 32
1xx 64

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm> Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
boolean round = TRUE;
for e = 0 to elements-1

operand = Int(Elem[Qin[m>>1],e,2*esize], src_unsigned);
integer rshrn = RShr(operand, shift_amount, round);
(result, sat) = SatQ(rshrn, esize, dest_unsigned);
Elem[D[d],e,esize] = result;
if sat then FPSCR.QC = '1';

VQRSHRN, VQRSHRUN Page 1115

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQRSHRN, VQRSHRUN Page 1116

VQRSHRUN (zero)

Vector Saturating Rounding Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them
by an immediate value, and places the unsigned rounded results in a doubleword vector.

This is a pseudo-instruction of VQMOVN, VQMOVUN. This means:

• The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VQMOVN, VQMOVUN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 1 M 0 Vm
op

Unsigned result

VQRSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 1 M 0 Vm
op

Unsigned result

VQRSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in “size”:

size <dt>
00 S16
01 S32
10 S64
11 RESERVED

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

VQRSHRUN (zero) Page 1117

Operation

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQRSHRUN (zero) Page 1118

VQSHL (register)

Vector Saturating Shift Left (register) takes each element in a vector, shifts them by a value from the least significant
byte of the corresponding element of a second vector, and places the results in the destination vector. If the shift value
is positive, the operation is a left shift. Otherwise, it is a right shift.
The results are truncated. For rounded results, see VQRSHL.
The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is a signed integer of the same size.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 0 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VQSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VQSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 0 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VQSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VQSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VQSHL (register) Page 1119

<dt> Is the data type for the elements of the vectors, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
0 11 S64
1 00 U8
1 01 U16
1 10 U32
1 11 U64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
shift = SInt(Elem[D[n+r],e,esize]<7:0>);
operand = Int(Elem[D[m+r],e,esize], unsigned);
boolean sat;
bits(esize) result;
if shift >= 0 then

(result,sat) = SatQ(operand << shift, esize, unsigned);
else

(result,sat) = SatQ(operand >> -shift, esize, unsigned);
Elem[D[d+r],e,esize] = result;
if sat then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQSHL (register) Page 1120

VQSHL, VQSHLU (immediate)

Vector Saturating Shift Left (immediate) takes each element in a vector of integers, left shifts them by an immediate
value, and places the results in a second vector.
The operand elements must all be the same size, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are the same size as the operand elements. If the operand elements are signed, the results can be
either signed or unsigned. If the operand elements are unsigned, the result elements must also be unsigned.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 1 1 op L Q M 1 Vm

64-bit SIMD vector, signed result (!(imm6 == 000xxx && L == 0) && op == 1 && Q == 0)

VQSHL{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

64-bit SIMD vector, unsigned result (U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 0)

VQSHLU{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector, signed result (!(imm6 == 000xxx && L == 0) && op == 1 && Q == 1)

VQSHL{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

128-bit SIMD vector, unsigned result (U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 1)

VQSHLU{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if U == '0' && op == '0' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);

src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 1 1 op L Q M 1 Vm

VQSHL, VQSHLU (immediate) Page 1121

64-bit SIMD vector, signed result (!(imm6 == 000xxx && L == 0) && op == 1 && Q == 0)

VQSHL{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

64-bit SIMD vector, unsigned result (U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 0)

VQSHLU{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector, signed result (!(imm6 == 000xxx && L == 0) && op == 1 && Q == 1)

VQSHL{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

128-bit SIMD vector, unsigned result (U == 1 && !(imm6 == 000xxx && L == 0) && op == 0 && Q == 1)

VQSHLU{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if U == '0' && op == '0' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);

src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> Is the data type for the elements of the vectors, encoded in “U”:

U <type>
0 S
1 U

<size> Is the data size for the elements of the vectors, encoded in “L:imm6<5:3>”:

L imm6<5:3> <size>
0 001 8
0 01x 16
0 1xx 32
1 xxx 64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 0 to <size>-1, encoded in the "imm6" field.

VQSHL, VQSHLU (immediate) Page 1122

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
operand = Int(Elem[D[m+r],e,esize], src_unsigned);
(result, sat) = SatQ(operand << shift_amount, esize, dest_unsigned);
Elem[D[d+r],e,esize] = result;
if sat then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQSHL, VQSHLU (immediate) Page 1123

VQSHRN (zero)

Vector Saturating Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an
immediate value, and places the signed truncated results in a doubleword vector.

This is a pseudo-instruction of VQMOVN, VQMOVUN. This means:

• The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VQMOVN, VQMOVUN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 1 x M 0 Vm
op

Signed result

VQSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 1 x M 0 Vm
op

Signed result

VQSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VQMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in “op<0>:size”:

op<0> size <dt>
0 00 S16
0 01 S32
0 10 S64
0 11 RESERVED
1 00 U16
1 01 U32
1 10 U64
1 11 RESERVED

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

VQSHRN (zero) Page 1124

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQSHRN (zero) Page 1125

VQSHRN, VQSHRUN

Vector Saturating Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an
immediate value, and places the truncated results in a doubleword vector.
For rounded results, see VQRSHRN and VQRSHRUN.
The operand elements must all be the same size, and can be any one of:

• 16-bit, 32-bit, or 64-bit signed integers.
• 16-bit, 32-bit, or 64-bit unsigned integers.

The result elements are half the width of the operand elements. If the operand elements are signed, the results can be
either signed or unsigned. If the operand elements are unsigned, the result elements must also be unsigned.
If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 0 0 op 0 0 M 1 Vm

Signed result (!(imm6 == 000xxx) && op == 1)

VQSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result (U == 1 && !(imm6 == 000xxx) && op == 0)

VQSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

if imm6 IN {'000xxx'} then SEE "Related encodings";
if U == '0' && op == '0' then SEE "VSHRN";
if Vm<0> == '1' then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case imm6 of

when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);

src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 0 0 op 0 0 M 1 Vm

VQSHRN, VQSHRUN Page 1126

Signed result (!(imm6 == 000xxx) && op == 1)

VQSHRN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

Unsigned result (U == 1 && !(imm6 == 000xxx) && op == 0)

VQSHRUN{<c>}{<q>}.<type><size> <Dd>, <Qm>, #<imm>

if imm6 IN {'000xxx'} then SEE "Related encodings";
if U == '0' && op == '0' then SEE "VSHRN";
if Vm<0> == '1' then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case imm6 of

when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);

src_unsigned = (U == '1' && op == '1'); dest_unsigned = (U == '1');
d = UInt(D:Vd); m = UInt(M:Vm);

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> For the signed result variant: is the data type for the elements of the vectors, encoded in “U”:

U <type>
0 S
1 U

For the unsigned result variant: is the data type for the elements of the vectors, encoded in “U”:

U <type>
1 S

<size> Is the data size for the elements of the vectors, encoded in “imm6<5:3>”:

imm6<5:3> <size>
001 16
01x 32
1xx 64

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm> Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1

operand = Int(Elem[Qin[m>>1],e,2*esize], src_unsigned);
(result, sat) = SatQ(operand >> shift_amount, esize, dest_unsigned);
Elem[D[d],e,esize] = result;
if sat then FPSCR.QC = '1';

VQSHRN, VQSHRUN Page 1127

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQSHRN, VQSHRUN Page 1128

VQSHRUN (zero)

Vector Saturating Shift Right, Narrow takes each element in a quadword vector of integers, right shifts them by an
immediate value, and places the unsigned truncated results in a doubleword vector.

This is a pseudo-instruction of VQMOVN, VQMOVUN. This means:

• The encodings in this description are named to match the encodings of VQMOVN, VQMOVUN.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VQMOVN, VQMOVUN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 1 M 0 Vm
op

Unsigned result

VQSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 1 M 0 Vm
op

Unsigned result

VQSHRUN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VQMOVUN{<c>}{<q>}.<dt> <Dd>, <Qm>

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in “size”:

size <dt>
00 S16
01 S32
10 S64
11 RESERVED

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

VQSHRUN (zero) Page 1129

Operation

The description of VQMOVN, VQMOVUN gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQSHRUN (zero) Page 1130

VQSUB

Vector Saturating Subtract subtracts the elements of the second operand vector from the corresponding elements of
the first operand vector, and places the results in the destination vector. Signed and unsigned operations are distinct.
The operand and result elements must all be the same type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

If any of the results overflow, they are saturated. The cumulative saturation bit, FPSCR.QC, is set if saturation occurs.
For details see Pseudocode details of saturation.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 1 0 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VQSUB{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VQSUB{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 1 0 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VQSUB{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VQSUB{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “U:size”:

VQSUB Page 1131

U size <dt>
0 00 S8
0 01 S16
0 10 S32
0 11 S64
1 00 U8
1 01 U16
1 10 U32
1 11 U64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
diff = Int(Elem[D[n+r],e,esize], unsigned) - Int(Elem[D[m+r],e,esize], unsigned);
boolean sat;
(Elem[D[d+r],e,esize], sat) = SatQ(diff, esize, unsigned);
if sat then FPSCR.QC = '1';

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VQSUB Page 1132

VRADDHN

Vector Rounding Add and Narrow, returning High Half adds corresponding elements in two quadword vectors, and
places the most significant half of each result in a doubleword vector. The results are rounded. For truncated results,
see VADDHN.
The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D != 11 Vn Vd 0 1 0 0 N 0 M 0 Vm
size

A1

VRADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D != 11 Vn Vd 0 1 0 0 N 0 M 0 Vm
size

T1

VRADDHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

size <dt>
00 I16
01 I32
10 I64

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

VRADDHN Page 1133

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
boolean round = TRUE;
for e = 0 to elements-1

result = RShr(UInt(Elem[Qin[n>>1],e,2*esize] + Elem[Qin[m>>1],e,2*esize]), esize, round);
Elem[D[d],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRADDHN Page 1134

VRECPE

Vector Reciprocal Estimate finds an approximate reciprocal of each element in the operand vector, and places the
results in the destination vector.
The operand and result elements are the same type, and can be floating-point numbers or unsigned integers.
For details of the operation performed by this instruction see Floating-point reciprocal square root estimate and step.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VRECPE{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRECPE{<c>}{<q>}.<dt> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && (!HaveFP16Ext() || F == '0')) || size IN {'00', '11'} then UNDEFINED;
floating_point = (F == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VRECPE{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRECPE{<c>}{<q>}.<dt> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && (!HaveFP16Ext() || F == '0')) || size IN {'00', '11'} then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
floating_point = (F == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

VRECPE Page 1135

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “F:size”:

F size <dt>
0 10 U32
1 01 F16
1 10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.
Newton-Raphson iteration
For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the
reciprocal of a number, see Floating-point reciprocal estimate and step.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
if floating_point then

Elem[D[d+r],e,esize] = FPRecipEstimate(Elem[D[m+r],e,esize], StandardFPSCRValue());
else

Elem[D[d+r],e,esize] = UnsignedRecipEstimate(Elem[D[m+r],e,esize]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRECPE Page 1136

VRECPS

Vector Reciprocal Step multiplies the elements of one vector by the corresponding elements of another vector,
subtracts each of the products from 2.0, and places the results into the elements of the destination vector.
The operand and result elements are floating-point numbers.
For details of the operation performed by this instruction see Floating-point reciprocal estimate and step.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VRECPS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VRECPS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 0 sz Vn Vd 1 1 1 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VRECPS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VRECPS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

VRECPS Page 1137

• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.
Newton-Raphson iteration
For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the
reciprocal of a number, see Floating-point reciprocal estimate and step.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = FPRecipStep(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRECPS Page 1138

VREV16

Vector Reverse in halfwords reverses the order of 8-bit elements in each halfword of the vector, and places the result
in the corresponding destination vector.
There is no distinction between data types, other than size.
The following figure shows an example of the operation of VREV16 doubleword operation.

Dm

Dd

VREV16.8, doubleword

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 0 1 0 Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VREV16{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VREV16{<c>}{<q>}.<dt> <Qd>, <Qm>

if UInt(op)+UInt(size) >= 3 then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

esize = 8 << UInt(size);
integer container_size;
case op of

when '10' container_size = 16;
when '01' container_size = 32;
when '00' container_size = 64;

integer containers = 64 DIV container_size;
integer elements_per_container = container_size DIV esize;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 0 1 0 Q M 0 Vm
op

VREV16 Page 1139

64-bit SIMD vector (Q == 0)

VREV16{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VREV16{<c>}{<q>}.<dt> <Qd>, <Qm>

if UInt(op)+UInt(size) >= 3 then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

esize = 8 << UInt(size);
integer container_size;
case op of

when '10' container_size = 16;
when '01' container_size = 32;
when '00' container_size = 64;

integer containers = 64 DIV container_size;
integer elements_per_container = container_size DIV esize;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in “size”:

size <dt>
00 8
01 RESERVED
1x RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();

bits(64) result;
integer element;
integer rev_element;
for r = 0 to regs-1

element = 0;
for c = 0 to containers-1

rev_element = (element + elements_per_container) - 1;
for e = 0 to elements_per_container-1

Elem[result, rev_element, esize] = Elem[D[m+r], element, esize];
element = element + 1;
rev_element = rev_element - 1;

D[d+r] = result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

VREV16 Page 1140

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VREV16 Page 1141

VREV32

Vector Reverse in words reverses the order of 8-bit or 16-bit elements in each word of the vector, and places the result
in the corresponding destination vector.
There is no distinction between data types, other than size.
The following figure shows an example of the operation of VREV32 doubleword operations.

Dm Dm

Dd Dd

VREV32.8, doubleword VREV32.16, doubleword

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 0 0 1 Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VREV32{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VREV32{<c>}{<q>}.<dt> <Qd>, <Qm>

if UInt(op)+UInt(size) >= 3 then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

esize = 8 << UInt(size);
integer container_size;
case op of

when '10' container_size = 16;
when '01' container_size = 32;
when '00' container_size = 64;

integer containers = 64 DIV container_size;
integer elements_per_container = container_size DIV esize;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 0 0 1 Q M 0 Vm
op

VREV32 Page 1142

64-bit SIMD vector (Q == 0)

VREV32{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VREV32{<c>}{<q>}.<dt> <Qd>, <Qm>

if UInt(op)+UInt(size) >= 3 then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

esize = 8 << UInt(size);
integer container_size;
case op of

when '10' container_size = 16;
when '01' container_size = 32;
when '00' container_size = 64;

integer containers = 64 DIV container_size;
integer elements_per_container = container_size DIV esize;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in “size”:

size <dt>
00 8
01 16
1x RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();

bits(64) result;
integer element;
integer rev_element;
for r = 0 to regs-1

element = 0;
for c = 0 to containers-1

rev_element = (element + elements_per_container) - 1;
for e = 0 to elements_per_container-1

Elem[result, rev_element, esize] = Elem[D[m+r], element, esize];
element = element + 1;
rev_element = rev_element - 1;

D[d+r] = result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

VREV32 Page 1143

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VREV32 Page 1144

VREV64

Vector Reverse in doublewords reverses the order of 8-bit, 16-bit, or 32-bit elements in each doubleword of the vector,
and places the result in the corresponding destination vector.
There is no distinction between data types, other than size.
The following figure shows an example of the operation of VREV64 doubleword operations.

Dm Qm

Dd Qm

VREV64.8, doubleword VREV64.32, quadword

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 0 0 Vd 0 0 0 0 0 Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VREV64{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VREV64{<c>}{<q>}.<dt> <Qd>, <Qm>

if UInt(op)+UInt(size) >= 3 then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

esize = 8 << UInt(size);
integer container_size;
case op of

when '10' container_size = 16;
when '01' container_size = 32;
when '00' container_size = 64;

integer containers = 64 DIV container_size;
integer elements_per_container = container_size DIV esize;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 0 0 Vd 0 0 0 0 0 Q M 0 Vm
op

VREV64 Page 1145

64-bit SIMD vector (Q == 0)

VREV64{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VREV64{<c>}{<q>}.<dt> <Qd>, <Qm>

if UInt(op)+UInt(size) >= 3 then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;

esize = 8 << UInt(size);
integer container_size;
case op of

when '10' container_size = 16;
when '01' container_size = 32;
when '00' container_size = 64;

integer containers = 64 DIV container_size;
integer elements_per_container = container_size DIV esize;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in “size”:

size <dt>
00 8
01 16
10 32
11 RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();

bits(64) result;
integer element;
integer rev_element;
for r = 0 to regs-1

element = 0;
for c = 0 to containers-1

rev_element = (element + elements_per_container) - 1;
for e = 0 to elements_per_container-1

Elem[result, rev_element, esize] = Elem[D[m+r], element, esize];
element = element + 1;
rev_element = rev_element - 1;

D[d+r] = result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

VREV64 Page 1146

• The execution time of this instruction is independent of:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VREV64 Page 1147

VRHADD

Vector Rounding Halving Add adds corresponding elements in two vectors of integers, shifts each result right one bit,
and places the final results in the destination vector.
The operand and result elements are all the same type, and can be any one of:

• 8-bit, 16-bit, or 32-bit signed integers.
• 8-bit, 16-bit, or 32-bit unsigned integers.

The results of the halving operations are rounded. For truncated results, see VHADD.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 0 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VRHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VRHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 0 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VRHADD{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VRHADD{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “U:size”:

VRHADD Page 1148

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Int(Elem[D[n+r],e,esize], unsigned);
op2 = Int(Elem[D[m+r],e,esize], unsigned);
result = (op1 + op2 + 1) >> 1;
Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRHADD Page 1149

VRINTA (Advanced SIMD)

Vector Round floating-point to integer towards Nearest with Ties to Away rounds a vector of floating-point values to
integral floating-point values of the same size using the Round to Nearest with Ties to Away rounding mode. A zero
input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is
propagated as for normal arithmetic.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 0 1 0 Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VRINTA{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRINTA{<q>}.<dt> <Qd>, <Qm>

if op<2> != op<0> then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 0 1 0 Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VRINTA{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRINTA{<q>}.<dt> <Qd>, <Qm>

if op<2> != op<0> then SEE "Related encodings";
if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VRINTA (Advanced SIMD) Page 1150

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Related encodings: See Advanced SIMD two registers misc for the T32 instruction set, or Advanced SIMD two
registers misc for the A32 instruction set.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “size”:

size <dt>
01 F16
10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[m+r],e,esize];
result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
Elem[D[d+r],e,esize] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRINTA (Advanced SIMD) Page 1151

VRINTA (floating-point)

Round floating-point to integer to Nearest with Ties to Away rounds a floating-point value to an integral floating-point
value of the same size using the Round to Nearest with Ties to Away rounding mode. A zero input gives a zero result
with the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal
arithmetic.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 != 00 0 1 M 0 Vm
RM size

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTA{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTA{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTA{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); exact = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 0 Vd 1 0 != 00 0 1 M 0 Vm
RM size

VRINTA (floating-point) Page 1152

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTA{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTA{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTA{<q>}.F64 <Dd>, <Dm>

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); exact = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);

when 32
S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);

when 64
D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRINTA (floating-point) Page 1153

VRINTM (Advanced SIMD)

Vector Round floating-point to integer towards -Infinity rounds a vector of floating-point values to integral floating-
point values of the same size, using the Round towards -Infinity rounding mode. A zero input gives a zero result with
the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal
arithmetic.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 1 0 1 Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VRINTM{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRINTM{<q>}.<dt> <Qd>, <Qm>

if op<2> != op<0> then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 1 0 1 Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VRINTM{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRINTM{<q>}.<dt> <Qd>, <Qm>

if op<2> != op<0> then SEE "Related encodings";
if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VRINTM (Advanced SIMD) Page 1154

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Related encodings: See Advanced SIMD two registers misc for the T32 instruction set, or Advanced SIMD two
registers misc for the A32 instruction set.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “size”:

size <dt>
01 F16
10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[m+r],e,esize];
result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
Elem[D[d+r],e,esize] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRINTM (Advanced SIMD) Page 1155

VRINTM (floating-point)

Round floating-point to integer towards -Infinity rounds a floating-point value to an integral floating-point value of the
same size using the Round towards -Infinity rounding mode. A zero input gives a zero result with the same sign, an
infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 1 Vd 1 0 != 00 0 1 M 0 Vm
RM size

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTM{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTM{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTM{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); exact = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 1 Vd 1 0 != 00 0 1 M 0 Vm
RM size

VRINTM (floating-point) Page 1156

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTM{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTM{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTM{<q>}.F64 <Dd>, <Dm>

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); exact = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);

when 32
S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);

when 64
D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRINTM (floating-point) Page 1157

VRINTN (Advanced SIMD)

Vector Round floating-point to integer to Nearest rounds a vector of floating-point values to integral floating-point
values of the same size using the Round to Nearest rounding mode. A zero input gives a zero result with the same
sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 0 0 0 Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VRINTN{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRINTN{<q>}.<dt> <Qd>, <Qm>

if op<2> != op<0> then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 0 0 0 Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VRINTN{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRINTN{<q>}.<dt> <Qd>, <Qm>

if op<2> != op<0> then SEE "Related encodings";
if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VRINTN (Advanced SIMD) Page 1158

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Related encodings: See Advanced SIMD two registers misc for the T32 instruction set, or Advanced SIMD two
registers misc for the A32 instruction set.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “size”:

size <dt>
01 F16
10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[m+r],e,esize];
result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
Elem[D[d+r],e,esize] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRINTN (Advanced SIMD) Page 1159

VRINTN (floating-point)

Round floating-point to integer to Nearest rounds a floating-point value to an integral floating-point value of the same
size using the Round to Nearest rounding mode. A zero input gives a zero result with the same sign, an infinite input
gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 1 Vd 1 0 != 00 0 1 M 0 Vm
RM size

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTN{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTN{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTN{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); exact = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 0 1 Vd 1 0 != 00 0 1 M 0 Vm
RM size

VRINTN (floating-point) Page 1160

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTN{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTN{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTN{<q>}.F64 <Dd>, <Dm>

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); exact = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);

when 32
S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);

when 64
D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRINTN (floating-point) Page 1161

VRINTP (Advanced SIMD)

Vector Round floating-point to integer towards +Infinity rounds a vector of floating-point values to integral floating-
point values of the same size using the Round towards +Infinity rounding mode. A zero input gives a zero result with
the same sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal
arithmetic.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 1 1 1 Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VRINTP{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRINTP{<q>}.<dt> <Qd>, <Qm>

if op<2> != op<0> then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 1 1 1 Q M 0 Vm
op

64-bit SIMD vector (Q == 0)

VRINTP{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRINTP{<q>}.<dt> <Qd>, <Qm>

if op<2> != op<0> then SEE "Related encodings";
if InITBlock() then UNPREDICTABLE;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
// Rounding encoded differently from other VCVT and VRINT instructions
rounding = FPDecodeRM(op<2>:NOT(op<1>)); exact = FALSE;
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VRINTP (Advanced SIMD) Page 1162

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Related encodings: See Advanced SIMD two registers misc for the T32 instruction set, or Advanced SIMD two
registers misc for the A32 instruction set.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “size”:

size <dt>
01 F16
10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[m+r],e,esize];
result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
Elem[D[d+r],e,esize] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRINTP (Advanced SIMD) Page 1163

VRINTP (floating-point)

Round floating-point to integer towards +Infinity rounds a floating-point value to an integral floating-point value of the
same size using the Round towards +Infinity rounding mode. A zero input gives a zero result with the same sign, an
infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 0 Vd 1 0 != 00 0 1 M 0 Vm
RM size

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTP{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTP{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTP{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); exact = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 0 1 0 Vd 1 0 != 00 0 1 M 0 Vm
RM size

VRINTP (floating-point) Page 1164

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTP{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTP{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTP{<q>}.F64 <Dd>, <Dm>

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
rounding = FPDecodeRM(RM); exact = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);

when 32
S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);

when 64
D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRINTP (floating-point) Page 1165

VRINTR

Round floating-point to integer rounds a floating-point value to an integral floating-point value of the same size using
the rounding mode specified in the FPSCR. A zero input gives a zero result with the same sign, an infinite input gives
an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size 0 1 M 0 Vm
cond op

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTR{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTR{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTR{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
exact = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size 0 1 M 0 Vm
op

VRINTR Page 1166

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTR{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTR{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTR{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
exact = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);

when 32
S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);

when 64
D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRINTR Page 1167

VRINTX (Advanced SIMD)

Vector round floating-point to integer inexact rounds a vector of floating-point values to integral floating-point values
of the same size, using the Round to Nearest rounding mode, and raises the Inexact exception when the result value is
not numerically equal to the input value. A zero input gives a zero result with the same sign, an infinite input gives an
infinite result with the same sign, and a NaN is propagated as for normal arithmetic.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 0 0 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VRINTX{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRINTX{<q>}.<dt> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPRounding_TIEEVEN; exact = TRUE;
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 0 0 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VRINTX{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRINTX{<q>}.<dt> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPRounding_TIEEVEN; exact = TRUE;
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.

VRINTX (Advanced SIMD) Page 1168

• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “size”:

size <dt>
01 F16
10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[m+r],e,esize];
result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
Elem[D[d+r],e,esize] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRINTX (Advanced SIMD) Page 1169

VRINTX (floating-point)

Round floating-point to integer inexact rounds a floating-point value to an integral floating-point value of the same
size, using the rounding mode specified in the FPSCR, and raises an Inexact exception when the result value is not
numerically equal to the input value. A zero input gives a zero result with the same sign, an infinite input gives an
infinite result with the same sign, and a NaN is propagated as for normal arithmetic.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 size 0 1 M 0 Vm
cond

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTX{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTX{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTX{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
exact = TRUE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 1 Vd 1 0 size 0 1 M 0 Vm

VRINTX (floating-point) Page 1170

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTX{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTX{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTX{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
exact = TRUE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
rounding = FPRoundingMode(FPSCR[]);
case esize of

when 16
S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);

when 32
S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);

when 64
D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRINTX (floating-point) Page 1171

VRINTZ (Advanced SIMD)

Vector round floating-point to integer towards Zero rounds a vector of floating-point values to integral floating-point
values of the same size, using the Round towards Zero rounding mode. A zero input gives a zero result with the same
sign, an infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 1 0 1 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VRINTZ{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRINTZ{<q>}.<dt> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPRounding_ZERO; exact = FALSE;
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 1 0 1 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VRINTZ{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRINTZ{<q>}.<dt> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && !HaveFP16Ext()) || size IN {'00', '11'} then UNDEFINED;
rounding = FPRounding_ZERO; exact = FALSE;
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;
if InITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

VRINTZ (Advanced SIMD) Page 1172

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “size”:

size <dt>
01 F16
10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
op1 = Elem[D[m+r],e,esize];
result = FPRoundInt(op1, StandardFPSCRValue(), rounding, exact);
Elem[D[d+r],e,esize] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRINTZ (Advanced SIMD) Page 1173

VRINTZ (floating-point)

Round floating-point to integer towards Zero rounds a floating-point value to an integral floating-point value of the
same size, using the Round towards Zero rounding mode. A zero input gives a zero result with the same sign, an
infinite input gives an infinite result with the same sign, and a NaN is propagated as for normal arithmetic.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size 1 1 M 0 Vm
cond op

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTZ{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTZ{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTZ{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
exact = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 1 1 0 Vd 1 0 size 1 1 M 0 Vm
op

VRINTZ (floating-point) Page 1174

Half-precision scalar (size == 01)
(FEAT_FP16)

VRINTZ{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VRINTZ{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VRINTZ{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
rounding = if op == '1' then FPRounding_ZERO else FPRoundingMode(FPSCR[]);
exact = FALSE;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
S[d] = Zeros(16) : FPRoundInt(S[m]<15:0>, FPSCR[], rounding, exact);

when 32
S[d] = FPRoundInt(S[m], FPSCR[], rounding, exact);

when 64
D[d] = FPRoundInt(D[m], FPSCR[], rounding, exact);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRINTZ (floating-point) Page 1175

VRSHL

Vector Rounding Shift Left takes each element in a vector, shifts them by a value from the least significant byte of the
corresponding element of a second vector, and places the results in the destination vector. If the shift value is positive,
the operation is a left shift. If the shift value is negative, it is a rounding right shift. For a truncating shift, see VSHL.
The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is always a signed integer of the same size.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VRSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VRSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VRSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “U:size”:

VRSHL Page 1176

U size <dt>
0 00 S8
0 01 S16
0 10 S32
0 11 S64
1 00 U8
1 01 U16
1 10 U32
1 11 U64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
integer result;
for r = 0 to regs-1

for e = 0 to elements-1
integer element = Int(Elem[D[m+r], e, esize], unsigned);
integer shift = SInt(Elem[D[n+r], e, esize]<7:0>);
if shift >= 0 then // left shift

result = element << shift;
else // rounding right shift

shift = -shift;
result = (element + (1 << (shift - 1))) >> shift;

Elem[D[d+r], e, esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRSHL Page 1177

VRSHR

Vector Rounding Shift Right takes each element in a vector, right shifts them by an immediate value, and places the
rounded results in the destination vector. For truncated results, see VSHR.
The operand and result elements must be the same size, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 1 0 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VRSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VRSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);

unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 1 0 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VRSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VRSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);

unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VRSHR Page 1178

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> Is the data type for the elements of the vectors, encoded in “U”:

U <type>
0 S
1 U

<size> Is the data size for the elements of the vectors, encoded in “L:imm6<5:3>”:

L imm6<5:3> <size>
0 001 8
0 01x 16
0 1xx 32
1 xxx 64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
boolean round = TRUE;
for r = 0 to regs-1

for e = 0 to elements-1
result = RShr(Int(Elem[D[m+r],e,esize], unsigned), shift_amount, round);
Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRSHR Page 1179

VRSHR (zero)

Vector Rounding Shift Right copies the contents of one SIMD register to another.

This is a pseudo-instruction of VORR (register). This means:

• The encodings in this description are named to match the encodings of VORR (register).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VORR (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VRSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

128-bit SIMD vector (Q == 1)

VRSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VRSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

128-bit SIMD vector (Q == 1)

VRSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VRSHR (zero) Page 1180

<dt> Is the data type for the elements of the vectors, and must be one of: S8, S16, S32, S64, U8, U16, U32 or
U64.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field.

Operation

The description of VORR (register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRSHR (zero) Page 1181

VRSHRN

Vector Rounding Shift Right and Narrow takes each element in a vector, right shifts them by an immediate value, and
places the rounded results in the destination vector. For truncated results, see VSHRN.
The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers. The destination elements are half the size of the source elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D imm6 Vd 1 0 0 0 0 1 M 1 Vm

A1 (imm6 != 000xxx)

VRSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

if imm6 IN {'000xxx'} then SEE "Related encodings";
if Vm<0> == '1' then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case imm6 of

when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);

d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D imm6 Vd 1 0 0 0 0 1 M 1 Vm

T1 (imm6 != 000xxx)

VRSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

if imm6 IN {'000xxx'} then SEE "Related encodings";
if Vm<0> == '1' then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case imm6 of

when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);

d = UInt(D:Vd); m = UInt(M:Vm);

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VRSHRN Page 1182

<size> Is the data size for the elements of the vectors, encoded in “imm6<5:3>”:

imm6<5:3> <size>
001 16
01x 32
1xx 64

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm> Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
boolean round = TRUE;
for e = 0 to elements-1

result = RShr(UInt(Elem[Qin[m>>1],e,2*esize]), shift_amount, round);
Elem[D[d],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRSHRN Page 1183

VRSHRN (zero)

Vector Rounding Shift Right and Narrow takes each element in a vector, right shifts them by an immediate value, and
places the rounded results in the destination vector.

This is a pseudo-instruction of VMOVN. This means:

• The encodings in this description are named to match the encodings of VMOVN.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VMOVN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and

any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm

A1

VRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm

T1

VRSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in “size”:

size <dt>
00 I16
01 I32
10 I64
11 RESERVED

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

The description of VMOVN gives the operational pseudocode for this instruction.

VRSHRN (zero) Page 1184

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRSHRN (zero) Page 1185

VRSQRTE

Vector Reciprocal Square Root Estimate finds an approximate reciprocal square root of each element in a vector, and
places the results in a second vector.
The operand and result elements are the same type, and can be floating-point numbers or unsigned integers.
For details of the operation performed by this instruction see Floating-point reciprocal estimate and step.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VRSQRTE{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRSQRTE{<c>}{<q>}.<dt> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && (!HaveFP16Ext() || F == '0')) || size IN {'00', '11'} then UNDEFINED;
floating_point = (F == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 1 Vd 0 1 0 F 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VRSQRTE{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VRSQRTE{<c>}{<q>}.<dt> <Qd>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
if (size == '01' && (!HaveFP16Ext() || F == '0')) || size IN {'00', '11'} then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
floating_point = (F == '1');
integer esize;
integer elements;
case size of

when '01' esize = 16; elements = 4;
when '10' esize = 32; elements = 2;

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

VRSQRTE Page 1186

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “F:size”:

F size <dt>
0 10 U32
1 01 F16
1 10 F32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.
Newton-Raphson iteration
For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the
reciprocal of the square root of a number, see Floating-point reciprocal estimate and step.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
if floating_point then

Elem[D[d+r],e,esize] = FPRSqrtEstimate(Elem[D[m+r],e,esize], StandardFPSCRValue());
else

Elem[D[d+r],e,esize] = UnsignedRSqrtEstimate(Elem[D[m+r],e,esize]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRSQRTE Page 1187

VRSQRTS

Vector Reciprocal Square Root Step multiplies the elements of one vector by the corresponding elements of another
vector, subtracts each of the products from 3.0, divides these results by 2.0, and places the results into the elements of
the destination vector.
The operand and result elements are floating-point numbers.
For details of the operation performed by this instruction see Floating-point reciprocal estimate and step.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VRSQRTS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VRSQRTS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 1 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VRSQRTS{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VRSQRTS{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

VRSQRTS Page 1188

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.
Newton-Raphson iteration
For details of the operation performed and how it can be used in a Newton-Raphson iteration to calculate the
reciprocal of the square root of a number, see Floating-point reciprocal estimate and step.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = FPRSqrtStep(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRSQRTS Page 1189

VRSRA

Vector Rounding Shift Right and Accumulate takes each element in a vector, right shifts them by an immediate value,
and accumulates the rounded results into the destination vector. For truncated results, see VSRA.
The operand and result elements must all be the same type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 1 1 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VRSRA{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VRSRA{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);

unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 1 1 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VRSRA{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VRSRA{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);

unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VRSRA Page 1190

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> Is the data type for the elements of the vectors, encoded in “U”:

U <type>
0 S
1 U

<size> Is the data size for the elements of the vectors, encoded in “L:imm6<5:3>”:

L imm6<5:3> <size>
0 001 8
0 01x 16
0 1xx 32
1 xxx 64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
boolean round = TRUE;
for r = 0 to regs-1

for e = 0 to elements-1
result = RShr(Int(Elem[D[m+r],e,esize], unsigned), shift_amount, round);
Elem[D[d+r],e,esize] = Elem[D[d+r],e,esize] + result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRSRA Page 1191

VRSUBHN

Vector Rounding Subtract and Narrow, returning High Half subtracts the elements of one quadword vector from the
corresponding elements of another quadword vector, takes the most significant half of each result, and places the final
results in a doubleword vector. The results are rounded. For truncated results, see VSUBHN.
The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D != 11 Vn Vd 0 1 1 0 N 0 M 0 Vm
size

A1

VRSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D != 11 Vn Vd 0 1 1 0 N 0 M 0 Vm
size

T1

VRSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

size <dt>
00 I16
01 I32
10 I64

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

VRSUBHN Page 1192

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
boolean round = TRUE;
for e = 0 to elements-1

result = RShr(UInt(Elem[Qin[n>>1],e,2*esize] - Elem[Qin[m>>1],e,2*esize]), esize, round);
Elem[D[d],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VRSUBHN Page 1193

VSDOT (by element)

Dot Product index form with signed integers. This instruction performs the dot product of the four 8-bit elements in
each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element in the second
source register, accumulating the result into the corresponding 32-bit element of the destination register.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.

Note

ID_ISAR6.DP indicates whether this instruction is supported.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_DotProd)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm
U

64-bit SIMD vector (Q == 0)

VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector (Q == 1)

VSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]

if !HaveDOTPExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean signed = (U=='0');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm<3:0>);
integer index = UInt(M);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

T1
(FEAT_DotProd)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm
U

VSDOT (by element) Page 1194

64-bit SIMD vector (Q == 0)

VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector (Q == 1)

VSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]

if InITBlock() then UNPREDICTABLE;
if !HaveDOTPExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean signed = (U=='0');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm<3:0>);
integer index = UInt(M);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation

bits(64) operand1;
bits(64) operand2 = D[m];
bits(64) result;
CheckAdvSIMDEnabled();
for r = 0 to regs-1

operand1 = D[n+r];
result = D[d+r];
integer element1, element2;
for e = 0 to 1

integer res = 0;
for i = 0 to 3

if signed then
element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = SInt(Elem[operand2, 4 * index + i, esize DIV 4]);

else
element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = UInt(Elem[operand2, 4 * index + i, esize DIV 4]);

res = res + element1 * element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;

D[d+r] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSDOT (by element) Page 1195

VSDOT (vector)

Dot Product vector form with signed integers. This instruction performs the dot product of the four 8-bit elements in
each 32-bit element of the first source register with the four 8-bit elements of the corresponding 32-bit element in the
second source register, accumulating the result into the corresponding 32-bit element of the destination register.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.

Note

ID_ISAR6.DP indicates whether this instruction is supported.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_DotProd)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm
U

64-bit SIMD vector (Q == 0)

VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VSDOT{<q>}.S8 <Qd>, <Qn>, <Qm>

if !HaveDOTPExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
boolean signed = U=='0';
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

T1
(FEAT_DotProd)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm
U

VSDOT (vector) Page 1196

64-bit SIMD vector (Q == 0)

VSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VSDOT{<q>}.S8 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveDOTPExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
boolean signed = U=='0';
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

bits(64) operand1;
bits(64) operand2;
bits(64) result;
CheckAdvSIMDEnabled();
for r = 0 to regs-1

operand1 = D[n+r];
operand2 = D[m+r];
result = D[d+r];
integer element1, element2;
for e = 0 to 1

integer res = 0;
for i = 0 to 3

if signed then
element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);

else
element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);

res = res + element1 * element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;

D[d+r] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSDOT (vector) Page 1197

VSELEQ, VSELGE, VSELGT, VSELVS

Floating-point conditional select allows the destination register to take the value in either one or the other source
register according to the condition codes in the APSR.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 != 00 N 0 M 0 Vm
size

VSELEQ, VSELGE, VSELGT,
VSELVS Page 1198

Equal, half-precision scalar (cc == 00 && size == 01)
(FEAT_FP16)

VSELEQ.F16 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Equal, single-precision scalar (cc == 00 && size == 10)

VSELEQ.F32 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Equal, double-precision scalar (cc == 00 && size == 11)

VSELEQ.F64 <Dd>, <Dn>, <Dm> // (Cannot be conditional)

Greater than or Equal, half-precision scalar (cc == 10 && size == 01)
(FEAT_FP16)

VSELGE.F16 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Greater than or Equal, single-precision scalar (cc == 10 && size == 10)

VSELGE.F32 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Greater than or Equal, double-precision scalar (cc == 10 && size == 11)

VSELGE.F64 <Dd>, <Dn>, <Dm> // (Cannot be conditional)

Greater than, half-precision scalar (cc == 11 && size == 01)
(FEAT_FP16)

VSELGT.F16 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Greater than, single-precision scalar (cc == 11 && size == 10)

VSELGT.F32 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Greater than, double-precision scalar (cc == 11 && size == 11)

VSELGT.F64 <Dd>, <Dn>, <Dm> // (Cannot be conditional)

Unordered, half-precision scalar (cc == 01 && size == 01)
(FEAT_FP16)

VSELVS.F16 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Unordered, single-precision scalar (cc == 01 && size == 10)

VSELVS.F32 <Sd>, <Sn>, <Sm> // (Cannot be conditional)

Unordered, double-precision scalar (cc == 01 && size == 11)

VSELVS.F64 <Dd>, <Dn>, <Dm> // (Cannot be conditional)

VSELEQ, VSELGE, VSELGT,
VSELVS Page 1199

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

cond = cc:(cc<1> EOR cc<0>):'0';

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 != 00 N 0 M 0 Vm
size

VSELEQ, VSELGE, VSELGT,
VSELVS Page 1200

Equal, half-precision scalar (cc == 00 && size == 01)
(FEAT_FP16)

VSELEQ.F16 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Equal, single-precision scalar (cc == 00 && size == 10)

VSELEQ.F32 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Equal, double-precision scalar (cc == 00 && size == 11)

VSELEQ.F64 <Dd>, <Dn>, <Dm> // (Not permitted in IT block)

Greater than or Equal, half-precision scalar (cc == 10 && size == 01)
(FEAT_FP16)

VSELGE.F16 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Greater than or Equal, single-precision scalar (cc == 10 && size == 10)

VSELGE.F32 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Greater than or Equal, double-precision scalar (cc == 10 && size == 11)

VSELGE.F64 <Dd>, <Dn>, <Dm> // (Not permitted in IT block)

Greater than, half-precision scalar (cc == 11 && size == 01)
(FEAT_FP16)

VSELGT.F16 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Greater than, single-precision scalar (cc == 11 && size == 10)

VSELGT.F32 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Greater than, double-precision scalar (cc == 11 && size == 11)

VSELGT.F64 <Dd>, <Dn>, <Dm> // (Not permitted in IT block)

Unordered, half-precision scalar (cc == 01 && size == 01)
(FEAT_FP16)

VSELVS.F16 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Unordered, single-precision scalar (cc == 01 && size == 10)

VSELVS.F32 <Sd>, <Sn>, <Sm> // (Not permitted in IT block)

Unordered, double-precision scalar (cc == 01 && size == 11)

VSELVS.F64 <Dd>, <Dn>, <Dm> // (Not permitted in IT block)

VSELEQ, VSELGE, VSELGT,
VSELVS Page 1201

if InITBlock() then UNPREDICTABLE;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

cond = cc:(cc<1> EOR cc<0>):'0';

CONSTRAINED UNPREDICTABLE behavior

If InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16
S[d] = Zeros(16) : (if ConditionHolds(cond) then S[n] else S[m])<15:0>;

when 32
S[d] = if ConditionHolds(cond) then S[n] else S[m];

when 64
D[d] = if ConditionHolds(cond) then D[n] else D[m];

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSELEQ, VSELGE, VSELGT,
VSELVS Page 1202

VSHL (immediate)

Vector Shift Left (immediate) takes each element in a vector of integers, left shifts them by an immediate value, and
places the results in the destination vector.
Bits shifted out of the left of each element are lost.
The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit integers. There is no distinction
between signed and unsigned integers.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VSHL{<c>}{<q>}.I<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VSHL{<c>}{<q>}.I<size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VSHL{<c>}{<q>}.I<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VSHL{<c>}{<q>}.I<size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VSHL (immediate) Page 1203

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size for the elements of the vectors, encoded in “L:imm6<5:3>”:

L imm6<5:3> <size>
0 001 8
0 01x 16
0 1xx 32
1 xxx 64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 0 to <size>-1, encoded in the "imm6" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = LSL(Elem[D[m+r],e,esize], shift_amount);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSHL (immediate) Page 1204

VSHL (register)

Vector Shift Left (register) takes each element in a vector, shifts them by a value from the least significant byte of the
corresponding element of a second vector, and places the results in the destination vector. If the shift value is positive,
the operation is a left shift. If the shift value is negative, it is a truncating right shift.
For a rounding shift, see VRSHL.
The first operand and result elements are the same data type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

The second operand is always a signed integer of the same size.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd 0 1 0 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd 0 1 0 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VSHL{<c>}{<q>}.<dt> {<Dd>,} <Dm>, <Dn>

128-bit SIMD vector (Q == 1)

VSHL{<c>}{<q>}.<dt> {<Qd>,} <Qm>, <Qn>

if Q == '1' && (Vd<0> == '1' || Vm<0> == '1' || Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); n = UInt(N:Vn); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VSHL (register) Page 1205

<dt> Is the data type for the elements of the vectors, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
0 11 S64
1 00 U8
1 01 U16
1 10 U32
1 11 U64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
shift = SInt(Elem[D[n+r],e,esize]<7:0>);
integer result;
if shift >= 0 then

result = Int(Elem[D[m+r],e,esize], unsigned) << shift;
else

result = Int(Elem[D[m+r],e,esize], unsigned) >> -shift;
Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSHL (register) Page 1206

VSHLL

Vector Shift Left Long takes each element in a doubleword vector, left shifts them by an immediate value, and places
the results in a quadword vector.
The operand elements can be:

• 8-bit, 16-bit, or 32-bit signed integers.
• 8-bit, 16-bit, or 32-bit unsigned integers.
• 8-bit, 16-bit, or 32-bit untyped integers, maximum shift only.

The result elements are twice the length of the operand elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 1 0 1 0 0 0 M 1 Vm

A1 (imm6 != 000xxx)

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

if imm6 IN {'000xxx'} then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case imm6 of

when '001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
when '01xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
when '1xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;

if shift_amount == 0 then SEE "VMOVL";
unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm);

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 0 0 M 0 Vm

A2

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

if size == '11' || Vd<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize; shift_amount = esize;
unsigned = FALSE; // Or TRUE without change of functionality
d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 1 0 1 0 0 0 M 1 Vm

VSHLL Page 1207

T1 (imm6 != 000xxx)

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

if imm6 IN {'000xxx'} then SEE "Related encodings";
if Vd<0> == '1' then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case imm6 of

when '001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
when '01xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
when '1xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;

if shift_amount == 0 then SEE "VMOVL";
unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 1 0 0 M 0 Vm

T2

VSHLL{<c>}{<q>}.<type><size> <Qd>, <Dm>, #<imm>

if size == '11' || Vd<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize; shift_amount = esize;
unsigned = FALSE; // Or TRUE without change of functionality
d = UInt(D:Vd); m = UInt(M:Vm);

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> The data type for the elements of the operand. It must be one of:
S

Signed. In encoding T1/A1, encoded as U = 0.

U
Unsigned. In encoding T1/A1, encoded as U = 1.

I
Untyped integer, Available only in encoding T2/A2.

<size> The data size for the elements of the operand. The following table shows the permitted values and their
encodings:
<size> Encoding T1/A1 Encoding T2/A2
8 Encoded as imm6<5:3> = 0b001 Encoded as size = 0b00
16 Encoded as imm6<5:4> = 0b01 Encoded as size = 0b01
32 Encoded as imm6<5> = 1 Encoded as size = 0b10

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> The immediate value. <imm> must lie in the range 1 to <size>, and:
• If <size> == <imm>, the encoding is T2/A2.
• Otherwise, the encoding is T1/A1, and:

◦ If <size> == 8, <imm> is encoded in imm6<2:0>.
◦ If <size> == 16, <imm> is encoded in imm6<3:0>.
◦ If <size> == 32, <imm> is encoded in imm6<4:0>.

VSHLL Page 1208

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1

result = Int(Elem[Din[m],e,esize], unsigned) << shift_amount;
Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSHLL Page 1209

VSHR

Vector Shift Right takes each element in a vector, right shifts them by an immediate value, and places the truncated
results in the destination vector. For rounded results, see VRSHR.
The operand and result elements must be the same size, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 0 0 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);

unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 0 0 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VSHR{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VSHR{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);

unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VSHR Page 1210

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> Is the data type for the elements of the vectors, encoded in “U”:

U <type>
0 S
1 U

<size> Is the data size for the elements of the vectors, encoded in “L:imm6<5:3>”:

L imm6<5:3> <size>
0 001 8
0 01x 16
0 1xx 32
1 xxx 64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
result = Int(Elem[D[m+r],e,esize], unsigned) >> shift_amount;
Elem[D[d+r],e,esize] = result<esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSHR Page 1211

VSHR (zero)

Vector Shift Right copies the contents of one SIMD register to another.

This is a pseudo-instruction of VORR (register). This means:

• The encodings in this description are named to match the encodings of VORR (register).
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VORR (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE

behavior, and any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

128-bit SIMD vector (Q == 1)

VSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 0 Vn Vd 0 0 0 1 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VSHR{<c>}{<q>}.<dt> <Dd>, <Dm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Dd>, <Dm>, <Dm>

128-bit SIMD vector (Q == 1)

VSHR{<c>}{<q>}.<dt> <Qd>, <Qm>, #0

is equivalent to

VORR{<c>}{<q>}{.<dt>} <Qd>, <Qm>, <Qm>

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VSHR (zero) Page 1212

<dt> Is the data type for the elements of the vectors, and must be one of: S8, S16, S32, S64, U8, U16, U32 or
U64.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field as
<Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "N:Vn" and "M:Vm" field.

Operation

The description of VORR (register) gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSHR (zero) Page 1213

VSHRN

Vector Shift Right Narrow takes each element in a vector, right shifts them by an immediate value, and places the
truncated results in the destination vector. For rounded results, see VRSHRN.
The operand elements can be 16-bit, 32-bit, or 64-bit integers. There is no distinction between signed and unsigned
integers. The destination elements are half the size of the source elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D imm6 Vd 1 0 0 0 0 0 M 1 Vm

A1 (imm6 != 000xxx)

VSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

if imm6 IN {'000xxx'} then SEE "Related encodings";
if Vm<0> == '1' then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case imm6 of

when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);

d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D imm6 Vd 1 0 0 0 0 0 M 1 Vm

T1 (imm6 != 000xxx)

VSHRN{<c>}{<q>}.I<size> <Dd>, <Qm>, #<imm>

if imm6 IN {'000xxx'} then SEE "Related encodings";
if Vm<0> == '1' then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case imm6 of

when '001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '01xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '1xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);

d = UInt(D:Vd); m = UInt(M:Vm);

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VSHRN Page 1214

<size> Is the data size for the elements of the vectors, encoded in “imm6<5:3>”:

imm6<5:3> <size>
001 16
01x 32
1xx 64

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<imm> Is an immediate value, in the range 1 to <size>/2, encoded in the "imm6" field as <size>/2 - <imm>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1

result = LSR(Elem[Qin[m>>1],e,2*esize], shift_amount);
Elem[D[d],e,esize] = result<esize-1:0>;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSHRN Page 1215

VSHRN (zero)

Vector Shift Right Narrow takes each element in a vector, right shifts them by an immediate value, and places the
truncated results in the destination vector.

This is a pseudo-instruction of VMOVN. This means:

• The encodings in this description are named to match the encodings of VMOVN.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VMOVN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and

any operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm

A1

VSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 1 0 0 0 M 0 Vm

T1

VSHRN{<c>}{<q>}.<dt> <Dd>, <Qm>, #0

is equivalent to

VMOVN{<c>}{<q>}.<dt> <Dd>, <Qm>

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operand, encoded in “size”:

size <dt>
00 I16
01 I32
10 I64
11 RESERVED

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

The description of VMOVN gives the operational pseudocode for this instruction.

VSHRN (zero) Page 1216

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSHRN (zero) Page 1217

VSLI

Vector Shift Left and Insert takes each element in the operand vector, left shifts them by an immediate value, and
inserts the results in the destination vector. Bits shifted out of the left of each element are lost.
The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit. There is no distinction between data
types.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VSLI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VSLI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D imm6 Vd 0 1 0 1 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VSLI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VSLI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = UInt(imm6) - 8;
when '001xxxx' esize = 16; elements = 4; shift_amount = UInt(imm6) - 16;
when '01xxxxx' esize = 32; elements = 2; shift_amount = UInt(imm6) - 32;
when '1xxxxxx' esize = 64; elements = 1; shift_amount = UInt(imm6);

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VSLI Page 1218

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size for the elements of the vectors, encoded in “L:imm6<5:3>”:

L imm6<5:3> <size>
0 001 8
0 01x 16
0 1xx 32
1 xxx 64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 0 to <size>-1, encoded in the "imm6" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
mask = LSL(Ones(esize), shift_amount);
for r = 0 to regs-1

for e = 0 to elements-1
shifted_op = LSL(Elem[D[m+r],e,esize], shift_amount);
Elem[D[d+r],e,esize] = (Elem[D[d+r],e,esize] AND NOT(mask)) OR shifted_op;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSLI Page 1219

VSMMLA

The widening integer matrix multiply-accumulate instruction multiplies the 2x8 matrix of signed 8-bit integer values
held in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source vector. The
resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator held in the
destination vector. This is equivalent to performing an 8-way dot product per destination element.
From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in the
T32 and A32 instruction sets.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 0 N 1 M 0 Vm
B U

A1

VSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

if !HaveAArch32Int8MatMulExt() then UNDEFINED;
boolean op1_unsigned;
boolean op2_unsigned;
case B:U of

when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
when '11' UNDEFINED;

if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);

T1
(FEAT_AA32I8MM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 0 N 1 M 0 Vm
B U

T1

VSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32Int8MatMulExt() then UNDEFINED;
boolean op1_unsigned;
boolean op2_unsigned;
case B:U of

when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
when '11' UNDEFINED;

if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);

Assembler Symbols

<q> See Standard assembler syntax fields.

VSMMLA Page 1220

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd" field
as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

CheckAdvSIMDEnabled();
bits(128) operand1 = Q[n>>1];
bits(128) operand2 = Q[m>>1];
bits(128) addend = Q[d>>1];

Q[d>>1] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSMMLA Page 1221

VSQRT

Square Root calculates the square root of the value in a floating-point register and writes the result to another
floating-point register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 1 1 M 0 Vm
cond

Half-precision scalar (size == 01)
(FEAT_FP16)

VSQRT{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VSQRT{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VSQRT{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 0 0 0 1 Vd 1 0 size 1 1 M 0 Vm

VSQRT Page 1222

Half-precision scalar (size == 01)
(FEAT_FP16)

VSQRT{<c>}{<q>}.F16 <Sd>, <Sm>

Single-precision scalar (size == 10)

VSQRT{<c>}{<q>}.F32 <Sd>, <Sm>

Double-precision scalar (size == 11)

VSQRT{<c>}{<q>}.F64 <Dd>, <Dm>

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
integer esize;
integer d;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); m = UInt(M:Vm);

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sm> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vm:M" field.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
case esize of

when 16 S[d] = Zeros(16) : FPSqrt(S[m]<15:0>, FPSCR[]);
when 32 S[d] = FPSqrt(S[m], FPSCR[]);
when 64 D[d] = FPSqrt(D[m], FPSCR[]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSQRT Page 1223

VSRA

Vector Shift Right and Accumulate takes each element in a vector, right shifts them by an immediate value, and
accumulates the truncated results into the destination vector. For rounded results, see VRSRA.
The operand and result elements must all be the same type, and can be any one of:

• 8-bit, 16-bit, 32-bit, or 64-bit signed integers.
• 8-bit, 16-bit, 32-bit, or 64-bit unsigned integers.

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm6 Vd 0 0 0 1 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VSRA{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VSRA{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);

unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm6 Vd 0 0 0 1 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VSRA{<c>}{<q>}.<type><size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VSRA{<c>}{<q>}.<type><size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);

unsigned = (U == '1'); d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VSRA Page 1224

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<type> Is the data type for the elements of the vectors, encoded in “U”:

U <type>
0 S
1 U

<size> Is the data size for the elements of the vectors, encoded in “L:imm6<5:3>”:

L imm6<5:3> <size>
0 001 8
0 01x 16
0 1xx 32
1 xxx 64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
result = Int(Elem[D[m+r],e,esize], unsigned) >> shift_amount;
Elem[D[d+r],e,esize] = Elem[D[d+r],e,esize] + result;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSRA Page 1225

VSRI

Vector Shift Right and Insert takes each element in the operand vector, right shifts them by an immediate value, and
inserts the results in the destination vector. Bits shifted out of the right of each element are lost.
The elements must all be the same size, and can be 8-bit, 16-bit, 32-bit, or 64-bit. There is no distinction between data
types.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D imm6 Vd 0 1 0 0 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VSRI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VSRI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D imm6 Vd 0 1 0 0 L Q M 1 Vm

64-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 0)

VSRI{<c>}{<q>}.<size> {<Dd>,} <Dm>, #<imm>

128-bit SIMD vector (!(imm6 == 000xxx && L == 0) && Q == 1)

VSRI{<c>}{<q>}.<size> {<Qd>,} <Qm>, #<imm>

if (L:imm6) IN {'0000xxx'} then SEE "Related encodings";
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer esize;
integer elements;
integer shift_amount;
case L:imm6 of

when '0001xxx' esize = 8; elements = 8; shift_amount = 16 - UInt(imm6);
when '001xxxx' esize = 16; elements = 4; shift_amount = 32 - UInt(imm6);
when '01xxxxx' esize = 32; elements = 2; shift_amount = 64 - UInt(imm6);
when '1xxxxxx' esize = 64; elements = 1; shift_amount = 64 - UInt(imm6);

d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VSRI Page 1226

Related encodings: See Advanced SIMD one register and modified immediate for the T32 instruction set, or Advanced
SIMD one register and modified immediate for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size for the elements of the vectors, encoded in “L:imm6<5:3>”:

L imm6<5:3> <size>
0 001 8
0 01x 16
0 1xx 32
1 xxx 64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

<imm> Is an immediate value, in the range 1 to <size>, encoded in the "imm6" field as <size> - <imm>.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
mask = LSR(Ones(esize), shift_amount);
for r = 0 to regs-1

for e = 0 to elements-1
shifted_op = LSR(Elem[D[m+r],e,esize], shift_amount);
Elem[D[d+r],e,esize] = (Elem[D[d+r],e,esize] AND NOT(mask)) OR shifted_op;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSRI Page 1227

VST1 (multiple single elements)

Store multiple single elements from one, two, three, or four registers stores elements to memory from one, two, three,
or four registers, without interleaving. Every element of each register is stored. For details of the addressing mode,
see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 , A2 , A3 and A4) and T32 (T1 , T2 , T3 and T4) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 1 1 1 size align Rm

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 1; if align<1> == '1' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 1 0 1 0 size align Rm

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 2; if align == '11' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

VST1 (multiple single
elements) Page 1228

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

A3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 1 1 0 size align Rm

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 3; if align<1> == '1' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

A4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 0 1 0 size align Rm

VST1 (multiple single
elements) Page 1229

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 4;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 1 1 1 size align Rm

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 1; if align<1> == '1' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 1 0 1 0 size align Rm

VST1 (multiple single
elements) Page 1230

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 2; if align == '11' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 1 1 0 size align Rm

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 3; if align<1> == '1' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

VST1 (multiple single
elements) Page 1231

T4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 0 1 0 size align Rm

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

regs = 4;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d+regs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d+regs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VST1 (multiple single elements).
Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced SIMD
element or structure load/store for the A32 instruction set.

Assembler Symbols

<c> For encoding A1, A2, A3 and A4: see Standard assembler syntax fields. This encoding must be
unconditional.
For encoding T1, T2, T3 and T4: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32
11 64

<list> Is a list containing the 64-bit names of the SIMD&FP registers.
The list must be one of:
{ <Dd> }

Single register. Selects the A1 and T1 encodings of the instruction.

{ <Dd>, <Dd+1> }
Two single-spaced registers. Selects the A2 and T2 encodings of the instruction.

VST1 (multiple single
elements) Page 1232

{ <Dd>, <Dd+1>, <Dd+2> }
Three single-spaced registers. Selects the A3 and T3 encodings of the instruction.

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }
Four single-spaced registers. Selects the A4 and T4 encodings of the instruction.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.
Whenever <align> is present, the permitted values are:
64

64-bit alignment, encoded in the "align" field as 0b01.

128
128-bit alignment, encoded in the "align" field as 0b10. Available only if <list> contains two or four
registers.

256
256-bit alignment, encoded in the "align" field as 0b11. Available only if <list> contains four
registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about <Rn>, !, and <Rm>, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

for r = 0 to regs-1
for e = 0 to elements-1

if ebytes != 8 then
MemU[address,ebytes] = Elem[D[d+r],e,8*ebytes];

else
if !IsAligned(address, ebytes) && AlignmentEnforced() then

AArch32.Abort(address, AlignmentFault(accdesc));

bits(64) data = Elem[D[d+r],e,64];
if BigEndian(AccessType_ASIMD) then

MemU[address,4] = data<63:32>;
MemU[address+4,4] = data<31:0>;

else
MemU[address,4] = data<31:0>;
MemU[address+4,4] = data<63:32>;

address = address + ebytes;
if wback then

if register_index then
R[n] = R[n] + R[m];

else
R[n] = R[n] + 8*regs;

VST1 (multiple single
elements) Page 1233

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VST1 (multiple single
elements) Page 1234

VST1 (single element from one lane)

Store single element from one lane of one register stores one element to memory from one element of a register. For
details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 , A2 and A3) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 0 0 0 index_align Rm
size

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
if index_align<0> != '0' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 1 0 0 index_align Rm
size

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
if index_align<1> != '0' then UNDEFINED;
ebytes = 2; index = UInt(index_align<3:2>);
alignment = if index_align<0> == '0' then 1 else 2;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

VST1 (single element from
one lane) Page 1235

A3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 1 0 0 0 index_align Rm
size

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
if index_align<2> != '0' then UNDEFINED;
if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
alignment = if index_align<1:0> == '00' then 1 else 4;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 0 0 0 index_align Rm
size

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
if index_align<0> != '0' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); alignment = 1;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 1 0 0 index_align Rm
size

VST1 (single element from
one lane) Page 1236

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
if index_align<1> != '0' then UNDEFINED;
ebytes = 2; index = UInt(index_align<3:2>);
alignment = if index_align<0> == '0' then 1 else 2;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 1 0 0 0 index_align Rm
size

Offset (Rm == 1111)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST1{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
if index_align<2> != '0' then UNDEFINED;
if index_align<1:0> != '00' && index_align<1:0> != '11' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
alignment = if index_align<1:0> == '00' then 1 else 4;
d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

VST1 (single element from
one lane) Page 1237

size <size>
00 8
01 16
10 32

<list> Is a list containing the single 64-bit name of the SIMD&FP register holding the element.
The list must be { <Dd>[<index>] }.
The register <Dd> is encoded in the "D:Vd" field.
The permitted values and encoding of <index> depend on <size>:
<size> == 8

<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16
<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32
<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> When <size> == 8, <align> must be omitted, otherwise it is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and the
encoding depends on <size>:
<size> == 8

Encoded in the "index_align<0>" field as 0.

<size> == 16
Encoded in the "index_align<1:0>" field as 0b00.

<size> == 32
Encoded in the "index_align<2:0>" field as 0b000.

Whenever <align> is present, the permitted values and encoding depend on <size>:
<size> == 16

<align> is 16, meaning 16-bit alignment, encoded in the "index_align<1:0>" field as 0b01.

<size> == 32
<align> is 32, meaning 32-bit alignment, encoded in the "index_align<2:0>" field as 0b011.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

MemU[address,ebytes] = Elem[D[d],index,8*ebytes];
if wback then

if register_index then
R[n] = R[n] + R[m];

else
R[n] = R[n] + ebytes;

VST1 (single element from
one lane) Page 1238

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VST1 (single element from
one lane) Page 1239

VST2 (multiple 2-element structures)

Store multiple 2-element structures from two or four registers stores multiple 2-element structures from two or four
registers to memory, with interleaving. For more information, see Element and structure load/store instructions. Every
element of each register is saved. For details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 1 0 0 x size align Rm
itype

Offset (Rm == 1111)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

pairs = 1; if align == '11' then UNDEFINED;
if size == '11' then UNDEFINED;
inc = if itype == '1001' then 2 else 1;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 0 1 1 size align Rm

VST2 (multiple 2-element
structures) Page 1240

Offset (Rm == 1111)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

pairs = 2; inc = 2;
if size == '11' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 1 0 0 x size align Rm
itype

Offset (Rm == 1111)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

pairs = 1; if align == '11' then UNDEFINED;
if size == '11' then UNDEFINED;
inc = if itype == '1001' then 2 else 1;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

VST2 (multiple 2-element
structures) Page 1241

• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 0 1 1 size align Rm

Offset (Rm == 1111)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

pairs = 2; inc = 2;
if size == '11' then UNDEFINED;
alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2+pairs > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2+pairs > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VST2 (multiple 2-element structures).
Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced SIMD
element or structure load/store for the A32 instruction set.

Assembler Symbols

<c> For encoding A1 and A2: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32
11 RESERVED

<list> Is a list containing the 64-bit names of the SIMD&FP registers.
The list must be one of:

VST2 (multiple 2-element
structures) Page 1242

{ <Dd>, <Dd+1> }
Two single-spaced registers. Selects the A1 and T1 encodings of the instruction, and encoded in
the "itype" field as 0b1000.

{ <Dd>, <Dd+2> }
Two double-spaced registers. Selects the A1 and T1 encodings of the instruction, and encoded in
the "itype" field as 0b1001.

{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }
Three single-spaced registers. Selects the A2 and T2 encodings of the instruction.

The register <Dd> is encoded in the "D:Vd" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.
Whenever <align> is present, the permitted values are:
64

64-bit alignment, encoded in the "align" field as 0b01.

128
128-bit alignment, encoded in the "align" field as 0b10.

256
256-bit alignment, encoded in the "align" field as 0b11. Available only if <list> contains four
registers.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

for r = 0 to pairs-1
for e = 0 to elements-1

MemU[address, ebytes] = Elem[D[d+r], e,8*ebytes];
MemU[address+ebytes,ebytes] = Elem[D[d2+r],e,8*ebytes];
address = address + 2*ebytes;

if wback then
if register_index then

R[n] = R[n] + R[m];
else

R[n] = R[n] + 16*pairs;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VST2 (multiple 2-element
structures) Page 1243

VST2 (single 2-element structure from one lane)

Store single 2-element structure from one lane of two registers stores one 2-element structure to memory from
corresponding elements of two registers. For details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 , A2 and A3) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 0 0 1 index_align Rm
size

Offset (Rm == 1111)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
alignment = if index_align<0> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 1 0 1 index_align Rm
size

VST2 (single 2-element
structure from one lane) Page 1244

Offset (Rm == 1111)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 4;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

A3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 1 0 0 1 index_align Rm
size

Offset (Rm == 1111)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
if index_align<1> != '0' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 8;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

VST2 (single 2-element
structure from one lane) Page 1245

• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 0 0 1 index_align Rm
size

Offset (Rm == 1111)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
alignment = if index_align<0> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 1 0 1 index_align Rm
size

VST2 (single 2-element
structure from one lane) Page 1246

Offset (Rm == 1111)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 4;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 1 0 0 1 index_align Rm
size

Offset (Rm == 1111)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST2{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
if index_align<1> != '0' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 8;
d = UInt(D:Vd); d2 = d + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d2 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d2 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.

VST2 (single 2-element
structure from one lane) Page 1247

• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VST2 (single 2-element structure from one lane).

Assembler Symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32

<list> Is a list containing the 64-bit names of the two SIMD&FP registers holding the element.
The list must be one of:
{ <Dd>[<index>], <Dd+1>[<index>] }

Single-spaced registers, encoded as "spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>] }
Double-spaced registers, encoded as "spacing" = 1. Not permitted when <size> == 8.

The encoding of "spacing" depends on <size>:
<size> == 16

"spacing" is encoded in the "index_align<1>" field.

<size> == 32
"spacing" is encoded in the "index_align<2>" field.

The register <Dd> is encoded in the "D:Vd" field.
The permitted values and encoding of <index> depend on <size>:
<size> == 8

<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16
<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32
<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and the
encoding depends on <size>:
<size> == 8

Encoded in the "index_align<0>" field as 0.

<size> == 16
Encoded in the "index_align<0>" field as 0.

<size> == 32
Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:
<size> == 8

<align> is 16, meaning 16-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 16
<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.

VST2 (single 2-element
structure from one lane) Page 1248

<size> == 32
<align> is 64, meaning 64-bit alignment, encoded in the "index_align<1:0>" field as 0b01.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

MemU[address, ebytes] = Elem[D[d], index,8*ebytes];
MemU[address+ebytes,ebytes] = Elem[D[d2],index,8*ebytes];
if wback then

if register_index then
R[n] = R[n] + R[m];

else
R[n] = R[n] + 2*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VST2 (single 2-element
structure from one lane) Page 1249

VST3 (multiple 3-element structures)

Store multiple 3-element structures from three registers stores multiple 3-element structures to memory from three
registers, with interleaving. For more information, see Element and structure load/store instructions. Every element of
each register is saved. For details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 1 0 x size align Rm
itype

Offset (Rm == 1111)

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' || align<1> == '1' then UNDEFINED;
integer inc;
case itype of

when '0100'
inc = 1;

when '0101'
inc = 2;

otherwise
SEE "Related encodings";

alignment = if align<0> == '0' then 1 else 8;
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 1 0 x size align Rm
itype

VST3 (multiple 3-element
structures) Page 1250

Offset (Rm == 1111)

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST3{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' || align<1> == '1' then UNDEFINED;
integer inc;
case itype of

when '0100'
inc = 1;

when '0101'
inc = 2;

otherwise
SEE "Related encodings";

alignment = if align<0> == '0' then 1 else 8;
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VST3 (multiple 3-element structures).
Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced SIMD
element or structure load/store for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32
11 RESERVED

<list> Is a list containing the 64-bit names of the SIMD&FP registers.
The list must be one of:
{ <Dd>, <Dd+1>, <Dd+2> }

Single-spaced registers, encoded in the "itype" field as 0b0100.

{ <Dd>, <Dd+2>, <Dd+4> }
Double-spaced registers, encoded in the "itype" field as 0b0101.

The register <Dd> is encoded in the "D:Vd" field.

VST3 (multiple 3-element
structures) Page 1251

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.
Whenever <align> is present, the only permitted values is 64, meaning 64-bit alignment, encoded in the
"align" field as 0b01.
: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

for e = 0 to elements-1
MemU[address, ebytes] = Elem[D[d], e,8*ebytes];
MemU[address+ebytes, ebytes] = Elem[D[d2],e,8*ebytes];
MemU[address+2*ebytes,ebytes] = Elem[D[d3],e,8*ebytes];
address = address + 3*ebytes;

if wback then
if register_index then

R[n] = R[n] + R[m];
else

R[n] = R[n] + 24;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VST3 (multiple 3-element
structures) Page 1252

VST3 (single 3-element structure from one lane)

Store single 3-element structure from one lane of three registers stores one 3-element structure to memory from
corresponding elements of three registers. For details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 , A2 and A3) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 0 1 0 index_align Rm
size

Offset (Rm == 1111)

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' then UNDEFINED;
if index_align<0> != '0' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 1 1 0 index_align Rm
size

VST3 (single 3-element
structure from one lane) Page 1253

Offset (Rm == 1111)

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' then UNDEFINED;
if index_align<0> != '0' then UNDEFINED;
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

A3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 1 0 1 0 index_align Rm
size

Offset (Rm == 1111)

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' then UNDEFINED;
if index_align<1:0> != '00' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

VST3 (single 3-element
structure from one lane) Page 1254

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 0 1 0 index_align Rm
size

Offset (Rm == 1111)

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' then UNDEFINED;
if index_align<0> != '0' then UNDEFINED;
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 1 1 0 index_align Rm
size

VST3 (single 3-element
structure from one lane) Page 1255

Offset (Rm == 1111)

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' then UNDEFINED;
if index_align<0> != '0' then UNDEFINED;
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 1 0 1 0 index_align Rm
size

Offset (Rm == 1111)

VST3{<c>}{<q>}.<size> <list>, [<Rn>]

Post-indexed (Rm == 1101)

VST3{<c>}{<q>}.<size> <list>, [<Rn>]!

Post-indexed (Rm != 11x1)

VST3{<c>}{<q>}.<size> <list>, [<Rn>], <Rm>

if size == '11' then UNDEFINED;
if index_align<1:0> != '00' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d3 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d3 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

VST3 (single 3-element
structure from one lane) Page 1256

• The memory locations specified by the instruction and the number of registers specified by the instruction
become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VST3 (single 3-element structure from one lane).

Assembler Symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32

<list> Is a list containing the 64-bit names of the three SIMD&FP registers holding the element.
The list must be one of:
{ <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>] }

Single-spaced registers, encoded as "spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>] }
Double-spaced registers, encoded as "spacing" = 1. Not permitted when <size> == 8.

The encoding of "spacing" depends on <size>:
<size> == 8

"spacing" is encoded in the "index_align<0>" field.

<size> == 16
"spacing" is encoded in the "index_align<1>" field, and "index_align<0>" is set to 0.

<size> == 32
"spacing" is encoded in the "index_align<2>" field, and "index_align<1:0>" is set to 0b00.

The register <Dd> is encoded in the "D:Vd" field.
The permitted values and encoding of <index> depend on <size>:
<size> == 8

<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16
<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32
<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.
Alignment
Standard alignment rules apply, see Alignment support.

VST3 (single 3-element
structure from one lane) Page 1257

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
address = R[n];
MemU[address, ebytes] = Elem[D[d], index,8*ebytes];
MemU[address+ebytes, ebytes] = Elem[D[d2],index,8*ebytes];
MemU[address+2*ebytes,ebytes] = Elem[D[d3],index,8*ebytes];
if wback then

if register_index then
R[n] = R[n] + R[m];

else
R[n] = R[n] + 3*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VST3 (single 3-element
structure from one lane) Page 1258

VST4 (multiple 4-element structures)

Store multiple 4-element structures from four registers stores multiple 4-element structures to memory from four
registers, with interleaving. For more information, see Element and structure load/store instructions. Every element of
each register is saved. For details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D 0 0 Rn Vd 0 0 0 x size align Rm
itype

Offset (Rm == 1111)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
integer inc;
case itype of

when '0000'
inc = 1;

when '0001'
inc = 2;

otherwise
SEE "Related encodings";

alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D 0 0 Rn Vd 0 0 0 x size align Rm
itype

VST4 (multiple 4-element
structures) Page 1259

Offset (Rm == 1111)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
integer inc;
case itype of

when '0000'
inc = 1;

when '0001'
inc = 2;

otherwise
SEE "Related encodings";

alignment = if align == '00' then 1 else 4 << UInt(align);
ebytes = 1 << UInt(size); elements = 8 DIV ebytes;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VST4 (multiple 4-element structures).
Related encodings: See Advanced SIMD element or structure load/store for the T32 instruction set, or Advanced SIMD
element or structure load/store for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32
11 RESERVED

<list> Is a list containing the 64-bit names of the SIMD&FP registers.
The list must be one of:
{ <Dd>, <Dd+1>, <Dd+2>, <Dd+3> }

Single-spaced registers, encoded in the "itype" field as 0b0000.

{ <Dd>, <Dd+2>, <Dd+4>, <Dd+6> }
Double-spaced registers, encoded in the "itype" field as 0b0001.

The register <Dd> is encoded in the "D:Vd" field.

VST4 (multiple 4-element
structures) Page 1260

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and is
encoded in the "align" field as 0b00.
Whenever <align> is present, the permitted values are:
64

64-bit alignment, encoded in the "align" field as 0b01.

128
128-bit alignment, encoded in the "align" field as 0b10.

256
256-bit alignment, encoded in the "align" field as 0b11.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

for e = 0 to elements-1
MemU[address, ebytes] = Elem[D[d], e,8*ebytes];
MemU[address+ebytes, ebytes] = Elem[D[d2],e,8*ebytes];
MemU[address+2*ebytes,ebytes] = Elem[D[d3],e,8*ebytes];
MemU[address+3*ebytes,ebytes] = Elem[D[d4],e,8*ebytes];
address = address + 4*ebytes;

if wback then
if register_index then

R[n] = R[n] + R[m];
else

R[n] = R[n] + 32;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VST4 (multiple 4-element
structures) Page 1261

VST4 (single 4-element structure from one lane)

Store single 4-element structure from one lane of four registers stores one 4-element structure to memory from
corresponding elements of four registers. For details of the addressing mode, see Advanced SIMD addressing mode.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 , A2 and A3) and T32 (T1 , T2 and T3) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 0 1 1 index_align Rm
size

Offset (Rm == 1111)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
if size != '00' then SEE "Related encodings";
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
alignment = if index_align<0> == '0' then 1 else 4;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 0 1 1 1 index_align Rm
size

VST4 (single 4-element
structure from one lane) Page 1262

Offset (Rm == 1111)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
if size != '01' then SEE "Related encodings";
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 8;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

A3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D 0 0 Rn Vd 1 0 1 1 index_align Rm
size

Offset (Rm == 1111)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
if size != '10' then SEE "Related encodings";
if index_align<1:0> == '11' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

VST4 (single 4-element
structure from one lane) Page 1263

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 0 1 1 index_align Rm
size

Offset (Rm == 1111)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
if size != '00' then SEE "Related encodings";
ebytes = 1; index = UInt(index_align<3:1>); inc = 1;
alignment = if index_align<0> == '0' then 1 else 4;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 0 1 1 1 index_align Rm
size

VST4 (single 4-element
structure from one lane) Page 1264

Offset (Rm == 1111)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm == 1101)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

Post-indexed (Rm != 11x1)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

if size == '11' then UNDEFINED;
if size != '01' then SEE "Related encodings";
ebytes = 2; index = UInt(index_align<3:2>);
inc = if index_align<1> == '0' then 1 else 2;
alignment = if index_align<0> == '0' then 1 else 8;
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D 0 0 Rn Vd 1 0 1 1 index_align Rm
size

Offset (Rm == 1111)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]

Post-indexed (Rm != 11x1)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}], <Rm>

Post-indexed (Rm == 1101)

VST4{<c>}{<q>}.<size> <list>, [<Rn>{:<align>}]!

if size == '11' then UNDEFINED;
if size != '10' then SEE "Related encodings";
if index_align<1:0> == '11' then UNDEFINED;
ebytes = 4; index = UInt(index_align<3>);
inc = if index_align<2> == '0' then 1 else 2;
alignment = if index_align<1:0> == '00' then 1 else 4 << UInt(index_align<1:0>);
d = UInt(D:Vd); d2 = d + inc; d3 = d2 + inc; d4 = d3 + inc; n = UInt(Rn); m = UInt(Rm);
wback = (m != 15); register_index = (m != 15 && m != 13);
if n == 15 || d4 > 31 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If d4 > 31, then one of the following behaviors must occur:

VST4 (single 4-element
structure from one lane) Page 1265

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VST4 (single 4-element structure from one lane).

Assembler Symbols

<c> For encoding A1, A2 and A3: see Standard assembler syntax fields. This encoding must be
unconditional.
For encoding T1, T2 and T3: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<size> Is the data size, encoded in “size”:

size <size>
00 8
01 16
10 32

<list> Is a list containing the 64-bit names of the four SIMD&FP registers holding the element.
The list must be one of:
{ <Dd>[<index>], <Dd+1>[<index>], <Dd+2>[<index>], <Dd+3>[<index>] }

Single-spaced registers, encoded as "spacing" = 0.

{ <Dd>[<index>], <Dd+2>[<index>], <Dd+4>[<index>], <Dd+6>[<index>] }
Double-spaced registers, encoded as "spacing" = 1. Not permitted when <size> == 8.

The encoding of "spacing" depends on <size>:
<size> == 16

"spacing" is encoded in the "index_align<1>" field.

<size> == 32
"spacing" is encoded in the "index_align<2>" field.

The register <Dd> is encoded in the "D:Vd" field.
The permitted values and encoding of <index> depend on <size>:
<size> == 8

<index> is in the range 0 to 7, encoded in the "index_align<3:1>" field.

<size> == 16
<index> is in the range 0 to 3, encoded in the "index_align<3:2>" field.

<size> == 32
<index> is 0 or 1, encoded in the "index_align<3>" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<align> Is the optional alignment.
Whenever <align> is omitted, the standard alignment is used, see Unaligned data access, and the
encoding depends on <size>:
<size> == 8

Encoded in the "index_align<0>" field as 0.

<size> == 16
Encoded in the "index_align<0>" field as 0.

<size> == 32
Encoded in the "index_align<1:0>" field as 0b00.

Whenever <align> is present, the permitted values and encoding depend on <size>:
<size> == 8

<align> is 32, meaning 32-bit alignment, encoded in the "index_align<0>" field as 1.

VST4 (single 4-element
structure from one lane) Page 1266

<size> == 16
<align> is 64, meaning 64-bit alignment, encoded in the "index_align<0>" field as 1.

<size> == 32
<align> can be 64 or 128. 64-bit alignment is encoded in the "index_align<1:0>" field as 0b01,
and 128-bit alignment is encoded in the "index_align<1:0>" field as 0b10.

: is the preferred separator before the <align> value, but the alignment can be specified as @<align>,
see Advanced SIMD addressing mode.

<Rm> Is the general-purpose index register containing an offset applied after the access, encoded in the "Rm"
field.

For more information about the variants of this instruction, see Advanced SIMD addressing mode.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
CheckAdvSIMDEnabled();

address = R[n];

boolean nontemporal = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescASIMD(MemOp_STORE, nontemporal, tagchecked);
if !IsAligned(address, alignment) then

AArch32.Abort(address, AlignmentFault(accdesc));

MemU[address, ebytes] = Elem[D[d], index,8*ebytes];
MemU[address+ebytes, ebytes] = Elem[D[d2],index,8*ebytes];
MemU[address+2*ebytes,ebytes] = Elem[D[d3],index,8*ebytes];
MemU[address+3*ebytes,ebytes] = Elem[D[d4],index,8*ebytes];
if wback then

if register_index then
R[n] = R[n] + R[m];

else
R[n] = R[n] + 4*ebytes;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VST4 (single 4-element
structure from one lane) Page 1267

VSTM, VSTMDB, VSTMIA

Store multiple SIMD&FP registers stores multiple registers from the Advanced SIMD and floating-point register file to
consecutive memory locations using an address from a general-purpose register.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information, see Enabling Advanced SIMD and floating-point support.
This instruction is used by the alias VPUSH.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 0
cond imm8<0>

Decrement Before (P == 1 && U == 0 && W == 1)

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After (P == 0 && U == 1)

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE "VSTR";
if P == U && W == '1' then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 P U D W 0 Rn Vd 1 0 1 0 imm8
cond

VSTM, VSTMDB, VSTMIA Page 1268

Decrement Before (P == 1 && U == 0 && W == 1)

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After (P == 0 && U == 1)

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE "VSTR";
if P == U && W == '1' then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 1 imm8<7:1> 0
imm8<0>

Decrement Before (P == 1 && U == 0 && W == 1)

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <dreglist>

Increment After (P == 0 && U == 1)

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <dreglist>

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE "VSTR";
if P == U && W == '1' then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = FALSE; add = (U == '1'); wback = (W == '1');
d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see "FSTDBMX, FSTMIAX".
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
if imm8<0> == '1' && (d+regs) > 16 then UNPREDICTABLE;

VSTM, VSTMDB, VSTMIA Page 1269

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If regs > 16 || (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 0 Rn Vd 1 0 1 0 imm8

Decrement Before (P == 1 && U == 0 && W == 1)

VSTMDB{<c>}{<q>}{.<size>} <Rn>!, <sreglist>

Increment After (P == 0 && U == 1)

VSTM{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

VSTMIA{<c>}{<q>}{.<size>} <Rn>{!}, <sreglist>

if P == '0' && U == '0' && W == '0' then SEE "Related encodings";
if P == '1' && W == '0' then SEE "VSTR";
if P == U && W == '1' then UNDEFINED;
// Remaining combinations are PUW = 010 (IA without !), 011 (IA with !), 101 (DB with !)
single_regs = TRUE; add = (U == '1'); wback = (W == '1'); d = UInt(Vd:D); n = UInt(Rn);
imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
if n == 15 && (wback || CurrentInstrSet() != InstrSet_A32) then UNPREDICTABLE;
if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If regs == 0, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The instruction operates as a VSTM with the same addressing mode but stores no registers.

If (d+regs) > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• The memory locations specified by the instruction and the number of registers specified by the instruction

become UNKNOWN. If the instruction specifies writeback, then that register becomes UNKNOWN. This behavior
does not affect any other memory locations.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors, and particularly VSTM.
Related encodings: See Advanced SIMD and floating-point 64-bit move for the T32 instruction set, or Advanced SIMD
and floating-point 64-bit move for the A32 instruction set.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

VSTM, VSTMDB, VSTMIA Page 1270

<size> An optional data size specifier. If present, it must be equal to the size in bits, 32 or 64, of the registers
being transferred.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. If writeback is not specified, the PC can
be used. However, Arm deprecates use of the PC.

! Specifies base register writeback. Encoded in the "W" field as 1 if present, otherwise 0.

<sreglist> Is the list of consecutively numbered 32-bit SIMD&FP registers to be transferred. The first register in
the list is encoded in "Vd:D", and "imm8" is set to the number of registers in the list. The list must
contain at least one register.

<dreglist> Is the list of consecutively numbered 64-bit SIMD&FP registers to be transferred. The first register in
the list is encoded in "D:Vd", and "imm8" is set to twice the number of registers in the list. The list must
contain at least one register, and must not contain more than 16 registers.

Alias Conditions

Alias Is preferred when
VPUSH P == '1' && U == '0' && W == '1' && Rn == '1101'

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
address = if add then R[n] else R[n]-imm32;
for r = 0 to regs-1

if single_regs then
MemA[address,4] = S[d+r];
address = address+4;

else
// Store as two word-aligned words in the correct order for current endianness.
if BigEndian(AccessType_ASIMD) then

MemA[address,4] = D[d+r]<63:32>;
MemA[address+4,4] = D[d+r]<31:0>;

else
MemA[address,4] = D[d+r]<31:0>;
MemA[address+4,4] = D[d+r]<63:32>;

address = address+8;

if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSTM, VSTMDB, VSTMIA Page 1271

VSTR

Store SIMD&FP register stores a single register from the Advanced SIMD and floating-point register file to memory,
using an address from a general-purpose register, with an optional offset.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information, see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 1 U D 0 0 Rn Vd 1 0 size imm8
cond

Half-precision scalar (size == 01)
(FEAT_FP16)

VSTR{<c>}{<q>}.16 <Sd>, [<Rn>{, #{+/-}<imm>}]

Single-precision scalar (size == 10)

VSTR{<c>}{<q>}{.32} <Sd>, [<Rn>{, #{+/-}<imm>}]

Double-precision scalar (size == 11)

VSTR{<c>}{<q>}{.64} <Dd>, [<Rn>{, #{+/-}<imm>}]

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
esize = 8 << UInt(size); add = (U == '1');
imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
integer d;
case size of

when '01' d = UInt(Vd:D);
when '10' d = UInt(Vd:D);
when '11' d = UInt(D:Vd);

n = UInt(Rn);
if n == 15 && CurrentInstrSet() != InstrSet_A32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 1 U D 0 0 Rn Vd 1 0 size imm8

VSTR Page 1272

Half-precision scalar (size == 01)
(FEAT_FP16)

VSTR{<c>}{<q>}.16 <Sd>, [<Rn>{, #{+/-}<imm>}]

Single-precision scalar (size == 10)

VSTR{<c>}{<q>}{.32} <Sd>, [<Rn>{, #{+/-}<imm>}]

Double-precision scalar (size == 11)

VSTR{<c>}{<q>}{.64} <Dd>, [<Rn>{, #{+/-}<imm>}]

if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
esize = 8 << UInt(size); add = (U == '1');
imm32 = if esize == 16 then ZeroExtend(imm8:'0', 32) else ZeroExtend(imm8:'00', 32);
integer d;
case size of

when '01' d = UInt(Vd:D);
when '10' d = UInt(Vd:D);
when '11' d = UInt(D:Vd);

n = UInt(Rn);
if n == 15 && CurrentInstrSet() != InstrSet_A32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

.64 Is an optional data size specifier for 64-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Dd> Is the 64-bit name of the SIMD&FP source register, encoded in the "D:Vd" field.

.32 Is an optional data size specifier for 32-bit memory accesses that can be used in the assembler source
code, but is otherwise ignored.

<Sd> Is the 32-bit name of the SIMD&FP source register, encoded in the "Vd:D" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. The PC can be used, but this is
deprecated.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and
encoded in “U”:

U +/-
0 -
1 +

<imm> For the single-precision scalar or double-precision scalar variants: is the optional unsigned immediate
byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0, and encoded in the "imm8" field as
<imm>/4.
For the half-precision scalar variant: is the optional unsigned immediate byte offset, a multiple of 2, in
the range 0 to 510, defaulting to 0, and encoded in the "imm8" field as <imm>/2.

VSTR Page 1273

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckVFPEnabled(TRUE);
address = if add then (R[n] + imm32) else (R[n] - imm32);
case esize of

when 16
MemA[address,2] = S[d]<15:0>;

when 32
MemA[address,4] = S[d];

when 64
// Store as two word-aligned words in the correct order for current endianness.
if BigEndian(AccessType_ASIMD) then

MemA[address,4] = D[d]<63:32>;
MemA[address+4,4] = D[d]<31:0>;

else
MemA[address,4] = D[d]<31:0>;
MemA[address+4,4] = D[d]<63:32>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSTR Page 1274

VSUB (floating-point)

Vector Subtract (floating-point) subtracts the elements of one vector from the corresponding elements of another
vector, and places the results in the destination vector.
Depending on settings in the CPACR, NSACR, HCPTR, and FPEXC registers, and the Security state and PE mode in
which the instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode.
For more information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1 and A2) and T32 (T1 and T2) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
advsimd = TRUE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 1 M 0 Vm
cond

VSUB (floating-point) Page 1275

Half-precision scalar (size == 01)
(FEAT_FP16)

VSUB{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar (size == 10)

VSUB{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar (size == 11)

VSUB{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && cond != '1110' then UNPREDICTABLE;
advsimd = FALSE;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && cond != '1110', then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D 1 sz Vn Vd 1 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if sz == '1' && !HaveFP16Ext() then UNDEFINED;
if sz == '1' && InITBlock() then UNPREDICTABLE;
advsimd = TRUE;
integer esize;
integer elements;
case sz of

when '0' esize = 32; elements = 2;
when '1' esize = 16; elements = 4;

d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

CONSTRAINED UNPREDICTABLE behavior

If sz == '1' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.

VSUB (floating-point) Page 1276

• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 0 D 1 1 Vn Vd 1 0 size N 1 M 0 Vm

Half-precision scalar (size == 01)
(FEAT_FP16)

VSUB{<c>}{<q>}.F16 {<Sd>,} <Sn>, <Sm>

Single-precision scalar (size == 10)

VSUB{<c>}{<q>}.F32 {<Sd>,} <Sn>, <Sm>

Double-precision scalar (size == 11)

VSUB{<c>}{<q>}.F64 {<Dd>,} <Dn>, <Dm>

if FPSCR.Len != '000' || FPSCR.Stride != '00' then UNDEFINED;
if size == '00' || (size == '01' && !HaveFP16Ext()) then UNDEFINED;
if size == '01' && InITBlock() then UNPREDICTABLE;
advsimd = FALSE;
integer esize;
integer d;
integer n;
integer m;
case size of

when '01' esize = 16; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '10' esize = 32; d = UInt(Vd:D); n = UInt(Vn:N); m = UInt(Vm:M);
when '11' esize = 64; d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

integer regs = integer UNKNOWN; integer elements = integer UNKNOWN;

CONSTRAINED UNPREDICTABLE behavior

If size == '01' && InITBlock(), then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as if it passes the Condition code check.
• The instruction executes as NOP. This means it behaves as if it fails the Condition code check.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding A2, T1 and T2: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “sz”:

sz <dt>
0 F32
1 F16

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

VSUB (floating-point) Page 1277

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

<Sd> Is the 32-bit name of the SIMD&FP destination register, encoded in the "Vd:D" field.

<Sn> Is the 32-bit name of the first SIMD&FP source register, encoded in the "Vn:N" field.

<Sm> Is the 32-bit name of the second SIMD&FP source register, encoded in the "Vm:M" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDOrVFPEnabled(TRUE, advsimd);
if advsimd then // Advanced SIMD instruction

for r = 0 to regs-1
for e = 0 to elements-1

Elem[D[d+r],e,esize] = FPSub(Elem[D[n+r],e,esize], Elem[D[m+r],e,esize],
StandardFPSCRValue());

else // VFP instruction
case esize of

when 16
S[d] = Zeros(16) : FPSub(S[n]<15:0>, S[m]<15:0>, FPSCR[]);

when 32
S[d] = FPSub(S[n], S[m], FPSCR[]);

when 64
D[d] = FPSub(D[n], D[m], FPSCR[]);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSUB (floating-point) Page 1278

VSUB (integer)

Vector Subtract (integer) subtracts the elements of one vector from the corresponding elements of another vector, and
places the results in the destination vector.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VSUB{<c>}{<q>}.<dt> {<Dd>, }<Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VSUB{<c>}{<q>}.<dt> {<Qd>, }<Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “size”:

size <dt>
00 I8
01 I16
10 I32
11 I64

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

VSUB (integer) Page 1279

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
Elem[D[d+r],e,esize] = Elem[D[n+r],e,esize] - Elem[D[m+r],e,esize];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSUB (integer) Page 1280

VSUBHN

Vector Subtract and Narrow, returning High Half subtracts the elements of one quadword vector from the
corresponding elements of another quadword vector, takes the most significant half of each result, and places the final
results in a doubleword vector. The results are truncated. For rounded results, see VRSUBHN.
There is no distinction between signed and unsigned integers.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 1 D != 11 Vn Vd 0 1 1 0 N 0 M 0 Vm
size

A1

VSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 1 D != 11 Vn Vd 0 1 1 0 N 0 M 0 Vm
size

T1

VSUBHN{<c>}{<q>}.<dt> <Dd>, <Qn>, <Qm>

if size == '11' then SEE "Related encodings";
if Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

size <dt>
00 I16
01 I32
10 I64

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

VSUBHN Page 1281

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1

result = Elem[Qin[n>>1],e,2*esize] - Elem[Qin[m>>1],e,2*esize];
Elem[D[d],e,esize] = result<2*esize-1:esize>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSUBHN Page 1282

VSUBL

Vector Subtract Long subtracts the elements of one doubleword vector from the corresponding elements of another
doubleword vector, and places the results in a quadword vector. Before subtracting, it sign-extends or zero-extends the
elements of both operands.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 11 Vn Vd 0 0 1 0 N 0 M 0 Vm
size op

A1

VSUBL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize; is_vsubw = (op == '1');
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 11 Vn Vd 0 0 1 0 N 0 M 0 Vm
size op

T1

VSUBL{<c>}{<q>}.<dt> <Qd>, <Dn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize; is_vsubw = (op == '1');
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the second operand vector, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

VSUBL Page 1283

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1

integer op1;
if is_vsubw then

op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
else

op1 = Int(Elem[Din[n],e,esize], unsigned);
result = op1 - Int(Elem[Din[m],e,esize], unsigned);
Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSUBL Page 1284

VSUBW

Vector Subtract Wide subtracts the elements of a doubleword vector from the corresponding elements of a quadword
vector, and places the results in another quadword vector. Before subtracting, it sign-extends or zero-extends the
elements of the doubleword operand.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 11 Vn Vd 0 0 1 1 N 0 M 0 Vm
size op

A1

VSUBW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize; is_vsubw = (op == '1');
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 11 Vn Vd 0 0 1 1 N 0 M 0 Vm
size op

T1

VSUBW{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Dm>

if size == '11' then SEE "Related encodings";
if Vd<0> == '1' || (op == '1' && Vn<0> == '1') then UNDEFINED;
unsigned = (U == '1');
esize = 8 << UInt(size); elements = 64 DIV esize; is_vsubw = (op == '1');
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);

Related encodings: See Advanced SIMD data-processing for the T32 instruction set, or Advanced SIMD data-
processing for the A32 instruction set.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the second operand vector, encoded in “U:size”:

U size <dt>
0 00 S8
0 01 S16
0 10 S32
1 00 U8
1 01 U16
1 10 U32

VSUBW Page 1285

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for e = 0 to elements-1

integer op1;
if is_vsubw then

op1 = Int(Elem[Qin[n>>1],e,2*esize], unsigned);
else

op1 = Int(Elem[Din[n],e,esize], unsigned);
result = op1 - Int(Elem[Din[m],e,esize], unsigned);
Elem[Q[d>>1],e,2*esize] = result<2*esize-1:0>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSUBW Page 1286

VSUDOT (by element)

Dot Product index form with signed and unsigned integers. This instruction performs the dot product of the four
signed 8-bit integer values in each 32-bit element of the first source register with the four unsigned 8-bit integer
values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding
32-bit element of the destination register.
From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in the
T32 and A32 instruction sets.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 1 0 1 N Q M 1 Vm
U

64-bit SIMD vector (Q == 0)

VSUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector (Q == 1)

VSUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

if !HaveAArch32Int8MatMulExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean op1_unsigned = (U == '0');
boolean op2_unsigned = (U == '1');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm);
integer i = UInt(M);
integer regs = if Q == '1' then 2 else 1;

T1
(FEAT_AA32I8MM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 1 0 1 N Q M 1 Vm
U

64-bit SIMD vector (Q == 0)

VSUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector (Q == 1)

VSUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32Int8MatMulExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean op1_unsigned = (U == '0');
boolean op2_unsigned = (U == '1');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm);
integer i = UInt(M);
integer regs = if Q == '1' then 2 else 1;

VSUDOT (by element) Page 1287

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation

CheckAdvSIMDEnabled();
bits(64) operand1;
bits(64) operand2;
bits(64) result;

operand2 = Din[m];
for r = 0 to regs-1

operand1 = Din[n+r];
result = Din[d+r];
for e = 0 to 1

bits(32) res = Elem[result, e, 32];
for b = 0 to 3

element1 = Int(Elem[operand1, 4 * e + b, 8], op1_unsigned);
element2 = Int(Elem[operand2, 4 * i + b, 8], op2_unsigned);
res = res + element1 * element2;

Elem[result, e, 32] = res;
D[d+r] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSUDOT (by element) Page 1288

VSWP

Vector Swap exchanges the contents of two vectors. The vectors can be either doubleword or quadword. There is no
distinction between data types.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 0 0 1 0 Vd 0 0 0 0 0 Q M 0 Vm
size

64-bit SIMD vector (Q == 0)

VSWP{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VSWP{<c>}{<q>}{.<dt>} <Qd>, <Qm>

if size != '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 0 0 1 0 Vd 0 0 0 0 0 Q M 0 Vm
size

64-bit SIMD vector (Q == 0)

VSWP{<c>}{<q>}{.<dt>} <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VSWP{<c>}{<q>}{.<dt>} <Qd>, <Qm>

if size != '00' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> An optional data type. It is ignored by assemblers, and does not affect the encoding.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

VSWP Page 1289

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

if d == m then
D[d+r] = bits(64) UNKNOWN;

else
D[d+r] = Din[m+r];
D[m+r] = Din[d+r];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VSWP Page 1290

VTBL, VTBX

Vector Table Lookup uses byte indexes in a control vector to look up byte values in a table and generate a new vector.
Indexes out of range return 0.
Vector Table Extension works in the same way, except that indexes out of range leave the destination element
unchanged.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 Vn Vd 1 0 len N op M 0 Vm

VTBL (op == 0)

VTBL{<c>}{<q>}.8 <Dd>, <list>, <Dm>

VTBX (op == 1)

VTBX{<c>}{<q>}.8 <Dd>, <list>, <Dm>

is_vtbl = (op == '0'); length = UInt(len)+1;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
if n+length > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n + length > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.
• One or more of the SIMD and floating-point registers are UNKNOWN. This behavior does not affect any general-

purpose registers.

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 Vn Vd 1 0 len N op M 0 Vm

VTBL (op == 0)

VTBL{<c>}{<q>}.8 <Dd>, <list>, <Dm>

VTBX (op == 1)

VTBX{<c>}{<q>}.8 <Dd>, <list>, <Dm>

is_vtbl = (op == '0'); length = UInt(len)+1;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm);
if n+length > 32 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If n + length > 32, then one of the following behaviors must occur:

• The instruction is UNDEFINED.
• The instruction executes as NOP.

VTBL, VTBX Page 1291

• One or more of the SIMD and floating-point registers are UNKNOWN. This behavior does not affect any general-
purpose registers.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints
on UNPREDICTABLE behaviors.

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<list> The vectors containing the table. It must be one of:
{<Dn>}

Encoded as len = 0b00.

{<Dn>, <Dn+1>}
Encoded as len = 0b01.

{<Dn>, <Dn+1>, <Dn+2>}
Encoded as len = 0b10.

{<Dn>, <Dn+1>, <Dn+2>, <Dn+3>}
Encoded as len = 0b11.

<Dm> Is the 64-bit name of the SIMD&FP source register holding the indices, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();

// Create 256-bit = 32-byte table variable, with zeros in entries that will not be used.
table3 = if length == 4 then D[n+3] else Zeros(64);
table2 = if length >= 3 then D[n+2] else Zeros(64);
table1 = if length >= 2 then D[n+1] else Zeros(64);
table = table3 : table2 : table1 : D[n];

for i = 0 to 7
index = UInt(Elem[D[m],i,8]);
if index < 8*length then

Elem[D[d],i,8] = Elem[table,index,8];
else

if is_vtbl then
Elem[D[d],i,8] = Zeros(8);

// else Elem[D[d],i,8] unchanged

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VTBL, VTBX Page 1292

VTRN

Vector Transpose treats the elements of its operand vectors as elements of 2 x 2 matrices, and transposes the
matrices.
The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.
The following figure shows an example of the operation of VTRN doubleword operations.

Dd

Dm

VTRN.16
0123

Dd

Dm

VTRN.32
01

Dd

Dm

VTRN.8
01234567

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
This instruction is used by the pseudo-instructions VUZP (alias), and VZIP (alias).
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VTRN{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VTRN{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VTRN{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VTRN{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

VTRN Page 1293

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the vectors, encoded in “size”:

size <dt>
00 8
01 16
10 32
11 RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
h = elements DIV 2;

for r = 0 to regs-1
if d == m then

D[d+r] = bits(64) UNKNOWN;
else

for e = 0 to h-1
Elem[D[d+r],2*e+1,esize] = Elem[Din[m+r],2*e,esize];
Elem[D[m+r],2*e,esize] = Elem[Din[d+r],2*e+1,esize];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VTRN Page 1294

VTST

Vector Test Bits takes each element in a vector, and bitwise ANDs it with the corresponding element of a second
vector. If the result is not zero, the corresponding element in the destination vector is set to all ones. Otherwise, it is
set to all zeros.
The operand vector elements can be any one of:

• 8-bit, 16-bit, or 32-bit fields.
The result vector elements are fields the same size as the operand vector elements.
Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 0 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VTST{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VTST{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 1 0 D size Vn Vd 1 0 0 0 N Q M 1 Vm

64-bit SIMD vector (Q == 0)

VTST{<c>}{<q>}.<dt> {<Dd>,} <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VTST{<c>}{<q>}.<dt> {<Qd>,} <Qn>, <Qm>

if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
if size == '11' then UNDEFINED;
esize = 8 << UInt(size); elements = 64 DIV esize;
d = UInt(D:Vd); n = UInt(N:Vn); m = UInt(M:Vm); regs = if Q == '0' then 1 else 2;

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> Is the data type for the elements of the operands, encoded in “size”:

VTST Page 1295

size <dt>
00 8
01 16
10 32

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
for r = 0 to regs-1

for e = 0 to elements-1
if !IsZero(Elem[D[n+r],e,esize] AND Elem[D[m+r],e,esize]) then

Elem[D[d+r],e,esize] = Ones(esize);
else

Elem[D[d+r],e,esize] = Zeros(esize);

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VTST Page 1296

VUDOT (by element)

Dot Product index form with unsigned integers. This instruction performs the dot product of the four 8-bit elements in
each 32-bit element of the first source register with the four 8-bit elements of an indexed 32-bit element in the second
source register, accumulating the result into the corresponding 32-bit element of the destination register.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.

Note

ID_ISAR6.DP indicates whether this instruction is supported.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_DotProd)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 1 Vm
U

64-bit SIMD vector (Q == 0)

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector (Q == 1)

VUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

if !HaveDOTPExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean signed = (U=='0');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm<3:0>);
integer index = UInt(M);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

T1
(FEAT_DotProd)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 1 Vm
U

VUDOT (by element) Page 1297

64-bit SIMD vector (Q == 0)

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector (Q == 1)

VUDOT{<q>}.U8 <Qd>, <Qn>, <Dm>[<index>]

if InITBlock() then UNPREDICTABLE;
if !HaveDOTPExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean signed = (U=='0');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm<3:0>);
integer index = UInt(M);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation

bits(64) operand1;
bits(64) operand2 = D[m];
bits(64) result;
CheckAdvSIMDEnabled();
for r = 0 to regs-1

operand1 = D[n+r];
result = D[d+r];
integer element1, element2;
for e = 0 to 1

integer res = 0;
for i = 0 to 3

if signed then
element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = SInt(Elem[operand2, 4 * index + i, esize DIV 4]);

else
element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = UInt(Elem[operand2, 4 * index + i, esize DIV 4]);

res = res + element1 * element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;

D[d+r] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VUDOT (by element) Page 1298

VUDOT (vector)

Dot Product vector form with unsigned integers. This instruction performs the dot product of the four 8-bit elements in
each 32-bit element of the first source register with the four 8-bit elements of the corresponding 32-bit element in the
second source register, accumulating the result into the corresponding 32-bit element of the destination register.
In Armv8.2 and Armv8.3, this is an OPTIONAL instruction. From Armv8.4 it is mandatory for all implementations to
support it.

Note

ID_ISAR6.DP indicates whether this instruction is supported.

It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_DotProd)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 1 Vm
U

64-bit SIMD vector (Q == 0)

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VUDOT{<q>}.U8 <Qd>, <Qn>, <Qm>

if !HaveDOTPExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
boolean signed = U=='0';
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

T1
(FEAT_DotProd)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 1 N Q M 1 Vm
U

VUDOT (vector) Page 1299

64-bit SIMD vector (Q == 0)

VUDOT{<q>}.U8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VUDOT{<q>}.U8 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveDOTPExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
boolean signed = U=='0';
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer esize = 32;
integer regs = if Q == '1' then 2 else 1;

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

bits(64) operand1;
bits(64) operand2;
bits(64) result;
CheckAdvSIMDEnabled();
for r = 0 to regs-1

operand1 = D[n+r];
operand2 = D[m+r];
result = D[d+r];
integer element1, element2;
for e = 0 to 1

integer res = 0;
for i = 0 to 3

if signed then
element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);

else
element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);

res = res + element1 * element2;
Elem[result, e, esize] = Elem[result, e, esize] + res;

D[d+r] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VUDOT (vector) Page 1300

VUMMLA

The widening integer matrix multiply-accumulate instruction multiplies the 2x8 matrix of unsigned 8-bit integer values
held in the first source vector by the 8x2 matrix of unsigned 8-bit integer values in the second source vector. The
resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator held in the
destination vector. This is equivalent to performing an 8-way dot product per destination element.
From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in the
T32 and A32 instruction sets.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 0 N 1 M 1 Vm
B U

A1

VUMMLA{<q>}.U8 <Qd>, <Qn>, <Qm>

if !HaveAArch32Int8MatMulExt() then UNDEFINED;
boolean op1_unsigned;
boolean op2_unsigned;
case B:U of

when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
when '11' UNDEFINED;

if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);

T1
(FEAT_AA32I8MM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 D 1 0 Vn Vd 1 1 0 0 N 1 M 1 Vm
B U

T1

VUMMLA{<q>}.U8 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32Int8MatMulExt() then UNDEFINED;
boolean op1_unsigned;
boolean op2_unsigned;
case B:U of

when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
when '11' UNDEFINED;

if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);

Assembler Symbols

<q> See Standard assembler syntax fields.

VUMMLA Page 1301

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd" field
as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

CheckAdvSIMDEnabled();
bits(128) operand1 = Q[n>>1];
bits(128) operand2 = Q[m>>1];
bits(128) addend = Q[d>>1];

Q[d>>1] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VUMMLA Page 1302

VUSDOT (by element)

Dot Product index form with unsigned and signed integers. This instruction performs the dot product of the four
unsigned 8-bit integer values in each 32-bit element of the first source register with the four signed 8-bit integer
values in an indexed 32-bit element of the second source register, accumulating the result into the corresponding
32-bit element of the destination register.
From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in the
T32 and A32 instruction sets.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm
U

64-bit SIMD vector (Q == 0)

VUSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector (Q == 1)

VUSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]

if !HaveAArch32Int8MatMulExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean op1_unsigned = (U == '0');
boolean op2_unsigned = (U == '1');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm);
integer i = UInt(M);
integer regs = if Q == '1' then 2 else 1;

T1
(FEAT_AA32I8MM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 1 0 1 N Q M 0 Vm
U

64-bit SIMD vector (Q == 0)

VUSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>[<index>]

128-bit SIMD vector (Q == 1)

VUSDOT{<q>}.S8 <Qd>, <Qn>, <Dm>[<index>]

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32Int8MatMulExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1') then UNDEFINED;
boolean op1_unsigned = (U == '0');
boolean op2_unsigned = (U == '1');
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(Vm);
integer i = UInt(M);
integer regs = if Q == '1' then 2 else 1;

VUSDOT (by element) Page 1303

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "Vm" field.

<index> Is the element index in the range 0 to 1, encoded in the "M" field.

Operation

CheckAdvSIMDEnabled();
bits(64) operand1;
bits(64) operand2;
bits(64) result;

operand2 = Din[m];
for r = 0 to regs-1

operand1 = Din[n+r];
result = Din[d+r];
for e = 0 to 1

bits(32) res = Elem[result, e, 32];
for b = 0 to 3

element1 = Int(Elem[operand1, 4 * e + b, 8], op1_unsigned);
element2 = Int(Elem[operand2, 4 * i + b, 8], op2_unsigned);
res = res + element1 * element2;

Elem[result, e, 32] = res;
D[d+r] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VUSDOT (by element) Page 1304

VUSDOT (vector)

Dot Product vector form with mixed-sign integers. This instruction performs the dot product of the four unsigned 8-bit
integer values in each 32-bit element of the first source register with the four signed 8-bit integer values in the
corresponding 32-bit element of the second source register, accumulating the result into the corresponding 32-bit
element of the destination register.
From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in the
T32 and A32 instruction sets.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VUSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VUSDOT{<q>}.S8 <Qd>, <Qn>, <Qm>

if !HaveAArch32Int8MatMulExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer regs = if Q == '1' then 2 else 1;

T1
(FEAT_AA32I8MM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 1 0 1 N Q M 0 Vm

64-bit SIMD vector (Q == 0)

VUSDOT{<q>}.S8 <Dd>, <Dn>, <Dm>

128-bit SIMD vector (Q == 1)

VUSDOT{<q>}.S8 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32Int8MatMulExt() then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1') then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);
integer regs = if Q == '1' then 2 else 1;

Assembler Symbols

<q> See Standard assembler syntax fields.

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd" field
as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

VUSDOT (vector) Page 1305

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd" field.

<Dn> Is the 64-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field.

<Dm> Is the 64-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field.

Operation

CheckAdvSIMDEnabled();
bits(64) operand1;
bits(64) operand2;
bits(64) result;

for r = 0 to regs-1
operand1 = Din[n+r];
operand2 = Din[m+r];
result = Din[d+r];
for e = 0 to 1

bits(32) res = Elem[result, e, 32];
for b = 0 to 3

element1 = UInt(Elem[operand1, 4 * e + b, 8]);
element2 = SInt(Elem[operand2, 4 * e + b, 8]);
res = res + element1 * element2;

Elem[result, e, 32] = res;
D[d+r] = result;

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VUSDOT (vector) Page 1306

VUSMMLA

The widening integer matrix multiply-accumulate instruction multiplies the 2x8 matrix of unsigned 8-bit integer values
held in the first source vector by the 8x2 matrix of signed 8-bit integer values in the second source vector. The
resulting 2x2 32-bit integer matrix product is destructively added to the 32-bit integer matrix accumulator held in the
destination vector. This is equivalent to performing an 8-way dot product per destination element.
From Armv8.2, this is an OPTIONAL instruction. ID_ISAR6.I8MM indicates whether this instruction is supported in the
T32 and A32 instruction sets.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1
(FEAT_AA32I8MM)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 1 0 0 N 1 M 0 Vm
B U

A1

VUSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

if !HaveAArch32Int8MatMulExt() then UNDEFINED;
boolean op1_unsigned;
boolean op2_unsigned;
case B:U of

when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
when '11' UNDEFINED;

if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);

T1
(FEAT_AA32I8MM)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 1 D 1 0 Vn Vd 1 1 0 0 N 1 M 0 Vm
B U

T1

VUSMMLA{<q>}.S8 <Qd>, <Qn>, <Qm>

if InITBlock() then UNPREDICTABLE;
if !HaveAArch32Int8MatMulExt() then UNDEFINED;
boolean op1_unsigned;
boolean op2_unsigned;
case B:U of

when '00' op1_unsigned = FALSE; op2_unsigned = FALSE;
when '01' op1_unsigned = TRUE; op2_unsigned = TRUE;
when '10' op1_unsigned = TRUE; op2_unsigned = FALSE;
when '11' UNDEFINED;

if Vd<0> == '1' || Vn<0> == '1' || Vm<0> == '1' then UNDEFINED;
integer d = UInt(D:Vd);
integer n = UInt(N:Vn);
integer m = UInt(M:Vm);

Assembler Symbols

<q> See Standard assembler syntax fields.

VUSMMLA Page 1307

<Qd> Is the 128-bit name of the SIMD&FP third source and destination register, encoded in the "D:Vd" field
as <Qd>*2.

<Qn> Is the 128-bit name of the first SIMD&FP source register, encoded in the "N:Vn" field as <Qn>*2.

<Qm> Is the 128-bit name of the second SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

Operation

CheckAdvSIMDEnabled();
bits(128) operand1 = Q[n>>1];
bits(128) operand2 = Q[m>>1];
bits(128) addend = Q[d>>1];

Q[d>>1] = MatMulAdd(addend, operand1, operand2, op1_unsigned, op2_unsigned);

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VUSMMLA Page 1308

VUZP

Vector Unzip de-interleaves the elements of two vectors.
The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.
The following figure shows an example of the operation of VUZP doubleword operation for data type 8.

A6 A5 A4 A3 A2 A1 A0 B6 B4 B2 B0 A6 A4 A2 A0A7
B6 B5 B4 B3 B2 B1 B0 B7 B5 B3 B1 A7 A5 A3 A1B7

Dd
Dm

Register state before operation Register state after operation
VUZP.8, doubleword

The following figure shows an example of the operation of VUZP quadword operation for data type 32.

A2 A1 A0 B2 B0 A2 A0A3
B2 B1 B0 B3 B1 A3 A1B3

Qd
Qm

Register state before operation Register state after operation
VUZP.32, quadword

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VUZP{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VUZP{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
quadword_operation = (Q == '1'); esize = 8 << UInt(size);
d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 0 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VUZP{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VUZP{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
quadword_operation = (Q == '1'); esize = 8 << UInt(size);
d = UInt(D:Vd); m = UInt(M:Vm);

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

VUZP Page 1309

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For the 64-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in “size”:

size <dt>
00 8
01 16
1x RESERVED

For the 128-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in “size”:

size <dt>
00 8
01 16
10 32
11 RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
if quadword_operation then

if d == m then
Q[d>>1] = bits(128) UNKNOWN;

else
zipped_q = Q[m>>1]:Q[d>>1];
for e = 0 to (128 DIV esize) - 1

Elem[Q[d>>1],e,esize] = Elem[zipped_q,2*e,esize];
Elem[Q[m>>1],e,esize] = Elem[zipped_q,2*e+1,esize];

else
if d == m then

D[d] = bits(64) UNKNOWN;
else

zipped_d = D[m]:D[d];
for e = 0 to (64 DIV esize) - 1

Elem[D[d],e,esize] = Elem[zipped_d,2*e,esize];
Elem[D[m],e,esize] = Elem[zipped_d,2*e+1,esize];

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VUZP Page 1310

VUZP (alias)

Vector Unzip de-interleaves the elements of two vectors.

This is a pseudo-instruction of VTRN. This means:

• The encodings in this description are named to match the encodings of VTRN.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VTRN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any

operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 0 M 0 Vm
Q

64-bit SIMD vector

VUZP{<c>}{<q>}.32 <Dd>, <Dm>

is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 0 M 0 Vm
Q

64-bit SIMD vector

VUZP{<c>}{<q>}.32 <Dd>, <Dm>

is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

The description of VTRN gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VUZP (alias) Page 1311

VZIP

Vector Zip interleaves the elements of two vectors.
The elements of the vectors can be 8-bit, 16-bit, or 32-bit. There is no distinction between data types.
The following figure shows an example of the operation of VZIP doubleword operation for data type 8.

A6 A5 A4 A3 A2 A1 A0
B6 B4
B2 B0

A6 A4
A2 A0A7

B6 B5 B4 B3 B2 B1 B0 B7 B5
B3 B1

A7 A5
A3 A1

B7
Dd
Dm

Register state before operation Register state after operation
VZIP.8, doubleword

The following figure shows an example of the operation of VZIP quadword operation for data type 32.

A2 A1 A0
B2
B0

A2
A0A3

B2 B1 B0 B3
B1

A3
A1

B3
Qd
Qm

Register state before operation Register state after operation
VZIP.32, quadword

Depending on settings in the CPACR, NSACR, and HCPTR registers, and the Security state and PE mode in which the
instruction is executed, an attempt to execute the instruction might be UNDEFINED, or trapped to Hyp mode. For more
information see Enabling Advanced SIMD and floating-point support.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VZIP{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VZIP{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
quadword_operation = (Q == '1'); esize = 8 << UInt(size);
d = UInt(D:Vd); m = UInt(M:Vm);

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 1 1 Q M 0 Vm

64-bit SIMD vector (Q == 0)

VZIP{<c>}{<q>}.<dt> <Dd>, <Dm>

128-bit SIMD vector (Q == 1)

VZIP{<c>}{<q>}.<dt> <Qd>, <Qm>

if size == '11' || (Q == '0' && size == '10') then UNDEFINED;
if Q == '1' && (Vd<0> == '1' || Vm<0> == '1') then UNDEFINED;
quadword_operation = (Q == '1'); esize = 8 << UInt(size);
d = UInt(D:Vd); m = UInt(M:Vm);

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.

VZIP Page 1312

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<dt> For the 64-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in “size”:

size <dt>
00 8
01 16
1x RESERVED

For the 128-bit SIMD vector variant: is the data type for the elements of the vectors, encoded in “size”:

size <dt>
00 8
01 16
10 32
11 RESERVED

<Qd> Is the 128-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field as <Qd>*2.

<Qm> Is the 128-bit name of the SIMD&FP source register, encoded in the "M:Vm" field as <Qm>*2.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations(); CheckAdvSIMDEnabled();
if quadword_operation then

if d == m then
Q[d>>1] = bits(128) UNKNOWN;

else
bits(256) zipped_q;
for e = 0 to (128 DIV esize) - 1

Elem[zipped_q,2*e,esize] = Elem[Q[d>>1],e,esize];
Elem[zipped_q,2*e+1,esize] = Elem[Q[m>>1],e,esize];

Q[d>>1] = zipped_q<127:0>; Q[m>>1] = zipped_q<255:128>;
else

if d == m then
D[d] = bits(64) UNKNOWN;

else
bits(128) zipped_d;
for e = 0 to (64 DIV esize) - 1

Elem[zipped_d,2*e,esize] = Elem[D[d],e,esize];
Elem[zipped_d,2*e+1,esize] = Elem[D[m],e,esize];

D[d] = zipped_d<63:0>; D[m] = zipped_d<127:64>;

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
• The execution time of this instruction is independent of:

◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:
◦ The values of the data supplied in any of its registers.
◦ The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VZIP Page 1313

VZIP (alias)

Vector Zip interleaves the elements of two vectors.

This is a pseudo-instruction of VTRN. This means:

• The encodings in this description are named to match the encodings of VTRN.
• The assembler syntax is used only for assembly, and is not used on disassembly.
• The description of VTRN gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any

operational information for this instruction.
It has encodings from the following instruction sets: A32 (A1) and T32 (T1) .

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 0 M 0 Vm
Q

64-bit SIMD vector

VZIP{<c>}{<q>}.32 <Dd>, <Dm>

is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size 1 0 Vd 0 0 0 0 1 0 M 0 Vm
Q

64-bit SIMD vector

VZIP{<c>}{<q>}.32 <Dd>, <Dm>

is equivalent to

VTRN{<c>}{<q>}.32 <Dd>, <Dm>

Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. This encoding must be unconditional.
For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Dd> Is the 64-bit name of the SIMD&FP destination register, encoded in the "D:Vd" field.

<Dm> Is the 64-bit name of the SIMD&FP source register, encoded in the "M:Vm" field.

Operation

The description of VTRN gives the operational pseudocode for this instruction.

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

VZIP (alias) Page 1314

Top-level encodings for A32

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond op0 op1

Decode fields
cond op0 op1 Instruction details

!= 1111 00x Data-processing and miscellaneous instructions
!= 1111 010 Load/Store Word, Unsigned Byte (immediate, literal)
!= 1111 011 0 Load/Store Word, Unsigned Byte (register)
!= 1111 011 1 Media instructions

10x Branch, branch with link, and block data transfer
11x System register access, Advanced SIMD, floating-point, and Supervisor call

1111 0xx Unconditional instructions

Data-processing and miscellaneous instructions

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 00 op0 op1 op2 op3 op4

Decode fields
op0 op1 op2 op3 op4 Instruction details

0 1 != 00 1 Extra load/store
0 0xxxx 1 00 1 Multiply and Accumulate
0 1xxxx 1 00 1 Synchronization primitives and Load-Acquire/Store-Release
0 10xx0 0 Miscellaneous
0 10xx0 1 0 Halfword Multiply and Accumulate
0 != 10xx0 0 Data-processing register (immediate shift)
0 != 10xx0 0 1 Data-processing register (register shift)
1 Data-processing immediate

Extra load/store

These instructions are under Data-processing and miscellaneous instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 000 op0 1 != 00 1

Decode fields
op0 Instruction details

0 Load/Store Dual, Half, Signed Byte (register)
1 Load/Store Dual, Half, Signed Byte (immediate, literal)

Load/Store Dual, Half, Signed Byte (register)

These instructions are under Extra load/store.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 0 W o1 Rn Rt (0) (0) (0) (0) 1 != 00 1 Rm
cond op2

The following constraints also apply to this encoding: cond != 1111 && op2 != 00 && cond != 1111 && op2 != 00

Top-level encodings for A32

Page 1315

Decode fields
P W o1 op2 Instruction Details

0 0 0 01 STRH (register) — post-indexed
0 0 0 10 LDRD (register) — post-indexed
0 0 0 11 STRD (register) — post-indexed
0 0 1 01 LDRH (register) — post-indexed
0 0 1 10 LDRSB (register) — post-indexed
0 0 1 11 LDRSH (register) — post-indexed
0 1 0 01 STRHT
0 1 0 10 UNALLOCATED
0 1 0 11 UNALLOCATED
0 1 1 01 LDRHT
0 1 1 10 LDRSBT
0 1 1 11 LDRSHT
1 0 01 STRH (register) — pre-indexed
1 0 10 LDRD (register) — pre-indexed
1 0 11 STRD (register) — pre-indexed
1 1 01 LDRH (register) — pre-indexed
1 1 10 LDRSB (register) — pre-indexed
1 1 11 LDRSH (register) — pre-indexed

Load/Store Dual, Half, Signed Byte (immediate, literal)

These instructions are under Extra load/store.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 P U 1 W o1 Rn Rt imm4H 1 != 00 1 imm4L
cond op2

The following constraints also apply to this encoding: cond != 1111 && op2 != 00 && cond != 1111 && op2 != 00

Decode fields
P:W o1 Rn op2 Instruction Details

0 1111 10 LDRD (literal)
!= 01 1 1111 01 LDRH (literal)
!= 01 1 1111 10 LDRSB (literal)
!= 01 1 1111 11 LDRSH (literal)
00 0 != 1111 10 LDRD (immediate) — post-indexed
00 0 01 STRH (immediate) — post-indexed
00 0 11 STRD (immediate) — post-indexed
00 1 != 1111 01 LDRH (immediate) — post-indexed
00 1 != 1111 10 LDRSB (immediate) — post-indexed
00 1 != 1111 11 LDRSH (immediate) — post-indexed
01 0 != 1111 10 UNALLOCATED
01 0 01 STRHT
01 0 11 UNALLOCATED
01 1 01 LDRHT
01 1 10 LDRSBT
01 1 11 LDRSHT
10 0 != 1111 10 LDRD (immediate) — offset
10 0 01 STRH (immediate) — offset

Top-level encodings for A32

Page 1316

Decode fields
P:W o1 Rn op2 Instruction Details

10 0 11 STRD (immediate) — offset
10 1 != 1111 01 LDRH (immediate) — offset
10 1 != 1111 10 LDRSB (immediate) — offset
10 1 != 1111 11 LDRSH (immediate) — offset
11 0 != 1111 10 LDRD (immediate) — pre-indexed
11 0 01 STRH (immediate) — pre-indexed
11 0 11 STRD (immediate) — pre-indexed
11 1 != 1111 01 LDRH (immediate) — pre-indexed
11 1 != 1111 10 LDRSB (immediate) — pre-indexed
11 1 != 1111 11 LDRSH (immediate) — pre-indexed

Multiply and Accumulate

These instructions are under Data-processing and miscellaneous instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 opc S RdHi RdLo Rm 1 0 0 1 Rn
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc S Instruction Details

000 MUL, MULS
001 MLA, MLAS
010 0 UMAAL
010 1 UNALLOCATED
011 0 MLS
011 1 UNALLOCATED
100 UMULL, UMULLS
101 UMLAL, UMLALS
110 SMULL, SMULLS
111 SMLAL, SMLALS

Synchronization primitives and Load-Acquire/Store-Release

These instructions are under Data-processing and miscellaneous instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0001 op0 11 1001

Decode fields
op0 Instruction details

0 UNALLOCATED
1 Load/Store Exclusive and Load-Acquire/Store-Release

Load/Store Exclusive and Load-Acquire/Store-Release

These instructions are under Synchronization primitives and Load-Acquire/Store-Release.

Top-level encodings for A32

Page 1317

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 size L Rn xRd (1) (1) ex ord 1 0 0 1 xRt
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
size L ex ord Instruction Details

00 0 0 0 STL
00 0 0 1 UNALLOCATED
00 0 1 0 STLEX
00 0 1 1 STREX
00 1 0 0 LDA
00 1 0 1 UNALLOCATED
00 1 1 0 LDAEX
00 1 1 1 LDREX
01 0 0 UNALLOCATED
01 0 1 0 STLEXD
01 0 1 1 STREXD
01 1 0 UNALLOCATED
01 1 1 0 LDAEXD
01 1 1 1 LDREXD
10 0 0 0 STLB
10 0 0 1 UNALLOCATED
10 0 1 0 STLEXB
10 0 1 1 STREXB
10 1 0 0 LDAB
10 1 0 1 UNALLOCATED
10 1 1 0 LDAEXB
10 1 1 1 LDREXB
11 0 0 0 STLH
11 0 0 1 UNALLOCATED
11 0 1 0 STLEXH
11 0 1 1 STREXH
11 1 0 0 LDAH
11 1 0 1 UNALLOCATED
11 1 1 0 LDAEXH
11 1 1 1 LDREXH

Miscellaneous

These instructions are under Data-processing and miscellaneous instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 00010 op0 0 0 op1

Decode fields
op0 op1 Instruction details

00 001 UNALLOCATED
00 010 UNALLOCATED
00 011 UNALLOCATED
00 110 UNALLOCATED

Top-level encodings for A32

Page 1318

01 001 BX
01 010 BXJ
01 011 BLX (register)
01 110 UNALLOCATED
10 001 UNALLOCATED
10 010 UNALLOCATED
10 011 UNALLOCATED
10 110 UNALLOCATED
11 001 CLZ
11 010 UNALLOCATED
11 011 UNALLOCATED
11 110 ERET

111 Exception Generation
000 Move special register (register)
100 Cyclic Redundancy Check
101 Integer Saturating Arithmetic

Exception Generation

These instructions are under Miscellaneous.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 opc 0 imm12 0 1 1 1 imm4
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc Instruction Details

00 HLT
01 BKPT
10 HVC
11 SMC

Move special register (register)

These instructions are under Miscellaneous.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 opc 0 mask Rd (0) (0) B m 0 0 0 0 Rn
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc B Instruction Details

x0 0 MRS
x0 1 MRS (Banked register)
x1 0 MSR (register)
x1 1 MSR (Banked register)

Top-level encodings for A32

Page 1319

Cyclic Redundancy Check

These instructions are under Miscellaneous.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 sz 0 Rn Rd (0) (0) C (0) 0 1 0 0 Rm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
sz C Instruction Details Feature

00 0 CRC32 — CRC32B FEAT_CRC32
00 1 CRC32C — CRC32CB FEAT_CRC32
01 0 CRC32 — CRC32H FEAT_CRC32
01 1 CRC32C — CRC32CH FEAT_CRC32
10 0 CRC32 — CRC32W FEAT_CRC32
10 1 CRC32C — CRC32CW FEAT_CRC32
11 CONSTRAINED UNPREDICTABLE -

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings

Integer Saturating Arithmetic

These instructions are under Miscellaneous.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 opc 0 Rn Rd (0) (0) (0) (0) 0 1 0 1 Rm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc Instruction Details

00 QADD
01 QSUB
10 QDADD
11 QDSUB

Halfword Multiply and Accumulate

These instructions are under Data-processing and miscellaneous instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 opc 0 Rd Ra Rm 1 M N 0 Rn
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc M N Instruction Details

00 SMLABB, SMLABT, SMLATB, SMLATT
01 0 0 SMLAWB, SMLAWT — SMLAWB
01 0 1 SMULWB, SMULWT — SMULWB

Top-level encodings for A32

Page 1320

Decode fields
opc M N Instruction Details

01 1 0 SMLAWB, SMLAWT — SMLAWT
01 1 1 SMULWB, SMULWT — SMULWT
10 SMLALBB, SMLALBT, SMLALTB, SMLALTT
11 SMULBB, SMULBT, SMULTB, SMULTT

Data-processing register (immediate shift)

These instructions are under Data-processing and miscellaneous instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 000 op0 op1 0

The following constraints also apply to this encoding: op0:op1 != 100

Decode fields
op0 op1 Instruction details

0x Integer Data Processing (three register, immediate shift)
10 1 Integer Test and Compare (two register, immediate shift)
11 Logical Arithmetic (three register, immediate shift)

Integer Data Processing (three register, immediate shift)

These instructions are under Data-processing register (immediate shift).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 opc S Rn Rd imm5 stype 0 Rm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc S Rn imm5:stype Instruction Details

000 != 0000011 AND, ANDS (register) — shift or rotate by value
000 0000011 AND, ANDS (register) — rotate right with extend
001 != 0000011 EOR, EORS (register) — shift or rotate by value
001 0000011 EOR, EORS (register) — rotate right with extend
010 0 != 1101 != 0000011 SUB, SUBS (register) — SUB, shift or rotate by value
010 0 != 1101 0000011 SUB, SUBS (register) — SUB, rotate right with extend
010 0 1101 != 0000011 SUB, SUBS (SP minus register) — SUB, shift or rotate by value
010 0 1101 0000011 SUB, SUBS (SP minus register) — SUB, rotate right with extend
010 1 != 1101 != 0000011 SUB, SUBS (register) — SUBS, shift or rotate by value
010 1 != 1101 0000011 SUB, SUBS (register) — SUBS, rotate right with extend
010 1 1101 != 0000011 SUB, SUBS (SP minus register) — SUBS, shift or rotate by value
010 1 1101 0000011 SUB, SUBS (SP minus register) — SUBS, rotate right with extend
011 != 0000011 RSB, RSBS (register) — shift or rotate by value
011 0000011 RSB, RSBS (register) — rotate right with extend
100 0 != 1101 != 0000011 ADD, ADDS (register) — ADD, shift or rotate by value
100 0 != 1101 0000011 ADD, ADDS (register) — ADD, rotate right with extend
100 0 1101 != 0000011 ADD, ADDS (SP plus register) — ADD, shift or rotate by value
100 0 1101 0000011 ADD, ADDS (SP plus register) — ADD, rotate right with extend

Top-level encodings for A32

Page 1321

Decode fields
opc S Rn imm5:stype Instruction Details

100 1 != 1101 != 0000011 ADD, ADDS (register) — ADDS, shift or rotate by value
100 1 != 1101 0000011 ADD, ADDS (register) — ADDS, rotate right with extend
100 1 1101 != 0000011 ADD, ADDS (SP plus register) — ADDS, shift or rotate by value
100 1 1101 0000011 ADD, ADDS (SP plus register) — ADDS, rotate right with extend
101 != 0000011 ADC, ADCS (register) — shift or rotate by value
101 0000011 ADC, ADCS (register) — rotate right with extend
110 != 0000011 SBC, SBCS (register) — shift or rotate by value
110 0000011 SBC, SBCS (register) — rotate right with extend
111 != 0000011 RSC, RSCS (register) — shift or rotate by value
111 0000011 RSC, RSCS (register) — rotate right with extend

Integer Test and Compare (two register, immediate shift)

These instructions are under Data-processing register (immediate shift).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 opc 1 Rn (0) (0) (0) (0) imm5 stype 0 Rm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc imm5:stype Instruction Details

00 != 0000011 TST (register) — shift or rotate by value
00 0000011 TST (register) — rotate right with extend
01 != 0000011 TEQ (register) — shift or rotate by value
01 0000011 TEQ (register) — rotate right with extend
10 != 0000011 CMP (register) — shift or rotate by value
10 0000011 CMP (register) — rotate right with extend
11 != 0000011 CMN (register) — shift or rotate by value
11 0000011 CMN (register) — rotate right with extend

Logical Arithmetic (three register, immediate shift)

These instructions are under Data-processing register (immediate shift).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 opc S Rn Rd imm5 stype 0 Rm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc imm5:stype Instruction Details

00 != 0000011 ORR, ORRS (register) — shift or rotate by value
00 0000011 ORR, ORRS (register) — rotate right with extend
01 != 0000011 MOV, MOVS (register) — shift or rotate by value
01 0000011 MOV, MOVS (register) — rotate right with extend
10 != 0000011 BIC, BICS (register) — shift or rotate by value
10 0000011 BIC, BICS (register) — rotate right with extend
11 != 0000011 MVN, MVNS (register) — shift or rotate by value

Top-level encodings for A32

Page 1322

Decode fields
opc imm5:stype Instruction Details

11 0000011 MVN, MVNS (register) — rotate right with extend

Data-processing register (register shift)

These instructions are under Data-processing and miscellaneous instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 000 op0 op1 0 1

The following constraints also apply to this encoding: op0:op1 != 100

Decode fields
op0 op1 Instruction details

0x Integer Data Processing (three register, register shift)
10 1 Integer Test and Compare (two register, register shift)
11 Logical Arithmetic (three register, register shift)

Integer Data Processing (three register, register shift)

These instructions are under Data-processing register (register shift).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 0 opc S Rn Rd Rs 0 stype 1 Rm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc Instruction Details

000 AND, ANDS (register-shifted register)
001 EOR, EORS (register-shifted register)
010 SUB, SUBS (register-shifted register)
011 RSB, RSBS (register-shifted register)
100 ADD, ADDS (register-shifted register)
101 ADC, ADCS (register-shifted register)
110 SBC, SBCS (register-shifted register)
111 RSC, RSCS (register-shifted register)

Integer Test and Compare (two register, register shift)

These instructions are under Data-processing register (register shift).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 0 opc 1 Rn (0) (0) (0) (0) Rs 0 stype 1 Rm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc Instruction Details

00 TST (register-shifted register)
01 TEQ (register-shifted register)

Top-level encodings for A32

Page 1323

Decode fields
opc Instruction Details

10 CMP (register-shifted register)
11 CMN (register-shifted register)

Logical Arithmetic (three register, register shift)

These instructions are under Data-processing register (register shift).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 0 1 1 opc S Rn Rd Rs 0 stype 1 Rm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc Instruction Details

00 ORR, ORRS (register-shifted register)
01 MOV, MOVS (register-shifted register)
10 BIC, BICS (register-shifted register)
11 MVN, MVNS (register-shifted register)

Data-processing immediate

These instructions are under Data-processing and miscellaneous instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 001 op0 op1

Decode fields
op0 op1 Instruction details

0x Integer Data Processing (two register and immediate)
10 00 Move Halfword (immediate)
10 10 Move Special Register and Hints (immediate)
10 x1 Integer Test and Compare (one register and immediate)
11 Logical Arithmetic (two register and immediate)

Integer Data Processing (two register and immediate)

These instructions are under Data-processing immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 0 opc S Rn Rd imm12
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc S Rn Instruction Details

000 AND, ANDS (immediate)
001 EOR, EORS (immediate)
010 0 != 11x1 SUB, SUBS (immediate) — SUB
010 0 1101 SUB, SUBS (SP minus immediate) — SUB
010 0 1111 ADR — A2

Top-level encodings for A32

Page 1324

Decode fields
opc S Rn Instruction Details

010 1 != 1101 SUB, SUBS (immediate) — SUBS
010 1 1101 SUB, SUBS (SP minus immediate) — SUBS
011 RSB, RSBS (immediate)
100 0 != 11x1 ADD, ADDS (immediate) — ADD
100 0 1101 ADD, ADDS (SP plus immediate) — ADD
100 0 1111 ADR — A1
100 1 != 1101 ADD, ADDS (immediate) — ADDS
100 1 1101 ADD, ADDS (SP plus immediate) — ADDS
101 ADC, ADCS (immediate)
110 SBC, SBCS (immediate)
111 RSC, RSCS (immediate)

Move Halfword (immediate)

These instructions are under Data-processing immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 H 0 0 imm4 Rd imm12
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
H Instruction Details

0 MOV, MOVS (immediate)
1 MOVT

Move Special Register and Hints (immediate)

These instructions are under Data-processing immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 R 1 0 imm4 (1) (1) (1) (1) imm12
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
R:imm4 imm12 Instruction Details Feature

!= 00000 MSR (immediate) -
00000 xxxx00000000 NOP -
00000 xxxx00000001 YIELD -
00000 xxxx00000010 WFE -
00000 xxxx00000011 WFI -
00000 xxxx00000100 SEV -
00000 xxxx00000101 SEVL -
00000 xxxx0000011x Reserved hint, behaves as NOP -
00000 xxxx00001xxx Reserved hint, behaves as NOP -
00000 xxxx00010000 ESB FEAT_RAS
00000 xxxx00010001 Reserved hint, behaves as NOP -
00000 xxxx00010010 TSB CSYNC FEAT_TRF

Top-level encodings for A32

Page 1325

Decode fields
R:imm4 imm12 Instruction Details Feature

00000 xxxx00010011 Reserved hint, behaves as NOP -
00000 xxxx00010100 CSDB -
00000 xxxx00010101 Reserved hint, behaves as NOP -
00000 xxxx00010110 CLRBHB FEAT_CLRBHB
00000 xxxx00010111 Reserved hint, behaves as NOP -
00000 xxxx00011xxx Reserved hint, behaves as NOP -
00000 xxxx001xxxxx Reserved hint, behaves as NOP -
00000 xxxx01xxxxxx Reserved hint, behaves as NOP -
00000 xxxx10xxxxxx Reserved hint, behaves as NOP -
00000 xxxx110xxxxx Reserved hint, behaves as NOP -
00000 xxxx1110xxxx Reserved hint, behaves as NOP -
00000 xxxx1111xxxx DBG -

Integer Test and Compare (one register and immediate)

These instructions are under Data-processing immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 0 opc 1 Rn (0) (0) (0) (0) imm12
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc Instruction Details

00 TST (immediate)
01 TEQ (immediate)
10 CMP (immediate)
11 CMN (immediate)

Logical Arithmetic (two register and immediate)

These instructions are under Data-processing immediate.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 0 1 1 1 opc S Rn Rd imm12
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc Instruction Details

00 ORR, ORRS (immediate)
01 MOV, MOVS (immediate)
10 BIC, BICS (immediate)
11 MVN, MVNS (immediate)

Load/Store Word, Unsigned Byte (immediate, literal)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 0 P U o2 W o1 Rn Rt imm12
cond

Top-level encodings for A32

Page 1326

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
P:W o2 o1 Rn Instruction Details

!= 01 0 1 1111 LDR (literal)
!= 01 1 1 1111 LDRB (literal)
00 0 0 STR (immediate) — post-indexed
00 0 1 != 1111 LDR (immediate) — post-indexed
00 1 0 STRB (immediate) — post-indexed
00 1 1 != 1111 LDRB (immediate) — post-indexed
01 0 0 STRT
01 0 1 LDRT
01 1 0 STRBT
01 1 1 LDRBT
10 0 0 STR (immediate) — offset
10 0 1 != 1111 LDR (immediate) — offset
10 1 0 STRB (immediate) — offset
10 1 1 != 1111 LDRB (immediate) — offset
11 0 0 STR (immediate) — pre-indexed
11 0 1 != 1111 LDR (immediate) — pre-indexed
11 1 0 STRB (immediate) — pre-indexed
11 1 1 != 1111 LDRB (immediate) — pre-indexed

Load/Store Word, Unsigned Byte (register)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 P U o2 W o1 Rn Rt imm5 stype 0 Rm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
P o2 W o1 Instruction Details

0 0 0 0 STR (register) — post-indexed
0 0 0 1 LDR (register) — post-indexed
0 0 1 0 STRT
0 0 1 1 LDRT
0 1 0 0 STRB (register) — post-indexed
0 1 0 1 LDRB (register) — post-indexed
0 1 1 0 STRBT
0 1 1 1 LDRBT
1 0 0 STR (register) — pre-indexed
1 0 1 LDR (register) — pre-indexed
1 1 0 STRB (register) — pre-indexed
1 1 1 LDRB (register) — pre-indexed

Media instructions

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 011 op0 op1 1

Top-level encodings for A32

Page 1327

Decode fields
op0 op1 Instruction details

00xxx Parallel Arithmetic
01000 101 SEL
01000 001 UNALLOCATED
01000 xx0 PKHBT, PKHTB
01001 x01 UNALLOCATED
01001 xx0 UNALLOCATED
0110x x01 UNALLOCATED
0110x xx0 UNALLOCATED
01x10 001 Saturate 16-bit
01x10 101 UNALLOCATED
01x11 x01 Reverse Bit/Byte
01x1x xx0 Saturate 32-bit
01xxx 111 UNALLOCATED
01xxx 011 Extend and Add
10xxx Signed multiply, Divide
11000 000 Unsigned Sum of Absolute Differences
11000 100 UNALLOCATED
11001 x00 UNALLOCATED
1101x x00 UNALLOCATED
110xx 111 UNALLOCATED
1110x 111 UNALLOCATED
1110x x00 Bitfield Insert
11110 111 UNALLOCATED
11111 111 Permanently UNDEFINED
1111x x00 UNALLOCATED
11x0x x10 UNALLOCATED
11x1x x10 Bitfield Extract
11xxx 011 UNALLOCATED
11xxx x01 UNALLOCATED

Parallel Arithmetic

These instructions are under Media instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 0 op1 Rn Rd (1) (1) (1) (1) B op2 1 Rm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
op1 B op2 Instruction Details

000 UNALLOCATED
001 0 00 SADD16
001 0 01 SASX
001 0 10 SSAX
001 0 11 SSUB16
001 1 00 SADD8
001 1 01 UNALLOCATED

Top-level encodings for A32

Page 1328

Decode fields
op1 B op2 Instruction Details

001 1 10 UNALLOCATED
001 1 11 SSUB8
010 0 00 QADD16
010 0 01 QASX
010 0 10 QSAX
010 0 11 QSUB16
010 1 00 QADD8
010 1 01 UNALLOCATED
010 1 10 UNALLOCATED
010 1 11 QSUB8
011 0 00 SHADD16
011 0 01 SHASX
011 0 10 SHSAX
011 0 11 SHSUB16
011 1 00 SHADD8
011 1 01 UNALLOCATED
011 1 10 UNALLOCATED
011 1 11 SHSUB8
100 UNALLOCATED
101 0 00 UADD16
101 0 01 UASX
101 0 10 USAX
101 0 11 USUB16
101 1 00 UADD8
101 1 01 UNALLOCATED
101 1 10 UNALLOCATED
101 1 11 USUB8
110 0 00 UQADD16
110 0 01 UQASX
110 0 10 UQSAX
110 0 11 UQSUB16
110 1 00 UQADD8
110 1 01 UNALLOCATED
110 1 10 UNALLOCATED
110 1 11 UQSUB8
111 0 00 UHADD16
111 0 01 UHASX
111 0 10 UHSAX
111 0 11 UHSUB16
111 1 00 UHADD8
111 1 01 UNALLOCATED
111 1 10 UNALLOCATED
111 1 11 UHSUB8

Saturate 16-bit

These instructions are under Media instructions.

Top-level encodings for A32

Page 1329

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 U 1 0 sat_imm Rd (1) (1) (1) (1) 0 0 1 1 Rn
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
U Instruction Details

0 SSAT16
1 USAT16

Reverse Bit/Byte

These instructions are under Media instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 o1 1 1 (1) (1) (1) (1) Rd (1) (1) (1) (1) o2 0 1 1 Rm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
o1 o2 Instruction Details

0 0 REV
0 1 REV16
1 0 RBIT
1 1 REVSH

Saturate 32-bit

These instructions are under Media instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 U 1 sat_imm Rd imm5 sh 0 1 Rn
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
U Instruction Details

0 SSAT
1 USAT

Extend and Add

These instructions are under Media instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 0 1 U op Rn Rd rotate (0) (0) 0 1 1 1 Rm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
U op Rn Instruction Details

0 00 != 1111 SXTAB16

Top-level encodings for A32

Page 1330

Decode fields
U op Rn Instruction Details

0 00 1111 SXTB16
0 10 != 1111 SXTAB
0 10 1111 SXTB
0 11 != 1111 SXTAH
0 11 1111 SXTH
1 00 != 1111 UXTAB16
1 00 1111 UXTB16
1 10 != 1111 UXTAB
1 10 1111 UXTB
1 11 != 1111 UXTAH
1 11 1111 UXTH

Signed multiply, Divide

These instructions are under Media instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 0 op1 Rd Ra Rm op2 1 Rn
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
op1 Ra op2 Instruction Details

000 != 1111 000 SMLAD, SMLADX — SMLAD
000 != 1111 001 SMLAD, SMLADX — SMLADX
000 != 1111 010 SMLSD, SMLSDX — SMLSD
000 != 1111 011 SMLSD, SMLSDX — SMLSDX
000 1xx UNALLOCATED
000 1111 000 SMUAD, SMUADX — SMUAD
000 1111 001 SMUAD, SMUADX — SMUADX
000 1111 010 SMUSD, SMUSDX — SMUSD
000 1111 011 SMUSD, SMUSDX — SMUSDX
001 000 SDIV
001 != 000 UNALLOCATED
010 UNALLOCATED
011 000 UDIV
011 != 000 UNALLOCATED
100 000 SMLALD, SMLALDX — SMLALD
100 001 SMLALD, SMLALDX — SMLALDX
100 010 SMLSLD, SMLSLDX — SMLSLD
100 011 SMLSLD, SMLSLDX — SMLSLDX
100 1xx UNALLOCATED
101 != 1111 000 SMMLA, SMMLAR — SMMLA
101 != 1111 001 SMMLA, SMMLAR — SMMLAR
101 01x UNALLOCATED
101 10x UNALLOCATED
101 110 SMMLS, SMMLSR — SMMLS
101 111 SMMLS, SMMLSR — SMMLSR

Top-level encodings for A32

Page 1331

Decode fields
op1 Ra op2 Instruction Details

101 1111 000 SMMUL, SMMULR — SMMUL
101 1111 001 SMMUL, SMMULR — SMMULR
11x UNALLOCATED

Unsigned Sum of Absolute Differences

These instructions are under Media instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 1 0 0 0 Rd Ra Rm 0 0 0 1 Rn
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
Ra Instruction Details

!= 1111 USADA8
1111 USAD8

Bitfield Insert

These instructions are under Media instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 1 1 0 msb Rd lsb 0 0 1 Rn
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
Rn Instruction Details

!= 1111 BFI
1111 BFC

Permanently UNDEFINED

These instructions are under Media instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 1 1 1 1 imm12 1 1 1 1 imm4
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
cond Instruction Details

0xxx UNALLOCATED
10xx UNALLOCATED
110x UNALLOCATED
1110 UDF

Top-level encodings for A32

Page 1332

Bitfield Extract

These instructions are under Media instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 0 1 1 1 1 U 1 widthm1 Rd lsb 1 0 1 Rn
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
U Instruction Details

0 SBFX
1 UBFX

Branch, branch with link, and block data transfer

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 10 op0

Decode fields
cond op0 Instruction details

1111 0 Exception Save/Restore
!= 1111 0 Load/Store Multiple

1 Branch (immediate)

Exception Save/Restore

These instructions are under Branch, branch with link, and block data transfer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 P U S W L Rn op mode

Decode fields
P U S L Instruction Details

0 0 UNALLOCATED
0 0 0 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB — Decrement After
0 0 1 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB — Decrement After
0 1 0 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB — Increment After
0 1 1 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB — Increment After
1 0 0 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB — Decrement Before
1 0 1 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB — Decrement Before

1 1 UNALLOCATED
1 1 0 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB — Increment Before
1 1 1 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB — Increment Before

Load/Store Multiple

These instructions are under Branch, branch with link, and block data transfer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 0 0 P U op W L Rn register_list
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Top-level encodings for A32

Page 1333

Decode fields
P U op L register_list Instruction Details

0 0 0 0 STMDA, STMED
0 0 0 1 LDMDA, LDMFA
0 1 0 0 STM, STMIA, STMEA
0 1 0 1 LDM, LDMIA, LDMFD

1 0 STM (User registers)
1 0 0 0 STMDB, STMFD
1 0 0 1 LDMDB, LDMEA

1 1 0xxxxxxxxxxxxxxx LDM (User registers)
1 1 0 0 STMIB, STMFA
1 1 0 1 LDMIB, LDMED

1 1 1xxxxxxxxxxxxxxx LDM (exception return)

Branch (immediate)

These instructions are under Branch, branch with link, and block data transfer.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 1 H imm24

Decode fields
cond H Instruction Details

!= 1111 0 B
!= 1111 1 BL, BLX (immediate) — A1
1111 BL, BLX (immediate) — A2

System register access, Advanced SIMD, floating-point, and Supervisor call

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 11 op0 op1 op2

Decode fields
cond op0 op1 op2 Instruction details

0x 0x UNALLOCATED
10 0x UNALLOCATED
11 Supervisor call

1111 != 11 1x Unconditional Advanced SIMD and floating-point instructions
!= 1111 0x 1x Advanced SIMD and System register load/store and 64-bit move
!= 1111 10 1x 1 Advanced SIMD and System register 32-bit move
!= 1111 10 10 0 Floating-point data-processing
!= 1111 10 11 0 UNALLOCATED

Supervisor call

These instructions are under System register access, Advanced SIMD, floating-point, and Supervisor call.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1111

Decode fields Instruction details

Top-level encodings for A32

Page 1334

cond
1111 UNALLOCATED

!= 1111 SVC

Unconditional Advanced SIMD and floating-point instructions

These instructions are under System register access, Advanced SIMD, floating-point, and Supervisor call.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111111 op0 op1 1 op2 op3 op4 op5

The following constraints also apply to this encoding: op0<2:1> != 11

Decode fields
op0 op1 op2 op3 op4 op5 Instruction details

0xx 0x Advanced SIMD three registers of the same length
extension

100 0 !=
00

0 0 Floating-point conditional select

101 00xxxx 0 !=
00

0 Floating-point minNum/maxNum

101 110000 0 !=
00

1 0 Floating-point extraction and insertion

101 111xxx 0 !=
00

1 0 Floating-point directed convert to integer

10x 0 00 Advanced SIMD and floating-point multiply with accumulate
10x 1 0x Advanced SIMD and floating-point dot product

Advanced SIMD three registers of the same length extension

These instructions are under Unconditional Advanced SIMD and floating-point instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 op1 D op2 Vn Vd 1 op3 0 op4 N Q M U Vm

Decode fields
op1 op2 op3 op4 Q U Instruction Details Feature

x1 0x 0 0 0 0 VCADD — 64-bit SIMD vector FEAT_FCMA
x1 0x 0 0 0 1 UNALLOCATED -
x1 0x 0 0 1 0 VCADD — 128-bit SIMD vector FEAT_FCMA
x1 0x 0 0 1 1 UNALLOCATED -
00 0x 0 0 UNALLOCATED -
00 0x 0 1 UNALLOCATED -
00 00 1 0 0 0 UNALLOCATED -
00 00 1 0 0 1 UNALLOCATED -
00 00 1 0 1 0 VMMLA FEAT_AA32BF16
00 00 1 0 1 1 UNALLOCATED -
00 00 1 1 0 0 VDOT (vector) — 64-bit SIMD vector FEAT_AA32BF16
00 00 1 1 0 1 UNALLOCATED -
00 00 1 1 1 0 VDOT (vector) — 128-bit SIMD vector FEAT_AA32BF16
00 00 1 1 1 1 UNALLOCATED -
00 01 1 0 UNALLOCATED -

Top-level encodings for A32

Page 1335

Decode fields
op1 op2 op3 op4 Q U Instruction Details Feature

00 01 1 1 UNALLOCATED -
00 10 0 0 1 VFMAL (vector) FEAT_FHM
00 10 0 1 UNALLOCATED -
00 10 1 0 0 UNALLOCATED -
00 10 1 0 1 0 VSMMLA FEAT_AA32I8MM
00 10 1 0 1 1 VUMMLA FEAT_AA32I8MM
00 10 1 1 0 0 VSDOT (vector) — 64-bit SIMD vector FEAT_DotProd
00 10 1 1 0 1 VUDOT (vector) — 64-bit SIMD vector FEAT_DotProd
00 10 1 1 1 0 VSDOT (vector) — 128-bit SIMD vector FEAT_DotProd
00 10 1 1 1 1 VUDOT (vector) — 128-bit SIMD vector FEAT_DotProd
00 11 0 0 1 VFMAB, VFMAT (BFloat16, vector) FEAT_AA32BF16
00 11 0 1 UNALLOCATED -
00 11 1 0 UNALLOCATED -
00 11 1 1 UNALLOCATED -
01 10 0 0 1 VFMSL (vector) FEAT_FHM
01 10 0 1 UNALLOCATED -
01 10 1 0 0 UNALLOCATED -
01 10 1 0 1 0 VUSMMLA FEAT_AA32I8MM
01 10 1 0 1 1 UNALLOCATED -
01 10 1 1 0 0 VUSDOT (vector) — 64-bit SIMD vector FEAT_AA32I8MM
01 10 1 1 1 UNALLOCATED -
01 10 1 1 1 0 VUSDOT (vector) — 128-bit SIMD vector FEAT_AA32I8MM
01 11 0 1 UNALLOCATED -
01 11 1 0 UNALLOCATED -
01 11 1 1 UNALLOCATED -

1x 0 0 0 VCMLA FEAT_FCMA
10 11 0 1 UNALLOCATED -
10 11 1 0 UNALLOCATED -
10 11 1 1 UNALLOCATED -
11 11 0 1 UNALLOCATED -
11 11 1 0 UNALLOCATED -
11 11 1 1 UNALLOCATED -

Floating-point conditional select

These instructions are under Unconditional Advanced SIMD and floating-point instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 != 00 N 0 M 0 Vm
size

The following constraints also apply to this encoding: size != 00 && size != 00

Decode fields
size Instruction Details Feature

01 VSELEQ, VSELGE, VSELGT, VSELVS — half-precision scalar FEAT_FP16
10 VSELEQ, VSELGE, VSELGT, VSELVS — single-precision scalar -
11 VSELEQ, VSELGE, VSELGT, VSELVS — double-precision scalar -

Top-level encodings for A32

Page 1336

Floating-point minNum/maxNum

These instructions are under Unconditional Advanced SIMD and floating-point instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 != 00 N op M 0 Vm
size

The following constraints also apply to this encoding: size != 00 && size != 00

Decode fields
size op Instruction Details Feature

01 0 VMAXNM — half-precision scalar FEAT_FP16
01 1 VMINNM — half-precision scalar FEAT_FP16
10 0 VMAXNM — single-precision scalar -
10 1 VMINNM — single-precision scalar -
11 0 VMAXNM — double-precision scalar -
11 1 VMINNM — double-precision scalar -

Floating-point extraction and insertion

These instructions are under Unconditional Advanced SIMD and floating-point instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 != 00 op 1 M 0 Vm
size

The following constraints also apply to this encoding: size != 00 && size != 00

Decode fields
size op Instruction Details Feature

01 UNALLOCATED -
10 0 VMOVX FEAT_FP16
10 1 VINS FEAT_FP16
11 UNALLOCATED -

Floating-point directed convert to integer

These instructions are under Unconditional Advanced SIMD and floating-point instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 o1 RM Vd 1 0 != 00 op 1 M 0 Vm
size

The following constraints also apply to this encoding: size != 00 && size != 00

Decode fields
o1 RM size op Instruction Details Feature

0 != 00 1 UNALLOCATED -
0 00 01 0 VRINTA (floating-point) — half-precision scalar FEAT_FP16
0 00 10 0 VRINTA (floating-point) — single-precision scalar -
0 00 11 0 VRINTA (floating-point) — double-precision scalar -
0 01 01 0 VRINTN (floating-point) — half-precision scalar FEAT_FP16
0 01 10 0 VRINTN (floating-point) — single-precision scalar -
0 01 11 0 VRINTN (floating-point) — double-precision scalar -

Top-level encodings for A32

Page 1337

Decode fields
o1 RM size op Instruction Details Feature

0 10 01 0 VRINTP (floating-point) — half-precision scalar FEAT_FP16
0 10 10 0 VRINTP (floating-point) — single-precision scalar -
0 10 11 0 VRINTP (floating-point) — double-precision scalar -
0 11 01 0 VRINTM (floating-point) — half-precision scalar FEAT_FP16
0 11 10 0 VRINTM (floating-point) — single-precision scalar -
0 11 11 0 VRINTM (floating-point) — double-precision scalar -
1 00 01 VCVTA (floating-point) — half-precision scalar FEAT_FP16
1 00 10 VCVTA (floating-point) — single-precision scalar -
1 00 11 VCVTA (floating-point) — double-precision scalar -
1 01 01 VCVTN (floating-point) — half-precision scalar FEAT_FP16
1 01 10 VCVTN (floating-point) — single-precision scalar -
1 01 11 VCVTN (floating-point) — double-precision scalar -
1 10 01 VCVTP (floating-point) — half-precision scalar FEAT_FP16
1 10 10 VCVTP (floating-point) — single-precision scalar -
1 10 11 VCVTP (floating-point) — double-precision scalar -
1 11 01 VCVTM (floating-point) — half-precision scalar FEAT_FP16
1 11 10 VCVTM (floating-point) — single-precision scalar -
1 11 11 VCVTM (floating-point) — double-precision scalar -

Advanced SIMD and floating-point multiply with accumulate

These instructions are under Unconditional Advanced SIMD and floating-point instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 op1 D op2 Vn Vd 1 0 0 0 N Q M U Vm

Decode fields
op1 op2 Q U Instruction Details Feature

0 0 VCMLA (by element) — 128-bit SIMD vector of half-precision
floating-point

FEAT_FCMA

0 00 1 VFMAL (by scalar) FEAT_FHM
0 01 1 VFMSL (by scalar) FEAT_FHM
0 10 1 UNALLOCATED -
0 11 1 VFMAB, VFMAT (BFloat16, by scalar) FEAT_AA32BF16
1 0 0 VCMLA (by element) — 64-bit SIMD vector of single-precision

floating-point
FEAT_FCMA

1 1 UNALLOCATED -
1 1 0 VCMLA (by element) — 128-bit SIMD vector of single-precision

floating-point
FEAT_FCMA

Advanced SIMD and floating-point dot product

These instructions are under Unconditional Advanced SIMD and floating-point instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 op1 D op2 Vn Vd 1 1 0 op4 N Q M U Vm

Decode fields
op1 op2 op4 Q U Instruction Details Feature

0 00 0 UNALLOCATED -
0 00 1 0 0 VDOT (by element) — 64-bit SIMD vector FEAT_AA32BF16
0 00 1 1 UNALLOCATED -

Top-level encodings for A32

Page 1338

Decode fields
op1 op2 op4 Q U Instruction Details Feature

0 00 1 1 0 VDOT (by element) — 128-bit SIMD vector FEAT_AA32BF16
0 01 0 UNALLOCATED -
0 10 0 UNALLOCATED -
0 10 1 0 0 VSDOT (by element) — 64-bit SIMD vector FEAT_DotProd
0 10 1 0 1 VUDOT (by element) — 64-bit SIMD vector FEAT_DotProd
0 10 1 1 0 VSDOT (by element) — 128-bit SIMD vector FEAT_DotProd
0 10 1 1 1 VUDOT (by element) — 128-bit SIMD vector FEAT_DotProd
0 11 UNALLOCATED -
1 0 UNALLOCATED -
1 00 1 0 0 VUSDOT (by element) — 64-bit SIMD vector FEAT_AA32I8MM
1 00 1 0 1 VSUDOT (by element) — 64-bit SIMD vector FEAT_AA32I8MM
1 00 1 1 0 VUSDOT (by element) — 128-bit SIMD vector FEAT_AA32I8MM
1 00 1 1 1 VSUDOT (by element) — 128-bit SIMD vector FEAT_AA32I8MM
1 01 1 UNALLOCATED -
1 1x 1 UNALLOCATED -

Advanced SIMD and System register load/store and 64-bit move

These instructions are under System register access, Advanced SIMD, floating-point, and Supervisor call.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 110 op0 1 op1

Decode fields
op0 op1 Instruction details

00x0 0x Advanced SIMD and floating-point 64-bit move
00x0 11 System register 64-bit move

!= 00x0 0x Advanced SIMD and floating-point load/store
!= 00x0 11 System register load/store

10 UNALLOCATED

Advanced SIMD and floating-point 64-bit move

These instructions are under Advanced SIMD and System register load/store and 64-bit move.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 0 0 D 0 op Rt2 Rt 1 0 size opc2 M o3 Vm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
D op size opc2 o3 Instruction Details

0 UNALLOCATED
1 0 UNALLOCATED
1 0x 00 1 UNALLOCATED
1 01 UNALLOCATED
1 0 10 00 1 VMOV (between two general-purpose registers and two single-precision

registers) — from general-purpose registers
1 0 11 00 1 VMOV (between two general-purpose registers and a doubleword floating-

point register) — from general-purpose registers

Top-level encodings for A32

Page 1339

Decode fields
D op size opc2 o3 Instruction Details

1 1x UNALLOCATED
1 1 10 00 1 VMOV (between two general-purpose registers and two single-precision

registers) — to general-purpose registers
1 1 11 00 1 VMOV (between two general-purpose registers and a doubleword floating-

point register) — to general-purpose registers

System register 64-bit move

These instructions are under Advanced SIMD and System register load/store and 64-bit move.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 0 0 D 0 L Rt2 Rt 1 1 1 cp15 opc1 CRm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
D L Instruction Details

0 UNALLOCATED
1 0 MCRR
1 1 MRRC

Advanced SIMD and floating-point load/store

These instructions are under Advanced SIMD and System register load/store and 64-bit move.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 P U D W L Rn Vd 1 0 size imm8
cond

The following constraints also apply to this encoding: cond != 1111 && P:U:D:W != 00x0 && cond != 1111

Decode fields
P U W L Rn size imm8 Instruction Details Feature

0 0 1 UNALLOCATED -
0 1 0x UNALLOCATED -
0 1 0 10 VSTM, VSTMDB, VSTMIA — single-

precision scalar
-

0 1 0 11 xxxxxxx0 VSTM, VSTMDB, VSTMIA — double-
precision scalar

-

0 1 0 11 xxxxxxx1 FSTMDBX, FSTMIAX — Increment After -
0 1 1 10 VLDM, VLDMDB, VLDMIA — single-

precision scalar
-

0 1 1 11 xxxxxxx0 VLDM, VLDMDB, VLDMIA — double-
precision scalar

-

0 1 1 11 xxxxxxx1 FLDM*X (FLDMDBX, FLDMIAX) —
Increment After

-

1 0 0 01 VSTR — half-precision scalar FEAT_FP16
1 0 0 10 VSTR — single-precision scalar -
1 0 0 11 VSTR — double-precision scalar -
1 0 1 !=

1111
01 VLDR (immediate) — half-precision scalar FEAT_FP16

1 0 1 !=
1111

10 VLDR (immediate) — single-precision
scalar

-

Top-level encodings for A32

Page 1340

Decode fields
P U W L Rn size imm8 Instruction Details Feature

1 0 1 !=
1111

11 VLDR (immediate) — double-precision
scalar

-

1 0 1 0x UNALLOCATED -
1 0 1 0 10 VSTM, VSTMDB, VSTMIA — single-

precision scalar
-

1 0 1 0 11 xxxxxxx0 VSTM, VSTMDB, VSTMIA — double-
precision scalar

-

1 0 1 0 11 xxxxxxx1 FSTMDBX, FSTMIAX — Decrement Before -
1 0 1 1 10 VLDM, VLDMDB, VLDMIA — single-

precision scalar
-

1 0 1 1 11 xxxxxxx0 VLDM, VLDMDB, VLDMIA — double-
precision scalar

-

1 0 1 1 11 xxxxxxx1 FLDM*X (FLDMDBX, FLDMIAX) —
Decrement Before

-

1 0 1 1111 01 VLDR (literal) — half-precision scalar FEAT_FP16
1 0 1 1111 10 VLDR (literal) — single-precision scalar -
1 0 1 1111 11 VLDR (literal) — double-precision scalar -
1 1 1 UNALLOCATED -

System register load/store

These instructions are under Advanced SIMD and System register load/store and 64-bit move.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 0 P U D W L Rn CRd 1 1 1 cp15 imm8
cond

The following constraints also apply to this encoding: cond != 1111 && P:U:D:W != 00x0 && cond != 1111

Decode fields
P:U:W D L Rn CRd cp15 Instruction Details

!= 000 0 != 0101 0 UNALLOCATED
!= 000 0 1 1111 0101 0 LDC (literal)
!= 000 1 UNALLOCATED
!= 000 1 0101 0 UNALLOCATED
0x1 0 0 0101 0 STC — post-indexed
0x1 0 1 != 1111 0101 0 LDC (immediate) — post-indexed
010 0 0 0101 0 STC — unindexed
010 0 1 != 1111 0101 0 LDC (immediate) — unindexed
1x0 0 0 0101 0 STC — offset
1x0 0 1 != 1111 0101 0 LDC (immediate) — offset
1x1 0 0 0101 0 STC — pre-indexed
1x1 0 1 != 1111 0101 0 LDC (immediate) — pre-indexed

Advanced SIMD and System register 32-bit move

These instructions are under System register access, Advanced SIMD, floating-point, and Supervisor call.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1110 op0 1 op1 1

Decode fields Instruction details Feature

Top-level encodings for A32

Page 1341

op0 op1
000 000 UNALLOCATED -
000 001 VMOV (between general-purpose register and half-precision) FEAT_FP16
000 010 VMOV (between general-purpose register and single-precision) -
001 010 UNALLOCATED -
01x 010 UNALLOCATED -
10x 010 UNALLOCATED -
110 010 UNALLOCATED -
111 010 Floating-point move special register -

011 Advanced SIMD 8/16/32-bit element move/duplicate -
10x UNALLOCATED -
11x System register 32-bit move -

Floating-point move special register

These instructions are under Advanced SIMD and System register 32-bit move.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 1 1 L reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
L Instruction Details

0 VMSR
1 VMRS

Advanced SIMD 8/16/32-bit element move/duplicate

These instructions are under Advanced SIMD and System register 32-bit move.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 opc1 L Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
opc1 L opc2 Instruction Details

0xx 0 VMOV (general-purpose register to scalar)
1 VMOV (scalar to general-purpose register)

1xx 0 0x VDUP (general-purpose register)
1xx 0 1x UNALLOCATED

System register 32-bit move

These instructions are under Advanced SIMD and System register 32-bit move.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 opc1 L CRn Rt 1 1 1 cp15 opc2 1 CRm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Top-level encodings for A32

Page 1342

Decode fields
L Instruction Details

0 MCR
1 MRC

Floating-point data-processing

These instructions are under System register access, Advanced SIMD, floating-point, and Supervisor call.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1110 op0 10 op1 0

Decode fields
op0 op1 Instruction details

1x11 1 Floating-point data-processing (two registers)
1x11 0 Floating-point move immediate

!= 1x11 Floating-point data-processing (three registers)

Floating-point data-processing (two registers)

These instructions are under Floating-point data-processing.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 o1 opc2 Vd 1 0 size o3 1 M 0 Vm
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
o1 opc2 size o3 Instruction Details Feature

00 UNALLOCATED -
0 000 01 0 UNALLOCATED -
0 000 01 1 VABS — half-precision scalar FEAT_FP16
0 000 10 0 VMOV (register) — single-precision scalar -
0 000 10 1 VABS — single-precision scalar -
0 000 11 0 VMOV (register) — double-precision scalar -
0 000 11 1 VABS — double-precision scalar -
0 001 01 0 VNEG — half-precision scalar FEAT_FP16
0 001 01 1 VSQRT — half-precision scalar FEAT_FP16
0 001 10 0 VNEG — single-precision scalar -
0 001 10 1 VSQRT — single-precision scalar -
0 001 11 0 VNEG — double-precision scalar -
0 001 11 1 VSQRT — double-precision scalar -
0 010 01 UNALLOCATED -
0 010 10 0 VCVTB — half-precision to single-precision -
0 010 10 1 VCVTT — half-precision to single-precision -
0 010 11 0 VCVTB — half-precision to double-precision -
0 010 11 1 VCVTT — half-precision to double-precision -
0 011 01 0 VCVTB (BFloat16) FEAT_AA32BF16
0 011 01 1 VCVTT (BFloat16) FEAT_AA32BF16
0 011 10 0 VCVTB — single-precision to half-precision -
0 011 10 1 VCVTT — single-precision to half-precision -

Top-level encodings for A32

Page 1343

Decode fields
o1 opc2 size o3 Instruction Details Feature

0 011 11 0 VCVTB — double-precision to half-precision -
0 011 11 1 VCVTT — double-precision to half-precision -
0 100 01 0 VCMP FEAT_FP16
0 100 01 1 VCMPE FEAT_FP16
0 100 10 0 VCMP -
0 100 10 1 VCMPE -
0 100 11 0 VCMP -
0 100 11 1 VCMPE -
0 101 01 0 VCMP FEAT_FP16
0 101 01 1 VCMPE FEAT_FP16
0 101 10 0 VCMP -
0 101 10 1 VCMPE -
0 101 11 0 VCMP -
0 101 11 1 VCMPE -
0 110 01 0 VRINTR — half-precision scalar FEAT_FP16
0 110 01 1 VRINTZ (floating-point) — half-precision scalar FEAT_FP16
0 110 10 0 VRINTR — single-precision scalar -
0 110 10 1 VRINTZ (floating-point) — single-precision scalar -
0 110 11 0 VRINTR — double-precision scalar -
0 110 11 1 VRINTZ (floating-point) — double-precision scalar -
0 111 01 0 VRINTX (floating-point) — half-precision scalar FEAT_FP16
0 111 01 1 UNALLOCATED -
0 111 10 0 VRINTX (floating-point) — single-precision scalar -
0 111 10 1 VCVT (between double-precision and single-precision) — single-

precision to double-precision
-

0 111 11 0 VRINTX (floating-point) — double-precision scalar -
0 111 11 1 VCVT (between double-precision and single-precision) — double-

precision to single-precision
-

1 000 01 VCVT (integer to floating-point, floating-point) — half-precision
scalar

FEAT_FP16

1 000 10 VCVT (integer to floating-point, floating-point) — single-precision
scalar

-

1 000 11 VCVT (integer to floating-point, floating-point) — double-
precision scalar

-

1 001 01 UNALLOCATED -
1 001 10 UNALLOCATED -
1 001 11 0 UNALLOCATED -
1 001 11 1 VJCVT FEAT_JSCVT
1 01x 01 VCVT (between floating-point and fixed-point, floating-point) FEAT_FP16
1 01x 10 VCVT (between floating-point and fixed-point, floating-point) -
1 01x 11 VCVT (between floating-point and fixed-point, floating-point) -
1 100 01 0 VCVTR FEAT_FP16
1 100 01 1 VCVT (floating-point to integer, floating-point) FEAT_FP16
1 100 10 0 VCVTR -
1 100 10 1 VCVT (floating-point to integer, floating-point) -
1 100 11 0 VCVTR -
1 100 11 1 VCVT (floating-point to integer, floating-point) -
1 101 01 0 VCVTR FEAT_FP16
1 101 01 1 VCVT (floating-point to integer, floating-point) FEAT_FP16

Top-level encodings for A32

Page 1344

Decode fields
o1 opc2 size o3 Instruction Details Feature

1 101 10 0 VCVTR -
1 101 10 1 VCVT (floating-point to integer, floating-point) -
1 101 11 0 VCVTR -
1 101 11 1 VCVT (floating-point to integer, floating-point) -
1 11x 01 VCVT (between floating-point and fixed-point, floating-point) FEAT_FP16
1 11x 10 VCVT (between floating-point and fixed-point, floating-point) -
1 11x 11 VCVT (between floating-point and fixed-point, floating-point) -

Floating-point move immediate

These instructions are under Floating-point data-processing.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L
cond

The following constraints also apply to this encoding: cond != 1111 && cond != 1111

Decode fields
size Instruction Details Feature

00 UNALLOCATED -
01 VMOV (immediate) — half-precision scalar FEAT_FP16
10 VMOV (immediate) — single-precision scalar -
11 VMOV (immediate) — double-precision scalar -

Floating-point data-processing (three registers)

These instructions are under Floating-point data-processing.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

!= 1111 1 1 1 0 o0 D o1 Vn Vd 1 0 size N o2 M 0 Vm
cond

The following constraints also apply to this encoding: cond != 1111 && o0:D:o1 != 1x11 && cond != 1111

Decode fields
o0:o1 size o2 Instruction Details Feature

!= 111 00 UNALLOCATED -
000 01 0 VMLA (floating-point) — half-precision scalar FEAT_FP16
000 01 1 VMLS (floating-point) — half-precision scalar FEAT_FP16
000 10 0 VMLA (floating-point) — single-precision scalar -
000 10 1 VMLS (floating-point) — single-precision scalar -
000 11 0 VMLA (floating-point) — double-precision scalar -
000 11 1 VMLS (floating-point) — double-precision scalar -
001 01 0 VNMLS — half-precision scalar FEAT_FP16
001 01 1 VNMLA — half-precision scalar FEAT_FP16
001 10 0 VNMLS — single-precision scalar -
001 10 1 VNMLA — single-precision scalar -
001 11 0 VNMLS — double-precision scalar -
001 11 1 VNMLA — double-precision scalar -
010 01 0 VMUL (floating-point) — half-precision scalar FEAT_FP16

Top-level encodings for A32

Page 1345

Decode fields
o0:o1 size o2 Instruction Details Feature

010 01 1 VNMUL — half-precision scalar FEAT_FP16
010 10 0 VMUL (floating-point) — single-precision scalar -
010 10 1 VNMUL — single-precision scalar -
010 11 0 VMUL (floating-point) — double-precision scalar -
010 11 1 VNMUL — double-precision scalar -
011 01 0 VADD (floating-point) — half-precision scalar FEAT_FP16
011 01 1 VSUB (floating-point) — half-precision scalar FEAT_FP16
011 10 0 VADD (floating-point) — single-precision scalar -
011 10 1 VSUB (floating-point) — single-precision scalar -
011 11 0 VADD (floating-point) — double-precision scalar -
011 11 1 VSUB (floating-point) — double-precision scalar -
100 01 0 VDIV — half-precision scalar FEAT_FP16
100 10 0 VDIV — single-precision scalar -
100 11 0 VDIV — double-precision scalar -
101 01 0 VFNMS — half-precision scalar FEAT_FP16
101 01 1 VFNMA — half-precision scalar FEAT_FP16
101 10 0 VFNMS — single-precision scalar -
101 10 1 VFNMA — single-precision scalar -
101 11 0 VFNMS — double-precision scalar -
101 11 1 VFNMA — double-precision scalar -
110 01 0 VFMA — half-precision scalar FEAT_FP16
110 01 1 VFMS — half-precision scalar FEAT_FP16
110 10 0 VFMA — single-precision scalar -
110 10 1 VFMS — single-precision scalar -
110 11 0 VFMA — double-precision scalar -
110 11 1 VFMS — double-precision scalar -

Unconditional instructions

These instructions are under the top-level.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11110 op0 op1

Decode fields
op0 op1 Instruction details

00x Miscellaneous
01x Advanced SIMD data-processing
1xx 1 Memory hints and barriers
100 0 Advanced SIMD element or structure load/store
101 0 UNALLOCATED
11x 0 UNALLOCATED

Miscellaneous

These instructions are under Unconditional instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111000 op0 op1

Top-level encodings for A32

Page 1346

Decode fields
op0 op1 Instruction details Feature

0xxxx UNALLOCATED -
10000 xx0x Change Process State -
10001 1000 UNALLOCATED -
10001 x100 UNALLOCATED -
10001 xx01 UNALLOCATED -
10001 0000 SETPAN FEAT_PAN
1000x 0111 UNALLOCATED -
10010 0111 CONSTRAINED UNPREDICTABLE -
10011 0111 UNALLOCATED -
1001x xx0x UNALLOCATED -
100xx 0011 UNALLOCATED -
100xx 0x10 UNALLOCATED -
100xx 1x1x UNALLOCATED -
101xx UNALLOCATED -
11xxx UNALLOCATED -

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings

Change Process State

These instructions are under Miscellaneous.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 1 0 0 0 0 imod M op (0) (0) (0) (0) (0) (0) E A I F 0 mode

Decode fields
imod M op I F mode Instruction Details

1 0 0 0xxxx SETEND
00 1 0 CPS, CPSID, CPSIE — change mode
10 0 CPS, CPSID, CPSIE — interrupt enable and change mode

1 0 0 1xxxx UNALLOCATED
1 0 1 UNALLOCATED
1 1 UNALLOCATED

11 0 CPS, CPSID, CPSIE — interrupt disable and change mode

Advanced SIMD data-processing

These instructions are under Unconditional instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111001 op0 op1

Decode fields
op0 op1 Instruction details

0 Advanced SIMD three registers of the same length
1 0 Advanced SIMD two registers, or three registers of different lengths
1 1 Advanced SIMD shifts and immediate generation

Top-level encodings for A32

Page 1347

Advanced SIMD three registers of the same length

These instructions are under Advanced SIMD data-processing.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 0 D size Vn Vd opc N Q M o1 Vm

Decode fields
U size opc Q o1 Instruction Details Feature

0 0x 1100 1 VFMA -
0 0x 1101 0 VADD (floating-point) -
0 0x 1101 1 VMLA (floating-point) -
0 0x 1110 0 VCEQ (register) — A2 -
0 0x 1111 0 VMAX (floating-point) -
0 0x 1111 1 VRECPS -

0000 0 VHADD -
0 00 0001 1 VAND (register) -

0000 1 VQADD -
0001 0 VRHADD -

0 00 1100 0 SHA1C FEAT_SHA1
0010 0 VHSUB -

0 01 0001 1 VBIC (register) -
0010 1 VQSUB -
0011 0 VCGT (register) — A1 -
0011 1 VCGE (register) — A1 -

0 01 1100 0 SHA1P FEAT_SHA1
0 1x 1100 1 VFMS -
0 1x 1101 0 VSUB (floating-point) -
0 1x 1101 1 VMLS (floating-point) -
0 1x 1110 0 UNALLOCATED -
0 1x 1111 0 VMIN (floating-point) -
0 1x 1111 1 VRSQRTS -

0100 0 VSHL (register) -
0 1000 0 VADD (integer) -
0 10 0001 1 VORR (register) -
0 1000 1 VTST -

0100 1 VQSHL (register) -
0 1001 0 VMLA (integer) -

0101 0 VRSHL -
0101 1 VQRSHL -

0 1011 0 VQDMULH -
0 10 1100 0 SHA1M FEAT_SHA1
0 1011 1 VPADD (integer) -

0110 0 VMAX (integer) -
0 11 0001 1 VORN (register) -

0110 1 VMIN (integer) -
0111 0 VABD (integer) -
0111 1 VABA -

0 11 1100 0 SHA1SU0 FEAT_SHA1
1 0x 1101 0 VPADD (floating-point) -
1 0x 1101 1 VMUL (floating-point) -

Top-level encodings for A32

Page 1348

Decode fields
U size opc Q o1 Instruction Details Feature

1 0x 1110 0 VCGE (register) — A2 -
1 0x 1110 1 VACGE -
1 0x 1111 0 0 VPMAX (floating-point) -
1 0x 1111 1 VMAXNM -
1 00 0001 1 VEOR -

1001 1 VMUL (integer and polynomial) -
1 00 1100 0 SHA256H FEAT_SHA256

1010 0 0 VPMAX (integer) -
1 01 0001 1 VBSL -

1010 0 1 VPMIN (integer) -
1010 1 UNALLOCATED -

1 01 1100 0 SHA256H2 FEAT_SHA256
1 1x 1101 0 VABD (floating-point) -
1 1x 1110 0 VCGT (register) — A2 -
1 1x 1110 1 VACGT -
1 1x 1111 0 0 VPMIN (floating-point) -
1 1x 1111 1 VMINNM -
1 1000 0 VSUB (integer) -
1 10 0001 1 VBIT -
1 1000 1 VCEQ (register) — A1 -
1 1001 0 VMLS (integer) -
1 1011 0 VQRDMULH -
1 10 1100 0 SHA256SU1 FEAT_SHA256
1 1011 1 VQRDMLAH FEAT_RDM
1 11 0001 1 VBIF -
1 1100 1 VQRDMLSH FEAT_RDM
1 1111 1 0 UNALLOCATED -

Advanced SIMD two registers, or three registers of different lengths

These instructions are under Advanced SIMD data-processing.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111001 op0 1 op1 op2 op3 0

Decode fields
op0 op1 op2 op3 Instruction details

0 11 VEXT (byte elements)
1 11 0x Advanced SIMD two registers misc
1 11 10 VTBL, VTBX
1 11 11 Advanced SIMD duplicate (scalar)

!= 11 0 Advanced SIMD three registers of different lengths
!= 11 1 Advanced SIMD two registers and a scalar

Advanced SIMD two registers misc

These instructions are under Advanced SIMD two registers, or three registers of different lengths.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 size opc1 Vd 0 opc2 Q M 0 Vm

Top-level encodings for A32

Page 1349

Decode fields
size opc1 opc2 Q Instruction Details Feature

00 0000 VREV64 -
00 0001 VREV32 -
00 0010 VREV16 -
00 0011 UNALLOCATED -
00 010x VPADDL -
00 0110 0 AESE FEAT_AES
00 0110 1 AESD FEAT_AES
00 0111 0 AESMC FEAT_AES
00 0111 1 AESIMC FEAT_AES
00 1000 VCLS -

00 10 0000 VSWP -
00 1001 VCLZ -
00 1010 VCNT -
00 1011 VMVN (register) -

00 10 1100 1 UNALLOCATED -
00 110x VPADAL -
00 1110 VQABS -
00 1111 VQNEG -
01 x000 VCGT (immediate #0) -
01 x001 VCGE (immediate #0) -
01 x010 VCEQ (immediate #0) -
01 x011 VCLE (immediate #0) -
01 x100 VCLT (immediate #0) -
01 x110 VABS -
01 x111 VNEG -
01 0101 1 SHA1H FEAT_SHA1

01 10 1100 1 VCVT (from single-precision to BFloat16, Advanced SIMD) FEAT_AA32BF16
10 0001 VTRN -
10 0010 VUZP -
10 0011 VZIP -
10 0100 0 VMOVN -
10 0100 1 VQMOVN, VQMOVUN — VQMOVUN -
10 0101 VQMOVN, VQMOVUN — VQMOVN -
10 0110 0 VSHLL -
10 0111 0 SHA1SU1 FEAT_SHA1
10 0111 1 SHA256SU0 FEAT_SHA256
10 1000 VRINTN (Advanced SIMD) -
10 1001 VRINTX (Advanced SIMD) -
10 1010 VRINTA (Advanced SIMD) -
10 1011 VRINTZ (Advanced SIMD) -

10 10 1100 1 UNALLOCATED -
10 1100 0 VCVT (between half-precision and single-precision, Advanced

SIMD) — single-precision to half-precision
-

10 1101 VRINTM (Advanced SIMD) -
10 1110 0 VCVT (between half-precision and single-precision, Advanced

SIMD) — half-precision to single-precision
-

10 1110 1 UNALLOCATED -
10 1111 VRINTP (Advanced SIMD) -

Top-level encodings for A32

Page 1350

Decode fields
size opc1 opc2 Q Instruction Details Feature

11 000x VCVTA (Advanced SIMD) -
11 001x VCVTN (Advanced SIMD) -
11 010x VCVTP (Advanced SIMD) -
11 011x VCVTM (Advanced SIMD) -
11 10x0 VRECPE -
11 10x1 VRSQRTE -

11 10 1100 1 UNALLOCATED -
11 11xx VCVT (between floating-point and integer, Advanced SIMD) -

Advanced SIMD duplicate (scalar)

These instructions are under Advanced SIMD two registers, or three registers of different lengths.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 D 1 1 imm4 Vd 1 1 opc Q M 0 Vm

Decode fields
opc Instruction Details

000 VDUP (scalar)
001 UNALLOCATED
01x UNALLOCATED
1xx UNALLOCATED

Advanced SIMD three registers of different lengths

These instructions are under Advanced SIMD two registers, or three registers of different lengths.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D != 11 Vn Vd opc N 0 M 0 Vm
size

The following constraints also apply to this encoding: size != 11 && size != 11

Decode fields
U opc Instruction Details

0000 VADDL
0001 VADDW
0010 VSUBL

0 0100 VADDHN
0011 VSUBW

0 0110 VSUBHN
0 1001 VQDMLAL

0101 VABAL
0 1011 VQDMLSL
0 1101 VQDMULL

0111 VABDL (integer)
1000 VMLAL (integer)
1010 VMLSL (integer)

1 0100 VRADDHN
1 0110 VRSUBHN

11x0 VMULL (integer and polynomial)

Top-level encodings for A32

Page 1351

Decode fields
U opc Instruction Details

1 1001 UNALLOCATED
1 1011 UNALLOCATED
1 1101 UNALLOCATED

1111 UNALLOCATED

Advanced SIMD two registers and a scalar

These instructions are under Advanced SIMD two registers, or three registers of different lengths.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 Q 1 D != 11 Vn Vd opc N 1 M 0 Vm
size

The following constraints also apply to this encoding: size != 11 && size != 11

Decode fields
Q opc Instruction Details Feature

000x VMLA (by scalar) -
0 0011 VQDMLAL -

0010 VMLAL (by scalar) -
0 0111 VQDMLSL -

010x VMLS (by scalar) -
0 1011 VQDMULL -

0110 VMLSL (by scalar) -
100x VMUL (by scalar) -

1 0011 UNALLOCATED -
1010 VMULL (by scalar) -

1 0111 UNALLOCATED -
1100 VQDMULH -
1101 VQRDMULH -

1 1011 UNALLOCATED -
1110 VQRDMLAH FEAT_RDM
1111 VQRDMLSH FEAT_RDM

Advanced SIMD shifts and immediate generation

These instructions are under Advanced SIMD data-processing.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111001 1 op0 1

Decode fields
op0 Instruction details

000xxxxxxxxxxx0 Advanced SIMD one register and modified immediate
!= 000xxxxxxxxxxx0 Advanced SIMD two registers and shift amount

Advanced SIMD one register and modified immediate

These instructions are under Advanced SIMD shifts and immediate generation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 i 1 D 0 0 0 imm3 Vd cmode 0 Q op 1 imm4

Top-level encodings for A32

Page 1352

Decode fields
cmode op Instruction Details

0xx0 0 VMOV (immediate) — A1
0xx0 1 VMVN (immediate) — A1
0xx1 0 VORR (immediate) — A1
0xx1 1 VBIC (immediate) — A1
10x0 0 VMOV (immediate) — A3
10x0 1 VMVN (immediate) — A2
10x1 0 VORR (immediate) — A2
10x1 1 VBIC (immediate) — A2
11xx 0 VMOV (immediate) — A4
110x 1 VMVN (immediate) — A3
1110 1 VMOV (immediate) — A5
1111 1 UNALLOCATED

Advanced SIMD two registers and shift amount

These instructions are under Advanced SIMD shifts and immediate generation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 U 1 D imm3H imm3L Vd opc L Q M 1 Vm

The following constraints also apply to this encoding: imm3H:imm3L:Vd:opc:L != 000xxxxxxxxxxx0

Decode fields
U imm3H:L imm3L opc Q Instruction Details

!= 0000 0000 VSHR
!= 0000 0001 VSRA
!= 0000 000 1010 0 VMOVL
!= 0000 0010 VRSHR
!= 0000 0011 VRSRA
!= 0000 0111 VQSHL, VQSHLU (immediate) — VQSHL
!= 0000 1001 0 VQSHRN, VQSHRUN — VQSHRN
!= 0000 1001 1 VQRSHRN, VQRSHRUN — VQRSHRN
!= 0000 1010 0 VSHLL
!= 0000 11xx VCVT (between floating-point and fixed-point, Advanced SIMD)

0 != 0000 0101 VSHL (immediate)
0 != 0000 1000 0 VSHRN
0 != 0000 1000 1 VRSHRN
1 != 0000 0100 VSRI
1 != 0000 0101 VSLI
1 != 0000 0110 VQSHL, VQSHLU (immediate) — VQSHLU
1 != 0000 1000 0 VQSHRN, VQSHRUN — VQSHRUN
1 != 0000 1000 1 VQRSHRN, VQRSHRUN — VQRSHRUN

Memory hints and barriers

These instructions are under Unconditional instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111101 op0 1 op1

Top-level encodings for A32

Page 1353

Decode fields
op0 op1 Instruction details

00xx1 CONSTRAINED UNPREDICTABLE
01001 CONSTRAINED UNPREDICTABLE
01011 Barriers
011x1 CONSTRAINED UNPREDICTABLE
0xxx0 Preload (immediate)
1xxx0 0 Preload (register)
1xxx1 0 CONSTRAINED UNPREDICTABLE
1xxxx 1 UNALLOCATED

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings

Barriers

These instructions are under Memory hints and barriers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 1 1 1 (1) (1) (1) (1) (1) (1) (1) (1) (0) (0) (0) (0) opcode option

Decode fields
opcode option Instruction Details Feature

0000 CONSTRAINED UNPREDICTABLE -
0001 CLREX -
001x CONSTRAINED UNPREDICTABLE -
0100 != 0x00 DSB -
0100 0000 SSBB -
0100 0100 PSSBB -
0101 DMB -
0110 ISB -
0111 SB FEAT_SB
1xxx CONSTRAINED UNPREDICTABLE -

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings

Preload (immediate)

These instructions are under Memory hints and barriers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 D U R 0 1 Rn (1) (1) (1) (1) imm12

Decode fields
D R Rn Instruction Details

0 0 Reserved hint, behaves as NOP
0 1 PLI (immediate, literal)
1 1111 PLD (literal)
1 0 != 1111 PLD, PLDW (immediate) — preload write
1 1 != 1111 PLD, PLDW (immediate) — preload read

Top-level encodings for A32

Page 1354

Preload (register)

These instructions are under Memory hints and barriers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 D U o2 0 1 Rn (1) (1) (1) (1) imm5 stype 0 Rm

Decode fields
D o2 imm5:stype Instruction Details

0 0 Reserved hint, behaves as NOP
0 1 != 0000011 PLI (register) — shift or rotate by value
0 1 0000011 PLI (register) — rotate right with extend
1 0 != 0000011 PLD, PLDW (register) — preload write, optional shift or rotate
1 0 0000011 PLD, PLDW (register) — preload write, rotate right with extend
1 1 != 0000011 PLD, PLDW (register) — preload read, optional shift or rotate
1 1 0000011 PLD, PLDW (register) — preload read, rotate right with extend

Advanced SIMD element or structure load/store

These instructions are under Unconditional instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11110100 op0 0 op1

Decode fields
op0 op1 Instruction details

0 Advanced SIMD load/store multiple structures
1 11 Advanced SIMD load single structure to all lanes
1 != 11 Advanced SIMD load/store single structure to one lane

Advanced SIMD load/store multiple structures

These instructions are under Advanced SIMD element or structure load/store.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 0 D L 0 Rn Vd itype size align Rm

Decode fields
L itype Rm Instruction Details

0 000x != 11x1 VST4 (multiple 4-element structures)
0 000x 1101 VST4 (multiple 4-element structures)
0 000x 1111 VST4 (multiple 4-element structures)
0 0010 != 11x1 VST1 (multiple single elements)
0 0010 1101 VST1 (multiple single elements)
0 0010 1111 VST1 (multiple single elements)
0 0011 != 11x1 VST2 (multiple 2-element structures)
0 0011 1101 VST2 (multiple 2-element structures)
0 0011 1111 VST2 (multiple 2-element structures)
0 010x != 11x1 VST3 (multiple 3-element structures)
0 010x 1101 VST3 (multiple 3-element structures)
0 010x 1111 VST3 (multiple 3-element structures)
0 0110 != 11x1 VST1 (multiple single elements)
0 0110 1101 VST1 (multiple single elements)
0 0110 1111 VST1 (multiple single elements)

Top-level encodings for A32

Page 1355

Decode fields
L itype Rm Instruction Details

0 0111 != 11x1 VST1 (multiple single elements)
0 0111 1101 VST1 (multiple single elements)
0 0111 1111 VST1 (multiple single elements)
0 100x != 11x1 VST2 (multiple 2-element structures)
0 100x 1101 VST2 (multiple 2-element structures)
0 100x 1111 VST2 (multiple 2-element structures)
0 1010 != 11x1 VST1 (multiple single elements)
0 1010 1101 VST1 (multiple single elements)
0 1010 1111 VST1 (multiple single elements)
1 000x != 11x1 VLD4 (multiple 4-element structures)
1 000x 1101 VLD4 (multiple 4-element structures)
1 000x 1111 VLD4 (multiple 4-element structures)
1 0010 != 11x1 VLD1 (multiple single elements)
1 0010 1101 VLD1 (multiple single elements)
1 0010 1111 VLD1 (multiple single elements)
1 0011 != 11x1 VLD2 (multiple 2-element structures)
1 0011 1101 VLD2 (multiple 2-element structures)
1 0011 1111 VLD2 (multiple 2-element structures)
1 010x != 11x1 VLD3 (multiple 3-element structures)
1 010x 1101 VLD3 (multiple 3-element structures)
1 010x 1111 VLD3 (multiple 3-element structures)

1011 UNALLOCATED
1 0110 != 11x1 VLD1 (multiple single elements)
1 0110 1101 VLD1 (multiple single elements)
1 0110 1111 VLD1 (multiple single elements)
1 0111 != 11x1 VLD1 (multiple single elements)
1 0111 1101 VLD1 (multiple single elements)
1 0111 1111 VLD1 (multiple single elements)

11xx UNALLOCATED
1 100x != 11x1 VLD2 (multiple 2-element structures)
1 100x 1101 VLD2 (multiple 2-element structures)
1 100x 1111 VLD2 (multiple 2-element structures)
1 1010 != 11x1 VLD1 (multiple single elements)
1 1010 1101 VLD1 (multiple single elements)
1 1010 1111 VLD1 (multiple single elements)

Advanced SIMD load single structure to all lanes

These instructions are under Advanced SIMD element or structure load/store.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D L 0 Rn Vd 1 1 N size T a Rm

Decode fields
L N a Rm Instruction Details

0 UNALLOCATED
1 00 != 11x1 VLD1 (single element to all lanes)
1 00 1101 VLD1 (single element to all lanes)
1 00 1111 VLD1 (single element to all lanes)

Top-level encodings for A32

Page 1356

Decode fields
L N a Rm Instruction Details

1 01 != 11x1 VLD2 (single 2-element structure to all lanes)
1 01 1101 VLD2 (single 2-element structure to all lanes)
1 01 1111 VLD2 (single 2-element structure to all lanes)
1 10 0 != 11x1 VLD3 (single 3-element structure to all lanes)
1 10 0 1101 VLD3 (single 3-element structure to all lanes)
1 10 0 1111 VLD3 (single 3-element structure to all lanes)
1 10 1 UNALLOCATED
1 11 != 11x1 VLD4 (single 4-element structure to all lanes)
1 11 1101 VLD4 (single 4-element structure to all lanes)
1 11 1111 VLD4 (single 4-element structure to all lanes)

Advanced SIMD load/store single structure to one lane

These instructions are under Advanced SIMD element or structure load/store.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 1 D L 0 Rn Vd != 11 N index_align Rm
size

The following constraints also apply to this encoding: size != 11 && size != 11

Decode fields
L size N Rm Instruction Details

0 00 00 != 11x1 VST1 (single element from one lane)
0 00 00 1101 VST1 (single element from one lane)
0 00 00 1111 VST1 (single element from one lane)
0 00 01 != 11x1 VST2 (single 2-element structure from one lane)
0 00 01 1101 VST2 (single 2-element structure from one lane)
0 00 01 1111 VST2 (single 2-element structure from one lane)
0 00 10 != 11x1 VST3 (single 3-element structure from one lane)
0 00 10 1101 VST3 (single 3-element structure from one lane)
0 00 10 1111 VST3 (single 3-element structure from one lane)
0 00 11 != 11x1 VST4 (single 4-element structure from one lane)
0 00 11 1101 VST4 (single 4-element structure from one lane)
0 00 11 1111 VST4 (single 4-element structure from one lane)
0 01 00 != 11x1 VST1 (single element from one lane)
0 01 00 1101 VST1 (single element from one lane)
0 01 00 1111 VST1 (single element from one lane)
0 01 01 != 11x1 VST2 (single 2-element structure from one lane)
0 01 01 1101 VST2 (single 2-element structure from one lane)
0 01 01 1111 VST2 (single 2-element structure from one lane)
0 01 10 != 11x1 VST3 (single 3-element structure from one lane)
0 01 10 1101 VST3 (single 3-element structure from one lane)
0 01 10 1111 VST3 (single 3-element structure from one lane)
0 01 11 != 11x1 VST4 (single 4-element structure from one lane)
0 01 11 1101 VST4 (single 4-element structure from one lane)
0 01 11 1111 VST4 (single 4-element structure from one lane)
0 10 00 != 11x1 VST1 (single element from one lane)
0 10 00 1101 VST1 (single element from one lane)

Top-level encodings for A32

Page 1357

Decode fields
L size N Rm Instruction Details

0 10 00 1111 VST1 (single element from one lane)
0 10 01 != 11x1 VST2 (single 2-element structure from one lane)
0 10 01 1101 VST2 (single 2-element structure from one lane)
0 10 01 1111 VST2 (single 2-element structure from one lane)
0 10 10 != 11x1 VST3 (single 3-element structure from one lane)
0 10 10 1101 VST3 (single 3-element structure from one lane)
0 10 10 1111 VST3 (single 3-element structure from one lane)
0 10 11 != 11x1 VST4 (single 4-element structure from one lane)
0 10 11 1101 VST4 (single 4-element structure from one lane)
0 10 11 1111 VST4 (single 4-element structure from one lane)
1 00 00 != 11x1 VLD1 (single element to one lane)
1 00 00 1101 VLD1 (single element to one lane)
1 00 00 1111 VLD1 (single element to one lane)
1 00 01 != 11x1 VLD2 (single 2-element structure to one lane)
1 00 01 1101 VLD2 (single 2-element structure to one lane)
1 00 01 1111 VLD2 (single 2-element structure to one lane)
1 00 10 != 11x1 VLD3 (single 3-element structure to one lane)
1 00 10 1101 VLD3 (single 3-element structure to one lane)
1 00 10 1111 VLD3 (single 3-element structure to one lane)
1 00 11 != 11x1 VLD4 (single 4-element structure to one lane)
1 00 11 1101 VLD4 (single 4-element structure to one lane)
1 00 11 1111 VLD4 (single 4-element structure to one lane)
1 01 00 != 11x1 VLD1 (single element to one lane)
1 01 00 1101 VLD1 (single element to one lane)
1 01 00 1111 VLD1 (single element to one lane)
1 01 01 != 11x1 VLD2 (single 2-element structure to one lane)
1 01 01 1101 VLD2 (single 2-element structure to one lane)
1 01 01 1111 VLD2 (single 2-element structure to one lane)
1 01 10 != 11x1 VLD3 (single 3-element structure to one lane)
1 01 10 1101 VLD3 (single 3-element structure to one lane)
1 01 10 1111 VLD3 (single 3-element structure to one lane)
1 01 11 != 11x1 VLD4 (single 4-element structure to one lane)
1 01 11 1101 VLD4 (single 4-element structure to one lane)
1 01 11 1111 VLD4 (single 4-element structure to one lane)
1 10 00 != 11x1 VLD1 (single element to one lane)
1 10 00 1101 VLD1 (single element to one lane)
1 10 00 1111 VLD1 (single element to one lane)
1 10 01 != 11x1 VLD2 (single 2-element structure to one lane)
1 10 01 1101 VLD2 (single 2-element structure to one lane)
1 10 01 1111 VLD2 (single 2-element structure to one lane)
1 10 10 != 11x1 VLD3 (single 3-element structure to one lane)
1 10 10 1101 VLD3 (single 3-element structure to one lane)
1 10 10 1111 VLD3 (single 3-element structure to one lane)
1 10 11 != 11x1 VLD4 (single 4-element structure to one lane)
1 10 11 1101 VLD4 (single 4-element structure to one lane)
1 10 11 1111 VLD4 (single 4-element structure to one lane)

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Top-level encodings for A32

Page 1358

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Top-level encodings for A32

Page 1359

Top-level encodings for T32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op0 op1

Decode fields
op0 op1 Instruction details

!= 111 16-bit
111 00 B — T2
111 != 00 32-bit

16-bit

These instructions are under the top-level.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op0

The following constraints also apply to this encoding: op0<5:3> != 111

Decode fields
op0 Instruction details

00xxxx Shift (immediate), add, subtract, move, and compare
010000 Data-processing (two low registers)
010001 Special data instructions and branch and exchange
01001x LDR (literal) — T1
0101xx Load/store (register offset)
011xxx Load/store word/byte (immediate offset)
1000xx Load/store halfword (immediate offset)
1001xx Load/store (SP-relative)
1010xx Add PC/SP (immediate)
1011xx Miscellaneous 16-bit instructions
1100xx Load/store multiple
1101xx Conditional branch, and Supervisor Call

Shift (immediate), add, subtract, move, and compare

These instructions are under 16-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 op0 op1 op2

Decode fields
op0 op1 op2 Instruction details

0 11 0 Add, subtract (three low registers)
0 11 1 Add, subtract (two low registers and immediate)
0 != 11 MOV, MOVS (register) — T2
1 Add, subtract, compare, move (one low register and immediate)

Add, subtract (three low registers)

These instructions are under Shift (immediate), add, subtract, move, and compare.

Top-level encodings for T32

Page 1360

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 S Rm Rn Rd

Decode fields
S Instruction Details

0 ADD, ADDS (register)
1 SUB, SUBS (register)

Add, subtract (two low registers and immediate)

These instructions are under Shift (immediate), add, subtract, move, and compare.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 S imm3 Rn Rd

Decode fields
S Instruction Details

0 ADD, ADDS (immediate)
1 SUB, SUBS (immediate)

Add, subtract, compare, move (one low register and immediate)

These instructions are under Shift (immediate), add, subtract, move, and compare.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 op Rd imm8

Decode fields
op Instruction Details

00 MOV, MOVS (immediate)
01 CMP (immediate)
10 ADD, ADDS (immediate)
11 SUB, SUBS (immediate)

Data-processing (two low registers)

These instructions are under 16-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 op Rs Rd

Decode fields
op Instruction Details

0000 AND, ANDS (register)
0001 EOR, EORS (register)
0010 MOV, MOVS (register-shifted register) — logical shift left
0011 MOV, MOVS (register-shifted register) — logical shift right
0100 MOV, MOVS (register-shifted register) — arithmetic shift right
0101 ADC, ADCS (register)
0110 SBC, SBCS (register)
0111 MOV, MOVS (register-shifted register) — rotate right
1000 TST (register)
1001 RSB, RSBS (immediate)
1010 CMP (register)
1011 CMN (register)

Top-level encodings for T32

Page 1361

Decode fields
op Instruction Details

1100 ORR, ORRS (register)
1101 MUL, MULS
1110 BIC, BICS (register)
1111 MVN, MVNS (register)

Special data instructions and branch and exchange

These instructions are under 16-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

010001 op0

Decode fields
op0 Instruction details

11 Branch and exchange
!= 11 Add, subtract, compare, move (two high registers)

Branch and exchange

These instructions are under Special data instructions and branch and exchange.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 L Rm (0) (0) (0)

Decode fields
L Instruction Details

0 BX
1 BLX (register)

Add, subtract, compare, move (two high registers)

These instructions are under Special data instructions and branch and exchange.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 != 11 D Rs Rd
op

The following constraints also apply to this encoding: op != 11 && op != 11

Decode fields
op D:Rd Rs Instruction Details

00 != 1101 != 1101 ADD, ADDS (register)
00 1101 ADD, ADDS (SP plus register) — T1
00 1101 != 1101 ADD, ADDS (SP plus register) — T2
01 CMP (register)
10 MOV, MOVS (register)

Load/store (register offset)

These instructions are under 16-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 L B H Rm Rn Rt

Top-level encodings for T32

Page 1362

Decode fields
L B H Instruction Details

0 0 0 STR (register)
0 0 1 STRH (register)
0 1 0 STRB (register)
0 1 1 LDRSB (register)
1 0 0 LDR (register)
1 0 1 LDRH (register)
1 1 0 LDRB (register)
1 1 1 LDRSH (register)

Load/store word/byte (immediate offset)

These instructions are under 16-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 B L imm5 Rn Rt

Decode fields
B L Instruction Details

0 0 STR (immediate)
0 1 LDR (immediate)
1 0 STRB (immediate)
1 1 LDRB (immediate)

Load/store halfword (immediate offset)

These instructions are under 16-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 L imm5 Rn Rt

Decode fields
L Instruction Details

0 STRH (immediate)
1 LDRH (immediate)

Load/store (SP-relative)

These instructions are under 16-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 L Rt imm8

Decode fields
L Instruction Details

0 STR (immediate)
1 LDR (immediate)

Add PC/SP (immediate)

These instructions are under 16-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 SP Rd imm8

Top-level encodings for T32

Page 1363

Decode fields
SP Instruction Details

0 ADR
1 ADD, ADDS (SP plus immediate)

Miscellaneous 16-bit instructions

These instructions are under 16-bit.

15141312111098 7 6 5 43210

1011 op0 op1op2 op3

Decode fields
op0 op1 op2 op3 Instruction details Feature

0000 Adjust SP (immediate) -
0010 Extend -
0110 00 0 SETPAN FEAT_PAN
0110 00 1 UNALLOCATED -
0110 01 Change Processor State -
0110 1x UNALLOCATED -
0111 UNALLOCATED -
1000 UNALLOCATED -
1010 10 HLT -
1010 != 10 Reverse bytes -
1110 BKPT -
1111 0000 Hints -
1111 != 0000 IT -
x0x1 CBNZ, CBZ -
x10x Push and Pop -

Adjust SP (immediate)

These instructions are under Miscellaneous 16-bit instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 S imm7

Decode fields
S Instruction Details

0 ADD, ADDS (SP plus immediate)
1 SUB, SUBS (SP minus immediate)

Extend

These instructions are under Miscellaneous 16-bit instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 U B Rm Rd

Decode fields
U B Instruction Details

0 0 SXTH
0 1 SXTB
1 0 UXTH

Top-level encodings for T32

Page 1364

Decode fields
U B Instruction Details

1 1 UXTB

Change Processor State

These instructions are under Miscellaneous 16-bit instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 0 0 1 op flags

Decode fields
op flags Instruction Details

0 SETEND
1 0xxxx CPS, CPSID, CPSIE — interrupt enable
1 1xxxx CPS, CPSID, CPSIE — interrupt disable

Reverse bytes

These instructions are under Miscellaneous 16-bit instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 != 10 Rm Rd
op

The following constraints also apply to this encoding: op != 10 && op != 10

Decode fields
op Instruction Details

00 REV
01 REV16
11 REVSH

Hints

These instructions are under Miscellaneous 16-bit instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 hint 0 0 0 0

Decode fields
hint Instruction Details

0000 NOP
0001 YIELD
0010 WFE
0011 WFI
0100 SEV
0101 SEVL
011x Reserved hint, behaves as NOP
1xxx Reserved hint, behaves as NOP

Push and Pop

These instructions are under Miscellaneous 16-bit instructions.

Top-level encodings for T32

Page 1365

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 L 1 0 P register_list

Decode fields
L Instruction Details

0 PUSH
1 POP

Load/store multiple

These instructions are under 16-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 L Rn register_list

Decode fields
L Instruction Details

0 STM, STMIA, STMEA
1 LDM, LDMIA, LDMFD

Conditional branch, and Supervisor Call

These instructions are under 16-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1101 op0

Decode fields
op0 Instruction details

111x Exception generation
!= 111x B — T1

Exception generation

These instructions are under Conditional branch, and Supervisor Call.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 1 1 S imm8

Decode fields
S Instruction Details

0 UDF
1 SVC

32-bit

These instructions are under the top-level.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111 op0 op1 op3

The following constraints also apply to this encoding: op0<3:2> != 00

Decode fields
op0 op1 op3 Instruction details

x11x System register access, Advanced SIMD, and floating-point

Top-level encodings for T32

Page 1366

0100 xx0xx Load/store multiple
0100 xx1xx Load/store dual, load/store exclusive, load-acquire/store-release, and table branch
0101 Data-processing (shifted register)
10xx 1 Branches and miscellaneous control
10x0 0 Data-processing (modified immediate)
10x1 xxxx0 0 Data-processing (plain binary immediate)
10x1 xxxx1 0 UNALLOCATED
1100 1xxx0 Advanced SIMD element or structure load/store
1100 != 1xxx0 Load/store single
1101 0xxxx Data-processing (register)
1101 10xxx Multiply, multiply accumulate, and absolute difference
1101 11xxx Long multiply and divide

System register access, Advanced SIMD, and floating-point

These instructions are under 32-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111 op0 11 op1 op2 op3

Decode fields
op0 op1 op2 op3 Instruction details

0x 0x UNALLOCATED
10 0x UNALLOCATED
11 Advanced SIMD data-processing

0 0x 1x Advanced SIMD and System register load/store and 64-bit move
0 10 1x 1 Advanced SIMD and System register 32-bit move
0 10 10 0 Floating-point data-processing
0 10 11 0 UNALLOCATED
1 != 11 1x Additional Advanced SIMD and floating-point instructions

Advanced SIMD data-processing

These instructions are under System register access, Advanced SIMD, and floating-point.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111 1111 op0 op1

Decode fields
op0 op1 Instruction details

0 Advanced SIMD three registers of the same length
1 0 Advanced SIMD two registers, or three registers of different lengths
1 1 Advanced SIMD shifts and immediate generation

Advanced SIMD three registers of the same length

These instructions are under Advanced SIMD data-processing.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 0 D size Vn Vd opc N Q M o1 Vm

Top-level encodings for T32

Page 1367

Decode fields
U size opc Q o1 Instruction Details Feature

0 0x 1100 1 VFMA -
0 0x 1101 0 VADD (floating-point) -
0 0x 1101 1 VMLA (floating-point) -
0 0x 1110 0 VCEQ (register) — T2 -
0 0x 1111 0 VMAX (floating-point) -
0 0x 1111 1 VRECPS -

0000 0 VHADD -
0 00 0001 1 VAND (register) -

0000 1 VQADD -
0001 0 VRHADD -

0 00 1100 0 SHA1C FEAT_SHA1
0010 0 VHSUB -

0 01 0001 1 VBIC (register) -
0010 1 VQSUB -
0011 0 VCGT (register) — T1 -
0011 1 VCGE (register) — T1 -

0 01 1100 0 SHA1P FEAT_SHA1
0 1x 1100 1 VFMS -
0 1x 1101 0 VSUB (floating-point) -
0 1x 1101 1 VMLS (floating-point) -
0 1x 1110 0 UNALLOCATED -
0 1x 1111 0 VMIN (floating-point) -
0 1x 1111 1 VRSQRTS -

0100 0 VSHL (register) -
0 1000 0 VADD (integer) -
0 10 0001 1 VORR (register) -
0 1000 1 VTST -

0100 1 VQSHL (register) -
0 1001 0 VMLA (integer) -

0101 0 VRSHL -
0101 1 VQRSHL -

0 1011 0 VQDMULH -
0 10 1100 0 SHA1M FEAT_SHA1
0 1011 1 VPADD (integer) -

0110 0 VMAX (integer) -
0 11 0001 1 VORN (register) -

0110 1 VMIN (integer) -
0111 0 VABD (integer) -
0111 1 VABA -

0 11 1100 0 SHA1SU0 FEAT_SHA1
1 0x 1101 0 VPADD (floating-point) -
1 0x 1101 1 VMUL (floating-point) -
1 0x 1110 0 VCGE (register) — T2 -
1 0x 1110 1 VACGE -
1 0x 1111 0 0 VPMAX (floating-point) -
1 0x 1111 1 VMAXNM -
1 00 0001 1 VEOR -

Top-level encodings for T32

Page 1368

Decode fields
U size opc Q o1 Instruction Details Feature

1001 1 VMUL (integer and polynomial) -
1 00 1100 0 SHA256H FEAT_SHA256

1010 0 0 VPMAX (integer) -
1 01 0001 1 VBSL -

1010 0 1 VPMIN (integer) -
1010 1 UNALLOCATED -

1 01 1100 0 SHA256H2 FEAT_SHA256
1 1x 1101 0 VABD (floating-point) -
1 1x 1110 0 VCGT (register) — T2 -
1 1x 1110 1 VACGT -
1 1x 1111 0 0 VPMIN (floating-point) -
1 1x 1111 1 VMINNM -
1 1000 0 VSUB (integer) -
1 10 0001 1 VBIT -
1 1000 1 VCEQ (register) — T1 -
1 1001 0 VMLS (integer) -
1 1011 0 VQRDMULH -
1 10 1100 0 SHA256SU1 FEAT_SHA256
1 1011 1 VQRDMLAH FEAT_RDM
1 11 0001 1 VBIF -
1 1100 1 VQRDMLSH FEAT_RDM
1 1111 1 0 UNALLOCATED -

Advanced SIMD two registers, or three registers of different lengths

These instructions are under Advanced SIMD data-processing.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111 op0 11111 op1 op2 op3 0

Decode fields
op0 op1 op2 op3 Instruction details

0 11 VEXT (byte elements)
1 11 0x Advanced SIMD two registers misc
1 11 10 VTBL, VTBX
1 11 11 Advanced SIMD duplicate (scalar)

!= 11 0 Advanced SIMD three registers of different lengths
!= 11 1 Advanced SIMD two registers and a scalar

Advanced SIMD two registers misc

These instructions are under Advanced SIMD two registers, or three registers of different lengths.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 size opc1 Vd 0 opc2 Q M 0 Vm

Decode fields
size opc1 opc2 Q Instruction Details Feature

00 0000 VREV64 -
00 0001 VREV32 -

Top-level encodings for T32

Page 1369

Decode fields
size opc1 opc2 Q Instruction Details Feature

00 0010 VREV16 -
00 0011 UNALLOCATED -
00 010x VPADDL -
00 0110 0 AESE FEAT_AES
00 0110 1 AESD FEAT_AES
00 0111 0 AESMC FEAT_AES
00 0111 1 AESIMC FEAT_AES
00 1000 VCLS -

00 10 0000 VSWP -
00 1001 VCLZ -
00 1010 VCNT -
00 1011 VMVN (register) -

00 10 1100 1 UNALLOCATED -
00 110x VPADAL -
00 1110 VQABS -
00 1111 VQNEG -
01 x000 VCGT (immediate #0) -
01 x001 VCGE (immediate #0) -
01 x010 VCEQ (immediate #0) -
01 x011 VCLE (immediate #0) -
01 x100 VCLT (immediate #0) -
01 x110 VABS -
01 x111 VNEG -
01 0101 1 SHA1H FEAT_SHA1

01 10 1100 1 VCVT (from single-precision to BFloat16, Advanced SIMD) FEAT_AA32BF16
10 0001 VTRN -
10 0010 VUZP -
10 0011 VZIP -
10 0100 0 VMOVN -
10 0100 1 VQMOVN, VQMOVUN — VQMOVUN -
10 0101 VQMOVN, VQMOVUN — VQMOVN -
10 0110 0 VSHLL -
10 0111 0 SHA1SU1 FEAT_SHA1
10 0111 1 SHA256SU0 FEAT_SHA256
10 1000 VRINTN (Advanced SIMD) -
10 1001 VRINTX (Advanced SIMD) -
10 1010 VRINTA (Advanced SIMD) -
10 1011 VRINTZ (Advanced SIMD) -

10 10 1100 1 UNALLOCATED -
10 1100 0 VCVT (between half-precision and single-precision, Advanced

SIMD) — single-precision to half-precision
-

10 1101 VRINTM (Advanced SIMD) -
10 1110 0 VCVT (between half-precision and single-precision, Advanced

SIMD) — half-precision to single-precision
-

10 1110 1 UNALLOCATED -
10 1111 VRINTP (Advanced SIMD) -
11 000x VCVTA (Advanced SIMD) -
11 001x VCVTN (Advanced SIMD) -

Top-level encodings for T32

Page 1370

Decode fields
size opc1 opc2 Q Instruction Details Feature

11 010x VCVTP (Advanced SIMD) -
11 011x VCVTM (Advanced SIMD) -
11 10x0 VRECPE -
11 10x1 VRSQRTE -

11 10 1100 1 UNALLOCATED -
11 11xx VCVT (between floating-point and integer, Advanced SIMD) -

Advanced SIMD duplicate (scalar)

These instructions are under Advanced SIMD two registers, or three registers of different lengths.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 D 1 1 imm4 Vd 1 1 opc Q M 0 Vm

Decode fields
opc Instruction Details

000 VDUP (scalar)
001 UNALLOCATED
01x UNALLOCATED
1xx UNALLOCATED

Advanced SIMD three registers of different lengths

These instructions are under Advanced SIMD two registers, or three registers of different lengths.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D != 11 Vn Vd opc N 0 M 0 Vm
size

The following constraints also apply to this encoding: size != 11 && size != 11

Decode fields
U opc Instruction Details

0000 VADDL
0001 VADDW
0010 VSUBL

0 0100 VADDHN
0011 VSUBW

0 0110 VSUBHN
0 1001 VQDMLAL

0101 VABAL
0 1011 VQDMLSL
0 1101 VQDMULL

0111 VABDL (integer)
1000 VMLAL (integer)
1010 VMLSL (integer)

1 0100 VRADDHN
1 0110 VRSUBHN

11x0 VMULL (integer and polynomial)
1 1001 UNALLOCATED
1 1011 UNALLOCATED

Top-level encodings for T32

Page 1371

Decode fields
U opc Instruction Details

1 1101 UNALLOCATED
1111 UNALLOCATED

Advanced SIMD two registers and a scalar

These instructions are under Advanced SIMD two registers, or three registers of different lengths.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 Q 1 1 1 1 1 D != 11 Vn Vd opc N 1 M 0 Vm
size

The following constraints also apply to this encoding: size != 11 && size != 11

Decode fields
Q opc Instruction Details Feature

000x VMLA (by scalar) -
0 0011 VQDMLAL -

0010 VMLAL (by scalar) -
0 0111 VQDMLSL -

010x VMLS (by scalar) -
0 1011 VQDMULL -

0110 VMLSL (by scalar) -
100x VMUL (by scalar) -

1 0011 UNALLOCATED -
1010 VMULL (by scalar) -

1 0111 UNALLOCATED -
1100 VQDMULH -
1101 VQRDMULH -

1 1011 UNALLOCATED -
1110 VQRDMLAH FEAT_RDM
1111 VQRDMLSH FEAT_RDM

Advanced SIMD shifts and immediate generation

These instructions are under Advanced SIMD data-processing.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111 11111 op0 1

Decode fields
op0 Instruction details

000xxxxxxxxxxx0 Advanced SIMD one register and modified immediate
!= 000xxxxxxxxxxx0 Advanced SIMD two registers and shift amount

Advanced SIMD one register and modified immediate

These instructions are under Advanced SIMD shifts and immediate generation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 i 1 1 1 1 1 D 0 0 0 imm3 Vd cmode 0 Q op 1 imm4

Top-level encodings for T32

Page 1372

Decode fields
cmode op Instruction Details

0xx0 0 VMOV (immediate) — T1
0xx0 1 VMVN (immediate) — T1
0xx1 0 VORR (immediate) — T1
0xx1 1 VBIC (immediate) — T1
10x0 0 VMOV (immediate) — T3
10x0 1 VMVN (immediate) — T2
10x1 0 VORR (immediate) — T2
10x1 1 VBIC (immediate) — T2
11xx 0 VMOV (immediate) — T4
110x 1 VMVN (immediate) — T3
1110 1 VMOV (immediate) — T5
1111 1 UNALLOCATED

Advanced SIMD two registers and shift amount

These instructions are under Advanced SIMD shifts and immediate generation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 U 1 1 1 1 1 D imm3H imm3L Vd opc L Q M 1 Vm

The following constraints also apply to this encoding: imm3H:imm3L:Vd:opc:L != 000xxxxxxxxxxx0

Decode fields
U imm3H:L imm3L opc Q Instruction Details

!= 0000 0000 VSHR
!= 0000 0001 VSRA
!= 0000 000 1010 0 VMOVL
!= 0000 0010 VRSHR
!= 0000 0011 VRSRA
!= 0000 0111 VQSHL, VQSHLU (immediate) — VQSHL
!= 0000 1001 0 VQSHRN, VQSHRUN — VQSHRN
!= 0000 1001 1 VQRSHRN, VQRSHRUN — VQRSHRN
!= 0000 1010 0 VSHLL
!= 0000 11xx VCVT (between floating-point and fixed-point, Advanced SIMD)

0 != 0000 0101 VSHL (immediate)
0 != 0000 1000 0 VSHRN
0 != 0000 1000 1 VRSHRN
1 != 0000 0100 VSRI
1 != 0000 0101 VSLI
1 != 0000 0110 VQSHL, VQSHLU (immediate) — VQSHLU
1 != 0000 1000 0 VQSHRN, VQSHRUN — VQSHRUN
1 != 0000 1000 1 VQRSHRN, VQRSHRUN — VQRSHRUN

Advanced SIMD and System register load/store and 64-bit move

These instructions are under System register access, Advanced SIMD, and floating-point.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1110110 op0 1 op1

Top-level encodings for T32

Page 1373

Decode fields
op0 op1 Instruction details

00x0 0x Advanced SIMD and floating-point 64-bit move
00x0 11 System register 64-bit move

!= 00x0 0x Advanced SIMD and floating-point load/store
!= 00x0 11 System register Load/Store

10 UNALLOCATED

Advanced SIMD and floating-point 64-bit move

These instructions are under Advanced SIMD and System register load/store and 64-bit move.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 D 0 op Rt2 Rt 1 0 size opc2 M o3 Vm

Decode fields
D op size opc2 o3 Instruction Details

0 UNALLOCATED
1 0 UNALLOCATED
1 0x 00 1 UNALLOCATED
1 01 UNALLOCATED
1 0 10 00 1 VMOV (between two general-purpose registers and two single-precision

registers) — from general-purpose registers
1 0 11 00 1 VMOV (between two general-purpose registers and a doubleword floating-

point register) — from general-purpose registers
1 1x UNALLOCATED
1 1 10 00 1 VMOV (between two general-purpose registers and two single-precision

registers) — to general-purpose registers
1 1 11 00 1 VMOV (between two general-purpose registers and a doubleword floating-

point register) — to general-purpose registers

System register 64-bit move

These instructions are under Advanced SIMD and System register load/store and 64-bit move.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 D 0 L Rt2 Rt 1 1 1 cp15 opc1 CRm

Decode fields
D L Instruction Details

0 UNALLOCATED
1 0 MCRR
1 1 MRRC

Advanced SIMD and floating-point load/store

These instructions are under Advanced SIMD and System register load/store and 64-bit move.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W L Rn Vd 1 0 size imm8

The following constraints also apply to this encoding: P:U:D:W != 00x0

Decode fields
P U W L Rn size imm8 Instruction Details Feature

0 0 1 UNALLOCATED -

Top-level encodings for T32

Page 1374

Decode fields
P U W L Rn size imm8 Instruction Details Feature

0 1 0x UNALLOCATED -
0 1 0 10 VSTM, VSTMDB, VSTMIA — single-

precision scalar
-

0 1 0 11 xxxxxxx0 VSTM, VSTMDB, VSTMIA — double-
precision scalar

-

0 1 0 11 xxxxxxx1 FSTMDBX, FSTMIAX — Increment After -
0 1 1 10 VLDM, VLDMDB, VLDMIA — single-

precision scalar
-

0 1 1 11 xxxxxxx0 VLDM, VLDMDB, VLDMIA — double-
precision scalar

-

0 1 1 11 xxxxxxx1 FLDM*X (FLDMDBX, FLDMIAX) —
Increment After

-

1 0 0 01 VSTR — half-precision scalar FEAT_FP16
1 0 0 10 VSTR — single-precision scalar -
1 0 0 11 VSTR — double-precision scalar -
1 0 1 !=

1111
01 VLDR (immediate) — half-precision scalar FEAT_FP16

1 0 1 !=
1111

10 VLDR (immediate) — single-precision
scalar

-

1 0 1 !=
1111

11 VLDR (immediate) — double-precision
scalar

-

1 0 1 0x UNALLOCATED -
1 0 1 0 10 VSTM, VSTMDB, VSTMIA — single-

precision scalar
-

1 0 1 0 11 xxxxxxx0 VSTM, VSTMDB, VSTMIA — double-
precision scalar

-

1 0 1 0 11 xxxxxxx1 FSTMDBX, FSTMIAX — Decrement Before -
1 0 1 1 10 VLDM, VLDMDB, VLDMIA — single-

precision scalar
-

1 0 1 1 11 xxxxxxx0 VLDM, VLDMDB, VLDMIA — double-
precision scalar

-

1 0 1 1 11 xxxxxxx1 FLDM*X (FLDMDBX, FLDMIAX) —
Decrement Before

-

1 0 1 1111 01 VLDR (literal) — half-precision scalar FEAT_FP16
1 0 1 1111 10 VLDR (literal) — single-precision scalar -
1 0 1 1111 11 VLDR (literal) — double-precision scalar -
1 1 1 UNALLOCATED -

System register Load/Store

These instructions are under Advanced SIMD and System register load/store and 64-bit move.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W L Rn CRd 1 1 1 cp15 imm8

The following constraints also apply to this encoding: P:U:D:W != 00x0

Decode fields
P:U:W D L Rn CRd cp15 Instruction Details

!= 000 != 0101 0 UNALLOCATED
!= 000 0 1 1111 0101 0 LDC (literal)
!= 000 1 UNALLOCATED
!= 000 1 0101 0 UNALLOCATED

Top-level encodings for T32

Page 1375

Decode fields
P:U:W D L Rn CRd cp15 Instruction Details

0x1 0 0 0101 0 STC — post-indexed
0x1 0 1 != 1111 0101 0 LDC (immediate) — post-indexed
010 0 0 0101 0 STC — unindexed
010 0 1 != 1111 0101 0 LDC (immediate) — unindexed
1x0 0 0 0101 0 STC — offset
1x0 0 1 != 1111 0101 0 LDC (immediate) — offset
1x1 0 0 0101 0 STC — pre-indexed
1x1 0 1 != 1111 0101 0 LDC (immediate) — pre-indexed

Advanced SIMD and System register 32-bit move

These instructions are under System register access, Advanced SIMD, and floating-point.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11101110 op0 1 op1 1

Decode fields
op0 op1 Instruction details Feature

000 000 UNALLOCATED -
000 001 VMOV (between general-purpose register and half-precision) FEAT_FP16
000 010 VMOV (between general-purpose register and single-precision) -
001 010 UNALLOCATED -
01x 010 UNALLOCATED -
10x 010 UNALLOCATED -
110 010 UNALLOCATED -
111 010 Floating-point move special register -

011 Advanced SIMD 8/16/32-bit element move/duplicate -
10x UNALLOCATED -
11x System register 32-bit move -

Floating-point move special register

These instructions are under Advanced SIMD and System register 32-bit move.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 1 1 L reg Rt 1 0 1 0 (0) (0) (0) 1 (0) (0) (0) (0)

Decode fields
L Instruction Details

0 VMSR
1 VMRS

Advanced SIMD 8/16/32-bit element move/duplicate

These instructions are under Advanced SIMD and System register 32-bit move.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 L Vn Rt 1 0 1 1 N opc2 1 (0) (0) (0) (0)

Decode fields
opc1 L opc2 Instruction Details

0xx 0 VMOV (general-purpose register to scalar)

Top-level encodings for T32

Page 1376

Decode fields
opc1 L opc2 Instruction Details

1 VMOV (scalar to general-purpose register)
1xx 0 0x VDUP (general-purpose register)
1xx 0 1x UNALLOCATED

System register 32-bit move

These instructions are under Advanced SIMD and System register 32-bit move.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 L CRn Rt 1 1 1 cp15 opc2 1 CRm

Decode fields
L Instruction Details

0 MCR
1 MRC

Floating-point data-processing

These instructions are under System register access, Advanced SIMD, and floating-point.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11101110 op0 10 op1 0

Decode fields
op0 op1 Instruction details

1x11 1 Floating-point data-processing (two registers)
1x11 0 Floating-point move immediate

!= 1x11 Floating-point data-processing (three registers)

Floating-point data-processing (two registers)

These instructions are under Floating-point data-processing.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 o1 opc2 Vd 1 0 size o3 1 M 0 Vm

Decode fields
o1 opc2 size o3 Instruction Details Feature

00 UNALLOCATED -
0 000 01 0 UNALLOCATED -
0 000 01 1 VABS — half-precision scalar FEAT_FP16
0 000 10 0 VMOV (register) — single-precision scalar -
0 000 10 1 VABS — single-precision scalar -
0 000 11 0 VMOV (register) — double-precision scalar -
0 000 11 1 VABS — double-precision scalar -
0 001 01 0 VNEG — half-precision scalar FEAT_FP16
0 001 01 1 VSQRT — half-precision scalar FEAT_FP16
0 001 10 0 VNEG — single-precision scalar -
0 001 10 1 VSQRT — single-precision scalar -
0 001 11 0 VNEG — double-precision scalar -
0 001 11 1 VSQRT — double-precision scalar -
0 010 01 UNALLOCATED -

Top-level encodings for T32

Page 1377

Decode fields
o1 opc2 size o3 Instruction Details Feature

0 010 10 0 VCVTB — half-precision to single-precision -
0 010 10 1 VCVTT — half-precision to single-precision -
0 010 11 0 VCVTB — half-precision to double-precision -
0 010 11 1 VCVTT — half-precision to double-precision -
0 011 01 0 VCVTB (BFloat16) FEAT_AA32BF16
0 011 01 1 VCVTT (BFloat16) FEAT_AA32BF16
0 011 10 0 VCVTB — single-precision to half-precision -
0 011 10 1 VCVTT — single-precision to half-precision -
0 011 11 0 VCVTB — double-precision to half-precision -
0 011 11 1 VCVTT — double-precision to half-precision -
0 100 01 0 VCMP FEAT_FP16
0 100 01 1 VCMPE FEAT_FP16
0 100 10 0 VCMP -
0 100 10 1 VCMPE -
0 100 11 0 VCMP -
0 100 11 1 VCMPE -
0 101 01 0 VCMP FEAT_FP16
0 101 01 1 VCMPE FEAT_FP16
0 101 10 0 VCMP -
0 101 10 1 VCMPE -
0 101 11 0 VCMP -
0 101 11 1 VCMPE -
0 110 01 0 VRINTR — half-precision scalar FEAT_FP16
0 110 01 1 VRINTZ (floating-point) — half-precision scalar FEAT_FP16
0 110 10 0 VRINTR — single-precision scalar -
0 110 10 1 VRINTZ (floating-point) — single-precision scalar -
0 110 11 0 VRINTR — double-precision scalar -
0 110 11 1 VRINTZ (floating-point) — double-precision scalar -
0 111 01 0 VRINTX (floating-point) — half-precision scalar FEAT_FP16
0 111 01 1 UNALLOCATED -
0 111 10 0 VRINTX (floating-point) — single-precision scalar -
0 111 10 1 VCVT (between double-precision and single-precision) — single-

precision to double-precision
-

0 111 11 0 VRINTX (floating-point) — double-precision scalar -
0 111 11 1 VCVT (between double-precision and single-precision) — double-

precision to single-precision
-

1 000 01 VCVT (integer to floating-point, floating-point) — half-precision
scalar

FEAT_FP16

1 000 10 VCVT (integer to floating-point, floating-point) — single-precision
scalar

-

1 000 11 VCVT (integer to floating-point, floating-point) — double-
precision scalar

-

1 001 01 UNALLOCATED -
1 001 10 UNALLOCATED -
1 001 11 0 UNALLOCATED -
1 001 11 1 VJCVT FEAT_JSCVT
1 01x 01 VCVT (between floating-point and fixed-point, floating-point) FEAT_FP16
1 01x 10 VCVT (between floating-point and fixed-point, floating-point) -
1 01x 11 VCVT (between floating-point and fixed-point, floating-point) -

Top-level encodings for T32

Page 1378

Decode fields
o1 opc2 size o3 Instruction Details Feature

1 100 01 0 VCVTR FEAT_FP16
1 100 01 1 VCVT (floating-point to integer, floating-point) FEAT_FP16
1 100 10 0 VCVTR -
1 100 10 1 VCVT (floating-point to integer, floating-point) -
1 100 11 0 VCVTR -
1 100 11 1 VCVT (floating-point to integer, floating-point) -
1 101 01 0 VCVTR FEAT_FP16
1 101 01 1 VCVT (floating-point to integer, floating-point) FEAT_FP16
1 101 10 0 VCVTR -
1 101 10 1 VCVT (floating-point to integer, floating-point) -
1 101 11 0 VCVTR -
1 101 11 1 VCVT (floating-point to integer, floating-point) -
1 11x 01 VCVT (between floating-point and fixed-point, floating-point) FEAT_FP16
1 11x 10 VCVT (between floating-point and fixed-point, floating-point) -
1 11x 11 VCVT (between floating-point and fixed-point, floating-point) -

Floating-point move immediate

These instructions are under Floating-point data-processing.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 1 D 1 1 imm4H Vd 1 0 size (0) 0 (0) 0 imm4L

Decode fields
size Instruction Details Feature

00 UNALLOCATED -
01 VMOV (immediate) — half-precision scalar FEAT_FP16
10 VMOV (immediate) — single-precision scalar -
11 VMOV (immediate) — double-precision scalar -

Floating-point data-processing (three registers)

These instructions are under Floating-point data-processing.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 o0 D o1 Vn Vd 1 0 size N o2 M 0 Vm

The following constraints also apply to this encoding: o0:D:o1 != 1x11

Decode fields
o0:o1 size o2 Instruction Details Feature

!= 111 00 UNALLOCATED -
000 01 0 VMLA (floating-point) — half-precision scalar FEAT_FP16
000 01 1 VMLS (floating-point) — half-precision scalar FEAT_FP16
000 10 0 VMLA (floating-point) — single-precision scalar -
000 10 1 VMLS (floating-point) — single-precision scalar -
000 11 0 VMLA (floating-point) — double-precision scalar -
000 11 1 VMLS (floating-point) — double-precision scalar -
001 01 0 VNMLS — half-precision scalar FEAT_FP16
001 01 1 VNMLA — half-precision scalar FEAT_FP16

Top-level encodings for T32

Page 1379

Decode fields
o0:o1 size o2 Instruction Details Feature

001 10 0 VNMLS — single-precision scalar -
001 10 1 VNMLA — single-precision scalar -
001 11 0 VNMLS — double-precision scalar -
001 11 1 VNMLA — double-precision scalar -
010 01 0 VMUL (floating-point) — half-precision scalar FEAT_FP16
010 01 1 VNMUL — half-precision scalar FEAT_FP16
010 10 0 VMUL (floating-point) — single-precision scalar -
010 10 1 VNMUL — single-precision scalar -
010 11 0 VMUL (floating-point) — double-precision scalar -
010 11 1 VNMUL — double-precision scalar -
011 01 0 VADD (floating-point) — half-precision scalar FEAT_FP16
011 01 1 VSUB (floating-point) — half-precision scalar FEAT_FP16
011 10 0 VADD (floating-point) — single-precision scalar -
011 10 1 VSUB (floating-point) — single-precision scalar -
011 11 0 VADD (floating-point) — double-precision scalar -
011 11 1 VSUB (floating-point) — double-precision scalar -
100 01 0 VDIV — half-precision scalar FEAT_FP16
100 10 0 VDIV — single-precision scalar -
100 11 0 VDIV — double-precision scalar -
101 01 0 VFNMS — half-precision scalar FEAT_FP16
101 01 1 VFNMA — half-precision scalar FEAT_FP16
101 10 0 VFNMS — single-precision scalar -
101 10 1 VFNMA — single-precision scalar -
101 11 0 VFNMS — double-precision scalar -
101 11 1 VFNMA — double-precision scalar -
110 01 0 VFMA — half-precision scalar FEAT_FP16
110 01 1 VFMS — half-precision scalar FEAT_FP16
110 10 0 VFMA — single-precision scalar -
110 10 1 VFMS — single-precision scalar -
110 11 0 VFMA — double-precision scalar -
110 11 1 VFMS — double-precision scalar -

Additional Advanced SIMD and floating-point instructions

These instructions are under System register access, Advanced SIMD, and floating-point.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111111 op0 op1 1 op2 op3 op4 op5

The following constraints also apply to this encoding: op0<2:1> != 11

Decode fields
op0 op1 op2 op3 op4 op5 Instruction details

0xx 0x Advanced SIMD three registers of the same length
extension

100 0 !=
00

0 0 Floating-point conditional select

101 00xxxx 0 !=
00

0 Floating-point minNum/maxNum

Top-level encodings for T32

Page 1380

101 110000 0 !=
00

1 0 Floating-point extraction and insertion

101 111xxx 0 !=
00

1 0 Floating-point directed convert to integer

10x 0 00 Advanced SIMD and floating-point multiply with accumulate
10x 1 0x Advanced SIMD and floating-point dot product

Advanced SIMD three registers of the same length extension

These instructions are under Additional Advanced SIMD and floating-point instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 op1 D op2 Vn Vd 1 op3 0 op4 N Q M U Vm

Decode fields
op1 op2 op3 op4 Q U Instruction Details Feature

x1 0x 0 0 0 0 VCADD — 64-bit SIMD vector FEAT_FCMA
x1 0x 0 0 0 1 UNALLOCATED -
x1 0x 0 0 1 0 VCADD — 128-bit SIMD vector FEAT_FCMA
x1 0x 0 0 1 1 UNALLOCATED -
00 0x 0 0 UNALLOCATED -
00 0x 0 1 UNALLOCATED -
00 00 1 0 0 0 UNALLOCATED -
00 00 1 0 0 1 UNALLOCATED -
00 00 1 0 1 0 VMMLA FEAT_AA32BF16
00 00 1 0 1 1 UNALLOCATED -
00 00 1 1 0 0 VDOT (vector) — 64-bit SIMD vector FEAT_AA32BF16
00 00 1 1 0 1 UNALLOCATED -
00 00 1 1 1 0 VDOT (vector) — 128-bit SIMD vector FEAT_AA32BF16
00 00 1 1 1 1 UNALLOCATED -
00 01 1 0 UNALLOCATED -
00 01 1 1 UNALLOCATED -
00 10 0 0 1 VFMAL (vector) FEAT_FHM
00 10 0 1 UNALLOCATED -
00 10 1 0 0 UNALLOCATED -
00 10 1 0 1 0 VSMMLA FEAT_AA32I8MM
00 10 1 0 1 1 VUMMLA FEAT_AA32I8MM
00 10 1 1 0 0 VSDOT (vector) — 64-bit SIMD vector FEAT_DotProd
00 10 1 1 0 1 VUDOT (vector) — 64-bit SIMD vector FEAT_DotProd
00 10 1 1 1 0 VSDOT (vector) — 128-bit SIMD vector FEAT_DotProd
00 10 1 1 1 1 VUDOT (vector) — 128-bit SIMD vector FEAT_DotProd
00 11 0 0 1 VFMAB, VFMAT (BFloat16, vector) FEAT_AA32BF16
00 11 0 1 UNALLOCATED -
00 11 1 0 UNALLOCATED -
00 11 1 1 UNALLOCATED -
01 10 0 0 1 VFMSL (vector) FEAT_FHM
01 10 0 1 UNALLOCATED -
01 10 1 0 0 UNALLOCATED -
01 10 1 0 1 0 VUSMMLA FEAT_AA32I8MM
01 10 1 0 1 1 UNALLOCATED -

Top-level encodings for T32

Page 1381

Decode fields
op1 op2 op3 op4 Q U Instruction Details Feature

01 10 1 1 0 0 VUSDOT (vector) — 64-bit SIMD vector FEAT_AA32I8MM
01 10 1 1 1 UNALLOCATED -
01 10 1 1 1 0 VUSDOT (vector) — 128-bit SIMD vector FEAT_AA32I8MM
01 11 0 1 UNALLOCATED -
01 11 1 0 UNALLOCATED -
01 11 1 1 UNALLOCATED -

1x 0 0 0 VCMLA FEAT_FCMA
10 11 0 1 UNALLOCATED -
10 11 1 0 UNALLOCATED -
10 11 1 1 UNALLOCATED -
11 11 0 1 UNALLOCATED -
11 11 1 0 UNALLOCATED -
11 11 1 1 UNALLOCATED -

Floating-point conditional select

These instructions are under Additional Advanced SIMD and floating-point instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 0 D cc Vn Vd 1 0 != 00 N 0 M 0 Vm
size

The following constraints also apply to this encoding: size != 00 && size != 00

Decode fields
size Instruction Details Feature

01 VSELEQ, VSELGE, VSELGT, VSELVS — half-precision scalar FEAT_FP16
10 VSELEQ, VSELGE, VSELGT, VSELVS — single-precision scalar -
11 VSELEQ, VSELGE, VSELGT, VSELVS — double-precision scalar -

Floating-point minNum/maxNum

These instructions are under Additional Advanced SIMD and floating-point instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 0 0 Vn Vd 1 0 != 00 N op M 0 Vm
size

The following constraints also apply to this encoding: size != 00 && size != 00

Decode fields
size op Instruction Details Feature

01 0 VMAXNM — half-precision scalar FEAT_FP16
01 1 VMINNM — half-precision scalar FEAT_FP16
10 0 VMAXNM — single-precision scalar -
10 1 VMINNM — single-precision scalar -
11 0 VMAXNM — double-precision scalar -
11 1 VMINNM — double-precision scalar -

Top-level encodings for T32

Page 1382

Floating-point extraction and insertion

These instructions are under Additional Advanced SIMD and floating-point instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 0 0 0 0 Vd 1 0 != 00 op 1 M 0 Vm
size

The following constraints also apply to this encoding: size != 00 && size != 00

Decode fields
size op Instruction Details Feature

01 UNALLOCATED -
10 0 VMOVX FEAT_FP16
10 1 VINS FEAT_FP16
11 UNALLOCATED -

Floating-point directed convert to integer

These instructions are under Additional Advanced SIMD and floating-point instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 1 D 1 1 1 o1 RM Vd 1 0 != 00 op 1 M 0 Vm
size

The following constraints also apply to this encoding: size != 00 && size != 00

Decode fields
o1 RM size op Instruction Details Feature

0 != 00 1 UNALLOCATED -
0 00 01 0 VRINTA (floating-point) — half-precision scalar FEAT_FP16
0 00 10 0 VRINTA (floating-point) — single-precision scalar -
0 00 11 0 VRINTA (floating-point) — double-precision scalar -
0 01 01 0 VRINTN (floating-point) — half-precision scalar FEAT_FP16
0 01 10 0 VRINTN (floating-point) — single-precision scalar -
0 01 11 0 VRINTN (floating-point) — double-precision scalar -
0 10 01 0 VRINTP (floating-point) — half-precision scalar FEAT_FP16
0 10 10 0 VRINTP (floating-point) — single-precision scalar -
0 10 11 0 VRINTP (floating-point) — double-precision scalar -
0 11 01 0 VRINTM (floating-point) — half-precision scalar FEAT_FP16
0 11 10 0 VRINTM (floating-point) — single-precision scalar -
0 11 11 0 VRINTM (floating-point) — double-precision scalar -
1 00 01 VCVTA (floating-point) — half-precision scalar FEAT_FP16
1 00 10 VCVTA (floating-point) — single-precision scalar -
1 00 11 VCVTA (floating-point) — double-precision scalar -
1 01 01 VCVTN (floating-point) — half-precision scalar FEAT_FP16
1 01 10 VCVTN (floating-point) — single-precision scalar -
1 01 11 VCVTN (floating-point) — double-precision scalar -
1 10 01 VCVTP (floating-point) — half-precision scalar FEAT_FP16
1 10 10 VCVTP (floating-point) — single-precision scalar -
1 10 11 VCVTP (floating-point) — double-precision scalar -
1 11 01 VCVTM (floating-point) — half-precision scalar FEAT_FP16
1 11 10 VCVTM (floating-point) — single-precision scalar -

Top-level encodings for T32

Page 1383

Decode fields
o1 RM size op Instruction Details Feature

1 11 11 VCVTM (floating-point) — double-precision scalar -

Advanced SIMD and floating-point multiply with accumulate

These instructions are under Additional Advanced SIMD and floating-point instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 op1 D op2 Vn Vd 1 0 0 0 N Q M U Vm

Decode fields
op1 op2 Q U Instruction Details Feature

0 0 VCMLA (by element) — 128-bit SIMD vector of half-precision
floating-point

FEAT_FCMA

0 00 1 VFMAL (by scalar) FEAT_FHM
0 01 1 VFMSL (by scalar) FEAT_FHM
0 10 1 UNALLOCATED -
0 11 1 VFMAB, VFMAT (BFloat16, by scalar) FEAT_AA32BF16
1 0 0 VCMLA (by element) — 64-bit SIMD vector of single-precision

floating-point
FEAT_FCMA

1 1 UNALLOCATED -
1 1 0 VCMLA (by element) — 128-bit SIMD vector of single-precision

floating-point
FEAT_FCMA

Advanced SIMD and floating-point dot product

These instructions are under Additional Advanced SIMD and floating-point instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 op1 D op2 Vn Vd 1 1 0 op4 N Q M U Vm

Decode fields
op1 op2 op4 Q U Instruction Details Feature

0 00 0 UNALLOCATED -
0 00 1 0 0 VDOT (by element) — 64-bit SIMD vector FEAT_AA32BF16
0 00 1 1 UNALLOCATED -
0 00 1 1 0 VDOT (by element) — 128-bit SIMD vector FEAT_AA32BF16
0 01 0 UNALLOCATED -
0 10 0 UNALLOCATED -
0 10 1 0 0 VSDOT (by element) — 64-bit SIMD vector FEAT_DotProd
0 10 1 0 1 VUDOT (by element) — 64-bit SIMD vector FEAT_DotProd
0 10 1 1 0 VSDOT (by element) — 128-bit SIMD vector FEAT_DotProd
0 10 1 1 1 VUDOT (by element) — 128-bit SIMD vector FEAT_DotProd
0 11 UNALLOCATED -
1 0 UNALLOCATED -
1 00 1 0 0 VUSDOT (by element) — 64-bit SIMD vector FEAT_AA32I8MM
1 00 1 0 1 VSUDOT (by element) — 64-bit SIMD vector FEAT_AA32I8MM
1 00 1 1 0 VUSDOT (by element) — 128-bit SIMD vector FEAT_AA32I8MM
1 00 1 1 1 VSUDOT (by element) — 128-bit SIMD vector FEAT_AA32I8MM
1 01 1 UNALLOCATED -
1 1x 1 UNALLOCATED -

Top-level encodings for T32

Page 1384

Load/store multiple

These instructions are under 32-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 opc 0 W L Rn P M register_list

Decode fields
opc L Instruction Details

00 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB — T1
00 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB — T1
01 0 STM, STMIA, STMEA
01 1 LDM, LDMIA, LDMFD
10 0 STMDB, STMFD
10 1 LDMDB, LDMEA
11 0 SRS, SRSDA, SRSDB, SRSIA, SRSIB — T2
11 1 RFE, RFEDA, RFEDB, RFEIA, RFEIB — T2

Load/store dual, load/store exclusive, load-acquire/store-release, and table branch

These instructions are under 32-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1110100 op0 op1 op2 op3

The following constraints also apply to this encoding: op0<1> == 1

Decode fields
op0 op1 op2 op3 Instruction details

0010 Load/store exclusive
0110 0 000 UNALLOCATED
0110 1 000 TBB, TBH
0110 01x Load/store exclusive byte/half/dual
0110 1xx Load-acquire / Store-release
0x11 != 1111 Load/store dual (immediate, post-indexed)
1x10 != 1111 Load/store dual (immediate)
1x11 != 1111 Load/store dual (immediate, pre-indexed)

!= 0xx0 1111 LDRD (literal)

Load/store exclusive

These instructions are under Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 1 0 L Rn Rt Rd imm8

Decode fields
L Instruction Details

0 STREX
1 LDREX

Load/store exclusive byte/half/dual

These instructions are under Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

Top-level encodings for T32

Page 1385

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 L Rn Rt Rt2 0 1 sz Rd

Decode fields
L sz Instruction Details

0 00 STREXB
0 01 STREXH
0 10 UNALLOCATED
0 11 STREXD
1 00 LDREXB
1 01 LDREXH
1 10 UNALLOCATED
1 11 LDREXD

Load-acquire / Store-release

These instructions are under Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 L Rn Rt Rt2 1 op sz Rd

Decode fields
L op sz Instruction Details

0 0 00 STLB
0 0 01 STLH
0 0 10 STL
0 0 11 UNALLOCATED
0 1 00 STLEXB
0 1 01 STLEXH
0 1 10 STLEX
0 1 11 STLEXD
1 0 00 LDAB
1 0 01 LDAH
1 0 10 LDA
1 0 11 UNALLOCATED
1 1 00 LDAEXB
1 1 01 LDAEXH
1 1 10 LDAEX
1 1 11 LDAEXD

Load/store dual (immediate, post-indexed)

These instructions are under Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 U 1 1 L != 1111 Rt Rt2 imm8
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
L Instruction Details

0 STRD (immediate)
1 LDRD (immediate)

Top-level encodings for T32

Page 1386

Load/store dual (immediate)

These instructions are under Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 U 1 0 L != 1111 Rt Rt2 imm8
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
L Instruction Details

0 STRD (immediate)
1 LDRD (immediate)

Load/store dual (immediate, pre-indexed)

These instructions are under Load/store dual, load/store exclusive, load-acquire/store-release, and table branch.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 U 1 1 L != 1111 Rt Rt2 imm8
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
L Instruction Details

0 STRD (immediate)
1 LDRD (immediate)

Data-processing (shifted register)

These instructions are under 32-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 op1 S Rn (0) imm3 Rd imm2 stype Rm

Decode fields
op1 S Rn imm3:imm2:stype Rd Instruction Details

0000 0 != 0000011 AND, ANDS (register) — AND, shift or rotate by value
0000 0 0000011 AND, ANDS (register) — AND, rotate right with

extend
0000 1 != 0000011 !=

1111
AND, ANDS (register) — ANDS, shift or rotate by
value

0000 1 != 0000011 1111 TST (register) — shift or rotate by value
0000 1 0000011 !=

1111
AND, ANDS (register) — ANDS, rotate right with
extend

0000 1 0000011 1111 TST (register) — rotate right with extend
0001 != 0000011 BIC, BICS (register) — shift or rotate by value
0001 0000011 BIC, BICS (register) — rotate right with extend
0010 0 !=

1111
!= 0000011 ORR, ORRS (register) — ORR, shift or rotate by value

0010 0 !=
1111

0000011 ORR, ORRS (register) — ORR, rotate right with
extend

0010 0 1111 != 0000011 MOV, MOVS (register) — MOV, shift or rotate by
value

Top-level encodings for T32

Page 1387

Decode fields
op1 S Rn imm3:imm2:stype Rd Instruction Details

0010 0 1111 0000011 MOV, MOVS (register) — MOV, rotate right with
extend

0010 1 !=
1111

!= 0000011 ORR, ORRS (register) — ORRS, shift or rotate by
value

0010 1 !=
1111

0000011 ORR, ORRS (register) — ORRS, rotate right with
extend

0010 1 1111 != 0000011 MOV, MOVS (register) — MOVS, shift or rotate by
value

0010 1 1111 0000011 MOV, MOVS (register) — MOVS, rotate right with
extend

0011 0 !=
1111

!= 0000011 ORN, ORNS (register) — ORN, shift or rotate by
value

0011 0 !=
1111

0000011 ORN, ORNS (register) — ORN, rotate right with
extend

0011 0 1111 != 0000011 MVN, MVNS (register) — MVN, shift or rotate by
value

0011 0 1111 0000011 MVN, MVNS (register) — MVN, rotate right with
extend

0011 1 !=
1111

!= 0000011 ORN, ORNS (register) — ORNS, shift or rotate by
value

0011 1 !=
1111

0000011 ORN, ORNS (register) — ORNS, rotate right with
extend

0011 1 1111 != 0000011 MVN, MVNS (register) — MVNS, shift or rotate by
value

0011 1 1111 0000011 MVN, MVNS (register) — MVNS, rotate right with
extend

0100 0 != 0000011 EOR, EORS (register) — EOR, shift or rotate by value
0100 0 0000011 EOR, EORS (register) — EOR, rotate right with

extend
0100 1 != 0000011 !=

1111
EOR, EORS (register) — EORS, shift or rotate by
value

0100 1 != 0000011 1111 TEQ (register) — shift or rotate by value
0100 1 0000011 !=

1111
EOR, EORS (register) — EORS, rotate right with
extend

0100 1 0000011 1111 TEQ (register) — rotate right with extend
0101 UNALLOCATED
0110 0 xxxxx00 PKHBT, PKHTB — PKHBT
0110 0 xxxxx01 UNALLOCATED
0110 0 xxxxx10 PKHBT, PKHTB — PKHTB
0110 0 xxxxx11 UNALLOCATED
0111 UNALLOCATED
1000 0 !=

1101
!= 0000011 ADD, ADDS (register) — ADD, shift or rotate by value

1000 0 !=
1101

0000011 ADD, ADDS (register) — ADD, rotate right with
extend

1000 0 1101 != 0000011 ADD, ADDS (SP plus register) — ADD, shift or rotate
by value

1000 0 1101 0000011 ADD, ADDS (SP plus register) — ADD, rotate right
with extend

1000 1 != 0000011 1111 CMN (register) — shift or rotate by value
1000 1 !=

1101
!= 0000011 !=

1111
ADD, ADDS (register) — ADDS, shift or rotate by
value

Top-level encodings for T32

Page 1388

Decode fields
op1 S Rn imm3:imm2:stype Rd Instruction Details

1000 1 !=
1101

0000011 !=
1111

ADD, ADDS (register) — ADDS, rotate right with
extend

1000 1 0000011 1111 CMN (register) — rotate right with extend
1000 1 1101 != 0000011 !=

1111
ADD, ADDS (SP plus register) — ADDS, shift or rotate
by value

1000 1 1101 0000011 !=
1111

ADD, ADDS (SP plus register) — ADDS, rotate right
with extend

1001 UNALLOCATED
1010 != 0000011 ADC, ADCS (register) — shift or rotate by value
1010 0000011 ADC, ADCS (register) — rotate right with extend
1011 != 0000011 SBC, SBCS (register) — shift or rotate by value
1011 0000011 SBC, SBCS (register) — rotate right with extend
1100 UNALLOCATED
1101 0 !=

1101
!= 0000011 SUB, SUBS (register) — SUB, shift or rotate by value

1101 0 !=
1101

0000011 SUB, SUBS (register) — SUB, rotate right with
extend

1101 0 1101 != 0000011 SUB, SUBS (SP minus register) — SUB, shift or
rotate by value

1101 0 1101 0000011 SUB, SUBS (SP minus register) — SUB, rotate right
with extend

1101 1 != 0000011 1111 CMP (register) — shift or rotate by value
1101 1 !=

1101
!= 0000011 !=

1111
SUB, SUBS (register) — SUBS, shift or rotate by
value

1101 1 !=
1101

0000011 !=
1111

SUB, SUBS (register) — SUBS, rotate right with
extend

1101 1 0000011 1111 CMP (register) — rotate right with extend
1101 1 1101 != 0000011 !=

1111
SUB, SUBS (SP minus register) — SUBS, shift or
rotate by value

1101 1 1101 0000011 !=
1111

SUB, SUBS (SP minus register) — SUBS, rotate right
with extend

1110 != 0000011 RSB, RSBS (register) — shift or rotate by value
1110 0000011 RSB, RSBS (register) — rotate right with extend
1111 UNALLOCATED

Branches and miscellaneous control

These instructions are under 32-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11110 op0 op1 op2 1 op3 op4 op5

Decode fields
op0 op1 op2 op3 op4 op5 Instruction details

0 1110 0x 0x0 0 MSR (register)
0 1110 0x 0x0 1 MSR (Banked register)
0 1110 10 0x0 000 Hints
0 1110 10 0x0 != 000 Change processor state
0 1110 11 0x0 Miscellaneous system
0 1111 00 0x0 BXJ

Top-level encodings for T32

Page 1389

0 1111 01 0x0 Exception return
0 1111 1x 0x0 0 MRS
0 1111 1x 0x0 1 MRS (Banked register)
1 1110 00 000 DCPS
1 1110 00 010 UNALLOCATED
1 1110 01 0x0 UNALLOCATED
1 1110 1x 0x0 UNALLOCATED
1 1111 0x 0x0 UNALLOCATED
1 1111 1x 0x0 Exception generation

!= 111x 0x0 B — T3
0x1 B — T4
1x0 BL, BLX (immediate) — T2
1x1 BL, BLX (immediate) — T1

Hints

These instructions are under Branches and miscellaneous control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 hint option

Decode fields
hint option Instruction Details Feature

0000 0000 NOP -
0000 0001 YIELD -
0000 0010 WFE -
0000 0011 WFI -
0000 0100 SEV -
0000 0101 SEVL -
0000 011x Reserved hint, behaves as NOP -
0000 1xxx Reserved hint, behaves as NOP -
0001 0000 ESB FEAT_RAS
0001 0001 Reserved hint, behaves as NOP -
0001 0010 TSB CSYNC FEAT_TRF
0001 0011 Reserved hint, behaves as NOP -
0001 0100 CSDB -
0001 0101 Reserved hint, behaves as NOP -
0001 0110 CLRBHB FEAT_CLRBHB
0001 0111 Reserved hint, behaves as NOP -
0001 1xxx Reserved hint, behaves as NOP -
001x Reserved hint, behaves as NOP -
01xx Reserved hint, behaves as NOP -
10xx Reserved hint, behaves as NOP -
110x Reserved hint, behaves as NOP -
1110 Reserved hint, behaves as NOP -
1111 DBG -

Change processor state

These instructions are under Branches and miscellaneous control.

Top-level encodings for T32

Page 1390

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) imod M A I F mode

The following constraints also apply to this encoding: imod:M != 000

Decode fields
imod M Instruction Details

00 1 CPS, CPSID, CPSIE — change mode
01 UNALLOCATED
10 CPS, CPSID, CPSIE — interrupt enable and change mode
11 CPS, CPSID, CPSIE — interrupt disable and change mode

Miscellaneous system

These instructions are under Branches and miscellaneous control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) opc option

Decode fields
opc option Instruction Details Feature

000x UNALLOCATED -
0010 CLREX -
0011 UNALLOCATED -
0100 != 0x00 DSB -
0100 0000 SSBB -
0100 0100 PSSBB -
0101 DMB -
0110 ISB -
0111 SB FEAT_SB
1xxx UNALLOCATED -

Exception return

These instructions are under Branches and miscellaneous control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 0 1 Rn 1 0 (0) 0 (1) (1) (1) (1) imm8

Decode fields
Rn:imm8 Instruction Details

!= 111000000000 SUB, SUBS (immediate)
111000000000 ERET

DCPS

These instructions are under Branches and miscellaneous control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1 1 0 0 0 imm4 1 0 0 0 imm10 opt

Decode fields
imm4 imm10 opt Instruction Details

!= 1111 UNALLOCATED
1111 != 0000000000 UNALLOCATED

Top-level encodings for T32

Page 1391

Decode fields
imm4 imm10 opt Instruction Details

1111 0000000000 00 UNALLOCATED
1111 0000000000 01 DCPS1
1111 0000000000 10 DCPS2
1111 0000000000 11 DCPS3

Exception generation

These instructions are under Branches and miscellaneous control.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1 1 1 1 o1 imm4 1 0 o2 0 imm12

Decode fields
o1 o2 Instruction Details

0 0 HVC
0 1 UNALLOCATED
1 0 SMC
1 1 UDF

Data-processing (modified immediate)

These instructions are under 32-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 op1 S Rn 0 imm3 Rd imm8

Decode fields
op1 S Rn Rd Instruction Details

0000 0 AND, ANDS (immediate) — AND
0000 1 != 1111 AND, ANDS (immediate) — ANDS
0000 1 1111 TST (immediate)
0001 BIC, BICS (immediate)
0010 0 != 1111 ORR, ORRS (immediate) — ORR
0010 0 1111 MOV, MOVS (immediate) — MOV
0010 1 != 1111 ORR, ORRS (immediate) — ORRS
0010 1 1111 MOV, MOVS (immediate) — MOVS
0011 0 != 1111 ORN, ORNS (immediate) — not flag setting
0011 0 1111 MVN, MVNS (immediate) — MVN
0011 1 != 1111 ORN, ORNS (immediate) — flag setting
0011 1 1111 MVN, MVNS (immediate) — MVNS
0100 0 EOR, EORS (immediate) — EOR
0100 1 != 1111 EOR, EORS (immediate) — EORS
0100 1 1111 TEQ (immediate)
0101 UNALLOCATED
011x UNALLOCATED
1000 0 != 1101 ADD, ADDS (immediate) — ADD
1000 0 1101 ADD, ADDS (SP plus immediate) — ADD
1000 1 != 1101 != 1111 ADD, ADDS (immediate) — ADDS
1000 1 1101 != 1111 ADD, ADDS (SP plus immediate) — ADDS
1000 1 1111 CMN (immediate)

Top-level encodings for T32

Page 1392

Decode fields
op1 S Rn Rd Instruction Details

1001 UNALLOCATED
1010 ADC, ADCS (immediate)
1011 SBC, SBCS (immediate)
1100 UNALLOCATED
1101 0 != 1101 SUB, SUBS (immediate) — SUB
1101 0 1101 SUB, SUBS (SP minus immediate) — SUB
1101 1 != 1101 != 1111 SUB, SUBS (immediate) — SUBS
1101 1 1101 != 1111 SUB, SUBS (SP minus immediate) — SUBS
1101 1 1111 CMP (immediate)
1110 RSB, RSBS (immediate)
1111 UNALLOCATED

Data-processing (plain binary immediate)

These instructions are under 32-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11110 1 op0 op1 0 0

Decode fields
op0 op1 Instruction details

0 0x Data-processing (simple immediate)
0 10 Move Wide (16-bit immediate)
0 11 UNALLOCATED
1 Saturate, Bitfield

Data-processing (simple immediate)

These instructions are under Data-processing (plain binary immediate).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 o1 0 o2 0 Rn 0 imm3 Rd imm8

Decode fields
o1 o2 Rn Instruction Details

0 0 != 11x1 ADD, ADDS (immediate)
0 0 1101 ADD, ADDS (SP plus immediate)
0 0 1111 ADR — T3
0 1 UNALLOCATED
1 0 UNALLOCATED
1 1 != 11x1 SUB, SUBS (immediate)
1 1 1101 SUB, SUBS (SP minus immediate)
1 1 1111 ADR — T2

Move Wide (16-bit immediate)

These instructions are under Data-processing (plain binary immediate).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 o1 1 0 0 imm4 0 imm3 Rd imm8

Top-level encodings for T32

Page 1393

Decode fields
o1 Instruction Details

0 MOV, MOVS (immediate)
1 MOVT

Saturate, Bitfield

These instructions are under Data-processing (plain binary immediate).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 op1 0 Rn 0 imm3 Rd imm2 (0) widthm1

Decode fields
op1 Rn imm3:imm2 Instruction Details

000 SSAT — logical shift left
001 != 00000 SSAT — arithmetic shift right
001 00000 SSAT16
010 SBFX
011 != 1111 BFI
011 1111 BFC
100 USAT — logical shift left
101 != 00000 USAT — arithmetic shift right
101 00000 USAT16
110 UBFX
111 UNALLOCATED

Advanced SIMD element or structure load/store

These instructions are under 32-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11111001 op0 0 op1

Decode fields
op0 op1 Instruction details

0 Advanced SIMD load/store multiple structures
1 11 Advanced SIMD load single structure to all lanes
1 != 11 Advanced SIMD load/store single structure to one lane

Advanced SIMD load/store multiple structures

These instructions are under Advanced SIMD element or structure load/store.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 D L 0 Rn Vd itype size align Rm

Decode fields
L itype Rm Instruction Details

0 000x != 11x1 VST4 (multiple 4-element structures)
0 000x 1101 VST4 (multiple 4-element structures)
0 000x 1111 VST4 (multiple 4-element structures)
0 0010 != 11x1 VST1 (multiple single elements)
0 0010 1101 VST1 (multiple single elements)
0 0010 1111 VST1 (multiple single elements)

Top-level encodings for T32

Page 1394

Decode fields
L itype Rm Instruction Details

0 0011 != 11x1 VST2 (multiple 2-element structures)
0 0011 1101 VST2 (multiple 2-element structures)
0 0011 1111 VST2 (multiple 2-element structures)
0 010x != 11x1 VST3 (multiple 3-element structures)
0 010x 1101 VST3 (multiple 3-element structures)
0 010x 1111 VST3 (multiple 3-element structures)
0 0110 != 11x1 VST1 (multiple single elements)
0 0110 1101 VST1 (multiple single elements)
0 0110 1111 VST1 (multiple single elements)
0 0111 != 11x1 VST1 (multiple single elements)
0 0111 1101 VST1 (multiple single elements)
0 0111 1111 VST1 (multiple single elements)
0 100x != 11x1 VST2 (multiple 2-element structures)
0 100x 1101 VST2 (multiple 2-element structures)
0 100x 1111 VST2 (multiple 2-element structures)
0 1010 != 11x1 VST1 (multiple single elements)
0 1010 1101 VST1 (multiple single elements)
0 1010 1111 VST1 (multiple single elements)
1 000x != 11x1 VLD4 (multiple 4-element structures)
1 000x 1101 VLD4 (multiple 4-element structures)
1 000x 1111 VLD4 (multiple 4-element structures)
1 0010 != 11x1 VLD1 (multiple single elements)
1 0010 1101 VLD1 (multiple single elements)
1 0010 1111 VLD1 (multiple single elements)
1 0011 != 11x1 VLD2 (multiple 2-element structures)
1 0011 1101 VLD2 (multiple 2-element structures)
1 0011 1111 VLD2 (multiple 2-element structures)
1 010x != 11x1 VLD3 (multiple 3-element structures)
1 010x 1101 VLD3 (multiple 3-element structures)
1 010x 1111 VLD3 (multiple 3-element structures)

1011 UNALLOCATED
1 0110 != 11x1 VLD1 (multiple single elements)
1 0110 1101 VLD1 (multiple single elements)
1 0110 1111 VLD1 (multiple single elements)
1 0111 != 11x1 VLD1 (multiple single elements)
1 0111 1101 VLD1 (multiple single elements)
1 0111 1111 VLD1 (multiple single elements)

11xx UNALLOCATED
1 100x != 11x1 VLD2 (multiple 2-element structures)
1 100x 1101 VLD2 (multiple 2-element structures)
1 100x 1111 VLD2 (multiple 2-element structures)
1 1010 != 11x1 VLD1 (multiple single elements)
1 1010 1101 VLD1 (multiple single elements)
1 1010 1111 VLD1 (multiple single elements)

Advanced SIMD load single structure to all lanes

These instructions are under Advanced SIMD element or structure load/store.

Top-level encodings for T32

Page 1395

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D L 0 Rn Vd 1 1 N size T a Rm

Decode fields
L N a Rm Instruction Details

0 UNALLOCATED
1 00 != 11x1 VLD1 (single element to all lanes)
1 00 1101 VLD1 (single element to all lanes)
1 00 1111 VLD1 (single element to all lanes)
1 01 != 11x1 VLD2 (single 2-element structure to all lanes)
1 01 1101 VLD2 (single 2-element structure to all lanes)
1 01 1111 VLD2 (single 2-element structure to all lanes)
1 10 0 != 11x1 VLD3 (single 3-element structure to all lanes)
1 10 0 1101 VLD3 (single 3-element structure to all lanes)
1 10 0 1111 VLD3 (single 3-element structure to all lanes)
1 10 1 UNALLOCATED
1 11 != 11x1 VLD4 (single 4-element structure to all lanes)
1 11 1101 VLD4 (single 4-element structure to all lanes)
1 11 1111 VLD4 (single 4-element structure to all lanes)

Advanced SIMD load/store single structure to one lane

These instructions are under Advanced SIMD element or structure load/store.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 D L 0 Rn Vd != 11 N index_align Rm
size

The following constraints also apply to this encoding: size != 11 && size != 11

Decode fields
L size N Rm Instruction Details

0 00 00 != 11x1 VST1 (single element from one lane)
0 00 00 1101 VST1 (single element from one lane)
0 00 00 1111 VST1 (single element from one lane)
0 00 01 != 11x1 VST2 (single 2-element structure from one lane)
0 00 01 1101 VST2 (single 2-element structure from one lane)
0 00 01 1111 VST2 (single 2-element structure from one lane)
0 00 10 != 11x1 VST3 (single 3-element structure from one lane)
0 00 10 1101 VST3 (single 3-element structure from one lane)
0 00 10 1111 VST3 (single 3-element structure from one lane)
0 00 11 != 11x1 VST4 (single 4-element structure from one lane)
0 00 11 1101 VST4 (single 4-element structure from one lane)
0 00 11 1111 VST4 (single 4-element structure from one lane)
0 01 00 != 11x1 VST1 (single element from one lane)
0 01 00 1101 VST1 (single element from one lane)
0 01 00 1111 VST1 (single element from one lane)
0 01 01 != 11x1 VST2 (single 2-element structure from one lane)
0 01 01 1101 VST2 (single 2-element structure from one lane)
0 01 01 1111 VST2 (single 2-element structure from one lane)
0 01 10 != 11x1 VST3 (single 3-element structure from one lane)
0 01 10 1101 VST3 (single 3-element structure from one lane)

Top-level encodings for T32

Page 1396

Decode fields
L size N Rm Instruction Details

0 01 10 1111 VST3 (single 3-element structure from one lane)
0 01 11 != 11x1 VST4 (single 4-element structure from one lane)
0 01 11 1101 VST4 (single 4-element structure from one lane)
0 01 11 1111 VST4 (single 4-element structure from one lane)
0 10 00 != 11x1 VST1 (single element from one lane)
0 10 00 1101 VST1 (single element from one lane)
0 10 00 1111 VST1 (single element from one lane)
0 10 01 != 11x1 VST2 (single 2-element structure from one lane)
0 10 01 1101 VST2 (single 2-element structure from one lane)
0 10 01 1111 VST2 (single 2-element structure from one lane)
0 10 10 != 11x1 VST3 (single 3-element structure from one lane)
0 10 10 1101 VST3 (single 3-element structure from one lane)
0 10 10 1111 VST3 (single 3-element structure from one lane)
0 10 11 != 11x1 VST4 (single 4-element structure from one lane)
0 10 11 1101 VST4 (single 4-element structure from one lane)
0 10 11 1111 VST4 (single 4-element structure from one lane)
1 00 00 != 11x1 VLD1 (single element to one lane)
1 00 00 1101 VLD1 (single element to one lane)
1 00 00 1111 VLD1 (single element to one lane)
1 00 01 != 11x1 VLD2 (single 2-element structure to one lane)
1 00 01 1101 VLD2 (single 2-element structure to one lane)
1 00 01 1111 VLD2 (single 2-element structure to one lane)
1 00 10 != 11x1 VLD3 (single 3-element structure to one lane)
1 00 10 1101 VLD3 (single 3-element structure to one lane)
1 00 10 1111 VLD3 (single 3-element structure to one lane)
1 00 11 != 11x1 VLD4 (single 4-element structure to one lane)
1 00 11 1101 VLD4 (single 4-element structure to one lane)
1 00 11 1111 VLD4 (single 4-element structure to one lane)
1 01 00 != 11x1 VLD1 (single element to one lane)
1 01 00 1101 VLD1 (single element to one lane)
1 01 00 1111 VLD1 (single element to one lane)
1 01 01 != 11x1 VLD2 (single 2-element structure to one lane)
1 01 01 1101 VLD2 (single 2-element structure to one lane)
1 01 01 1111 VLD2 (single 2-element structure to one lane)
1 01 10 != 11x1 VLD3 (single 3-element structure to one lane)
1 01 10 1101 VLD3 (single 3-element structure to one lane)
1 01 10 1111 VLD3 (single 3-element structure to one lane)
1 01 11 != 11x1 VLD4 (single 4-element structure to one lane)
1 01 11 1101 VLD4 (single 4-element structure to one lane)
1 01 11 1111 VLD4 (single 4-element structure to one lane)
1 10 00 != 11x1 VLD1 (single element to one lane)
1 10 00 1101 VLD1 (single element to one lane)
1 10 00 1111 VLD1 (single element to one lane)
1 10 01 != 11x1 VLD2 (single 2-element structure to one lane)
1 10 01 1101 VLD2 (single 2-element structure to one lane)
1 10 01 1111 VLD2 (single 2-element structure to one lane)
1 10 10 != 11x1 VLD3 (single 3-element structure to one lane)

Top-level encodings for T32

Page 1397

Decode fields
L size N Rm Instruction Details

1 10 10 1101 VLD3 (single 3-element structure to one lane)
1 10 10 1111 VLD3 (single 3-element structure to one lane)
1 10 11 != 11x1 VLD4 (single 4-element structure to one lane)
1 10 11 1101 VLD4 (single 4-element structure to one lane)
1 10 11 1111 VLD4 (single 4-element structure to one lane)

Load/store single

These instructions are under 32-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1111100 op0 op1 op2 op3

The following constraints also apply to this encoding: op0<1>:op1 != 10

Decode fields
op0 op1 op2 op3 Instruction details

00 != 1111 000000 Load/store, unsigned (register offset)
00 != 1111 000001 UNALLOCATED
00 != 1111 00001x UNALLOCATED
00 != 1111 0001xx UNALLOCATED
00 != 1111 001xxx UNALLOCATED
00 != 1111 01xxxx UNALLOCATED
00 != 1111 10x0xx UNALLOCATED
00 != 1111 10x1xx Load/store, unsigned (immediate, post-indexed)
00 != 1111 1100xx Load/store, unsigned (negative immediate)
00 != 1111 1110xx Load/store, unsigned (unprivileged)
00 != 1111 11x1xx Load/store, unsigned (immediate, pre-indexed)
01 != 1111 Load/store, unsigned (positive immediate)
0x 1111 Load, unsigned (literal)
10 1 != 1111 000000 Load/store, signed (register offset)
10 1 != 1111 000001 UNALLOCATED
10 1 != 1111 00001x UNALLOCATED
10 1 != 1111 0001xx UNALLOCATED
10 1 != 1111 001xxx UNALLOCATED
10 1 != 1111 01xxxx UNALLOCATED
10 1 != 1111 10x0xx UNALLOCATED
10 1 != 1111 10x1xx Load/store, signed (immediate, post-indexed)
10 1 != 1111 1100xx Load/store, signed (negative immediate)
10 1 != 1111 1110xx Load/store, signed (unprivileged)
10 1 != 1111 11x1xx Load/store, signed (immediate, pre-indexed)
11 1 != 1111 Load/store, signed (positive immediate)
1x 1 1111 Load, signed (literal)

Load/store, unsigned (register offset)

These instructions are under Load/store single.

Top-level encodings for T32

Page 1398

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 size L != 1111 Rt 0 0 0 0 0 0 imm2 Rm
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
size L Rt Instruction Details

00 0 STRB (register)
00 1 != 1111 LDRB (register)
00 1 1111 PLD, PLDW (register) — preload read
01 0 STRH (register)
01 1 != 1111 LDRH (register)
01 1 1111 PLD, PLDW (register) — preload write
10 0 STR (register)
10 1 LDR (register)
11 UNALLOCATED

Load/store, unsigned (immediate, post-indexed)

These instructions are under Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 size L != 1111 Rt 1 0 U 1 imm8
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
size L Instruction Details

00 0 STRB (immediate)
00 1 LDRB (immediate)
01 0 STRH (immediate)
01 1 LDRH (immediate)
10 0 STR (immediate)
10 1 LDR (immediate)
11 UNALLOCATED

Load/store, unsigned (negative immediate)

These instructions are under Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 size L != 1111 Rt 1 1 0 0 imm8
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
size L Rt Instruction Details

00 0 STRB (immediate)
00 1 != 1111 LDRB (immediate)
00 1 1111 PLD, PLDW (immediate) — preload read
01 0 STRH (immediate)

Top-level encodings for T32

Page 1399

Decode fields
size L Rt Instruction Details

01 1 != 1111 LDRH (immediate)
01 1 1111 PLD, PLDW (immediate) — preload write
10 0 STR (immediate)
10 1 LDR (immediate)
11 UNALLOCATED

Load/store, unsigned (unprivileged)

These instructions are under Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 size L != 1111 Rt 1 1 1 0 imm8
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
size L Instruction Details

00 0 STRBT
00 1 LDRBT
01 0 STRHT
01 1 LDRHT
10 0 STRT
10 1 LDRT
11 UNALLOCATED

Load/store, unsigned (immediate, pre-indexed)

These instructions are under Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 size L != 1111 Rt 1 1 U 1 imm8
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
size L Instruction Details

00 0 STRB (immediate)
00 1 LDRB (immediate)
01 0 STRH (immediate)
01 1 LDRH (immediate)
10 0 STR (immediate)
10 1 LDR (immediate)
11 UNALLOCATED

Load/store, unsigned (positive immediate)

These instructions are under Load/store single.

Top-level encodings for T32

Page 1400

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 size L != 1111 Rt imm12
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
size L Rt Instruction Details

00 0 STRB (immediate)
00 1 != 1111 LDRB (immediate)
00 1 1111 PLD, PLDW (immediate) — preload read
01 0 STRH (immediate)
01 1 != 1111 LDRH (immediate)
01 1 1111 PLD, PLDW (immediate) — preload write
10 0 STR (immediate)
10 1 LDR (immediate)

Load, unsigned (literal)

These instructions are under Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U size L 1 1 1 1 Rt imm12

Decode fields
size L Rt Instruction Details

0x 1 1111 PLD (literal)
00 1 != 1111 LDRB (literal)
01 1 != 1111 LDRH (literal)
10 1 LDR (literal)
11 UNALLOCATED

Load/store, signed (register offset)

These instructions are under Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 size 1 != 1111 Rt 0 0 0 0 0 0 imm2 Rm
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
size Rt Instruction Details

00 != 1111 LDRSB (register)
00 1111 PLI (register)
01 != 1111 LDRSH (register)
01 1111 Reserved hint, behaves as NOP
1x UNALLOCATED

Load/store, signed (immediate, post-indexed)

These instructions are under Load/store single.

Top-level encodings for T32

Page 1401

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 size 1 != 1111 Rt 1 0 U 1 imm8
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
size Instruction Details

00 LDRSB (immediate)
01 LDRSH (immediate)
1x UNALLOCATED

Load/store, signed (negative immediate)

These instructions are under Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 size 1 != 1111 Rt 1 1 0 0 imm8
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
size Rt Instruction Details

00 != 1111 LDRSB (immediate)
00 1111 PLI (immediate, literal)
01 != 1111 LDRSH (immediate)
01 1111 Reserved hint, behaves as NOP
1x UNALLOCATED

Load/store, signed (unprivileged)

These instructions are under Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 size 1 != 1111 Rt 1 1 1 0 imm8
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
size Instruction Details

00 LDRSBT
01 LDRSHT
1x UNALLOCATED

Load/store, signed (immediate, pre-indexed)

These instructions are under Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 size 1 != 1111 Rt 1 1 U 1 imm8
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Top-level encodings for T32

Page 1402

Decode fields
size Instruction Details

00 LDRSB (immediate)
01 LDRSH (immediate)
1x UNALLOCATED

Load/store, signed (positive immediate)

These instructions are under Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 size 1 != 1111 Rt imm12
Rn

The following constraints also apply to this encoding: Rn != 1111 && Rn != 1111

Decode fields
size Rt Instruction Details

00 != 1111 LDRSB (immediate)
00 1111 PLI (immediate, literal)
01 != 1111 LDRSH (immediate)
01 1111 Reserved hint, behaves as NOP

Load, signed (literal)

These instructions are under Load/store single.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U size 1 1 1 1 1 Rt imm12

Decode fields
size Rt Instruction Details

00 != 1111 LDRSB (literal)
00 1111 PLI (immediate, literal)
01 != 1111 LDRSH (literal)
01 1111 Reserved hint, behaves as NOP
1x UNALLOCATED

Data-processing (register)

These instructions are under 32-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11111010 op0 op1 op2

Decode fields
op0 op1 op2 Instruction details

0 1111 0000 MOV, MOVS (register-shifted register) — T2, Flag setting
0 1111 0001 UNALLOCATED
0 1111 001x UNALLOCATED
0 1111 01xx UNALLOCATED
0 1111 1xxx Register extends
1 1111 0xxx Parallel add-subtract
1 1111 10xx Data-processing (two source registers)

Top-level encodings for T32

Page 1403

1 1111 11xx UNALLOCATED
!= 1111 UNALLOCATED

Register extends

These instructions are under Data-processing (register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 op1 U Rn 1 1 1 1 Rd 1 (0) rotate Rm

Decode fields
op1 U Rn Instruction Details

00 0 != 1111 SXTAH
00 0 1111 SXTH
00 1 != 1111 UXTAH
00 1 1111 UXTH
01 0 != 1111 SXTAB16
01 0 1111 SXTB16
01 1 != 1111 UXTAB16
01 1 1111 UXTB16
10 0 != 1111 SXTAB
10 0 1111 SXTB
10 1 != 1111 UXTAB
10 1 1111 UXTB
11 UNALLOCATED

Parallel add-subtract

These instructions are under Data-processing (register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 op1 Rn 1 1 1 1 Rd 0 U H S Rm

Decode fields
op1 U H S Instruction Details

000 0 0 0 SADD8
000 0 0 1 QADD8
000 0 1 0 SHADD8
000 0 1 1 UNALLOCATED
000 1 0 0 UADD8
000 1 0 1 UQADD8
000 1 1 0 UHADD8
000 1 1 1 UNALLOCATED
001 0 0 0 SADD16
001 0 0 1 QADD16
001 0 1 0 SHADD16
001 0 1 1 UNALLOCATED
001 1 0 0 UADD16
001 1 0 1 UQADD16
001 1 1 0 UHADD16
001 1 1 1 UNALLOCATED
010 0 0 0 SASX

Top-level encodings for T32

Page 1404

Decode fields
op1 U H S Instruction Details

010 0 0 1 QASX
010 0 1 0 SHASX
010 0 1 1 UNALLOCATED
010 1 0 0 UASX
010 1 0 1 UQASX
010 1 1 0 UHASX
010 1 1 1 UNALLOCATED
100 0 0 0 SSUB8
100 0 0 1 QSUB8
100 0 1 0 SHSUB8
100 0 1 1 UNALLOCATED
100 1 0 0 USUB8
100 1 0 1 UQSUB8
100 1 1 0 UHSUB8
100 1 1 1 UNALLOCATED
101 0 0 0 SSUB16
101 0 0 1 QSUB16
101 0 1 0 SHSUB16
101 0 1 1 UNALLOCATED
101 1 0 0 USUB16
101 1 0 1 UQSUB16
101 1 1 0 UHSUB16
101 1 1 1 UNALLOCATED
110 0 0 0 SSAX
110 0 0 1 QSAX
110 0 1 0 SHSAX
110 0 1 1 UNALLOCATED
110 1 0 0 USAX
110 1 0 1 UQSAX
110 1 1 0 UHSAX
110 1 1 1 UNALLOCATED
111 UNALLOCATED

Data-processing (two source registers)

These instructions are under Data-processing (register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 op1 Rn 1 1 1 1 Rd 1 0 op2 Rm

Decode fields
op1 op2 Instruction Details Feature

000 00 QADD -
000 01 QDADD -
000 10 QSUB -
000 11 QDSUB -
001 00 REV -
001 01 REV16 -
001 10 RBIT -

Top-level encodings for T32

Page 1405

Decode fields
op1 op2 Instruction Details Feature

001 11 REVSH -
010 00 SEL -
010 01 UNALLOCATED -
010 1x UNALLOCATED -
011 00 CLZ -
011 01 UNALLOCATED -
011 1x UNALLOCATED -
100 00 CRC32 — CRC32B FEAT_CRC32
100 01 CRC32 — CRC32H FEAT_CRC32
100 10 CRC32 — CRC32W FEAT_CRC32
100 11 CONSTRAINED UNPREDICTABLE -
101 00 CRC32C — CRC32CB FEAT_CRC32
101 01 CRC32C — CRC32CH FEAT_CRC32
101 10 CRC32C — CRC32CW FEAT_CRC32
101 11 CONSTRAINED UNPREDICTABLE -
11x UNALLOCATED -

The behavior of the CONSTRAINED UNPREDICTABLE encodings in this table is described in CONSTRAINED
UNPREDICTABLE behavior for A32 and T32 instruction encodings

Multiply, multiply accumulate, and absolute difference

These instructions are under 32-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

111110110 op0

Decode fields
op0 Instruction details

00 Multiply and absolute difference
01 UNALLOCATED
1x UNALLOCATED

Multiply and absolute difference

These instructions are under Multiply, multiply accumulate, and absolute difference.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 op1 Rn Ra Rd 0 0 op2 Rm

Decode fields
op1 Ra op2 Instruction Details

000 != 1111 00 MLA, MLAS
000 01 MLS
000 1x UNALLOCATED
000 1111 00 MUL, MULS
001 != 1111 00 SMLABB, SMLABT, SMLATB, SMLATT — SMLABB
001 != 1111 01 SMLABB, SMLABT, SMLATB, SMLATT — SMLABT
001 != 1111 10 SMLABB, SMLABT, SMLATB, SMLATT — SMLATB
001 != 1111 11 SMLABB, SMLABT, SMLATB, SMLATT — SMLATT

Top-level encodings for T32

Page 1406

Decode fields
op1 Ra op2 Instruction Details

001 1111 00 SMULBB, SMULBT, SMULTB, SMULTT — SMULBB
001 1111 01 SMULBB, SMULBT, SMULTB, SMULTT — SMULBT
001 1111 10 SMULBB, SMULBT, SMULTB, SMULTT — SMULTB
001 1111 11 SMULBB, SMULBT, SMULTB, SMULTT — SMULTT
010 != 1111 00 SMLAD, SMLADX — SMLAD
010 != 1111 01 SMLAD, SMLADX — SMLADX
010 1x UNALLOCATED
010 1111 00 SMUAD, SMUADX — SMUAD
010 1111 01 SMUAD, SMUADX — SMUADX
011 != 1111 00 SMLAWB, SMLAWT — SMLAWB
011 != 1111 01 SMLAWB, SMLAWT — SMLAWT
011 1x UNALLOCATED
011 1111 00 SMULWB, SMULWT — SMULWB
011 1111 01 SMULWB, SMULWT — SMULWT
100 != 1111 00 SMLSD, SMLSDX — SMLSD
100 != 1111 01 SMLSD, SMLSDX — SMLSDX
100 1x UNALLOCATED
100 1111 00 SMUSD, SMUSDX — SMUSD
100 1111 01 SMUSD, SMUSDX — SMUSDX
101 != 1111 00 SMMLA, SMMLAR — SMMLA
101 != 1111 01 SMMLA, SMMLAR — SMMLAR
101 1x UNALLOCATED
101 1111 00 SMMUL, SMMULR — SMMUL
101 1111 01 SMMUL, SMMULR — SMMULR
110 00 SMMLS, SMMLSR — SMMLS
110 01 SMMLS, SMMLSR — SMMLSR
110 1x UNALLOCATED
111 != 1111 00 USADA8
111 01 UNALLOCATED
111 1x UNALLOCATED
111 1111 00 USAD8

Long multiply and divide

These instructions are under 32-bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 op1 Rn RdLo RdHi op2 Rm

Decode fields
op1 op2 Instruction Details

000 != 0000 UNALLOCATED
000 0000 SMULL, SMULLS
001 != 1111 UNALLOCATED
001 1111 SDIV
010 != 0000 UNALLOCATED
010 0000 UMULL, UMULLS
011 != 1111 UNALLOCATED
011 1111 UDIV

Top-level encodings for T32

Page 1407

Decode fields
op1 op2 Instruction Details

100 0000 SMLAL, SMLALS
100 0001 UNALLOCATED
100 001x UNALLOCATED
100 01xx UNALLOCATED
100 1000 SMLALBB, SMLALBT, SMLALTB, SMLALTT — SMLALBB
100 1001 SMLALBB, SMLALBT, SMLALTB, SMLALTT — SMLALBT
100 1010 SMLALBB, SMLALBT, SMLALTB, SMLALTT — SMLALTB
100 1011 SMLALBB, SMLALBT, SMLALTB, SMLALTT — SMLALTT
100 1100 SMLALD, SMLALDX — SMLALD
100 1101 SMLALD, SMLALDX — SMLALDX
100 111x UNALLOCATED
101 0xxx UNALLOCATED
101 10xx UNALLOCATED
101 1100 SMLSLD, SMLSLDX — SMLSLD
101 1101 SMLSLD, SMLSLDX — SMLSLDX
101 111x UNALLOCATED
110 0000 UMLAL, UMLALS
110 0001 UNALLOCATED
110 001x UNALLOCATED
110 010x UNALLOCATED
110 0110 UMAAL
110 0111 UNALLOCATED
110 1xxx UNALLOCATED
111 UNALLOCATED

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Top-level encodings for T32

Page 1408

Shared Pseudocode Functions

This page displays common pseudocode functions shared by many pages

Shared Pseudocode Functions Page 1409

Pseudocodes

Library pseudocode for aarch32/at/AArch32.AT

// AArch32.AT()
// ============
// Perform address translation as per AT instructions.

AArch32.AT(bits(32) vaddress, TranslationStage stage_in, bits(2) el, ATAccess ataccess)
TranslationStage stage = stage_in;
SecurityState ss;
Regime regime;
boolean eae;

// ATS1Hx instructions
if el == EL2 then

regime = Regime_EL2;
eae = TRUE;
ss = SS_NonSecure;

// ATS1Cxx instructions
elsif stage == TranslationStage_1 || (stage == TranslationStage_12 && !HaveEL(EL2)) then

stage = TranslationStage_1;
ss = SecurityStateAtEL(PSTATE.EL);
regime = if ss == SS_Secure && ELUsingAArch32(EL3) then Regime_EL30 else Regime_EL10;
eae = TTBCR.EAE == '1';

// ATS12NSOxx instructions
else

regime = Regime_EL10;
eae = if HaveAArch32EL(EL3) then TTBCR_NS.EAE == '1' else TTBCR.EAE == '1';
ss = SS_NonSecure;

AddressDescriptor addrdesc;
SDFType sdftype;
boolean aligned = TRUE;
bit supersection = '0';

accdesc = CreateAccDescAT(ss, el, ataccess);

// Prepare fault fields in case a fault is detected
fault = NoFault(accdesc);

if eae then
(fault, addrdesc) = AArch32.S1TranslateLD(fault, regime, vaddress, aligned, accdesc);

else
(fault, addrdesc, sdftype) = AArch32.S1TranslateSD(fault, regime, vaddress, aligned,

accdesc);
supersection = if sdftype == SDFType_Supersection then '1' else '0';

// ATS12NSOxx instructions
if stage == TranslationStage_12 && fault.statuscode == Fault_None then

(fault, addrdesc) = AArch32.S2Translate(fault, addrdesc, aligned, accdesc);

if fault.statuscode != Fault_None then
// Take exception on External abort or when a fault occurs on translation table walk
if IsExternalAbort(fault) || (PSTATE.EL == EL1 && EL2Enabled() && fault.s2fs1walk) then

PAR = bits(64) UNKNOWN;
AArch32.Abort(vaddress, fault);

addrdesc.fault = fault;

if (eae || (stage == TranslationStage_12 && (HCR.VM == '1' || HCR.DC == '1'))
|| (stage == TranslationStage_1 && el != EL2 && PSTATE.EL == EL2)) then

AArch32.EncodePARLD(addrdesc, ss);
else

AArch32.EncodePARSD(addrdesc, supersection, ss);
return;

Shared Pseudocode Functions Page 1410

Library pseudocode for aarch32/at/AArch32.EncodePARLD

// AArch32.EncodePARLD()
// =====================
// Returns 64-bit format PAR on address translation instruction.

AArch32.EncodePARLD(AddressDescriptor addrdesc, SecurityState ss)

if !IsFault(addrdesc) then
bit ns;
if ss == SS_NonSecure then

ns = bit UNKNOWN;
elsif addrdesc.paddress.paspace == PAS_Secure then

ns = '0';
else

ns = '1';
PAR.F = '0';
PAR.SH = ReportedPARShareability(PAREncodeShareability(addrdesc.memattrs));
PAR.NS = ns;
PAR<10> = bit IMPLEMENTATION_DEFINED "Non-Faulting PAR"; // IMPDEF
PAR.LPAE = '1';
PAR.PA = addrdesc.paddress.address<39:12>;
PAR.ATTR = ReportedPARAttrs(EncodePARAttrs(addrdesc.memattrs));

else
PAR.F = '1';
PAR.FST = AArch32.PARFaultStatusLD(addrdesc.fault);
PAR.S2WLK = if addrdesc.fault.s2fs1walk then '1' else '0';
PAR.FSTAGE = if addrdesc.fault.secondstage then '1' else '0';
PAR.LPAE = '1';
PAR<63:48> = bits(16) IMPLEMENTATION_DEFINED "Faulting PAR"; // IMPDEF

return;

Library pseudocode for aarch32/at/AArch32.EncodePARSD

// AArch32.EncodePARSD()
// =====================
// Returns 32-bit format PAR on address translation instruction.

AArch32.EncodePARSD(AddressDescriptor addrdesc_in, bit supersection, SecurityState ss)
AddressDescriptor addrdesc = addrdesc_in;
if !IsFault(addrdesc) then

if (addrdesc.memattrs.memtype == MemType_Device ||
(addrdesc.memattrs.inner.attrs == MemAttr_NC &&
addrdesc.memattrs.outer.attrs == MemAttr_NC)) then

addrdesc.memattrs.shareability = Shareability_OSH;
bit ns;
if ss == SS_NonSecure then

ns = bit UNKNOWN;
elsif addrdesc.paddress.paspace == PAS_Secure then

ns = '0';
else

ns = '1';
bits(2) sh = if addrdesc.memattrs.shareability != Shareability_NSH then '01' else '00';
PAR.F = '0';
PAR.SS = supersection;
PAR.Outer = AArch32.ReportedOuterAttrs(AArch32.PAROuterAttrs(addrdesc.memattrs));
PAR.Inner = AArch32.ReportedInnerAttrs(AArch32.PARInnerAttrs(addrdesc.memattrs));
PAR.SH = ReportedPARShareability(sh);
PAR<8> = bit IMPLEMENTATION_DEFINED "Non-Faulting PAR"; // IMPDEF
PAR.NS = ns;
PAR.NOS = if addrdesc.memattrs.shareability == Shareability_OSH then '0' else '1';
PAR.LPAE = '0';
PAR.PA = addrdesc.paddress.address<39:12>;

else
PAR.F = '1';
PAR.FST = AArch32.PARFaultStatusSD(addrdesc.fault);
PAR.LPAE = '0';
PAR<31:16> = bits(16) IMPLEMENTATION_DEFINED "Faulting PAR"; // IMPDEF

return;

Shared Pseudocode Functions Page 1411

Library pseudocode for aarch32/at/AArch32.PARFaultStatusLD

// AArch32.PARFaultStatusLD()
// ==========================
// Fault status field decoding of 64-bit PAR

bits(6) AArch32.PARFaultStatusLD(FaultRecord fault)
bits(6) syndrome;

if fault.statuscode == Fault_Domain then
// Report Domain fault
assert fault.level IN {1,2};
syndrome<1:0> = if fault.level == 1 then '01' else '10';
syndrome<5:2> = '1111';

else
syndrome = EncodeLDFSC(fault.statuscode, fault.level);

return syndrome;

Library pseudocode for aarch32/at/AArch32.PARFaultStatusSD

// AArch32.PARFaultStatusSD()
// ==========================
// Fault status field decoding of 32-bit PAR.

bits(6) AArch32.PARFaultStatusSD(FaultRecord fault)
bits(6) syndrome;

syndrome<5> = if IsExternalAbort(fault) then fault.extflag else '0';
syndrome<4:0> = EncodeSDFSC(fault.statuscode, fault.level);
return syndrome;

Library pseudocode for aarch32/at/AArch32.PARInnerAttrs

// AArch32.PARInnerAttrs()
// =======================
// Convert orthogonal attributes and hints to 32-bit PAR Inner field.

bits(3) AArch32.PARInnerAttrs(MemoryAttributes memattrs)
bits(3) result;

if memattrs.memtype == MemType_Device then
if memattrs.device == DeviceType_nGnRnE then

result = '001'; // Non-cacheable
elsif memattrs.device == DeviceType_nGnRE then

result = '011'; // Non-cacheable
else

MemAttrHints inner = memattrs.inner;
if inner.attrs == MemAttr_NC then

result = '000'; // Non-cacheable
elsif inner.attrs == MemAttr_WB && inner.hints<0> == '1' then

result = '101'; // Write-Back, Write-Allocate
elsif inner.attrs == MemAttr_WT then

result = '110'; // Write-Through
elsif inner.attrs == MemAttr_WB && inner.hints<0> == '0' then

result = '111'; // Write-Back, no Write-Allocate
return result;

Shared Pseudocode Functions Page 1412

Library pseudocode for aarch32/at/AArch32.PAROuterAttrs

// AArch32.PAROuterAttrs()
// =======================
// Convert orthogonal attributes and hints to 32-bit PAR Outer field.

bits(2) AArch32.PAROuterAttrs(MemoryAttributes memattrs)
bits(2) result;

if memattrs.memtype == MemType_Device then
result = bits(2) UNKNOWN;

else
MemAttrHints outer = memattrs.outer;
if outer.attrs == MemAttr_NC then

result = '00'; // Non-cacheable
elsif outer.attrs == MemAttr_WB && outer.hints<0> == '1' then

result = '01'; // Write-Back, Write-Allocate
elsif outer.attrs == MemAttr_WT && outer.hints<0> == '0' then

result = '10'; // Write-Through, no Write-Allocate
elsif outer.attrs == MemAttr_WB && outer.hints<0> == '0' then

result = '11'; // Write-Back, no Write-Allocate
return result;

Library pseudocode for aarch32/at/AArch32.ReportedInnerAttrs

// AArch32.ReportedInnerAttrs()
// ============================
// The value returned in this field can be the resulting attribute, as determined by any permitted
// implementation choices and any applicable configuration bits, instead of the value that appears
// in the translation table descriptor.

bits(3) AArch32.ReportedInnerAttrs(bits(3) attrs);

Library pseudocode for aarch32/at/AArch32.ReportedOuterAttrs

// AArch32.ReportedOuterAttrs()
// ============================
// The value returned in this field can be the resulting attribute, as determined by any permitted
// implementation choices and any applicable configuration bits, instead of the value that appears
// in the translation table descriptor.

bits(2) AArch32.ReportedOuterAttrs(bits(2) attrs);

Shared Pseudocode Functions Page 1413

Library pseudocode for aarch32/dc/AArch32.DC

Shared Pseudocode Functions Page 1414

// AArch32.DC()
// ============
// Perform Data Cache Operation.

AArch32.DC(bits(32) regval, CacheOp cacheop, CacheOpScope opscope)
CacheRecord cache;

cache.acctype = AccessType_DC;
cache.cacheop = cacheop;
cache.opscope = opscope;
cache.cachetype = CacheType_Data;
cache.security = SecurityStateAtEL(PSTATE.EL);

if opscope == CacheOpScope_SetWay then
cache.shareability = Shareability_NSH;
(cache.setnum, cache.waynum, cache.level) = DecodeSW(ZeroExtend(regval, 64),

CacheType_Data);

if (cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled() &&
((!ELUsingAArch32(EL2) && (HCR_EL2.SWIO == '1' || HCR_EL2.<DC,VM> != '00')) ||

(ELUsingAArch32(EL2) && (HCR.SWIO == '1' || HCR.<DC,VM> != '00')))) then
cache.cacheop = CacheOp_CleanInvalidate;

CACHE_OP(cache);
return;

if EL2Enabled() then
if PSTATE.EL IN {EL0, EL1} then

cache.is_vmid_valid = TRUE;
cache.vmid = VMID[];

else
cache.is_vmid_valid = FALSE;

else
cache.is_vmid_valid = FALSE;

if PSTATE.EL == EL0 then
cache.is_asid_valid = TRUE;
cache.asid = ASID[];

else
cache.is_asid_valid = FALSE;

need_translate = DCInstNeedsTranslation(opscope);
vaddress = regval;

size = 0; // by default no watchpoint address
if cacheop == CacheOp_Invalidate then

size = integer IMPLEMENTATION_DEFINED "Data Cache Invalidate Watchpoint Size";
assert size >= 4*(2^(UInt(CTR_EL0.DminLine))) && size <= 2048;
assert UInt(size<32:0> AND (size-1)<32:0>) == 0; // size is power of 2
vaddress = Align(regval, size);

cache.translated = need_translate;
cache.vaddress = ZeroExtend(vaddress, 64);

if need_translate then
boolean aligned = TRUE;
AccessDescriptor accdesc = CreateAccDescDC(cache);
AddressDescriptor memaddrdesc = AArch32.TranslateAddress(vaddress, accdesc, aligned, size);
if IsFault(memaddrdesc) then

AArch32.Abort(regval, memaddrdesc.fault);

cache.paddress = memaddrdesc.paddress;
if opscope == CacheOpScope_PoC then

cache.shareability = memaddrdesc.memattrs.shareability;
else

cache.shareability = Shareability_NSH;
else

cache.shareability = Shareability UNKNOWN;
cache.paddress = FullAddress UNKNOWN;

if (cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled() &&

Shared Pseudocode Functions Page 1415

((!ELUsingAArch32(EL2) && HCR_EL2.<DC,VM> != '00') ||
(ELUsingAArch32(EL2) && HCR.<DC,VM> != '00'))) then

cache.cacheop = CacheOp_CleanInvalidate;

CACHE_OP(cache);
return;

Library pseudocode for aarch32/debug/VCRMatch/AArch32.VCRMatch

// AArch32.VCRMatch()
// ==================

boolean AArch32.VCRMatch(bits(32) vaddress)

boolean match;
if UsingAArch32() && ELUsingAArch32(EL1) && PSTATE.EL != EL2 then

// Each bit position in this string corresponds to a bit in DBGVCR and an exception vector.
match_word = Zeros(32);

ss = CurrentSecurityState();
if vaddress<31:5> == ExcVectorBase()<31:5> then

if HaveEL(EL3) && ss == SS_NonSecure then
match_word<UInt(vaddress<4:2>) + 24> = '1'; // Non-secure vectors

else
match_word<UInt(vaddress<4:2>) + 0> = '1'; // Secure vectors (or no EL3)

if (HaveEL(EL3) && ELUsingAArch32(EL3) && vaddress<31:5> == MVBAR<31:5> &&
ss == SS_Secure) then
match_word<UInt(vaddress<4:2>) + 8> = '1'; // Monitor vectors

// Mask out bits not corresponding to vectors.
bits(32) mask;
if !HaveEL(EL3) then

mask = '00000000':'00000000':'00000000':'11011110'; // DBGVCR[31:8] are RES0
elsif !ELUsingAArch32(EL3) then

mask = '11011110':'00000000':'00000000':'11011110'; // DBGVCR[15:8] are RES0
else

mask = '11011110':'00000000':'11011100':'11011110';

match_word = match_word AND DBGVCR AND mask;
match = !IsZero(match_word);

// Check for UNPREDICTABLE case - match on Prefetch Abort and Data Abort vectors
if !IsZero(match_word<28:27,12:11,4:3>) && DebugTarget() == PSTATE.EL then

match = ConstrainUnpredictableBool(Unpredictable_VCMATCHDAPA);

if !IsZero(vaddress<1:0>) && match then
match = ConstrainUnpredictableBool(Unpredictable_VCMATCHHALF);

else
match = FALSE;

return match;

Library pseudocode for aarch32/debug/authentication/AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled

// AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
// ==

boolean AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled()
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled returns
// the state of the (DBGEN AND SPIDEN) signal.
if !HaveEL(EL3) && NonSecureOnlyImplementation() then return FALSE;
return DBGEN == Signal_High && SPIDEN == Signal_High;

Shared Pseudocode Functions Page 1416

Library pseudocode for aarch32/debug/breakpoint/AArch32.BreakpointMatch

// AArch32.BreakpointMatch()
// =========================
// Breakpoint matching in an AArch32 translation regime.

(boolean,boolean) AArch32.BreakpointMatch(integer n, bits(32) vaddress, AccessDescriptor accdesc,
integer size)

assert ELUsingAArch32(S1TranslationRegime());
assert n < NumBreakpointsImplemented();

enabled = DBGBCR[n].E == '1';
isbreakpnt = TRUE;
linked = DBGBCR[n].BT IN {'0x01'};
linked_to = FALSE;
linked_n = UInt(DBGBCR[n].LBN);

state_match = AArch32.StateMatch(DBGBCR[n].SSC, DBGBCR[n].HMC, DBGBCR[n].PMC,
linked, linked_n, isbreakpnt, accdesc);

(value_match, value_mismatch) = AArch32.BreakpointValueMatch(n, vaddress, linked_to);

if size == 4 then // Check second halfword
// If the breakpoint address and BAS of an Address breakpoint match the address of the
// second halfword of an instruction, but not the address of the first halfword, it is
// CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
// event.
(match_i, mismatch_i) = AArch32.BreakpointValueMatch(n, vaddress + 2, linked_to);

if !value_match && match_i then
value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);

if value_mismatch && !mismatch_i then
value_mismatch = ConstrainUnpredictableBool(Unpredictable_BPMISMATCHHALF);

if vaddress<1> == '1' && DBGBCR[n].BAS == '1111' then
// The above notwithstanding, if DBGBCR[n].BAS == '1111', then it is CONSTRAINED
// UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
// at the address DBGBVR[n]+2.
if value_match then

value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);

if !value_mismatch then
value_mismatch = ConstrainUnpredictableBool(Unpredictable_BPMISMATCHHALF);

match = value_match && state_match && enabled;
mismatch = value_mismatch && state_match && enabled;

return (match, mismatch);

Shared Pseudocode Functions Page 1417

Library pseudocode for aarch32/debug/breakpoint/AArch32.BreakpointValueMatch

Shared Pseudocode Functions Page 1418

// AArch32.BreakpointValueMatch()
// ==============================
// The first result is whether an Address Match or Context breakpoint is programmed on the
// instruction at "address". The second result is whether an Address Mismatch breakpoint is
// programmed on the instruction, that is, whether the instruction should be stepped.

(boolean, boolean) AArch32.BreakpointValueMatch(integer n_in, bits(32) vaddress, boolean linked_to)

// "n" is the identity of the breakpoint unit to match against.
// "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
// matching breakpoints.
// "linked_to" is TRUE if this is a call from StateMatch for linking.
integer n = n_in;
Constraint c;

// If a non-existent breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
// no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
if n >= NumBreakpointsImplemented() then

(c, n) = ConstrainUnpredictableInteger(0, NumBreakpointsImplemented() - 1,
Unpredictable_BPNOTIMPL);

assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then return (FALSE, FALSE);

// If this breakpoint is not enabled, it cannot generate a match.
// (This could also happen on a call from StateMatch for linking).
if DBGBCR[n].E == '0' then return (FALSE, FALSE);

dbgtype = DBGBCR[n].BT;

(c, dbgtype) = AArch32.ReservedBreakpointType(n, dbgtype);
if c == Constraint_DISABLED then return (FALSE, FALSE);
// Otherwise the dbgtype value returned by AArch32.ReservedBreakpointType is valid.

// Determine what to compare against.
match_addr = (dbgtype IN {'0x0x'});
mismatch = (dbgtype IN {'010x'});
match_vmid = (dbgtype IN {'10xx'});
match_cid1 = (dbgtype IN {'xx1x'});
match_cid2 = (dbgtype IN {'11xx'});
linking_enabled = (dbgtype IN {'xxx1'});

// If called from StateMatch, is is CONSTRAINED UNPREDICTABLE if the
// breakpoint is not programmed with linking enabled.
if linked_to && !linking_enabled then

if !ConstrainUnpredictableBool(Unpredictable_BPLINKINGDISABLED) then
return (FALSE, FALSE);

// If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
if !linked_to && linking_enabled && !match_addr then

return (FALSE, FALSE);

boolean bvr_match = FALSE;
boolean bxvr_match = FALSE;

// Do the comparison.
if match_addr then

integer byte = UInt(vaddress<1:0>);
assert byte IN {0,2}; // "vaddress" is halfword aligned

boolean byte_select_match = (DBGBCR[n].BAS<byte> == '1');
integer top = 31;
bvr_match = (vaddress<top:2> == DBGBVR[n]<top:2>) && byte_select_match;

elsif match_cid1 then
bvr_match = (PSTATE.EL != EL2 && CONTEXTIDR == DBGBVR[n]<31:0>);

if match_vmid then
bits(16) vmid;
bits(16) bvr_vmid;

Shared Pseudocode Functions Page 1419

if ELUsingAArch32(EL2) then
vmid = ZeroExtend(VTTBR.VMID, 16);
bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);

elsif !Have16bitVMID() || VTCR_EL2.VS == '0' then
vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
bvr_vmid = ZeroExtend(DBGBXVR[n]<7:0>, 16);

else
vmid = VTTBR_EL2.VMID;
bvr_vmid = DBGBXVR[n]<15:0>;

bxvr_match = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() && vmid == bvr_vmid);

elsif match_cid2 then
bxvr_match = (PSTATE.EL != EL3 && EL2Enabled() && !ELUsingAArch32(EL2) &&

DBGBXVR[n]<31:0> == CONTEXTIDR_EL2<31:0>);

bvr_match_valid = (match_addr || match_cid1);
bxvr_match_valid = (match_vmid || match_cid2);

match = (!bxvr_match_valid || bxvr_match) && (!bvr_match_valid || bvr_match);

return (match && !mismatch, !match && mismatch);

Library pseudocode for aarch32/debug/breakpoint/AArch32.ReservedBreakpointType

// AArch32.ReservedBreakpointType()
// ================================
// Checks if the given DBGBCR<n>.BT value is reserved and will generate Constrained Unpredictable
// behavior, otherwise returns Constraint_NONE.

(Constraint, bits(4)) AArch32.ReservedBreakpointType(integer n, bits(4) bt_in)
bits(4) bt = bt_in;
boolean reserved = FALSE;
context_aware = n >= (NumBreakpointsImplemented() - NumContextAwareBreakpointsImplemented());

// Address mismatch
if bt IN {'010x'} && HaltOnBreakpointOrWatchpoint() then

reserved = TRUE;

// Context matching
if !(bt IN {'0x0x'}) && !context_aware then

reserved = TRUE;

// EL2 extension
if bt IN {'1xxx'} && !HaveEL(EL2) then

reserved = TRUE;

// Context matching
if bt IN {'011x','11xx'} && !HaveVirtHostExt() && !HaveV82Debug() then

reserved = TRUE;

if reserved then
Constraint c;
(c, bt) = ConstrainUnpredictableBits(Unpredictable_RESBPTYPE, 4);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then

return (c, bits(4) UNKNOWN);
// Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

return (Constraint_NONE, bt);

Shared Pseudocode Functions Page 1420

Library pseudocode for aarch32/debug/breakpoint/AArch32.StateMatch

Shared Pseudocode Functions Page 1421

// AArch32.StateMatch()
// ====================
// Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

boolean AArch32.StateMatch(bits(2) ssc_in, bit hmc_in, bits(2) pxc_in, boolean linked_in,
integer linked_n_in, boolean isbreakpnt, AccessDescriptor accdesc)

// "ssc_in","hmc_in","pxc_in" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
// "linked_in" is TRUE if this is a linked breakpoint/watchpoint type.
// "linked_n_in" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.
// "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
// "accdesc" describes the properties of the access being matched.
bit hmc = hmc_in;
bits(2) ssc = ssc_in;
bits(2) pxc = pxc_in;
boolean linked = linked_in;
integer linked_n = linked_n_in;

// If parameters are set to a reserved type, behaves as either disabled or a defined type
Constraint c;
// SSCE value discarded as there is no SSCE bit in AArch32.
(c, ssc, -, hmc, pxc) = CheckValidStateMatch(ssc, '0', hmc, pxc, isbreakpnt);
if c == Constraint_DISABLED then return FALSE;
// Otherwise the hmc,ssc,pxc values are either valid or the values returned by
// CheckValidStateMatch are valid.

pl2_match = HaveEL(EL2) && ((hmc == '1' && (ssc:pxc != '1000')) || ssc == '11');
pl1_match = pxc<0> == '1';
pl0_match = pxc<1> == '1';
ssu_match = isbreakpnt && hmc == '0' && pxc == '00' && ssc != '11';

boolean priv_match;
if ssu_match then

priv_match = PSTATE.M IN {M32_User,M32_Svc,M32_System};
else

case accdesc.el of
when EL3 priv_match = pl1_match; // EL3 and EL1 are both PL1
when EL2 priv_match = pl2_match;
when EL1 priv_match = pl1_match;
when EL0 priv_match = pl0_match;

// Security state match
boolean ss_match;
case ssc of

when '00' ss_match = TRUE; // Both
when '01' ss_match = accdesc.ss == SS_NonSecure; // Non-secure only
when '10' ss_match = accdesc.ss == SS_Secure; // Secure only
when '11' ss_match = (hmc == '1' || accdesc.ss == SS_Secure); // HMC=1 -> Both,

// HMC=0 -> Secure only

boolean linked_match = FALSE;

if linked then
// "linked_n" must be an enabled context-aware breakpoint unit.
// If it is not context-aware then it is CONSTRAINED UNPREDICTABLE whether
// this gives no match, gives a match without linking, or linked_n is mapped to some
// UNKNOWN breakpoint that is context-aware.
if !IsContextMatchingBreakpoint(linked_n) then

(first_ctx_cmp, last_ctx_cmp) = ContextMatchingBreakpointRange();
(c, linked_n) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp,

Unpredictable_BPNOTCTXCMP);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};

case c of
when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE linked = FALSE; // No linking
// Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

vaddress = bits(32) UNKNOWN;
linked_to = TRUE;

Shared Pseudocode Functions Page 1422

(linked_match,-) = AArch32.BreakpointValueMatch(linked_n, vaddress, linked_to);

return priv_match && ss_match && (!linked || linked_match);

Library pseudocode for aarch32/debug/enables/AArch32.GenerateDebugExceptions

// AArch32.GenerateDebugExceptions()
// =================================

boolean AArch32.GenerateDebugExceptions()
ss = CurrentSecurityState();
return AArch32.GenerateDebugExceptionsFrom(PSTATE.EL, ss);

Library pseudocode for aarch32/debug/enables/AArch32.GenerateDebugExceptionsFrom

// AArch32.GenerateDebugExceptionsFrom()
// =====================================

boolean AArch32.GenerateDebugExceptionsFrom(bits(2) from_el, SecurityState from_state)

if !ELUsingAArch32(DebugTargetFrom(from_state)) then
mask = '0'; // No PSTATE.D in AArch32 state
return AArch64.GenerateDebugExceptionsFrom(from_el, from_state, mask);

if DBGOSLSR.OSLK == '1' || DoubleLockStatus() || Halted() then
return FALSE;

boolean enabled;
if HaveEL(EL3) && from_state == SS_Secure then

assert from_el != EL2; // Secure EL2 always uses AArch64
if IsSecureEL2Enabled() then

// Implies that EL3 and EL2 both using AArch64
enabled = MDCR_EL3.SDD == '0';

else
spd = if ELUsingAArch32(EL3) then SDCR.SPD else MDCR_EL3.SPD32;
if spd<1> == '1' then

enabled = spd<0> == '1';
else

// SPD == 0b01 is reserved, but behaves the same as 0b00.
enabled = AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled();

if from_el == EL0 then enabled = enabled || SDER.SUIDEN == '1';
else

enabled = from_el != EL2;

return enabled;

Library pseudocode for aarch32/debug/pmu/AArch32.ClearEventCounters

// AArch32.ClearEventCounters()
// ============================
// Zero all the event counters.

AArch32.ClearEventCounters()
if HaveAArch64() then

// Force the counter to be cleared as a 64-bit counter.
AArch64.ClearEventCounters();
return;

integer counters = AArch32.GetNumEventCountersAccessible();
if counters != 0 then

for idx = 0 to counters - 1
PMEVCNTR[idx] = Zeros(32);

Shared Pseudocode Functions Page 1423

Library pseudocode for aarch32/debug/pmu/AArch32.GetNumEventCountersAccessible

// AArch32.GetNumEventCountersAccessible()
// =======================================
// Return the number of event counters that can be accessed at the current Exception level.

integer AArch32.GetNumEventCountersAccessible()
integer n;
integer total_counters = GetNumEventCounters();
// Software can reserve some counters for EL2
if PSTATE.EL IN {EL1, EL0} && EL2Enabled() then

n = UInt(if !ELUsingAArch32(EL2) then MDCR_EL2.HPMN else HDCR.HPMN);
if n > total_counters || (!HaveFeatHPMN0() && n == 0) then

(-, n) = ConstrainUnpredictableInteger(0, total_counters,
Unpredictable_PMUEVENTCOUNTER);

else
n = total_counters;

return n;

Library pseudocode for aarch32/debug/pmu/AArch32.IncrementCycleCounter

// AArch32.IncrementCycleCounter()
// ===============================
// Increment the cycle counter and possibly set overflow bits.

AArch32.IncrementCycleCounter()
if !CountPMUEvents(CYCLE_COUNTER_ID) then return;
bit d = PMCR.D; // Check divide-by-64
bit lc = PMCR.LC;
// Effective value of 'D' bit is 0 when Effective value of LC is '1'
if lc == '1' then d = '0';
if d == '1' && !HasElapsed64Cycles() then return;

integer old_value = UInt(PMCCNTR);
integer new_value = old_value + 1;
PMCCNTR = new_value<63:0>;

integer ovflw = if lc == '1' then 64 else 32;

if old_value<64:ovflw> != new_value<64:ovflw> then
PMOVSSET.C = '1';
PMOVSR.C = '1';

return;

Shared Pseudocode Functions Page 1424

Library pseudocode for aarch32/debug/pmu/AArch32.IncrementEventCounter

// AArch32.IncrementEventCounter()
// ===============================
// Increment the specified event counter by the specified amount.

AArch32.IncrementEventCounter(integer idx, integer increment)
if HaveAArch64() then

// Force the counter to be incremented as a 64-bit counter.
AArch64.IncrementEventCounter(idx, increment);
return;

// In this model, event counters in an AArch32-only implementation are 32 bits and
// the LP bits are RES0 in this model, even if FEAT_PMUv3p5 is implemented.
integer old_value;
integer new_value;
integer ovflw;

old_value = UInt(PMEVCNTR[idx]);
new_value = old_value + PMUCountValue(idx, increment);

PMEVCNTR[idx] = new_value<31:0>;
ovflw = 32;

if old_value<64:ovflw> != new_value<64:ovflw> then
PMOVSSET<idx> = '1';
PMOVSR<idx> = '1';
// Check for the CHAIN event from an even counter
if idx<0> == '0' && idx + 1 < GetNumEventCounters() then

PMUEvent(PMU_EVENT_CHAIN, 1, idx + 1);

return;

Library pseudocode for aarch32/debug/pmu/AArch32.PMUCycle

// AArch32.PMUCycle()
// ==================
// Called at the end of each cycle to increment event counters and
// check for PMU overflow. In pseudocode, a cycle ends after the
// execution of the operational pseudocode.

AArch32.PMUCycle()
if HaveAArch64() then

AArch64.PMUCycle();
return;

if !HavePMUv3() then
return;

PMUEvent(PMU_EVENT_CPU_CYCLES);

integer counters = GetNumEventCounters();
if counters != 0 then

for idx = 0 to counters - 1
if CountPMUEvents(idx) then

integer accumulated = PMUEventAccumulator[idx];
AArch32.IncrementEventCounter(idx, accumulated);

PMUEventAccumulator[idx] = 0;
AArch32.IncrementCycleCounter();
CheckForPMUOverflow();

Shared Pseudocode Functions Page 1425

Library pseudocode for aarch32/debug/pmu/AArch32.PMUSwIncrement

// AArch32.PMUSwIncrement()
// ========================
// Generate PMU Events on a write to PMSWINC.

AArch32.PMUSwIncrement(bits(32) sw_incr)
integer counters = AArch32.GetNumEventCountersAccessible();
if counters != 0 then

for idx = 0 to counters - 1
if sw_incr<idx> == '1' then

PMUEvent(PMU_EVENT_SW_INCR, 1, idx);

Library pseudocode for aarch32/debug/takeexceptiondbg/AArch32.EnterHypModeInDebugState

// AArch32.EnterHypModeInDebugState()
// ==================================
// Take an exception in Debug state to Hyp mode.

AArch32.EnterHypModeInDebugState(ExceptionRecord except)
SynchronizeContext();
assert HaveEL(EL2) && CurrentSecurityState() == SS_NonSecure && ELUsingAArch32(EL2);

AArch32.ReportHypEntry(except);
AArch32.WriteMode(M32_Hyp);
SPSR_curr[] = bits(32) UNKNOWN;
ELR_hyp = bits(32) UNKNOWN;
// In Debug state, the PE always execute T32 instructions when in AArch32 state, and
// PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
PSTATE.T = '1'; // PSTATE.J is RES0
PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
if Havev8p9Debug() then

DSPSR2 = bits(32) UNKNOWN;
PSTATE.E = HSCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
EDSCR.ERR = '1';
UpdateEDSCRFields();

EndOfInstruction();

Shared Pseudocode Functions Page 1426

Library pseudocode for aarch32/debug/takeexceptiondbg/AArch32.EnterModeInDebugState

// AArch32.EnterModeInDebugState()
// ===============================
// Take an exception in Debug state to a mode other than Monitor and Hyp mode.

AArch32.EnterModeInDebugState(bits(5) target_mode)
SynchronizeContext();
assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(target_mode);
SPSR_curr[] = bits(32) UNKNOWN;
R[14] = bits(32) UNKNOWN;
// In Debug state, the PE always execute T32 instructions when in AArch32 state, and
// PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
PSTATE.T = '1'; // PSTATE.J is RES0
PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
if Havev8p9Debug() then

DSPSR2 = bits(32) UNKNOWN;
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
EDSCR.ERR = '1';
UpdateEDSCRFields(); // Update EDSCR processor state flags.

EndOfInstruction();

Library pseudocode for aarch32/debug/takeexceptiondbg/AArch32.EnterMonitorModeInDebugState

// AArch32.EnterMonitorModeInDebugState()
// ======================================
// Take an exception in Debug state to Monitor mode.

AArch32.EnterMonitorModeInDebugState()
SynchronizeContext();
assert HaveEL(EL3) && ELUsingAArch32(EL3);
from_secure = CurrentSecurityState() == SS_Secure;
if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(M32_Monitor);
SPSR_curr[] = bits(32) UNKNOWN;
R[14] = bits(32) UNKNOWN;
// In Debug state, the PE always execute T32 instructions when in AArch32 state, and
// PSTATE.{SS,A,I,F} are not observable so behave as UNKNOWN.
PSTATE.T = '1'; // PSTATE.J is RES0
PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() then

if !from_secure then
PSTATE.PAN = '0';

elsif SCTLR.SPAN == '0' then
PSTATE.PAN = '1';

if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
if Havev8p9Debug() then

DSPSR2 = bits(32) UNKNOWN;
EDSCR.ERR = '1';
UpdateEDSCRFields(); // Update EDSCR processor state flags.

EndOfInstruction();

Shared Pseudocode Functions Page 1427

Library pseudocode for aarch32/debug/watchpoint/AArch32.WatchpointByteMatch

// AArch32.WatchpointByteMatch()
// =============================

boolean AArch32.WatchpointByteMatch(integer n, bits(32) vaddress)
integer top = 31;
bottom = if DBGWVR[n]<2> == '1' then 2 else 3; // Word or doubleword
byte_select_match = (DBGWCR[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');
mask = UInt(DBGWCR[n].MASK);

// If DBGWCR[n].MASK is a nonzero value and DBGWCR[n].BAS is not set to '11111111', or
// DBGWCR[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
// UNPREDICTABLE.
if mask > 0 && !IsOnes(DBGWCR[n].BAS) then

byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPMASKANDBAS);
else

LSB = (DBGWCR[n].BAS AND NOT(DBGWCR[n].BAS - 1)); MSB = (DBGWCR[n].BAS + LSB);
if !IsZero(MSB AND (MSB - 1)) then // Not contiguous

byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPBASCONTIGUOUS);
bottom = 3; // For the whole doubleword

// If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
if mask > 0 && mask <= 2 then

Constraint c;
(c, mask) = ConstrainUnpredictableInteger(3, 31, Unpredictable_RESWPMASK);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
case c of

when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE mask = 0; // No masking
// Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

boolean WVR_match;
if mask > bottom then

WVR_match = (vaddress<top:mask> == DBGWVR[n]<top:mask>);
// If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
if WVR_match && !IsZero(DBGWVR[n]<mask-1:bottom>) then

WVR_match = ConstrainUnpredictableBool(Unpredictable_WPMASKEDBITS);
else

WVR_match = vaddress<top:bottom> == DBGWVR[n]<top:bottom>;

return (WVR_match && byte_select_match);

Shared Pseudocode Functions Page 1428

Library pseudocode for aarch32/debug/watchpoint/AArch32.WatchpointMatch

// AArch32.WatchpointMatch()
// =========================
// Watchpoint matching in an AArch32 translation regime.

boolean AArch32.WatchpointMatch(integer n, bits(32) vaddress, integer size,
AccessDescriptor accdesc)

assert ELUsingAArch32(S1TranslationRegime());
assert n < NumWatchpointsImplemented();

boolean enabled = DBGWCR[n].E == '1';
linked = DBGWCR[n].WT == '1';
isbreakpnt = FALSE;
linked_n = UInt(DBGWCR_EL1[n].LBN);
state_match = AArch32.StateMatch(DBGWCR[n].SSC, DBGWCR[n].HMC, DBGWCR[n].PAC,

linked, linked_n, isbreakpnt, accdesc);

boolean ls_match;
case DBGWCR[n].LSC<1:0> of

when '00' ls_match = FALSE;
when '01' ls_match = accdesc.read;
when '10' ls_match = accdesc.write || accdesc.acctype == AccessType_DC;
when '11' ls_match = TRUE;

boolean value_match = FALSE;
for byte = 0 to size - 1

value_match = value_match || AArch32.WatchpointByteMatch(n, vaddress + byte);

return value_match && state_match && ls_match && enabled;

Library pseudocode for aarch32/exceptions/aborts/AArch32.Abort

// AArch32.Abort()
// ===============
// Abort and Debug exception handling in an AArch32 translation regime.

AArch32.Abort(bits(32) vaddress, FaultRecord fault)

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
route_to_aarch64 = (HCR_EL2.TGE == '1' || IsSecondStage(fault) ||

(HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault)) ||
(IsDebugException(fault) && MDCR_EL2.TDE == '1'));

if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
route_to_aarch64 = EffectiveEA() == '1' && IsExternalAbort(fault);

if route_to_aarch64 then
AArch64.Abort(ZeroExtend(vaddress, 64), fault);

elsif fault.accessdesc.acctype == AccessType_IFETCH then
AArch32.TakePrefetchAbortException(vaddress, fault);

else
AArch32.TakeDataAbortException(vaddress, fault);

Shared Pseudocode Functions Page 1429

Library pseudocode for aarch32/exceptions/aborts/AArch32.AbortSyndrome

// AArch32.AbortSyndrome()
// =======================
// Creates an exception syndrome record for Abort exceptions
// taken to Hyp mode
// from an AArch32 translation regime.

ExceptionRecord AArch32.AbortSyndrome(Exception exceptype, FaultRecord fault,
bits(32) vaddress, bits(2) target_el)

except = ExceptionSyndrome(exceptype);

except.syndrome = AArch32.FaultSyndrome(exceptype, fault);
except.vaddress = ZeroExtend(vaddress, 64);

if IPAValid(fault) then
except.ipavalid = TRUE;
except.NS = if fault.ipaddress.paspace == PAS_NonSecure then '1' else '0';
except.ipaddress = ZeroExtend(fault.ipaddress.address, 56);

else
except.ipavalid = FALSE;

return except;

Library pseudocode for aarch32/exceptions/aborts/AArch32.CheckPCAlignment

// AArch32.CheckPCAlignment()
// ==========================

AArch32.CheckPCAlignment()
bits(32) pc = ThisInstrAddr(32);

if (CurrentInstrSet() == InstrSet_A32 && pc<1> == '1') || pc<0> == '1' then
if AArch32.GeneralExceptionsToAArch64() then AArch64.PCAlignmentFault();

AccessDescriptor accdesc = CreateAccDescIFetch();
FaultRecord fault = NoFault(accdesc);
// Generate an Alignment fault Prefetch Abort exception
fault.statuscode = Fault_Alignment;
AArch32.Abort(pc, fault);

Library pseudocode for aarch32/exceptions/aborts/AArch32.CommonFaultStatus

// AArch32.CommonFaultStatus()
// ===========================
// Return the common part of the fault status on reporting a Data
// or Prefetch Abort.

bits(32) AArch32.CommonFaultStatus(FaultRecord fault, boolean long_format)
bits(32) target = Zeros(32);
if HaveRASExt() && IsAsyncAbort(fault) then

ErrorState errstate = AArch32.PEErrorState(fault);
target<15:14> = AArch32.EncodeAsyncErrorSyndrome(errstate); // AET

if IsExternalAbort(fault) then target<12> = fault.extflag; // ExT
target<9> = if long_format then '1' else '0'; // LPAE
if long_format then // Long-descriptor format

target<5:0> = EncodeLDFSC(fault.statuscode, fault.level); // STATUS
else // Short-descriptor format

target<10,3:0> = EncodeSDFSC(fault.statuscode, fault.level); // FS
return target;

Shared Pseudocode Functions Page 1430

Library pseudocode for aarch32/exceptions/aborts/AArch32.ReportDataAbort

// AArch32.ReportDataAbort()
// =========================
// Report syndrome information for aborts taken to modes other than Hyp mode.

AArch32.ReportDataAbort(boolean route_to_monitor, FaultRecord fault,
bits(32) vaddress)

boolean long_format;
if route_to_monitor && CurrentSecurityState() != SS_Secure then

long_format = ((TTBCR_S.EAE == '1') ||
(IsExternalSyncAbort(fault) && ((PSTATE.EL == EL2 || TTBCR.EAE == '1') ||
(fault.secondstage && (boolean IMPLEMENTATION_DEFINED

"Report abort using Long-descriptor format")))));
else

long_format = TTBCR.EAE == '1';
bits(32) syndrome = AArch32.CommonFaultStatus(fault, long_format);

// bits of syndrome that are not common to I and D side
if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then

syndrome<13> = '1'; // CM
syndrome<11> = '1'; // WnR

else
syndrome<11> = if fault.write then '1' else '0'; // WnR

if !long_format then
syndrome<7:4> = fault.domain; // Domain

if fault.accessdesc.acctype == AccessType_IC then
bits(32) i_syndrome;
if (!long_format &&

boolean IMPLEMENTATION_DEFINED "Report I-cache maintenance fault in IFSR") then
i_syndrome = syndrome;
syndrome<10,3:0> = EncodeSDFSC(Fault_ICacheMaint, 1);

else
i_syndrome = bits(32) UNKNOWN;

if route_to_monitor then
IFSR_S = i_syndrome;

else
IFSR = i_syndrome;

if route_to_monitor then
DFSR_S = syndrome;
DFAR_S = vaddress;

else
DFSR = syndrome;
DFAR = vaddress;

return;

Shared Pseudocode Functions Page 1431

Library pseudocode for aarch32/exceptions/aborts/AArch32.ReportPrefetchAbort

// AArch32.ReportPrefetchAbort()
// =============================
// Report syndrome information for aborts taken to modes other than Hyp mode.

AArch32.ReportPrefetchAbort(boolean route_to_monitor, FaultRecord fault, bits(32) vaddress)
// The encoding used in the IFSR can be Long-descriptor format or Short-descriptor format.
// Normally, the current translation table format determines the format. For an abort from
// Non-secure state to Monitor mode, the IFSR uses the Long-descriptor format if any of the
// following applies:
// * The Secure TTBCR.EAE is set to 1.
// * It is taken from Hyp mode.
// * It is taken from EL1 or EL0, and the Non-secure TTBCR.EAE is set to 1.
long_format = FALSE;
if route_to_monitor && CurrentSecurityState() != SS_Secure then

long_format = TTBCR_S.EAE == '1' || PSTATE.EL == EL2 || TTBCR.EAE == '1';
else

long_format = TTBCR.EAE == '1';

bits(32) fsr = AArch32.CommonFaultStatus(fault, long_format);

if route_to_monitor then
IFSR_S = fsr;
IFAR_S = vaddress;

else
IFSR = fsr;
IFAR = vaddress;

return;

Library pseudocode for aarch32/exceptions/aborts/AArch32.TakeDataAbortException

// AArch32.TakeDataAbortException()
// ================================

AArch32.TakeDataAbortException(bits(32) vaddress, FaultRecord fault)
route_to_monitor = HaveEL(EL3) && EffectiveEA() == '1' && IsExternalAbort(fault);
route_to_hyp = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&

(HCR.TGE == '1' ||
(HaveRASExt() && HCR2.TEA == '1' && IsExternalAbort(fault)) ||
(IsDebugException(fault) && HDCR.TDE == '1') ||
IsSecondStage(fault)));

bits(32) preferred_exception_return = ThisInstrAddr(32);
vect_offset = 0x10;
lr_offset = 8;

if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;
if route_to_monitor then

AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

elsif PSTATE.EL == EL2 || route_to_hyp then
except = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress, EL2);
if PSTATE.EL == EL2 then

AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);
else

AArch32.EnterHypMode(except, preferred_exception_return, 0x14);
else

AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 1432

Library pseudocode for aarch32/exceptions/aborts/AArch32.TakePrefetchAbortException

// AArch32.TakePrefetchAbortException()
// ====================================

AArch32.TakePrefetchAbortException(bits(32) vaddress, FaultRecord fault)
route_to_monitor = HaveEL(EL3) && EffectiveEA() == '1' && IsExternalAbort(fault);

route_to_hyp = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&
(HCR.TGE == '1' ||
(HaveRASExt() && HCR2.TEA == '1' && IsExternalAbort(fault)) ||
(IsDebugException(fault) && HDCR.TDE == '1') ||
IsSecondStage(fault)));

ExceptionRecord except;
bits(32) preferred_exception_return = ThisInstrAddr(32);
vect_offset = 0x0C;
lr_offset = 4;

if IsDebugException(fault) then DBGDSCRext.MOE = fault.debugmoe;
if route_to_monitor then

AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

elsif PSTATE.EL == EL2 || route_to_hyp then
if fault.statuscode == Fault_Alignment then // PC Alignment fault

except = ExceptionSyndrome(Exception_PCAlignment);
except.vaddress = ThisInstrAddr(64);

else
except = AArch32.AbortSyndrome(Exception_InstructionAbort, fault, vaddress, EL2);

if PSTATE.EL == EL2 then
AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);

else
AArch32.EnterHypMode(except, preferred_exception_return, 0x14);

else
AArch32.ReportPrefetchAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/async/AArch32.TakePhysicalFIQException

// AArch32.TakePhysicalFIQException()
// ==================================

AArch32.TakePhysicalFIQException()

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then

route_to_aarch64 = HCR_EL2.TGE == '1' || (HCR_EL2.FMO == '1' && !IsInHost());

if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
route_to_aarch64 = SCR_EL3.FIQ == '1';

if route_to_aarch64 then AArch64.TakePhysicalFIQException();
route_to_monitor = HaveEL(EL3) && SCR.FIQ == '1';
route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR.TGE == '1' || HCR.FMO == '1'));
bits(32) preferred_exception_return = ThisInstrAddr(32);
vect_offset = 0x1C;
lr_offset = 4;
if route_to_monitor then

AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
elsif PSTATE.EL == EL2 || route_to_hyp then

except = ExceptionSyndrome(Exception_FIQ);
AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);

else
AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 1433

Library pseudocode for aarch32/exceptions/async/AArch32.TakePhysicalIRQException

// AArch32.TakePhysicalIRQException()
// ==================================
// Take an enabled physical IRQ exception.

AArch32.TakePhysicalIRQException()

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then

route_to_aarch64 = HCR_EL2.TGE == '1' || (HCR_EL2.IMO == '1' && !IsInHost());
if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then

route_to_aarch64 = SCR_EL3.IRQ == '1';

if route_to_aarch64 then AArch64.TakePhysicalIRQException();

route_to_monitor = HaveEL(EL3) && SCR.IRQ == '1';
route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR.TGE == '1' || HCR.IMO == '1'));
bits(32) preferred_exception_return = ThisInstrAddr(32);
vect_offset = 0x18;
lr_offset = 4;
if route_to_monitor then

AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);
elsif PSTATE.EL == EL2 || route_to_hyp then

except = ExceptionSyndrome(Exception_IRQ);
AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);

else
AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 1434

Library pseudocode for aarch32/exceptions/async/AArch32.TakePhysicalSErrorException

// AArch32.TakePhysicalSErrorException()
// =====================================

AArch32.TakePhysicalSErrorException(boolean implicit_esb)
// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
route_to_aarch64 = (HCR_EL2.TGE == '1' || (!IsInHost() && HCR_EL2.AMO == '1'));

if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
route_to_aarch64 = EffectiveEA() == '1';

if route_to_aarch64 then
AArch64.TakePhysicalSErrorException(implicit_esb);

route_to_monitor = HaveEL(EL3) && SCR.EA == '1';
route_to_hyp = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR.TGE == '1' || HCR.AMO == '1'));
bits(32) preferred_exception_return = ThisInstrAddr(32);
vect_offset = 0x10;
lr_offset = 8;

bits(2) target_el;
if route_to_monitor then

target_el = EL3;
elsif PSTATE.EL == EL2 || route_to_hyp then

target_el = EL2;
else

target_el = EL1;

FaultRecord fault = GetPendingPhysicalSError();
vaddress = bits(32) UNKNOWN;
except = AArch32.AbortSyndrome(Exception_DataAbort, fault, vaddress, target_el);

if IsSErrorEdgeTriggered() then
ClearPendingPhysicalSError();

case target_el of
when EL3

AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

when EL2
if PSTATE.EL == EL2 then

AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);
else

AArch32.EnterHypMode(except, preferred_exception_return, 0x14);
when EL1

AArch32.ReportDataAbort(route_to_monitor, fault, vaddress);
AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

otherwise
Unreachable();

Shared Pseudocode Functions Page 1435

Library pseudocode for aarch32/exceptions/async/AArch32.TakeVirtualFIQException

// AArch32.TakeVirtualFIQException()
// =================================

AArch32.TakeVirtualFIQException()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
if ELUsingAArch32(EL2) then // Virtual IRQ enabled if TGE==0 and FMO==1

assert HCR.TGE == '0' && HCR.FMO == '1';
else

assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1';
// Check if routed to AArch64 state
if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualFIQException();

bits(32) preferred_exception_return = ThisInstrAddr(32);
vect_offset = 0x1C;
lr_offset = 4;

AArch32.EnterMode(M32_FIQ, preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/async/AArch32.TakeVirtualIRQException

// AArch32.TakeVirtualIRQException()
// =================================

AArch32.TakeVirtualIRQException()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

if ELUsingAArch32(EL2) then // Virtual IRQs enabled if TGE==0 and IMO==1
assert HCR.TGE == '0' && HCR.IMO == '1';

else
assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1';

// Check if routed to AArch64 state
if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualIRQException();

bits(32) preferred_exception_return = ThisInstrAddr(32);
vect_offset = 0x18;
lr_offset = 4;

AArch32.EnterMode(M32_IRQ, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 1436

Library pseudocode for aarch32/exceptions/async/AArch32.TakeVirtualSErrorException

// AArch32.TakeVirtualSErrorException()
// ====================================

AArch32.TakeVirtualSErrorException()

assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
if ELUsingAArch32(EL2) then // Virtual SError enabled if TGE==0 and AMO==1

assert HCR.TGE == '0' && HCR.AMO == '1';
else

assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
// Check if routed to AArch64 state
if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then AArch64.TakeVirtualSErrorException();
route_to_monitor = FALSE;

bits(32) preferred_exception_return = ThisInstrAddr(32);
vect_offset = 0x10;
lr_offset = 8;

vaddress = bits(32) UNKNOWN;
parity = FALSE;
Fault fault = Fault_AsyncExternal;
integer level = integer UNKNOWN;
bits(32) fsr = Zeros(32);
if HaveRASExt() then

if ELUsingAArch32(EL2) then
fsr<15:14> = VDFSR.AET;
fsr<12> = VDFSR.ExT;

else
fsr<15:14> = VSESR_EL2.AET;
fsr<12> = VSESR_EL2.ExT;

else
fsr<12> = bit IMPLEMENTATION_DEFINED "Virtual External abort type";

if TTBCR.EAE == '1' then // Long-descriptor format
fsr<9> = '1';
fsr<5:0> = EncodeLDFSC(fault, level);

else // Short-descriptor format
fsr<9> = '0';
fsr<10,3:0> = EncodeSDFSC(fault, level);

DFSR = fsr;
DFAR = bits(32) UNKNOWN;
ClearPendingVirtualSError();
AArch32.EnterMode(M32_Abort, preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/debug/AArch32.SoftwareBreakpoint

// AArch32.SoftwareBreakpoint()
// ============================

AArch32.SoftwareBreakpoint(bits(16) immediate)

if (EL2Enabled() && !ELUsingAArch32(EL2) &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1')) || !ELUsingAArch32(EL1) then
AArch64.SoftwareBreakpoint(immediate);

accdesc = CreateAccDescIFetch();
fault = NoFault(accdesc);
vaddress = bits(32) UNKNOWN;

fault.statuscode = Fault_Debug;
fault.debugmoe = DebugException_BKPT;

AArch32.Abort(vaddress, fault);

Shared Pseudocode Functions Page 1437

Library pseudocode for aarch32/exceptions/debug/DebugException

constant bits(4) DebugException_Breakpoint = '0001';
constant bits(4) DebugException_BKPT = '0011';
constant bits(4) DebugException_VectorCatch = '0101';
constant bits(4) DebugException_Watchpoint = '1010';

Library pseudocode for aarch32/exceptions/exceptions/AArch32.CheckAdvSIMDOrFPRegisterTraps

// AArch32.CheckAdvSIMDOrFPRegisterTraps()
// =======================================
// Check if an instruction that accesses an Advanced SIMD and
// floating-point System register is trapped by an appropriate HCR.TIDx
// ID group trap control.

AArch32.CheckAdvSIMDOrFPRegisterTraps(bits(4) reg)

if PSTATE.EL == EL1 && EL2Enabled() then
tid0 = if ELUsingAArch32(EL2) then HCR.TID0 else HCR_EL2.TID0;
tid3 = if ELUsingAArch32(EL2) then HCR.TID3 else HCR_EL2.TID3;

if ((tid0 == '1' && reg == '0000') || // FPSID
(tid3 == '1' && reg IN {'0101', '0110', '0111'})) then // MVFRx

if ELUsingAArch32(EL2) then
AArch32.SystemAccessTrap(M32_Hyp, 0x8);

else
AArch64.AArch32SystemAccessTrap(EL2, 0x8);

Shared Pseudocode Functions Page 1438

Library pseudocode for aarch32/exceptions/exceptions/AArch32.ExceptionClass

// AArch32.ExceptionClass()
// ========================
// Returns the Exception Class and Instruction Length fields to be reported in HSR

(integer,bit) AArch32.ExceptionClass(Exception exceptype)

il_is_valid = TRUE;
integer ec;
case exceptype of

when Exception_Uncategorized ec = 0x00; il_is_valid = FALSE;
when Exception_WFxTrap ec = 0x01;
when Exception_CP15RTTrap ec = 0x03;
when Exception_CP15RRTTrap ec = 0x04;
when Exception_CP14RTTrap ec = 0x05;
when Exception_CP14DTTrap ec = 0x06;
when Exception_AdvSIMDFPAccessTrap ec = 0x07;
when Exception_FPIDTrap ec = 0x08;
when Exception_PACTrap ec = 0x09;
when Exception_TSTARTAccessTrap ec = 0x1B;
when Exception_GPC ec = 0x1E;
when Exception_CP14RRTTrap ec = 0x0C;
when Exception_BranchTarget ec = 0x0D;
when Exception_IllegalState ec = 0x0E; il_is_valid = FALSE;
when Exception_SupervisorCall ec = 0x11;
when Exception_HypervisorCall ec = 0x12;
when Exception_MonitorCall ec = 0x13;
when Exception_InstructionAbort ec = 0x20; il_is_valid = FALSE;
when Exception_PCAlignment ec = 0x22; il_is_valid = FALSE;
when Exception_DataAbort ec = 0x24;
when Exception_NV2DataAbort ec = 0x25;
when Exception_FPTrappedException ec = 0x28;
when Exception_PMU ec = 0x3D;
otherwise Unreachable();

if ec IN {0x20,0x24} && PSTATE.EL == EL2 then
ec = ec + 1;

bit il;
if il_is_valid then

il = if ThisInstrLength() == 32 then '1' else '0';
else

il = '1';

return (ec,il);

Library pseudocode for aarch32/exceptions/exceptions/AArch32.GeneralExceptionsToAArch64

// AArch32.GeneralExceptionsToAArch64()
// ====================================
// Returns TRUE if exceptions normally routed to EL1 are being handled at an Exception
// level using AArch64, because either EL1 is using AArch64 or TGE is in force and EL2
// is using AArch64.

boolean AArch32.GeneralExceptionsToAArch64()
return ((PSTATE.EL == EL0 && !ELUsingAArch32(EL1)) ||

(EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1'));

Shared Pseudocode Functions Page 1439

Library pseudocode for aarch32/exceptions/exceptions/AArch32.ReportHypEntry

// AArch32.ReportHypEntry()
// ========================
// Report syndrome information to Hyp mode registers.

AArch32.ReportHypEntry(ExceptionRecord except)

Exception exceptype = except.exceptype;

(ec,il) = AArch32.ExceptionClass(exceptype);
iss = except.syndrome;
iss2 = except.syndrome2;

// IL is not valid for Data Abort exceptions without valid instruction syndrome information
if ec IN {0x24,0x25} && iss<24> == '0' then

il = '1';

HSR = ec<5:0>:il:iss;

if exceptype IN {Exception_InstructionAbort, Exception_PCAlignment} then
HIFAR = except.vaddress<31:0>;
HDFAR = bits(32) UNKNOWN;

elsif exceptype == Exception_DataAbort then
HIFAR = bits(32) UNKNOWN;
HDFAR = except.vaddress<31:0>;

if except.ipavalid then
HPFAR<31:4> = except.ipaddress<39:12>;

else
HPFAR<31:4> = bits(28) UNKNOWN;

return;

Library pseudocode for aarch32/exceptions/exceptions/AArch32.ResetControlRegisters

// AArch32.ResetControlRegisters()
// ===============================
// Resets System registers and memory-mapped control registers that have architecturally-defined
// reset values to those values.

AArch32.ResetControlRegisters(boolean cold_reset);

Shared Pseudocode Functions Page 1440

Library pseudocode for aarch32/exceptions/exceptions/AArch32.TakeReset

// AArch32.TakeReset()
// ===================
// Reset into AArch32 state

AArch32.TakeReset(boolean cold_reset)
assert !HaveAArch64();

// Enter the highest implemented Exception level in AArch32 state
if HaveEL(EL3) then

AArch32.WriteMode(M32_Svc);
SCR.NS = '0'; // Secure state

elsif HaveEL(EL2) then
AArch32.WriteMode(M32_Hyp);

else
AArch32.WriteMode(M32_Svc);

// Reset System registers in the coproc=0b111x encoding space
// and other system components
AArch32.ResetControlRegisters(cold_reset);
FPEXC.EN = '0';

// Reset all other PSTATE fields, including instruction set and endianness according to the
// SCTLR values produced by the above call to ResetControlRegisters()
PSTATE.<A,I,F> = '111'; // All asynchronous exceptions masked
PSTATE.IT = '00000000'; // IT block state reset
if HaveEL(EL2) && !HaveEL(EL3) then

PSTATE.T = HSCTLR.TE; // Instruction set: TE=0:A32, TE=1:T32. PSTATE.J is RES0.
PSTATE.E = HSCTLR.EE; // Endianness: EE=0: little-endian, EE=1: big-endian.

else
PSTATE.T = SCTLR.TE; // Instruction set: TE=0:A32, TE=1:T32. PSTATE.J is RES0.
PSTATE.E = SCTLR.EE; // Endianness: EE=0: little-endian, EE=1: big-endian.

PSTATE.IL = '0'; // Clear Illegal Execution state bit

// All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
// below are UNKNOWN bitstrings after reset. In particular, the return information registers
// R14 or ELR_hyp and SPSR have UNKNOWN values, so that it
// is impossible to return from a reset in an architecturally defined way.
AArch32.ResetGeneralRegisters();
AArch32.ResetSIMDFPRegisters();
AArch32.ResetSpecialRegisters();
ResetExternalDebugRegisters(cold_reset);

bits(32) rv; // IMPLEMENTATION DEFINED reset vector

if HaveEL(EL3) then
if MVBAR<0> == '1' then // Reset vector in MVBAR

rv = MVBAR<31:1>:'0';
else

rv = bits(32) IMPLEMENTATION_DEFINED "reset vector address";
else

rv = RVBAR<31:1>:'0';

// The reset vector must be correctly aligned
assert rv<0> == '0' && (PSTATE.T == '1' || rv<1> == '0');

boolean branch_conditional = FALSE;
EDPRSR.R = '0'; // Leaving Reset State.
BranchTo(rv, BranchType_RESET, branch_conditional);

Shared Pseudocode Functions Page 1441

Library pseudocode for aarch32/exceptions/exceptions/ExcVectorBase

// ExcVectorBase()
// ===============

bits(32) ExcVectorBase()
if SCTLR.V == '1' then // Hivecs selected, base = 0xFFFF0000

return Ones(16):Zeros(16);
else

return VBAR<31:5>:Zeros(5);

Library pseudocode for aarch32/exceptions/ieeefp/AArch32.FPTrappedException

// AArch32.FPTrappedException()
// ============================

AArch32.FPTrappedException(bits(8) accumulated_exceptions)
if AArch32.GeneralExceptionsToAArch64() then

is_ase = FALSE;
element = 0;
AArch64.FPTrappedException(is_ase, accumulated_exceptions);

FPEXC.DEX = '1';
FPEXC.TFV = '1';
FPEXC<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF
FPEXC<10:8> = '111'; // VECITR is RES1

AArch32.TakeUndefInstrException();

Library pseudocode for aarch32/exceptions/syscalls/AArch32.CallHypervisor

// AArch32.CallHypervisor()
// ========================
// Performs a HVC call

AArch32.CallHypervisor(bits(16) immediate)
assert HaveEL(EL2);

if !ELUsingAArch32(EL2) then
AArch64.CallHypervisor(immediate);

else
AArch32.TakeHVCException(immediate);

Library pseudocode for aarch32/exceptions/syscalls/AArch32.CallSupervisor

// AArch32.CallSupervisor()
// ========================
// Calls the Supervisor

AArch32.CallSupervisor(bits(16) immediate_in)
bits(16) immediate = immediate_in;
if AArch32.CurrentCond() != '1110' then

immediate = bits(16) UNKNOWN;
if AArch32.GeneralExceptionsToAArch64() then

AArch64.CallSupervisor(immediate);
else

AArch32.TakeSVCException(immediate);

Shared Pseudocode Functions Page 1442

Library pseudocode for aarch32/exceptions/syscalls/AArch32.TakeHVCException

// AArch32.TakeHVCException()
// ==========================

AArch32.TakeHVCException(bits(16) immediate)
assert HaveEL(EL2) && ELUsingAArch32(EL2);

AArch32.ITAdvance();
SSAdvance();
bits(32) preferred_exception_return = NextInstrAddr(32);
vect_offset = 0x08;

except = ExceptionSyndrome(Exception_HypervisorCall);
except.syndrome<15:0> = immediate;

if PSTATE.EL == EL2 then
AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);

else
AArch32.EnterHypMode(except, preferred_exception_return, 0x14);

Library pseudocode for aarch32/exceptions/syscalls/AArch32.TakeSMCException

// AArch32.TakeSMCException()
// ==========================

AArch32.TakeSMCException()
assert HaveEL(EL3) && ELUsingAArch32(EL3);
AArch32.ITAdvance();
HSAdvance();
SSAdvance();
bits(32) preferred_exception_return = NextInstrAddr(32);
vect_offset = 0x08;
lr_offset = 0;

AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/syscalls/AArch32.TakeSVCException

// AArch32.TakeSVCException()
// ==========================

AArch32.TakeSVCException(bits(16) immediate)

AArch32.ITAdvance();
SSAdvance();
route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';

bits(32) preferred_exception_return = NextInstrAddr(32);
vect_offset = 0x08;
lr_offset = 0;

if PSTATE.EL == EL2 || route_to_hyp then
except = ExceptionSyndrome(Exception_SupervisorCall);
except.syndrome<15:0> = immediate;
if PSTATE.EL == EL2 then

AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);
else

AArch32.EnterHypMode(except, preferred_exception_return, 0x14);
else

AArch32.EnterMode(M32_Svc, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 1443

Library pseudocode for aarch32/exceptions/takeexception/AArch32.EnterHypMode

// AArch32.EnterHypMode()
// ======================
// Take an exception to Hyp mode.

AArch32.EnterHypMode(ExceptionRecord except, bits(32) preferred_exception_return,
integer vect_offset)

SynchronizeContext();
assert HaveEL(EL2) && CurrentSecurityState() == SS_NonSecure && ELUsingAArch32(EL2);

if Halted() then
AArch32.EnterHypModeInDebugState(except);
return;

bits(32) spsr = GetPSRFromPSTATE(AArch32_NonDebugState, 32);
if !(except.exceptype IN {Exception_IRQ, Exception_FIQ}) then

AArch32.ReportHypEntry(except);
AArch32.WriteMode(M32_Hyp);
SPSR_curr[] = spsr;
ELR_hyp = preferred_exception_return;
PSTATE.T = HSCTLR.TE; // PSTATE.J is RES0
PSTATE.SS = '0';
if !HaveEL(EL3) || SCR_curr[].EA == '0' then PSTATE.A = '1';
if !HaveEL(EL3) || SCR_curr[].IRQ == '0' then PSTATE.I = '1';
if !HaveEL(EL3) || SCR_curr[].FIQ == '0' then PSTATE.F = '1';
PSTATE.E = HSCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HaveSSBSExt() then PSTATE.SSBS = HSCTLR.DSSBS;
boolean branch_conditional = FALSE;
BranchTo(HVBAR<31:5>:vect_offset<4:0>, BranchType_EXCEPTION, branch_conditional);

CheckExceptionCatch(TRUE); // Check for debug event on exception entry

EndOfInstruction();

Shared Pseudocode Functions Page 1444

Library pseudocode for aarch32/exceptions/takeexception/AArch32.EnterMode

// AArch32.EnterMode()
// ===================
// Take an exception to a mode other than Monitor and Hyp mode.

AArch32.EnterMode(bits(5) target_mode, bits(32) preferred_exception_return, integer lr_offset,
integer vect_offset)

SynchronizeContext();
assert ELUsingAArch32(EL1) && PSTATE.EL != EL2;

if Halted() then
AArch32.EnterModeInDebugState(target_mode);
return;

bits(32) spsr = GetPSRFromPSTATE(AArch32_NonDebugState, 32);
if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(target_mode);
SPSR_curr[] = spsr;
R[14] = preferred_exception_return + lr_offset;
PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
PSTATE.SS = '0';
if target_mode == M32_FIQ then

PSTATE.<A,I,F> = '111';
elsif target_mode IN {M32_Abort, M32_IRQ} then

PSTATE.<A,I> = '11';
else

PSTATE.I = '1';
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() && SCTLR.SPAN == '0' then PSTATE.PAN = '1';
if HaveSSBSExt() then PSTATE.SSBS = SCTLR.DSSBS;
boolean branch_conditional = FALSE;
BranchTo(ExcVectorBase()<31:5>:vect_offset<4:0>, BranchType_EXCEPTION, branch_conditional);

CheckExceptionCatch(TRUE); // Check for debug event on exception entry

EndOfInstruction();

Shared Pseudocode Functions Page 1445

Library pseudocode for aarch32/exceptions/takeexception/AArch32.EnterMonitorMode

// AArch32.EnterMonitorMode()
// ==========================
// Take an exception to Monitor mode.

AArch32.EnterMonitorMode(bits(32) preferred_exception_return, integer lr_offset,
integer vect_offset)

SynchronizeContext();
assert HaveEL(EL3) && ELUsingAArch32(EL3);
from_secure = CurrentSecurityState() == SS_Secure;
if Halted() then

AArch32.EnterMonitorModeInDebugState();
return;

bits(32) spsr = GetPSRFromPSTATE(AArch32_NonDebugState, 32);
if PSTATE.M == M32_Monitor then SCR.NS = '0';
AArch32.WriteMode(M32_Monitor);
SPSR_curr[] = spsr;
R[14] = preferred_exception_return + lr_offset;
PSTATE.T = SCTLR.TE; // PSTATE.J is RES0
PSTATE.SS = '0';
PSTATE.<A,I,F> = '111';
PSTATE.E = SCTLR.EE;
PSTATE.IL = '0';
PSTATE.IT = '00000000';
if HavePANExt() then

if !from_secure then
PSTATE.PAN = '0';

elsif SCTLR.SPAN == '0' then
PSTATE.PAN = '1';

if HaveSSBSExt() then PSTATE.SSBS = SCTLR.DSSBS;
boolean branch_conditional = FALSE;
BranchTo(MVBAR<31:5>:vect_offset<4:0>, BranchType_EXCEPTION, branch_conditional);

CheckExceptionCatch(TRUE); // Check for debug event on exception entry

EndOfInstruction();

Shared Pseudocode Functions Page 1446

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckAdvSIMDOrFPEnabled

// AArch32.CheckAdvSIMDOrFPEnabled()
// =================================
// Check against CPACR, FPEXC, HCPTR, NSACR, and CPTR_EL3.

AArch32.CheckAdvSIMDOrFPEnabled(boolean fpexc_check_in, boolean advsimd)
boolean fpexc_check = fpexc_check_in;
if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then

// When executing at EL0 using AArch32, if EL1 is using AArch64 then the Effective value of
// FPEXC.EN is 1. This includes when EL2 is using AArch64 and enabled in the current
// Security state, HCR_EL2.TGE is 1, and the Effective value of HCR_EL2.RW is 1.
AArch64.CheckFPAdvSIMDEnabled();

else
cpacr_asedis = CPACR.ASEDIS;
cpacr_cp10 = CPACR.cp10;

if HaveEL(EL3) && ELUsingAArch32(EL3) && CurrentSecurityState() == SS_NonSecure then
// Check if access disabled in NSACR
if NSACR.NSASEDIS == '1' then cpacr_asedis = '1';
if NSACR.cp10 == '0' then cpacr_cp10 = '00';

if PSTATE.EL != EL2 then
// Check if Advanced SIMD disabled in CPACR
if advsimd && cpacr_asedis == '1' then AArch32.Undefined();

// Check if access disabled in CPACR
boolean disabled;
case cpacr_cp10 of

when '00' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0;
when '10' disabled = ConstrainUnpredictableBool(Unpredictable_RESCPACR);
when '11' disabled = FALSE;

if disabled then AArch32.Undefined();

// If required, check FPEXC enabled bit.
if (fpexc_check && PSTATE.EL == EL0 && EL2Enabled() && !ELUsingAArch32(EL2) &&

HCR_EL2.TGE == '1') then
// When executing at EL0 using AArch32, if EL2 is using AArch64 and enabled in the
// current Security state, HCR_EL2.TGE is 1, and the Effective value of HCR_EL2.RW is 0
// then it is IMPLEMENTATION DEFINED whether the Effective value of FPEXC.EN is 1
// or the value of FPEXC32_EL2.EN.
fpexc_check = (boolean IMPLEMENTATION_DEFINED

"Use FPEXC32_EL2.EN value when {TGE,RW} == {1,0}");

if fpexc_check && FPEXC.EN == '0' then
AArch32.Undefined();

AArch32.CheckFPAdvSIMDTrap(advsimd); // Also check against HCPTR and CPTR_EL3

Shared Pseudocode Functions Page 1447

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckFPAdvSIMDTrap

// AArch32.CheckFPAdvSIMDTrap()
// ============================
// Check against CPTR_EL2 and CPTR_EL3.

AArch32.CheckFPAdvSIMDTrap(boolean advsimd)
if EL2Enabled() && !ELUsingAArch32(EL2) then

AArch64.CheckFPAdvSIMDTrap();
else

if (HaveEL(EL3) && !ELUsingAArch32(EL3) &&
CPTR_EL3.TFP == '1' && EL3SDDUndefPriority()) then
UNDEFINED;

ss = CurrentSecurityState();
if HaveEL(EL2) && ss != SS_Secure then

hcptr_tase = HCPTR.TASE;
hcptr_cp10 = HCPTR.TCP10;

if HaveEL(EL3) && ELUsingAArch32(EL3) then
// Check if access disabled in NSACR
if NSACR.NSASEDIS == '1' then hcptr_tase = '1';
if NSACR.cp10 == '0' then hcptr_cp10 = '1';

// Check if access disabled in HCPTR
if (advsimd && hcptr_tase == '1') || hcptr_cp10 == '1' then

except = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
except.syndrome<24:20> = ConditionSyndrome();

if advsimd then
except.syndrome<5> = '1';

else
except.syndrome<5> = '0';
except.syndrome<3:0> = '1010'; // coproc field, always 0xA

if PSTATE.EL == EL2 then
AArch32.TakeUndefInstrException(except);

else
AArch32.TakeHypTrapException(except);

if HaveEL(EL3) && !ELUsingAArch32(EL3) then
// Check if access disabled in CPTR_EL3
if CPTR_EL3.TFP == '1' then

if EL3SDDUndef() then
UNDEFINED;

else
AArch64.AdvSIMDFPAccessTrap(EL3);

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckForSMCUndefOrTrap

// AArch32.CheckForSMCUndefOrTrap()
// ================================
// Check for UNDEFINED or trap on SMC instruction

AArch32.CheckForSMCUndefOrTrap()
if !HaveEL(EL3) || PSTATE.EL == EL0 then

UNDEFINED;

if EL2Enabled() && !ELUsingAArch32(EL2) then
AArch64.CheckForSMCUndefOrTrap(Zeros(16));

else
route_to_hyp = EL2Enabled() && PSTATE.EL == EL1 && HCR.TSC == '1';
if route_to_hyp then

except = ExceptionSyndrome(Exception_MonitorCall);
AArch32.TakeHypTrapException(except);

Shared Pseudocode Functions Page 1448

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckForSVCTrap

// AArch32.CheckForSVCTrap()
// =========================
// Check for trap on SVC instruction

AArch32.CheckForSVCTrap(bits(16) immediate)
if HaveFGTExt() then

route_to_el2 = FALSE;
if PSTATE.EL == EL0 then

route_to_el2 = (!ELUsingAArch32(EL1) && EL2Enabled() && HFGITR_EL2.SVC_EL0 == '1' &&
(HCR_EL2.<E2H, TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1')));

if route_to_el2 then
except = ExceptionSyndrome(Exception_SupervisorCall);
except.syndrome<15:0> = immediate;
except.trappedsyscallinst = TRUE;
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckForWFxTrap

// AArch32.CheckForWFxTrap()
// =========================
// Check for trap on WFE or WFI instruction

AArch32.CheckForWFxTrap(bits(2) target_el, WFxType wfxtype)
assert HaveEL(target_el);

// Check for routing to AArch64
if !ELUsingAArch32(target_el) then

AArch64.CheckForWFxTrap(target_el, wfxtype);
return;

boolean is_wfe = wfxtype == WFxType_WFE;
boolean trap;
case target_el of

when EL1
trap = (if is_wfe then SCTLR.nTWE else SCTLR.nTWI) == '0';

when EL2
trap = (if is_wfe then HCR.TWE else HCR.TWI) == '1';

when EL3
trap = (if is_wfe then SCR.TWE else SCR.TWI) == '1';

if trap then
if target_el == EL1 && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.WFxTrap(wfxtype, target_el);

if target_el == EL3 then
AArch32.TakeMonitorTrapException();

elsif target_el == EL2 then
except = ExceptionSyndrome(Exception_WFxTrap);
except.syndrome<24:20> = ConditionSyndrome();

case wfxtype of
when WFxType_WFI

except.syndrome<0> = '0';
when WFxType_WFE

except.syndrome<0> = '1';

AArch32.TakeHypTrapException(except);
else

AArch32.TakeUndefInstrException();

Shared Pseudocode Functions Page 1449

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckITEnabled

// AArch32.CheckITEnabled()
// ========================
// Check whether the T32 IT instruction is disabled.

AArch32.CheckITEnabled(bits(4) mask)
bit it_disabled;
if PSTATE.EL == EL2 then

it_disabled = HSCTLR.ITD;
else

it_disabled = (if ELUsingAArch32(EL1) then SCTLR.ITD else SCTLR_ELx[].ITD);
if it_disabled == '1' then

if mask != '1000' then UNDEFINED;

accdesc = CreateAccDescIFetch();
aligned = TRUE;
// Otherwise whether the IT block is allowed depends on hw1 of the next instruction.
next_instr = AArch32.MemSingle[NextInstrAddr(32), 2, accdesc, aligned];

if next_instr IN {'11xxxxxxxxxxxxxx', '1011xxxxxxxxxxxx', '10100xxxxxxxxxxx',
'01001xxxxxxxxxxx', '010001xxx1111xxx', '010001xx1xxxx111'} then

// It is IMPLEMENTATION DEFINED whether the Undefined Instruction exception is
// taken on the IT instruction or the next instruction. This is not reflected in
// the pseudocode, which always takes the exception on the IT instruction. This
// also does not take into account cases where the next instruction is UNPREDICTABLE.
UNDEFINED;

return;

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckIllegalState

// AArch32.CheckIllegalState()
// ===========================
// Check PSTATE.IL bit and generate Illegal Execution state exception if set.

AArch32.CheckIllegalState()
if AArch32.GeneralExceptionsToAArch64() then

AArch64.CheckIllegalState();
elsif PSTATE.IL == '1' then

route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';

bits(32) preferred_exception_return = ThisInstrAddr(32);
vect_offset = 0x04;

if PSTATE.EL == EL2 || route_to_hyp then
except = ExceptionSyndrome(Exception_IllegalState);
if PSTATE.EL == EL2 then

AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);
else

AArch32.EnterHypMode(except, preferred_exception_return, 0x14);
else

AArch32.TakeUndefInstrException();

Shared Pseudocode Functions Page 1450

Library pseudocode for aarch32/exceptions/traps/AArch32.CheckSETENDEnabled

// AArch32.CheckSETENDEnabled()
// ============================
// Check whether the AArch32 SETEND instruction is disabled.

AArch32.CheckSETENDEnabled()
bit setend_disabled;
if PSTATE.EL == EL2 then

setend_disabled = HSCTLR.SED;
else

setend_disabled = (if ELUsingAArch32(EL1) then SCTLR.SED else SCTLR_ELx[].SED);
if setend_disabled == '1' then

UNDEFINED;

return;

Library pseudocode for aarch32/exceptions/traps/AArch32.SystemAccessTrap

// AArch32.SystemAccessTrap()
// ==========================
// Trapped System register access.

AArch32.SystemAccessTrap(bits(5) mode, integer ec)
(valid, target_el) = ELFromM32(mode);
assert valid && HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

if target_el == EL2 then
except = AArch32.SystemAccessTrapSyndrome(ThisInstr(), ec);
AArch32.TakeHypTrapException(except);

else
AArch32.TakeUndefInstrException();

Shared Pseudocode Functions Page 1451

Library pseudocode for aarch32/exceptions/traps/AArch32.SystemAccessTrapSyndrome

// AArch32.SystemAccessTrapSyndrome()
// ==================================
// Returns the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS,
// VMSR instructions, other than traps that are due to HCPTR or CPACR.

ExceptionRecord AArch32.SystemAccessTrapSyndrome(bits(32) instr, integer ec)
ExceptionRecord except;

case ec of
when 0x0 except = ExceptionSyndrome(Exception_Uncategorized);
when 0x3 except = ExceptionSyndrome(Exception_CP15RTTrap);
when 0x4 except = ExceptionSyndrome(Exception_CP15RRTTrap);
when 0x5 except = ExceptionSyndrome(Exception_CP14RTTrap);
when 0x6 except = ExceptionSyndrome(Exception_CP14DTTrap);
when 0x7 except = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
when 0x8 except = ExceptionSyndrome(Exception_FPIDTrap);
when 0xC except = ExceptionSyndrome(Exception_CP14RRTTrap);
otherwise Unreachable();

bits(20) iss = Zeros(20);

if except.exceptype == Exception_Uncategorized then
return except;

elsif except.exceptype IN {Exception_FPIDTrap, Exception_CP14RTTrap,
Exception_CP15RTTrap} then

// Trapped MRC/MCR, VMRS on FPSID
iss<13:10> = instr<19:16>; // CRn, Reg in case of VMRS
iss<8:5> = instr<15:12>; // Rt
iss<9> = '0'; // RES0

if except.exceptype != Exception_FPIDTrap then // When trap is not for VMRS
iss<19:17> = instr<7:5>; // opc2
iss<16:14> = instr<23:21>; // opc1
iss<4:1> = instr<3:0>; //CRm

else //VMRS Access
iss<19:17> = '000'; //opc2 - Hardcoded for VMRS
iss<16:14> = '111'; //opc1 - Hardcoded for VMRS
iss<4:1> = '0000'; //CRm - Hardcoded for VMRS

elsif except.exceptype IN {Exception_CP14RRTTrap, Exception_AdvSIMDFPAccessTrap,
Exception_CP15RRTTrap} then

// Trapped MRRC/MCRR, VMRS/VMSR
iss<19:16> = instr<7:4>; // opc1
iss<13:10> = instr<19:16>; // Rt2
iss<8:5> = instr<15:12>; // Rt
iss<4:1> = instr<3:0>; // CRm

elsif except.exceptype == Exception_CP14DTTrap then
// Trapped LDC/STC
iss<19:12> = instr<7:0>; // imm8
iss<4> = instr<23>; // U
iss<2:1> = instr<24,21>; // P,W
if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC

iss<8:5> = bits(4) UNKNOWN;
iss<3> = '1';

iss<0> = instr<20>; // Direction

except.syndrome<24:20> = ConditionSyndrome();
except.syndrome<19:0> = iss;

return except;

Shared Pseudocode Functions Page 1452

Library pseudocode for aarch32/exceptions/traps/AArch32.TakeHypTrapException

// AArch32.TakeHypTrapException()
// ==============================
// Exceptions routed to Hyp mode as a Hyp Trap exception.

AArch32.TakeHypTrapException(integer ec)
except = AArch32.SystemAccessTrapSyndrome(ThisInstr(), ec);
AArch32.TakeHypTrapException(except);

// AArch32.TakeHypTrapException()
// ==============================
// Exceptions routed to Hyp mode as a Hyp Trap exception.

AArch32.TakeHypTrapException(ExceptionRecord except)
assert HaveEL(EL2) && CurrentSecurityState() == SS_NonSecure && ELUsingAArch32(EL2);

bits(32) preferred_exception_return = ThisInstrAddr(32);
vect_offset = 0x14;

AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);

Library pseudocode for aarch32/exceptions/traps/AArch32.TakeMonitorTrapException

// AArch32.TakeMonitorTrapException()
// ==================================
// Exceptions routed to Monitor mode as a Monitor Trap exception.

AArch32.TakeMonitorTrapException()
assert HaveEL(EL3) && ELUsingAArch32(EL3);

bits(32) preferred_exception_return = ThisInstrAddr(32);
vect_offset = 0x04;
lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;

AArch32.EnterMonitorMode(preferred_exception_return, lr_offset, vect_offset);

Library pseudocode for aarch32/exceptions/traps/AArch32.TakeUndefInstrException

// AArch32.TakeUndefInstrException()
// =================================

AArch32.TakeUndefInstrException()
except = ExceptionSyndrome(Exception_Uncategorized);
AArch32.TakeUndefInstrException(except);

// AArch32.TakeUndefInstrException()
// =================================

AArch32.TakeUndefInstrException(ExceptionRecord except)

route_to_hyp = PSTATE.EL == EL0 && EL2Enabled() && HCR.TGE == '1';
bits(32) preferred_exception_return = ThisInstrAddr(32);
vect_offset = 0x04;
lr_offset = if CurrentInstrSet() == InstrSet_A32 then 4 else 2;

if PSTATE.EL == EL2 then
AArch32.EnterHypMode(except, preferred_exception_return, vect_offset);

elsif route_to_hyp then
AArch32.EnterHypMode(except, preferred_exception_return, 0x14);

else
AArch32.EnterMode(M32_Undef, preferred_exception_return, lr_offset, vect_offset);

Shared Pseudocode Functions Page 1453

Library pseudocode for aarch32/exceptions/traps/AArch32.Undefined

// AArch32.Undefined()
// ===================

AArch32.Undefined()

if AArch32.GeneralExceptionsToAArch64() then AArch64.Undefined();
AArch32.TakeUndefInstrException();

Library pseudocode for aarch32/functions/aborts/AArch32.DomainValid

// AArch32.DomainValid()
// =====================
// Returns TRUE if the Domain is valid for a Short-descriptor translation scheme.

boolean AArch32.DomainValid(Fault statuscode, integer level)
assert statuscode != Fault_None;

case statuscode of
when Fault_Domain

return TRUE;
when Fault_Translation, Fault_AccessFlag, Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk

return level == 2;
otherwise

return FALSE;

Library pseudocode for aarch32/functions/aborts/AArch32.FaultSyndrome

// AArch32.FaultSyndrome()
// =======================
// Creates an exception syndrome value and updates the virtual address for Abort and Watchpoint
// exceptions taken to AArch32 Hyp mode.

bits(25) AArch32.FaultSyndrome(Exception exceptype, FaultRecord fault)
assert fault.statuscode != Fault_None;

bits(25) iss = Zeros(25);

boolean d_side = exceptype == Exception_DataAbort;
if HaveRASExt() && IsAsyncAbort(fault) then

ErrorState errstate = AArch32.PEErrorState(fault);
iss<11:10> = AArch32.EncodeAsyncErrorSyndrome(errstate); // AET

if d_side then
if (IsSecondStage(fault) && !fault.s2fs1walk &&

(!IsExternalSyncAbort(fault) ||
(!HaveRASExt() && fault.accessdesc.acctype == AccessType_TTW &&
boolean IMPLEMENTATION_DEFINED "ISV on second stage translation table walk"))) then
iss<24:14> = LSInstructionSyndrome();

if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then
iss<8> = '1';

if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then
iss<6> = '1';

elsif fault.statuscode IN {Fault_HWUpdateAccessFlag, Fault_Exclusive} then
iss<6> = bit UNKNOWN;

elsif fault.accessdesc.atomicop && IsExternalAbort(fault) then
iss<6> = bit UNKNOWN;

else
iss<6> = if fault.write then '1' else '0';

if IsExternalAbort(fault) then iss<9> = fault.extflag;
iss<7> = if fault.s2fs1walk then '1' else '0';
iss<5:0> = EncodeLDFSC(fault.statuscode, fault.level);

return (iss);

Shared Pseudocode Functions Page 1454

Library pseudocode for aarch32/functions/aborts/EncodeSDFSC

// EncodeSDFSC()
// =============
// Function that gives the Short-descriptor FSR code for different types of Fault

bits(5) EncodeSDFSC(Fault statuscode, integer level)

bits(5) result;
case statuscode of

when Fault_AccessFlag
assert level IN {1,2};
result = if level == 1 then '00011' else '00110';

when Fault_Alignment
result = '00001';

when Fault_Permission
assert level IN {1,2};
result = if level == 1 then '01101' else '01111';

when Fault_Domain
assert level IN {1,2};
result = if level == 1 then '01001' else '01011';

when Fault_Translation
assert level IN {1,2};
result = if level == 1 then '00101' else '00111';

when Fault_SyncExternal
result = '01000';

when Fault_SyncExternalOnWalk
assert level IN {1,2};
result = if level == 1 then '01100' else '01110';

when Fault_SyncParity
result = '11001';

when Fault_SyncParityOnWalk
assert level IN {1,2};
result = if level == 1 then '11100' else '11110';

when Fault_AsyncParity
result = '11000';

when Fault_AsyncExternal
result = '10110';

when Fault_Debug
result = '00010';

when Fault_TLBConflict
result = '10000';

when Fault_Lockdown
result = '10100'; // IMPLEMENTATION DEFINED

when Fault_Exclusive
result = '10101'; // IMPLEMENTATION DEFINED

when Fault_ICacheMaint
result = '00100';

otherwise
Unreachable();

return result;

Library pseudocode for aarch32/functions/common/A32ExpandImm

// A32ExpandImm()
// ==============

bits(32) A32ExpandImm(bits(12) imm12)

// PSTATE.C argument to following function call does not affect the imm32 result.
(imm32, -) = A32ExpandImm_C(imm12, PSTATE.C);

return imm32;

Shared Pseudocode Functions Page 1455

Library pseudocode for aarch32/functions/common/A32ExpandImm_C

// A32ExpandImm_C()
// ================

(bits(32), bit) A32ExpandImm_C(bits(12) imm12, bit carry_in)

unrotated_value = ZeroExtend(imm12<7:0>, 32);
(imm32, carry_out) = Shift_C(unrotated_value, SRType_ROR, 2*UInt(imm12<11:8>), carry_in);

return (imm32, carry_out);

Library pseudocode for aarch32/functions/common/DecodeImmShift

// DecodeImmShift()
// ================

(SRType, integer) DecodeImmShift(bits(2) srtype, bits(5) imm5)

SRType shift_t;
integer shift_n;
case srtype of

when '00'
shift_t = SRType_LSL; shift_n = UInt(imm5);

when '01'
shift_t = SRType_LSR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);

when '10'
shift_t = SRType_ASR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);

when '11'
if imm5 == '00000' then

shift_t = SRType_RRX; shift_n = 1;
else

shift_t = SRType_ROR; shift_n = UInt(imm5);

return (shift_t, shift_n);

Library pseudocode for aarch32/functions/common/DecodeRegShift

// DecodeRegShift()
// ================

SRType DecodeRegShift(bits(2) srtype)
SRType shift_t;
case srtype of

when '00' shift_t = SRType_LSL;
when '01' shift_t = SRType_LSR;
when '10' shift_t = SRType_ASR;
when '11' shift_t = SRType_ROR;

return shift_t;

Library pseudocode for aarch32/functions/common/RRX

// RRX()
// =====

bits(N) RRX(bits(N) x, bit carry_in)
(result, -) = RRX_C(x, carry_in);
return result;

Shared Pseudocode Functions Page 1456

Library pseudocode for aarch32/functions/common/RRX_C

// RRX_C()
// =======

(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
result = carry_in : x<N-1:1>;
carry_out = x<0>;
return (result, carry_out);

Library pseudocode for aarch32/functions/common/SRType

// SRType
// ======

enumeration SRType {SRType_LSL, SRType_LSR, SRType_ASR, SRType_ROR, SRType_RRX};

Library pseudocode for aarch32/functions/common/Shift

// Shift()
// =======

bits(N) Shift(bits(N) value, SRType srtype, integer amount, bit carry_in)
(result, -) = Shift_C(value, srtype, amount, carry_in);
return result;

Library pseudocode for aarch32/functions/common/Shift_C

// Shift_C()
// =========

(bits(N), bit) Shift_C(bits(N) value, SRType srtype, integer amount, bit carry_in)
assert !(srtype == SRType_RRX && amount != 1);

bits(N) result;
bit carry_out;
if amount == 0 then

(result, carry_out) = (value, carry_in);
else

case srtype of
when SRType_LSL

(result, carry_out) = LSL_C(value, amount);
when SRType_LSR

(result, carry_out) = LSR_C(value, amount);
when SRType_ASR

(result, carry_out) = ASR_C(value, amount);
when SRType_ROR

(result, carry_out) = ROR_C(value, amount);
when SRType_RRX

(result, carry_out) = RRX_C(value, carry_in);

return (result, carry_out);

Library pseudocode for aarch32/functions/common/T32ExpandImm

// T32ExpandImm()
// ==============

bits(32) T32ExpandImm(bits(12) imm12)

// PSTATE.C argument to following function call does not affect the imm32 result.
(imm32, -) = T32ExpandImm_C(imm12, PSTATE.C);

return imm32;

Shared Pseudocode Functions Page 1457

Library pseudocode for aarch32/functions/common/T32ExpandImm_C

// T32ExpandImm_C()
// ================

(bits(32), bit) T32ExpandImm_C(bits(12) imm12, bit carry_in)
bits(32) imm32;
bit carry_out;
if imm12<11:10> == '00' then

case imm12<9:8> of
when '00'

imm32 = ZeroExtend(imm12<7:0>, 32);
when '01'

imm32 = '00000000' : imm12<7:0> : '00000000' : imm12<7:0>;
when '10'

imm32 = imm12<7:0> : '00000000' : imm12<7:0> : '00000000';
when '11'

imm32 = imm12<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;
carry_out = carry_in;

else
unrotated_value = ZeroExtend('1':imm12<6:0>, 32);
(imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

return (imm32, carry_out);

Library pseudocode for aarch32/functions/common/VBitOps

// VBitOps
// =======

enumeration VBitOps {VBitOps_VBIF, VBitOps_VBIT, VBitOps_VBSL};

Library pseudocode for aarch32/functions/common/VCGEType

// VCGEType
// ========

enumeration VCGEType {VCGEType_signed, VCGEType_unsigned, VCGEType_fp};

Library pseudocode for aarch32/functions/common/VCGTtype

// VCGTtype
// ========

enumeration VCGTtype {VCGTtype_signed, VCGTtype_unsigned, VCGTtype_fp};

Library pseudocode for aarch32/functions/common/VFPNegMul

// VFPNegMul
// =========

enumeration VFPNegMul {VFPNegMul_VNMLA, VFPNegMul_VNMLS, VFPNegMul_VNMUL};

Shared Pseudocode Functions Page 1458

Library pseudocode for aarch32/functions/coproc/AArch32.CheckCP15InstrCoarseTraps

// AArch32.CheckCP15InstrCoarseTraps()
// ===================================
// Check for coarse-grained traps to System registers in the
// coproc=0b1111 encoding space by HSTR and HCR.

AArch32.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)
if PSTATE.EL == EL0 && (!ELUsingAArch32(EL1) ||

(EL2Enabled() && !ELUsingAArch32(EL2))) then
AArch64.CheckCP15InstrCoarseTraps(CRn, nreg, CRm);

trapped_encoding = ((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
(CRn == 10 && CRm IN {0,1, 4, 8 }) ||
(CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}));

// Check for coarse-grained Hyp traps
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then

major = if nreg == 1 then CRn else CRm;
// Check for MCR, MRC, MCRR, and MRRC disabled by HSTR<CRn/CRm>
// and MRC and MCR disabled by HCR.TIDCP.
if ((!(major IN {4,14}) && HSTR<major> == '1') ||

(HCR.TIDCP == '1' && nreg == 1 && trapped_encoding)) then
if (PSTATE.EL == EL0 &&

boolean IMPLEMENTATION_DEFINED "UNDEF unallocated CP15 access at EL0") then
UNDEFINED;

if ELUsingAArch32(EL2) then
AArch32.SystemAccessTrap(M32_Hyp, 0x3);

else
AArch64.AArch32SystemAccessTrap(EL2, 0x3);

Library pseudocode for aarch32/functions/exclusive/AArch32.ExclusiveMonitorsPass

// AArch32.ExclusiveMonitorsPass()
// ===============================
// Return TRUE if the Exclusives monitors for the current PE include all of the addresses
// associated with the virtual address region of size bytes starting at address.
// The immediately following memory write must be to the same addresses.

// It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
// before or after the check on the local Exclusives monitor. As a result a failure
// of the local monitor can occur on some implementations even if the memory
// access would give an memory abort.

boolean AArch32.ExclusiveMonitorsPass(bits(32) address, integer size)
boolean acqrel = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, acqrel, tagchecked);
boolean aligned = IsAligned(address, size);

if !aligned then
AArch32.Abort(address, AlignmentFault(accdesc));

if !AArch32.IsExclusiveVA(address, ProcessorID(), size) then
return FALSE;

memaddrdesc = AArch32.TranslateAddress(address, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch32.Abort(address, memaddrdesc.fault);

passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
ClearExclusiveLocal(ProcessorID());

if passed && memaddrdesc.memattrs.shareability != Shareability_NSH then
passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

return passed;

Shared Pseudocode Functions Page 1459

Library pseudocode for aarch32/functions/exclusive/AArch32.IsExclusiveVA

// AArch32.IsExclusiveVA()
// =======================
// An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
// address region of size bytes starting at address.
//
// It is permitted (but not required) for this function to return FALSE and
// cause a store exclusive to fail if the virtual address region is not
// totally included within the region recorded by MarkExclusiveVA().
//
// It is always safe to return TRUE which will check the physical address only.

boolean AArch32.IsExclusiveVA(bits(32) address, integer processorid, integer size);

Library pseudocode for aarch32/functions/exclusive/AArch32.MarkExclusiveVA

// AArch32.MarkExclusiveVA()
// =========================
// Optionally record an exclusive access to the virtual address region of size bytes
// starting at address for processorid.

AArch32.MarkExclusiveVA(bits(32) address, integer processorid, integer size);

Library pseudocode for aarch32/functions/exclusive/AArch32.SetExclusiveMonitors

// AArch32.SetExclusiveMonitors()
// ==============================
// Sets the Exclusives monitors for the current PE to record the addresses associated
// with the virtual address region of size bytes starting at address.

AArch32.SetExclusiveMonitors(bits(32) address, integer size)
boolean acqrel = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, acqrel, tagchecked);
boolean aligned = IsAligned(address, size);

if !aligned then
AArch32.Abort(address, AlignmentFault(accdesc));

memaddrdesc = AArch32.TranslateAddress(address, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

return;

if memaddrdesc.memattrs.shareability != Shareability_NSH then
MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

AArch32.MarkExclusiveVA(address, ProcessorID(), size);

Shared Pseudocode Functions Page 1460

Library pseudocode for aarch32/functions/float/CheckAdvSIMDEnabled

// CheckAdvSIMDEnabled()
// =====================

CheckAdvSIMDEnabled()

fpexc_check = TRUE;
advsimd = TRUE;

AArch32.CheckAdvSIMDOrFPEnabled(fpexc_check, advsimd);
// Return from CheckAdvSIMDOrFPEnabled() occurs only if Advanced SIMD access is permitted

// Make temporary copy of D registers
// _Dclone[] is used as input data for instruction pseudocode
for i = 0 to 31

_Dclone[i] = D[i];

return;

Library pseudocode for aarch32/functions/float/CheckAdvSIMDOrVFPEnabled

// CheckAdvSIMDOrVFPEnabled()
// ==========================

CheckAdvSIMDOrVFPEnabled(boolean include_fpexc_check, boolean advsimd)
AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
// Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
return;

Library pseudocode for aarch32/functions/float/CheckCryptoEnabled32

// CheckCryptoEnabled32()
// ======================

CheckCryptoEnabled32()
CheckAdvSIMDEnabled();
// Return from CheckAdvSIMDEnabled() occurs only if access is permitted
return;

Library pseudocode for aarch32/functions/float/CheckVFPEnabled

// CheckVFPEnabled()
// =================

CheckVFPEnabled(boolean include_fpexc_check)
advsimd = FALSE;
AArch32.CheckAdvSIMDOrFPEnabled(include_fpexc_check, advsimd);
// Return from CheckAdvSIMDOrFPEnabled() occurs only if VFP access is permitted
return;

Shared Pseudocode Functions Page 1461

Library pseudocode for aarch32/functions/float/FPHalvedSub

// FPHalvedSub()
// =============

bits(N) FPHalvedSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
if inf1 && inf2 && sign1 == sign2 then

result = FPDefaultNaN(fpcr, N);
FPProcessException(FPExc_InvalidOp, fpcr);

elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
result = FPInfinity('0', N);

elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
result = FPInfinity('1', N);

elsif zero1 && zero2 && sign1 != sign2 then
result = FPZero(sign1, N);

else
result_value = (value1 - value2) / 2.0;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign, N);

else
result = FPRound(result_value, fpcr, N);

return result;

Library pseudocode for aarch32/functions/float/FPRSqrtStep

// FPRSqrtStep()
// =============

bits(N) FPRSqrtStep(bits(N) op1, bits(N) op2)
assert N IN {16,32};
FPCRType fpcr = StandardFPSCRValue();
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
bits(N) product;
if (inf1 && zero2) || (zero1 && inf2) then

product = FPZero('0', N);
else

product = FPMul(op1, op2, fpcr);
bits(N) three = FPThree('0', N);
result = FPHalvedSub(three, product, fpcr);

return result;

Shared Pseudocode Functions Page 1462

Library pseudocode for aarch32/functions/float/FPRecipStep

// FPRecipStep()
// =============

bits(N) FPRecipStep(bits(N) op1, bits(N) op2)
assert N IN {16,32};
FPCRType fpcr = StandardFPSCRValue();
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
bits(N) product;
if (inf1 && zero2) || (zero1 && inf2) then

product = FPZero('0', N);
else

product = FPMul(op1, op2, fpcr);
bits(N) two = FPTwo('0', N);
result = FPSub(two, product, fpcr);

return result;

Library pseudocode for aarch32/functions/float/StandardFPSCRValue

// StandardFPSCRValue()
// ====================

FPCRType StandardFPSCRValue()
bits(32) value = '00000' : FPSCR.AHP : '110000' : FPSCR.FZ16 : '0000000000000000000';
return ZeroExtend(value, 64);

Shared Pseudocode Functions Page 1463

Library pseudocode for aarch32/functions/memory/AArch32.MemSingle

// AArch32.MemSingle[] - non-assignment (read) form
// ==
// Perform an atomic, little-endian read of 'size' bytes.

bits(size*8) AArch32.MemSingle[bits(32) address, integer size, AccessDescriptor accdesc_in,
boolean aligned]

assert size IN {1, 2, 4, 8, 16};
bits(size*8) value;
AccessDescriptor accdesc = accdesc_in;
assert IsAligned(address, size);

AddressDescriptor memaddrdesc;
memaddrdesc = AArch32.TranslateAddress(address, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch32.Abort(address, memaddrdesc.fault);

// Memory array access
if SPESampleInFlight then

boolean is_load = TRUE;
SPESampleLoadStore(is_load, accdesc, memaddrdesc);

PhysMemRetStatus memstatus;
(memstatus, value) = PhysMemRead(memaddrdesc, size, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, size, accdesc);
return value;

// AArch32.MemSingle[] - assignment (write) form
// ===
// Perform an atomic, little-endian write of 'size' bytes.

AArch32.MemSingle[bits(32) address, integer size, AccessDescriptor accdesc_in,
boolean aligned] = bits(size*8) value

assert size IN {1, 2, 4, 8, 16};
AccessDescriptor accdesc = accdesc_in;
assert IsAligned(address, size);

AddressDescriptor memaddrdesc;
memaddrdesc = AArch32.TranslateAddress(address, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch32.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareability != Shareability_NSH then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

if SPESampleInFlight then
boolean is_load = FALSE;
SPESampleLoadStore(is_load, accdesc, memaddrdesc);

PhysMemRetStatus memstatus;
memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);
return;

Shared Pseudocode Functions Page 1464

Library pseudocode for aarch32/functions/memory/AArch32.UnalignedAccessFaults

// AArch32.UnalignedAccessFaults()
// ===============================
// Determine whether the unaligned access generates an Alignment fault

boolean AArch32.UnalignedAccessFaults(AccessDescriptor accdesc)
return (AlignmentEnforced() ||

accdesc.a32lsmd ||
accdesc.exclusive ||
accdesc.acqsc ||
accdesc.relsc);

Library pseudocode for aarch32/functions/memory/Hint_PreloadData

// Hint_PreloadData()
// ==================

Hint_PreloadData(bits(32) address);

Library pseudocode for aarch32/functions/memory/Hint_PreloadDataForWrite

// Hint_PreloadDataForWrite()
// ==========================

Hint_PreloadDataForWrite(bits(32) address);

Library pseudocode for aarch32/functions/memory/Hint_PreloadInstr

// Hint_PreloadInstr()
// ===================

Hint_PreloadInstr(bits(32) address);

Library pseudocode for aarch32/functions/memory/MemA

// MemA[] - non-assignment form
// ============================

bits(8*size) MemA[bits(32) address, integer size]
boolean acqrel = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, acqrel, tagchecked);
return Mem_with_type[address, size, accdesc];

// MemA[] - assignment form
// ========================

MemA[bits(32) address, integer size] = bits(8*size) value
boolean acqrel = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_STORE, acqrel, tagchecked);
Mem_with_type[address, size, accdesc] = value;
return;

Shared Pseudocode Functions Page 1465

Library pseudocode for aarch32/functions/memory/MemO

// MemO[] - non-assignment form
// ============================

bits(8*size) MemO[bits(32) address, integer size]
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescAcqRel(MemOp_LOAD, tagchecked);
return Mem_with_type[address, size, accdesc];

// MemO[] - assignment form
// ========================

MemO[bits(32) address, integer size] = bits(8*size) value
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescAcqRel(MemOp_STORE, tagchecked);
Mem_with_type[address, size, accdesc] = value;
return;

Library pseudocode for aarch32/functions/memory/MemS

// MemS[] - non-assignment form
// ============================
// Memory accessor for streaming load multiple instructions

bits(8*size) MemS[bits(32) address, integer size]
AccessDescriptor accdesc = CreateAccDescA32LSMD(MemOp_LOAD);
return Mem_with_type[address, size, accdesc];

// MemS[] - assignment form
// ========================
// Memory accessor for streaming store multiple instructions

MemS[bits(32) address, integer size] = bits(8*size) value
AccessDescriptor accdesc = CreateAccDescA32LSMD(MemOp_STORE);
Mem_with_type[address, size, accdesc] = value;
return;

Library pseudocode for aarch32/functions/memory/MemU

// MemU[] - non-assignment form
// ============================

bits(8*size) MemU[bits(32) address, integer size]
boolean nontemporal = FALSE;
boolean privileged = PSTATE.EL != EL0;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, nontemporal, privileged, tagchecked);
return Mem_with_type[address, size, accdesc];

// MemU[] - assignment form
// ========================

MemU[bits(32) address, integer size] = bits(8*size) value
boolean nontemporal = FALSE;
boolean privileged = PSTATE.EL != EL0;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, nontemporal, privileged, tagchecked);
Mem_with_type[address, size, accdesc] = value;
return;

Shared Pseudocode Functions Page 1466

Library pseudocode for aarch32/functions/memory/MemU_unpriv

// MemU_unpriv[] - non-assignment form
// ===================================

bits(8*size) MemU_unpriv[bits(32) address, integer size]
boolean nontemporal = FALSE;
boolean privileged = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescGPR(MemOp_LOAD, nontemporal, privileged, tagchecked);
return Mem_with_type[address, size, accdesc];

// MemU_unpriv[] - assignment form
// ===============================

MemU_unpriv[bits(32) address, integer size] = bits(8*size) value
boolean nontemporal = FALSE;
boolean privileged = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescGPR(MemOp_STORE, nontemporal, privileged, tagchecked);
Mem_with_type[address, size, accdesc] = value;
return;

Shared Pseudocode Functions Page 1467

Library pseudocode for aarch32/functions/memory/Mem_with_type

Shared Pseudocode Functions Page 1468

// Mem_with_type[] - non-assignment (read) form
// ==
// Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
// Instruction fetches would call AArch32.MemSingle directly.

bits(size*8) Mem_with_type[bits(32) address, integer size, AccessDescriptor accdesc_in]
assert size IN {1, 2, 4, 8, 16};
constant halfsize = size DIV 2;
bits(size * 8) value;
AccessDescriptor accdesc = accdesc_in;

// Check alignment on size of element accessed, not overall access size
integer alignment = if accdesc.ispair then halfsize else size;
boolean aligned = IsAligned(address, alignment);

if !aligned && AArch32.UnalignedAccessFaults(accdesc) then
AArch32.Abort(address, AlignmentFault(accdesc));

if aligned then
value = AArch32.MemSingle[address, size, accdesc, aligned];

else
assert size > 1;
value<7:0> = AArch32.MemSingle[address, 1, accdesc, aligned];

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did
// not, so we must be changing to a new translation page.
c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};
if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
value<8*i+7:8*i> = AArch32.MemSingle[address+i, 1, accdesc, aligned];

if BigEndian(accdesc.acctype) then
value = BigEndianReverse(value);

return value;

// Mem_with_type[] - assignment (write) form
// ===
// Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

Mem_with_type[bits(32) address, integer size, AccessDescriptor accdesc_in] = bits(size*8) value_in
constant halfsize = size DIV 2;
bits(size*8) value = value_in;
AccessDescriptor accdesc = accdesc_in;

// Check alignment on size of element accessed, not overall access size
integer alignment = if accdesc.ispair then halfsize else size;
boolean aligned = IsAligned(address, alignment);

if !aligned && AArch32.UnalignedAccessFaults(accdesc) then
AArch32.Abort(address, AlignmentFault(accdesc));

if BigEndian(accdesc.acctype) then
value = BigEndianReverse(value);

if aligned then
AArch32.MemSingle[address, size, accdesc, aligned] = value;

else
assert size > 1;
AArch32.MemSingle[address, 1, accdesc, aligned] = value<7:0>;

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did
// not, so we must be changing to a new translation page.

c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};

Shared Pseudocode Functions Page 1469

if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
AArch32.MemSingle[address+i, 1, accdesc, aligned] = value<8*i+7:8*i>;

return;

Library pseudocode for aarch32/functions/ras/AArch32.ESBOperation

// AArch32.ESBOperation()
// ======================
// Perform the AArch32 ESB operation for ESB executed in AArch32 state

AArch32.ESBOperation()

// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);
if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then

route_to_aarch64 = HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1';
if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then

route_to_aarch64 = EffectiveEA() == '1';

if route_to_aarch64 then
AArch64.ESBOperation();
return;

route_to_monitor = HaveEL(EL3) && ELUsingAArch32(EL3) && EffectiveEA() == '1';
route_to_hyp = PSTATE.EL IN {EL0, EL1} && EL2Enabled() && (HCR.TGE == '1' || HCR.AMO == '1');

bits(5) target;
if route_to_monitor then

target = M32_Monitor;
elsif route_to_hyp || PSTATE.M == M32_Hyp then

target = M32_Hyp;
else

target = M32_Abort;

boolean mask_active;
if CurrentSecurityState() == SS_Secure then

mask_active = TRUE;
elsif target == M32_Monitor then

mask_active = SCR.AW == '1' && (!HaveEL(EL2) || (HCR.TGE == '0' && HCR.AMO == '0'));
else

mask_active = target == M32_Abort || PSTATE.M == M32_Hyp;

mask_set = PSTATE.A == '1';
(-, el) = ELFromM32(target);
intdis = Halted() || ExternalDebugInterruptsDisabled(el);
masked = intdis || (mask_active && mask_set);

// Check for a masked Physical SError pending that can be synchronized
// by an Error synchronization event.
if masked && IsSynchronizablePhysicalSErrorPending() then

bits(32) syndrome = Zeros(32);
syndrome<31> = '1'; // A
syndrome<15:0> = AArch32.PhysicalSErrorSyndrome();
DISR = syndrome;
ClearPendingPhysicalSError();

return;

Shared Pseudocode Functions Page 1470

Library pseudocode for aarch32/functions/ras/AArch32.EncodeAsyncErrorSyndrome

// AArch32.EncodeAsyncErrorSyndrome()
// ==================================
// Return the corresponding encoding for ErrorState.

bits(2) AArch32.EncodeAsyncErrorSyndrome(ErrorState errorstate)
case errorstate of

when ErrorState_UC return '00';
when ErrorState_UEU return '01';
when ErrorState_UEO return '10';
when ErrorState_UER return '11';
otherwise Unreachable();

Library pseudocode for aarch32/functions/ras/AArch32.PhysicalSErrorSyndrome

// AArch32.PhysicalSErrorSyndrome()
// ================================
// Generate SError syndrome.

bits(16) AArch32.PhysicalSErrorSyndrome()
bits(32) syndrome = Zeros(32);
FaultRecord fault = GetPendingPhysicalSError();
if PSTATE.EL == EL2 then

ErrorState errstate = AArch32.PEErrorState(fault);
syndrome<11:10> = AArch32.EncodeAsyncErrorSyndrome(errstate); // AET
syndrome<9> = fault.extflag; // EA
syndrome<5:0> = '010001'; // DFSC

else
boolean long_format = TTBCR.EAE == '1';
syndrome = AArch32.CommonFaultStatus(fault, long_format);

return syndrome<15:0>;

Shared Pseudocode Functions Page 1471

Library pseudocode for aarch32/functions/ras/AArch32.vESBOperation

// AArch32.vESBOperation()
// =======================
// Perform the ESB operation for virtual SError interrupts executed in AArch32 state

AArch32.vESBOperation()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

// Check for EL2 using AArch64 state
if !ELUsingAArch32(EL2) then

AArch64.vESBOperation();
return;

// If physical SError interrupts are routed to Hyp mode, and TGE is not set,
// then a virtual SError interrupt might be pending
vSEI_enabled = HCR.TGE == '0' && HCR.AMO == '1';
vSEI_pending = vSEI_enabled && HCR.VA == '1';
vintdis = Halted() || ExternalDebugInterruptsDisabled(EL1);
vmasked = vintdis || PSTATE.A == '1';

// Check for a masked virtual SError pending
if vSEI_pending && vmasked then

bits(32) syndrome = Zeros(32);
syndrome<31> = '1'; // A
syndrome<15:14> = VDFSR<15:14>; // AET
syndrome<12> = VDFSR<12>; // ExT
syndrome<9> = TTBCR.EAE; // LPAE
if TTBCR.EAE == '1' then // Long-descriptor format

syndrome<5:0> = '010001'; // STATUS
else // Short-descriptor format

syndrome<10,3:0> = '10110'; // FS
VDISR = syndrome;
HCR.VA = '0'; // Clear pending virtual SError

return;

Library pseudocode for aarch32/functions/registers/AArch32.ResetGeneralRegisters

// AArch32.ResetGeneralRegisters()
// ===============================

AArch32.ResetGeneralRegisters()

for i = 0 to 7
R[i] = bits(32) UNKNOWN;

for i = 8 to 12
Rmode[i, M32_User] = bits(32) UNKNOWN;
Rmode[i, M32_FIQ] = bits(32) UNKNOWN;

if HaveEL(EL2) then Rmode[13, M32_Hyp] = bits(32) UNKNOWN; // No R14_hyp
for i = 13 to 14

Rmode[i, M32_User] = bits(32) UNKNOWN;
Rmode[i, M32_FIQ] = bits(32) UNKNOWN;
Rmode[i, M32_IRQ] = bits(32) UNKNOWN;
Rmode[i, M32_Svc] = bits(32) UNKNOWN;
Rmode[i, M32_Abort] = bits(32) UNKNOWN;
Rmode[i, M32_Undef] = bits(32) UNKNOWN;
if HaveEL(EL3) then Rmode[i, M32_Monitor] = bits(32) UNKNOWN;

return;

Shared Pseudocode Functions Page 1472

Library pseudocode for aarch32/functions/registers/AArch32.ResetSIMDFPRegisters

// AArch32.ResetSIMDFPRegisters()
// ==============================

AArch32.ResetSIMDFPRegisters()

for i = 0 to 15
Q[i] = bits(128) UNKNOWN;

return;

Library pseudocode for aarch32/functions/registers/AArch32.ResetSpecialRegisters

// AArch32.ResetSpecialRegisters()
// ===============================

AArch32.ResetSpecialRegisters()

// AArch32 special registers
SPSR_fiq<31:0> = bits(32) UNKNOWN;
SPSR_irq<31:0> = bits(32) UNKNOWN;
SPSR_svc<31:0> = bits(32) UNKNOWN;
SPSR_abt<31:0> = bits(32) UNKNOWN;
SPSR_und<31:0> = bits(32) UNKNOWN;
if HaveEL(EL2) then

SPSR_hyp = bits(32) UNKNOWN;
ELR_hyp = bits(32) UNKNOWN;

if HaveEL(EL3) then
SPSR_mon = bits(32) UNKNOWN;

// External debug special registers
DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;

return;

Library pseudocode for aarch32/functions/registers/AArch32.ResetSystemRegisters

// AArch32.ResetSystemRegisters()
// ==============================

AArch32.ResetSystemRegisters(boolean cold_reset);

Library pseudocode for aarch32/functions/registers/ALUExceptionReturn

// ALUExceptionReturn()
// ====================

ALUExceptionReturn(bits(32) address)
if PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.M IN {M32_User,M32_System} then

Constraint c = ConstrainUnpredictable(Unpredictable_ALUEXCEPTIONRETURN);
assert c IN {Constraint_UNDEF, Constraint_NOP};
case c of

when Constraint_UNDEF
UNDEFINED;

when Constraint_NOP
EndOfInstruction();

else
AArch32.ExceptionReturn(address, SPSR_curr[]);

Shared Pseudocode Functions Page 1473

Library pseudocode for aarch32/functions/registers/ALUWritePC

// ALUWritePC()
// ============

ALUWritePC(bits(32) address)
if CurrentInstrSet() == InstrSet_A32 then

BXWritePC(address, BranchType_INDIR);
else

BranchWritePC(address, BranchType_INDIR);

Library pseudocode for aarch32/functions/registers/BXWritePC

// BXWritePC()
// ===========

BXWritePC(bits(32) address_in, BranchType branch_type)
bits(32) address = address_in;
if address<0> == '1' then

SelectInstrSet(InstrSet_T32);
address<0> = '0';

else
SelectInstrSet(InstrSet_A32);
// For branches to an unaligned PC counter in A32 state, the processor takes the branch
// and does one of:
// * Forces the address to be aligned
// * Leaves the PC unaligned, meaning the target generates a PC Alignment fault.
if address<1> == '1' && ConstrainUnpredictableBool(Unpredictable_A32FORCEALIGNPC) then

address<1> = '0';
boolean branch_conditional = !(AArch32.CurrentCond() IN {'111x'});
BranchTo(address, branch_type, branch_conditional);

Library pseudocode for aarch32/functions/registers/BranchWritePC

// BranchWritePC()
// ===============

BranchWritePC(bits(32) address_in, BranchType branch_type)
bits(32) address = address_in;
if CurrentInstrSet() == InstrSet_A32 then

address<1:0> = '00';
else

address<0> = '0';
boolean branch_conditional = !(AArch32.CurrentCond() IN {'111x'});
BranchTo(address, branch_type, branch_conditional);

Library pseudocode for aarch32/functions/registers/CBWritePC

// CBWritePC()
// ===========
// Takes a branch from a CBNZ/CBZ instruction.

CBWritePC(bits(32) address_in)
bits(32) address = address_in;
assert CurrentInstrSet() == InstrSet_T32;
address<0> = '0';
boolean branch_conditional = TRUE;
BranchTo(address, BranchType_DIR, branch_conditional);

Shared Pseudocode Functions Page 1474

Library pseudocode for aarch32/functions/registers/D

// D[] - non-assignment form
// =========================

bits(64) D[integer n]
assert n >= 0 && n <= 31;
base = (n MOD 2) * 64;
bits(128) vreg = V[n DIV 2, 128];
return vreg<base+63:base>;

// D[] - assignment form
// =====================

D[integer n] = bits(64) value
assert n >= 0 && n <= 31;
base = (n MOD 2) * 64;
bits(128) vreg = V[n DIV 2, 128];
vreg<base+63:base> = value;
V[n DIV 2, 128] = vreg;
return;

Library pseudocode for aarch32/functions/registers/Din

// Din[] - non-assignment form
// ===========================

bits(64) Din[integer n]
assert n >= 0 && n <= 31;
return _Dclone[n];

Library pseudocode for aarch32/functions/registers/LR

// LR - assignment form
// ====================

LR = bits(32) value
R[14] = value;
return;

// LR - non-assignment form
// ========================

bits(32) LR
return R[14];

Library pseudocode for aarch32/functions/registers/LoadWritePC

// LoadWritePC()
// =============

LoadWritePC(bits(32) address)
BXWritePC(address, BranchType_INDIR);

Shared Pseudocode Functions Page 1475

Library pseudocode for aarch32/functions/registers/LookUpRIndex

// LookUpRIndex()
// ==============

integer LookUpRIndex(integer n, bits(5) mode)
assert n >= 0 && n <= 14;

integer result;
case n of // Select index by mode: usr fiq irq svc abt und hyp

when 8 result = RBankSelect(mode, 8, 24, 8, 8, 8, 8, 8);
when 9 result = RBankSelect(mode, 9, 25, 9, 9, 9, 9, 9);
when 10 result = RBankSelect(mode, 10, 26, 10, 10, 10, 10, 10);
when 11 result = RBankSelect(mode, 11, 27, 11, 11, 11, 11, 11);
when 12 result = RBankSelect(mode, 12, 28, 12, 12, 12, 12, 12);
when 13 result = RBankSelect(mode, 13, 29, 17, 19, 21, 23, 15);
when 14 result = RBankSelect(mode, 14, 30, 16, 18, 20, 22, 14);
otherwise result = n;

return result;

Library pseudocode for aarch32/functions/registers/Monitor_mode_registers

bits(32) SP_mon;
bits(32) LR_mon;

Library pseudocode for aarch32/functions/registers/PC

// PC - non-assignment form
// ========================

bits(32) PC
return R[15]; // This includes the offset from AArch32 state

Library pseudocode for aarch32/functions/registers/PCStoreValue

// PCStoreValue()
// ==============

bits(32) PCStoreValue()
// This function returns the PC value. On architecture versions before Armv7, it
// is permitted to instead return PC+4, provided it does so consistently. It is
// used only to describe A32 instructions, so it returns the address of the current
// instruction plus 8 (normally) or 12 (when the alternative is permitted).
return PC;

Library pseudocode for aarch32/functions/registers/Q

// Q[] - non-assignment form
// =========================

bits(128) Q[integer n]
assert n >= 0 && n <= 15;
return V[n, 128];

// Q[] - assignment form
// =====================

Q[integer n] = bits(128) value
assert n >= 0 && n <= 15;
V[n, 128] = value;
return;

Shared Pseudocode Functions Page 1476

Library pseudocode for aarch32/functions/registers/Qin

// Qin[] - non-assignment form
// ===========================

bits(128) Qin[integer n]
assert n >= 0 && n <= 15;
return Din[2*n+1]:Din[2*n];

Library pseudocode for aarch32/functions/registers/R

// R[] - assignment form
// =====================

R[integer n] = bits(32) value
Rmode[n, PSTATE.M] = value;
return;

// R[] - non-assignment form
// =========================

bits(32) R[integer n]
if n == 15 then

offset = (if CurrentInstrSet() == InstrSet_A32 then 8 else 4);
return _PC<31:0> + offset;

else
return Rmode[n, PSTATE.M];

Library pseudocode for aarch32/functions/registers/RBankSelect

// RBankSelect()
// =============

integer RBankSelect(bits(5) mode, integer usr, integer fiq, integer irq,
integer svc, integer abt, integer und, integer hyp)

integer result;
case mode of

when M32_User result = usr; // User mode
when M32_FIQ result = fiq; // FIQ mode
when M32_IRQ result = irq; // IRQ mode
when M32_Svc result = svc; // Supervisor mode
when M32_Abort result = abt; // Abort mode
when M32_Hyp result = hyp; // Hyp mode
when M32_Undef result = und; // Undefined mode
when M32_System result = usr; // System mode uses User mode registers
otherwise Unreachable(); // Monitor mode

return result;

Shared Pseudocode Functions Page 1477

Library pseudocode for aarch32/functions/registers/Rmode

// Rmode[] - non-assignment form
// =============================

bits(32) Rmode[integer n, bits(5) mode]
assert n >= 0 && n <= 14;

// Check for attempted use of Monitor mode in Non-secure state.
if CurrentSecurityState() != SS_Secure then assert mode != M32_Monitor;
assert !BadMode(mode);

if mode == M32_Monitor then
if n == 13 then return SP_mon;
elsif n == 14 then return LR_mon;
else return _R[n]<31:0>;

else
return _R[LookUpRIndex(n, mode)]<31:0>;

// Rmode[] - assignment form
// =========================

Rmode[integer n, bits(5) mode] = bits(32) value
assert n >= 0 && n <= 14;

// Check for attempted use of Monitor mode in Non-secure state.
if CurrentSecurityState() != SS_Secure then assert mode != M32_Monitor;
assert !BadMode(mode);

if mode == M32_Monitor then
if n == 13 then SP_mon = value;
elsif n == 14 then LR_mon = value;
else _R[n]<31:0> = value;

else
// It is CONSTRAINED UNPREDICTABLE whether the upper 32 bits of the X
// register are unchanged or set to zero. This is also tested for on
// exception entry, as this applies to all AArch32 registers.
if HaveAArch64() && ConstrainUnpredictableBool(Unpredictable_ZEROUPPER) then

_R[LookUpRIndex(n, mode)] = ZeroExtend(value, 64);
else

_R[LookUpRIndex(n, mode)]<31:0> = value;

return;

Library pseudocode for aarch32/functions/registers/S

// S[] - non-assignment form
// =========================

bits(32) S[integer n]
assert n >= 0 && n <= 31;
base = (n MOD 4) * 32;
bits(128) vreg = V[n DIV 4, 128];
return vreg<base+31:base>;

// S[] - assignment form
// =====================

S[integer n] = bits(32) value
assert n >= 0 && n <= 31;
base = (n MOD 4) * 32;
bits(128) vreg = V[n DIV 4, 128];
vreg<base+31:base> = value;
V[n DIV 4, 128] = vreg;
return;

Shared Pseudocode Functions Page 1478

Library pseudocode for aarch32/functions/registers/_Dclone

// _Dclone[]
// =========
// Clone the 64-bit Advanced SIMD and VFP extension register bank for use as input to
// instruction pseudocode, to avoid read-after-write for Advanced SIMD and VFP operations.

array bits(64) _Dclone[0..31];

Library pseudocode for aarch32/functions/system/AArch32.ExceptionReturn

// AArch32.ExceptionReturn()
// =========================

AArch32.ExceptionReturn(bits(32) new_pc_in, bits(32) spsr)
bits(32) new_pc = new_pc_in;
SynchronizeContext();
// Attempts to change to an illegal mode or state will invoke the Illegal Execution state
// mechanism
SetPSTATEFromPSR(spsr);
ClearExclusiveLocal(ProcessorID());
SendEventLocal();

if PSTATE.IL == '1' then
// If the exception return is illegal, PC[1:0] are UNKNOWN
new_pc<1:0> = bits(2) UNKNOWN;

else
// LR[1:0] or LR[0] are treated as being 0, depending on the target instruction set state
if PSTATE.T == '1' then

new_pc<0> = '0'; // T32
else

new_pc<1:0> = '00'; // A32

boolean branch_conditional = !(AArch32.CurrentCond() IN {'111x'});
BranchTo(new_pc, BranchType_ERET, branch_conditional);

CheckExceptionCatch(FALSE); // Check for debug event on exception return

Library pseudocode for aarch32/functions/system/AArch32.ExecutingCP10or11Instr

// AArch32.ExecutingCP10or11Instr()
// ================================

boolean AArch32.ExecutingCP10or11Instr()
instr = ThisInstr();
instr_set = CurrentInstrSet();
assert instr_set IN {InstrSet_A32, InstrSet_T32};

if instr_set == InstrSet_A32 then
return ((instr<27:24> == '1110' || instr<27:25> == '110') && instr<11:8> IN {'101x'});

else // InstrSet_T32
return (instr<31:28> IN {'111x'} && (instr<27:24> == '1110' || instr<27:25> == '110') &&

instr<11:8> IN {'101x'});

Library pseudocode for aarch32/functions/system/AArch32.ITAdvance

// AArch32.ITAdvance()
// ===================

AArch32.ITAdvance()
if PSTATE.IT<2:0> == '000' then

PSTATE.IT = '00000000';
else

PSTATE.IT<4:0> = LSL(PSTATE.IT<4:0>, 1);
return;

Shared Pseudocode Functions Page 1479

Library pseudocode for aarch32/functions/system/AArch32.SysRegRead

// AArch32.SysRegRead()
// ====================
// Read from a 32-bit AArch32 System register and write the register's contents to R[t].

AArch32.SysRegRead(integer cp_num, bits(32) instr, integer t);

Library pseudocode for aarch32/functions/system/AArch32.SysRegRead64

// AArch32.SysRegRead64()
// ======================
// Read from a 64-bit AArch32 System register and write the register's contents to R[t] and R[t2].

AArch32.SysRegRead64(integer cp_num, bits(32) instr, integer t, integer t2);

Library pseudocode for aarch32/functions/system/AArch32.SysRegReadCanWriteAPSR

// AArch32.SysRegReadCanWriteAPSR()
// ================================
// Determines whether the AArch32 System register read instruction can write to APSR flags.

boolean AArch32.SysRegReadCanWriteAPSR(integer cp_num, bits(32) instr)
assert UsingAArch32();
assert (cp_num IN {14,15});
assert cp_num == UInt(instr<11:8>);

opc1 = UInt(instr<23:21>);
opc2 = UInt(instr<7:5>);
CRn = UInt(instr<19:16>);
CRm = UInt(instr<3:0>);

if cp_num == 14 && opc1 == 0 && CRn == 0 && CRm == 1 && opc2 == 0 then // DBGDSCRint
return TRUE;

return FALSE;

Library pseudocode for aarch32/functions/system/AArch32.SysRegWrite

// AArch32.SysRegWrite()
// =====================
// Read the contents of R[t] and write to a 32-bit AArch32 System register.

AArch32.SysRegWrite(integer cp_num, bits(32) instr, integer t);

Library pseudocode for aarch32/functions/system/AArch32.SysRegWrite64

// AArch32.SysRegWrite64()
// =======================
// Read the contents of R[t] and R[t2] and write to a 64-bit AArch32 System register.

AArch32.SysRegWrite64(integer cp_num, bits(32) instr, integer t, integer t2);

Library pseudocode for aarch32/functions/system/AArch32.SysRegWriteM

// AArch32.SysRegWriteM()
// ======================
// Read a value from a virtual address and write it to an AArch32 System register.

AArch32.SysRegWriteM(integer cp_num, bits(32) instr, bits(32) address);

Shared Pseudocode Functions Page 1480

Library pseudocode for aarch32/functions/system/AArch32.WriteMode

// AArch32.WriteMode()
// ===================
// Function for dealing with writes to PSTATE.M from AArch32 state only.
// This ensures that PSTATE.EL and PSTATE.SP are always valid.

AArch32.WriteMode(bits(5) mode)
(valid,el) = ELFromM32(mode);
assert valid;
PSTATE.M = mode;
PSTATE.EL = el;
PSTATE.nRW = '1';
PSTATE.SP = (if mode IN {M32_User,M32_System} then '0' else '1');
return;

Library pseudocode for aarch32/functions/system/AArch32.WriteModeByInstr

// AArch32.WriteModeByInstr()
// ==========================
// Function for dealing with writes to PSTATE.M from an AArch32 instruction, and ensuring that
// illegal state changes are correctly flagged in PSTATE.IL.

AArch32.WriteModeByInstr(bits(5) mode)
(valid,el) = ELFromM32(mode);

// 'valid' is set to FALSE if' mode' is invalid for this implementation or the current value
// of SCR.NS/SCR_EL3.NS. Additionally, it is illegal for an instruction to write 'mode' to
// PSTATE.EL if it would result in any of:
// * A change to a mode that would cause entry to a higher Exception level.
if UInt(el) > UInt(PSTATE.EL) then

valid = FALSE;

// * A change to or from Hyp mode.
if (PSTATE.M == M32_Hyp || mode == M32_Hyp) && PSTATE.M != mode then

valid = FALSE;

// * When EL2 is implemented, the value of HCR.TGE is '1', a change to a Non-secure EL1 mode.
if PSTATE.M == M32_Monitor && HaveEL(EL2) && el == EL1 && SCR.NS == '1' && HCR.TGE == '1' then

valid = FALSE;

if !valid then
PSTATE.IL = '1';

else
AArch32.WriteMode(mode);

Shared Pseudocode Functions Page 1481

Library pseudocode for aarch32/functions/system/BadMode

// BadMode()
// =========

boolean BadMode(bits(5) mode)
// Return TRUE if 'mode' encodes a mode that is not valid for this implementation
boolean valid;
case mode of

when M32_Monitor
valid = HaveAArch32EL(EL3);

when M32_Hyp
valid = HaveAArch32EL(EL2);

when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System
// If EL3 is implemented and using AArch32, then these modes are EL3 modes in Secure
// state, and EL1 modes in Non-secure state. If EL3 is not implemented or is using
// AArch64, then these modes are EL1 modes.
// Therefore it is sufficient to test this implementation supports EL1 using AArch32.
valid = HaveAArch32EL(EL1);

when M32_User
valid = HaveAArch32EL(EL0);

otherwise
valid = FALSE; // Passed an illegal mode value

return !valid;

Library pseudocode for aarch32/functions/system/BankedRegisterAccessValid

// BankedRegisterAccessValid()
// ===========================
// Checks for MRS (Banked register) or MSR (Banked register) accesses to registers
// other than the SPSRs that are invalid. This includes ELR_hyp accesses.

BankedRegisterAccessValid(bits(5) SYSm, bits(5) mode)

case SYSm of
when '000xx', '00100' // R8_usr to R12_usr

if mode != M32_FIQ then UNPREDICTABLE;
when '00101' // SP_usr

if mode == M32_System then UNPREDICTABLE;
when '00110' // LR_usr

if mode IN {M32_Hyp,M32_System} then UNPREDICTABLE;
when '010xx', '0110x', '01110' // R8_fiq to R12_fiq, SP_fiq, LR_fiq

if mode == M32_FIQ then UNPREDICTABLE;
when '1000x' // LR_irq, SP_irq

if mode == M32_IRQ then UNPREDICTABLE;
when '1001x' // LR_svc, SP_svc

if mode == M32_Svc then UNPREDICTABLE;
when '1010x' // LR_abt, SP_abt

if mode == M32_Abort then UNPREDICTABLE;
when '1011x' // LR_und, SP_und

if mode == M32_Undef then UNPREDICTABLE;
when '1110x' // LR_mon, SP_mon

if (!HaveEL(EL3) || CurrentSecurityState() != SS_Secure ||
mode == M32_Monitor) then UNPREDICTABLE;

when '11110' // ELR_hyp, only from Monitor or Hyp mode
if !HaveEL(EL2) || !(mode IN {M32_Monitor,M32_Hyp}) then UNPREDICTABLE;

when '11111' // SP_hyp, only from Monitor mode
if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;

otherwise
UNPREDICTABLE;

return;

Shared Pseudocode Functions Page 1482

Library pseudocode for aarch32/functions/system/CPSRWriteByInstr

// CPSRWriteByInstr()
// ==================
// Update PSTATE.<N,Z,C,V,Q,GE,E,A,I,F,M> from a CPSR value written by an MSR instruction.

CPSRWriteByInstr(bits(32) value, bits(4) bytemask)
privileged = PSTATE.EL != EL0; // PSTATE.<A,I,F,M> are not writable at EL0

// Write PSTATE from 'value', ignoring bytes masked by 'bytemask'
if bytemask<3> == '1' then

PSTATE.<N,Z,C,V,Q> = value<31:27>;
// Bits <26:24> are ignored

if bytemask<2> == '1' then
if HaveSSBSExt() then

PSTATE.SSBS = value<23>;
if privileged then

PSTATE.PAN = value<22>;
if HaveDITExt() then

PSTATE.DIT = value<21>;
// Bit <20> is RES0
PSTATE.GE = value<19:16>;

if bytemask<1> == '1' then
// Bits <15:10> are RES0
PSTATE.E = value<9>; // PSTATE.E is writable at EL0
if privileged then

PSTATE.A = value<8>;

if bytemask<0> == '1' then
if privileged then

PSTATE.<I,F> = value<7:6>;
// Bit <5> is RES0
// AArch32.WriteModeByInstr() sets PSTATE.IL to 1 if this is an illegal mode change.
AArch32.WriteModeByInstr(value<4:0>);

return;

Library pseudocode for aarch32/functions/system/ConditionPassed

// ConditionPassed()
// =================

boolean ConditionPassed()
return ConditionHolds(AArch32.CurrentCond());

Library pseudocode for aarch32/functions/system/CurrentCond

// CurrentCond()
// =============

bits(4) AArch32.CurrentCond();

Library pseudocode for aarch32/functions/system/InITBlock

// InITBlock()
// ===========

boolean InITBlock()
if CurrentInstrSet() == InstrSet_T32 then

return PSTATE.IT<3:0> != '0000';
else

return FALSE;

Shared Pseudocode Functions Page 1483

Library pseudocode for aarch32/functions/system/LastInITBlock

// LastInITBlock()
// ===============

boolean LastInITBlock()
return (PSTATE.IT<3:0> == '1000');

Library pseudocode for aarch32/functions/system/SPSRWriteByInstr

// SPSRWriteByInstr()
// ==================

SPSRWriteByInstr(bits(32) value, bits(4) bytemask)

bits(32) new_spsr = SPSR_curr[];

if bytemask<3> == '1' then
new_spsr<31:24> = value<31:24>; // N,Z,C,V,Q flags, IT[1:0],J bits

if bytemask<2> == '1' then
new_spsr<23:16> = value<23:16>; // IL bit, GE[3:0] flags

if bytemask<1> == '1' then
new_spsr<15:8> = value<15:8>; // IT[7:2] bits, E bit, A interrupt mask

if bytemask<0> == '1' then
new_spsr<7:0> = value<7:0>; // I,F interrupt masks, T bit, Mode bits

SPSR_curr[] = new_spsr; // UNPREDICTABLE if User or System mode

return;

Library pseudocode for aarch32/functions/system/SPSRaccessValid

// SPSRaccessValid()
// =================
// Checks for MRS (Banked register) or MSR (Banked register) accesses to the SPSRs
// that are UNPREDICTABLE

SPSRaccessValid(bits(5) SYSm, bits(5) mode)
case SYSm of

when '01110' // SPSR_fiq
if mode == M32_FIQ then UNPREDICTABLE;

when '10000' // SPSR_irq
if mode == M32_IRQ then UNPREDICTABLE;

when '10010' // SPSR_svc
if mode == M32_Svc then UNPREDICTABLE;

when '10100' // SPSR_abt
if mode == M32_Abort then UNPREDICTABLE;

when '10110' // SPSR_und
if mode == M32_Undef then UNPREDICTABLE;

when '11100' // SPSR_mon
if (!HaveEL(EL3) || mode == M32_Monitor ||

CurrentSecurityState() != SS_Secure) then UNPREDICTABLE;
when '11110' // SPSR_hyp

if !HaveEL(EL2) || mode != M32_Monitor then UNPREDICTABLE;
otherwise

UNPREDICTABLE;

return;

Shared Pseudocode Functions Page 1484

Library pseudocode for aarch32/functions/system/SelectInstrSet

// SelectInstrSet()
// ================

SelectInstrSet(InstrSet iset)
assert CurrentInstrSet() IN {InstrSet_A32, InstrSet_T32};
assert iset IN {InstrSet_A32, InstrSet_T32};

PSTATE.T = if iset == InstrSet_A32 then '0' else '1';

return;

Library pseudocode for aarch32/functions/tlbi/AArch32.DTLBI_ALL

// AArch32.DTLBI_ALL()
// ===================
// Invalidate all data TLB entries for the indicated translation regime with the
// the indicated security state for all TLBs within the indicated shareability domain.
// Invalidation applies to all applicable stage 1 and stage 2 entries.

AArch32.DTLBI_ALL(SecurityState security, Regime regime, Shareability shareability,
TLBIMemAttr attr)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_DALL;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch32/functions/tlbi/AArch32.DTLBI_ASID

// AArch32.DTLBI_ASID()
// ====================
// Invalidate all data TLB stage 1 entries matching the indicated VMID (where regime supports)
// and ASID in the parameter Rt in the indicated translation regime with the
// indicated security state for all TLBs within the indicated shareability domain.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch32.DTLBI_ASID(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_DASID;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = TLBILevel_Any;
r.attr = attr;
r.asid = Zeros(8) : Rt<7:0>;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1485

Library pseudocode for aarch32/functions/tlbi/AArch32.DTLBI_VA

// AArch32.DTLBI_VA()
// ==================
// Invalidate by VA all stage 1 data TLB entries in the indicated shareability domain
// matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
// with the indicated security state.
// ASID, VA and related parameters are derived from Rt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch32.DTLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_DVA;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.asid = Zeros(8) : Rt<7:0>;
r.address = Zeros(32) : Rt<31:12> : Zeros(12);

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch32/functions/tlbi/AArch32.ITLBI_ALL

// AArch32.ITLBI_ALL()
// ===================
// Invalidate all instruction TLB entries for the indicated translation regime with the
// the indicated security state for all TLBs within the indicated shareability domain.
// Invalidation applies to all applicable stage 1 and stage 2 entries.

AArch32.ITLBI_ALL(SecurityState security, Regime regime, Shareability shareability,
TLBIMemAttr attr)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_IALL;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1486

Library pseudocode for aarch32/functions/tlbi/AArch32.ITLBI_ASID

// AArch32.ITLBI_ASID()
// ====================
// Invalidate all instruction TLB stage 1 entries matching the indicated VMID
// (where regime supports) and ASID in the parameter Rt in the indicated translation
// regime with the indicated security state for all TLBs within the indicated shareability domain.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch32.ITLBI_ASID(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_IASID;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = TLBILevel_Any;
r.attr = attr;
r.asid = Zeros(8) : Rt<7:0>;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch32/functions/tlbi/AArch32.ITLBI_VA

// AArch32.ITLBI_VA()
// ==================
// Invalidate by VA all stage 1 instruction TLB entries in the indicated shareability domain
// matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
// with the indicated security state.
// ASID, VA and related parameters are derived from Rt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch32.ITLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_IVA;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.asid = Zeros(8) : Rt<7:0>;
r.address = Zeros(32) : Rt<31:12> : Zeros(12);

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1487

Library pseudocode for aarch32/functions/tlbi/AArch32.TLBI_ALL

// AArch32.TLBI_ALL()
// ==================
// Invalidate all entries for the indicated translation regime with the
// the indicated security state for all TLBs within the indicated shareability domain.
// Invalidation applies to all applicable stage 1 and stage 2 entries.

AArch32.TLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
assert PSTATE.EL IN {EL3, EL2};

TLBIRecord r;
r.op = TLBIOp_ALL;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch32/functions/tlbi/AArch32.TLBI_ASID

// AArch32.TLBI_ASID()
// ===================
// Invalidate all stage 1 entries matching the indicated VMID (where regime supports)
// and ASID in the parameter Rt in the indicated translation regime with the
// indicated security state for all TLBs within the indicated shareability domain.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch32.TLBI_ASID(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_ASID;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = TLBILevel_Any;
r.attr = attr;
r.asid = Zeros(8) : Rt<7:0>;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1488

Library pseudocode for aarch32/functions/tlbi/AArch32.TLBI_IPAS2

// AArch32.TLBI_IPAS2()
// ====================
// Invalidate by IPA all stage 2 only TLB entries in the indicated shareability
// domain matching the indicated VMID in the indicated regime with the indicated security state.
// Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
// IPA and related parameters of the are derived from Rt.

AArch32.TLBI_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2};
assert security == SS_NonSecure;

TLBIRecord r;
r.op = TLBIOp_IPAS2;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.address = Zeros(24) : Rt<27:0> : Zeros(12);
r.ipaspace = PAS_NonSecure;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch32/functions/tlbi/AArch32.TLBI_VA

// AArch32.TLBI_VA()
// =================
// Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
// matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
// with the indicated security state.
// ASID, VA and related parameters are derived from Rt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch32.TLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VA;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.asid = Zeros(8) : Rt<7:0>;
r.address = Zeros(32) : Rt<31:12> : Zeros(12);

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1489

Library pseudocode for aarch32/functions/tlbi/AArch32.TLBI_VAA

// AArch32.TLBI_VAA()
// ==================
// Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
// matching the indicated VMID (where regime supports VMID) and all ASID in the indicated regime
// with the indicated security state.
// VA and related parameters are derived from Rt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch32.TLBI_VAA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(32) Rt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VAA;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.address = Zeros(32) : Rt<31:12> : Zeros(12);

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch32/functions/tlbi/AArch32.TLBI_VMALL

// AArch32.TLBI_VMALL()
// ====================
// Invalidate all stage 1 entries for the indicated translation regime with the
// the indicated security state for all TLBs within the indicated shareability
// domain that match the indicated VMID (where applicable).
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// Note: stage 2 only entries are not in the scope of this operation.

AArch32.TLBI_VMALL(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VMALL;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.vmid = vmid;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1490

Library pseudocode for aarch32/functions/tlbi/AArch32.TLBI_VMALLS12

// AArch32.TLBI_VMALLS12()
// =======================
// Invalidate all stage 1 and stage 2 entries for the indicated translation
// regime with the indicated security state for all TLBs within the indicated
// shareability domain that match the indicated VMID.

AArch32.TLBI_VMALLS12(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr)

assert PSTATE.EL IN {EL3, EL2};

TLBIRecord r;
r.op = TLBIOp_VMALLS12;
r.from_aarch64 = FALSE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.vmid = vmid;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch32/functions/v6simd/Sat

// Sat()
// =====

bits(N) Sat(integer i, integer N, boolean unsigned)
result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
return result;

Library pseudocode for aarch32/functions/v6simd/SignedSat

// SignedSat()
// ===========

bits(N) SignedSat(integer i, integer N)
(result, -) = SignedSatQ(i, N);
return result;

Library pseudocode for aarch32/functions/v6simd/UnsignedSat

// UnsignedSat()
// =============

bits(N) UnsignedSat(integer i, integer N)
(result, -) = UnsignedSatQ(i, N);
return result;

Shared Pseudocode Functions Page 1491

Library pseudocode for aarch32/ic/AArch32.IC

// AArch32.IC()
// ============
// Perform Instruction Cache Operation.

AArch32.IC(CacheOpScope opscope)
regval = bits(32) UNKNOWN;
AArch32.IC(regval, opscope);

// AArch32.IC()
// ============
// Perform Instruction Cache Operation.

AArch32.IC(bits(32) regval, CacheOpScope opscope)
CacheRecord cache;

cache.acctype = AccessType_IC;
cache.cachetype = CacheType_Instruction;
cache.cacheop = CacheOp_Invalidate;
cache.opscope = opscope;
cache.security = SecurityStateAtEL(PSTATE.EL);

if opscope IN {CacheOpScope_ALLU, CacheOpScope_ALLUIS} then
if opscope == CacheOpScope_ALLUIS || (opscope == CacheOpScope_ALLU && PSTATE.EL == EL1

&& EL2Enabled() && HCR.FB == '1') then
cache.shareability = Shareability_ISH;

else
cache.shareability = Shareability_NSH;

cache.regval = ZeroExtend(regval, 64);
CACHE_OP(cache);

else
assert opscope == CacheOpScope_PoU;

if EL2Enabled() then
if PSTATE.EL IN {EL0, EL1} then

cache.is_vmid_valid = TRUE;
cache.vmid = VMID[];

else
cache.is_vmid_valid = FALSE;

else
cache.is_vmid_valid = FALSE;

if PSTATE.EL == EL0 then
cache.is_asid_valid = TRUE;
cache.asid = ASID[];

else
cache.is_asid_valid = FALSE;

need_translate = ICInstNeedsTranslation(opscope);

cache.shareability = Shareability_NSH;
cache.vaddress = ZeroExtend(regval, 64);
cache.translated = need_translate;

if !need_translate then
cache.paddress = FullAddress UNKNOWN;
CACHE_OP(cache);
return;

integer size = 0;
boolean aligned = TRUE;
AccessDescriptor accdesc = CreateAccDescIC(cache);
AddressDescriptor memaddrdesc = AArch32.TranslateAddress(regval, accdesc, aligned, size);
if IsFault(memaddrdesc) then

AArch32.Abort(regval, memaddrdesc.fault);

cache.paddress = memaddrdesc.paddress;
CACHE_OP(cache);

return;

Shared Pseudocode Functions Page 1492

Library pseudocode for aarch32/predictionrestrict/AArch32.RestrictPrediction

// AArch32.RestrictPrediction()
// ============================
// Clear all predictions in the context.

AArch32.RestrictPrediction(bits(32) val, RestrictType restriction)

ExecutionCntxt c;
target_el = val<25:24>;

// If the target EL is not implemented or the instruction is executed at an
// EL lower than the specified level, the instruction is treated as a NOP.
if !HaveEL(target_el) || UInt(target_el) > UInt(PSTATE.EL) then EndOfInstruction();

bit ns = val<26>;
bit nse = bit UNKNOWN;
ss = TargetSecurityState(ns, nse);

c.security = ss;
c.target_el = target_el;

if EL2Enabled() then
if PSTATE.EL IN {EL0, EL1} then

c.is_vmid_valid = TRUE;
c.all_vmid = FALSE;
c.vmid = VMID[];

elsif target_el IN {EL0, EL1} then
c.is_vmid_valid = TRUE;
c.all_vmid = val<27> == '1';
c.vmid = ZeroExtend(val<23:16>, 16); // Only valid if val<27> == '0';

else
c.is_vmid_valid = FALSE;

else
c.is_vmid_valid = FALSE;

if PSTATE.EL == EL0 then
c.is_asid_valid = TRUE;
c.all_asid = FALSE;
c.asid = ASID[];

elsif target_el == EL0 then
c.is_asid_valid = TRUE;
c.all_asid = val<8> == '1';
c.asid = ZeroExtend(val<7:0>, 16); // Only valid if val<8> == '0';

else
c.is_asid_valid = FALSE;

c.restriction = restriction;
RESTRICT_PREDICTIONS(c);

Shared Pseudocode Functions Page 1493

Library pseudocode for aarch32/translation/attrs/AArch32.DefaultTEXDecode

Shared Pseudocode Functions Page 1494

// AArch32.DefaultTEXDecode()
// ==========================
// Apply short-descriptor format memory region attributes, without TEX remap

MemoryAttributes AArch32.DefaultTEXDecode(bits(3) TEX_in, bit C_in, bit B_in, bit s)
MemoryAttributes memattrs;
bits(3) TEX = TEX_in;
bit C = C_in;
bit B = B_in;

// Reserved values map to allocated values
if (TEX == '001' && C:B == '01') || (TEX == '010' && C:B != '00') || TEX == '011' then

bits(5) texcb;
(-, texcb) = ConstrainUnpredictableBits(Unpredictable_RESTEXCB, 5);
TEX = texcb<4:2>; C = texcb<1>; B = texcb<0>;

// Distinction between Inner Shareable and Outer Shareable is not supported in this format
// A memory region is either Non-shareable or Outer Shareable
case TEX:C:B of

when '00000'
// Device-nGnRnE
memattrs.memtype = MemType_Device;
memattrs.device = DeviceType_nGnRnE;
memattrs.shareability = Shareability_OSH;

when '00001', '01000'
// Device-nGnRE
memattrs.memtype = MemType_Device;
memattrs.device = DeviceType_nGnRE;
memattrs.shareability = Shareability_OSH;

when '00010'
// Write-through Read allocate
memattrs.memtype = MemType_Normal;
memattrs.inner.attrs = MemAttr_WT;
memattrs.inner.hints = MemHint_RA;
memattrs.outer.attrs = MemAttr_WT;
memattrs.outer.hints = MemHint_RA;
memattrs.shareability = if s == '1' then Shareability_OSH else Shareability_NSH;

when '00011'
// Write-back Read allocate
memattrs.memtype = MemType_Normal;
memattrs.inner.attrs = MemAttr_WB;
memattrs.inner.hints = MemHint_RA;
memattrs.outer.attrs = MemAttr_WB;
memattrs.outer.hints = MemHint_RA;
memattrs.shareability = if s == '1' then Shareability_OSH else Shareability_NSH;

when '00100'
// Non-cacheable
memattrs.memtype = MemType_Normal;
memattrs.inner.attrs = MemAttr_NC;
memattrs.outer.attrs = MemAttr_NC;
memattrs.shareability = Shareability_OSH;

when '00110'
memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;

when '00111'
// Write-back Read and Write allocate
memattrs.memtype = MemType_Normal;
memattrs.inner.attrs = MemAttr_WB;
memattrs.inner.hints = MemHint_RWA;
memattrs.outer.attrs = MemAttr_WB;
memattrs.outer.hints = MemHint_RWA;
memattrs.shareability = if s == '1' then Shareability_OSH else Shareability_NSH;

when '1xxxx'
// Cacheable, TEX<1:0> = Outer attrs, {C,B} = Inner attrs
memattrs.memtype = MemType_Normal;
memattrs.inner = DecodeSDFAttr(C:B);
memattrs.outer = DecodeSDFAttr(TEX<1:0>);

if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then
memattrs.shareability = Shareability_OSH;

else

Shared Pseudocode Functions Page 1495

memattrs.shareability = if s == '1' then Shareability_OSH else Shareability_NSH;
otherwise

// Reserved, handled above
Unreachable();

// The Transient hint is not supported in this format
memattrs.inner.transient = FALSE;
memattrs.outer.transient = FALSE;
memattrs.tags = MemTag_Untagged;

if memattrs.inner.attrs == MemAttr_WB && memattrs.outer.attrs == MemAttr_WB then
memattrs.xs = '0';

else
memattrs.xs = '1';

return memattrs;

Library pseudocode for aarch32/translation/attrs/AArch32.MAIRAttr

// AArch32.MAIRAttr()
// ==================
// Retrieve the memory attribute encoding indexed in the given MAIR

bits(8) AArch32.MAIRAttr(integer index, MAIRType mair)
assert (index < 8);
bit_index = 8 * index;
return mair<bit_index+7:bit_index>;

Shared Pseudocode Functions Page 1496

Library pseudocode for aarch32/translation/attrs/AArch32.RemappedTEXDecode

// AArch32.RemappedTEXDecode()
// ===========================
// Apply short-descriptor format memory region attributes, with TEX remap

MemoryAttributes AArch32.RemappedTEXDecode(Regime regime, bits(3) TEX, bit C, bit B, bit s)

MemoryAttributes memattrs;
PRRR_Type prrr;
NMRR_Type nmrr;

region = UInt(TEX<0>:C:B); // TEX<2:1> are ignored in this mapping scheme
if region == 6 then

return MemoryAttributes IMPLEMENTATION_DEFINED;

if regime == Regime_EL30 then
prrr = PRRR_S;
nmrr = NMRR_S;

elsif HaveAArch32EL(EL3) then
prrr = PRRR_NS;
nmrr = NMRR_NS;

else
prrr = PRRR;
nmrr = NMRR;

base = 2 * region;
attrfield = prrr<base+1:base>;

if attrfield == '11' then // Reserved, maps to allocated value
(-, attrfield) = ConstrainUnpredictableBits(Unpredictable_RESPRRR, 2);

case attrfield of
when '00' // Device-nGnRnE

memattrs.memtype = MemType_Device;
memattrs.device = DeviceType_nGnRnE;
memattrs.shareability = Shareability_OSH;

when '01' // Device-nGnRE
memattrs.memtype = MemType_Device;
memattrs.device = DeviceType_nGnRE;
memattrs.shareability = Shareability_OSH;

when '10'
NSn = if s == '0' then prrr.NS0 else prrr.NS1;
NOSm = prrr<region+24> AND NSn;
IRn = nmrr<base+1:base>;
ORn = nmrr<base+17:base+16>;

memattrs.memtype = MemType_Normal;
memattrs.inner = DecodeSDFAttr(IRn);
memattrs.outer = DecodeSDFAttr(ORn);
if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then

memattrs.shareability = Shareability_OSH;
else

bits(2) sh = NSn:NOSm;
memattrs.shareability = DecodeShareability(sh);

when '11'
Unreachable();

// The Transient hint is not supported in this format
memattrs.inner.transient = FALSE;
memattrs.outer.transient = FALSE;
memattrs.tags = MemTag_Untagged;

if memattrs.inner.attrs == MemAttr_WB && memattrs.outer.attrs == MemAttr_WB then
memattrs.xs = '0';

else
memattrs.xs = '1';

return memattrs;

Shared Pseudocode Functions Page 1497

Library pseudocode for aarch32/translation/debug/AArch32.CheckBreakpoint

// AArch32.CheckBreakpoint()
// =========================
// Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
// translation regime, when either debug exceptions are enabled, or halting debug is enabled
// and halting is allowed.

FaultRecord AArch32.CheckBreakpoint(FaultRecord fault_in, bits(32) vaddress,
AccessDescriptor accdesc, integer size)

assert ELUsingAArch32(S1TranslationRegime());
assert size IN {2,4};

FaultRecord fault = fault_in;
match = FALSE;
mismatch = FALSE;

for i = 0 to NumBreakpointsImplemented() - 1
(match_i, mismatch_i) = AArch32.BreakpointMatch(i, vaddress, accdesc, size);
match = match || match_i;
mismatch = mismatch || mismatch_i;

if match && HaltOnBreakpointOrWatchpoint() then
reason = DebugHalt_Breakpoint;
Halt(reason);

elsif (match || mismatch) then
fault.statuscode = Fault_Debug;
fault.debugmoe = DebugException_Breakpoint;

return fault;

Library pseudocode for aarch32/translation/debug/AArch32.CheckDebug

// AArch32.CheckDebug()
// ====================
// Called on each access to check for a debug exception or entry to Debug state.

FaultRecord AArch32.CheckDebug(bits(32) vaddress, AccessDescriptor accdesc, integer size)

FaultRecord fault = NoFault(accdesc);

boolean d_side = (IsDataAccess(accdesc.acctype) || accdesc.acctype == AccessType_DC);
boolean i_side = (accdesc.acctype == AccessType_IFETCH);
generate_exception = AArch32.GenerateDebugExceptions() && DBGDSCRext.MDBGen == '1';
halt = HaltOnBreakpointOrWatchpoint();
// Relative priority of Vector Catch and Breakpoint exceptions not defined in the architecture
vector_catch_first = ConstrainUnpredictableBool(Unpredictable_BPVECTORCATCHPRI);

if i_side && vector_catch_first && generate_exception then
fault = AArch32.CheckVectorCatch(fault, vaddress, size);

if fault.statuscode == Fault_None && (generate_exception || halt) then
if d_side then

fault = AArch32.CheckWatchpoint(fault, vaddress, accdesc, size);
elsif i_side then

fault = AArch32.CheckBreakpoint(fault, vaddress, accdesc, size);

if fault.statuscode == Fault_None && i_side && !vector_catch_first && generate_exception then
return AArch32.CheckVectorCatch(fault, vaddress, size);

return fault;

Shared Pseudocode Functions Page 1498

Library pseudocode for aarch32/translation/debug/AArch32.CheckVectorCatch

// AArch32.CheckVectorCatch()
// ==========================
// Called before executing the instruction of length "size" bytes at "vaddress" in an AArch32
// translation regime, when debug exceptions are enabled.

FaultRecord AArch32.CheckVectorCatch(FaultRecord fault_in, bits(32) vaddress, integer size)
assert ELUsingAArch32(S1TranslationRegime());

FaultRecord fault = fault_in;
match = AArch32.VCRMatch(vaddress);
if size == 4 && !match && AArch32.VCRMatch(vaddress + 2) then

match = ConstrainUnpredictableBool(Unpredictable_VCMATCHHALF);

if match then
fault.statuscode = Fault_Debug;
fault.debugmoe = DebugException_VectorCatch;

return fault;

Library pseudocode for aarch32/translation/debug/AArch32.CheckWatchpoint

// AArch32.CheckWatchpoint()
// =========================
// Called before accessing the memory location of "size" bytes at "address",
// when either debug exceptions are enabled for the access, or halting debug
// is enabled and halting is allowed.

FaultRecord AArch32.CheckWatchpoint(FaultRecord fault_in, bits(32) vaddress,
AccessDescriptor accdesc, integer size)

assert ELUsingAArch32(S1TranslationRegime());
FaultRecord fault = fault_in;

if accdesc.acctype == AccessType_DC then
if accdesc.cacheop != CacheOp_Invalidate then

return fault;
elsif !(boolean IMPLEMENTATION_DEFINED "DCIMVAC generates watchpoint") then

return fault;
elsif !IsDataAccess(accdesc.acctype) then

return fault;

match = FALSE;
for i = 0 to NumWatchpointsImplemented() - 1

if AArch32.WatchpointMatch(i, vaddress, size, accdesc) then
match = TRUE;

if match && HaltOnBreakpointOrWatchpoint() then
reason = DebugHalt_Watchpoint;
EDWAR = ZeroExtend(vaddress, 64);
Halt(reason);

elsif match then
fault.statuscode = Fault_Debug;
fault.debugmoe = DebugException_Watchpoint;

return fault;

Library pseudocode for aarch32/translation/faults/AArch32.IPAIsOutOfRange

// AArch32.IPAIsOutOfRange()
// =========================
// Check intermediate physical address bits not resolved by translation are ZERO

boolean AArch32.IPAIsOutOfRange(S2TTWParams walkparams, bits(40) ipa)
// Input Address size
iasize = AArch32.S2IASize(walkparams.t0sz);

return iasize < 40 && !IsZero(ipa<39:iasize>);

Shared Pseudocode Functions Page 1499

Library pseudocode for aarch32/translation/faults/AArch32.S1HasAlignmentFault

// AArch32.S1HasAlignmentFault()
// =============================
// Returns whether stage 1 output fails alignment requirement on data accesses
// to Device memory

boolean AArch32.S1HasAlignmentFault(AccessDescriptor accdesc, boolean aligned,
bit ntlsmd, MemoryAttributes memattrs)

if accdesc.acctype == AccessType_IFETCH then
return FALSE;

elsif accdesc.a32lsmd && ntlsmd == '0' then
return memattrs.memtype == MemType_Device && memattrs.device != DeviceType_GRE;

elsif accdesc.acctype == AccessType_DCZero then
return memattrs.memtype == MemType_Device;

else
return memattrs.memtype == MemType_Device && !aligned;

Shared Pseudocode Functions Page 1500

Library pseudocode for aarch32/translation/faults/AArch32.S1LDHasPermissionsFault

// AArch32.S1LDHasPermissionsFault()
// =================================
// Returns whether an access using stage 1 long-descriptor translation
// violates permissions of target memory

boolean AArch32.S1LDHasPermissionsFault(Regime regime, S1TTWParams walkparams, Permissions perms,
MemType memtype, PASpace paspace, AccessDescriptor accdesc)

bit r, w, x;
bit pr, pw;
bit ur, uw;
bit xn;
if HasUnprivileged(regime) then

// Apply leaf permissions
case perms.ap<2:1> of

when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // R/W at PL1 only
when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // R/W at any PL
when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // RO at PL1 only
when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL

// Apply hierarchical permissions
case perms.ap_table of

when '00' (pr,pw,ur,uw) = (pr, pw, ur, uw); // No effect
when '01' (pr,pw,ur,uw) = (pr, pw,'0','0'); // Privileged access
when '10' (pr,pw,ur,uw) = (pr,'0', ur,'0'); // Read-only
when '11' (pr,pw,ur,uw) = (pr,'0','0','0'); // Read-only, privileged access

xn = perms.xn OR perms.xn_table;
pxn = perms.pxn OR perms.pxn_table;

ux = ur AND NOT(xn OR (uw AND walkparams.wxn));
px = pr AND NOT(xn OR pxn OR (pw AND walkparams.wxn) OR (uw AND walkparams.uwxn));

if HavePANExt() && accdesc.pan then
pan = PSTATE.PAN AND (ur OR uw);
pr = pr AND NOT(pan);
pw = pw AND NOT(pan);

(r,w,x) = if accdesc.el == EL0 then (ur,uw,ux) else (pr,pw,px);

// Prevent execution from Non-secure space by PE in Secure state if SIF is set
if accdesc.ss == SS_Secure && paspace == PAS_NonSecure then

x = x AND NOT(walkparams.sif);
else

// Apply leaf permissions
case perms.ap<2> of

when '0' (r,w) = ('1','1'); // No effect
when '1' (r,w) = ('1','0'); // Read-only

// Apply hierarchical permissions
case perms.ap_table<1> of

when '0' (r,w) = (r , w); // No effect
when '1' (r,w) = (r ,'0'); // Read-only

xn = perms.xn OR perms.xn_table;
x = NOT(xn OR (w AND walkparams.wxn));

if accdesc.acctype == AccessType_IFETCH then
constraint = ConstrainUnpredictable(Unpredictable_INSTRDEVICE);
if constraint == Constraint_FAULT && memtype == MemType_Device then

return TRUE;
else

return x == '0';
elsif accdesc.acctype IN {AccessType_IC, AccessType_DC} then

return FALSE;
elsif accdesc.write then

return w == '0';
else

return r == '0';

Shared Pseudocode Functions Page 1501

Library pseudocode for aarch32/translation/faults/AArch32.S1SDHasPermissionsFault

// AArch32.S1SDHasPermissionsFault()
// =================================
// Returns whether an access using stage 1 short-descriptor translation
// violates permissions of target memory

boolean AArch32.S1SDHasPermissionsFault(Regime regime, Permissions perms_in, MemType memtype,
PASpace paspace, AccessDescriptor accdesc)

Permissions perms = perms_in;
bit pr, pw;
bit ur, uw;
SCTLR_Type sctlr;
if regime == Regime_EL30 then

sctlr = SCTLR_S;
elsif HaveAArch32EL(EL3) then

sctlr = SCTLR_NS;
else

sctlr = SCTLR;

if sctlr.AFE == '0' then
// Map Reserved encoding '100'
if perms.ap == '100' then

perms.ap = bits(3) IMPLEMENTATION_DEFINED "Reserved short descriptor AP encoding";

case perms.ap of
when '000' (pr,pw,ur,uw) = ('0','0','0','0'); // No access
when '001' (pr,pw,ur,uw) = ('1','1','0','0'); // R/W at PL1 only
when '010' (pr,pw,ur,uw) = ('1','1','1','0'); // R/W at PL1, RO at PL0
when '011' (pr,pw,ur,uw) = ('1','1','1','1'); // R/W at any PL
// '100' is reserved
when '101' (pr,pw,ur,uw) = ('1','0','0','0'); // RO at PL1 only
when '110' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL (deprecated)
when '111' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL

else // Simplified access permissions model
case perms.ap<2:1> of

when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // R/W at PL1 only
when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // R/W at any PL
when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // RO at PL1 only
when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // RO at any PL

ux = ur AND NOT(perms.xn OR (uw AND sctlr.WXN));
px = pr AND NOT(perms.xn OR perms.pxn OR (pw AND sctlr.WXN) OR (uw AND sctlr.UWXN));

if HavePANExt() && accdesc.pan then
pan = PSTATE.PAN AND (ur OR uw);
pr = pr AND NOT(pan);
pw = pw AND NOT(pan);

(r,w,x) = if accdesc.el == EL0 then (ur,uw,ux) else (pr,pw,px);

// Prevent execution from Non-secure space by PE in Secure state if SIF is set
if accdesc.ss == SS_Secure && paspace == PAS_NonSecure then

x = x AND NOT(if ELUsingAArch32(EL3) then SCR.SIF else SCR_EL3.SIF);

if accdesc.acctype == AccessType_IFETCH then
if (memtype == MemType_Device &&

ConstrainUnpredictable(Unpredictable_INSTRDEVICE) == Constraint_FAULT) then
return TRUE;

else
return x == '0';

elsif accdesc.acctype IN {AccessType_IC, AccessType_DC} then
return FALSE;

elsif accdesc.write then
return w == '0';

else
return r == '0';

Shared Pseudocode Functions Page 1502

Library pseudocode for aarch32/translation/faults/AArch32.S2HasAlignmentFault

// AArch32.S2HasAlignmentFault()
// =============================
// Returns whether stage 2 output fails alignment requirement on data accesses
// to Device memory

boolean AArch32.S2HasAlignmentFault(AccessDescriptor accdesc, boolean aligned,
MemoryAttributes memattrs)

if accdesc.acctype == AccessType_IFETCH then
return FALSE;

elsif accdesc.acctype == AccessType_DCZero then
return memattrs.memtype == MemType_Device;

else
return memattrs.memtype == MemType_Device && !aligned;

Library pseudocode for aarch32/translation/faults/AArch32.S2HasPermissionsFault

// AArch32.S2HasPermissionsFault()
// ===============================
// Returns whether stage 2 access violates permissions of target memory

boolean AArch32.S2HasPermissionsFault(S2TTWParams walkparams, Permissions perms, MemType memtype,
AccessDescriptor accdesc)

bit px;
bit ux;
r = perms.s2ap<0>;
w = perms.s2ap<1>;
bit x;
if HaveExtendedExecuteNeverExt() then

case perms.s2xn:perms.s2xnx of
when '00' (px, ux) = (r , r);
when '01' (px, ux) = ('0', r);
when '10' (px, ux) = ('0','0');
when '11' (px, ux) = (r ,'0');

x = if accdesc.el == EL0 then ux else px;
else

x = r AND NOT(perms.s2xn);

if accdesc.acctype == AccessType_TTW then
return (walkparams.ptw == '1' && memtype == MemType_Device) || r == '0';

elsif accdesc.acctype == AccessType_IFETCH then
constraint = ConstrainUnpredictable(Unpredictable_INSTRDEVICE);
return (constraint == Constraint_FAULT && memtype == MemType_Device) || x == '0';

elsif accdesc.acctype IN {AccessType_IC, AccessType_DC} then
return FALSE;

elsif accdesc.write then
return w == '0';

else
return r == '0';

Shared Pseudocode Functions Page 1503

Library pseudocode for aarch32/translation/faults/AArch32.S2InconsistentSL

// AArch32.S2InconsistentSL()
// ==========================
// Detect inconsistent configuration of stage 2 T0SZ and SL fields

boolean AArch32.S2InconsistentSL(S2TTWParams walkparams)
startlevel = AArch32.S2StartLevel(walkparams.sl0);
levels = FINAL_LEVEL - startlevel;
granulebits = TGxGranuleBits(walkparams.tgx);
stride = granulebits - 3;

// Input address size must at least be large enough to be resolved from the start level
sl_min_iasize = (

levels * stride // Bits resolved by table walk, except initial level
+ granulebits // Bits directly mapped to output address
+ 1); // At least 1 more bit to be decoded by initial level

// Can accomodate 1 more stride in the level + concatenation of up to 2^4 tables
sl_max_iasize = sl_min_iasize + (stride-1) + 4;
// Configured Input Address size
iasize = AArch32.S2IASize(walkparams.t0sz);

return iasize < sl_min_iasize || iasize > sl_max_iasize;

Library pseudocode for aarch32/translation/faults/AArch32.VAIsOutOfRange

// AArch32.VAIsOutOfRange()
// ========================
// Check virtual address bits not resolved by translation are identical
// and of accepted value

boolean AArch32.VAIsOutOfRange(Regime regime, S1TTWParams walkparams, bits(32) va)
if regime == Regime_EL2 then

// Input Address size
iasize = AArch32.S1IASize(walkparams.t0sz);
return walkparams.t0sz != '000' && !IsZero(va<31:iasize>);

elsif walkparams.t1sz != '000' && walkparams.t0sz != '000' then
// Lower range Input Address size
lo_iasize = AArch32.S1IASize(walkparams.t0sz);
// Upper range Input Address size
up_iasize = AArch32.S1IASize(walkparams.t1sz);
return !IsZero(va<31:lo_iasize>) && !IsOnes(va<31:up_iasize>);

else
return FALSE;

Library pseudocode for aarch32/translation/tlbcontext/AArch32.GetS1TLBContext

// AArch32.GetS1TLBContext()
// =========================
// Gather translation context for accesses with VA to match against TLB entries

TLBContext AArch32.GetS1TLBContext(Regime regime, SecurityState ss, bits(32) va)
TLBContext tlbcontext;

case regime of
when Regime_EL2 tlbcontext = AArch32.TLBContextEL2(va);
when Regime_EL10 tlbcontext = AArch32.TLBContextEL10(ss, va);
when Regime_EL30 tlbcontext = AArch32.TLBContextEL30(va);

tlbcontext.includes_s1 = TRUE;
// The following may be amended for EL1&0 Regime if caching of stage 2 is successful
tlbcontext.includes_s2 = FALSE;
return tlbcontext;

Shared Pseudocode Functions Page 1504

Library pseudocode for aarch32/translation/tlbcontext/AArch32.GetS2TLBContext

// AArch32.GetS2TLBContext()
// =========================
// Gather translation context for accesses with IPA to match against TLB entries

TLBContext AArch32.GetS2TLBContext(FullAddress ipa)
assert ipa.paspace == PAS_NonSecure;

TLBContext tlbcontext;

tlbcontext.ss = SS_NonSecure;
tlbcontext.regime = Regime_EL10;
tlbcontext.ipaspace = ipa.paspace;
tlbcontext.vmid = ZeroExtend(VTTBR.VMID, 16);
tlbcontext.tg = TGx_4KB;
tlbcontext.includes_s1 = FALSE;
tlbcontext.includes_s2 = TRUE;
tlbcontext.ia = ZeroExtend(ipa.address, 64);
tlbcontext.cnp = if HaveCommonNotPrivateTransExt() then VTTBR.CnP else '0';

return tlbcontext;

Shared Pseudocode Functions Page 1505

Library pseudocode for aarch32/translation/tlbcontext/AArch32.TLBContextEL10

// AArch32.TLBContextEL10()
// ========================
// Gather translation context for accesses under EL10 regime
// (PL10 when EL3 is A64) to match against TLB entries

TLBContext AArch32.TLBContextEL10(SecurityState ss, bits(32) va)
TLBContext tlbcontext;
TTBCR_Type ttbcr;
TTBR0_Type ttbr0;
TTBR1_Type ttbr1;
CONTEXTIDR_Type contextidr;

if HaveAArch32EL(EL3) then
ttbcr = TTBCR_NS;
ttbr0 = TTBR0_NS;
ttbr1 = TTBR1_NS;
contextidr = CONTEXTIDR_NS;

else
ttbcr = TTBCR;
ttbr0 = TTBR0;
ttbr1 = TTBR1;
contextidr = CONTEXTIDR;

tlbcontext.ss = ss;
tlbcontext.regime = Regime_EL10;

if AArch32.EL2Enabled(ss) then
tlbcontext.vmid = ZeroExtend(VTTBR.VMID, 16);

if ttbcr.EAE == '1' then
tlbcontext.asid = ZeroExtend(if ttbcr.A1 == '0' then ttbr0.ASID else ttbr1.ASID, 16);

else
tlbcontext.asid = ZeroExtend(contextidr.ASID, 16);

tlbcontext.tg = TGx_4KB;
tlbcontext.ia = ZeroExtend(va, 64);

if HaveCommonNotPrivateTransExt() && ttbcr.EAE == '1' then
if AArch32.GetVARange(va, ttbcr.T0SZ, ttbcr.T1SZ) == VARange_LOWER then

tlbcontext.cnp = ttbr0.CnP;
else

tlbcontext.cnp = ttbr1.CnP;
else

tlbcontext.cnp = '0';

return tlbcontext;

Library pseudocode for aarch32/translation/tlbcontext/AArch32.TLBContextEL2

// AArch32.TLBContextEL2()
// =======================
// Gather translation context for accesses under EL2 regime to match against TLB entries

TLBContext AArch32.TLBContextEL2(bits(32) va)
TLBContext tlbcontext;

tlbcontext.ss = SS_NonSecure;
tlbcontext.regime = Regime_EL2;
tlbcontext.ia = ZeroExtend(va, 64);
tlbcontext.tg = TGx_4KB;
tlbcontext.cnp = if HaveCommonNotPrivateTransExt() then HTTBR.CnP else '0';

return tlbcontext;

Shared Pseudocode Functions Page 1506

Library pseudocode for aarch32/translation/tlbcontext/AArch32.TLBContextEL30

// AArch32.TLBContextEL30()
// ========================
// Gather translation context for accesses under EL30 regime
// (PL10 in Secure state and EL3 is A32) to match against TLB entries

TLBContext AArch32.TLBContextEL30(bits(32) va)
TLBContext tlbcontext;

tlbcontext.ss = SS_Secure;
tlbcontext.regime = Regime_EL30;

if TTBCR_S.EAE == '1' then
tlbcontext.asid = ZeroExtend(if TTBCR_S.A1 == '0' then TTBR0_S.ASID else TTBR1_S.ASID, 16);

else
tlbcontext.asid = ZeroExtend(CONTEXTIDR_S.ASID, 16);

tlbcontext.tg = TGx_4KB;
tlbcontext.ia = ZeroExtend(va, 64);

if HaveCommonNotPrivateTransExt() && TTBCR_S.EAE == '1' then
if AArch32.GetVARange(va, TTBCR_S.T0SZ, TTBCR_S.T1SZ) == VARange_LOWER then

tlbcontext.cnp = TTBR0_S.CnP;
else

tlbcontext.cnp = TTBR1_S.CnP;
else

tlbcontext.cnp = '0';

return tlbcontext;

Library pseudocode for aarch32/translation/translation/AArch32.EL2Enabled

// AArch32.EL2Enabled()
// ====================
// Returns whether EL2 is enabled for the given Security State

boolean AArch32.EL2Enabled(SecurityState ss)
if ss == SS_Secure then

if !(HaveEL(EL2) && HaveSecureEL2Ext()) then
return FALSE;

elsif HaveEL(EL3) then
return SCR_EL3.EEL2 == '1';

else
return boolean IMPLEMENTATION_DEFINED "Secure-only implementation";

else
return HaveEL(EL2);

Shared Pseudocode Functions Page 1507

Library pseudocode for aarch32/translation/translation/AArch32.FullTranslate

// AArch32.FullTranslate()
// =======================
// Perform address translation as specified by VMSA-A32

AddressDescriptor AArch32.FullTranslate(bits(32) va, AccessDescriptor accdesc, boolean aligned)

// Prepare fault fields in case a fault is detected
FaultRecord fault = NoFault(accdesc);
Regime regime = TranslationRegime(accdesc.el);

// First Stage Translation
AddressDescriptor ipa;
if regime == Regime_EL2 || TTBCR.EAE == '1' then

(fault, ipa) = AArch32.S1TranslateLD(fault, regime, va, aligned, accdesc);
else

(fault, ipa, -) = AArch32.S1TranslateSD(fault, regime, va, aligned, accdesc);

if fault.statuscode != Fault_None then
return CreateFaultyAddressDescriptor(ZeroExtend(va, 64), fault);

if regime == Regime_EL10 && EL2Enabled() then
ipa.vaddress = ZeroExtend(va, 64);
AddressDescriptor pa;
(fault, pa) = AArch32.S2Translate(fault, ipa, aligned, accdesc);

if fault.statuscode != Fault_None then
return CreateFaultyAddressDescriptor(ZeroExtend(va, 64), fault);

else
return pa;

else
return ipa;

Library pseudocode for aarch32/translation/translation/AArch32.OutputDomain

// AArch32.OutputDomain()
// ======================
// Determine the domain the translated output address

bits(2) AArch32.OutputDomain(Regime regime, bits(4) domain)
bits(2) Dn;
index = 2 * UInt(domain);
if regime == Regime_EL30 then

Dn = DACR_S<index+1:index>;
elsif HaveAArch32EL(EL3) then

Dn = DACR_NS<index+1:index>;
else

Dn = DACR<index+1:index>;

if Dn == '10' then
// Reserved value maps to an allocated value
(-, Dn) = ConstrainUnpredictableBits(Unpredictable_RESDACR, 2);

return Dn;

Shared Pseudocode Functions Page 1508

Library pseudocode for aarch32/translation/translation/AArch32.S1DisabledOutput

Shared Pseudocode Functions Page 1509

// AArch32.S1DisabledOutput()
// ==========================
// Flat map the VA to IPA/PA, depending on the regime, assigning default memory attributes

(FaultRecord, AddressDescriptor) AArch32.S1DisabledOutput(FaultRecord fault_in, Regime regime,
bits(32) va, boolean aligned,
AccessDescriptor accdesc)

FaultRecord fault = fault_in;
// No memory page is guarded when stage 1 address translation is disabled
SetInGuardedPage(FALSE);

MemoryAttributes memattrs;
bit default_cacheable;
if regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) then

if ELStateUsingAArch32(EL2, accdesc.ss == SS_Secure) then
default_cacheable = HCR.DC;

else
default_cacheable = HCR_EL2.DC;

else
default_cacheable = '0';

if default_cacheable == '1' then
// Use default cacheable settings
memattrs.memtype = MemType_Normal;
memattrs.inner.attrs = MemAttr_WB;
memattrs.inner.hints = MemHint_RWA;
memattrs.outer.attrs = MemAttr_WB;
memattrs.outer.hints = MemHint_RWA;
memattrs.shareability = Shareability_NSH;
if (EL2Enabled() && !ELStateUsingAArch32(EL2, accdesc.ss == SS_Secure) &&

HaveMTE2Ext() && HCR_EL2.DCT == '1') then
memattrs.tags = MemTag_AllocationTagged;

else
memattrs.tags = MemTag_Untagged;

memattrs.xs = '0';
elsif accdesc.acctype == AccessType_IFETCH then

memattrs.memtype = MemType_Normal;
memattrs.shareability = Shareability_OSH;
memattrs.tags = MemTag_Untagged;
if AArch32.S1ICacheEnabled(regime) then

memattrs.inner.attrs = MemAttr_WT;
memattrs.inner.hints = MemHint_RA;
memattrs.outer.attrs = MemAttr_WT;
memattrs.outer.hints = MemHint_RA;

else
memattrs.inner.attrs = MemAttr_NC;
memattrs.outer.attrs = MemAttr_NC;

memattrs.xs = '1';
else

// Treat memory region as Device
memattrs.memtype = MemType_Device;
memattrs.device = DeviceType_nGnRnE;
memattrs.shareability = Shareability_OSH;
memattrs.tags = MemTag_Untagged;
memattrs.xs = '1';

bit ntlsmd;
if HaveTrapLoadStoreMultipleDeviceExt() then

case regime of
when Regime_EL30 ntlsmd = SCTLR_S.nTLSMD;
when Regime_EL2 ntlsmd = HSCTLR.nTLSMD;
when Regime_EL10 ntlsmd = if HaveAArch32EL(EL3) then SCTLR_NS.nTLSMD else SCTLR.nTLSMD;

else
ntlsmd = '1';

if AArch32.S1HasAlignmentFault(accdesc, aligned, ntlsmd, memattrs) then
fault.statuscode = Fault_Alignment;
return (fault, AddressDescriptor UNKNOWN);

Shared Pseudocode Functions Page 1510

FullAddress oa;
oa.address = ZeroExtend(va, 56);
oa.paspace = if accdesc.ss == SS_Secure then PAS_Secure else PAS_NonSecure;
ipa = CreateAddressDescriptor(ZeroExtend(va, 64), oa, memattrs);

return (fault, ipa);

Library pseudocode for aarch32/translation/translation/AArch32.S1Enabled

// AArch32.S1Enabled()
// ===================
// Returns whether stage 1 translation is enabled for the active translation regime

boolean AArch32.S1Enabled(Regime regime, SecurityState ss)
if regime == Regime_EL2 then

return HSCTLR.M == '1';
elsif regime == Regime_EL30 then

return SCTLR_S.M == '1';
elsif !AArch32.EL2Enabled(ss) then

return (if HaveAArch32EL(EL3) then SCTLR_NS.M else SCTLR.M) == '1';
elsif ELStateUsingAArch32(EL2, ss == SS_Secure) then

return HCR.<TGE,DC> == '00' && (if HaveAArch32EL(EL3) then SCTLR_NS.M else SCTLR.M) == '1';
else

return EL2Enabled() && HCR_EL2.<TGE,DC> == '00' && SCTLR.M == '1';

Shared Pseudocode Functions Page 1511

Library pseudocode for aarch32/translation/translation/AArch32.S1TranslateLD

// AArch32.S1TranslateLD()
// =======================
// Perform a stage 1 translation using long-descriptor format mapping VA to IPA/PA
// depending on the regime

(FaultRecord, AddressDescriptor) AArch32.S1TranslateLD(FaultRecord fault_in, Regime regime,
bits(32) va, boolean aligned,
AccessDescriptor accdesc)

FaultRecord fault = fault_in;

if !AArch32.S1Enabled(regime, accdesc.ss) then
return AArch32.S1DisabledOutput(fault, regime, va, aligned, accdesc);

walkparams = AArch32.GetS1TTWParams(regime, va);

if AArch32.VAIsOutOfRange(regime, walkparams, va) then
fault.level = 1;
fault.statuscode = Fault_Translation;
return (fault, AddressDescriptor UNKNOWN);

TTWState walkstate;
(fault, walkstate) = AArch32.S1WalkLD(fault, regime, walkparams, accdesc, va);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

SetInGuardedPage(FALSE); // AArch32-VMSA does not guard any pages

if AArch32.S1HasAlignmentFault(accdesc, aligned, walkparams.ntlsmd, walkstate.memattrs) then
fault.statuscode = Fault_Alignment;

elsif AArch32.S1LDHasPermissionsFault(regime, walkparams,
walkstate.permissions,
walkstate.memattrs.memtype,
walkstate.baseaddress.paspace,
accdesc) then

fault.statuscode = Fault_Permission;

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

MemoryAttributes memattrs;
if ((accdesc.acctype == AccessType_IFETCH &&

(walkstate.memattrs.memtype == MemType_Device || !AArch32.S1ICacheEnabled(regime))) ||
(accdesc.acctype != AccessType_IFETCH &&

walkstate.memattrs.memtype == MemType_Normal && !AArch32.S1DCacheEnabled(regime))) then
// Treat memory attributes as Normal Non-Cacheable
memattrs = NormalNCMemAttr();
memattrs.xs = walkstate.memattrs.xs;

else
memattrs = walkstate.memattrs;

// Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
// to be either effective value or descriptor value
if (regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) &&

(if ELStateUsingAArch32(EL2, accdesc.ss==SS_Secure) then HCR.VM else HCR_EL2.VM) == '1' &&
!(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
memattrs.shareability = walkstate.memattrs.shareability;

else
memattrs.shareability = EffectiveShareability(memattrs);

// Output Address
oa = StageOA(ZeroExtend(va, 64), walkparams.d128, walkparams.tgx, walkstate);
ipa = CreateAddressDescriptor(ZeroExtend(va, 64), oa, memattrs);

return (fault, ipa);

Shared Pseudocode Functions Page 1512

Library pseudocode for aarch32/translation/translation/AArch32.S1TranslateSD

Shared Pseudocode Functions Page 1513

// AArch32.S1TranslateSD()
// =======================
// Perform a stage 1 translation using short-descriptor format mapping VA to IPA/PA
// depending on the regime

(FaultRecord, AddressDescriptor, SDFType) AArch32.S1TranslateSD(FaultRecord fault_in, Regime regime,
bits(32) va, boolean aligned,
AccessDescriptor accdesc)

FaultRecord fault = fault_in;

if !AArch32.S1Enabled(regime, accdesc.ss) then
AddressDescriptor ipa;
(fault, ipa) = AArch32.S1DisabledOutput(fault, regime, va, aligned, accdesc);
return (fault, ipa, SDFType UNKNOWN);

TTWState walkstate;
(fault, walkstate) = AArch32.S1WalkSD(fault, regime, accdesc, va);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN, SDFType UNKNOWN);

domain = AArch32.OutputDomain(regime, walkstate.domain);
SetInGuardedPage(FALSE); // AArch32-VMSA does not guard any pages

bit ntlsmd;
if HaveTrapLoadStoreMultipleDeviceExt() then

case regime of
when Regime_EL30 ntlsmd = SCTLR_S.nTLSMD;
when Regime_EL10 ntlsmd = if HaveAArch32EL(EL3) then SCTLR_NS.nTLSMD else SCTLR.nTLSMD;

else
ntlsmd = '1';

if AArch32.S1HasAlignmentFault(accdesc, aligned, ntlsmd, walkstate.memattrs) then
fault.statuscode = Fault_Alignment;

elsif (!(accdesc.acctype IN {AccessType_IC, AccessType_DC}) &&
domain == Domain_NoAccess) then

fault.statuscode = Fault_Domain;
elsif domain == Domain_Client then

if AArch32.S1SDHasPermissionsFault(regime, walkstate.permissions,
walkstate.memattrs.memtype,
walkstate.baseaddress.paspace,
accdesc) then

fault.statuscode = Fault_Permission;

if fault.statuscode != Fault_None then
fault.domain = walkstate.domain;
return (fault, AddressDescriptor UNKNOWN, walkstate.sdftype);

MemoryAttributes memattrs;
if ((accdesc.acctype == AccessType_IFETCH &&

(walkstate.memattrs.memtype == MemType_Device || !AArch32.S1ICacheEnabled(regime))) ||
(accdesc.acctype != AccessType_IFETCH &&

walkstate.memattrs.memtype == MemType_Normal && !AArch32.S1DCacheEnabled(regime))) then
// Treat memory attributes as Normal Non-Cacheable
memattrs = NormalNCMemAttr();
memattrs.xs = walkstate.memattrs.xs;

else
memattrs = walkstate.memattrs;

// Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
// to be either effective value or descriptor value
if (regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) &&

(if ELStateUsingAArch32(EL2, accdesc.ss==SS_Secure) then HCR.VM else HCR_EL2.VM) == '1' &&
!(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
memattrs.shareability = walkstate.memattrs.shareability;

else
memattrs.shareability = EffectiveShareability(memattrs);

// Output Address

Shared Pseudocode Functions Page 1514

oa = AArch32.SDStageOA(walkstate.baseaddress, va, walkstate.sdftype);
ipa = CreateAddressDescriptor(ZeroExtend(va, 64), oa, memattrs);

return (fault, ipa, walkstate.sdftype);

Shared Pseudocode Functions Page 1515

Library pseudocode for aarch32/translation/translation/AArch32.S2Translate

// AArch32.S2Translate()
// =====================
// Perform a stage 2 translation mapping an IPA to a PA

(FaultRecord, AddressDescriptor) AArch32.S2Translate(FaultRecord fault_in, AddressDescriptor ipa,
boolean aligned, AccessDescriptor accdesc)

FaultRecord fault = fault_in;
assert IsZero(ipa.paddress.address<55:40>);

if !ELStateUsingAArch32(EL2, accdesc.ss == SS_Secure) then
s1aarch64 = FALSE;
return AArch64.S2Translate(fault, ipa, s1aarch64, aligned, accdesc);

// Prepare fault fields in case a fault is detected
fault.statuscode = Fault_None;
fault.secondstage = TRUE;
fault.s2fs1walk = accdesc.acctype == AccessType_TTW;
fault.ipaddress = ipa.paddress;

walkparams = AArch32.GetS2TTWParams();

if walkparams.vm == '0' then
// Stage 2 is disabled
return (fault, ipa);

if AArch32.IPAIsOutOfRange(walkparams, ipa.paddress.address<39:0>) then
fault.statuscode = Fault_Translation;
fault.level = 1;
return (fault, AddressDescriptor UNKNOWN);

TTWState walkstate;
(fault, walkstate) = AArch32.S2Walk(fault, walkparams, accdesc, ipa);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

if AArch32.S2HasAlignmentFault(accdesc, aligned, walkstate.memattrs) then
fault.statuscode = Fault_Alignment;

elsif AArch32.S2HasPermissionsFault(walkparams,
walkstate.permissions,
walkstate.memattrs.memtype,
accdesc) then

fault.statuscode = Fault_Permission;
MemoryAttributes s2_memattrs;
if ((accdesc.acctype == AccessType_TTW &&

walkstate.memattrs.memtype == MemType_Device) ||
(accdesc.acctype == AccessType_IFETCH &&

(walkstate.memattrs.memtype == MemType_Device || HCR2.ID == '1')) ||
(accdesc.acctype != AccessType_IFETCH &&

walkstate.memattrs.memtype == MemType_Normal && HCR2.CD == '1')) then
// Treat memory attributes as Normal Non-Cacheable
s2_memattrs = NormalNCMemAttr();
s2_memattrs.xs = walkstate.memattrs.xs;

else
s2_memattrs = walkstate.memattrs;

s2aarch64 = FALSE;
memattrs = S2CombineS1MemAttrs(ipa.memattrs, s2_memattrs, s2aarch64);
ipa_64 = ZeroExtend(ipa.paddress.address<39:0>, 64);
// Output Address
oa = StageOA(ipa_64, walkparams.d128, walkparams.tgx, walkstate);
pa = CreateAddressDescriptor(ipa.vaddress, oa, memattrs);

return (fault, pa);

Shared Pseudocode Functions Page 1516

Library pseudocode for aarch32/translation/translation/AArch32.SDStageOA

// AArch32.SDStageOA()
// ===================
// Given the final walk state of a short-descriptor translation walk,
// map the untranslated input address bits to the base output address

FullAddress AArch32.SDStageOA(FullAddress baseaddress, bits(32) va, SDFType sdftype)
integer tsize;
case sdftype of

when SDFType_SmallPage tsize = 12;
when SDFType_LargePage tsize = 16;
when SDFType_Section tsize = 20;
when SDFType_Supersection tsize = 24;

// Output Address
FullAddress oa;
oa.address = baseaddress.address<55:tsize>:va<tsize-1:0>;
oa.paspace = baseaddress.paspace;
return oa;

Library pseudocode for aarch32/translation/translation/AArch32.TranslateAddress

// AArch32.TranslateAddress()
// ==========================
// Main entry point for translating an address

AddressDescriptor AArch32.TranslateAddress(bits(32) va, AccessDescriptor accdesc,
boolean aligned, integer size)

Regime regime = TranslationRegime(PSTATE.EL);
if !RegimeUsingAArch32(regime) then

return AArch64.TranslateAddress(ZeroExtend(va, 64), accdesc, aligned, size);

AddressDescriptor result = AArch32.FullTranslate(va, accdesc, aligned);

if !IsFault(result) then
result.fault = AArch32.CheckDebug(va, accdesc, size);

// Update virtual address for abort functions
result.vaddress = ZeroExtend(va, 64);

return result;

Library pseudocode for aarch32/translation/walk/AArch32.DecodeDescriptorTypeLD

// AArch32.DecodeDescriptorTypeLD()
// ================================
// Determine whether the long-descriptor is a page, block or table

DescriptorType AArch32.DecodeDescriptorTypeLD(bits(64) descriptor, integer level)
if descriptor<1:0> == '11' && level == FINAL_LEVEL then

return DescriptorType_Leaf;
elsif descriptor<1:0> == '11' then

return DescriptorType_Table;
elsif descriptor<1:0> == '01' && level != FINAL_LEVEL then

return DescriptorType_Leaf;
else

return DescriptorType_Invalid;

Shared Pseudocode Functions Page 1517

Library pseudocode for aarch32/translation/walk/AArch32.DecodeDescriptorTypeSD

// AArch32.DecodeDescriptorTypeSD()
// ================================
// Determine the type of the short-descriptor

SDFType AArch32.DecodeDescriptorTypeSD(bits(32) descriptor, integer level)
if level == 1 && descriptor<1:0> == '01' then

return SDFType_Table;
elsif level == 1 && descriptor<18,1> == '01' then

return SDFType_Section;
elsif level == 1 && descriptor<18,1> == '11' then

return SDFType_Supersection;
elsif level == 2 && descriptor<1:0> == '01' then

return SDFType_LargePage;
elsif level == 2 && descriptor<1:0> IN {'1x'} then

return SDFType_SmallPage;
else

return SDFType_Invalid;

Library pseudocode for aarch32/translation/walk/AArch32.S1IASize

// AArch32.S1IASize()
// ==================
// Retrieve the number of bits containing the input address for stage 1 translation

integer AArch32.S1IASize(bits(3) txsz)
return 32 - UInt(txsz);

Shared Pseudocode Functions Page 1518

Library pseudocode for aarch32/translation/walk/AArch32.S1WalkLD

Shared Pseudocode Functions Page 1519

// AArch32.S1WalkLD()
// ==================
// Traverse stage 1 translation tables in long format to obtain the final descriptor

(FaultRecord, TTWState) AArch32.S1WalkLD(FaultRecord fault_in, Regime regime,
S1TTWParams walkparams, AccessDescriptor accdesc,
bits(32) va)

FaultRecord fault = fault_in;
bits(3) txsz;
bits(64) ttbr;
bit epd;
VARange varange;
if regime == Regime_EL2 then

ttbr = HTTBR;
txsz = walkparams.t0sz;
varange = VARange_LOWER;

else
varange = AArch32.GetVARange(va, walkparams.t0sz, walkparams.t1sz);
bits(64) ttbr0;
bits(64) ttbr1;
TTBCR_Type ttbcr;
if regime == Regime_EL30 then

ttbcr = TTBCR_S;
ttbr0 = TTBR0_S;
ttbr1 = TTBR1_S;

elsif HaveAArch32EL(EL3) then
ttbcr = TTBCR_NS;
ttbr0 = TTBR0_NS;
ttbr1 = TTBR1_NS;

else
ttbcr = TTBCR;
ttbr0 = TTBR0;
ttbr1 = TTBR1;

assert ttbcr.EAE == '1';
if varange == VARange_LOWER then

txsz = walkparams.t0sz;
ttbr = ttbr0;
epd = ttbcr.EPD0;

else
txsz = walkparams.t1sz;
ttbr = ttbr1;
epd = ttbcr.EPD1;

if regime != Regime_EL2 && epd == '1' then
fault.level = 1;
fault.statuscode = Fault_Translation;
return (fault, TTWState UNKNOWN);

// Input Address size
iasize = AArch32.S1IASize(txsz);
granulebits = TGxGranuleBits(walkparams.tgx);
stride = granulebits - 3;
startlevel = FINAL_LEVEL - (((iasize-1) - granulebits) DIV stride);
levels = FINAL_LEVEL - startlevel;

if !IsZero(ttbr<47:40>) then
fault.statuscode = Fault_AddressSize;
fault.level = 0;
return (fault, TTWState UNKNOWN);

FullAddress baseaddress;
baselsb = (iasize - (levels*stride + granulebits)) + 3;
baseaddress.paspace = if accdesc.ss == SS_Secure then PAS_Secure else PAS_NonSecure;
baseaddress.address = ZeroExtend(ttbr<39:baselsb>:Zeros(baselsb), 56);

TTWState walkstate;
walkstate.baseaddress = baseaddress;
walkstate.level = startlevel;
walkstate.istable = TRUE;

Shared Pseudocode Functions Page 1520

// In regimes that support global and non-global translations, translation
// table entries from lookup levels other than the final level of lookup
// are treated as being non-global
walkstate.nG = if HasUnprivileged(regime) then '1' else '0';
walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn, walkparams.orgn);
walkstate.permissions.ap_table = '00';
walkstate.permissions.xn_table = '0';
walkstate.permissions.pxn_table = '0';

indexmsb = iasize - 1;
bits(64) descriptor;
AddressDescriptor walkaddress;

walkaddress.vaddress = ZeroExtend(va, 64);

if !AArch32.S1DCacheEnabled(regime) then
walkaddress.memattrs = NormalNCMemAttr();
walkaddress.memattrs.xs = walkstate.memattrs.xs;

else
walkaddress.memattrs = walkstate.memattrs;

// Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
// to be either effective value or descriptor value
if (regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) &&

(if ELStateUsingAArch32(EL2, accdesc.ss==SS_Secure) then HCR.VM else HCR_EL2.VM) == '1' &&
!(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
walkaddress.memattrs.shareability = walkstate.memattrs.shareability;

else
walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.memattrs);

integer indexlsb;
DescriptorType desctype;
repeat

fault.level = walkstate.level;
indexlsb = (FINAL_LEVEL - walkstate.level)*stride + granulebits;
bits(40) index = ZeroExtend(va<indexmsb:indexlsb>:'000', 40);

walkaddress.paddress.address = walkstate.baseaddress.address OR ZeroExtend(index, 56);
walkaddress.paddress.paspace = walkstate.baseaddress.paspace;

boolean toplevel = walkstate.level == startlevel;
AccessDescriptor walkaccess = CreateAccDescS1TTW(toplevel, varange, accdesc);
// If there are two stages of translation, then the first stage table walk addresses
// are themselves subject to translation
if regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) then

s2aligned = TRUE;
(s2fault, s2walkaddress) = AArch32.S2Translate(fault, walkaddress, s2aligned,

walkaccess);
// Check for a fault on the stage 2 walk
if s2fault.statuscode != Fault_None then

return (s2fault, TTWState UNKNOWN);

(fault, descriptor) = FetchDescriptor(walkparams.ee, s2walkaddress, walkaccess,
fault, 64);

else
(fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, walkaccess,

fault, 64);

if fault.statuscode != Fault_None then
return (fault, TTWState UNKNOWN);

desctype = AArch32.DecodeDescriptorTypeLD(descriptor, walkstate.level);

case desctype of
when DescriptorType_Table

if !IsZero(descriptor<47:40>) then
fault.statuscode = Fault_AddressSize;
return (fault, TTWState UNKNOWN);

walkstate.baseaddress.address = ZeroExtend(descriptor<39:12>:Zeros(12), 56);

Shared Pseudocode Functions Page 1521

if walkstate.baseaddress.paspace == PAS_Secure && descriptor<63> == '1' then
walkstate.baseaddress.paspace = PAS_NonSecure;

if walkparams.hpd == '0' then
walkstate.permissions.xn_table = (walkstate.permissions.xn_table OR

descriptor<60>);
walkstate.permissions.ap_table = (walkstate.permissions.ap_table OR

descriptor<62:61>);
walkstate.permissions.pxn_table = (walkstate.permissions.pxn_table OR

descriptor<59>);

walkstate.level = walkstate.level + 1;
indexmsb = indexlsb - 1;

when DescriptorType_Invalid
fault.statuscode = Fault_Translation;
return (fault, TTWState UNKNOWN);

when DescriptorType_Leaf
walkstate.istable = FALSE;

until desctype == DescriptorType_Leaf;

// Check the output address is inside the supported range
if !IsZero(descriptor<47:40>) then

fault.statuscode = Fault_AddressSize;
return (fault, TTWState UNKNOWN);

// Check the access flag
if descriptor<10> == '0' then

fault.statuscode = Fault_AccessFlag;
return (fault, TTWState UNKNOWN);

walkstate.permissions.xn = descriptor<54>;
walkstate.permissions.pxn = descriptor<53>;
walkstate.permissions.ap = descriptor<7:6>:'1';
walkstate.contiguous = descriptor<52>;
if regime == Regime_EL2 then

// All EL2 regime accesses are treated as Global
walkstate.nG = '0';

elsif accdesc.ss == SS_Secure && walkstate.baseaddress.paspace == PAS_NonSecure then
// When a PE is using the Long-descriptor translation table format,
// and is in Secure state, a translation must be treated as non-global,
// regardless of the value of the nG bit,
// if NSTable is set to 1 at any level of the translation table walk.
walkstate.nG = '1';

else
walkstate.nG = descriptor<11>;

walkstate.baseaddress.address = ZeroExtend(descriptor<39:indexlsb>:Zeros(indexlsb), 56);
if walkstate.baseaddress.paspace == PAS_Secure && descriptor<5> == '1' then

walkstate.baseaddress.paspace = PAS_NonSecure;

memattr = descriptor<4:2>;
sh = descriptor<9:8>;
attr = AArch32.MAIRAttr(UInt(memattr), walkparams.mair);
s1aarch64 = FALSE;
walkstate.memattrs = S1DecodeMemAttrs(attr, sh, s1aarch64, walkparams);

return (fault, walkstate);

Shared Pseudocode Functions Page 1522

Library pseudocode for aarch32/translation/walk/AArch32.S1WalkSD

Shared Pseudocode Functions Page 1523

// AArch32.S1WalkSD()
// ==================
// Traverse stage 1 translation tables in short format to obtain the final descriptor

(FaultRecord, TTWState) AArch32.S1WalkSD(FaultRecord fault_in, Regime regime,
AccessDescriptor accdesc, bits(32) va)

FaultRecord fault = fault_in;
SCTLR_Type sctlr;
TTBCR_Type ttbcr;
TTBR0_Type ttbr0;
TTBR1_Type ttbr1;
// Determine correct translation control registers to use.
if regime == Regime_EL30 then

sctlr = SCTLR_S;
ttbcr = TTBCR_S;
ttbr0 = TTBR0_S;
ttbr1 = TTBR1_S;

elsif HaveAArch32EL(EL3) then
sctlr = SCTLR_NS;
ttbcr = TTBCR_NS;
ttbr0 = TTBR0_NS;
ttbr1 = TTBR1_NS;

else
sctlr = SCTLR;
ttbcr = TTBCR;
ttbr0 = TTBR0;
ttbr1 = TTBR1;

assert ttbcr.EAE == '0';
ee = sctlr.EE;
afe = sctlr.AFE;
tre = sctlr.TRE;
n = UInt(ttbcr.N);
bits(32) ttb;
bits(1) pd;
bits(2) irgn;
bits(2) rgn;
bits(1) s;
bits(1) nos;
VARange varange;
if n == 0 || IsZero(va<31:(32-n)>) then

ttb = ttbr0.TTB0:Zeros(7);
pd = ttbcr.PD0;
irgn = ttbr0.IRGN;
rgn = ttbr0.RGN;
s = ttbr0.S;
nos = ttbr0.NOS;
varange = VARange_LOWER;

else
n = 0; // TTBR1 translation always treats N as 0
ttb = ttbr1.TTB1:Zeros(7);
pd = ttbcr.PD1;
irgn = ttbr1.IRGN;
rgn = ttbr1.RGN;
s = ttbr1.S;
nos = ttbr1.NOS;
varange = VARange_UPPER;

// Check if Translation table walk disabled for translations with this Base register.
if pd == '1' then

fault.level = 1;
fault.statuscode = Fault_Translation;
return (fault, TTWState UNKNOWN);

FullAddress baseaddress;
baseaddress.paspace = if accdesc.ss == SS_Secure then PAS_Secure else PAS_NonSecure;
baseaddress.address = ZeroExtend(ttb<31:14-n>:Zeros(14-n), 56);

constant integer startlevel = 1;
TTWState walkstate;

Shared Pseudocode Functions Page 1524

walkstate.baseaddress = baseaddress;
// In regimes that support global and non-global translations, translation
// table entries from lookup levels other than the final level of lookup
// are treated as being non-global. Translations in Short-Descriptor Format
// always support global & non-global translations.
walkstate.nG = '1';
walkstate.memattrs = WalkMemAttrs(s:nos, irgn, rgn);
walkstate.level = startlevel;
walkstate.istable = TRUE;

bits(4) domain;
bits(32) descriptor;
AddressDescriptor walkaddress;

walkaddress.vaddress = ZeroExtend(va, 64);

if !AArch32.S1DCacheEnabled(regime) then
walkaddress.memattrs = NormalNCMemAttr();
walkaddress.memattrs.xs = walkstate.memattrs.xs;

else
walkaddress.memattrs = walkstate.memattrs;

// Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
// to be either effective value or descriptor value
if (regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) &&

(if ELStateUsingAArch32(EL2, accdesc.ss==SS_Secure) then HCR.VM else HCR_EL2.VM) == '1' &&
!(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
walkaddress.memattrs.shareability = walkstate.memattrs.shareability;

else
walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.memattrs);

bit nG;
bit ns;
bit pxn;
bits(3) ap;
bits(3) tex;
bit c;
bit b;
bit xn;
repeat

fault.level = walkstate.level;

bits(32) index;
if walkstate.level == 1 then

index = ZeroExtend(va<31-n:20>:'00', 32);
else

index = ZeroExtend(va<19:12>:'00', 32);

walkaddress.paddress.address = walkstate.baseaddress.address OR ZeroExtend(index,
56);

walkaddress.paddress.paspace = walkstate.baseaddress.paspace;

boolean toplevel = walkstate.level == startlevel;
AccessDescriptor walkaccess = CreateAccDescS1TTW(toplevel, varange, accdesc);
if regime == Regime_EL10 && AArch32.EL2Enabled(accdesc.ss) then

s2aligned = TRUE;
(s2fault, s2walkaddress) = AArch32.S2Translate(fault, walkaddress, s2aligned,

walkaccess);

if s2fault.statuscode != Fault_None then
return (s2fault, TTWState UNKNOWN);

(fault, descriptor) = FetchDescriptor(ee, s2walkaddress, walkaccess, fault, 32);
else

(fault, descriptor) = FetchDescriptor(ee, walkaddress, walkaccess, fault, 32);

if fault.statuscode != Fault_None then
return (fault, TTWState UNKNOWN);

walkstate.sdftype = AArch32.DecodeDescriptorTypeSD(descriptor, walkstate.level);

Shared Pseudocode Functions Page 1525

case walkstate.sdftype of
when SDFType_Invalid

fault.domain = domain;
fault.statuscode = Fault_Translation;
return (fault, TTWState UNKNOWN);

when SDFType_Table
domain = descriptor<8:5>;
ns = descriptor<3>;
pxn = descriptor<2>;

walkstate.baseaddress.address = ZeroExtend(descriptor<31:10>:Zeros(10),
56);

walkstate.level = 2;

when SDFType_SmallPage
nG = descriptor<11>;
s = descriptor<10>;
ap = descriptor<9,5:4>;
tex = descriptor<8:6>;
c = descriptor<3>;
b = descriptor<2>;
xn = descriptor<0>;

walkstate.baseaddress.address = ZeroExtend(descriptor<31:12>:Zeros(12),
56);

walkstate.istable = FALSE;

when SDFType_LargePage
xn = descriptor<15>;
tex = descriptor<14:12>;
nG = descriptor<11>;
s = descriptor<10>;
ap = descriptor<9,5:4>;
c = descriptor<3>;
b = descriptor<2>;

walkstate.baseaddress.address = ZeroExtend(descriptor<31:16>:Zeros(16),
56);

walkstate.istable = FALSE;

when SDFType_Section
ns = descriptor<19>;
nG = descriptor<17>;
s = descriptor<16>;
ap = descriptor<15,11:10>;
tex = descriptor<14:12>;
domain = descriptor<8:5>;
xn = descriptor<4>;
c = descriptor<3>;
b = descriptor<2>;
pxn = descriptor<0>;

walkstate.baseaddress.address = ZeroExtend(descriptor<31:20>:Zeros(20),
56);

walkstate.istable = FALSE;

when SDFType_Supersection
ns = descriptor<19>;
nG = descriptor<17>;
s = descriptor<16>;
ap = descriptor<15,11:10>;
tex = descriptor<14:12>;
xn = descriptor<4>;
c = descriptor<3>;
b = descriptor<2>;
pxn = descriptor<0>;
domain = '0000';

Shared Pseudocode Functions Page 1526

walkstate.baseaddress.address = ZeroExtend(descriptor<8:5,23:20,31:24>:Zeros(24),
56);

walkstate.istable = FALSE;

until walkstate.sdftype != SDFType_Table;

if afe == '1' && ap<0> == '0' then
fault.domain = domain;
fault.statuscode = Fault_AccessFlag;
return (fault, TTWState UNKNOWN);

// Decode the TEX, C, B and S bits to produce target memory attributes
if tre == '1' then

walkstate.memattrs = AArch32.RemappedTEXDecode(regime, tex, c, b, s);
elsif RemapRegsHaveResetValues() then

walkstate.memattrs = AArch32.DefaultTEXDecode(tex, c, b, s);
else

walkstate.memattrs = MemoryAttributes IMPLEMENTATION_DEFINED;

walkstate.permissions.ap = ap;
walkstate.permissions.xn = xn;
walkstate.permissions.pxn = pxn;
walkstate.domain = domain;
walkstate.nG = nG;

if accdesc.ss == SS_Secure && ns == '0' then
walkstate.baseaddress.paspace = PAS_Secure;

else
walkstate.baseaddress.paspace = PAS_NonSecure;

return (fault, walkstate);

Library pseudocode for aarch32/translation/walk/AArch32.S2IASize

// AArch32.S2IASize()
// ==================
// Retrieve the number of bits containing the input address for stage 2 translation

integer AArch32.S2IASize(bits(4) t0sz)
return 32 - SInt(t0sz);

Library pseudocode for aarch32/translation/walk/AArch32.S2StartLevel

// AArch32.S2StartLevel()
// ======================
// Determine the initial lookup level when performing a stage 2 translation
// table walk

integer AArch32.S2StartLevel(bits(2) sl0)
return 2 - UInt(sl0);

Shared Pseudocode Functions Page 1527

Library pseudocode for aarch32/translation/walk/AArch32.S2Walk

Shared Pseudocode Functions Page 1528

// AArch32.S2Walk()
// ================
// Traverse stage 2 translation tables in long format to obtain the final descriptor

(FaultRecord, TTWState) AArch32.S2Walk(FaultRecord fault_in, S2TTWParams walkparams,
AccessDescriptor accdesc, AddressDescriptor ipa)

FaultRecord fault = fault_in;

if walkparams.sl0 IN {'1x'} || AArch32.S2InconsistentSL(walkparams) then
fault.statuscode = Fault_Translation;
fault.level = 1;
return (fault, TTWState UNKNOWN);

// Input Address size
iasize = AArch32.S2IASize(walkparams.t0sz);
startlevel = AArch32.S2StartLevel(walkparams.sl0);
levels = FINAL_LEVEL - startlevel;
granulebits = TGxGranuleBits(walkparams.tgx);
stride = granulebits - 3;

if !IsZero(VTTBR<47:40>) then
fault.statuscode = Fault_AddressSize;
fault.level = 0;
return (fault, TTWState UNKNOWN);

FullAddress baseaddress;
baselsb = (iasize - (levels*stride + granulebits)) + 3;
baseaddress.paspace = PAS_NonSecure;
baseaddress.address = ZeroExtend(VTTBR<39:baselsb>:Zeros(baselsb), 56);

TTWState walkstate;
walkstate.baseaddress = baseaddress;
walkstate.level = startlevel;
walkstate.istable = TRUE;
walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn,

walkparams.orgn);

indexmsb = iasize - 1;
bits(64) descriptor;
AccessDescriptor walkaccess = CreateAccDescS2TTW(accdesc);
AddressDescriptor walkaddress;

walkaddress.vaddress = ipa.vaddress;

if HCR2.CD == '1' then
walkaddress.memattrs = NormalNCMemAttr();
walkaddress.memattrs.xs = walkstate.memattrs.xs;

else
walkaddress.memattrs = walkstate.memattrs;

walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.memattrs);

integer indexlsb;
DescriptorType desctype;
repeat

fault.level = walkstate.level;

indexlsb = (FINAL_LEVEL - walkstate.level)*stride + granulebits;
bits(40) index = ZeroExtend(ipa.paddress.address<indexmsb:indexlsb>:'000', 40);

walkaddress.paddress.address = walkstate.baseaddress.address OR ZeroExtend(index, 56);
walkaddress.paddress.paspace = walkstate.baseaddress.paspace;

(fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, walkaccess, fault, 64);

if fault.statuscode != Fault_None then
return (fault, TTWState UNKNOWN);

desctype = AArch32.DecodeDescriptorTypeLD(descriptor, walkstate.level);

Shared Pseudocode Functions Page 1529

case desctype of
when DescriptorType_Table

if !IsZero(descriptor<47:40>) then
fault.statuscode = Fault_AddressSize;
return (fault, TTWState UNKNOWN);

walkstate.baseaddress.address = ZeroExtend(descriptor<39:12>:Zeros(12), 56);
walkstate.level = walkstate.level + 1;
indexmsb = indexlsb - 1;

when DescriptorType_Invalid
fault.statuscode = Fault_Translation;
return (fault, TTWState UNKNOWN);

when DescriptorType_Leaf
walkstate.istable = FALSE;

until desctype IN {DescriptorType_Leaf};

// Check the output address is inside the supported range
if !IsZero(descriptor<47:40>) then

fault.statuscode = Fault_AddressSize;
return (fault, TTWState UNKNOWN);

// Check the access flag
if descriptor<10> == '0' then

fault.statuscode = Fault_AccessFlag;
return (fault, TTWState UNKNOWN);

// Unpack the descriptor into address and upper and lower block attributes
walkstate.baseaddress.address = ZeroExtend(descriptor<39:indexlsb>:Zeros(indexlsb), 56);

walkstate.permissions.s2ap = descriptor<7:6>;
walkstate.permissions.s2xn = descriptor<54>;
if HaveExtendedExecuteNeverExt() then

walkstate.permissions.s2xnx = descriptor<53>;
else

walkstate.permissions.s2xnx = '0';

memattr = descriptor<5:2>;
sh = descriptor<9:8>;
s2aarch64 = FALSE;
walkstate.memattrs = S2DecodeMemAttrs(memattr, sh, s2aarch64);
walkstate.contiguous = descriptor<52>;

return (fault, walkstate);

Library pseudocode for aarch32/translation/walk/AArch32.TranslationSizeSD

// AArch32.TranslationSizeSD()
// ===========================
// Determine the size of the translation

integer AArch32.TranslationSizeSD(SDFType sdftype)
integer tsize;
case sdftype of

when SDFType_SmallPage tsize = 12;
when SDFType_LargePage tsize = 16;
when SDFType_Section tsize = 20;
when SDFType_Supersection tsize = 24;

return tsize;

Library pseudocode for aarch32/translation/walk/RemapRegsHaveResetValues

// RemapRegsHaveResetValues()
// ==========================

boolean RemapRegsHaveResetValues();

Shared Pseudocode Functions Page 1530

Library pseudocode for aarch32/translation/walkparams/AArch32.GetS1TTWParams

// AArch32.GetS1TTWParams()
// ========================
// Returns stage 1 translation table walk parameters from respective controlling
// System registers.

S1TTWParams AArch32.GetS1TTWParams(Regime regime, bits(32) va)
S1TTWParams walkparams;

case regime of
when Regime_EL2 walkparams = AArch32.S1TTWParamsEL2();
when Regime_EL10 walkparams = AArch32.S1TTWParamsEL10(va);
when Regime_EL30 walkparams = AArch32.S1TTWParamsEL30(va);

return walkparams;

Library pseudocode for aarch32/translation/walkparams/AArch32.GetS2TTWParams

// AArch32.GetS2TTWParams()
// ========================
// Gather walk parameters for stage 2 translation

S2TTWParams AArch32.GetS2TTWParams()
S2TTWParams walkparams;

walkparams.tgx = TGx_4KB;
walkparams.s = VTCR.S;
walkparams.t0sz = VTCR.T0SZ;
walkparams.sl0 = VTCR.SL0;
walkparams.irgn = VTCR.IRGN0;
walkparams.orgn = VTCR.ORGN0;
walkparams.sh = VTCR.SH0;
walkparams.ee = HSCTLR.EE;
walkparams.ptw = HCR.PTW;
walkparams.vm = HCR.VM OR HCR.DC;

// VTCR.S must match VTCR.T0SZ[3]
if walkparams.s != walkparams.t0sz<3> then

(-, walkparams.t0sz) = ConstrainUnpredictableBits(Unpredictable_RESVTCRS, 4);

return walkparams;

Library pseudocode for aarch32/translation/walkparams/AArch32.GetVARange

// AArch32.GetVARange()
// ====================
// Select the translation base address for stage 1 long-descriptor walks

VARange AArch32.GetVARange(bits(32) va, bits(3) t0sz, bits(3) t1sz)
// Lower range Input Address size
lo_iasize = AArch32.S1IASize(t0sz);
// Upper range Input Address size
up_iasize = AArch32.S1IASize(t1sz);

if t1sz == '000' && t0sz == '000' then
return VARange_LOWER;

elsif t1sz == '000' then
return if IsZero(va<31:lo_iasize>) then VARange_LOWER else VARange_UPPER;

elsif t0sz == '000' then
return if IsOnes(va<31:up_iasize>) then VARange_UPPER else VARange_LOWER;

elsif IsZero(va<31:lo_iasize>) then
return VARange_LOWER;

elsif IsOnes(va<31:up_iasize>) then
return VARange_UPPER;

else
// Will be reported as a Translation Fault
return VARange UNKNOWN;

Shared Pseudocode Functions Page 1531

Library pseudocode for aarch32/translation/walkparams/AArch32.S1DCacheEnabled

// AArch32.S1DCacheEnabled()
// =========================
// Determine cacheability of stage 1 data accesses

boolean AArch32.S1DCacheEnabled(Regime regime)
case regime of

when Regime_EL30 return SCTLR_S.C == '1';
when Regime_EL2 return HSCTLR.C == '1';
when Regime_EL10 return (if HaveAArch32EL(EL3) then SCTLR_NS.C else SCTLR.C) == '1';

Library pseudocode for aarch32/translation/walkparams/AArch32.S1ICacheEnabled

// AArch32.S1ICacheEnabled()
// =========================
// Determine cacheability of stage 1 instruction fetches

boolean AArch32.S1ICacheEnabled(Regime regime)
case regime of

when Regime_EL30 return SCTLR_S.I == '1';
when Regime_EL2 return HSCTLR.I == '1';
when Regime_EL10 return (if HaveAArch32EL(EL3) then SCTLR_NS.I else SCTLR.I) == '1';

Shared Pseudocode Functions Page 1532

Library pseudocode for aarch32/translation/walkparams/AArch32.S1TTWParamsEL10

// AArch32.S1TTWParamsEL10()
// =========================
// Gather stage 1 translation table walk parameters for EL1&0 regime
// (with EL2 enabled or disabled).

S1TTWParams AArch32.S1TTWParamsEL10(bits(32) va)
bits(64) mair;
bit sif;
TTBCR_Type ttbcr;
TTBCR2_Type ttbcr2;
SCTLR_Type sctlr;

if ELUsingAArch32(EL3) then
ttbcr = TTBCR_NS;
ttbcr2 = TTBCR2_NS;
sctlr = SCTLR_NS;
mair = MAIR1_NS:MAIR0_NS;
sif = SCR.SIF;

else
ttbcr = TTBCR;
ttbcr2 = TTBCR2;
sctlr = SCTLR;
mair = MAIR1:MAIR0;
sif = if HaveEL(EL3) then SCR_EL3.SIF else '0';

assert ttbcr.EAE == '1';
S1TTWParams walkparams;

walkparams.t0sz = ttbcr.T0SZ;
walkparams.t1sz = ttbcr.T1SZ;
walkparams.ee = sctlr.EE;
walkparams.wxn = sctlr.WXN;
walkparams.uwxn = sctlr.UWXN;
walkparams.ntlsmd = if HaveTrapLoadStoreMultipleDeviceExt() then sctlr.nTLSMD else '1';
walkparams.mair = mair;
walkparams.sif = sif;

varange = AArch32.GetVARange(va, walkparams.t0sz, walkparams.t1sz);
if varange == VARange_LOWER then

walkparams.sh = ttbcr.SH0;
walkparams.irgn = ttbcr.IRGN0;
walkparams.orgn = ttbcr.ORGN0;
walkparams.hpd = if AArch32.HaveHPDExt() then ttbcr.T2E AND ttbcr2.HPD0 else '0';

else
walkparams.sh = ttbcr.SH1;
walkparams.irgn = ttbcr.IRGN1;
walkparams.orgn = ttbcr.ORGN1;
walkparams.hpd = if AArch32.HaveHPDExt() then ttbcr.T2E AND ttbcr2.HPD1 else '0';

return walkparams;

Shared Pseudocode Functions Page 1533

Library pseudocode for aarch32/translation/walkparams/AArch32.S1TTWParamsEL2

// AArch32.S1TTWParamsEL2()
// ========================
// Gather stage 1 translation table walk parameters for EL2 regime

S1TTWParams AArch32.S1TTWParamsEL2()
S1TTWParams walkparams;

walkparams.tgx = TGx_4KB;
walkparams.t0sz = HTCR.T0SZ;
walkparams.irgn = HTCR.SH0;
walkparams.orgn = HTCR.IRGN0;
walkparams.sh = HTCR.ORGN0;
walkparams.hpd = if AArch32.HaveHPDExt() then HTCR.HPD else '0';
walkparams.ee = HSCTLR.EE;
walkparams.wxn = HSCTLR.WXN;
if HaveTrapLoadStoreMultipleDeviceExt() then

walkparams.ntlsmd = HSCTLR.nTLSMD;
else

walkparams.ntlsmd = '1';

walkparams.mair = HMAIR1:HMAIR0;

return walkparams;

Library pseudocode for aarch32/translation/walkparams/AArch32.S1TTWParamsEL30

// AArch32.S1TTWParamsEL30()
// =========================
// Gather stage 1 translation table walk parameters for EL3&0 regime

S1TTWParams AArch32.S1TTWParamsEL30(bits(32) va)
assert TTBCR_S.EAE == '1';
S1TTWParams walkparams;

walkparams.t0sz = TTBCR_S.T0SZ;
walkparams.t1sz = TTBCR_S.T1SZ;
walkparams.ee = SCTLR_S.EE;
walkparams.wxn = SCTLR_S.WXN;
walkparams.uwxn = SCTLR_S.UWXN;
walkparams.ntlsmd = if HaveTrapLoadStoreMultipleDeviceExt() then SCTLR_S.nTLSMD else '1';
walkparams.mair = MAIR1_S:MAIR0_S;
walkparams.sif = SCR.SIF;

varange = AArch32.GetVARange(va, walkparams.t0sz, walkparams.t1sz);
if varange == VARange_LOWER then

walkparams.sh = TTBCR_S.SH0;
walkparams.irgn = TTBCR_S.IRGN0;
walkparams.orgn = TTBCR_S.ORGN0;
walkparams.hpd = if AArch32.HaveHPDExt() then TTBCR_S.T2E AND TTBCR2_S.HPD0 else '0';

else
walkparams.sh = TTBCR_S.SH1;
walkparams.irgn = TTBCR_S.IRGN1;
walkparams.orgn = TTBCR_S.ORGN1;
walkparams.hpd = if AArch32.HaveHPDExt() then TTBCR_S.T2E AND TTBCR2_S.HPD1 else '0';

return walkparams;

Shared Pseudocode Functions Page 1534

Library pseudocode for aarch64/debug/brbe/BRBCycleCountingEnabled

// BRBCycleCountingEnabled()
// =========================
// Returns TRUE if the recording of cycle counts is allowed,
// FALSE otherwise.

boolean BRBCycleCountingEnabled()
if HaveEL(EL2) && BRBCR_EL2.CC == '0' then return FALSE;
if BRBCR_EL1.CC == '0' then return FALSE;
return TRUE;

Library pseudocode for aarch64/debug/brbe/BRBEBranch

// BRBEBranch()
// ============
// Called to write branch record for the following branches when BRB is active:
// direct branches,
// indirect branches,
// direct branches with link,
// indirect branches with link,
// returns from subroutines.

BRBEBranch(BranchType br_type, boolean cond, bits(64) target_address)
if BranchRecordAllowed(PSTATE.EL) && FilterBranchRecord(br_type, cond) then

bits(6) branch_type;
case br_type of

when BranchType_DIR
branch_type = if cond then '001000' else '000000';

when BranchType_INDIR branch_type = '000001';
when BranchType_DIRCALL branch_type = '000010';
when BranchType_INDCALL branch_type = '000011';
when BranchType_RET branch_type = '000101';
otherwise Unreachable();

bit ccu;
bits(14) cc;
(ccu, cc) = BranchEncCycleCount();
bit lastfailed = if HaveTME() then BRBFCR_EL1.LASTFAILED else '0';
bit transactional = if HaveTME() && TSTATE.depth > 0 then '1' else '0';
bits(2) el = PSTATE.EL;
bit mispredict = if BRBEMispredictAllowed() && BranchMispredict() then '1' else '0';

UpdateBranchRecordBuffer(ccu, cc, lastfailed, transactional, branch_type, el, mispredict,
'11', PC[], target_address);

BRBFCR_EL1.LASTFAILED = '0';

PMUEvent(PMU_EVENT_BRB_FILTRATE);

return;

Library pseudocode for aarch64/debug/brbe/BRBEBranchOnISB

// BRBEBranchOnISB()
// =================
// Returns TRUE if ISBs generate Branch records, and FALSE otherwise.

boolean BRBEBranchOnISB()
return boolean IMPLEMENTATION_DEFINED "ISB generates Branch records";

Shared Pseudocode Functions Page 1535

Library pseudocode for aarch64/debug/brbe/BRBEDebugStateExit

// BRBEDebugStateExit()
// ====================
// Called to write Debug state exit branch record when BRB is active.

BRBEDebugStateExit(bits(64) target_address)
if BranchRecordAllowed(PSTATE.EL) then

// Debug state is a prohibited region, therefore ccu=1, cc=0, source_address=0
bits(6) branch_type = '111001';
bit ccu = '1';
bits(14) cc = Zeros(14);
bit lastfailed = if HaveTME() then BRBFCR_EL1.LASTFAILED else '0';
bit transactional = '0';
bits(2) el = PSTATE.EL;
bit mispredict = '0';

UpdateBranchRecordBuffer(ccu, cc, lastfailed, transactional, branch_type, el, mispredict,
'01', Zeros(64), target_address);

BRBFCR_EL1.LASTFAILED = '0';

PMUEvent(PMU_EVENT_BRB_FILTRATE);

return;

Shared Pseudocode Functions Page 1536

Library pseudocode for aarch64/debug/brbe/BRBEException

Shared Pseudocode Functions Page 1537

// BRBEException()
// ===============
// Called to write exception branch record when BRB is active.

BRBEException(ExceptionRecord erec, boolean source_valid,
bits(64) source_address_in,
bits(64) target_address_in, bits(2) target_el,
boolean trappedsyscallinst)

bits(64) target_address = target_address_in;
Exception except = erec.exceptype;
bits(25) iss = erec.syndrome;
case target_el of

when EL3 if !HaveBRBEv1p1() || (MDCR_EL3.E3BREC == MDCR_EL3.E3BREW) then return;
when EL2 if BRBCR_EL2.EXCEPTION == '0' then return;
when EL1 if BRBCR_EL1.EXCEPTION == '0' then return;

boolean target_valid = BranchRecordAllowed(target_el);

if source_valid || target_valid then
bits(6) branch_type;
case except of

when Exception_Uncategorized branch_type = '100011'; // Trap
when Exception_WFxTrap branch_type = '100011'; // Trap
when Exception_CP15RTTrap branch_type = '100011'; // Trap
when Exception_CP15RRTTrap branch_type = '100011'; // Trap
when Exception_CP14RTTrap branch_type = '100011'; // Trap
when Exception_CP14DTTrap branch_type = '100011'; // Trap
when Exception_AdvSIMDFPAccessTrap branch_type = '100011'; // Trap
when Exception_FPIDTrap branch_type = '100011'; // Trap
when Exception_PACTrap branch_type = '100011'; // Trap
when Exception_TSTARTAccessTrap branch_type = '100011'; // Trap
when Exception_CP14RRTTrap branch_type = '100011'; // Trap
when Exception_BranchTarget branch_type = '101011'; // Inst Fault
when Exception_IllegalState branch_type = '100011'; // Trap
when Exception_SupervisorCall

if !trappedsyscallinst then branch_type = '100010'; // Call
else branch_type = '100011'; // Trap

when Exception_HypervisorCall branch_type = '100010'; // Call
when Exception_MonitorCall

if !trappedsyscallinst then branch_type = '100010'; // Call
else branch_type = '100011'; // Trap

when Exception_SystemRegisterTrap branch_type = '100011'; // Trap
when Exception_SystemRegister128Trap branch_type = '100011'; // Trap
when Exception_SVEAccessTrap branch_type = '100011'; // Trap
when Exception_SMEAccessTrap branch_type = '100011'; // Trap
when Exception_ERetTrap branch_type = '100011'; // Trap
when Exception_PACFail branch_type = '101100'; // Data Fault
when Exception_InstructionAbort branch_type = '101011'; // Inst Fault
when Exception_PCAlignment branch_type = '101010'; // Alignment
when Exception_DataAbort branch_type = '101100'; // Data Fault
when Exception_NV2DataAbort branch_type = '101100'; // Data Fault
when Exception_SPAlignment branch_type = '101010'; // Alignment
when Exception_FPTrappedException branch_type = '100011'; // Trap
when Exception_SError branch_type = '100100'; // System Error
when Exception_Breakpoint branch_type = '100110'; // Inst debug
when Exception_SoftwareStep branch_type = '100110'; // Inst debug
when Exception_Watchpoint branch_type = '100111'; // Data debug
when Exception_NV2Watchpoint branch_type = '100111'; // Data debug
when Exception_SoftwareBreakpoint branch_type = '100110'; // Inst debug
when Exception_IRQ branch_type = '101110'; // IRQ
when Exception_FIQ branch_type = '101111'; // FIQ
when Exception_MemCpyMemSet branch_type = '100011'; // Trap
when Exception_GCSFail

if iss<23:20> == '0000' then branch_type = '101100'; // Data Fault
elsif iss<23:20> == '0001' then branch_type = '101011'; // Inst Fault
elsif iss<23:20> == '0010' then branch_type = '100011'; // Trap
else Unreachable();

otherwise Unreachable();

bit ccu;

Shared Pseudocode Functions Page 1538

bits(14) cc;
(ccu, cc) = BranchEncCycleCount();
bit lastfailed = if HaveTME() then BRBFCR_EL1.LASTFAILED else '0';
bit transactional = if source_valid && HaveTME() && TSTATE.depth > 0 then '1' else '0';
bits(2) el = if target_valid then target_el else '00';
bit mispredict = '0';
bit sv = if source_valid then '1' else '0';
bit tv = if target_valid then '1' else '0';
bits(64) source_address = if source_valid then source_address_in else Zeros(64);

if !target_valid then
target_address = Zeros(64);

else
target_address = AArch64.BranchAddr(target_address, target_el);

UpdateBranchRecordBuffer(ccu, cc, lastfailed, transactional,
branch_type, el, mispredict,
sv:tv, source_address, target_address);

BRBFCR_EL1.LASTFAILED = '0';

PMUEvent(PMU_EVENT_BRB_FILTRATE);

return;

Library pseudocode for aarch64/debug/brbe/BRBEExceptionReturn

// BRBEExceptionReturn()
// =====================
// Called to write exception return branch record when BRB is active.

BRBEExceptionReturn(bits(64) target_address_in, bits(2) source_el,
boolean source_valid, bits(64) source_address_in)

bits(64) target_address = target_address_in;
case source_el of

when EL3 if !HaveBRBEv1p1() || (MDCR_EL3.E3BREC == MDCR_EL3.E3BREW) then return;
when EL2 if BRBCR_EL2.ERTN == '0' then return;
when EL1 if BRBCR_EL1.ERTN == '0' then return;

boolean target_valid = BranchRecordAllowed(PSTATE.EL);

if source_valid || target_valid then
bits(6) branch_type = '000111';
bit ccu;
bits(14) cc;
(ccu, cc) = BranchEncCycleCount();
bit lastfailed = if HaveTME() then BRBFCR_EL1.LASTFAILED else '0';
bit transactional = if source_valid && HaveTME() && TSTATE.depth > 0 then '1' else '0';
bits(2) el = if target_valid then PSTATE.EL else '00';
bit mispredict = if (source_valid && BRBEMispredictAllowed() &&

BranchMispredict()) then '1' else '0';
bit sv = if source_valid then '1' else '0';
bit tv = if target_valid then '1' else '0';
bits(64) source_address = if source_valid then source_address_in else Zeros(64);
if !target_valid then

target_address = Zeros(64);

UpdateBranchRecordBuffer(ccu, cc, lastfailed, transactional,
branch_type, el, mispredict,
sv:tv, source_address, target_address);

BRBFCR_EL1.LASTFAILED = '0';

PMUEvent(PMU_EVENT_BRB_FILTRATE);

return;

Shared Pseudocode Functions Page 1539

Library pseudocode for aarch64/debug/brbe/BRBEFreeze

// BRBEFreeze()
// ============
// Generates BRBE freeze event.

BRBEFreeze()
BRBFCR_EL1.PAUSED = '1';
BRBTS_EL1 = GetTimestamp(BRBETimeStamp());

Library pseudocode for aarch64/debug/brbe/BRBEISB

// BRBEISB()
// =========
// Handles ISB instruction for BRBE.

BRBEISB()
boolean branch_conditional = FALSE;
BRBEBranch(BranchType_DIR, branch_conditional, PC[] + 4);

Library pseudocode for aarch64/debug/brbe/BRBEMispredictAllowed

// BRBEMispredictAllowed()
// =======================
// Returns TRUE if the recording of branch misprediction is allowed,
// FALSE otherwise.

boolean BRBEMispredictAllowed()
if HaveEL(EL2) && BRBCR_EL2.MPRED == '0' then return FALSE;
if BRBCR_EL1.MPRED == '0' then return FALSE;
return TRUE;

Library pseudocode for aarch64/debug/brbe/BRBETimeStamp

// BRBETimeStamp()
// ===============
// Returns captured timestamp.

TimeStamp BRBETimeStamp()
if HaveEL(EL2) then

TS_el2 = BRBCR_EL2.TS;
if !HaveECVExt() && TS_el2 == '10' then

// Reserved value
(-, TS_el2) = ConstrainUnpredictableBits(Unpredictable_EL2TIMESTAMP, 2);

case TS_el2 of
when '00'

// Falls out to check BRBCR_EL1.TS
when '01'

return TimeStamp_Virtual;
when '10'

assert HaveECVExt(); // Otherwise ConstrainUnpredictableBits removes this case
return TimeStamp_OffsetPhysical;

when '11'
return TimeStamp_Physical;

TS_el1 = BRBCR_EL1.TS;
if TS_el1 == '00' || (!HaveECVExt() && TS_el1 == '10') then

// Reserved value
(-, TS_el1) = ConstrainUnpredictableBits(Unpredictable_EL1TIMESTAMP, 2);

case TS_el1 of
when '01'

return TimeStamp_Virtual;
when '10'

return TimeStamp_OffsetPhysical;
when '11'

return TimeStamp_Physical;
otherwise

Unreachable(); // ConstrainUnpredictableBits removes this case

Shared Pseudocode Functions Page 1540

Library pseudocode for aarch64/debug/brbe/BRB_IALL

// BRB_IALL()
// ==========
// Called to perform invalidation of branch records

BRB_IALL()
for i = 0 to GetBRBENumRecords() - 1

Records_SRC[i] = Zeros(64);
Records_TGT[i] = Zeros(64);
Records_INF[i] = Zeros(64);

Library pseudocode for aarch64/debug/brbe/BRB_INJ

// BRB_INJ()
// =========
// Called to perform manual injection of branch records.

BRB_INJ()
UpdateBranchRecordBuffer(BRBINFINJ_EL1.CCU, BRBINFINJ_EL1.CC, BRBINFINJ_EL1.LASTFAILED,

BRBINFINJ_EL1.T, BRBINFINJ_EL1.TYPE, BRBINFINJ_EL1.EL,
BRBINFINJ_EL1.MPRED, BRBINFINJ_EL1.VALID, BRBSRCINJ_EL1.ADDRESS,
BRBTGTINJ_EL1.ADDRESS);

BRBINFINJ_EL1 = bits(64) UNKNOWN;
BRBSRCINJ_EL1 = bits(64) UNKNOWN;
BRBTGTINJ_EL1 = bits(64) UNKNOWN;

if ConstrainUnpredictableBool(Unpredictable_BRBFILTRATE) then PMUEvent(PMU_EVENT_BRB_FILTRATE);

Library pseudocode for aarch64/debug/brbe/Branch

type BRBSRCType;
type BRBTGTType;
type BRBINFType;

Library pseudocode for aarch64/debug/brbe/BranchEncCycleCount

// BranchEncCycleCount()
// =====================
// The first return result is '1' if either of the following is true, and '0' otherwise:
// - This is the first Branch record after the PE exited a Prohibited Region.
// - This is the first Branch record after cycle counting has been enabled.
// If the first return return is '0', the second return result is the encoded cycle count
// since the last branch.
// The format of this field uses a mantissa and exponent to express the cycle count value.
// - bits[7:0] indicate the mantissa M.
// - bits[13:8] indicate the exponent E.
// The cycle count is expressed using the following function:
// cycle_count = (if IsZero(E) then UInt(M) else UInt('1':M:Zeros(UInt(E)-1)))
// A value of all ones in both the mantissa and exponent indicates the cycle count value
// exceeded the size of the cycle counter.
// If the cycle count is not known, the second return result is zero.

(bit, bits(14)) BranchEncCycleCount();

Library pseudocode for aarch64/debug/brbe/BranchMispredict

// BranchMispredict()
// ==================
// Returns TRUE if the branch being executed was mispredicted, FALSE otherwise.

boolean BranchMispredict();

Shared Pseudocode Functions Page 1541

Library pseudocode for aarch64/debug/brbe/BranchRawCycleCount

// BranchRawCycleCount()
// =====================
// If the cycle count is known, the return result is the cycle count since the last branch.

integer BranchRawCycleCount();

Library pseudocode for aarch64/debug/brbe/BranchRecordAllowed

// BranchRecordAllowed()
// =====================
// Returns TRUE if branch recording is allowed, FALSE otherwise.

boolean BranchRecordAllowed(bits(2) el)
if ELUsingAArch32(el) then

return FALSE;

if BRBFCR_EL1.PAUSED == '1' then
return FALSE;

if el == EL3 && HaveBRBEv1p1() then
return (MDCR_EL3.E3BREC != MDCR_EL3.E3BREW);

if HaveEL(EL3) && (MDCR_EL3.SBRBE == '00' ||
(CurrentSecurityState() == SS_Secure && MDCR_EL3.SBRBE == '01')) then
return FALSE;

case el of
when EL3 return FALSE; // FEAT_BRBEv1p1 not implemented
when EL2 return BRBCR_EL2.E2BRE == '1';
when EL1 return BRBCR_EL1.E1BRE == '1';
when EL0

if EL2Enabled() && HCR_EL2.TGE == '1' then
return BRBCR_EL2.E0HBRE == '1';

else
return BRBCR_EL1.E0BRE == '1';

Library pseudocode for aarch64/debug/brbe/Contents

// Contents of the Branch Record Buffer
//=====================================

array [0..63] of BRBSRCType Records_SRC;

array [0..63] of BRBTGTType Records_TGT;

array [0..63] of BRBINFType Records_INF;

Shared Pseudocode Functions Page 1542

Library pseudocode for aarch64/debug/brbe/FilterBranchRecord

// FilterBranchRecord()
// ====================
// Returns TRUE if the branch record is not filtered out, FALSE otherwise.

boolean FilterBranchRecord(BranchType br, boolean cond)
case br of

when BranchType_DIRCALL
return BRBFCR_EL1.DIRCALL != BRBFCR_EL1.EnI;

when BranchType_INDCALL
return BRBFCR_EL1.INDCALL != BRBFCR_EL1.EnI;

when BranchType_RET
return BRBFCR_EL1.RTN != BRBFCR_EL1.EnI;

when BranchType_DIR
if cond then

return BRBFCR_EL1.CONDDIR != BRBFCR_EL1.EnI;
else

return BRBFCR_EL1.DIRECT != BRBFCR_EL1.EnI;
when BranchType_INDIR

return BRBFCR_EL1.INDIRECT != BRBFCR_EL1.EnI;
otherwise Unreachable();

return FALSE;

Library pseudocode for aarch64/debug/brbe/FirstBranchAfterProhibited

// FirstBranchAfterProhibited()
// ============================
// Returns TRUE if branch recorded is the first branch after a prohibited region,
// FALSE otherwise.

FirstBranchAfterProhibited();

Library pseudocode for aarch64/debug/brbe/GetBRBENumRecords

// GetBRBENumRecords()
// ===================
// Returns the number of branch records implemented.

integer GetBRBENumRecords()
assert UInt(BRBIDR0_EL1.NUMREC) IN {0x08, 0x10, 0x20, 0x40};
return integer IMPLEMENTATION_DEFINED "Number of BRB records";

Shared Pseudocode Functions Page 1543

Library pseudocode for aarch64/debug/brbe/Getter

// Getter functions for branch records
// ===================================
// Functions used by MRS instructions that access branch records

BRBSRCType BRBSRC_EL1[integer n]
assert n IN {0..31};
integer record = UInt(BRBFCR_EL1.BANK:n<4:0>);
if record < GetBRBENumRecords() then

return Records_SRC[record];
else

return Zeros(64);

BRBTGTType BRBTGT_EL1[integer n]
assert n IN {0..31};
integer record = UInt(BRBFCR_EL1.BANK:n<4:0>);
if record < GetBRBENumRecords() then

return Records_TGT[record];
else

return Zeros(64);

BRBINFType BRBINF_EL1[integer n]
assert n IN {0..31};
integer record = UInt(BRBFCR_EL1.BANK:n<4:0>);
if record < GetBRBENumRecords() then

return Records_INF[record];
else

return Zeros(64);

Library pseudocode for aarch64/debug/brbe/ShouldBRBEFreeze

// ShouldBRBEFreeze()
// ==================
// Returns TRUE if the BRBE freeze event conditions have been met, and FALSE otherwise.

boolean ShouldBRBEFreeze()
if !BranchRecordAllowed(PSTATE.EL) then return FALSE;
boolean check_e = FALSE;
boolean check_cnten = FALSE;
boolean check_inten = FALSE;
boolean exclude_sync = FALSE;
boolean exclude_cyc = TRUE;
boolean include_lo;
boolean include_hi;

if HaveEL(EL2) then
include_lo = (BRBCR_EL1.FZP == '1');
include_hi = (BRBCR_EL2.FZP == '1');

else
include_lo = TRUE;
include_hi = TRUE;

return PMUOverflowCondition(check_e, check_cnten, check_inten,
include_hi, include_lo, exclude_cyc,
exclude_sync);

Shared Pseudocode Functions Page 1544

Library pseudocode for aarch64/debug/brbe/UpdateBranchRecordBuffer

// UpdateBranchRecordBuffer()
// ==========================
// Add a new Branch record to the buffer.

UpdateBranchRecordBuffer(bit ccu, bits(14) cc, bit lastfailed, bit transactional,
bits(6) branch_type, bits(2) el, bit mispredict, bits(2) valid,
bits(64) source_address, bits(64) target_address)

// Shift the Branch Records in the buffer
for i = GetBRBENumRecords() - 1 downto 1

Records_SRC[i] = Records_SRC[i - 1];
Records_TGT[i] = Records_TGT[i - 1];
Records_INF[i] = Records_INF[i - 1];

Records_INF[0].CCU = ccu;
Records_INF[0].CC = cc;

Records_INF[0].EL = el;
Records_INF[0].VALID = valid;
Records_INF[0].T = transactional;
Records_INF[0].LASTFAILED = lastfailed;
Records_INF[0].MPRED = mispredict;
Records_INF[0].TYPE = branch_type;

Records_SRC[0] = source_address;
Records_TGT[0] = target_address;

return;

Shared Pseudocode Functions Page 1545

Library pseudocode for aarch64/debug/breakpoint/AArch64.BreakpointMatch

// AArch64.BreakpointMatch()
// =========================
// Breakpoint matching in an AArch64 translation regime.
// Returns a pair of booleans, the first indicates if the match was successful and the second if
// the first value should be inverted because the breakpoint is configured for a mismatch.

(boolean, boolean) AArch64.BreakpointMatch(integer n, bits(64) vaddress, AccessDescriptor accdesc,
integer size)

assert !ELUsingAArch32(S1TranslationRegime());
assert n < NumBreakpointsImplemented();

linking_enabled = (DBGBCR_EL1[n].BT IN {'0x11', '1xx1'} ||
(HaveFeatABLE() && DBGBCR_EL1[n].BT2 == '1'));

// A breakpoint that has linking enabled does not generate debug events in isolation
if linking_enabled then

return (FALSE, FALSE);

enabled = IsBreakpointEnabled(n);
linked = DBGBCR_EL1[n].BT IN {'0x01'};
isbreakpnt = TRUE;
linked_to = FALSE;
lbnx = if Havev8p9Debug() then DBGBCR_EL1[n].LBNX else '00';
linked_n = UInt(lbnx : DBGBCR_EL1[n].LBN);
ssce = if HaveRME() then DBGBCR_EL1[n].SSCE else '0';
state_match = AArch64.StateMatch(DBGBCR_EL1[n].SSC, ssce, DBGBCR_EL1[n].HMC,

DBGBCR_EL1[n].PMC, linked, linked_n, isbreakpnt,
vaddress, accdesc);

(value_match, valid_mismatch) = AArch64.BreakpointValueMatch(n, vaddress, linked_to,
isbreakpnt);

if HaveAArch32() && size == 4 then // Check second halfword
// If the breakpoint address and BAS of an Address breakpoint match the address of the
// second halfword of an instruction, but not the address of the first halfword, it is
// CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
// event.
(match_i, -) = AArch64.BreakpointValueMatch(n, vaddress + 2, linked_to,

isbreakpnt);
if !value_match && match_i then

value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);

if vaddress<1> == '1' && DBGBCR_EL1[n].BAS == '1111' then
// The above notwithstanding, if DBGBCR_EL1[n].BAS == '1111', then it is CONSTRAINED
// UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
// at the address DBGBVR_EL1[n]+2.
if value_match then value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);

match = value_match && state_match && enabled;
is_mismatch = valid_mismatch && state_match && enabled;

return (match, is_mismatch);

Shared Pseudocode Functions Page 1546

Library pseudocode for aarch64/debug/breakpoint/AArch64.BreakpointValueMatch

Shared Pseudocode Functions Page 1547

// AArch64.BreakpointValueMatch()
// ==============================
// Returns a pair of booleans, the first indicates if the value match was successful and the
// second if the first value should be inverted for a mismatch.

(boolean, boolean) AArch64.BreakpointValueMatch(integer n_in, bits(64) vaddress,
boolean linked_to, boolean isbreakpnt)

// "n" is the identity of the breakpoint unit to match against.
// "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
// matching breakpoints.
// "linked_to" is TRUE if this is a call from StateMatch for linking.
// "isbreakpnt" TRUE is this is a call from BreakpointMatch or from StateMatch for a
// linked breakpoint.
integer n = n_in;
Constraint c;

// If a non-existent breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
// no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
if n >= NumBreakpointsImplemented() then

(c, n) = ConstrainUnpredictableInteger(0, NumBreakpointsImplemented() - 1,
Unpredictable_BPNOTIMPL);

assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then return (FALSE, FALSE);

// If this breakpoint is not enabled, it cannot generate a match.
// (This could also happen on a call from StateMatch for linking).
if !IsBreakpointEnabled(n) then return (FALSE, FALSE);

// If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
dbgtype = DBGBCR_EL1[n].BT;
bt2 = if HaveFeatABLE() then DBGBCR_EL1[n].BT2 else '0';

(c, bt2, dbgtype) = AArch64.ReservedBreakpointType(n, bt2, dbgtype);
if c == Constraint_DISABLED then return (FALSE, FALSE);
// Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

// Determine what to compare against.
match_addr = (dbgtype IN {'0x0x'});
mismatch = (dbgtype IN {'010x'});
match_vmid = (dbgtype IN {'10xx'});
match_cid = (dbgtype IN {'001x'});
match_cid1 = (dbgtype IN {'101x', 'x11x'});
match_cid2 = (dbgtype IN {'11xx'});
linking_enabled = (dbgtype IN {'xx11', '1xx1'} || bt2 == '1');

// If this is a call from StateMatch, return FALSE if the breakpoint is not
// programmed with linking enabled.
if linked_to && !linking_enabled then

return (FALSE, FALSE);

// If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
if !linked_to && linking_enabled && !match_addr then

return (FALSE, FALSE);

// If a linked breakpoint is linked to an address matching breakpoint,
// the behavior is CONSTRAINED UNPREDICTABLE.
if linked_to && match_addr && isbreakpnt then

if !ConstrainUnpredictableBool(Unpredictable_BPLINKEDADDRMATCH) then
return (FALSE, FALSE);

// A breakpoint programmed for address mismatch does not match in AArch32 state.
if mismatch && UsingAArch32() then

return (FALSE, FALSE);

boolean bvr_match = FALSE;
boolean bxvr_match = FALSE;
integer mask;

if HaveFeatABLE() then

Shared Pseudocode Functions Page 1548

mask = UInt(DBGBCR_EL1[n].MASK);

// If the mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
if mask IN {1, 2} then

(c, mask) = ConstrainUnpredictableInteger(3, 31, Unpredictable_RESBPMASK);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
case c of

when Constraint_DISABLED return (FALSE, FALSE); // Disabled
when Constraint_NONE mask = 0; // No masking
// Otherwise the value returned by ConstrainUnpredictableBits must
// be a not-reserved value.

if mask != 0 then
// When DBGBCR_EL1[n].MASK is a valid nonzero value, the behavior is
// CONSTRAINED UNPREDICTABLE if any of the following are true:
// - DBGBCR_EL1[n].<BT2,BT> is programmed for a Context matching breakpoint.
// - DBGBCR_EL1[n].BAS is not '1111' and AArch32 is supported at EL0.
if ((match_cid || match_cid1 || match_cid2) ||

(DBGBCR_EL1[n].BAS != '1111' && HaveAArch32())) then
if !ConstrainUnpredictableBool(Unpredictable_BPMASK) then return (FALSE, FALSE);

else
// A stand-alone mismatch of a single address is not supported.
if mismatch then

return (FALSE, FALSE);

else
mask = 0;

// Do the comparison.
if match_addr then

boolean byte_select_match;
integer byte = UInt(vaddress<1:0>);

if HaveAArch32() then
// T32 instructions can be executed at EL0 in an AArch64 translation regime.
assert byte IN {0,2}; // "vaddress" is halfword aligned
byte_select_match = (DBGBCR_EL1[n].BAS<byte> == '1');

else
assert byte == 0; // "vaddress" is word aligned
byte_select_match = TRUE; // DBGBCR_EL1[n].BAS<byte> is RES1

// When FEAT_LVA3 is not implemented, if the DBGBVR_EL1[n].RESS field bits are not a
// sign extension of the MSB of DBGBVR_EL1[n].VA, it is UNPREDICTABLE whether they
// appear to be included in the match.
// If 'vaddress' is outside of the current virtual address space, then the access
// generates a Translation fault.
integer top = DebugAddrTop();
integer bottom = 2;
if (top < 55 && !IsOnes(DBGBVR_EL1[n]<63:top>) && !IsZero(DBGBVR_EL1[n]<63:top>) &&

ConstrainUnpredictableBool(Unpredictable_DBGxVR_RESS)) then
top = 63;

if mask > bottom then
bvr_match = (vaddress<top:mask> == DBGBVR_EL1[n]<top:mask>) && byte_select_match;

// If masked bits of DBGBVR_EL1[n] are not zero, the behavior
// is CONSTRAINED UNPREDICTABLE.
if bvr_match && !IsZero(DBGBVR_EL1[n]<mask-1:bottom>) then

bvr_match = ConstrainUnpredictableBool(Unpredictable_BPMASKEDBITS);
else

bvr_match = (vaddress<top:bottom> == DBGBVR_EL1[n]<top:bottom>) && byte_select_match;

elsif match_cid then
if IsInHost() then

bvr_match = (CONTEXTIDR_EL2<31:0> == DBGBVR_EL1[n]<31:0>);
else

bvr_match = (PSTATE.EL IN {EL0, EL1} && CONTEXTIDR_EL1<31:0> == DBGBVR_EL1[n]<31:0>);

elsif match_cid1 then
bvr_match = (PSTATE.EL IN {EL0, EL1} && !IsInHost() &&

Shared Pseudocode Functions Page 1549

CONTEXTIDR_EL1<31:0> == DBGBVR_EL1[n]<31:0>);

if match_vmid then
bits(16) vmid;
bits(16) bvr_vmid;

if !Have16bitVMID() || VTCR_EL2.VS == '0' then
vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
bvr_vmid = ZeroExtend(DBGBVR_EL1[n]<39:32>, 16);

else
vmid = VTTBR_EL2.VMID;
bvr_vmid = DBGBVR_EL1[n]<47:32>;

bxvr_match = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() && vmid == bvr_vmid);

elsif match_cid2 then
bxvr_match = (PSTATE.EL != EL3 && EL2Enabled() &&

DBGBVR_EL1[n]<63:32> == CONTEXTIDR_EL2<31:0>);

bvr_match_valid = (match_addr || match_cid || match_cid1);
bxvr_match_valid = (match_vmid || match_cid2);

value_match = (!bxvr_match_valid || bxvr_match) && (!bvr_match_valid || bvr_match);

return (value_match, mismatch);

Library pseudocode for aarch64/debug/breakpoint/AArch64.ReservedBreakpointType

// AArch64.ReservedBreakpointType()
// ================================
// Checks if the given DBGBCR<n>_EL1.BT2 and DBGBCR<n>_EL1.BT value is reserved and will
// generate Constrained Unpredictable behavior, otherwise returns Constraint_NONE.

(Constraint, bit, bits(4)) AArch64.ReservedBreakpointType(integer n, bit bt2_in ,bits(4) bt_in)
bit bt2 = bt2_in;
bits(4) bt = bt_in;
boolean reserved = FALSE;
context_aware = n >= (NumBreakpointsImplemented() - NumContextAwareBreakpointsImplemented());

if bt2 == '0' then
// Context matching
if !(bt IN {'0x0x'}) && !context_aware then

reserved = TRUE;

// EL2 extension
if bt IN {'1xxx'} && !HaveEL(EL2) then

reserved = TRUE;

// Context matching
if bt IN {'011x','11xx'} && !HaveVirtHostExt() && !HaveV82Debug() then

reserved = TRUE;

// Reserved
if bt IN {'010x'} && !HaveFeatABLE() && !HaveAArch32EL(EL1) then

reserved = TRUE;
else

// Reserved
if !(bt IN {'0x0x'}) then

reserved = TRUE;

if reserved then
Constraint c;
(c, <bt2,bt>) = ConstrainUnpredictableBits(Unpredictable_RESBPTYPE, 5);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then

return (c, bit UNKNOWN, bits(4) UNKNOWN);
// Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

return (Constraint_NONE, bt2, bt);

Shared Pseudocode Functions Page 1550

Library pseudocode for aarch64/debug/breakpoint/AArch64.StateMatch

Shared Pseudocode Functions Page 1551

// AArch64.StateMatch()
// ====================
// Determine whether a breakpoint or watchpoint is enabled in the current mode and state.

boolean AArch64.StateMatch(bits(2) ssc_in, bit ssce_in, bit hmc_in,
bits(2) pxc_in, boolean linked_in, integer linked_n_in,
boolean isbreakpnt, bits(64) vaddress, AccessDescriptor accdesc)

if !HaveRME() then assert ssce_in == '0';

// "ssc_in","ssce_in","hmc_in","pxc_in" are the control fields from
// the DBGBCR_EL1[n] or DBGWCR_EL1[n] register.
// "linked_in" is TRUE if this is a linked breakpoint/watchpoint type.
// "linked_n_in" is the linked breakpoint number from the DBGBCR_EL1[n] or
// DBGWCR_EL1[n] register.
// "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
// "vaddress" is the program counter for a linked watchpoint or the same value passed to
// AArch64.CheckBreakpoint for a linked breakpoint.
// "accdesc" describes the properties of the access being matched.
bits(2) ssc = ssc_in;
bit ssce = ssce_in;
bit hmc = hmc_in;
bits(2) pxc = pxc_in;
boolean linked = linked_in;
integer linked_n = linked_n_in;

// If parameters are set to a reserved type, behaves as either disabled or a defined type
Constraint c;
(c, ssc, ssce, hmc, pxc) = CheckValidStateMatch(ssc, ssce, hmc, pxc, isbreakpnt);
if c == Constraint_DISABLED then return FALSE;
// Otherwise the hmc,ssc,ssce,pxc values are either valid or the values returned by
// CheckValidStateMatch are valid.

EL3_match = HaveEL(EL3) && hmc == '1' && ssc<0> == '0';
EL2_match = HaveEL(EL2) && ((hmc == '1' && (ssc:pxc != '1000')) || ssc == '11');
EL1_match = pxc<0> == '1';
EL0_match = pxc<1> == '1';

boolean priv_match;
case accdesc.el of

when EL3 priv_match = EL3_match;
when EL2 priv_match = EL2_match;
when EL1 priv_match = EL1_match;
when EL0 priv_match = EL0_match;

// Security state match
boolean ss_match;
case ssce:ssc of

when '000' ss_match = hmc == '1' || accdesc.ss != SS_Root;
when '001' ss_match = accdesc.ss == SS_NonSecure;
when '010' ss_match = (hmc == '1' && accdesc.ss == SS_Root) || accdesc.ss == SS_Secure;
when '011' ss_match = (hmc == '1' && accdesc.ss != SS_Root) || accdesc.ss == SS_Secure;
when '101' ss_match = accdesc.ss == SS_Realm;

boolean linked_match = FALSE;
boolean is_linked_mismatch = FALSE;

if linked then
// "linked_n" must be an enabled context-aware breakpoint unit. If it is not context-aware
// then it is CONSTRAINED UNPREDICTABLE whether this gives no match, gives a match without
// linking, or linked_n is mapped to some UNKNOWN breakpoint that is context-aware.
if !IsContextMatchingBreakpoint(linked_n) then

(first_ctx_cmp, last_ctx_cmp) = ContextMatchingBreakpointRange();
(c, linked_n) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp,

Unpredictable_BPNOTCTXCMP);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};

case c of
when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE linked = FALSE; // No linking
// Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint

Shared Pseudocode Functions Page 1552

if linked then
linked_to = TRUE;
(linked_match, is_linked_mismatch) = AArch64.BreakpointValueMatch(linked_n, vaddress,

linked_to, isbreakpnt);

return (priv_match && ss_match && (!linked ||
(!is_linked_mismatch && linked_match) || (is_linked_mismatch && !linked_match)));

Library pseudocode for aarch64/debug/breakpoint/DebugAddrTop

// DebugAddrTop()
// ==============
// Returns the value for the top bit used in Breakpoint and Watchpoint address comparisons.

integer DebugAddrTop()
if Have56BitVAExt() then

return 55;
elsif Have52BitVAExt() then

return 52;
else

return 48;

Library pseudocode for aarch64/debug/breakpoint/EffectiveMDSELR_EL1_BANK

// EffectiveMDSELR_EL1_BANK()
// ==========================
// Return the effective value of MDSELR_EL1.BANK.

bits(2) EffectiveMDSELR_EL1_BANK()
// If 16 or fewer breakpoints and 16 or fewer watchpoints are implemented,
// then the field is RES0.
integer num_bp = NumBreakpointsImplemented();
integer num_wp = NumWatchpointsImplemented();
if num_bp <= 16 && num_wp <= 16 then

return '00';

// At EL3, the Effective value of this field is zero if MDCR_EL3.EBWE is 0.
// At EL2, the Effective value is zero if the Effective value of MDCR_EL2.EBWE is 0.
// That is, if either MDCR_EL3.EBWE is 0 or MDCR_EL2.EBWE is 0.
// At EL1, the Effective value is zero if the Effective value of MDSCR_EL2.EMBWE is 0.
// That is, if any of MDCR_EL3.EBWE, MDCR_EL2.EBWE, or MDSCR_EL1.EMBWE is 0.
if ((HaveEL(EL3) && MDCR_EL3.EBWE == '0') ||

(PSTATE.EL != EL3 && EL2Enabled() && MDCR_EL2.EBWE == '0') ||
(PSTATE.EL == EL1 && MDSCR_EL1.EMBWE == '0')) then

return '00';

bits(2) bank = MDSELR_EL1.BANK;

// Values are reserved depending on the number of breakpoints or watchpoints
// implemented.
if ((bank == '11' && num_bp <= 48 && num_wp <= 48) ||

(bank == '10' && num_bp <= 32 && num_wp <= 32)) then
// Reserved value
(-, bank) = ConstrainUnpredictableBits(Unpredictable_RESMDSELR, 2);
// The value returned by ConstrainUnpredictableBits must be a not-reserved value

return bank;

Shared Pseudocode Functions Page 1553

Library pseudocode for aarch64/debug/breakpoint/IsBreakpointEnabled

// IsBreakpointEnabled()
// =====================
// Returns TRUE if the effective value of DBGBCR_EL1[n].E is '1', and FALSE otherwise.

boolean IsBreakpointEnabled(integer n)
if (n > 15 &&

((!HaltOnBreakpointOrWatchpoint() && !SelfHostedExtendedBPWPEnabled()) ||
(HaltOnBreakpointOrWatchpoint() && EDSCR2.EHBWE == '0'))) then

return FALSE;

return DBGBCR_EL1[n].E == '1';

Library pseudocode for aarch64/debug/breakpoint/SelfHostedExtendedBPWPEnabled

// SelfHostedExtendedBPWPEnabled()
// ===============================
// Returns TRUE if the extended breakpoints and watchpoints are enabled, and FALSE otherwise
// from a self-hosted debug perspective.

boolean SelfHostedExtendedBPWPEnabled()
if NumBreakpointsImplemented() <= 16 && NumWatchpointsImplemented() <= 16 then

return FALSE;

if ((HaveEL(EL3) && MDCR_EL3.EBWE == '0') ||
(EL2Enabled() && MDCR_EL2.EBWE == '0')) then

return FALSE;

return MDSCR_EL1.EMBWE == '1';

Library pseudocode for aarch64/debug/ebep/CheckForPMUException

// CheckForPMUException()
// ======================
// Take a PMU exception if enabled, permitted, and unmasked.

CheckForPMUException()
boolean enabled;
bits(2) target_el;
boolean pmu_exception;
(enabled, target_el) = PMUExceptionEnabled();
if !enabled || PMUExceptionMasked() then

pmu_exception = FALSE;
elsif IsFeatureImplemented(FEAT_SEBEP) && PSTATE.PPEND == '1' then

pmu_exception = TRUE;
else

boolean check_cnten = FALSE;
boolean check_e = TRUE;
boolean check_inten = TRUE;
boolean include_lo = TRUE;
boolean include_hi = TRUE;
boolean exclude_cyc = FALSE;
boolean exclude_sync = IsFeatureImplemented(FEAT_SEBEP);
pmu_exception = PMUOverflowCondition(check_e, check_cnten, check_inten,

include_hi, include_lo,
exclude_cyc, exclude_sync);

if pmu_exception then
TakePMUException(target_el);

Shared Pseudocode Functions Page 1554

Library pseudocode for aarch64/debug/ebep/ExceptionReturnPPEND

// ExceptionReturnPPEND()
// ======================
// Sets ShouldSetPPEND to the value to write to PSTATE.PPEND
// on an exception return.
// This function is called before any change in Exception level.

ExceptionReturnPPEND(bits(64) spsr)
boolean enabled_at_source = FALSE;
boolean masked_at_source = FALSE;
if spsr<33> == '1' then // SPSR.PPEND

(enabled_at_source, -) = PMUExceptionEnabled();
masked_at_source = PMUExceptionMasked();

bits(2) target_el;
if IllegalExceptionReturn(spsr) then

target_el = PSTATE.EL;
else

boolean valid;
(valid, target_el) = ELFromSPSR(spsr);
assert valid;

boolean masked_at_dest = PMUExceptionMasked(target_el, spsr<32>); // SPSR.PM
if enabled_at_source && masked_at_source && !masked_at_dest then

PSTATE.PPEND = '1';
ShouldSetPPEND = FALSE;
// PSTATE.PPEND will not be changed again by this instruction.

// If PSTATE.PPEND has not been set by this function, ShouldSetPPEND is
// unchanged, meaning PSTATE.PPEND might either be set by the current instruction
// causing a counter overflow, or cleared to zero at the end of instruction.

return;

Library pseudocode for aarch64/debug/ebep/IsSupportingPMUSynchronousMode

// IsSupportingPMUSynchronousMode()
// ================================
// Returns TRUE if the event support synchronous mode,
// and FALSE otherwise.

boolean IsSupportingPMUSynchronousMode(bits(16) pmuevent);

Shared Pseudocode Functions Page 1555

Library pseudocode for aarch64/debug/ebep/PMUExceptionEnabled

// PMUExceptionEnabled()
// =====================
// The first return value is TRUE if the PMU exception is enabled, and FALSE otherwise.
// The second return value is the target Exception level for an enabled PMU exception.

(boolean, bits(2)) PMUExceptionEnabled()

if !IsFeatureImplemented(FEAT_EBEP) then
return (FALSE, bits(2) UNKNOWN);

boolean enabled;
bits(2) target = bits(2) UNKNOWN;

if HaveEL(EL3) && MDCR_EL3.PMEE != '01' then
enabled = MDCR_EL3.PMEE == '11';
if enabled then target = EL3;

elsif EL2Enabled() && MDCR_EL2.PMEE != '01' then
enabled = MDCR_EL2.PMEE == '11';
if enabled then target = EL2;

else
bits(2) pmee_el1 = PMECR_EL1.PMEE;
if pmee_el1 == '01' then // Reserved value

Constraint c;
(c, pmee_el1) = ConstrainUnpredictableBits(Unpredictable_RESPMEE, 2);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then pmee_el1 = '10';
// Otherwise the value returned by ConstrainUnpredictableBits must be
// a non-reserved value

enabled = pmee_el1 == '11';
if enabled then

target = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;

return (enabled, target);

Library pseudocode for aarch64/debug/ebep/PMUExceptionMasked

// PMUExceptionMasked()
// ====================
// Return TRUE if the PMU Exception is masked at the current Exception level,
// FALSE otherwise.

boolean PMUExceptionMasked()
return PMUExceptionMasked(PSTATE.EL, PSTATE.PM);

// PMUExceptionMasked()
// ====================
// Return TRUE if the PMU Exception is masked at the specified Exception level
// and by the value of PSTATE.PM, and FALSE otherwise.

boolean PMUExceptionMasked(bits(2) el, bit pm)
assert IsFeatureImplemented(FEAT_EBEP);

(-, target) = PMUExceptionEnabled();

if Halted() then
return TRUE;

elsif UInt(target) < UInt(el) then
return TRUE;

elsif el == EL2 && target == EL2 && MDCR_EL2.PMEE != '11' then
return TRUE;

elsif target == el && (PMECR_EL1.KPME == '0' || pm == '1') then
return TRUE;

return FALSE;

Shared Pseudocode Functions Page 1556

Library pseudocode for aarch64/debug/ebep/PMUInterruptEnabled

// PMUInterruptEnabled()
// =====================
// Return TRUE if the PMU interrupt request (PMUIRQ) is enabled, FALSE otherwise.

boolean PMUInterruptEnabled()
if !IsFeatureImplemented(FEAT_EBEP) then

return TRUE;

boolean enabled;

if HaveEL(EL3) && MDCR_EL3.PMEE != '01' then
enabled = MDCR_EL3.PMEE == '00';

elsif EL2Enabled() && MDCR_EL2.PMEE != '01' then
enabled = MDCR_EL2.PMEE == '00';

else
bits(2) pmee_el1 = PMECR_EL1.PMEE;
if pmee_el1 == '01' then // Reserved value

Constraint c;
(c, pmee_el1) = ConstrainUnpredictableBits(Unpredictable_RESPMEE, 2);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then pmee_el1 = '10';
// Otherwise the value returned by ConstrainUnpredictableBits must be
// a non-reserved value

enabled = pmee_el1 == '00';

return enabled;

Library pseudocode for aarch64/debug/ebep/TakePMUException

// TakePMUException()
// ==================
// Takes a PMU exception.

TakePMUException(bits(2) target_el)
ExceptionRecord except = ExceptionSyndrome(Exception_PMU);
bit synchronous = if IsFeatureImplemented(FEAT_SEBEP) then PSTATE.PPEND else '0';
except.syndrome = Zeros(24) : synchronous;
bits(64) preferred_exception_return = ThisInstrAddr(64);
integer vect_offset = 0x0;
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/debug/ebep/inst_addr_executed

bits(64) inst_addr_executed;

Library pseudocode for aarch64/debug/ebep/sync_counter_overflowed

boolean sync_counter_overflowed;

Library pseudocode for aarch64/debug/enables/AArch64.GenerateDebugExceptions

// AArch64.GenerateDebugExceptions()
// =================================

boolean AArch64.GenerateDebugExceptions()
ss = CurrentSecurityState();
return AArch64.GenerateDebugExceptionsFrom(PSTATE.EL, ss, PSTATE.D);

Shared Pseudocode Functions Page 1557

Library pseudocode for aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom

// AArch64.GenerateDebugExceptionsFrom()
// =====================================

boolean AArch64.GenerateDebugExceptionsFrom(bits(2) from_el, SecurityState from_state, bit mask)

if OSLSR_EL1.OSLK == '1' || DoubleLockStatus() || Halted() then
return FALSE;

route_to_el2 = (HaveEL(EL2) && (from_state != SS_Secure || IsSecureEL2Enabled()) &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

target = (if route_to_el2 then EL2 else EL1);
boolean enabled;
if HaveEL(EL3) && from_state == SS_Secure then

enabled = MDCR_EL3.SDD == '0';
if from_el == EL0 && ELUsingAArch32(EL1) then

enabled = enabled || SDER32_EL3.SUIDEN == '1';
else

enabled = TRUE;

if from_el == target then
enabled = enabled && MDSCR_EL1.KDE == '1' && mask == '0';

else
enabled = enabled && UInt(target) > UInt(from_el);

return enabled;

Library pseudocode for aarch64/debug/ite/AArch64.TRCIT

// AArch64.TRCIT()
// ===============
// Determines whether an Instrumentation trace packet should
// be generated and then generates an instrumentation trace packet
// containing the value of the register passed as an argument

AArch64.TRCIT(bits(64) Xt)
ss = CurrentSecurityState();
if TraceInstrumentationAllowed(ss, PSTATE.EL) then

TraceInstrumentation(Xt);

Library pseudocode for aarch64/debug/ite/TraceInstrumentation

// TraceInstrumentation()
// ======================
// Generates an instrumentation trace packet
// containing the value of the register passed as an argument

TraceInstrumentation(bits(64) Xt);

Library pseudocode for aarch64/debug/pmu/AArch64.ClearEventCounters

// AArch64.ClearEventCounters()
// ============================
// Zero all the event counters.

AArch64.ClearEventCounters()
integer counters = AArch64.GetNumEventCountersAccessible();
if counters != 0 then

for idx = 0 to counters - 1
PMEVCNTR_EL0[idx] = Zeros(64);

Shared Pseudocode Functions Page 1558

Library pseudocode for aarch64/debug/pmu/AArch64.GetNumEventCountersAccessible

// AArch64.GetNumEventCountersAccessible()
// =======================================
// Return the number of event counters that can be accessed at the current Exception level.

integer AArch64.GetNumEventCountersAccessible()
integer n;
integer total_counters = GetNumEventCounters();
// Software can reserve some counters for EL2
if PSTATE.EL IN {EL1, EL0} && EL2Enabled() then

n = UInt(MDCR_EL2.HPMN);
if n > total_counters || (!HaveFeatHPMN0() && n == 0) then

(-, n) = ConstrainUnpredictableInteger(0, total_counters,
Unpredictable_PMUEVENTCOUNTER);

else
n = total_counters;

return n;

Library pseudocode for aarch64/debug/pmu/AArch64.IncrementCycleCounter

// AArch64.IncrementCycleCounter()
// ===============================
// Increment the cycle counter and possibly set overflow bits.

AArch64.IncrementCycleCounter()
if !CountPMUEvents(CYCLE_COUNTER_ID) then return;
bit d = PMCR_EL0.D; // Check divide-by-64
bit lc = PMCR_EL0.LC;
boolean lc_enabled;
(lc_enabled, -) = PMUExceptionEnabled();
lc = if lc_enabled then '1' else lc;
// Effective value of 'D' bit is 0 when Effective value of LC is '1'
if lc == '1' then d = '0';
if d == '1' && !HasElapsed64Cycles() then return;

integer old_value = UInt(PMCCNTR_EL0);
integer new_value = old_value + 1;
PMCCNTR_EL0 = new_value<63:0>;

integer ovflw;
if HaveAArch32() then

ovflw = if lc == '1' then 64 else 32;
else

ovflw = 64;

if old_value<64:ovflw> != new_value<64:ovflw> then
PMOVSSET_EL0.C = '1';
PMOVSCLR_EL0.C = '1';

return;

Shared Pseudocode Functions Page 1559

Library pseudocode for aarch64/debug/pmu/AArch64.IncrementEventCounter

// AArch64.IncrementEventCounter()
// ===============================
// Increment the specified event counter by the specified amount.

AArch64.IncrementEventCounter(integer idx, integer increment)
integer old_value;
integer new_value;
integer ovflw;

old_value = UInt(PMEVCNTR_EL0[idx]);
new_value = old_value + PMUCountValue(idx, increment);

bit lp;
if HavePMUv3p5() then

PMEVCNTR_EL0[idx] = new_value<63:0>;
boolean pmuexception_enabled;
(pmuexception_enabled, -) = PMUExceptionEnabled();
if pmuexception_enabled then

lp = '1';
else

lp = if PMUCounterIsHyp(idx) then MDCR_EL2.HLP else PMCR_EL0.LP;
ovflw = if lp == '1' then 64 else 32;

else
PMEVCNTR_EL0[idx] = ZeroExtend(new_value<31:0>, 64);
ovflw = 32;

if old_value<64:ovflw> != new_value<64:ovflw> then
PMOVSSET_EL0<idx> = '1';
PMOVSCLR_EL0<idx> = '1';
// Check for the CHAIN event from an even counter
if idx<0> == '0' && idx + 1 < GetNumEventCounters() && (!HavePMUv3p5() || lp == '0') then

PMUEvent(PMU_EVENT_CHAIN, 1, idx + 1);
if (IsFeatureImplemented(FEAT_SEBEP) &&

IsSupportingPMUSynchronousMode(PMEVTYPER_EL0[idx].evtCount) &&
PMINTENSET_EL1[idx] == '1' && PMOVSCLR_EL0[idx] == '1' && increment != 0) then

SyncCounterOverflowed = TRUE;

return;

Library pseudocode for aarch64/debug/pmu/AArch64.PMUCycle

// AArch64.PMUCycle()
// ==================
// Called at the end of each cycle to increment event counters and
// check for PMU overflow. In pseudocode, a cycle ends after the
// execution of the operational pseudocode.

AArch64.PMUCycle()
if !HavePMUv3() then

return;

PMUEvent(PMU_EVENT_CPU_CYCLES);

integer counters = GetNumEventCounters();
if counters != 0 then

for idx = 0 to counters - 1
if ((!IsFeatureImplemented(FEAT_SEBEP) || PMEVTYPER_EL0[idx].SYNC == '0' ||

!IsSupportingPMUSynchronousMode(PMEVTYPER_EL0[idx].evtCount)) &&
CountPMUEvents(idx)) then

integer accumulated = PMUEventAccumulator[idx];
AArch64.IncrementEventCounter(idx, accumulated);

PMUEventAccumulator[idx] = 0;
AArch64.IncrementCycleCounter();
CheckForPMUOverflow();

Shared Pseudocode Functions Page 1560

Library pseudocode for aarch64/debug/pmu/AArch64.PMUSwIncrement

// AArch64.PMUSwIncrement()
// ========================
// Generate PMU Events on a write to PMSWINC_EL0.

AArch64.PMUSwIncrement(bits(32) sw_incr)
integer counters = AArch64.GetNumEventCountersAccessible();
if counters != 0 then

for idx = 0 to counters - 1
if sw_incr<idx> == '1' then

PMUEvent(PMU_EVENT_SW_INCR, 1, idx);

Library pseudocode for aarch64/debug/statisticalprofiling/CollectContextIDR1

// CollectContextIDR1()
// ====================

boolean CollectContextIDR1()
if !StatisticalProfilingEnabled() then return FALSE;
if PSTATE.EL == EL2 then return FALSE;
if EL2Enabled() && HCR_EL2.TGE == '1' then return FALSE;
return PMSCR_EL1.CX == '1';

Library pseudocode for aarch64/debug/statisticalprofiling/CollectContextIDR2

// CollectContextIDR2()
// ====================

boolean CollectContextIDR2()
if !StatisticalProfilingEnabled() then return FALSE;
if !EL2Enabled() then return FALSE;
return PMSCR_EL2.CX == '1';

Library pseudocode for aarch64/debug/statisticalprofiling/CollectPhysicalAddress

// CollectPhysicalAddress()
// ========================

boolean CollectPhysicalAddress()
if !StatisticalProfilingEnabled() then return FALSE;
(owning_ss, owning_el) = ProfilingBufferOwner();
if HaveEL(EL2) && (owning_ss != SS_Secure || IsSecureEL2Enabled()) then

return PMSCR_EL2.PA == '1' && (owning_el == EL2 || PMSCR_EL1.PA == '1');
else

return PMSCR_EL1.PA == '1';

Shared Pseudocode Functions Page 1561

Library pseudocode for aarch64/debug/statisticalprofiling/CollectTimeStamp

// CollectTimeStamp()
// ==================

TimeStamp CollectTimeStamp()
if !StatisticalProfilingEnabled() then return TimeStamp_None;
(-, owning_el) = ProfilingBufferOwner();

if owning_el == EL2 then
if PMSCR_EL2.TS == '0' then return TimeStamp_None;

else
if PMSCR_EL1.TS == '0' then return TimeStamp_None;

bits(2) PCT_el1;
if !HaveECVExt() then

PCT_el1 = '0':PMSCR_EL1.PCT<0>; // PCT<1> is RES0
else

PCT_el1 = PMSCR_EL1.PCT;
if PCT_el1 == '10' then

// Reserved value
(-, PCT_el1) = ConstrainUnpredictableBits(Unpredictable_PMSCR_PCT, 2);

if EL2Enabled() then
bits(2) PCT_el2;
if !HaveECVExt() then

PCT_el2 = '0':PMSCR_EL2.PCT<0>; // PCT<1> is RES0
else

PCT_el2 = PMSCR_EL2.PCT;
if PCT_el2 == '10' then

// Reserved value
(-, PCT_el2) = ConstrainUnpredictableBits(Unpredictable_PMSCR_PCT, 2);

case PCT_el2 of
when '00'

return if IsInHost() then TimeStamp_Physical else TimeStamp_Virtual;
when '01'

if owning_el == EL2 then return TimeStamp_Physical;
when '11'

assert HaveECVExt(); // FEAT_ECV must be implemented
if owning_el == EL1 && PCT_el1 == '00' then

return if IsInHost() then TimeStamp_Physical else TimeStamp_Virtual;
else

return TimeStamp_OffsetPhysical;
otherwise

Unreachable();

case PCT_el1 of
when '00' return if IsInHost() then TimeStamp_Physical else TimeStamp_Virtual;
when '01' return TimeStamp_Physical;
when '11'

assert HaveECVExt(); // FEAT_ECV must be implemented
return TimeStamp_OffsetPhysical;

otherwise Unreachable();

Library pseudocode for aarch64/debug/statisticalprofiling/OpType

// OpType
// ======
// Types of operation filtered by SPECollectRecord().

enumeration OpType {
OpType_Load, // Any memory-read operation other than atomics, compare-and-swap, and swap
OpType_Store, // Any memory-write operation, including atomics without return
OpType_LoadAtomic, // Atomics with return, compare-and-swap and swap
OpType_Branch, // Software write to the PC
OpType_Other // Any other class of operation

};

Shared Pseudocode Functions Page 1562

Library pseudocode for aarch64/debug/statisticalprofiling/ProfilingBufferEnabled

// ProfilingBufferEnabled()
// ========================

boolean ProfilingBufferEnabled()
if !HaveStatisticalProfiling() then return FALSE;
(owning_ss, owning_el) = ProfilingBufferOwner();
bits(2) state_bits;
if HaveRME() then

state_bits = SCR_EL3.NSE : EffectiveSCR_EL3_NS();
else

state_bits = '0' : SCR_EL3.NS;

boolean state_match;
case owning_ss of

when SS_Secure state_match = state_bits == '00';
when SS_NonSecure state_match = state_bits == '01';
when SS_Realm state_match = state_bits == '11';

return (!ELUsingAArch32(owning_el) && state_match &&
PMBLIMITR_EL1.E == '1' && PMBSR_EL1.S == '0');

Library pseudocode for aarch64/debug/statisticalprofiling/ProfilingBufferOwner

// ProfilingBufferOwner()
// ======================

(SecurityState, bits(2)) ProfilingBufferOwner()
SecurityState owning_ss;

if HaveEL(EL3) then
bits(3) state_bits;
if HaveRME() then

state_bits = MDCR_EL3.<NSPBE,NSPB>;
if (state_bits IN {'10x'} ||

(!HaveSecureEL2Ext() && state_bits IN {'00x'})) then
// Reserved value
(-, state_bits) = ConstrainUnpredictableBits(Unpredictable_RESERVEDNSxB, 3);

else
state_bits = '0' : MDCR_EL3.NSPB;

case state_bits of
when '00x' owning_ss = SS_Secure;
when '01x' owning_ss = SS_NonSecure;
when '11x' owning_ss = SS_Realm;

else
owning_ss = if SecureOnlyImplementation() then SS_Secure else SS_NonSecure;

bits(2) owning_el;
if HaveEL(EL2) && (owning_ss != SS_Secure || IsSecureEL2Enabled()) then

owning_el = if MDCR_EL2.E2PB == '00' then EL2 else EL1;
else

owning_el = EL1;

return (owning_ss, owning_el);

Library pseudocode for aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier

// ProfilingSynchronizationBarrier()
// =================================
// Barrier to ensure that all existing profiling data has been formatted, and profiling buffer
// addresses have been translated such that writes to the profiling buffer have been initiated.
// A following DSB completes when writes to the profiling buffer have completed.

ProfilingSynchronizationBarrier();

Shared Pseudocode Functions Page 1563

Library pseudocode for aarch64/debug/statisticalprofiling/SPEAddByteToRecord

// SPEAddByteToRecord()
// ====================
// Add one byte to a record and increase size property appropriately.

SPEAddByteToRecord(bits(8) b)
assert SPERecordSize < SPEMaxRecordSize;
SPERecordData[SPERecordSize] = b;
SPERecordSize = SPERecordSize + 1;

Library pseudocode for aarch64/debug/statisticalprofiling/SPEAddPacketToRecord

// SPEAddPacketToRecord()
// ======================
// Add passed header and payload data to the record.
// Payload must be a multiple of 8.

SPEAddPacketToRecord(bits(2) header_hi, bits(4) header_lo,
bits(N) payload)

assert N MOD 8 == 0;
bits(2) sz;
case N of

when 8 sz = '00';
when 16 sz = '01';
when 32 sz = '10';
when 64 sz = '11';
otherwise Unreachable();

bits(8) header = header_hi:sz:header_lo;
SPEAddByteToRecord(header);
for i = 0 to (N DIV 8)-1

SPEAddByteToRecord(payload<i*8+7:i*8>);

Shared Pseudocode Functions Page 1564

Library pseudocode for aarch64/debug/statisticalprofiling/SPEBranch

Shared Pseudocode Functions Page 1565

// SPEBranch()
// ===========
// Called on every branch if SPE is present. Maintains previous branch target
// and branch related SPE functionality.

SPEBranch(bits(N) target, BranchType branch_type, boolean conditional, boolean taken_flag)
boolean is_isb = FALSE;
SPEBranch(target, branch_type, conditional, taken_flag, is_isb);

SPEBranch(bits(N) target, BranchType branch_type, boolean conditional, boolean taken_flag,
boolean is_isb)

// If the PE implements branch prediction, data about (mis)prediction is collected
// through the PMU events.

boolean collect_prev_br;
boolean collect_prev_br_eret = boolean IMPLEMENTATION_DEFINED "SPE prev br on eret";
boolean collect_prev_br_exception = boolean IMPLEMENTATION_DEFINED "SPE prev br on exception";
boolean collect_prev_br_isb = boolean IMPLEMENTATION_DEFINED "SPE prev br on isb";
case branch_type of

when BranchType_EXCEPTION
collect_prev_br = collect_prev_br_exception;

when BranchType_ERET
collect_prev_br = collect_prev_br_eret;

otherwise
collect_prev_br = !is_isb || collect_prev_br_isb;

// Implements previous branch target functionality
if (taken_flag && !IsZero(PMSIDR_EL1.PBT) && StatisticalProfilingEnabled() &&

collect_prev_br) then

if SPESampleInFlight then
// Save the target address for it to be added to record.
bits(64) previous_target = SPESamplePreviousBranchAddress;
SPESampleAddress[SPEAddrPosPrevBranchTarget]<63:0> = previous_target<63:0>;
boolean previous_branch_valid = SPESamplePreviousBranchAddressValid;
SPESampleAddressValid[SPEAddrPosPrevBranchTarget] = previous_branch_valid;

SPESamplePreviousBranchAddress<55:0> = target<55:0>;

bit ns;
bit nse;
case CurrentSecurityState() of

when SS_Secure
ns = '0';
nse = '0';

when SS_NonSecure
ns = '1';
nse = '0';

when SS_Realm
ns = '1';
nse = '1';

otherwise Unreachable();

SPESamplePreviousBranchAddress<63> = ns;
SPESamplePreviousBranchAddress<60> = nse;
SPESamplePreviousBranchAddress<62:61> = PSTATE.EL;
SPESamplePreviousBranchAddressValid = TRUE;

if !StatisticalProfilingEnabled() then
if taken_flag then

// Invalidate previous branch address, if profiling is disabled
// or prohibited.
SPESamplePreviousBranchAddressValid = FALSE;

return;

if SPESampleInFlight then
is_direct = branch_type IN {BranchType_DIR, BranchType_DIRCALL};
SPESampleClass = '10';
SPESampleSubclass<1> = if is_direct then '0' else '1';
SPESampleSubclass<0> = if conditional then '1' else '0';
SPESampleOpType = OpType_Branch;

Shared Pseudocode Functions Page 1566

// Save the target address.
if taken_flag then

SPESampleAddress[SPEAddrPosBranchTarget]<55:0> = target<55:0>;

bit ns;
bit nse;
case CurrentSecurityState() of

when SS_Secure
ns = '0';
nse = '0';

when SS_NonSecure
ns = '1';
nse = '0';

when SS_Realm
ns = '1';
nse = '1';

otherwise Unreachable();

SPESampleAddress[SPEAddrPosBranchTarget]<63> = ns;
SPESampleAddress[SPEAddrPosBranchTarget]<60> = nse;
SPESampleAddress[SPEAddrPosBranchTarget]<62:61> = PSTATE.EL;
SPESampleAddressValid[SPEAddrPosBranchTarget] = TRUE;

SPESampleEvents<6> = if !taken_flag then '1' else '0';

Library pseudocode for aarch64/debug/statisticalprofiling/SPEBufferFilled

// SPEBufferFilled()
// =================
// Deal with a full buffer event.

SPEBufferFilled()
if IsZero(PMBSR_EL1.S) then

PMBSR_EL1.S = '1'; // Assert PMBIRQ
PMBSR_EL1.EC = '000000'; // Other buffer management event
PMBSR_EL1.MSS = ZeroExtend('000001', 16); // Set buffer full event

PMUEvent(PMU_EVENT_SAMPLE_WRAP);

Library pseudocode for aarch64/debug/statisticalprofiling/SPEBufferIsFull

// SPEBufferIsFull()
// =================
// Return true if another full size sample record would not fit in the
// profiling buffer.

boolean SPEBufferIsFull()
integer write_pointer_limit = UInt(PMBLIMITR_EL1.LIMIT:Zeros(12));
integer current_write_pointer = UInt(PMBPTR_EL1);
integer record_max_size = 1<<UInt(PMSIDR_EL1.MaxSize);
return current_write_pointer > (write_pointer_limit - record_max_size);

Shared Pseudocode Functions Page 1567

Library pseudocode for aarch64/debug/statisticalprofiling/SPECollectRecord

Shared Pseudocode Functions Page 1568

// SPECollectRecord()
// ==================
// Returns TRUE if the sampled class of instructions or operations, as
// determined by PMSFCR_EL1, are recorded and FALSE otherwise.

boolean SPECollectRecord(bits(64) events, integer total_latency, OpType optype)
assert StatisticalProfilingEnabled();

bits(64) mask = 0xAA<63:0>; // Bits [7,5,3,1]
bits(64) e;
bits(64) m;
if HaveSVE() then mask<18:17> = '11'; // Predicate flags
if HaveTME() then mask<16> = '1';
if HaveStatisticalProfilingv1p1() then mask<11> = '1'; // Alignment Flag
if HaveStatisticalProfilingv1p2() then mask<6> = '1'; // Not taken flag
if HaveStatisticalProfilingv1p4() then

mask<10:8,4,2> = '11111';
else

bits(5) impdef_mask;
impdef_mask = bits(5) IMPLEMENTATION_DEFINED "SPE mask 10:8,4,2";
mask<10:8,4,2> = impdef_mask;

mask<63:48> = bits(16) IMPLEMENTATION_DEFINED "SPE mask 63:48";
mask<31:24> = bits(8) IMPLEMENTATION_DEFINED "SPE mask 31:24";
mask<15:12> = bits(4) IMPLEMENTATION_DEFINED "SPE mask 15:12";

e = events AND mask;
boolean is_rejected_nevent = FALSE;
boolean is_nevt;
// Filtering by inverse event
if HaveStatisticalProfilingv1p2() then

m = PMSNEVFR_EL1 AND mask;
is_nevt = IsZero(e AND m);
if PMSFCR_EL1.FnE == '1' then

// Inverse filtering by event is enabled
if !IsZero(m) then

// Not UNPREDICTABLE case
is_rejected_nevent = !is_nevt;

else
is_rejected_nevent = ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);

else
is_nevt = TRUE; // not implemented

boolean is_rejected_event = FALSE;

// Filtering by event
m = PMSEVFR_EL1 AND mask;
boolean is_evt = IsZero(NOT(e) AND m);
if PMSFCR_EL1.FE == '1' then

// Filtering by event is enabled
if !IsZero(m) then

// Not UNPREDICTABLE case
is_rejected_event = !is_evt;

else
is_rejected_event = ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);

if (HaveStatisticalProfilingv1p2() && PMSFCR_EL1.<FnE,FE> == '11' &&
!IsZero(PMSEVFR_EL1 AND PMSNEVFR_EL1 AND mask)) then

// UNPREDICTABLE case due to combination of filter and inverse filter
is_rejected_nevent = ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);
is_rejected_event = ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);

if is_evt && is_nevt then
PMUEvent(PMU_EVENT_SAMPLE_FEED_EVENT);

boolean is_op_br = FALSE;
boolean is_op_ld = FALSE;
boolean is_op_st = FALSE;

is_op_br = (optype == OpType_Branch);

Shared Pseudocode Functions Page 1569

is_op_ld = (optype IN {OpType_Load, OpType_LoadAtomic});
is_op_st = (optype IN {OpType_Store, OpType_LoadAtomic});

if is_op_br then PMUEvent(PMU_EVENT_SAMPLE_FEED_BR);
if is_op_ld then PMUEvent(PMU_EVENT_SAMPLE_FEED_LD);
if is_op_st then PMUEvent(PMU_EVENT_SAMPLE_FEED_ST);

boolean is_op = ((is_op_br && PMSFCR_EL1.B == '1') ||
(is_op_ld && PMSFCR_EL1.LD == '1') ||
(is_op_st && PMSFCR_EL1.ST == '1'));

if is_op then PMUEvent(PMU_EVENT_SAMPLE_FEED_OP);

// Filter by type
boolean is_rejected_type = FALSE;
if PMSFCR_EL1.FT == '1' then

// Filtering by type is enabled
if !IsZero(PMSFCR_EL1.<B, LD, ST>) then

// Not an UNPREDICTABLE case
is_rejected_type = !is_op;

else
is_rejected_type = ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);

// Filter by latency
boolean is_rejected_latency = FALSE;
boolean is_lat = (total_latency < UInt(PMSLATFR_EL1.MINLAT));
if is_lat then PMUEvent(PMU_EVENT_SAMPLE_FEED_LAT);

if PMSFCR_EL1.FL == '1' then
// Filtering by latency is enabled
if !IsZero(PMSLATFR_EL1.MINLAT) then

// Not an UNPREDICTABLE case
is_rejected_latency = !is_lat;

else
is_rejected_latency = ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);

boolean is_rejected_data_source;
// Filtering by Data Source
if (HaveStatisticalProfilingFDS() && PMSFCR_EL1.FDS == '1' &&

is_op_ld && SPESampleDataSourceValid) then
bits(16) data_source = SPESampleDataSource;
integer index = UInt(data_source<5:0>);
is_rejected_data_source = PMSDSFR_EL1<index> == '0';

else
is_rejected_data_source = FALSE;

boolean return_value;
return_value = !(is_rejected_nevent || is_rejected_event ||

is_rejected_type || is_rejected_latency);

if return_value then
PMUEvent(PMU_EVENT_SAMPLE_FILTRATE);

return return_value;

Shared Pseudocode Functions Page 1570

Library pseudocode for aarch64/debug/statisticalprofiling/SPEConstructRecord

Shared Pseudocode Functions Page 1571

// SPEConstructRecord()
// ====================
// Create new record and populate it with packets using sample storage data.
// This is an example implementation, packets may appear in
// any order as long as the record ends with an End or Timestamp packet.

SPEConstructRecord()
integer payload_size;

// Empty the record.
SPEEmptyRecord();

// Add contextEL1 if available
if SPESampleContextEL1Valid then

SPEAddPacketToRecord('01', '0100', SPESampleContextEL1);

// Add contextEL2 if available
if SPESampleContextEL2Valid then

SPEAddPacketToRecord('01', '0101', SPESampleContextEL2);

// Add valid counters
for counter_index = 0 to (SPEMaxCounters - 1)

if SPESampleCounterValid[counter_index] then
if counter_index >= 8 then

// Need extended format
SPEAddByteToRecord('001000':counter_index<4:3>);

// Check for overflow
boolean large_counters = boolean IMPLEMENTATION_DEFINED "SPE 16bit counters";
if SPESampleCounter[counter_index] > 0xFFFF && large_counters then

SPESampleCounter[counter_index] = 0xFFFF;
elsif SPESampleCounter[counter_index] > 0xFFF then

SPESampleCounter[counter_index] = 0xFFF;

// Add byte0 for short format (byte1 for extended format)
SPEAddPacketToRecord('10', '1':counter_index<2:0>,

SPESampleCounter[counter_index]<15:0>);

// Add valid addresses
if HaveStatisticalProfilingv1p2() then

// Under the some conditions, it is IMPLEMENTATION_DEFINED whether
// previous branch packet is present.
boolean include_prev_br = boolean IMPLEMENTATION_DEFINED "SPE get prev br if not br";
if SPESampleOpType != OpType_Branch && !include_prev_br then

SPESampleAddressValid[SPEAddrPosPrevBranchTarget] = FALSE;

// Data Virtual address should not be collected if this was an NV2 access and Statistical
// Profiling is disabled at EL2.
if !StatisticalProfilingEnabled(EL2) && SPESampleInstIsNV2 then

SPESampleAddressValid[SPEAddrPosDataVirtual] = FALSE;

for address_index = 0 to (SPEMaxAddrs - 1)
if SPESampleAddressValid[address_index] then

if address_index >= 8 then
// Need extended format
SPEAddByteToRecord('001000':address_index<4:3>);

// Add byte0 for short format (byte1 for extended format)
SPEAddPacketToRecord('10', '0':address_index<2:0>,

SPESampleAddress[address_index]);

// Add Data Source
if SPESampleDataSourceValid then

payload_size = SPEGetDataSourcePayloadSize();
SPEAddPacketToRecord('01', '0011', SPESampleDataSource<8*payload_size-1:0>);

// Add operation details
SPEAddPacketToRecord('01', '10':SPESampleClass, SPESampleSubclass);

// Add events
// Get size of payload in bytes.
payload_size = SPEGetEventsPayloadSize();

Shared Pseudocode Functions Page 1572

SPEAddPacketToRecord('01', '0010', SPESampleEvents<8*payload_size-1:0>);

// Add Timestamp to end the record if one is available.
// Otherwise end with an End packet.
if SPESampleTimestampValid then

SPEAddPacketToRecord('01', '0001', SPESampleTimestamp);
else

SPEAddByteToRecord('00000001');

// Add padding
while SPERecordSize MOD (1<<UInt(PMBIDR_EL1.Align)) != 0 do

SPEAddByteToRecord(Zeros(8));
SPEWriteToBuffer();

Library pseudocode for aarch64/debug/statisticalprofiling/SPECycle

// SPECycle()
// ==========
// Function called at the end of every cycle. Responsible for asserting interrupts
// and advancing counters.

SPECycle()
if !HaveStatisticalProfiling() then

return;

// Increment pending counters
if SPESampleInFlight then

for i = 0 to (SPEMaxCounters - 1)
if SPESampleCounterPending[i] then

SPESampleCounter[i] = SPESampleCounter[i] + 1;

// Assert PMBIRQ if appropriate.
SetInterruptRequestLevel(InterruptID_PMBIRQ,

if PMBSR_EL1.S == '1' then Signal_High else Signal_Low);

Library pseudocode for aarch64/debug/statisticalprofiling/SPEEmptyRecord

// SPEEmptyRecord()
// ================
// Reset record data.

SPEEmptyRecord()
SPERecordSize = 0;
for i = 0 to (SPEMaxRecordSize - 1)

SPERecordData[i] = Zeros(8);

Shared Pseudocode Functions Page 1573

Library pseudocode for aarch64/debug/statisticalprofiling/SPEEvent

// SPEEvent()
// ==========
// Called by PMUEvent if a sample is in flight.
// Sets appropriate bit in SPESampleStorage.events.

SPEEvent(bits(16) pmuevent)
case pmuevent of

when PMU_EVENT_DSNP_HIT_RD
if HaveStatisticalProfilingv1p4() then

SPESampleEvents<23> = '1';
when PMU_EVENT_L1D_LFB_HIT_RD

if HaveStatisticalProfilingv1p4() then
SPESampleEvents<22> = '1';

when PMU_EVENT_L2D_LFB_HIT_RD
if HaveStatisticalProfilingv1p4() then

SPESampleEvents<22> = '1';
when PMU_EVENT_L3D_LFB_HIT_RD

if HaveStatisticalProfilingv1p4() then
SPESampleEvents<22> = '1';

when PMU_EVENT_LL_LFB_HIT_RD
if HaveStatisticalProfilingv1p4() then

SPESampleEvents<22> = '1';
when PMU_EVENT_L1D_CACHE_HITM_RD

if HaveStatisticalProfilingv1p4() then
SPESampleEvents<21> = '1';

when PMU_EVENT_L2D_CACHE_HITM_RD
if HaveStatisticalProfilingv1p4() then

SPESampleEvents<21> = '1';
when PMU_EVENT_L3D_CACHE_HITM_RD

if HaveStatisticalProfilingv1p4() then
SPESampleEvents<21> = '1';

when PMU_EVENT_LL_CACHE_HITM_RD
if HaveStatisticalProfilingv1p4() then

SPESampleEvents<21> = '1';
when PMU_EVENT_L2D_CACHE_LMISS_RD

if HaveStatisticalProfilingv1p4() then
SPESampleEvents<20> = '1';

when PMU_EVENT_L2D_CACHE_RD
if HaveStatisticalProfilingv1p4() then

SPESampleEvents<19> = '1';
when PMU_EVENT_SVE_PRED_EMPTY_SPEC

if HaveStatisticalProfilingv1p1() then
SPESampleEvents<18> = '1';

when PMU_EVENT_SVE_PRED_PARTIAL_SPEC
if HaveStatisticalProfilingv1p1() then

SPESampleEvents<17> = '1';
when PMU_EVENT_LDST_ALIGN_LAT

if HaveStatisticalProfilingv1p1() then
SPESampleEvents<11> = '1';

when PMU_EVENT_REMOTE_ACCESS SPESampleEvents<10> = '1';
when PMU_EVENT_LL_CACHE_MISS SPESampleEvents<9> = '1';
when PMU_EVENT_LL_CACHE SPESampleEvents<8> = '1';
when PMU_EVENT_BR_MIS_PRED SPESampleEvents<7> = '1';
when PMU_EVENT_BR_MIS_PRED_RETIRED SPESampleEvents<7> = '1';
when PMU_EVENT_DTLB_WALK SPESampleEvents<5> = '1';
when PMU_EVENT_L1D_TLB SPESampleEvents<4> = '1';
when PMU_EVENT_L1D_CACHE_REFILL

if !HaveStatisticalProfilingv1p4() then
SPESampleEvents<3> = '1';

when PMU_EVENT_L1D_CACHE_LMISS_RD
if HaveStatisticalProfilingv1p4() then

SPESampleEvents<3> = '1';
when PMU_EVENT_L1D_CACHE SPESampleEvents<2> = '1';
when PMU_EVENT_INST_RETIRED SPESampleEvents<1> = '1';
when PMU_EVENT_EXC_TAKEN SPESampleEvents<0> = '1';
otherwise return;

return;

Shared Pseudocode Functions Page 1574

Library pseudocode for aarch64/debug/statisticalprofiling/SPEFreezeOnEvent

// SPEFreezeOnEvent()
// ==================
// Returns TRUE if PMU event counter idx should be frozen due to an SPE event, and FALSE otherwise.

boolean SPEFreezeOnEvent(integer idx)
assert 0 <= idx;
if !IsFeatureImplemented(FEAT_SPEv1p2) || !IsFeatureImplemented(FEAT_PMUv3p7) then return FALSE;
if PMBSR_EL1.S != '1' || PMBLIMITR_EL1.[E,PMFZ] != '11' then return FALSE;

if idx == CYCLE_COUNTER_ID && !IsFeatureImplemented(FEAT_SPE_DPFZS) then
// FZS does not affect the cycle counter when FEAT_SPE_DPFZS is not implemented
return FALSE;

if PMUCounterIsHyp(idx) then
return MDCR_EL2.HPMFZS == '1';

else
return PMCR_EL0.FZS == '1';

Library pseudocode for aarch64/debug/statisticalprofiling/SPEGetDataSourcePayloadSize

// SPEGetDataSourcePayloadSize()
// =============================
// Returns the size of the Data Source payload in bytes.

integer SPEGetDataSourcePayloadSize()
return integer IMPLEMENTATION_DEFINED "SPE Data Source packet payload size";

Library pseudocode for aarch64/debug/statisticalprofiling/SPEGetEventsPayloadSize

// SPEGetEventsPayloadSize()
// =========================
// Returns the size in bytes of the Events packet payload as an integer.

integer SPEGetEventsPayloadSize()
integer size = integer IMPLEMENTATION_DEFINED "SPE Events packet payload size";
return size;

Library pseudocode for aarch64/debug/statisticalprofiling/SPEGetRandomBoolean

// SPEGetRandomBoolean()
// =====================
// Returns a random or pseudo-random boolean value.

boolean SPEGetRandomBoolean();

Library pseudocode for aarch64/debug/statisticalprofiling/SPEGetRandomInterval

// SPEGetRandomInterval()
// ======================
// Returns a random or pseudo-random byte for resetting COUNT or ECOUNT.

bits(8) SPEGetRandomInterval();

Shared Pseudocode Functions Page 1575

Library pseudocode for aarch64/debug/statisticalprofiling/SPEISB

// SPEISB()
// ========
// Called by ISB instruction, correctly calls SPEBranch to save previous branches.

SPEISB()
bits(64) address = PC[] + 4;
BranchType branch_type = BranchType_DIR;
boolean branch_conditional = FALSE;
boolean taken = FALSE;
boolean is_isb = TRUE;

SPEBranch(address, branch_type, branch_conditional, taken, is_isb);

Library pseudocode for aarch64/debug/statisticalprofiling/SPEMaxAddrs

constant integer SPEMaxAddrs = 32;

Library pseudocode for aarch64/debug/statisticalprofiling/SPEMaxCounters

constant integer SPEMaxCounters = 32;

Library pseudocode for aarch64/debug/statisticalprofiling/SPEMaxRecordSize

constant integer SPEMaxRecordSize = 64;

Shared Pseudocode Functions Page 1576

Library pseudocode for aarch64/debug/statisticalprofiling/SPEPostExecution

constant integer SPEAddrPosPCVirtual = 0;
constant integer SPEAddrPosBranchTarget = 1;
constant integer SPEAddrPosDataVirtual = 2;
constant integer SPEAddrPosDataPhysical = 3;
constant integer SPEAddrPosPrevBranchTarget = 4;
constant integer SPECounterPosTotalLatency = 0;
constant integer SPECounterPosIssueLatency = 1;
constant integer SPECounterPosTranslationLatency = 2;
boolean SPESampleInFlight = FALSE;
bits(32) SPESampleContextEL1;
boolean SPESampleContextEL1Valid;
bits(32) SPESampleContextEL2;
boolean SPESampleContextEL2Valid;
boolean SPESampleInstIsNV2 = FALSE;
bits(64) SPESamplePreviousBranchAddress;
boolean SPESamplePreviousBranchAddressValid;
bits(16) SPESampleDataSource;
boolean SPESampleDataSourceValid;
OpType SPESampleOpType;
bits(2) SPESampleClass;
bits(8) SPESampleSubclass;
boolean SPESampleSubclassValid;
bits(64) SPESampleTimestamp;
boolean SPESampleTimestampValid;
bits(64) SPESampleEvents;

// SPEPostExecution()
// ==================
// Called after every executed instruction.

SPEPostExecution()
if SPESampleInFlight then

SPESampleInFlight = FALSE;
PMUEvent(PMU_EVENT_SAMPLE_FEED);

// Stop any pending counters
for counter_index = 0 to (SPEMaxCounters - 1)

if SPESampleCounterPending[counter_index] then
SPEStopCounter(counter_index);

boolean discard = FALSE;
if HaveStatisticalProfilingv1p2() then

discard = PMBLIMITR_EL1.FM == '10';
if SPECollectRecord(SPESampleEvents,

SPESampleCounter[SPECounterPosTotalLatency],
SPESampleOpType) && !discard then

SPEConstructRecord();
if SPEBufferIsFull() then

SPEBufferFilled();

SPEResetSampleStorage();

// Counter storage
array [0..SPEMaxCounters-1] of integer SPESampleCounter;

array [0..SPEMaxCounters-1] of boolean SPESampleCounterValid;

array [0..SPEMaxCounters-1] of boolean SPESampleCounterPending;

// Address storage
array [0..SPEMaxAddrs-1] of bits(64) SPESampleAddress;

array [0..SPEMaxAddrs-1] of boolean SPESampleAddressValid;

Shared Pseudocode Functions Page 1577

Library pseudocode for aarch64/debug/statisticalprofiling/SPEPreExecution

// SPEPreExecution()
// =================
// Called prior to execution, for all instructions.

SPEPreExecution()
if StatisticalProfilingEnabled() then

PMUEvent(PMU_EVENT_SAMPLE_POP);
if SPEToCollectSample() then

if !SPESampleInFlight then
SPESampleInFlight = TRUE;

// Start total latency and issue latency counters for SPE
SPEStartCounter(SPECounterPosTotalLatency);
SPEStartCounter(SPECounterPosIssueLatency);

SPESampleAddContext();

SPESampleAddAddressPCVirtual();

// Timestamp may be collected at any point in the sampling operation.
// Collecting prior to execution is one possible choice.
// This choice is IMPLEMENTATION_DEFINED.
SPESampleAddTimeStamp();

else
PMUEvent(PMU_EVENT_SAMPLE_COLLISION);
PMBSR_EL1.COLL = '1';

// Many operations are type other and not conditional, can save footprint
// and overhead by having this as the default and not calling SPESampleAddOpOther
// if conditional == FALSE
SPESampleAddOpOther(FALSE);

Library pseudocode for aarch64/debug/statisticalprofiling/SPEResetSampleCounter

// SPEResetSampleCounter()
// =======================
// Reset PMSICR_EL1.Counter

SPEResetSampleCounter()
PMSICR_EL1.COUNT<31:8> = PMSIRR_EL1.INTERVAL;
if PMSIRR_EL1.RND == '1' && PMSIDR_EL1.ERnd == '0' then

PMSICR_EL1.COUNT<7:0> = SPEGetRandomInterval();
else

PMSICR_EL1.COUNT<7:0> = Zeros(8);

Shared Pseudocode Functions Page 1578

Library pseudocode for aarch64/debug/statisticalprofiling/SPEResetSampleStorage

integer SPERecordSize;

// SPEResetSampleStorage()
// =======================
// Reset all variables inside sample storage.

SPEResetSampleStorage()
// Context values
SPESampleContextEL1 = Zeros(32);
SPESampleContextEL1Valid = FALSE;
SPESampleContextEL2 = Zeros(32);
SPESampleContextEL2Valid = FALSE;

// Counter values
for i = 0 to (SPEMaxCounters - 1)

SPESampleCounter[i] = 0;
SPESampleCounterValid[i] = FALSE;
SPESampleCounterPending[i] = FALSE;

// Address values
for i = 0 to (SPEMaxAddrs - 1)

SPESampleAddressValid[i] = FALSE;
SPESampleAddress[i] = Zeros(64);

// Data source values
SPESampleDataSource = Zeros(16);
SPESampleDataSourceValid = FALSE;

// Operation values
SPESampleClass = Zeros(2);
SPESampleSubclass = Zeros(8);
SPESampleSubclassValid = FALSE;

// Timestamp values
SPESampleTimestamp = Zeros(64);
SPESampleTimestampValid = FALSE;

// Event values
SPESampleEvents<63:48> = bits(16) IMPLEMENTATION_DEFINED "SPE EVENTS 63_48";
SPESampleEvents<47:32> = Zeros(16);
SPESampleEvents<31:24> = bits(8) IMPLEMENTATION_DEFINED "SPE EVENTS 31_24";
SPESampleEvents<23:16> = Zeros(8);
SPESampleEvents<15:12> = bits(4) IMPLEMENTATION_DEFINED "SPE EVENTS 15_12";
SPESampleEvents<11:0> = Zeros(12);

SPESampleInstIsNV2 = FALSE;

array [0..SPEMaxRecordSize-1] of bits(8) SPERecordData;

Shared Pseudocode Functions Page 1579

Library pseudocode for aarch64/debug/statisticalprofiling/SPESampleAddAddressPCVirtual

// SPESampleAddAddressPCVirtual()
// ==============================
// Save the current PC address to sample storage.

SPESampleAddAddressPCVirtual()
bits(64) this_address = ThisInstrAddr(64);
SPESampleAddress[SPEAddrPosPCVirtual]<55:0> = this_address<55:0>;

bit ns;
bit nse;
case CurrentSecurityState() of

when SS_Secure
ns = '0';
nse = '0';

when SS_NonSecure
ns = '1';
nse = '0';

when SS_Realm
ns = '1';
nse = '1';

otherwise Unreachable();

bits(2) el = PSTATE.EL;
SPESampleAddress[SPEAddrPosPCVirtual]<63:56> = ns:el:nse:Zeros(4);
SPESampleAddressValid[SPEAddrPosPCVirtual] = TRUE;

Library pseudocode for aarch64/debug/statisticalprofiling/SPESampleAddContext

// SPESampleAddContext()
// =====================
// Save contexts to sample storage if appropriate.

SPESampleAddContext()
if CollectContextIDR1() then

SPESampleContextEL1 = CONTEXTIDR_EL1<31:0>;
SPESampleContextEL1Valid = TRUE;

if CollectContextIDR2() then
SPESampleContextEL2 = CONTEXTIDR_EL2<31:0>;
SPESampleContextEL2Valid = TRUE;

Library pseudocode for aarch64/debug/statisticalprofiling/SPESampleAddOpOther

// SPESampleAddOpOther()
// =====================
// Add other operation to sample storage.

SPESampleAddOpOther(boolean conditional, boolean taken)
SPESampleEvents<6> = if conditional && !taken then '1' else '0';
SPESampleAddOpOther(conditional);

SPESampleAddOpOther(boolean conditional)
SPESampleClass = '00';
SPESampleSubclass<0> = if conditional then '1' else '0';
SPESampleOpType = OpType_Other;

Shared Pseudocode Functions Page 1580

Library pseudocode for aarch64/debug/statisticalprofiling/SPESampleAddOpSVELoadStore

// SPESampleAddOpSVELoadStore()
// ============================
// Sets the subclass of the operation type packet to Load/Store for SVE operations.

SPESampleAddOpSVELoadStore(boolean is_gather_scatter, bits(3) evl, boolean predicated,
boolean is_load)

bit sg = if is_gather_scatter then '1' else '0';
bit pred = if predicated then '1' else '0';
bit ldst = if is_load then '0' else '1';
SPESampleClass = '01';
SPESampleSubclass<7:0> = sg:evl:'1':pred:'0':ldst;
SPESampleSubclassValid = TRUE;
SPESampleOpType = if is_load then OpType_Load else OpType_Store;

Library pseudocode for aarch64/debug/statisticalprofiling/SPESampleAddOpSVEOther

// SPESampleAddOpSVEOther()
// ========================
// Sets the subclass of the operation type packet to Other for SVE operations.

SPESampleAddOpSVEOther(bits(3) evl, boolean predicated, boolean floating_point)
bit pred = if predicated then '1' else '0';
bit fp = if floating_point then '1' else '0';
SPESampleClass = '00';
SPESampleSubclass<7:0> = '0':evl:'1':pred:fp:'0';
SPESampleSubclassValid = TRUE;
SPESampleOpType = OpType_Other;

Library pseudocode for aarch64/debug/statisticalprofiling/SPESampleAddTimeStamp

// SPESampleAddTimeStamp()
// =======================
// Save the appropriate type of timestamp to sample storage.

SPESampleAddTimeStamp()
TimeStamp timestamp = CollectTimeStamp();
case timestamp of

when TimeStamp_None
SPESampleTimestampValid = FALSE;

otherwise
SPESampleTimestampValid = TRUE;
SPESampleTimestamp = GetTimestamp(timestamp);

Library pseudocode for aarch64/debug/statisticalprofiling/SPESampleExtendedLoadStore

// SPESampleExtendedLoadStore()
// ============================
// Sets the subclass of the operation type packet for
// extended load/store operations.

SPESampleExtendedLoadStore(bit ar, bit excl, bit at, boolean is_load)
SPESampleClass = '01';
bit ldst = if is_load then '0' else '1';
SPESampleSubclass = '000':ar:excl:at:'1':ldst;

SPESampleSubclassValid = TRUE;

if is_load then
if at == '1' then

SPESampleOpType = OpType_LoadAtomic;
else

SPESampleOpType = OpType_Load;
else

SPESampleOpType = OpType_Store;

Shared Pseudocode Functions Page 1581

Library pseudocode for aarch64/debug/statisticalprofiling/SPESampleGeneralPurposeLoadStore

// SPESampleGeneralPurposeLoadStore()
// ==================================
// Sets the subclass of the operation type packet for general
// purpose load/store operations.

SPESampleGeneralPurposeLoadStore()
SPESampleClass = '01';

SPESampleSubclass<7:1> = Zeros(7);
SPESampleSubclassValid = TRUE;

Library pseudocode for aarch64/debug/statisticalprofiling/SPESampleLoadStore

// SPESampleLoadStore()
// ====================
// Called if a sample is in flight when writing or reading memory,
// indicating that the operation being sampled is in the Load, Store or atomic category.

SPESampleLoadStore(boolean is_load, AccessDescriptor accdesc, AddressDescriptor addrdesc)
// Check if this access type should be sampled.
if accdesc.acctype IN {AccessType_SPE,

AccessType_IFETCH,
AccessType_DC,
AccessType_TTW,
AccessType_AT} then

return;

// MOPS instructions indicate which operation should be sampled before the
// operation is executed. Has the instruction indicated that the load should be sampled?
boolean sample_loads;
sample_loads = SPESampleSubclass<0> == '0' && SPESampleSubclassValid;

// Has the instruction indicated that the store should be sampled?
boolean sample_stores;
sample_stores = SPESampleSubclass<0> == '1' && SPESampleSubclassValid;

// No valid data has been collected, or this is operation has specifically been selected for
// sampling.
if (!SPESampleSubclassValid || (sample_loads && is_load) ||

(sample_stores && !is_load)) then
// Data access virtual address
SPESetDataVirtualAddress(addrdesc.vaddress);

// Data access physical address
if CollectPhysicalAddress() then

SPESetDataPhysicalAddress(addrdesc, accdesc);

if !SPESampleSubclassValid then
// Set as unspecified load/store by default, instructions will overwrite this if it does not
// apply to them.
SPESampleClass = '01';
SPESampleSubclassValid = TRUE;
SPESampleSubclass<7:1> = '0001000';
SPESampleSubclass<0> = if is_load then '0' else '1';
SPESampleOpType = if is_load then OpType_Load else OpType_Store;

if accdesc.acctype == AccessType_NV2 then
// NV2 register load/store
SPESampleSubclass<7:1> = '0011000';
SPESampleInstIsNV2 = TRUE;

Shared Pseudocode Functions Page 1582

Library pseudocode for aarch64/debug/statisticalprofiling/SPESampleMemCopy

// SPESampleMemCopy()
// ==================
// Sets the subclass of the operation type packet for Memory Copy load/store
// operations.

SPESampleMemCopy()
// MemCopy does a read and a write. If one is filtered out, the other should be recorded.
// If neither or both are filtered out, pick one in a (pseudo)random way.

// Are loads allowed by filter?
boolean loads_pass_filter = PMSFCR_EL1.FT == '1' && PMSFCR_EL1.LD == '1';
// Are stores allowed by filter?
boolean stores_pass_filter = PMSFCR_EL1.FT == '1' && PMSFCR_EL1.ST == '1';

boolean record_load;
if loads_pass_filter && !stores_pass_filter then

// Only loads pass filter
record_load = TRUE;

elsif !loads_pass_filter && stores_pass_filter then
// Only stores pass filter
record_load = FALSE;

else
// Pick randomly between
record_load = SPEGetRandomBoolean();

SPESampleClass = '01';
bit ldst = if record_load then '0' else '1';
SPESampleSubclass<7:0> = '0010000':ldst;
SPESampleSubclassValid = TRUE;
SPESampleOpType = if record_load then OpType_Load else OpType_Store;

Library pseudocode for aarch64/debug/statisticalprofiling/SPESampleMemSet

// SPESampleMemSet()
// =================
// Sets the subclass of the operation type packet for Memory Set load/store
// operation.

SPESampleMemSet()
SPESampleClass = '01';
SPESampleSubclass<7:0> = '00100101';
SPESampleSubclassValid = TRUE;
SPESampleOpType = OpType_Store;

Library pseudocode for aarch64/debug/statisticalprofiling/SPESampleSIMDFPLoadStore

// SPESampleSIMDFPLoadStore()
// ==========================
// Sets the subclass of the operation type packet for SIMD & FP
// load store operations.

SPESampleSIMDFPLoadStore()
SPESampleClass = '01';

SPESampleSubclass<7:1> = '0000010';
SPESampleSubclassValid = TRUE;

Shared Pseudocode Functions Page 1583

Library pseudocode for aarch64/debug/statisticalprofiling/SPESetDataPhysicalAddress

// SPESetDataPhysicalAddress()
// ===========================
// Called from SampleLoadStore() to save data physical packet.

SPESetDataPhysicalAddress(AddressDescriptor addrdesc, AccessDescriptor accdesc)
bit ns;
bit nse;
case addrdesc.paddress.paspace of

when PAS_Secure
ns = '0';
nse = '0';

when PAS_NonSecure
ns = '1';
nse = '0';

when PAS_Realm
ns = '1';
nse = '1';

otherwise Unreachable();

if HaveMTE2Ext() then
bits(4) pat;
if accdesc.tagchecked then

SPESampleAddress[SPEAddrPosDataPhysical]<62> = '1'; // CH
pat = AArch64.PhysicalTag(addrdesc.vaddress);

else
// CH is reset to 0 on each new packet
// If the access is Unchecked, this is an IMPLEMENTATION_DEFINED choice
// between 0b0000 and the Physical Address Tag
boolean zero_unchecked;
zero_unchecked = boolean IMPLEMENTATION_DEFINED "SPE PAT for tag unchecked access zero";
if !zero_unchecked then

pat = AArch64.PhysicalTag(addrdesc.vaddress);
else

pat = Zeros(4);
SPESampleAddress[SPEAddrPosDataPhysical]<59:56> = pat;

bits(56) paddr = addrdesc.paddress.address;
SPESampleAddress[SPEAddrPosDataPhysical]<56-1:0> = paddr;
SPESampleAddress[SPEAddrPosDataPhysical]<63> = ns;
SPESampleAddress[SPEAddrPosDataPhysical]<60> = nse;
SPESampleAddressValid[SPEAddrPosDataPhysical] = TRUE;

Library pseudocode for aarch64/debug/statisticalprofiling/SPESetDataVirtualAddress

// SPESetDataVirtualAddress()
// ==========================
// Called from SampleLoadStore() to save data virtual packet.
// Also used by exclusive load/stores to save virtual addresses if exclusive monitor is lost
// before a read/write is completed.

SPESetDataVirtualAddress(bits(64) vaddress)
bit tbi;
tbi = EffectiveTBI(vaddress, FALSE, PSTATE.EL);
boolean non_tbi_is_zeros;
non_tbi_is_zeros = boolean IMPLEMENTATION_DEFINED "SPE non-tbi tag is zero";
if tbi == '1' || !non_tbi_is_zeros then

SPESampleAddress[SPEAddrPosDataVirtual]<63:0> = vaddress<63:0>;
else

SPESampleAddress[SPEAddrPosDataVirtual]<63:56> = Zeros(8);
SPESampleAddress[SPEAddrPosDataVirtual]<55:0> = vaddress<55:0>;

SPESampleAddressValid[SPEAddrPosDataVirtual] = TRUE;

Shared Pseudocode Functions Page 1584

Library pseudocode for aarch64/debug/statisticalprofiling/SPEStartCounter

// SPEStartCounter()
// =================
// Enables incrementing of the counter at the passed index when SPECycle is called.

SPEStartCounter(integer counter_index)
assert counter_index < SPEMaxCounters;
SPESampleCounterPending[counter_index] = TRUE;

Library pseudocode for aarch64/debug/statisticalprofiling/SPEStopCounter

// SPEStopCounter()
// ================
// Disables incrementing of the counter at the passed index when SPECycle is called.

SPEStopCounter(integer counter_index)
SPESampleCounterValid[counter_index] = TRUE;
SPESampleCounterPending[counter_index] = FALSE;

Library pseudocode for aarch64/debug/statisticalprofiling/SPEToCollectSample

// SPEToCollectSample()
// ====================
// Returns TRUE if the instruction which is about to be executed should be
// sampled. Returns FALSE otherwise.

boolean SPEToCollectSample()
if IsZero(PMSICR_EL1.COUNT) then

SPEResetSampleCounter();
else

PMSICR_EL1.COUNT = PMSICR_EL1.COUNT - 1;
if IsZero(PMSICR_EL1.COUNT) then

if PMSIRR_EL1.RND == '1' && PMSIDR_EL1.ERnd == '1' then
PMSICR_EL1.ECOUNT = SPEGetRandomInterval();

else
return TRUE;

if UInt(PMSICR_EL1.ECOUNT) != 0 then
PMSICR_EL1.ECOUNT = PMSICR_EL1.ECOUNT - 1;
if IsZero(PMSICR_EL1.ECOUNT) then

return TRUE;
return FALSE;

Shared Pseudocode Functions Page 1585

Library pseudocode for aarch64/debug/statisticalprofiling/SPEWriteToBuffer

// SPEWriteToBuffer()
// ==================
// Write the active record to the Profiling Buffer.

SPEWriteToBuffer()
assert ProfilingBufferEnabled();

// Check alignment
boolean aligned = IsZero(PMBPTR_EL1.PTR<UInt(PMBIDR_EL1.Align)-1:0>);
boolean ttw_fault_as_external_abort;
ttw_fault_as_external_abort = boolean IMPLEMENTATION_DEFINED "SPE TTW fault External abort";

FaultRecord fault;
PhysMemRetStatus memstatus;
AddressDescriptor addrdesc;
AccessDescriptor accdesc;

SecurityState owning_ss;
bits(2) owning_el;
(owning_ss, owning_el) = ProfilingBufferOwner();
accdesc = CreateAccDescSPE(owning_ss, owning_el);

bits(64) start_vaddr = PMBPTR_EL1<63:0>;
for i = 0 to SPERecordSize - 1

// If a previous write did not cause an issue
if PMBSR_EL1.S == '0' then

(memstatus, addrdesc) = DebugMemWrite(PMBPTR_EL1<63:0>, accdesc, aligned,
SPERecordData[i]);

fault = addrdesc.fault;

boolean ttw_fault;
ttw_fault = fault.statuscode IN {Fault_SyncExternalOnWalk, Fault_SyncParityOnWalk};

if IsFault(fault.statuscode) && !(ttw_fault && ttw_fault_as_external_abort) then
DebugWriteFault(PMBPTR_EL1<63:0>, fault);

elsif IsFault(memstatus) || (ttw_fault && ttw_fault_as_external_abort) then
DebugWriteExternalAbort(memstatus, addrdesc, start_vaddr);

// Move pointer if no Buffer Management Event has been caused.
if IsZero(PMBSR_EL1.S) then

PMBPTR_EL1 = PMBPTR_EL1 + 1;

return;

Shared Pseudocode Functions Page 1586

Library pseudocode for aarch64/debug/statisticalprofiling/StatisticalProfilingEnabled

// StatisticalProfilingEnabled()
// =============================
// Return TRUE if Statistical Profiling is Enabled in the current EL, FALSE otherwise.

boolean StatisticalProfilingEnabled()
return StatisticalProfilingEnabled(PSTATE.EL);

// StatisticalProfilingEnabled()
// =============================
// Return TRUE if Statistical Profiling is Enabled in the specified EL, FALSE otherwise.

boolean StatisticalProfilingEnabled(bits(2) el)
if !HaveStatisticalProfiling() || UsingAArch32() || !ProfilingBufferEnabled() then

return FALSE;

tge_set = EL2Enabled() && HCR_EL2.TGE == '1';
(owning_ss, owning_el) = ProfilingBufferOwner();
if (UInt(owning_el) < UInt(el) || (tge_set && owning_el == EL1) ||

owning_ss != SecurityStateAtEL(el)) then
return FALSE;

bit spe_bit;
case el of

when EL3 Unreachable();
when EL2 spe_bit = PMSCR_EL2.E2SPE;
when EL1 spe_bit = PMSCR_EL1.E1SPE;
when EL0 spe_bit = (if tge_set then PMSCR_EL2.E0HSPE else PMSCR_EL1.E0SPE);

return spe_bit == '1';

Library pseudocode for aarch64/debug/statisticalprofiling/TimeStamp

// TimeStamp
// =========

enumeration TimeStamp {
TimeStamp_None, // No timestamp
TimeStamp_CoreSight, // CoreSight time (IMPLEMENTATION DEFINED)
TimeStamp_Physical, // Physical counter value with no offset
TimeStamp_OffsetPhysical, // Physical counter value minus CNTPOFF_EL2
TimeStamp_Virtual }; // Physical counter value minus CNTVOFF_EL2

Shared Pseudocode Functions Page 1587

Library pseudocode for aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState

Shared Pseudocode Functions Page 1588

// AArch64.TakeExceptionInDebugState()
// ===================================
// Take an exception in Debug state to an Exception level using AArch64.

AArch64.TakeExceptionInDebugState(bits(2) target_el, ExceptionRecord exception_in)
assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);
assert target_el != EL3 || EDSCR.SDD == '0';
ExceptionRecord except = exception_in;
boolean sync_errors;
if HaveIESB() then

sync_errors = SCTLR_EL[target_el].IESB == '1';
if HaveDoubleFaultExt() then

sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && target_el == EL3);
// SCTLR_EL[].IESB and/or SCR_EL3.NMEA (if applicable) might be ignored in Debug state.
if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then

sync_errors = FALSE;
else

sync_errors = FALSE;

if HaveTME() && TSTATE.depth > 0 then
TMFailure cause;
case except.exceptype of

when Exception_SoftwareBreakpoint cause = TMFailure_DBG;
when Exception_Breakpoint cause = TMFailure_DBG;
when Exception_Watchpoint cause = TMFailure_DBG;
when Exception_SoftwareStep cause = TMFailure_DBG;
otherwise cause = TMFailure_ERR;

FailTransaction(cause, FALSE);

boolean brbe_source_allowed = FALSE;
bits(64) brbe_source_address = Zeros(64);
if HaveBRBExt() then

brbe_source_allowed = BranchRecordAllowed(PSTATE.EL);
brbe_source_address = bits(64) UNKNOWN;

if !IsFeatureImplemented(FEAT_ExS) || SCTLR_EL[target_el].EIS == '1' then
SynchronizeContext();

// If coming from AArch32 state, the top parts of the X[] registers might be set to zero
from_32 = UsingAArch32();
if from_32 then AArch64.MaybeZeroRegisterUppers();
if from_32 && HaveSME() && PSTATE.SM == '1' then

ResetSVEState();
else

MaybeZeroSVEUppers(target_el);

AArch64.ReportException(except, target_el);

if HaveGCS() then
PSTATE.EXLOCK = '0'; // Effective value of GCSCR_ELx.EXLOCKEN is 0 in Debug state

PSTATE.EL = target_el;
PSTATE.nRW = '0';
PSTATE.SP = '1';

SPSR_ELx[] = bits(64) UNKNOWN;
ELR_ELx[] = bits(64) UNKNOWN;

// PSTATE.{SS,D,A,I,F} are not observable and ignored in Debug state, so behave as if UNKNOWN.
PSTATE.<SS,D,A,I,F> = bits(5) UNKNOWN;
PSTATE.IL = '0';
if from_32 then // Coming from AArch32

PSTATE.IT = '00000000';
PSTATE.T = '0'; // PSTATE.J is RES0

if (HavePANExt() && (PSTATE.EL == EL1 || (PSTATE.EL == EL2 && ELIsInHost(EL0))) &&
SCTLR_ELx[].SPAN == '0') then
PSTATE.PAN = '1';

if HaveUAOExt() then PSTATE.UAO = '0';
if HaveBTIExt() then PSTATE.BTYPE = '00';
if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;

Shared Pseudocode Functions Page 1589

if HaveMTEExt() then PSTATE.TCO = '1';
if IsFeatureImplemented(FEAT_EBEP) then PSTATE.PM = bit UNKNOWN;
if IsFeatureImplemented(FEAT_SEBEP) then

PSTATE.PPEND = '0';
ShouldSetPPEND = FALSE;

DLR_EL0 = bits(64) UNKNOWN;
DSPSR_EL0 = bits(64) UNKNOWN;

EDSCR.ERR = '1';
UpdateEDSCRFields(); // Update EDSCR processor state flags.

if sync_errors then
SynchronizeErrors();

EndOfInstruction();

Library pseudocode for aarch64/debug/watchpoint/AArch64.WatchpointByteMatch

// AArch64.WatchpointByteMatch()
// =============================

boolean AArch64.WatchpointByteMatch(integer n, bits(64) vaddress)
integer top = DebugAddrTop();
bottom = if DBGWVR_EL1[n]<2> == '1' then 2 else 3; // Word or doubleword
byte_select_match = (DBGWCR_EL1[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');
mask = UInt(DBGWCR_EL1[n].MASK);

// If DBGWCR_EL1[n].MASK is a nonzero value and DBGWCR_EL1[n].BAS is not set to '11111111', or
// DBGWCR_EL1[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
// UNPREDICTABLE.
if mask > 0 && !IsOnes(DBGWCR_EL1[n].BAS) then

byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPMASKANDBAS);
else

LSB = (DBGWCR_EL1[n].BAS AND NOT(DBGWCR_EL1[n].BAS - 1)); MSB = (DBGWCR_EL1[n].BAS + LSB);
if !IsZero(MSB AND (MSB - 1)) then // Not contiguous

byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPBASCONTIGUOUS);
bottom = 3; // For the whole doubleword

// If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
if mask > 0 && mask <= 2 then

Constraint c;
(c, mask) = ConstrainUnpredictableInteger(3, 31, Unpredictable_RESWPMASK);
assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
case c of

when Constraint_DISABLED return FALSE; // Disabled
when Constraint_NONE mask = 0; // No masking
// Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value

// When FEAT_LVA3 is not implemented, if the DBGWVR_EL1[n].RESS field bits are not a
// sign extension of the MSB of DBGWVR_EL1[n].VA, it is UNPREDICTABLE whether they
// appear to be included in the match.
if (top < 55 && !IsOnes(DBGWVR_EL1[n]<63:top>) && !IsZero(DBGWVR_EL1[n]<63:top>) &&

ConstrainUnpredictableBool(Unpredictable_DBGxVR_RESS)) then
top = 63;

boolean WVR_match;
if mask > bottom then

WVR_match = (vaddress<top:mask> == DBGWVR_EL1[n]<top:mask>);
// If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
if WVR_match && !IsZero(DBGWVR_EL1[n]<mask-1:bottom>) then

WVR_match = ConstrainUnpredictableBool(Unpredictable_WPMASKEDBITS);
else

WVR_match = vaddress<top:bottom> == DBGWVR_EL1[n]<top:bottom>;

return (WVR_match && byte_select_match);

Shared Pseudocode Functions Page 1590

Library pseudocode for aarch64/debug/watchpoint/AArch64.WatchpointMatch

// AArch64.WatchpointMatch()
// =========================
// Watchpoint matching in an AArch64 translation regime.

boolean AArch64.WatchpointMatch(integer n, bits(64) vaddress, integer size,
AccessDescriptor accdesc)

assert !ELUsingAArch32(S1TranslationRegime());
assert n < NumWatchpointsImplemented();

boolean enabled = IsWatchpointEnabled(n);
linked = DBGWCR_EL1[n].WT == '1';
isbreakpnt = FALSE;
lbnx = if Havev8p9Debug() then DBGWCR_EL1[n].LBNX else '00';
linked_n = UInt(lbnx : DBGWCR_EL1[n].LBN);
ssce = if HaveRME() then DBGWCR_EL1[n].SSCE else '0';
state_match = AArch64.StateMatch(DBGWCR_EL1[n].SSC, ssce, DBGWCR_EL1[n].HMC, DBGWCR_EL1[n].PAC,

linked, linked_n, isbreakpnt, PC[], accdesc);

boolean ls_match;
case DBGWCR_EL1[n].LSC<1:0> of

when '00' ls_match = FALSE;
when '01' ls_match = accdesc.read;
when '10' ls_match = accdesc.write || accdesc.acctype == AccessType_DC;
when '11' ls_match = TRUE;

boolean value_match = FALSE;
for byte = 0 to size - 1

value_match = value_match || AArch64.WatchpointByteMatch(n, vaddress + byte);

return value_match && state_match && ls_match && enabled;

Library pseudocode for aarch64/debug/watchpoint/IsWatchpointEnabled

// IsWatchpointEnabled()
// =====================
// Returns TRUE if the effective value of DBGWCR_EL1[n].E is '1', and FALSE otherwise.

boolean IsWatchpointEnabled(integer n)
if (n > 15 &&

((!HaltOnBreakpointOrWatchpoint() && !SelfHostedExtendedBPWPEnabled()) ||
(HaltOnBreakpointOrWatchpoint() && EDSCR2.EHBWE == '0'))) then

return FALSE;
return DBGWCR_EL1[n].E == '1';

Library pseudocode for aarch64/exceptions/aborts/AArch64.Abort

// AArch64.Abort()
// ===============
// Abort and Debug exception handling in an AArch64 translation regime.

AArch64.Abort(bits(64) vaddress, FaultRecord fault)

if IsDebugException(fault) then
if fault.accessdesc.acctype == AccessType_IFETCH then

if UsingAArch32() && fault.debugmoe == DebugException_VectorCatch then
AArch64.VectorCatchException(fault);

else
AArch64.BreakpointException(fault);

else
AArch64.WatchpointException(vaddress, fault);

elsif fault.gpcf.gpf != GPCF_None && ReportAsGPCException(fault) then
TakeGPCException(vaddress, fault);

elsif fault.accessdesc.acctype == AccessType_IFETCH then
AArch64.InstructionAbort(vaddress, fault);

else
AArch64.DataAbort(vaddress, fault);

Shared Pseudocode Functions Page 1591

Library pseudocode for aarch64/exceptions/aborts/AArch64.AbortSyndrome

// AArch64.AbortSyndrome()
// =======================
// Creates an exception syndrome record for Abort and Watchpoint exceptions
//
// from an AArch64 translation regime.

ExceptionRecord AArch64.AbortSyndrome(Exception exceptype, FaultRecord fault,
bits(64) vaddress, bits(2) target_el)

except = ExceptionSyndrome(exceptype);

if (!HavePFAR() ||
!IsExternalSyncAbort(fault) ||
(EL2Enabled() && HCR_EL2.VM == '1' && target_el == EL1)) then

except.pavalid = FALSE;
else

except.pavalid = boolean IMPLEMENTATION_DEFINED "PFAR_ELx is valid";

(except.syndrome, except.syndrome2) = AArch64.FaultSyndrome(exceptype, fault, except.pavalid,
vaddress);

if fault.statuscode == Fault_TagCheck then
if HaveMTE4Ext() then

except.vaddress = ZeroExtend(vaddress, 64);
else

except.vaddress = bits(4) UNKNOWN : vaddress<59:0>;
else

except.vaddress = ZeroExtend(vaddress, 64);

if IPAValid(fault) then
except.ipavalid = TRUE;
except.NS = if fault.ipaddress.paspace == PAS_NonSecure then '1' else '0';
except.ipaddress = fault.ipaddress.address;

else
except.ipavalid = FALSE;

return except;

Library pseudocode for aarch64/exceptions/aborts/AArch64.CheckPCAlignment

// AArch64.CheckPCAlignment()
// ==========================

AArch64.CheckPCAlignment()
bits(64) pc = ThisInstrAddr(64);

if pc<1:0> != '00' then
AArch64.PCAlignmentFault();

Shared Pseudocode Functions Page 1592

Library pseudocode for aarch64/exceptions/aborts/AArch64.DataAbort

// AArch64.DataAbort()
// ===================

AArch64.DataAbort(bits(64) vaddress, FaultRecord fault)
bits(2) target_el;
if IsExternalAbort(fault) then

target_el = AArch64.SyncExternalAbortTarget(fault);
else

route_to_el2 = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&
(HCR_EL2.TGE == '1' ||
(HaveRME() && fault.gpcf.gpf == GPCF_Fail && HCR_EL2.GPF == '1') ||
(HaveNV2Ext() && fault.accessdesc.acctype == AccessType_NV2) ||
IsSecondStage(fault)));

if PSTATE.EL == EL3 then
target_el = EL3;

elsif PSTATE.EL == EL2 || route_to_el2 then
target_el = EL2;

else
target_el = EL1;

bits(64) preferred_exception_return = ThisInstrAddr(64);
integer vect_offset;

if IsExternalAbort(fault) && AArch64.RouteToSErrorOffset(target_el) then
vect_offset = 0x180;

else
vect_offset = 0x0;

ExceptionRecord except;
if HaveNV2Ext() && fault.accessdesc.acctype == AccessType_NV2 then

except = AArch64.AbortSyndrome(Exception_NV2DataAbort, fault, vaddress, target_el);
else

except = AArch64.AbortSyndrome(Exception_DataAbort, fault, vaddress, target_el);
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1593

Library pseudocode for aarch64/exceptions/aborts/AArch64.EffectiveTCF

// AArch64.EffectiveTCF()
// ======================
// Indicate if a Tag Check Fault should cause a synchronous exception,
// be asynchronously accumulated, or have no effect on the PE.

TCFType AArch64.EffectiveTCF(bits(2) el, boolean read)
bits(2) tcf;

Regime regime = TranslationRegime(el);

case regime of
when Regime_EL3 tcf = SCTLR_EL3.TCF;
when Regime_EL2 tcf = SCTLR_EL2.TCF;
when Regime_EL20 tcf = if el == EL0 then SCTLR_EL2.TCF0 else SCTLR_EL2.TCF;
when Regime_EL10 tcf = if el == EL0 then SCTLR_EL1.TCF0 else SCTLR_EL1.TCF;
otherwise Unreachable();

if tcf == '11' then // Reserved value
if !HaveMTEAsymFaultExt() then

(-,tcf) = ConstrainUnpredictableBits(Unpredictable_RESTCF, 2);

case tcf of
when '00' // Tag Check Faults have no effect on the PE

return TCFType_Ignore;
when '01' // Tag Check Faults cause a synchronous exception

return TCFType_Sync;
when '10'

if HaveMTEAsyncExt() then
// If asynchronous faults are implemented,
// Tag Check Faults are asynchronously accumulated
return TCFType_Async;

else
// Otherwise, Tag Check Faults have no effect on the PE
return TCFType_Ignore;

when '11'
if HaveMTEAsymFaultExt() then

// Tag Check Faults cause a synchronous exception on reads or on
// a read/write access, and are asynchronously accumulated on writes
if read then

return TCFType_Sync;
else

return TCFType_Async;
else

// Otherwise, Tag Check Faults have no effect on the PE
return TCFType_Ignore;

otherwise
Unreachable();

Shared Pseudocode Functions Page 1594

Library pseudocode for aarch64/exceptions/aborts/AArch64.InstructionAbort

// AArch64.InstructionAbort()
// ==========================

AArch64.InstructionAbort(bits(64) vaddress, FaultRecord fault)
// External aborts on instruction fetch must be taken synchronously
if HaveDoubleFaultExt() then assert fault.statuscode != Fault_AsyncExternal;

bits(2) target_el;
if IsExternalAbort(fault) then

target_el = AArch64.SyncExternalAbortTarget(fault);
else

route_to_el2 = (EL2Enabled() && PSTATE.EL IN {EL0, EL1} &&
(HCR_EL2.TGE == '1' ||
(HaveRME() && fault.gpcf.gpf == GPCF_Fail && HCR_EL2.GPF == '1') ||
IsSecondStage(fault)));

if PSTATE.EL == EL3 then
target_el = EL3;

elsif PSTATE.EL == EL2 || route_to_el2 then
target_el = EL2;

else
target_el = EL1;

bits(64) preferred_exception_return = ThisInstrAddr(64);
integer vect_offset;

if IsExternalAbort(fault) && AArch64.RouteToSErrorOffset(target_el) then
vect_offset = 0x180;

else
vect_offset = 0x0;

ExceptionRecord except = AArch64.AbortSyndrome(Exception_InstructionAbort, fault,
vaddress, target_el);

AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/aborts/AArch64.PCAlignmentFault

// AArch64.PCAlignmentFault()
// ==========================
// Called on unaligned program counter in AArch64 state.

AArch64.PCAlignmentFault()

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_PCAlignment);
except.vaddress = ThisInstrAddr(64);
bits(2) target_el = EL1;
if UInt(PSTATE.EL) > UInt(EL1) then

target_el = PSTATE.EL;
elsif EL2Enabled() && HCR_EL2.TGE == '1' then

target_el = EL2;
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1595

Library pseudocode for aarch64/exceptions/aborts/AArch64.PhysicalSErrorTarget

Shared Pseudocode Functions Page 1596

// AArch64.PhysicalSErrorTarget()
// ==============================
// Returns a tuple of whether SError exception can be taken and, if so, the target Exception level.

(boolean, bits(2)) AArch64.PhysicalSErrorTarget()
boolean route_to_el3;
boolean route_to_el2;

// The exception is explicitly routed to EL3.
if PSTATE.EL != EL3 then

route_to_el3 = (HaveEL(EL3) && EffectiveEA() == '1');
else

route_to_el3 = FALSE;

// The exception is explicitly routed to EL2.
if !route_to_el3 && EL2Enabled() && PSTATE.EL == EL1 then

route_to_el2 = (HCR_EL2.AMO == '1');
elsif !route_to_el3 && EL2Enabled() && PSTATE.EL == EL0 then

route_to_el2 = (!IsInHost() && HCR_EL2.<TGE,AMO> != '00');
else

route_to_el2 = FALSE;

// The exception is "masked".
boolean masked;
case PSTATE.EL of

when EL3
masked = (EffectiveEA() == '0' || PSTATE.A == '1');

when EL2
masked = (!route_to_el3 &&

(HCR_EL2.<TGE,AMO> == '00' || PSTATE.A == '1'));
when EL1, EL0

masked = (!route_to_el3 && !route_to_el2 && PSTATE.A == '1');

// When FEAT_DoubleFault or FEAT_DoubleFault2 is implemented, the mask might be overridden.
if HaveDoubleFault2Ext() then

bit nmea_bit;
case PSTATE.EL of

when EL3
nmea_bit = SCR_EL3.NMEA;

when EL2
nmea_bit = if IsSCTLR2EL2Enabled() then SCTLR2_EL2.NMEA else '0';

when EL1
nmea_bit = if IsSCTLR2EL1Enabled() then SCTLR2_EL1.NMEA else '0';

when EL0
if IsInHost() then

nmea_bit = if IsSCTLR2EL2Enabled() then SCTLR2_EL2.NMEA else '0';
else

nmea_bit = if IsSCTLR2EL1Enabled() then SCTLR2_EL1.NMEA else '0';
masked = masked && (nmea_bit == '0');

elsif HaveDoubleFaultExt() && PSTATE.EL == EL3 then
bit nmea_bit = SCR_EL3.NMEA AND EffectiveEA();
masked = masked && (nmea_bit == '0');

boolean route_masked_to_el3;
boolean route_masked_to_el2;

if HaveDoubleFault2Ext() then
// The masked exception is routed to EL2.
route_masked_to_el2 = (EL2Enabled() && !route_to_el3 &&

IsHCRXEL2Enabled() && HCRX_EL2.TMEA == '1' &&
((PSTATE.EL == EL1 && (PSTATE.A == '1' || masked)) ||
(PSTATE.EL == EL0 && masked && !IsInHost())));

// The masked exception is routed to EL3.
route_masked_to_el3 = (HaveEL(EL3) && SCR_EL3.TMEA == '1' &&

!(route_to_el2 || route_masked_to_el2) &&
((PSTATE.EL IN {EL2, EL1} &&

(PSTATE.A == '1' || masked)) ||
(PSTATE.EL == EL0 && masked)));

Shared Pseudocode Functions Page 1597

else
route_masked_to_el2 = FALSE;
route_masked_to_el3 = FALSE;

// The exception is taken at EL3.
take_in_el3 = PSTATE.EL == EL3 && !masked;

// The exception is taken at EL2 or in the Host EL0.
take_in_el2_0 = ((PSTATE.EL == EL2 || IsInHost()) &&

!(route_to_el3 || route_masked_to_el3) && !masked);

// The exception is taken at EL1 or in the non-Host EL0.
take_in_el1_0 = ((PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost())) &&

!(route_to_el2 || route_masked_to_el2) &&
!(route_to_el3 || route_masked_to_el3) && !masked);

bits(2) target_el;
if take_in_el3 || route_to_el3 || route_masked_to_el3 then

masked = FALSE; target_el = EL3;
elsif take_in_el2_0 || route_to_el2 || route_masked_to_el2 then

masked = FALSE; target_el = EL2;
elsif take_in_el1_0 then

masked = FALSE; target_el = EL1;
else

masked = TRUE; target_el = bits(2) UNKNOWN;

return (masked, target_el);

Library pseudocode for aarch64/exceptions/aborts/AArch64.RaiseTagCheckFault

// AArch64.RaiseTagCheckFault()
// ============================
// Raise a Tag Check Fault exception.

AArch64.RaiseTagCheckFault(bits(64) va, FaultRecord fault)
bits(64) preferred_exception_return = ThisInstrAddr(64);
integer vect_offset = 0x0;
bits(2) target_el = EL1;
if UInt(PSTATE.EL) > UInt(EL1) then

target_el = PSTATE.EL;
elsif PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1' then

target_el = EL2;

except = AArch64.AbortSyndrome(Exception_DataAbort, fault, va, target_el);
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/aborts/AArch64.ReportTagCheckFault

// AArch64.ReportTagCheckFault()
// =============================
// Records a Tag Check Fault exception into the appropriate TFSR_ELx.

AArch64.ReportTagCheckFault(bits(2) el, bit ttbr)
case el of

when EL3 assert ttbr == '0'; TFSR_EL3.TF0 = '1';
when EL2 if ttbr == '0' then TFSR_EL2.TF0 = '1'; else TFSR_EL2.TF1 = '1';
when EL1 if ttbr == '0' then TFSR_EL1.TF0 = '1'; else TFSR_EL1.TF1 = '1';
when EL0 if ttbr == '0' then TFSRE0_EL1.TF0 = '1'; else TFSRE0_EL1.TF1 = '1';

Shared Pseudocode Functions Page 1598

Library pseudocode for aarch64/exceptions/aborts/AArch64.RouteToSErrorOffset

// AArch64.RouteToSErrorOffset()
// =============================
// Returns TRUE if synchronous External abort exceptions are taken to the
// appropriate SError vector offset, and FALSE otherwise.

boolean AArch64.RouteToSErrorOffset(bits(2) target_el)
if !HaveDoubleFaultExt() then return FALSE;

bit ease_bit;
case target_el of

when EL3
ease_bit = SCR_EL3.EASE;

when EL2
if HaveDoubleFault2Ext() && IsSCTLR2EL2Enabled() then

ease_bit = SCTLR2_EL2.EASE;
else

ease_bit = '0';
when EL1

if HaveDoubleFault2Ext() && IsSCTLR2EL1Enabled() then
ease_bit = SCTLR2_EL1.EASE;

else
ease_bit = '0';

return (ease_bit == '1');

Library pseudocode for aarch64/exceptions/aborts/AArch64.SPAlignmentFault

// AArch64.SPAlignmentFault()
// ==========================
// Called on an unaligned stack pointer in AArch64 state.

AArch64.SPAlignmentFault()

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_SPAlignment);

bits(2) target_el = EL1;
if UInt(PSTATE.EL) > UInt(EL1) then

target_el = PSTATE.EL;
elsif EL2Enabled() && HCR_EL2.TGE == '1' then

target_el = EL2;
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1599

Library pseudocode for aarch64/exceptions/aborts/AArch64.SyncExternalAbortTarget

Shared Pseudocode Functions Page 1600

// AArch64.SyncExternalAbortTarget()
// =================================
// Returns the target Exception level for a Synchronous External
// Data or Instruction Abort.

bits(2) AArch64.SyncExternalAbortTarget(FaultRecord fault)
boolean route_to_el3;

// The exception is explicitly routed to EL3
if PSTATE.EL != EL3 then

route_to_el3 = (HaveEL(EL3) && EffectiveEA() == '1');
else

route_to_el3 = FALSE;

// The exception is explicitly routed to EL2
bit tea_bit = (if HaveRASExt() && EL2Enabled() then HCR_EL2.TEA else '0');

boolean route_to_el2;
if !route_to_el3 && EL2Enabled() && PSTATE.EL == EL1 then

route_to_el2 = (tea_bit == '1' ||
fault.accessdesc.acctype == AccessType_NV2 ||
IsSecondStage(fault));

elsif !route_to_el3 && EL2Enabled() && PSTATE.EL == EL0 then
route_to_el2 = (!IsInHost() && (HCR_EL2.TGE == '1' || tea_bit == '1' ||

IsSecondStage(fault)));
else

route_to_el2 = FALSE;

boolean route_masked_to_el3;
boolean route_masked_to_el2;

if HaveDoubleFault2Ext() then
// The masked exception is routed to EL2
route_masked_to_el2 = (EL2Enabled() && !route_to_el3 &&

(PSTATE.EL == EL1 && PSTATE.A == '1') &&
IsHCRXEL2Enabled() && HCRX_EL2.TMEA == '1');

// The masked exception is routed to EL3
route_masked_to_el3 = (HaveEL(EL3) &&

!(route_to_el2 || route_masked_to_el2) &&
(PSTATE.EL IN {EL2, EL1} && PSTATE.A == '1') &&
SCR_EL3.TMEA == '1');

else
route_masked_to_el2 = FALSE;
route_masked_to_el3 = FALSE;

// The exception is taken at EL3
take_in_el3 = PSTATE.EL == EL3;

// The exception is taken at EL2 or in the Host EL0
take_in_el2_0 = ((PSTATE.EL == EL2 || IsInHost()) &&

!(route_to_el3 || route_masked_to_el3));

// The exception is taken at EL1 or in the non-Host EL0
take_in_el1_0 = ((PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost())) &&

!(route_to_el2 || route_masked_to_el2) &&
!(route_to_el3 || route_masked_to_el3));

bits(2) target_el;
if take_in_el3 || route_to_el3 || route_masked_to_el3 then

target_el = EL3;
elsif take_in_el2_0 || route_to_el2 || route_masked_to_el2 then

target_el = EL2;
elsif take_in_el1_0 then

target_el = EL1;
else

assert(FALSE);

return target_el;

Shared Pseudocode Functions Page 1601

Library pseudocode for aarch64/exceptions/aborts/AArch64.TagCheckFault

// AArch64.TagCheckFault()
// =======================
// Handle a Tag Check Fault condition.

AArch64.TagCheckFault(bits(64) vaddress, AccessDescriptor accdesc)
TCFType tcftype = AArch64.EffectiveTCF(accdesc.el, accdesc.read);

case tcftype of
when TCFType_Sync

FaultRecord fault = NoFault();
fault.accessdesc = accdesc;
fault.write = accdesc.write;
fault.statuscode = Fault_TagCheck;
AArch64.RaiseTagCheckFault(vaddress, fault);

when TCFType_Async
AArch64.ReportTagCheckFault(accdesc.el, vaddress<55>);

when TCFType_Ignore
return;

otherwise
Unreachable();

Library pseudocode for aarch64/exceptions/aborts/BranchTargetException

// BranchTargetException()
// =======================
// Raise branch target exception.

AArch64.BranchTargetException(bits(52) vaddress)
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_BranchTarget);
except.syndrome<1:0> = PSTATE.BTYPE;
except.syndrome<24:2> = Zeros(23); // RES0

bits(2) target_el = EL1;
if UInt(PSTATE.EL) > UInt(EL1) then

target_el = PSTATE.EL;
elsif PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1' then

target_el = EL2;
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/aborts/TCFType

// TCFType
// =======

enumeration TCFType { TCFType_Sync, TCFType_Async, TCFType_Ignore };

Shared Pseudocode Functions Page 1602

Library pseudocode for aarch64/exceptions/aborts/TakeGPCException

Shared Pseudocode Functions Page 1603

// TakeGPCException()
// ==================
// Report Granule Protection Exception faults

TakeGPCException(bits(64) vaddress, FaultRecord fault)
assert HaveRME();
assert HaveAtomicExt();
assert HaveAccessFlagUpdateExt();
assert HaveDirtyBitModifierExt();
assert HaveDoubleFaultExt();

ExceptionRecord except;

except.exceptype = Exception_GPC;
except.vaddress = ZeroExtend(vaddress, 64);
except.paddress = fault.paddress;
except.pavalid = TRUE;

if IPAValid(fault) then
except.ipavalid = TRUE;
except.NS = if fault.ipaddress.paspace == PAS_NonSecure then '1' else '0';
except.ipaddress = fault.ipaddress.address;

else
except.ipavalid = FALSE;

if fault.accessdesc.acctype == AccessType_GCS then
except.syndrome2<8> = '1'; //GCS

// Populate the fields grouped in ISS
except.syndrome<24:22> = Zeros(3); // RES0
except.syndrome<21> = if fault.gpcfs2walk then '1' else '0'; // S2PTW
if fault.accessdesc.acctype == AccessType_IFETCH then

except.syndrome<20> = '1'; // InD
else

except.syndrome<20> = '0'; // InD
except.syndrome<19:14> = EncodeGPCSC(fault.gpcf); // GPCSC
if HaveNV2Ext() && fault.accessdesc.acctype == AccessType_NV2 then

except.syndrome<13> = '1'; // VNCR
else

except.syndrome<13> = '0'; // VNCR
except.syndrome<12:11> = '00'; // RES0
except.syndrome<10:9> = '00'; // RES0

if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then
except.syndrome<8> = '1'; // CM

else
except.syndrome<8> = '0'; // CM

except.syndrome<7> = if fault.s2fs1walk then '1' else '0'; // S1PTW

if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then
except.syndrome<6> = '1'; // WnR

elsif fault.statuscode IN {Fault_HWUpdateAccessFlag, Fault_Exclusive} then
except.syndrome<6> = bit UNKNOWN; // WnR

elsif fault.accessdesc.atomicop && IsExternalAbort(fault) then
except.syndrome<6> = bit UNKNOWN; // WnR

else
except.syndrome<6> = if fault.write then '1' else '0'; // WnR

except.syndrome<5:0> = EncodeLDFSC(fault.statuscode, fault.level); // xFSC

bits(64) preferred_exception_return = ThisInstrAddr(64);
bits(2) target_el = EL3;

integer vect_offset;
if IsExternalAbort(fault) && AArch64.RouteToSErrorOffset(target_el) then

vect_offset = 0x180;
else

vect_offset = 0x0;

Shared Pseudocode Functions Page 1604

AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/async/AArch64.TakePhysicalFIQException

// AArch64.TakePhysicalFIQException()
// ==================================

AArch64.TakePhysicalFIQException()

route_to_el3 = HaveEL(EL3) && SCR_EL3.FIQ == '1';
route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR_EL2.TGE == '1' || HCR_EL2.FMO == '1'));
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x100;
except = ExceptionSyndrome(Exception_FIQ);

if route_to_el3 then
AArch64.TakeException(EL3, except, preferred_exception_return, vect_offset);

elsif PSTATE.EL == EL2 || route_to_el2 then
assert PSTATE.EL != EL3;
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

else
assert PSTATE.EL IN {EL0, EL1};
AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/async/AArch64.TakePhysicalIRQException

// AArch64.TakePhysicalIRQException()
// ==================================
// Take an enabled physical IRQ exception.

AArch64.TakePhysicalIRQException()

route_to_el3 = HaveEL(EL3) && SCR_EL3.IRQ == '1';
route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR_EL2.TGE == '1' || HCR_EL2.IMO == '1'));
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x80;

except = ExceptionSyndrome(Exception_IRQ);

if route_to_el3 then
AArch64.TakeException(EL3, except, preferred_exception_return, vect_offset);

elsif PSTATE.EL == EL2 || route_to_el2 then
assert PSTATE.EL != EL3;
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

else
assert PSTATE.EL IN {EL0, EL1};
AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1605

Library pseudocode for aarch64/exceptions/async/AArch64.TakePhysicalSErrorException

// AArch64.TakePhysicalSErrorException()
// =====================================

AArch64.TakePhysicalSErrorException(boolean implicit_esb)

route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1';
route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR_EL2.TGE == '1' || (!IsInHost() && HCR_EL2.AMO == '1')));
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x180;

bits(2) target_el;
if PSTATE.EL == EL3 || route_to_el3 then

target_el = EL3;
elsif PSTATE.EL == EL2 || route_to_el2 then

target_el = EL2;
else

target_el = EL1;

except = ExceptionSyndrome(Exception_SError);
bits(25) syndrome = AArch64.PhysicalSErrorSyndrome(implicit_esb);
if IsSErrorEdgeTriggered() then

ClearPendingPhysicalSError();
except.syndrome = syndrome;
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/async/AArch64.TakeVirtualFIQException

// AArch64.TakeVirtualFIQException()
// =================================

AArch64.TakeVirtualFIQException()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1'; // Virtual IRQ enabled if TGE==0 and FMO==1

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x100;

except = ExceptionSyndrome(Exception_FIQ);

AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/async/AArch64.TakeVirtualIRQException

// AArch64.TakeVirtualIRQException()
// =================================

AArch64.TakeVirtualIRQException()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1'; // Virtual IRQ enabled if TGE==0 and IMO==1

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x80;

except = ExceptionSyndrome(Exception_IRQ);

AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1606

Library pseudocode for aarch64/exceptions/async/AArch64.TakeVirtualSErrorException

// AArch64.TakeVirtualSErrorException()
// ====================================

AArch64.TakeVirtualSErrorException()

assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1'; // Virtual SError enabled if TGE==0 and AMO==1

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x180;
except = ExceptionSyndrome(Exception_SError);

if HaveRASExt() then
except.syndrome<24> = VSESR_EL2.IDS;
except.syndrome<23:0> = VSESR_EL2.ISS;

else
bits(25) syndrome = bits(25) IMPLEMENTATION_DEFINED "Virtual SError syndrome";
impdef_syndrome = syndrome<24> == '1';
if impdef_syndrome then except.syndrome = syndrome;

ClearPendingVirtualSError();
AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/debug/AArch64.BreakpointException

// AArch64.BreakpointException()
// =============================

AArch64.BreakpointException(FaultRecord fault)
assert PSTATE.EL != EL3;

route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr(64);
bits(2) target_el;
vect_offset = 0x0;
target_el = if (PSTATE.EL == EL2 || route_to_el2) then EL2 else EL1;

vaddress = bits(64) UNKNOWN;
except = AArch64.AbortSyndrome(Exception_Breakpoint, fault, vaddress, target_el);
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/debug/AArch64.SoftwareBreakpoint

// AArch64.SoftwareBreakpoint()
// ============================

AArch64.SoftwareBreakpoint(bits(16) immediate)

route_to_el2 = (PSTATE.EL IN {EL0, EL1} &&
EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_SoftwareBreakpoint);
except.syndrome<15:0> = immediate;

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1607

Library pseudocode for aarch64/exceptions/debug/AArch64.SoftwareStepException

// AArch64.SoftwareStepException()
// ===============================

AArch64.SoftwareStepException()
assert PSTATE.EL != EL3;

route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_SoftwareStep);
if SoftwareStep_DidNotStep() then

except.syndrome<24> = '0';
else

except.syndrome<24> = '1';
except.syndrome<6> = if SoftwareStep_SteppedEX() then '1' else '0';

except.syndrome<5:0> = '100010'; // IFSC = Debug Exception

if PSTATE.EL == EL2 || route_to_el2 then
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/debug/AArch64.VectorCatchException

// AArch64.VectorCatchException()
// ==============================
// Vector Catch taken from EL0 or EL1 to EL2. This can only be called when debug exceptions are
// being routed to EL2, as Vector Catch is a legacy debug event.

AArch64.VectorCatchException(FaultRecord fault)
assert PSTATE.EL != EL2;
assert EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

vaddress = bits(64) UNKNOWN;
except = AArch64.AbortSyndrome(Exception_VectorCatch, fault, vaddress, EL2);

AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/debug/AArch64.WatchpointException

// AArch64.WatchpointException()
// =============================

AArch64.WatchpointException(bits(64) vaddress, FaultRecord fault)
assert PSTATE.EL != EL3;

route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
(HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));

bits(64) preferred_exception_return = ThisInstrAddr(64);
bits(2) target_el;
vect_offset = 0x0;
target_el = if (PSTATE.EL == EL2 || route_to_el2) then EL2 else EL1;

ExceptionRecord except;
if HaveNV2Ext() && fault.accessdesc.acctype == AccessType_NV2 then

except = AArch64.AbortSyndrome(Exception_NV2Watchpoint, fault, vaddress, target_el);
else

except = AArch64.AbortSyndrome(Exception_Watchpoint, fault, vaddress, target_el);
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1608

Library pseudocode for aarch64/exceptions/exceptions/AArch64.ExceptionClass

// AArch64.ExceptionClass()
// ========================
// Returns the Exception Class and Instruction Length fields to be reported in ESR

(integer,bit) AArch64.ExceptionClass(Exception exceptype, bits(2) target_el)

il_is_valid = TRUE;
from_32 = UsingAArch32();
integer ec;
case exceptype of

when Exception_Uncategorized ec = 0x00; il_is_valid = FALSE;
when Exception_WFxTrap ec = 0x01;
when Exception_CP15RTTrap ec = 0x03; assert from_32;
when Exception_CP15RRTTrap ec = 0x04; assert from_32;
when Exception_CP14RTTrap ec = 0x05; assert from_32;
when Exception_CP14DTTrap ec = 0x06; assert from_32;
when Exception_AdvSIMDFPAccessTrap ec = 0x07;
when Exception_FPIDTrap ec = 0x08;
when Exception_PACTrap ec = 0x09;
when Exception_LDST64BTrap ec = 0x0A;
when Exception_TSTARTAccessTrap ec = 0x1B;
when Exception_GPC ec = 0x1E;
when Exception_CP14RRTTrap ec = 0x0C; assert from_32;
when Exception_BranchTarget ec = 0x0D;
when Exception_IllegalState ec = 0x0E; il_is_valid = FALSE;
when Exception_SupervisorCall ec = 0x11;
when Exception_HypervisorCall ec = 0x12;
when Exception_MonitorCall ec = 0x13;
when Exception_SystemRegisterTrap ec = 0x18; assert !from_32;
when Exception_SystemRegister128Trap ec = 0x14; assert !from_32;
when Exception_SVEAccessTrap ec = 0x19; assert !from_32;
when Exception_ERetTrap ec = 0x1A; assert !from_32;
when Exception_PACFail ec = 0x1C; assert !from_32;
when Exception_SMEAccessTrap ec = 0x1D; assert !from_32;
when Exception_InstructionAbort ec = 0x20; il_is_valid = FALSE;
when Exception_PCAlignment ec = 0x22; il_is_valid = FALSE;
when Exception_DataAbort ec = 0x24;
when Exception_NV2DataAbort ec = 0x25;
when Exception_SPAlignment ec = 0x26; il_is_valid = FALSE; assert !from_32;
when Exception_MemCpyMemSet ec = 0x27;
when Exception_GCSFail ec = 0x2D; assert !from_32;
when Exception_FPTrappedException ec = 0x28;
when Exception_SError ec = 0x2F; il_is_valid = FALSE;
when Exception_Breakpoint ec = 0x30; il_is_valid = FALSE;
when Exception_SoftwareStep ec = 0x32; il_is_valid = FALSE;
when Exception_Watchpoint ec = 0x34; il_is_valid = FALSE;
when Exception_NV2Watchpoint ec = 0x35; il_is_valid = FALSE;
when Exception_SoftwareBreakpoint ec = 0x38;
when Exception_VectorCatch ec = 0x3A; il_is_valid = FALSE; assert from_32;
when Exception_PMU ec = 0x3D;
otherwise Unreachable();

if ec IN {0x20,0x24,0x30,0x32,0x34} && target_el == PSTATE.EL then
ec = ec + 1;

if ec IN {0x11,0x12,0x13,0x28,0x38} && !from_32 then
ec = ec + 4;

bit il;
if il_is_valid then

il = if ThisInstrLength() == 32 then '1' else '0';
else

il = '1';
assert from_32 || il == '1'; // AArch64 instructions always 32-bit

return (ec,il);

Shared Pseudocode Functions Page 1609

Library pseudocode for aarch64/exceptions/exceptions/AArch64.ReportException

// AArch64.ReportException()
// =========================
// Report syndrome information for exception taken to AArch64 state.

AArch64.ReportException(ExceptionRecord except, bits(2) target_el)

Exception exceptype = except.exceptype;

(ec,il) = AArch64.ExceptionClass(exceptype, target_el);
iss = except.syndrome;
iss2 = except.syndrome2;

// IL is not valid for Data Abort exceptions without valid instruction syndrome information
if ec IN {0x24,0x25} && iss<24> == '0' then

il = '1';

ESR_EL[target_el] = (Zeros(8) : // <63:56>
iss2 : // <55:32>
ec<5:0> : // <31:26>
il : // <25>
iss); // <24:0>

if exceptype IN {
Exception_InstructionAbort,
Exception_PCAlignment,
Exception_DataAbort,
Exception_NV2DataAbort,
Exception_NV2Watchpoint,
Exception_GPC,
Exception_Watchpoint

} then
FAR_EL[target_el] = except.vaddress;

else
FAR_EL[target_el] = bits(64) UNKNOWN;

if except.ipavalid then
HPFAR_EL2<47:4> = except.ipaddress<55:12>;
if IsSecureEL2Enabled() && CurrentSecurityState() == SS_Secure then

HPFAR_EL2.NS = except.NS;
else

HPFAR_EL2.NS = '0';
elsif target_el == EL2 then

HPFAR_EL2<47:4> = bits(44) UNKNOWN;

if except.pavalid then
bits(64) faultaddr = ZeroExtend(except.paddress.address, 64);
if HaveRME() then

case except.paddress.paspace of
when PAS_Secure faultaddr<63:62> = '00';
when PAS_NonSecure faultaddr<63:62> = '10';
when PAS_Root faultaddr<63:62> = '01';
when PAS_Realm faultaddr<63:62> = '11';

if exceptype == Exception_GPC then
faultaddr<11:0> = Zeros(12);

else
faultaddr<63> = if except.paddress.paspace == PAS_NonSecure then '1' else '0';

PFAR_EL[target_el] = faultaddr;
elsif HavePFAR() || (HaveRME() && target_el == EL3) then

PFAR_EL[target_el] = bits(64) UNKNOWN;
return;

Shared Pseudocode Functions Page 1610

Library pseudocode for aarch64/exceptions/exceptions/AArch64.ResetControlRegisters

// AArch64.ResetControlRegisters()
// ===============================
// Resets System registers and memory-mapped control registers that have architecturally-defined
// reset values to those values.

AArch64.ResetControlRegisters(boolean cold_reset);

Library pseudocode for aarch64/exceptions/exceptions/AArch64.TakeReset

// AArch64.TakeReset()
// ===================
// Reset into AArch64 state

AArch64.TakeReset(boolean cold_reset)
assert HaveAArch64();

// Enter the highest implemented Exception level in AArch64 state
PSTATE.nRW = '0';
if HaveEL(EL3) then

PSTATE.EL = EL3;
elsif HaveEL(EL2) then

PSTATE.EL = EL2;
else

PSTATE.EL = EL1;

// Reset System registers
// and other system components
AArch64.ResetControlRegisters(cold_reset);

// Reset all other PSTATE fields
PSTATE.SP = '1'; // Select stack pointer
PSTATE.<D,A,I,F> = '1111'; // All asynchronous exceptions masked
PSTATE.SS = '0'; // Clear software step bit
PSTATE.DIT = '0'; // PSTATE.DIT is reset to 0 when resetting into AArch64
PSTATE.IL = '0'; // Clear Illegal Execution state bit

if HaveTME() then TSTATE.depth = 0; // Non-transactional state

// All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
// below are UNKNOWN bitstrings after reset. In particular, the return information registers
// ELR_ELx and SPSR_ELx have UNKNOWN values, so that it
// is impossible to return from a reset in an architecturally defined way.
AArch64.ResetGeneralRegisters();
AArch64.ResetSIMDFPRegisters();
AArch64.ResetSpecialRegisters();
ResetExternalDebugRegisters(cold_reset);

bits(64) rv; // IMPLEMENTATION DEFINED reset vector

if HaveEL(EL3) then
rv = RVBAR_EL3;

elsif HaveEL(EL2) then
rv = RVBAR_EL2;

else
rv = RVBAR_EL1;

// The reset vector must be correctly aligned
assert IsZero(rv<63:AArch64.PAMax()>) && IsZero(rv<1:0>);

boolean branch_conditional = FALSE;
EDPRSR.R = '0'; // Leaving Reset State.
BranchTo(rv, BranchType_RESET, branch_conditional);

Shared Pseudocode Functions Page 1611

Library pseudocode for aarch64/exceptions/ieeefp/AArch64.FPTrappedException

// AArch64.FPTrappedException()
// ============================

AArch64.FPTrappedException(boolean is_ase, bits(8) accumulated_exceptions)
except = ExceptionSyndrome(Exception_FPTrappedException);
if is_ase then

if boolean IMPLEMENTATION_DEFINED "vector instructions set TFV to 1" then
except.syndrome<23> = '1'; // TFV

else
except.syndrome<23> = '0'; // TFV

else
except.syndrome<23> = '1'; // TFV

except.syndrome<10:8> = bits(3) UNKNOWN; // VECITR
if except.syndrome<23> == '1' then

except.syndrome<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF
else

except.syndrome<7,4:0> = bits(6) UNKNOWN;

route_to_el2 = EL2Enabled() && HCR_EL2.TGE == '1';

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/syscalls/AArch64.CallHypervisor

// AArch64.CallHypervisor()
// ========================
// Performs a HVC call

AArch64.CallHypervisor(bits(16) immediate)
assert HaveEL(EL2);

if UsingAArch32() then AArch32.ITAdvance();
SSAdvance();
bits(64) preferred_exception_return = NextInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_HypervisorCall);
except.syndrome<15:0> = immediate;

if PSTATE.EL == EL3 then
AArch64.TakeException(EL3, except, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1612

Library pseudocode for aarch64/exceptions/syscalls/AArch64.CallSecureMonitor

// AArch64.CallSecureMonitor()
// ===========================

AArch64.CallSecureMonitor(bits(16) immediate)
assert HaveEL(EL3) && !ELUsingAArch32(EL3);
if UsingAArch32() then AArch32.ITAdvance();
HSAdvance();
SSAdvance();
bits(64) preferred_exception_return = NextInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_MonitorCall);
except.syndrome<15:0> = immediate;

AArch64.TakeException(EL3, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/syscalls/AArch64.CallSupervisor

// AArch64.CallSupervisor()
// ========================
// Calls the Supervisor

AArch64.CallSupervisor(bits(16) immediate)
if UsingAArch32() then AArch32.ITAdvance();
SSAdvance();
route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';

bits(64) preferred_exception_return = NextInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_SupervisorCall);
except.syndrome<15:0> = immediate;

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1613

Library pseudocode for aarch64/exceptions/takeexception/AArch64.TakeException

Shared Pseudocode Functions Page 1614

// AArch64.TakeException()
// =======================
// Take an exception to an Exception level using AArch64.

AArch64.TakeException(bits(2) target_el, ExceptionRecord exception_in,
bits(64) preferred_exception_return, integer vect_offset_in)

assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);
if Halted() then

AArch64.TakeExceptionInDebugState(target_el, exception_in);
return;

ExceptionRecord except = exception_in;
boolean sync_errors;
boolean iesb_req;
if HaveIESB() then

sync_errors = SCTLR_EL[target_el].IESB == '1';
if HaveDoubleFaultExt() then

sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && target_el == EL3);
if sync_errors && InsertIESBBeforeException(target_el) then

SynchronizeErrors();
iesb_req = FALSE;
sync_errors = FALSE;
TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

else
sync_errors = FALSE;

if HaveTME() && TSTATE.depth > 0 then
TMFailure cause;
case except.exceptype of

when Exception_SoftwareBreakpoint cause = TMFailure_DBG;
when Exception_Breakpoint cause = TMFailure_DBG;
when Exception_Watchpoint cause = TMFailure_DBG;
when Exception_SoftwareStep cause = TMFailure_DBG;
otherwise cause = TMFailure_ERR;

FailTransaction(cause, FALSE);

boolean brbe_source_allowed = FALSE;
bits(64) brbe_source_address = Zeros(64);
if HaveBRBExt() then

brbe_source_allowed = BranchRecordAllowed(PSTATE.EL);
brbe_source_address = preferred_exception_return;

if !IsFeatureImplemented(FEAT_ExS) || SCTLR_EL[target_el].EIS == '1' then
SynchronizeContext();

// If coming from AArch32 state, the top parts of the X[] registers might be set to zero
from_32 = UsingAArch32();
if from_32 then AArch64.MaybeZeroRegisterUppers();
if from_32 && HaveSME() && PSTATE.SM == '1' then

ResetSVEState();
else

MaybeZeroSVEUppers(target_el);

integer vect_offset = vect_offset_in;
if UInt(target_el) > UInt(PSTATE.EL) then

boolean lower_32;
if target_el == EL3 then

if EL2Enabled() then
lower_32 = ELUsingAArch32(EL2);

else
lower_32 = ELUsingAArch32(EL1);

elsif IsInHost() && PSTATE.EL == EL0 && target_el == EL2 then
lower_32 = ELUsingAArch32(EL0);

else
lower_32 = ELUsingAArch32(target_el - 1);

vect_offset = vect_offset + (if lower_32 then 0x600 else 0x400);

elsif PSTATE.SP == '1' then
vect_offset = vect_offset + 0x200;

bits(64) spsr = GetPSRFromPSTATE(AArch64_NonDebugState, 64);

Shared Pseudocode Functions Page 1615

if PSTATE.EL == EL1 && target_el == EL1 && EL2Enabled() then
if HaveNV2Ext() && (HCR_EL2.<NV,NV1,NV2> == '100' || HCR_EL2.<NV,NV1,NV2> == '111') then

spsr<3:2> = '10';
else

if HaveNVExt() && HCR_EL2.<NV,NV1> == '10' then
spsr<3:2> = '10';

if HaveBTIExt() && !UsingAArch32() then
boolean zero_btype;
// SPSR_ELx[].BTYPE is only guaranteed valid for these exception types
if except.exceptype IN {Exception_SError, Exception_IRQ, Exception_FIQ,

Exception_SoftwareStep, Exception_PCAlignment,
Exception_InstructionAbort, Exception_Breakpoint,
Exception_VectorCatch, Exception_SoftwareBreakpoint,
Exception_IllegalState, Exception_BranchTarget} then

zero_btype = FALSE;
else

zero_btype = ConstrainUnpredictableBool(Unpredictable_ZEROBTYPE);
if zero_btype then spsr<11:10> = '00';

if HaveNV2Ext() && except.exceptype == Exception_NV2DataAbort && target_el == EL3 then
// External aborts are configured to be taken to EL3
except.exceptype = Exception_DataAbort;

if !(except.exceptype IN {Exception_IRQ, Exception_FIQ}) then
AArch64.ReportException(except, target_el);

if HaveBRBExt() then
bits(64) brbe_target_address = VBAR_EL[target_el]<63:11>:vect_offset<10:0>;
BRBEException(except, brbe_source_allowed, brbe_source_address,

brbe_target_address, target_el,
except.trappedsyscallinst);

if HaveGCS() then
if PSTATE.EL == target_el then

if GetCurrentEXLOCKEN() then
PSTATE.EXLOCK = '1';

else
PSTATE.EXLOCK = '0';

else
PSTATE.EXLOCK = '0';

PSTATE.EL = target_el;
PSTATE.nRW = '0';
PSTATE.SP = '1';

SPSR_ELx[] = spsr;
ELR_ELx[] = preferred_exception_return;

PSTATE.SS = '0';
if HaveFeatNMI() && !ELUsingAArch32(target_el) then PSTATE.ALLINT = NOT SCTLR_ELx[].SPINTMASK;
PSTATE.<D,A,I,F> = '1111';
PSTATE.IL = '0';
if from_32 then // Coming from AArch32

PSTATE.IT = '00000000';
PSTATE.T = '0'; // PSTATE.J is RES0

if (HavePANExt() && (PSTATE.EL == EL1 || (PSTATE.EL == EL2 && ELIsInHost(EL0))) &&
SCTLR_ELx[].SPAN == '0') then
PSTATE.PAN = '1';

if HaveUAOExt() then PSTATE.UAO = '0';
if HaveBTIExt() then PSTATE.BTYPE = '00';
if HaveSSBSExt() then PSTATE.SSBS = SCTLR_ELx[].DSSBS;
if HaveMTEExt() then PSTATE.TCO = '1';
if IsFeatureImplemented(FEAT_EBEP) then PSTATE.PM = '1';
if IsFeatureImplemented(FEAT_SEBEP) then

PSTATE.PPEND = '0';
ShouldSetPPEND = FALSE;

boolean branch_conditional = FALSE;
BranchTo(VBAR_ELx[]<63:11>:vect_offset<10:0>, BranchType_EXCEPTION, branch_conditional);

Shared Pseudocode Functions Page 1616

CheckExceptionCatch(TRUE); // Check for debug event on exception entry

if sync_errors then
SynchronizeErrors();
iesb_req = TRUE;
TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

EndOfInstruction();

Library pseudocode for aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap

// AArch64.AArch32SystemAccessTrap()
// =================================
// Trapped AARCH32 System register access.

AArch64.AArch32SystemAccessTrap(bits(2) target_el, integer ec)
assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = AArch64.AArch32SystemAccessTrapSyndrome(ThisInstr(), ec);
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1617

Library pseudocode for aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome

Shared Pseudocode Functions Page 1618

// AArch64.AArch32SystemAccessTrapSyndrome()
// ===
// Returns the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS,
// VMSR instructions, other than traps that are due to HCPTR or CPACR.

ExceptionRecord AArch64.AArch32SystemAccessTrapSyndrome(bits(32) instr, integer ec)
ExceptionRecord except;

case ec of
when 0x0 except = ExceptionSyndrome(Exception_Uncategorized);
when 0x3 except = ExceptionSyndrome(Exception_CP15RTTrap);
when 0x4 except = ExceptionSyndrome(Exception_CP15RRTTrap);
when 0x5 except = ExceptionSyndrome(Exception_CP14RTTrap);
when 0x6 except = ExceptionSyndrome(Exception_CP14DTTrap);
when 0x7 except = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
when 0x8 except = ExceptionSyndrome(Exception_FPIDTrap);
when 0xC except = ExceptionSyndrome(Exception_CP14RRTTrap);
otherwise Unreachable();

bits(20) iss = Zeros(20);

if except.exceptype == Exception_Uncategorized then
return except;

elsif except.exceptype IN {Exception_FPIDTrap, Exception_CP14RTTrap,
Exception_CP15RTTrap} then

// Trapped MRC/MCR, VMRS on FPSID
if except.exceptype != Exception_FPIDTrap then // When trap is not for VMRS

iss<19:17> = instr<7:5>; // opc2
iss<16:14> = instr<23:21>; // opc1
iss<13:10> = instr<19:16>; // CRn
iss<4:1> = instr<3:0>; // CRm

else
iss<19:17> = '000';
iss<16:14> = '111';
iss<13:10> = instr<19:16>; // reg
iss<4:1> = '0000';

if instr<20> == '1' && instr<15:12> == '1111' then // MRC, Rt==15
iss<9:5> = '11111';

elsif instr<20> == '0' && instr<15:12> == '1111' then // MCR, Rt==15
iss<9:5> = bits(5) UNKNOWN;

else
iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;

elsif except.exceptype IN {Exception_CP14RRTTrap, Exception_AdvSIMDFPAccessTrap,
Exception_CP15RRTTrap} then

// Trapped MRRC/MCRR, VMRS/VMSR
iss<19:16> = instr<7:4>; // opc1
if instr<19:16> == '1111' then // Rt2==15

iss<14:10> = bits(5) UNKNOWN;
else

iss<14:10> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>;

if instr<15:12> == '1111' then // Rt==15
iss<9:5> = bits(5) UNKNOWN;

else
iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;

iss<4:1> = instr<3:0>; // CRm
elsif except.exceptype == Exception_CP14DTTrap then

// Trapped LDC/STC
iss<19:12> = instr<7:0>; // imm8
iss<4> = instr<23>; // U
iss<2:1> = instr<24,21>; // P,W
if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC

iss<9:5> = bits(5) UNKNOWN;
iss<3> = '1';

iss<0> = instr<20>; // Direction

except.syndrome<24:20> = ConditionSyndrome();
except.syndrome<19:0> = iss;

Shared Pseudocode Functions Page 1619

return except;

Library pseudocode for aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap

// AArch64.AdvSIMDFPAccessTrap()
// =============================
// Trapped access to Advanced SIMD or FP registers due to CPACR[].

AArch64.AdvSIMDFPAccessTrap(bits(2) target_el)
bits(64) preferred_exception_return = ThisInstrAddr(64);
ExceptionRecord except;
vect_offset = 0x0;

route_to_el2 = (target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1');

if route_to_el2 then
except = ExceptionSyndrome(Exception_Uncategorized);
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

else
except = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
except.syndrome<24:20> = ConditionSyndrome();
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

return;

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps

// AArch64.CheckCP15InstrCoarseTraps()
// ===================================
// Check for coarse-grained AArch32 traps to System registers in the
// coproc=0b1111 encoding space by HSTR_EL2, HCR_EL2, and SCTLR_ELx.

AArch64.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)
trapped_encoding = ((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||

(CRn == 10 && CRm IN {0,1, 4, 8 }) ||
(CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}));

// Check for MRC and MCR disabled by SCTLR_EL1.TIDCP.
if (HaveFeatTIDCP1() && PSTATE.EL == EL0 && !IsInHost() &&

!ELUsingAArch32(EL1) && SCTLR_EL1.TIDCP == '1' && trapped_encoding) then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x3);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x3);

// Check for coarse-grained Hyp traps
if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then

// Check for MRC and MCR disabled by SCTLR_EL2.TIDCP.
if (HaveFeatTIDCP1() && PSTATE.EL == EL0 && IsInHost() &&

SCTLR_EL2.TIDCP == '1' && trapped_encoding) then
AArch64.AArch32SystemAccessTrap(EL2, 0x3);

major = if nreg == 1 then CRn else CRm;
// Check for MCR, MRC, MCRR, and MRRC disabled by HSTR_EL2<CRn/CRm>
// and MRC and MCR disabled by HCR_EL2.TIDCP.
if ((!IsInHost() && !(major IN {4,14}) && HSTR_EL2<major> == '1') ||

(HCR_EL2.TIDCP == '1' && nreg == 1 && trapped_encoding)) then
if (PSTATE.EL == EL0 &&

boolean IMPLEMENTATION_DEFINED "UNDEF unallocated CP15 access at EL0") then
UNDEFINED;

AArch64.AArch32SystemAccessTrap(EL2, 0x3);

Shared Pseudocode Functions Page 1620

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled

// AArch64.CheckFPAdvSIMDEnabled()
// ===============================

AArch64.CheckFPAdvSIMDEnabled()
AArch64.CheckFPEnabled();
// Check for illegal use of Advanced
// SIMD in Streaming SVE Mode
if HaveSME() && PSTATE.SM == '1' && !IsFullA64Enabled() then

SMEAccessTrap(SMEExceptionType_Streaming, PSTATE.EL);

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap

// AArch64.CheckFPAdvSIMDTrap()
// ============================
// Check against CPTR_EL2 and CPTR_EL3.

AArch64.CheckFPAdvSIMDTrap()
if HaveEL(EL3) && CPTR_EL3.TFP == '1' && EL3SDDUndefPriority() then

UNDEFINED;

if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
// Check if access disabled in CPTR_EL2
if HaveVirtHostExt() && HCR_EL2.E2H == '1' then

boolean disabled;
case CPTR_EL2.FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
else

if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

if HaveEL(EL3) then
// Check if access disabled in CPTR_EL3
if CPTR_EL3.TFP == '1' then

if EL3SDDUndef() then
UNDEFINED;

else
AArch64.AdvSIMDFPAccessTrap(EL3);

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckFPEnabled

// AArch64.CheckFPEnabled()
// ========================
// Check against CPACR[]

AArch64.CheckFPEnabled()
if PSTATE.EL IN {EL0, EL1} && !IsInHost() then

// Check if access disabled in CPACR_EL1
boolean disabled;
case CPACR_EL1.FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0;
when '11' disabled = FALSE;

if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

AArch64.CheckFPAdvSIMDTrap(); // Also check against CPTR_EL2 and CPTR_EL3

Shared Pseudocode Functions Page 1621

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckForERetTrap

// AArch64.CheckForERetTrap()
// ==========================
// Check for trap on ERET, ERETAA, ERETAB instruction

AArch64.CheckForERetTrap(boolean eret_with_pac, boolean pac_uses_key_a)

route_to_el2 = FALSE;
// Non-secure EL1 execution of ERET, ERETAA, ERETAB when either HCR_EL2.NV or
// HFGITR_EL2.ERET is set, is trapped to EL2
route_to_el2 = (PSTATE.EL == EL1 && EL2Enabled() &&

((HaveNVExt() && HCR_EL2.NV == '1') ||
(HaveFGTExt() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.ERET == '1')));

if route_to_el2 then
ExceptionRecord except;
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;
except = ExceptionSyndrome(Exception_ERetTrap);
if !eret_with_pac then // ERET

except.syndrome<1> = '0';
except.syndrome<0> = '0'; // RES0

else
except.syndrome<1> = '1';
if pac_uses_key_a then // ERETAA

except.syndrome<0> = '0';
else // ERETAB

except.syndrome<0> = '1';
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap

// AArch64.CheckForSMCUndefOrTrap()
// ================================
// Check for UNDEFINED or trap on SMC instruction

AArch64.CheckForSMCUndefOrTrap(bits(16) imm)
if PSTATE.EL == EL0 then UNDEFINED;
if (!(PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.TSC == '1') &&

HaveEL(EL3) && SCR_EL3.SMD == '1') then
UNDEFINED;

route_to_el2 = FALSE;
if !HaveEL(EL3) then

if PSTATE.EL == EL1 && EL2Enabled() then
if HaveNVExt() && HCR_EL2.NV == '1' && HCR_EL2.TSC == '1' then

route_to_el2 = TRUE;
else

UNDEFINED;
else

UNDEFINED;
else

route_to_el2 = PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.TSC == '1';
if route_to_el2 then

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;
except = ExceptionSyndrome(Exception_MonitorCall);
except.syndrome<15:0> = imm;
except.trappedsyscallinst = TRUE;
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1622

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckForSVCTrap

// AArch64.CheckForSVCTrap()
// =========================
// Check for trap on SVC instruction

AArch64.CheckForSVCTrap(bits(16) immediate)
if HaveFGTExt() then

route_to_el2 = FALSE;
if PSTATE.EL == EL0 then

route_to_el2 = (!UsingAArch32() && !ELUsingAArch32(EL1) &&
EL2Enabled() && HFGITR_EL2.SVC_EL0 == '1' &&
(HCR_EL2.<E2H, TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1')));

elsif PSTATE.EL == EL1 then
route_to_el2 = (EL2Enabled() && HFGITR_EL2.SVC_EL1 == '1' &&

(!HaveEL(EL3) || SCR_EL3.FGTEn == '1'));

if route_to_el2 then
except = ExceptionSyndrome(Exception_SupervisorCall);
except.syndrome<15:0> = immediate;
except.trappedsyscallinst = TRUE;
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckForWFxTrap

// AArch64.CheckForWFxTrap()
// =========================
// Check for trap on WFE or WFI instruction

AArch64.CheckForWFxTrap(bits(2) target_el, WFxType wfxtype)
assert HaveEL(target_el);

boolean is_wfe = wfxtype IN {WFxType_WFE, WFxType_WFET};
boolean trap;
case target_el of

when EL1
trap = (if is_wfe then SCTLR_ELx[].nTWE else SCTLR_ELx[].nTWI) == '0';

when EL2
trap = (if is_wfe then HCR_EL2.TWE else HCR_EL2.TWI) == '1';

when EL3
trap = (if is_wfe then SCR_EL3.TWE else SCR_EL3.TWI) == '1';

if trap then
AArch64.WFxTrap(wfxtype, target_el);

Shared Pseudocode Functions Page 1623

Library pseudocode for aarch64/exceptions/traps/AArch64.CheckIllegalState

// AArch64.CheckIllegalState()
// ===========================
// Check PSTATE.IL bit and generate Illegal Execution state exception if set.

AArch64.CheckIllegalState()
if PSTATE.IL == '1' then

route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_IllegalState);

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/AArch64.MonitorModeTrap

// AArch64.MonitorModeTrap()
// =========================
// Trapped use of Monitor mode features in a Secure EL1 AArch32 mode

AArch64.MonitorModeTrap()
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_Uncategorized);

if IsSecureEL2Enabled() then
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

AArch64.TakeException(EL3, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/AArch64.SystemAccessTrap

// AArch64.SystemAccessTrap()
// ==========================
// Trapped access to AArch64 System register or system instruction.

AArch64.SystemAccessTrap(bits(2) target_el, integer ec)
assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = AArch64.SystemAccessTrapSyndrome(ThisInstr(), ec);
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1624

Library pseudocode for aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome

// AArch64.SystemAccessTrapSyndrome()
// ==================================
// Returns the syndrome information for traps on AArch64 MSR/MRS instructions.

ExceptionRecord AArch64.SystemAccessTrapSyndrome(bits(32) instr_in, integer ec)
ExceptionRecord except;
bits(32) instr = instr_in;
case ec of

when 0x0 // Trapped access due to unknown reason.
except = ExceptionSyndrome(Exception_Uncategorized);

when 0x7 // Trapped access to SVE, Advance SIMD&FP System register.
except = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
except.syndrome<24:20> = ConditionSyndrome();

when 0x14 // Trapped access to 128-bit System register or
// 128-bit System instruction.

except = ExceptionSyndrome(Exception_SystemRegister128Trap);
instr = ThisInstr();
except.syndrome<21:20> = instr<20:19>; // Op0
except.syndrome<19:17> = instr<7:5>; // Op2
except.syndrome<16:14> = instr<18:16>; // Op1
except.syndrome<13:10> = instr<15:12>; // CRn
except.syndrome<9:6> = instr<4:1>; // Rt
except.syndrome<4:1> = instr<11:8>; // CRm
except.syndrome<0> = instr<21>; // Direction

when 0x18 // Trapped access to System register or system instruction.
except = ExceptionSyndrome(Exception_SystemRegisterTrap);
instr = ThisInstr();
except.syndrome<21:20> = instr<20:19>; // Op0
except.syndrome<19:17> = instr<7:5>; // Op2
except.syndrome<16:14> = instr<18:16>; // Op1
except.syndrome<13:10> = instr<15:12>; // CRn
except.syndrome<9:5> = instr<4:0>; // Rt
except.syndrome<4:1> = instr<11:8>; // CRm
except.syndrome<0> = instr<21>; // Direction

when 0x19 // Trapped access to SVE System register
except = ExceptionSyndrome(Exception_SVEAccessTrap);

when 0x1D // Trapped access to SME System register
except = ExceptionSyndrome(Exception_SMEAccessTrap);

otherwise
Unreachable();

return except;

Library pseudocode for aarch64/exceptions/traps/AArch64.Undefined

// AArch64.Undefined()
// ===================

AArch64.Undefined()

route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_Uncategorized);

if UInt(PSTATE.EL) > UInt(EL1) then
AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1625

Library pseudocode for aarch64/exceptions/traps/AArch64.WFxTrap

// AArch64.WFxTrap()
// =================

AArch64.WFxTrap(WFxType wfxtype, bits(2) target_el)
assert UInt(target_el) > UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_WFxTrap);
except.syndrome<24:20> = ConditionSyndrome();

case wfxtype of
when WFxType_WFI

except.syndrome<1:0> = '00';
when WFxType_WFE

except.syndrome<1:0> = '01';
when WFxType_WFIT

except.syndrome<1:0> = '10';
except.syndrome<2> = '1'; // Register field is valid
except.syndrome<9:5> = ThisInstr()<4:0>;

when WFxType_WFET
except.syndrome<1:0> = '11';
except.syndrome<2> = '1'; // Register field is valid
except.syndrome<9:5> = ThisInstr()<4:0>;

if target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

else
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64

// CheckFPAdvSIMDEnabled64()
// =========================
// AArch64 instruction wrapper

CheckFPAdvSIMDEnabled64()
AArch64.CheckFPAdvSIMDEnabled();

Library pseudocode for aarch64/exceptions/traps/CheckFPEnabled64

// CheckFPEnabled64()
// ==================
// AArch64 instruction wrapper

CheckFPEnabled64()
AArch64.CheckFPEnabled();

Shared Pseudocode Functions Page 1626

Library pseudocode for aarch64/exceptions/traps/CheckLDST64BEnabled

// CheckLDST64BEnabled()
// =====================
// Checks for trap on ST64B and LD64B instructions

CheckLDST64BEnabled()
boolean trap = FALSE;
bits(25) iss = ZeroExtend('10', 25); // 0x2
bits(2) target_el;

if PSTATE.EL == EL0 then
if !IsInHost() then

trap = SCTLR_EL1.EnALS == '0';
target_el = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;

else
trap = SCTLR_EL2.EnALS == '0';
target_el = EL2;

else
target_el = EL1;

if (!trap && EL2Enabled() &&
((PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1)) then
trap = !IsHCRXEL2Enabled() || HCRX_EL2.EnALS == '0';
target_el = EL2;

if trap then LDST64BTrap(target_el, iss);

Library pseudocode for aarch64/exceptions/traps/CheckST64BV0Enabled

// CheckST64BV0Enabled()
// =====================
// Checks for trap on ST64BV0 instruction

CheckST64BV0Enabled()
boolean trap = FALSE;
bits(25) iss = ZeroExtend('1', 25); // 0x1
bits(2) target_el;

if (PSTATE.EL != EL3 && HaveEL(EL3) &&
SCR_EL3.EnAS0 == '0' && EL3SDDUndefPriority()) then
UNDEFINED;

if PSTATE.EL == EL0 then
if !IsInHost() then

trap = SCTLR_EL1.EnAS0 == '0';
target_el = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;

else
trap = SCTLR_EL2.EnAS0 == '0';
target_el = EL2;

if (!trap && EL2Enabled() &&
((PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1)) then
trap = !IsHCRXEL2Enabled() || HCRX_EL2.EnAS0 == '0';
target_el = EL2;

if !trap && PSTATE.EL != EL3 then
trap = HaveEL(EL3) && SCR_EL3.EnAS0 == '0';
target_el = EL3;

if trap then
if target_el == EL3 && EL3SDDUndef() then

UNDEFINED;
else

LDST64BTrap(target_el, iss);

Shared Pseudocode Functions Page 1627

Library pseudocode for aarch64/exceptions/traps/CheckST64BVEnabled

// CheckST64BVEnabled()
// ====================
// Checks for trap on ST64BV instruction

CheckST64BVEnabled()
boolean trap = FALSE;
bits(25) iss = Zeros(25);
bits(2) target_el;

if PSTATE.EL == EL0 then
if !IsInHost() then

trap = SCTLR_EL1.EnASR == '0';
target_el = if EL2Enabled() && HCR_EL2.TGE == '1' then EL2 else EL1;

else
trap = SCTLR_EL2.EnASR == '0';
target_el = EL2;

if (!trap && EL2Enabled() &&
((PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1)) then
trap = !IsHCRXEL2Enabled() || HCRX_EL2.EnASR == '0';
target_el = EL2;

if trap then LDST64BTrap(target_el, iss);

Library pseudocode for aarch64/exceptions/traps/LDST64BTrap

// LDST64BTrap()
// =============
// Trapped access to LD64B, ST64B, ST64BV and ST64BV0 instructions

LDST64BTrap(bits(2) target_el, bits(25) iss)
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_LDST64BTrap);
except.syndrome = iss;
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

return;

Shared Pseudocode Functions Page 1628

Library pseudocode for aarch64/exceptions/traps/WFETrapDelay

// WFETrapDelay()
// ==============
// Returns TRUE when delay in trap to WFE is enabled with value to amount of delay,
// FALSE otherwise.

(boolean, integer) WFETrapDelay(bits(2) target_el)
boolean delay_enabled;
integer delay;
case target_el of

when EL1
if !IsInHost() then

delay_enabled = SCTLR_EL1.TWEDEn == '1';
delay = 1 << (UInt(SCTLR_EL1.TWEDEL) + 8);

else
delay_enabled = SCTLR_EL2.TWEDEn == '1';
delay = 1 << (UInt(SCTLR_EL2.TWEDEL) + 8);

when EL2
assert EL2Enabled();
delay_enabled = HCR_EL2.TWEDEn == '1';
delay = 1 << (UInt(HCR_EL2.TWEDEL) + 8);

when EL3
delay_enabled = SCR_EL3.TWEDEn == '1';
delay = 1 << (UInt(SCR_EL3.TWEDEL) + 8);

return (delay_enabled, delay);

Library pseudocode for aarch64/exceptions/traps/WaitForEventUntilDelay

// WaitForEventUntilDelay()
// ========================
// Returns TRUE if WaitForEvent() returns before WFE trap delay expires,
// FALSE otherwise.

boolean WaitForEventUntilDelay(boolean delay_enabled, integer delay);

Shared Pseudocode Functions Page 1629

Library pseudocode for aarch64/functions/aborts/AArch64.FaultSyndrome

Shared Pseudocode Functions Page 1630

// AArch64.FaultSyndrome()
// =======================
// Creates an exception syndrome value and updates the virtual address for Abort and Watchpoint
// exceptions taken to an Exception level using AArch64.

(bits(25), bits(24)) AArch64.FaultSyndrome(Exception exceptype, FaultRecord fault, boolean pavalid,
bits(64) vaddress)

assert fault.statuscode != Fault_None;

bits(25) iss = Zeros(25);
bits(24) iss2 = Zeros(24);

boolean d_side = exceptype IN {Exception_DataAbort, Exception_NV2DataAbort,
Exception_Watchpoint, Exception_NV2Watchpoint};

if HaveRASExt() && fault.statuscode == Fault_SyncExternal then
ErrorState errstate = AArch64.PEErrorState(fault);
iss<12:11> = AArch64.EncodeSyncErrorSyndrome(errstate); // SET

if d_side then
if fault.accessdesc.acctype == AccessType_GCS then

iss2<8> = '1';
if exceptype == Exception_Watchpoint then

iss<23:0> = WatchpointRelatedSyndrome(fault, vaddress);
if HaveFeatLS64() && fault.accessdesc.ls64 then

if (fault.statuscode IN {Fault_AccessFlag, Fault_Translation, Fault_Permission}) then
(iss2, iss<24:14>) = LS64InstructionSyndrome();

elsif (IsSecondStage(fault) && !fault.s2fs1walk &&
(!IsExternalSyncAbort(fault) ||
(!HaveRASExt() && fault.accessdesc.acctype == AccessType_TTW &&
boolean IMPLEMENTATION_DEFINED "ISV on second stage translation table walk"))) then

iss<24:14> = LSInstructionSyndrome();

if HaveNV2Ext() && fault.accessdesc.acctype == AccessType_NV2 then
iss<13> = '1'; // Fault is generated by use of VNCR_EL2

if HaveFeatLS64() && fault.statuscode IN {Fault_AccessFlag, Fault_Translation,
Fault_Permission} then

iss<12:11> = GetLoadStoreType();

if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then
iss<8> = '1';

if fault.accessdesc.acctype IN {AccessType_DC, AccessType_IC, AccessType_AT} then
iss<6> = '1';

elsif fault.statuscode IN {Fault_HWUpdateAccessFlag, Fault_Exclusive} then
iss<6> = bit UNKNOWN;

elsif fault.accessdesc.atomicop && IsExternalAbort(fault) then
iss<6> = bit UNKNOWN;

else
iss<6> = if fault.write then '1' else '0';

if fault.statuscode == Fault_Permission then
iss2<5> = if fault.dirtybit then '1' else '0';
iss2<6> = if fault.overlay then '1' else '0';
if iss<24> == '0' then

iss<21> = if fault.toplevel then '1' else '0';
iss2<7> = if fault.assuredonly then '1' else '0';
iss2<9> = if fault.tagaccess then '1' else '0';
iss2<10> = if fault.s1tagnotdata then '1' else '0';

else
if (fault.accessdesc.acctype == AccessType_IFETCH &&

fault.statuscode == Fault_Permission) then
iss2<5> = if fault.dirtybit then '1' else '0';
iss<21> = if fault.toplevel then '1' else '0';
iss2<7> = if fault.assuredonly then '1' else '0';
iss2<6> = if fault.overlay then '1' else '0';

if IsExternalAbort(fault) then iss<9> = fault.extflag;
iss<7> = if fault.s2fs1walk then '1' else '0';
iss<5:0> = EncodeLDFSC(fault.statuscode, fault.level);

Shared Pseudocode Functions Page 1631

return (iss, iss2);

Library pseudocode for aarch64/functions/aborts/EncodeGPCSC

// EncodeGPCSC()
// =============
// Function that gives the GPCSC code for types of GPT Fault

bits(6) EncodeGPCSC(GPCFRecord gpcf)
assert gpcf.level IN {0,1};

case gpcf.gpf of
when GPCF_AddressSize return '00000':gpcf.level<0>;
when GPCF_Walk return '00010':gpcf.level<0>;
when GPCF_Fail return '00110':gpcf.level<0>;
when GPCF_EABT return '01010':gpcf.level<0>;

Library pseudocode for aarch64/functions/aborts/LS64InstructionSyndrome

// LS64InstructionSyndrome()
// =========================
// Returns the syndrome information and LST for a Data Abort by a
// ST64B, ST64BV, ST64BV0, or LD64B instruction. The syndrome information
// includes the ISS2, extended syndrome field.

(bits(24), bits(11)) LS64InstructionSyndrome();

Library pseudocode for aarch64/functions/aborts/WatchpointFARNotPrecise

// WatchpointFARNotPrecise()
// =========================
// Returns TRUE If the lowest watchpointed address that is higher than or equal to the address
// recorded in EDWAR might not have been accessed by the instruction, other than the CONSTRAINED
// UNPREDICTABLE condition of watchpoint matching a range of addresses with lowest address 16 bytes
// rounded down and upper address rounded up to nearest 16 byte multiple,
// FALSE otherwise.

boolean WatchpointFARNotPrecise(FaultRecord fault);

Shared Pseudocode Functions Page 1632

Library pseudocode for aarch64/functions/at/AArch64.AT

Shared Pseudocode Functions Page 1633

// AArch64.AT()
// ============
// Perform address translation as per AT instructions.

AArch64.AT(bits(64) address, TranslationStage stage_in, bits(2) el_in, ATAccess ataccess)
TranslationStage stage = stage_in;
bits(2) el = el_in;
bits(2) effective_nse_ns = EffectiveSCR_EL3_NSE() : EffectiveSCR_EL3_NS();
if HaveRME() && PSTATE.EL == EL3 && effective_nse_ns == '10' && el != EL3 then

UNDEFINED;
// For stage 1 translation, when HCR_EL2.{E2H, TGE} is {1,1} and requested EL is EL1,
// the EL2&0 translation regime is used.
if EL2Enabled() && HCR_EL2.<E2H, TGE> == '11' && el == EL1 && stage == TranslationStage_1 then

el = EL2;
if HaveEL(EL3) && stage == TranslationStage_12 && !EL2Enabled() then

stage = TranslationStage_1;

SecurityState ss = SecurityStateAtEL(el);

accdesc = CreateAccDescAT(ss, el, ataccess);
aligned = TRUE;

FaultRecord fault = NoFault(accdesc);
Regime regime;
if stage == TranslationStage_12 then

regime = Regime_EL10;
else

regime = TranslationRegime(el);

AddressDescriptor addrdesc;
if (el == EL0 && ELUsingAArch32(EL1)) || (el != EL0 && ELUsingAArch32(el)) then

if regime == Regime_EL2 || TTBCR.EAE == '1' then
(fault, addrdesc) = AArch32.S1TranslateLD(fault, regime, address<31:0>, aligned,

accdesc);
else

(fault, addrdesc, -) = AArch32.S1TranslateSD(fault, regime, address<31:0>, aligned,
accdesc);

else
(fault, addrdesc) = AArch64.S1Translate(fault, regime, address, aligned, accdesc);

if stage == TranslationStage_12 && fault.statuscode == Fault_None then
boolean s1aarch64;
if ELUsingAArch32(EL1) && regime == Regime_EL10 && EL2Enabled() then

addrdesc.vaddress = ZeroExtend(address, 64);
(fault, addrdesc) = AArch32.S2Translate(fault, addrdesc, aligned, accdesc);

elsif regime == Regime_EL10 && EL2Enabled() then
s1aarch64 = TRUE;
(fault, addrdesc) = AArch64.S2Translate(fault, addrdesc, s1aarch64, aligned, accdesc);

is_ATS1Ex = stage != TranslationStage_12;
if fault.statuscode != Fault_None then

addrdesc = CreateFaultyAddressDescriptor(address, fault);
// Take an exception on:
// * A Synchronous External abort occurs on translation table walk
// * A stage 2 fault occurs on a stage 1 walk
// * A GPC Exception (FEAT_RME)
// * A GPF from ATS1E{1,0}* when executed from EL1 and HCR_EL2.GPF == '1' (FEAT_RME)
if (IsExternalAbort(fault) ||

(PSTATE.EL == EL1 && fault.s2fs1walk) ||
(HaveRME() && fault.gpcf.gpf != GPCF_None && (

ReportAsGPCException(fault) ||
(EL2Enabled() && HCR_EL2.GPF == '1' && PSTATE.EL == EL1 && el IN {EL1, EL0} &&
is_ATS1Ex)

))) then
PAR_EL1 = bits(128) UNKNOWN;
AArch64.Abort(address, addrdesc.fault);

AArch64.EncodePAR(regime, is_ATS1Ex, addrdesc);
return;

Shared Pseudocode Functions Page 1634

Library pseudocode for aarch64/functions/at/AArch64.EncodePAR

// AArch64.EncodePAR()
// ===================
// Encode PAR register with result of translation.

AArch64.EncodePAR(Regime regime, boolean is_ATS1Ex, AddressDescriptor addrdesc)
PAR_EL1 = Zeros(128);
paspace = addrdesc.paddress.paspace;

if AArch64.isPARFormatD128(regime, is_ATS1Ex) then
PAR_EL1.D128 = '1';

else
PAR_EL1.D128 = '0';

if !IsFault(addrdesc) then
PAR_EL1.F = '0';
if HaveRME() then

if regime == Regime_EL3 then
case paspace of

when PAS_Secure PAR_EL1.<NSE,NS> = '00';
when PAS_NonSecure PAR_EL1.<NSE,NS> = '01';
when PAS_Root PAR_EL1.<NSE,NS> = '10';
when PAS_Realm PAR_EL1.<NSE,NS> = '11';

elsif SecurityStateForRegime(regime) == SS_Secure then
PAR_EL1.NSE = bit UNKNOWN;
PAR_EL1.NS = if paspace == PAS_Secure then '0' else '1';

elsif SecurityStateForRegime(regime) == SS_Realm then
if regime == Regime_EL10 && is_ATS1Ex then

PAR_EL1.NSE = bit UNKNOWN;
PAR_EL1.NS = bit UNKNOWN;

else
PAR_EL1.NSE = bit UNKNOWN;
PAR_EL1.NS = if paspace == PAS_Realm then '0' else '1';

else
PAR_EL1.NSE = bit UNKNOWN;
PAR_EL1.NS = bit UNKNOWN;

else
PAR_EL1<11> = '1'; // RES1
if SecurityStateForRegime(regime) == SS_Secure then

PAR_EL1.NS = if paspace == PAS_Secure then '0' else '1';
else

PAR_EL1.NS = bit UNKNOWN;
PAR_EL1.SH = ReportedPARShareability(PAREncodeShareability(addrdesc.memattrs));
if PAR_EL1.D128 == '1' then

PAR_EL1<119:76> = addrdesc.paddress.address<55:12>;
else

PAR_EL1<55:12> = addrdesc.paddress.address<55:12>;
PAR_EL1.ATTR = ReportedPARAttrs(EncodePARAttrs(addrdesc.memattrs));
PAR_EL1<10> = bit IMPLEMENTATION_DEFINED "Non-Faulting PAR";

else
PAR_EL1.F = '1';
PAR_EL1.DirtyBit = if addrdesc.fault.dirtybit then '1' else '0';
PAR_EL1.Overlay = if addrdesc.fault.overlay then '1' else '0';
PAR_EL1.TopLevel = if addrdesc.fault.toplevel then '1' else '0';
PAR_EL1.AssuredOnly = if addrdesc.fault.assuredonly then '1' else '0';
PAR_EL1.FST = AArch64.PARFaultStatus(addrdesc.fault);
PAR_EL1.PTW = if addrdesc.fault.s2fs1walk then '1' else '0';
PAR_EL1.S = if addrdesc.fault.secondstage then '1' else '0';
PAR_EL1<11> = '1'; // RES1
PAR_EL1<63:48> = bits(16) IMPLEMENTATION_DEFINED "Faulting PAR";

return;

Shared Pseudocode Functions Page 1635

Library pseudocode for aarch64/functions/at/AArch64.PARFaultStatus

// AArch64.PARFaultStatus()
// ========================
// Fault status field decoding of 64-bit PAR.

bits(6) AArch64.PARFaultStatus(FaultRecord fault)
bits(6) fst;

if fault.statuscode == Fault_Domain then
// Report Domain fault
assert fault.level IN {1,2};
fst<1:0> = if fault.level == 1 then '01' else '10';
fst<5:2> = '1111';

else
fst = EncodeLDFSC(fault.statuscode, fault.level);

return fst;

Library pseudocode for aarch64/functions/at/AArch64.isPARFormatD128

// AArch64.isPARFormatD128()
// =========================
// Check if last stage of translation uses VMSAv9-128.
// Last stage of translation is stage 2 if enabled, else it is stage 1.

boolean AArch64.isPARFormatD128(Regime regime, boolean is_ATS1Ex)
boolean isPARFormatD128;
// Regime_EL2 does not support VMSAv9-128
if regime == Regime_EL2 || !Have128BitDescriptorExt() then

isPARFormatD128 = FALSE;
else

isPARFormatD128 = FALSE;
case regime of

when Regime_EL3
isPARFormatD128 = TCR_EL3.D128 == '1';

when Regime_EL20
isPARFormatD128 = TCR2_EL2.D128 == '1';

when Regime_EL10
if is_ATS1Ex || !EL2Enabled() || HCR_EL2.<VM,DC> == '00' then

isPARFormatD128 = TCR2_EL1.D128 == '1';
else

isPARFormatD128 = VTCR_EL2.D128 == '1';

return isPARFormatD128;

Library pseudocode for aarch64/functions/at/GetPAR_EL1_D128

// GetPAR_EL1_D128()
// =================
// Query the PAR_EL1.D128 field

bit GetPAR_EL1_D128()
bit D128;

D128 = PAR_EL1.D128;
return D128;

Library pseudocode for aarch64/functions/at/GetPAR_EL1_F

// GetPAR_EL1_F()
// ==============
// Query the PAR_EL1.F field.

bit GetPAR_EL1_F()
bit F;

F = PAR_EL1.F;
return F;

Shared Pseudocode Functions Page 1636

Library pseudocode for aarch64/functions/barrierop/MemBarrierOp

// MemBarrierOp
// ============
// Memory barrier instruction types.

enumeration MemBarrierOp { MemBarrierOp_DSB // Data Synchronization Barrier
, MemBarrierOp_DMB // Data Memory Barrier
, MemBarrierOp_ISB // Instruction Synchronization Barrier
, MemBarrierOp_SSBB // Speculative Synchronization Barrier to VA
, MemBarrierOp_PSSBB // Speculative Synchronization Barrier to PA
, MemBarrierOp_SB // Speculation Barrier

};

Library pseudocode for aarch64/functions/bfxpreferred/BFXPreferred

// BFXPreferred()
// ==============
//
// Return TRUE if UBFX or SBFX is the preferred disassembly of a
// UBFM or SBFM bitfield instruction. Must exclude more specific
// aliases UBFIZ, SBFIZ, UXT[BH], SXT[BHW], LSL, LSR and ASR.

boolean BFXPreferred(bit sf, bit uns, bits(6) imms, bits(6) immr)

// must not match UBFIZ/SBFIX alias
if UInt(imms) < UInt(immr) then

return FALSE;

// must not match LSR/ASR/LSL alias (imms == 31 or 63)
if imms == sf:'11111' then

return FALSE;

// must not match UXTx/SXTx alias
if immr == '000000' then

// must not match 32-bit UXT[BH] or SXT[BH]
if sf == '0' && imms IN {'000111', '001111'} then

return FALSE;
// must not match 64-bit SXT[BHW]
if sf:uns == '10' && imms IN {'000111', '001111', '011111'} then

return FALSE;

// must be UBFX/SBFX alias
return TRUE;

Shared Pseudocode Functions Page 1637

Library pseudocode for aarch64/functions/bitmasks/AltDecodeBitMasks

Shared Pseudocode Functions Page 1638

// AltDecodeBitMasks()
// ===================
// Alternative but logically equivalent implementation of DecodeBitMasks() that
// uses simpler primitives to compute tmask and wmask.

(bits(M), bits(M)) AltDecodeBitMasks(bit immN, bits(6) imms, bits(6) immr,
boolean immediate, integer M)

bits(64) tmask, wmask;
bits(6) tmask_and, wmask_and;
bits(6) tmask_or, wmask_or;
bits(6) levels;

// Compute log2 of element size
// 2^len must be in range [2, M]
len = HighestSetBit(immN:NOT(imms));
if len < 1 then UNDEFINED;
assert M >= (1 << len);

// Determine s, r and s - r parameters
levels = ZeroExtend(Ones(len), 6);

// For logical immediates an all-ones value of s is reserved
// since it would generate a useless all-ones result (many times)
if immediate && (imms AND levels) == levels then

UNDEFINED;

s = UInt(imms AND levels);
r = UInt(immr AND levels);
diff = s - r; // 6-bit subtract with borrow

// Compute "top mask"
tmask_and = diff<5:0> OR NOT(levels);
tmask_or = diff<5:0> AND levels;

tmask = Ones(64);
tmask = ((tmask

AND Replicate(Replicate(tmask_and<0>, 1) : Ones(1), 32))
OR Replicate(Zeros(1) : Replicate(tmask_or<0>, 1), 32));

// optimization of first step:
// tmask = Replicate(tmask_and<0> : '1', 32);
tmask = ((tmask

AND Replicate(Replicate(tmask_and<1>, 2) : Ones(2), 16))
OR Replicate(Zeros(2) : Replicate(tmask_or<1>, 2), 16));

tmask = ((tmask
AND Replicate(Replicate(tmask_and<2>, 4) : Ones(4), 8))
OR Replicate(Zeros(4) : Replicate(tmask_or<2>, 4), 8));

tmask = ((tmask
AND Replicate(Replicate(tmask_and<3>, 8) : Ones(8), 4))
OR Replicate(Zeros(8) : Replicate(tmask_or<3>, 8), 4));

tmask = ((tmask
AND Replicate(Replicate(tmask_and<4>, 16) : Ones(16), 2))
OR Replicate(Zeros(16) : Replicate(tmask_or<4>, 16), 2));

tmask = ((tmask
AND Replicate(Replicate(tmask_and<5>, 32) : Ones(32), 1))
OR Replicate(Zeros(32) : Replicate(tmask_or<5>, 32), 1));

// Compute "wraparound mask"
wmask_and = immr OR NOT(levels);
wmask_or = immr AND levels;

wmask = Zeros(64);
wmask = ((wmask

AND Replicate(Ones(1) : Replicate(wmask_and<0>, 1), 32))
OR Replicate(Replicate(wmask_or<0>, 1) : Zeros(1), 32));

// optimization of first step:
// wmask = Replicate(wmask_or<0> : '0', 32);
wmask = ((wmask

AND Replicate(Ones(2) : Replicate(wmask_and<1>, 2), 16))
OR Replicate(Replicate(wmask_or<1>, 2) : Zeros(2), 16));

wmask = ((wmask

Shared Pseudocode Functions Page 1639

AND Replicate(Ones(4) : Replicate(wmask_and<2>, 4), 8))
OR Replicate(Replicate(wmask_or<2>, 4) : Zeros(4), 8));

wmask = ((wmask
AND Replicate(Ones(8) : Replicate(wmask_and<3>, 8), 4))
OR Replicate(Replicate(wmask_or<3>, 8) : Zeros(8), 4));

wmask = ((wmask
AND Replicate(Ones(16) : Replicate(wmask_and<4>, 16), 2))
OR Replicate(Replicate(wmask_or<4>, 16) : Zeros(16), 2));

wmask = ((wmask
AND Replicate(Ones(32) : Replicate(wmask_and<5>, 32), 1))
OR Replicate(Replicate(wmask_or<5>, 32) : Zeros(32), 1));

if diff<6> != '0' then // borrow from s - r
wmask = wmask AND tmask;

else
wmask = wmask OR tmask;

return (wmask<M-1:0>, tmask<M-1:0>);

Library pseudocode for aarch64/functions/bitmasks/DecodeBitMasks

// DecodeBitMasks()
// ================
// Decode AArch64 bitfield and logical immediate masks which use a similar encoding structure

(bits(M), bits(M)) DecodeBitMasks(bit immN, bits(6) imms, bits(6) immr,
boolean immediate, integer M)

bits(M) tmask, wmask;
bits(6) levels;

// Compute log2 of element size
// 2^len must be in range [2, M]
len = HighestSetBit(immN:NOT(imms));
if len < 1 then UNDEFINED;
assert M >= (1 << len);

// Determine s, r and s - r parameters
levels = ZeroExtend(Ones(len), 6);

// For logical immediates an all-ones value of s is reserved
// since it would generate a useless all-ones result (many times)
if immediate && (imms AND levels) == levels then

UNDEFINED;

s = UInt(imms AND levels);
r = UInt(immr AND levels);
diff = s - r; // 6-bit subtract with borrow

esize = 1 << len;
d = UInt(diff<len-1:0>);
welem = ZeroExtend(Ones(s + 1), esize);
telem = ZeroExtend(Ones(d + 1), esize);
wmask = Replicate(ROR(welem, r), M DIV esize);
tmask = Replicate(telem, M DIV esize);
return (wmask, tmask);

Shared Pseudocode Functions Page 1640

Library pseudocode for aarch64/functions/cache/AArch64.DataMemZero

// AArch64.DataMemZero()
// =====================
// Write Zero to data memory.

AArch64.DataMemZero(bits(64) regval, bits(64) vaddress, AccessDescriptor accdesc_in, integer size)
AccessDescriptor accdesc = accdesc_in;

// If the instruction targets tags as a payload, confer with system register configuration
// which may override this.
if HaveMTE2Ext() && accdesc.tagaccess then

accdesc.tagaccess = AArch64.AllocationTagAccessIsEnabled(accdesc.el);

// If the instruction encoding permits tag checking, confer with system register configuration
// which may override this.
if HaveMTE2Ext() && accdesc.tagchecked then

accdesc.tagchecked = AArch64.AccessIsTagChecked(vaddress, accdesc);

boolean aligned = TRUE;
AddressDescriptor memaddrdesc = AArch64.TranslateAddress(vaddress, accdesc, aligned, size);

if IsFault(memaddrdesc) then
if IsDebugException(memaddrdesc.fault) then

AArch64.Abort(vaddress, memaddrdesc.fault);
else

AArch64.Abort(regval, memaddrdesc.fault);

if HaveTME() then
if accdesc.transactional && !MemHasTransactionalAccess(memaddrdesc.memattrs) then

FailTransaction(TMFailure_IMP, FALSE);

for i = 0 to size-1
if HaveMTE2Ext() && accdesc.tagchecked then

bits(4) ptag = AArch64.PhysicalTag(vaddress);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then

if (boolean IMPLEMENTATION_DEFINED
"DC_ZVA tag fault reported with lowest faulting address") then

AArch64.TagCheckFault(vaddress, accdesc);
else

AArch64.TagCheckFault(regval, accdesc);
memstatus = PhysMemWrite(memaddrdesc, 1, accdesc, Zeros(8));
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);

memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;
return;

Shared Pseudocode Functions Page 1641

Library pseudocode for aarch64/functions/cache/AArch64.TagMemZero

// AArch64.TagMemZero()
// ====================
// Write Zero to tag memory.

AArch64.TagMemZero(bits(64) regval, bits(64) vaddress, AccessDescriptor accdesc_in, integer size)
assert accdesc_in.tagaccess && !accdesc_in.tagchecked;

AccessDescriptor accdesc = accdesc_in;

integer count = size >> LOG2_TAG_GRANULE;
bits(4) tag = AArch64.AllocationTagFromAddress(vaddress);
boolean aligned = IsAligned(vaddress, TAG_GRANULE);

// Stores of allocation tags must be aligned
if !aligned then

AArch64.Abort(vaddress, AlignmentFault(accdesc));

if HaveMTE2Ext() then
accdesc.tagaccess = AArch64.AllocationTagAccessIsEnabled(accdesc.el);

memaddrdesc = AArch64.TranslateAddress(vaddress, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

if IsDebugException(memaddrdesc.fault) then
AArch64.Abort(vaddress, memaddrdesc.fault);

else
AArch64.Abort(regval, memaddrdesc.fault);

if !accdesc.tagaccess || memaddrdesc.memattrs.tags != MemTag_AllocationTagged then
return;

for i = 0 to count-1
memstatus = PhysMemTagWrite(memaddrdesc, accdesc, tag);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);

memaddrdesc.paddress.address = memaddrdesc.paddress.address + TAG_GRANULE;

return;

Library pseudocode for aarch64/functions/compareop/CompareOp

// CompareOp
// =========
// Vector compare instruction types.

enumeration CompareOp {CompareOp_GT, CompareOp_GE, CompareOp_EQ,
CompareOp_LE, CompareOp_LT};

Library pseudocode for aarch64/functions/countop/CountOp

// CountOp
// =======
// Bit counting instruction types.

enumeration CountOp {CountOp_CLZ, CountOp_CLS, CountOp_CNT};

Shared Pseudocode Functions Page 1642

Library pseudocode for aarch64/functions/d128/IsD128Enabled

// IsD128Enabled()
// ===============
// Returns true if 128-bit page descriptor is enabled

boolean IsD128Enabled(bits(2) el)
boolean d128enabled;
if Have128BitDescriptorExt() then

case el of
when EL0

if !ELIsInHost(EL0) then
d128enabled = IsTCR2EL1Enabled() && TCR2_EL1.D128 == '1';

else
d128enabled = IsTCR2EL2Enabled() && TCR2_EL2.D128 == '1';

when EL1
d128enabled = IsTCR2EL1Enabled() && TCR2_EL1.D128 == '1';

when EL2
d128enabled = IsTCR2EL2Enabled() && HCR_EL2.E2H == '1' && TCR2_EL2.D128 == '1';

when EL3
d128enabled = TCR_EL3.D128 == '1';

else
d128enabled = FALSE;

return d128enabled;

Shared Pseudocode Functions Page 1643

Library pseudocode for aarch64/functions/dc/AArch64.DC

Shared Pseudocode Functions Page 1644

// AArch64.DC()
// ============
// Perform Data Cache Operation.

AArch64.DC(bits(64) regval, CacheType cachetype, CacheOp cacheop, CacheOpScope opscope_in)
CacheOpScope opscope = opscope_in;
CacheRecord cache;

cache.acctype = AccessType_DC;
cache.cachetype = cachetype;
cache.cacheop = cacheop;
cache.opscope = opscope;

if opscope == CacheOpScope_SetWay then
ss = SecurityStateAtEL(PSTATE.EL);
cache.cpas = CPASAtSecurityState(ss);
cache.shareability = Shareability_NSH;
(cache.setnum, cache.waynum, cache.level) = DecodeSW(regval, cachetype);
if (cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled() &&

(HCR_EL2.SWIO == '1' || HCR_EL2.<DC,VM> != '00')) then
cache.cacheop = CacheOp_CleanInvalidate;

CACHE_OP(cache);
return;

if EL2Enabled() && !IsInHost() then
if PSTATE.EL IN {EL0, EL1} then

cache.is_vmid_valid = TRUE;
cache.vmid = VMID[];

else
cache.is_vmid_valid = FALSE;

else
cache.is_vmid_valid = FALSE;

if PSTATE.EL == EL0 then
cache.is_asid_valid = TRUE;
cache.asid = ASID[];

else
cache.is_asid_valid = FALSE;

if (opscope == CacheOpScope_PoDP &&
boolean IMPLEMENTATION_DEFINED "Memory system does not supports PoDP") then

opscope = CacheOpScope_PoP;
if (opscope == CacheOpScope_PoP &&

boolean IMPLEMENTATION_DEFINED "Memory system does not supports PoP") then
opscope = CacheOpScope_PoC;

vaddress = regval;

size = 0; // by default no watchpoint address
if cacheop == CacheOp_Invalidate then

size = integer IMPLEMENTATION_DEFINED "Data Cache Invalidate Watchpoint Size";
assert size >= 4*(2^(UInt(CTR_EL0.DminLine))) && size <= 2048;
assert UInt(size<32:0> AND (size-1)<32:0>) == 0; // size is power of 2
vaddress = Align(regval, size);

if DCInstNeedsTranslation(opscope) then
cache.vaddress = vaddress;
boolean aligned = TRUE;
AccessDescriptor accdesc = CreateAccDescDC(cache);
AddressDescriptor memaddrdesc = AArch64.TranslateAddress(vaddress, accdesc, aligned, size);
if IsFault(memaddrdesc) then

AArch64.Abort(regval, memaddrdesc.fault);

cache.translated = TRUE;
cache.paddress = memaddrdesc.paddress;
cache.cpas = CPASAtPAS(memaddrdesc.paddress.paspace);
if opscope IN {CacheOpScope_PoC, CacheOpScope_PoP, CacheOpScope_PoDP} then

cache.shareability = memaddrdesc.memattrs.shareability;
else

cache.shareability = Shareability_NSH;

Shared Pseudocode Functions Page 1645

elsif opscope == CacheOpScope_PoE then
cache.translated = TRUE;
cache.shareability = Shareability_OSH;
cache.paddress.address = regval<55:0>;
cache.paddress.paspace = DecodePASpace(regval<62>, regval<63>);
cache.cpas = CPASAtPAS(cache.paddress.paspace);

// If a Reserved encoding is selected, the instruction is permitted to be treated as a NOP.
if cache.paddress.paspace != PAS_Realm then

EndOfInstruction();

if boolean IMPLEMENTATION_DEFINED "Apply granule protection check on DC to PoE" then
AddressDescriptor memaddrdesc;
AccessDescriptor accdesc = CreateAccDescDC(cache);
memaddrdesc.paddress = cache.paddress;
memaddrdesc.fault.gpcf = GranuleProtectionCheck(memaddrdesc, accdesc);

if memaddrdesc.fault.gpcf.gpf != GPCF_None then
memaddrdesc.fault.statuscode = Fault_GPCFOnOutput;
memaddrdesc.fault.paddress = memaddrdesc.paddress;
AArch64.Abort(bits(64) UNKNOWN, memaddrdesc.fault);

elsif opscope == CacheOpScope_PoPA then
cache.translated = TRUE;
cache.shareability = Shareability_OSH;
cache.paddress.address = regval<55:0>;
cache.paddress.paspace = DecodePASpace(regval<62>, regval<63>);
cache.cpas = CPASAtPAS(cache.paddress.paspace);

else
cache.vaddress = vaddress;
cache.translated = FALSE;
cache.shareability = Shareability UNKNOWN;
cache.paddress = FullAddress UNKNOWN;

if (cacheop == CacheOp_Invalidate && PSTATE.EL == EL1 && EL2Enabled() &&
HCR_EL2.<DC,VM> != '00') then

cache.cacheop = CacheOp_CleanInvalidate;

// If Secure state is not implemented, but RME is, the instruction acts as a NOP
if cache.translated && cache.cpas == CPAS_Secure && !HaveSecureState() then

return;

CACHE_OP(cache);
return;

Library pseudocode for aarch64/functions/dc/AArch64.MemZero

// AArch64.MemZero()
// =================

AArch64.MemZero(bits(64) regval, CacheType cachetype)
integer size = 4*(2^(UInt(DCZID_EL0.BS)));
assert size <= MAX_ZERO_BLOCK_SIZE;
if HaveMTE2Ext() then

assert size >= TAG_GRANULE;

bits(64) vaddress = Align(regval, size);

boolean tagaccess = cachetype IN {CacheType_Tag, CacheType_Data_Tag};
boolean tagchecked = cachetype == CacheType_Data;
AccessDescriptor accdesc = CreateAccDescDCZero(tagaccess, tagchecked);

if cachetype IN {CacheType_Tag, CacheType_Data_Tag} then
AArch64.TagMemZero(regval, vaddress, accdesc, size);

if cachetype IN {CacheType_Data, CacheType_Data_Tag} then
AArch64.DataMemZero(regval, vaddress, accdesc, size);

return;

Shared Pseudocode Functions Page 1646

Library pseudocode for aarch64/functions/dc/MemZero

constant integer MAX_ZERO_BLOCK_SIZE = 2048;

Library pseudocode for aarch64/functions/eret/AArch64.ExceptionReturn

// AArch64.ExceptionReturn()
// =========================

AArch64.ExceptionReturn(bits(64) new_pc_in, bits(64) spsr)
bits(64) new_pc = new_pc_in;
if HaveTME() && TSTATE.depth > 0 then

FailTransaction(TMFailure_ERR, FALSE);

if HaveIESB() then
sync_errors = SCTLR_ELx[].IESB == '1';
if HaveDoubleFaultExt() then

sync_errors = sync_errors || (SCR_EL3.<EA,NMEA> == '11' && PSTATE.EL == EL3);
if sync_errors then

SynchronizeErrors();
iesb_req = TRUE;
TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);

boolean brbe_source_allowed = FALSE;
bits(64) brbe_source_address = Zeros(64);
if HaveBRBExt() then

brbe_source_allowed = BranchRecordAllowed(PSTATE.EL);
brbe_source_address = PC[];

if !IsFeatureImplemented(FEAT_ExS) || SCTLR_ELx[].EOS == '1' then
SynchronizeContext();

// Attempts to change to an illegal state will invoke the Illegal Execution state mechanism
bits(2) source_el = PSTATE.EL;
boolean illegal_psr_state = IllegalExceptionReturn(spsr);
SetPSTATEFromPSR(spsr, illegal_psr_state);
ClearExclusiveLocal(ProcessorID());
SendEventLocal();

if illegal_psr_state && spsr<4> == '1' then
// If the exception return is illegal, PC[63:32,1:0] are UNKNOWN
new_pc<63:32> = bits(32) UNKNOWN;
new_pc<1:0> = bits(2) UNKNOWN;

elsif UsingAArch32() then // Return to AArch32
// ELR_ELx[1:0] or ELR_ELx[0] are treated as being 0, depending on the
// target instruction set state
if PSTATE.T == '1' then

new_pc<0> = '0'; // T32
else

new_pc<1:0> = '00'; // A32
else // Return to AArch64

// ELR_ELx[63:56] might include a tag
new_pc = AArch64.BranchAddr(new_pc, PSTATE.EL);

if HaveBRBExt() then
BRBEExceptionReturn(new_pc, source_el,

brbe_source_allowed, brbe_source_address);

if UsingAArch32() then
if HaveSME() && PSTATE.SM == '1' then ResetSVEState();

// 32 most significant bits are ignored.
boolean branch_conditional = FALSE;
BranchTo(new_pc<31:0>, BranchType_ERET, branch_conditional);

else
BranchToAddr(new_pc, BranchType_ERET);

CheckExceptionCatch(FALSE); // Check for debug event on exception return

Shared Pseudocode Functions Page 1647

Library pseudocode for aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass

// AArch64.ExclusiveMonitorsPass()
// ===============================
// Return TRUE if the Exclusives monitors for the current PE include all of the addresses
// associated with the virtual address region of size bytes starting at address.
// The immediately following memory write must be to the same addresses.

// It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
// before or after the check on the local Exclusives monitor. As a result a failure
// of the local monitor can occur on some implementations even if the memory
// access would give an memory abort.

boolean AArch64.ExclusiveMonitorsPass(bits(64) address, integer size, AccessDescriptor accdesc)
boolean aligned = IsAligned(address, size);

if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
AArch64.Abort(address, AlignmentFault(accdesc));

if !AArch64.IsExclusiveVA(address, ProcessorID(), size) then
return FALSE;

memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
ClearExclusiveLocal(ProcessorID());

if passed && memaddrdesc.memattrs.shareability != Shareability_NSH then
passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

return passed;

Library pseudocode for aarch64/functions/exclusive/AArch64.IsExclusiveVA

// AArch64.IsExclusiveVA()
// =======================
// An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
// address region of size bytes starting at address.
//
// It is permitted (but not required) for this function to return FALSE and
// cause a store exclusive to fail if the virtual address region is not
// totally included within the region recorded by MarkExclusiveVA().
//
// It is always safe to return TRUE which will check the physical address only.

boolean AArch64.IsExclusiveVA(bits(64) address, integer processorid, integer size);

Library pseudocode for aarch64/functions/exclusive/AArch64.MarkExclusiveVA

// AArch64.MarkExclusiveVA()
// =========================
// Optionally record an exclusive access to the virtual address region of size bytes
// starting at address for processorid.

AArch64.MarkExclusiveVA(bits(64) address, integer processorid, integer size);

Shared Pseudocode Functions Page 1648

Library pseudocode for aarch64/functions/exclusive/AArch64.SetExclusiveMonitors

// AArch64.SetExclusiveMonitors()
// ==============================
// Sets the Exclusives monitors for the current PE to record the addresses associated
// with the virtual address region of size bytes starting at address.

AArch64.SetExclusiveMonitors(bits(64) address, integer size)
boolean acqrel = FALSE;
boolean tagchecked = FALSE;
AccessDescriptor accdesc = CreateAccDescExLDST(MemOp_LOAD, acqrel, tagchecked);
boolean aligned = IsAligned(address, size);

if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
AArch64.Abort(address, AlignmentFault(accdesc));

memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

return;

if memaddrdesc.memattrs.shareability != Shareability_NSH then
MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);

MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);

AArch64.MarkExclusiveVA(address, ProcessorID(), size);

Library pseudocode for aarch64/functions/extendreg/DecodeRegExtend

// DecodeRegExtend()
// =================
// Decode a register extension option

ExtendType DecodeRegExtend(bits(3) op)
case op of

when '000' return ExtendType_UXTB;
when '001' return ExtendType_UXTH;
when '010' return ExtendType_UXTW;
when '011' return ExtendType_UXTX;
when '100' return ExtendType_SXTB;
when '101' return ExtendType_SXTH;
when '110' return ExtendType_SXTW;
when '111' return ExtendType_SXTX;

Shared Pseudocode Functions Page 1649

Library pseudocode for aarch64/functions/extendreg/ExtendReg

// ExtendReg()
// ===========
// Perform a register extension and shift

bits(N) ExtendReg(integer reg, ExtendType exttype, integer shift, integer N)
assert shift >= 0 && shift <= 4;
bits(N) val = X[reg, N];
boolean unsigned;
integer len;

case exttype of
when ExtendType_SXTB unsigned = FALSE; len = 8;
when ExtendType_SXTH unsigned = FALSE; len = 16;
when ExtendType_SXTW unsigned = FALSE; len = 32;
when ExtendType_SXTX unsigned = FALSE; len = 64;
when ExtendType_UXTB unsigned = TRUE; len = 8;
when ExtendType_UXTH unsigned = TRUE; len = 16;
when ExtendType_UXTW unsigned = TRUE; len = 32;
when ExtendType_UXTX unsigned = TRUE; len = 64;

// Note the extended width of the intermediate value and
// that sign extension occurs from bit <len+shift-1>, not
// from bit <len-1>. This is equivalent to the instruction
// [SU]BFIZ Rtmp, Rreg, #shift, #len
// It may also be seen as a sign/zero extend followed by a shift:
// LSL(Extend(val<len-1:0>, N, unsigned), shift);

len = Min(len, N - shift);
return Extend(val<len-1:0> : Zeros(shift), N, unsigned);

Library pseudocode for aarch64/functions/extendreg/ExtendType

// ExtendType
// ==========
// AArch64 register extend and shift.

enumeration ExtendType {ExtendType_SXTB, ExtendType_SXTH, ExtendType_SXTW, ExtendType_SXTX,
ExtendType_UXTB, ExtendType_UXTH, ExtendType_UXTW, ExtendType_UXTX};

Library pseudocode for aarch64/functions/fpconvop/FPConvOp

// FPConvOp
// ========
// Floating-point convert/move instruction types.

enumeration FPConvOp {FPConvOp_CVT_FtoI, FPConvOp_CVT_ItoF,
FPConvOp_MOV_FtoI, FPConvOp_MOV_ItoF
, FPConvOp_CVT_FtoI_JS

};

Library pseudocode for aarch64/functions/fpmaxminop/FPMaxMinOp

// FPMaxMinOp
// ==========
// Floating-point min/max instruction types.

enumeration FPMaxMinOp {FPMaxMinOp_MAX, FPMaxMinOp_MIN,
FPMaxMinOp_MAXNUM, FPMaxMinOp_MINNUM};

Shared Pseudocode Functions Page 1650

Library pseudocode for aarch64/functions/fpunaryop/FPUnaryOp

// FPUnaryOp
// =========
// Floating-point unary instruction types.

enumeration FPUnaryOp {FPUnaryOp_ABS, FPUnaryOp_MOV,
FPUnaryOp_NEG, FPUnaryOp_SQRT};

Library pseudocode for aarch64/functions/fusedrstep/FPRSqrtStepFused

// FPRSqrtStepFused()
// ==================

bits(N) FPRSqrtStepFused(bits(N) op1_in, bits(N) op2)
assert N IN {16, 32, 64};
bits(N) result;
bits(N) op1 = op1_in;
boolean done;
FPCRType fpcr = FPCR[];
op1 = FPNeg(op1);
boolean altfp = HaveAltFP() && fpcr.AH == '1';
boolean fpexc = !altfp; // Generate no floating-point exceptions
if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
if altfp then fpcr.RMode = '00'; // Use RNE rounding mode

(type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, fpexc);
FPRounding rounding = FPRoundingMode(fpcr);

if !done then
inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if (inf1 && zero2) || (zero1 && inf2) then
result = FPOnePointFive('0', N);

elsif inf1 || inf2 then
result = FPInfinity(sign1 EOR sign2, N);

else
// Fully fused multiply-add and halve
result_value = (3.0 + (value1 * value2)) / 2.0;
if result_value == 0.0 then

// Sign of exact zero result depends on rounding mode
sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(sign, N);

else
result = FPRound(result_value, fpcr, rounding, fpexc, N);

return result;

Shared Pseudocode Functions Page 1651

Library pseudocode for aarch64/functions/fusedrstep/FPRecipStepFused

// FPRecipStepFused()
// ==================

bits(N) FPRecipStepFused(bits(N) op1_in, bits(N) op2)
assert N IN {16, 32, 64};
bits(N) op1 = op1_in;
bits(N) result;
boolean done;
FPCRType fpcr = FPCR[];
op1 = FPNeg(op1);

boolean altfp = HaveAltFP() && fpcr.AH == '1';
boolean fpexc = !altfp; // Generate no floating-point exceptions
if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
if altfp then fpcr.RMode = '00'; // Use RNE rounding mode

(type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, fpexc);
FPRounding rounding = FPRoundingMode(fpcr);

if !done then
inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if (inf1 && zero2) || (zero1 && inf2) then
result = FPTwo('0', N);

elsif inf1 || inf2 then
result = FPInfinity(sign1 EOR sign2, N);

else
// Fully fused multiply-add
result_value = 2.0 + (value1 * value2);
if result_value == 0.0 then

// Sign of exact zero result depends on rounding mode
sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(sign, N);

else
result = FPRound(result_value, fpcr, rounding, fpexc, N);

return result;

Library pseudocode for aarch64/functions/gcs/AddGCSExRecord

// AddGCSExRecord()
// ================
// Generates and then writes an exception record to the
// current Guarded control stack.

AddGCSExRecord(bits(64) elr, bits(64) spsr, bits(64) lr)
bits(64) ptr;
AccessDescriptor accdesc = CreateAccDescGCS(PSTATE.EL, MemOp_STORE);

ptr = GetCurrentGCSPointer();

// Store the record
Mem[ptr-8, 8, accdesc] = lr;
Mem[ptr-16, 8, accdesc] = spsr;
Mem[ptr-24, 8, accdesc] = elr;
Mem[ptr-32, 8, accdesc] = Zeros(60):'1001';

// Decrement the pointer value
ptr = ptr - 32;

SetCurrentGCSPointer(ptr);
return;

Shared Pseudocode Functions Page 1652

Library pseudocode for aarch64/functions/gcs/AddGCSRecord

// AddGCSRecord()
// ==============
// Generates and then writes a record to the current Guarded
// control stack.

AddGCSRecord(bits(64) vaddress)
bits(64) ptr;
AccessDescriptor accdesc = CreateAccDescGCS(PSTATE.EL, MemOp_STORE);

ptr = GetCurrentGCSPointer();

// Store the record
Mem[ptr-8, 8, accdesc] = vaddress;

// Decrement the pointer value
ptr = ptr - 8;

SetCurrentGCSPointer(ptr);
return;

Library pseudocode for aarch64/functions/gcs/CheckGCSExRecord

// CheckGCSExRecord()
// ==================
// Validates the provided values against the top entry of the
// current Guarded control stack.

CheckGCSExRecord(bits(64) elr, bits(64) spsr, bits(64) lr, GCSInstruction gcsinst_type)
bits(64) ptr;
AccessDescriptor accdesc = CreateAccDescGCS(PSTATE.EL, MemOp_LOAD);
ptr = GetCurrentGCSPointer();

// Check the lowest doubleword is correctly formatted
bits(64) recorded_first_dword = Mem[ptr, 8, accdesc];
if recorded_first_dword != Zeros(60):'1001' then

GCSDataCheckException(gcsinst_type);

// Check the ELR matches the recorded value
bits(64) recorded_elr = Mem[ptr+8, 8, accdesc];
if recorded_elr != elr then

GCSDataCheckException(gcsinst_type);

// Check the SPSR matches the recorded value
bits(64) recorded_spsr = Mem[ptr+16, 8, accdesc];
if recorded_spsr != spsr then

GCSDataCheckException(gcsinst_type);

// Check the LR matches the recorded value
bits(64) recorded_lr = Mem[ptr+24, 8, accdesc];
if recorded_lr != lr then

GCSDataCheckException(gcsinst_type);

// Increment the pointer value
ptr = ptr + 32;

SetCurrentGCSPointer(ptr);
return;

Shared Pseudocode Functions Page 1653

Library pseudocode for aarch64/functions/gcs/CheckGCSSTREnabled

// CheckGCSSTREnabled()
// ====================
// Trap GCSSTR or GCSSTTR instruction if trapping is enabled.

CheckGCSSTREnabled()
case PSTATE.EL of

when EL0
if GCSCRE0_EL1.STREn == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
GCSSTRTrapException(EL2);

else
GCSSTRTrapException(EL1);

when EL1
if GCSCR_EL1.STREn == '0' then

GCSSTRTrapException(EL1);
elsif (EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGITR_EL2.nGCSSTR_EL1 == '0') then
GCSSTRTrapException(EL2);

when EL2
if GCSCR_EL2.STREn == '0' then

GCSSTRTrapException(EL2);
when EL3

if GCSCR_EL3.STREn == '0' then
GCSSTRTrapException(EL3);

return;

Library pseudocode for aarch64/functions/gcs/EXLOCKException

// EXLOCKException()
// =================
// Handle an EXLOCK exception condition.

EXLOCKException()
bits(64) preferred_exception_return = ThisInstrAddr(64);
integer vect_offset = 0x0;

except = ExceptionSyndrome(Exception_GCSFail);
except.syndrome<24> = Zeros();
except.syndrome<23:20> = '0001';
except.syndrome<19:0> = Zeros();
AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1654

Library pseudocode for aarch64/functions/gcs/GCSDataCheckException

// GCSDataCheckException()
// =======================
// Handle a Guarded Control Stack data check fault condition.

GCSDataCheckException(GCSInstruction gcsinst_type)
bits(2) target_el;
bits(64) preferred_exception_return = ThisInstrAddr(64);
integer vect_offset = 0x0;
boolean rn_unknown = FALSE;
boolean is_ret = FALSE;

if PSTATE.EL == EL0 then
target_el = if (EL2Enabled() && HCR_EL2.TGE == '1') then EL2 else EL1;

else
target_el = PSTATE.EL;

except = ExceptionSyndrome(Exception_GCSFail);
case gcsinst_type of

when GCSInstType_PRET
except.syndrome<4:0> = '00000';
is_ret = TRUE;

when GCSInstType_POPM
except.syndrome<4:0> = '00001';

when GCSInstType_PRETAA
except.syndrome<4:0> = '00010';
is_ret = TRUE;

when GCSInstType_PRETAB
except.syndrome<4:0> = '00011';
is_ret = TRUE;

when GCSInstType_SS1
except.syndrome<4:0> = '00100';

when GCSInstType_SS2
except.syndrome<4:0> = '00101';
rn_unknown = TRUE;

when GCSInstType_POPCX
rn_unknown = TRUE;
except.syndrome<4:0> = '01000';

when GCSInstType_POPX
except.syndrome<4:0> = '01001';

if rn_unknown == TRUE then
except.syndrome<9:5> = bits(5) UNKNOWN;

elsif is_ret == TRUE then
except.syndrome<9:5> = ThisInstr()<9:5>;

else
except.syndrome<9:5> = ThisInstr()<4:0>;

except.syndrome<24:10> = Zeros();
except.vaddress = bits(64) UNKNOWN;
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1655

Library pseudocode for aarch64/functions/gcs/GCSEnabled

// GCSEnabled()
// ============
// Returns TRUE if the Guarded control stack is enabled at
// the provided Exception level.

boolean GCSEnabled(bits(2) el)
if UsingAArch32() then

return FALSE;

if HaveEL(EL3) && el != EL3 && SCR_EL3.GCSEn == '0' then
return FALSE;

if (el IN {EL0, EL1} && EL2Enabled() &&
(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0') &&
(!IsHCRXEL2Enabled() || HCRX_EL2.GCSEn == '0')) then
return FALSE;

return GCSPCRSelected(el);

Library pseudocode for aarch64/functions/gcs/GCSInstruction

// GCSInstruction
// ==============

enumeration GCSInstruction {
GCSInstType_PRET, // Procedure return without Pointer authentication
GCSInstType_POPM, // GCSPOPM instruction
GCSInstType_PRETAA, // Procedure return with Pointer authentication that used key A
GCSInstType_PRETAB, // Procedure return with Pointer authentication that used key B
GCSInstType_SS1, // GCSSS1 instruction
GCSInstType_SS2, // GCSSS2 instruction
GCSInstType_POPCX, // GCSPOPCX instruction
GCSInstType_POPX // GCSPOPX instruction

};

Library pseudocode for aarch64/functions/gcs/GCSPCREnabled

// GCSPCREnabled()
// ===============
// Returns TRUE if the Guarded control stack is PCR enabled
// at the provided Exception level.

boolean GCSPCREnabled(bits(2) el)
return GCSPCRSelected(el) && GCSEnabled(el);

Library pseudocode for aarch64/functions/gcs/GCSPCRSelected

// GCSPCRSelected()
// ================
// Returns TRUE if the Guarded control stack is PCR selected
// at the provided Exception level.

boolean GCSPCRSelected(bits(2) el)
case el of

when EL0 return GCSCRE0_EL1.PCRSEL == '1';
when EL1 return GCSCR_EL1.PCRSEL == '1';
when EL2 return GCSCR_EL2.PCRSEL == '1';
when EL3 return GCSCR_EL3.PCRSEL == '1';

Unreachable();
return TRUE;

Shared Pseudocode Functions Page 1656

Library pseudocode for aarch64/functions/gcs/GCSPOPCX

// GCSPOPCX()
// ==========
// Called to pop and compare a Guarded control stack exception return record.

GCSPOPCX()
bits(64) spsr = SPSR_ELx[];
if !GCSEnabled(PSTATE.EL) then

EndOfInstruction();
CheckGCSExRecord(ELR_ELx[], spsr, X[30,64], GCSInstType_POPCX);
PSTATE.EXLOCK = if GetCurrentEXLOCKEN() then '1' else '0';
return;

Library pseudocode for aarch64/functions/gcs/GCSPOPM

// GCSPOPM()
// =========
// Called to pop a Guarded control stack procedure return record.

bits(64) GCSPOPM()
bits(64) ptr;
AccessDescriptor accdesc = CreateAccDescGCS(PSTATE.EL, MemOp_LOAD);

if !GCSEnabled(PSTATE.EL) then EndOfInstruction();
ptr = GetCurrentGCSPointer();
bits(64) gcs_entry = Mem[ptr, 8, accdesc];

if gcs_entry<1:0> != '00' then
GCSDataCheckException(GCSInstType_POPM);

ptr = ptr + 8;
SetCurrentGCSPointer(ptr);
return gcs_entry;

Library pseudocode for aarch64/functions/gcs/GCSPOPX

// GCSPOPX()
// =========
// Called to pop a Guarded control stack exception return record.

GCSPOPX()
if !GCSEnabled(PSTATE.EL) then EndOfInstruction();

bits(64) ptr;
AccessDescriptor accdesc = CreateAccDescGCS(PSTATE.EL, MemOp_LOAD);
ptr = GetCurrentGCSPointer();

// Check the lowest doubleword is correctly formatted
bits(64) recorded_first_dword = Mem[ptr, 8, accdesc];
if recorded_first_dword != Zeros(60):'1001' then

GCSDataCheckException(GCSInstType_POPX);

// Ignore these loaded values, however they might have
// faulted which is why we load them anyway
bits(64) recorded_elr = Mem[ptr+8, 8, accdesc];
bits(64) recorded_spsr = Mem[ptr+16, 8, accdesc];
bits(64) recorded_lr = Mem[ptr+24, 8, accdesc];

// Increment the pointer value
ptr = ptr + 32;

SetCurrentGCSPointer(ptr);
return;

Shared Pseudocode Functions Page 1657

Library pseudocode for aarch64/functions/gcs/GCSPUSHM

// GCSPUSHM()
// ==========
// Called to push a Guarded control stack procedure return record.

GCSPUSHM(bits(64) value)
if !GCSEnabled(PSTATE.EL) then EndOfInstruction();
AddGCSRecord(value);
return;

Library pseudocode for aarch64/functions/gcs/GCSPUSHX

// GCSPUSHX()
// ==========
// Called to push a Guarded control stack exception return record.

GCSPUSHX()
bits(64) spsr = SPSR_ELx[];
if !GCSEnabled(PSTATE.EL) then

EndOfInstruction();
AddGCSExRecord(ELR_ELx[], spsr, X[30,64]);
PSTATE.EXLOCK = '0';
return;

Library pseudocode for aarch64/functions/gcs/GCSReturnValueCheckEnabled

// GCSReturnValueCheckEnabled()
// ============================
// Returns TRUE if the Guarded control stack has return value
// checking enabled at the current Exception level.

boolean GCSReturnValueCheckEnabled(bits(2) el)
if UsingAArch32() then

return FALSE;
case el of

when EL0 return GCSCRE0_EL1.RVCHKEN == '1';
when EL1 return GCSCR_EL1.RVCHKEN == '1';
when EL2 return GCSCR_EL2.RVCHKEN == '1';
when EL3 return GCSCR_EL3.RVCHKEN == '1';

Library pseudocode for aarch64/functions/gcs/GCSSS1

// GCSSS1()
// ========
// Operational pseudocode for GCSSS1 instruction.

GCSSS1(bits(64) incoming_pointer)
bits(64) outgoing_pointer, cmpoperand, operand, data;
if !GCSEnabled(PSTATE.EL) then EndOfInstruction();
AccessDescriptor accdesc = CreateAccDescGCSSS1(PSTATE.EL);
outgoing_pointer = GetCurrentGCSPointer();
// Valid cap entry is expected
cmpoperand = incoming_pointer[63:12]:'000000000001';
// In-progress cap entry should be stored if the comparison is successful
operand = outgoing_pointer[63:3]:'101';

data = MemAtomic(incoming_pointer, cmpoperand, operand, accdesc);
if data == cmpoperand then

SetCurrentGCSPointer(incoming_pointer[63:3]:'000');
else

GCSDataCheckException(GCSInstType_SS1);
return;

Shared Pseudocode Functions Page 1658

Library pseudocode for aarch64/functions/gcs/GCSSS2

// GCSSS2()
// ========
// Operational pseudocode for GCSSS2 instruction.

bits(64) GCSSS2()
bits(64) outgoing_pointer, incoming_pointer, outgoing_value;
AccessDescriptor accdesc_ld = CreateAccDescGCS(PSTATE.EL, MemOp_LOAD);
AccessDescriptor accdesc_st = CreateAccDescGCS(PSTATE.EL, MemOp_STORE);
if !GCSEnabled(PSTATE.EL) then EndOfInstruction();
incoming_pointer = GetCurrentGCSPointer();
outgoing_value = Mem[incoming_pointer, 8, accdesc_ld];

if outgoing_value[2:0] == '101' then //in_progress token
outgoing_pointer[63:3] = outgoing_value[63:3] - 1;
outgoing_pointer[2:0] = '000';
outgoing_value = outgoing_pointer[63:12]: '000000000001';
Mem[outgoing_pointer, 8, accdesc_st] = outgoing_value;
SetCurrentGCSPointer(incoming_pointer + 8);
GCSSynchronizationBarrier();

else
GCSDataCheckException(GCSInstType_SS2);

return outgoing_pointer;

Library pseudocode for aarch64/functions/gcs/GCSSTRTrapException

// GCSSTRTrapException()
// =====================
// Handle a trap on GCSSTR instruction condition.

GCSSTRTrapException(bits(2) target_el)
bits(64) preferred_exception_return = ThisInstrAddr(64);
integer vect_offset = 0x0;

except = ExceptionSyndrome(Exception_GCSFail);
except.syndrome<24> = Zeros();
except.syndrome<23:20> = '0010';
except.syndrome<19:15> = Zeros();
except.syndrome<14:10> = ThisInstr()<9:5>;
except.syndrome<9:5> = ThisInstr()<4:0>;
except.syndrome<4:0> = Zeros();
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/functions/gcs/GCSSynchronizationBarrier

// GCSSynchronizationBarrier()
// ===========================
// Barrier instruction that synchronizes Guarded Control Stack
// accesses in relation to other load and store accesses

GCSSynchronizationBarrier();

Shared Pseudocode Functions Page 1659

Library pseudocode for aarch64/functions/gcs/GetCurrentEXLOCKEN

// GetCurrentEXLOCKEN()
// ====================

boolean GetCurrentEXLOCKEN()
if Halted() || Restarting() then

return FALSE;

case PSTATE.EL of
when EL0

Unreachable();
when EL1

return GCSCR_EL1.EXLOCKEN == '1';
when EL2

return GCSCR_EL2.EXLOCKEN == '1';
when EL3

return GCSCR_EL3.EXLOCKEN == '1';

Library pseudocode for aarch64/functions/gcs/GetCurrentGCSPointer

// GetCurrentGCSPointer()
// ======================
// Returns the value of the current Guarded control stack
// pointer register.

bits(64) GetCurrentGCSPointer()
bits(64) ptr;

case PSTATE.EL of
when EL0

ptr = GCSPR_EL0.PTR:'000';
when EL1

ptr = GCSPR_EL1.PTR:'000';
when EL2

ptr = GCSPR_EL2.PTR:'000';
when EL3

ptr = GCSPR_EL3.PTR:'000';
return ptr;

Library pseudocode for aarch64/functions/gcs/LoadCheckGCSRecord

// LoadCheckGCSRecord()
// ====================
// Validates the provided address against the top entry of the
// current Guarded control stack.

bits(64) LoadCheckGCSRecord(bits(64) vaddress, GCSInstruction gcsinst_type)
bits(64) ptr;
bits(64) recorded_va;
AccessDescriptor accdesc = CreateAccDescGCS(PSTATE.EL, MemOp_LOAD);

ptr = GetCurrentGCSPointer();
recorded_va = Mem[ptr, 8, accdesc];
if GCSReturnValueCheckEnabled(PSTATE.EL) && (recorded_va != vaddress) then

GCSDataCheckException(gcsinst_type);

return recorded_va;

Shared Pseudocode Functions Page 1660

Library pseudocode for aarch64/functions/gcs/SetCurrentGCSPointer

// SetCurrentGCSPointer()
// ======================
// Writes a value to the current Guarded control stack pointer register.

SetCurrentGCSPointer(bits(64) ptr)
case PSTATE.EL of

when EL0
GCSPR_EL0.PTR = ptr<63:3>;

when EL1
GCSPR_EL1.PTR = ptr<63:3>;

when EL2
GCSPR_EL2.PTR = ptr<63:3>;

when EL3
GCSPR_EL3.PTR = ptr<63:3>;

return;

Shared Pseudocode Functions Page 1661

Library pseudocode for aarch64/functions/ic/AArch64.IC

Shared Pseudocode Functions Page 1662

// AArch64.IC()
// ============
// Perform Instruction Cache Operation.

AArch64.IC(CacheOpScope opscope)
regval = bits(64) UNKNOWN;
AArch64.IC(regval, opscope);

// AArch64.IC()
// ============
// Perform Instruction Cache Operation.

AArch64.IC(bits(64) regval, CacheOpScope opscope)
CacheRecord cache;

cache.acctype = AccessType_IC;
cache.cachetype = CacheType_Instruction;
cache.cacheop = CacheOp_Invalidate;
cache.opscope = opscope;

if opscope IN {CacheOpScope_ALLU, CacheOpScope_ALLUIS} then
ss = SecurityStateAtEL(PSTATE.EL);
cache.cpas = CPASAtSecurityState(ss);
if (opscope == CacheOpScope_ALLUIS || (opscope == CacheOpScope_ALLU && PSTATE.EL == EL1

&& EL2Enabled() && HCR_EL2.FB == '1')) then
cache.shareability = Shareability_ISH;

else
cache.shareability = Shareability_NSH;

cache.regval = regval;
CACHE_OP(cache);

else
assert opscope == CacheOpScope_PoU;

if EL2Enabled() && !IsInHost() then
if PSTATE.EL IN {EL0, EL1} then

cache.is_vmid_valid = TRUE;
cache.vmid = VMID[];

else
cache.is_vmid_valid = FALSE;

else
cache.is_vmid_valid = FALSE;

if PSTATE.EL == EL0 then
cache.is_asid_valid = TRUE;
cache.asid = ASID[];

else
cache.is_asid_valid = FALSE;

bits(64) vaddress = regval;
boolean need_translate = ICInstNeedsTranslation(opscope);

cache.vaddress = regval;
cache.shareability = Shareability_NSH;
cache.translated = need_translate;

if !need_translate then
cache.paddress = FullAddress UNKNOWN;
CACHE_OP(cache);
return;

AccessDescriptor accdesc = CreateAccDescIC(cache);
boolean aligned = TRUE;
integer size = 0;
AddressDescriptor memaddrdesc = AArch64.TranslateAddress(vaddress, accdesc, aligned, size);

if IsFault(memaddrdesc) then
AArch64.Abort(regval, memaddrdesc.fault);

cache.cpas = CPASAtPAS(memaddrdesc.paddress.paspace);
cache.paddress = memaddrdesc.paddress;

Shared Pseudocode Functions Page 1663

CACHE_OP(cache);
return;

Library pseudocode for aarch64/functions/immediateop/ImmediateOp

// ImmediateOp
// ===========
// Vector logical immediate instruction types.

enumeration ImmediateOp {ImmediateOp_MOVI, ImmediateOp_MVNI,
ImmediateOp_ORR, ImmediateOp_BIC};

Library pseudocode for aarch64/functions/logicalop/LogicalOp

// LogicalOp
// =========
// Logical instruction types.

enumeration LogicalOp {LogicalOp_AND, LogicalOp_EOR, LogicalOp_ORR};

Library pseudocode for aarch64/functions/mec/AArch64.S1AMECFault

// AArch64.S1AMECFault()
// =====================
// Returns TRUE if a Translation fault should occur for Realm EL2 and Realm EL2&0
// stage 1 translated addresses to Realm PA space.

boolean AArch64.S1AMECFault(S1TTWParams walkparams, PASpace paspace, Regime regime,
bits(N) descriptor)

assert N IN {64,128};
bit descriptor_amec = if walkparams.d128 == '1' then descriptor<103> else descriptor<63>;

return (walkparams.<emec,amec> == '10' &&
regime IN {Regime_EL2, Regime_EL20} &&
paspace == PAS_Realm &&
descriptor_amec == '1');

Library pseudocode for aarch64/functions/mec/AArch64.S1DisabledOutputMECID

// AArch64.S1DisabledOutputMECID()
// ===============================
// Returns the output MECID when stage 1 address translation is disabled.

bits(16) AArch64.S1DisabledOutputMECID(S1TTWParams walkparams, Regime regime, PASpace paspace)
if walkparams.emec == '0' then

return DEFAULT_MECID;

if !(regime IN {Regime_EL2, Regime_EL20, Regime_EL10}) then
return DEFAULT_MECID;

if paspace != PAS_Realm then
return DEFAULT_MECID;

if regime == Regime_EL10 then
return VMECID_P_EL2.MECID;

else
return MECID_P0_EL2.MECID;

Shared Pseudocode Functions Page 1664

Library pseudocode for aarch64/functions/mec/AArch64.S1OutputMECID

// AArch64.S1OutputMECID()
// =======================
// Returns the output MECID when stage 1 address translation is enabled.

bits(16) AArch64.S1OutputMECID(S1TTWParams walkparams, Regime regime, VARange varange,
PASpace paspace, bits(N) descriptor)

assert N IN {64,128};

if walkparams.emec == '0' then
return DEFAULT_MECID;

if paspace != PAS_Realm then
return DEFAULT_MECID;

bit descriptor_amec = if walkparams.d128 == '1' then descriptor<103> else descriptor<63>;
case regime of

when Regime_EL3
return MECID_RL_A_EL3.MECID;

when Regime_EL2
if descriptor_amec == '0' then

return MECID_P0_EL2.MECID;
else

return MECID_A0_EL2.MECID;
when Regime_EL20

if varange == VARange_LOWER then
if descriptor_amec == '0' then

return MECID_P0_EL2.MECID;
else

return MECID_A0_EL2.MECID;
else

if descriptor_amec == '0' then
return MECID_P1_EL2.MECID;

else
return MECID_A1_EL2.MECID;

when Regime_EL10
return VMECID_P_EL2.MECID;

Library pseudocode for aarch64/functions/mec/AArch64.S2OutputMECID

// AArch64.S2OutputMECID()
// =======================
// Returns the output MECID for stage 2 address translation.

bits(16) AArch64.S2OutputMECID(S2TTWParams walkparams, PASpace paspace, bits(N) descriptor)
assert N IN {64,128};

if walkparams.emec == '0' then
return DEFAULT_MECID;

if paspace != PAS_Realm then
return DEFAULT_MECID;

bit descriptor_amec = if walkparams.d128 == '1' then descriptor<103> else descriptor<63>;
if descriptor_amec == '0' then

return VMECID_P_EL2.MECID;
else

return VMECID_A_EL2.MECID;

Shared Pseudocode Functions Page 1665

Library pseudocode for aarch64/functions/mec/AArch64.TTWalkMECID

// AArch64.TTWalkMECID()
// =====================
// Returns the associated MECID for the translation table walk of the given
// translation regime and Security state.

bits(16) AArch64.TTWalkMECID(bit emec, Regime regime, SecurityState ss)
if emec == '0' then

return DEFAULT_MECID;

if ss != SS_Realm then
return DEFAULT_MECID;

case regime of
when Regime_EL2

return MECID_P0_EL2.MECID;
when Regime_EL20

if TCR_EL2.A1 == '0' then
return MECID_P1_EL2.MECID;

else
return MECID_P0_EL2.MECID;

// This applies to stage 1 and stage 2 translation table walks for
// Realm EL1&0, but the stage 2 translation for a stage 1 walk
// might later override the MECID according to AMEC configuration.
when Regime_EL10

return VMECID_P_EL2.MECID;
otherwise

Unreachable();

Library pseudocode for aarch64/functions/mec/DEFAULT_MECID

constant bits(16) DEFAULT_MECID = Zeros(16);

Library pseudocode for aarch64/functions/memory/AArch64.AccessIsTagChecked

// AArch64.AccessIsTagChecked()
// ============================
// TRUE if a given access is tag-checked, FALSE otherwise.

boolean AArch64.AccessIsTagChecked(bits(64) vaddr, AccessDescriptor accdesc)
assert accdesc.tagchecked;

if UsingAArch32() then
return FALSE;

boolean is_instr = FALSE;
if (EffectiveMTX(vaddr, is_instr, PSTATE.EL) == '0' &&

EffectiveTBI(vaddr, is_instr, PSTATE.EL) == '0') then
return FALSE;

if (EffectiveTCMA(vaddr, PSTATE.EL) == '1' &&
(vaddr<59:55> == '00000' || vaddr<59:55> == '11111')) then

return FALSE;

if !AArch64.AllocationTagAccessIsEnabled(accdesc.el) then
return FALSE;

if PSTATE.TCO=='1' then
return FALSE;

if HaveMTEStoreOnlyExt() && !accdesc.write && StoreOnlyTagCheckingEnabled(accdesc.el) then
return FALSE;

return TRUE;

Shared Pseudocode Functions Page 1666

Library pseudocode for aarch64/functions/memory/AArch64.AddressWithAllocationTag

// AArch64.AddressWithAllocationTag()
// ==================================
// Generate a 64-bit value containing a Logical Address Tag from a 64-bit
// virtual address and an Allocation Tag.
// If the extension is disabled, treats the Allocation Tag as '0000'.

bits(64) AArch64.AddressWithAllocationTag(bits(64) address, bits(4) allocation_tag)
bits(64) result = address;
bits(4) tag;
if AArch64.AllocationTagAccessIsEnabled(PSTATE.EL) then

tag = allocation_tag;
else

tag = '0000';
result<59:56> = tag;
return result;

Library pseudocode for aarch64/functions/memory/AArch64.AllocationTagCheck

// AArch64.AllocationTagCheck()
// ============================
// Performs an Allocation Tag Check operation for a memory access and
// returns whether the check passed.

boolean AArch64.AllocationTagCheck(AddressDescriptor memaddrdesc, AccessDescriptor accdesc,
bits(4) ptag)

if memaddrdesc.memattrs.tags == MemTag_AllocationTagged then
(memstatus, readtag) = PhysMemTagRead(memaddrdesc, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);

return ptag == readtag;
else

return TRUE;

Library pseudocode for aarch64/functions/memory/AArch64.AllocationTagFromAddress

// AArch64.AllocationTagFromAddress()
// ==================================
// Generate an Allocation Tag from a 64-bit value containing a Logical Address Tag.

bits(4) AArch64.AllocationTagFromAddress(bits(64) tagged_address)
return tagged_address<59:56>;

Library pseudocode for aarch64/functions/memory/AArch64.CanonicalTagCheck

// AArch64.CanonicalTagCheck()
// ===========================
// Performs a Canonical Tag Check operation for a memory access and
// returns whether the check passed.

boolean AArch64.CanonicalTagCheck(AddressDescriptor memaddrdesc, bits(4) ptag)
expected_tag = if memaddrdesc.vaddress<55> == '0' then '0000' else '1111';
return ptag == expected_tag;

Shared Pseudocode Functions Page 1667

Library pseudocode for aarch64/functions/memory/AArch64.CheckTag

// AArch64.CheckTag()
// ==================
// Performs a Tag Check operation for a memory access and returns
// whether the check passed

boolean AArch64.CheckTag(AddressDescriptor memaddrdesc, AccessDescriptor accdesc, bits(4) ptag)
if memaddrdesc.memattrs.tags == MemTag_AllocationTagged then

return AArch64.AllocationTagCheck(memaddrdesc, accdesc, ptag);
elsif memaddrdesc.memattrs.tags == MemTag_CanonicallyTagged then

return AArch64.CanonicalTagCheck(memaddrdesc, ptag);
else

return TRUE;

Library pseudocode for aarch64/functions/memory/AArch64.IsUnprivAccessPriv

// AArch64.IsUnprivAccessPriv()
// ============================
// Returns TRUE if an unprivileged access is privileged, and FALSE otherwise.

boolean AArch64.IsUnprivAccessPriv()
boolean privileged;

case PSTATE.EL of
when EL0 privileged = FALSE;
when EL1 privileged = EL2Enabled() && HaveNVExt() && HCR_EL2.<NV,NV1> == '11';
when EL2 privileged = !(HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11');
when EL3 privileged = TRUE;

if HaveUAOExt() && PSTATE.UAO == '1' then
privileged = PSTATE.EL != EL0;

return privileged;

Shared Pseudocode Functions Page 1668

Library pseudocode for aarch64/functions/memory/AArch64.MemSingle

Shared Pseudocode Functions Page 1669

// AArch64.MemSingle[] - non-assignment (read) form
// ==
// Perform an atomic, little-endian read of 'size' bytes.

bits(size*8) AArch64.MemSingle[bits(64) address, integer size, AccessDescriptor accdesc_in,
boolean aligned]

assert size IN {1, 2, 4, 8, 16};
bits(size*8) value;
AccessDescriptor accdesc = accdesc_in;
if HaveLSE2Ext() then

assert AllInAlignedQuantity(address, size, 16);
else

assert IsAligned(address, size);

// If the instruction encoding permits tag checking, confer with system register configuration
// which may override this.
if HaveMTE2Ext() && accdesc.tagchecked then

accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

AddressDescriptor memaddrdesc;
memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Memory array access
if HaveTME() then

if accdesc.transactional && !MemHasTransactionalAccess(memaddrdesc.memattrs) then
FailTransaction(TMFailure_IMP, FALSE);

if HaveMTE2Ext() && accdesc.tagchecked then
bits(4) ptag = AArch64.PhysicalTag(address);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then

AArch64.TagCheckFault(address, accdesc);

if SPESampleInFlight then
boolean is_load = TRUE;
SPESampleLoadStore(is_load, accdesc, memaddrdesc);

boolean atomic;
if (memaddrdesc.memattrs.memtype == MemType_Normal &&

memaddrdesc.memattrs.inner.attrs == MemAttr_WB &&
memaddrdesc.memattrs.outer.attrs == MemAttr_WB) then

atomic = TRUE;
elsif (accdesc.exclusive || accdesc.atomicop ||

accdesc.acqsc || accdesc.acqpc || accdesc.relsc) then
if !aligned && !ConstrainUnpredictableBool(Unpredictable_MISALIGNEDATOMIC) then

AArch64.Abort(address, AlignmentFault(accdesc));
else

atomic = TRUE;
elsif aligned then

atomic = !accdesc.ispair;
else

// Misaligned accesses within 16 byte aligned memory but
// not Normal Cacheable Writeback are Atomic
atomic = boolean IMPLEMENTATION_DEFINED "FEAT_LSE2: access is atomic";

PhysMemRetStatus memstatus;
if atomic then

(memstatus, value) = PhysMemRead(memaddrdesc, size, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, size, accdesc);
elsif aligned && accdesc.ispair then

assert size IN {8, 16};
constant halfsize = size DIV 2;
bits(halfsize * 8) lowhalf, highhalf;
(memstatus, lowhalf) = PhysMemRead(memaddrdesc, halfsize, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, halfsize, accdesc);

Shared Pseudocode Functions Page 1670

memaddrdesc.paddress.address = memaddrdesc.paddress.address + halfsize;
(memstatus, highhalf) = PhysMemRead(memaddrdesc, halfsize, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, halfsize, accdesc);

value = highhalf:lowhalf;
else

for i = 0 to size-1
(memstatus, value<8*i+7:8*i>) = PhysMemRead(memaddrdesc, 1, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);
memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;

return value;

// AArch64.MemSingle[] - assignment (write) form
// ===
// Perform an atomic, little-endian write of 'size' bytes.

AArch64.MemSingle[bits(64) address, integer size, AccessDescriptor accdesc_in,
boolean aligned] = bits(size*8) value

assert size IN {1, 2, 4, 8, 16};
AccessDescriptor accdesc = accdesc_in;
if HaveLSE2Ext() then

assert AllInAlignedQuantity(address, size, 16);
else

assert IsAligned(address, size);

// If the instruction encoding permits tag checking, confer with system register configuration
// which may override this.
if HaveMTE2Ext() && accdesc.tagchecked then

accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

AddressDescriptor memaddrdesc;
memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareability != Shareability_NSH then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

if HaveTME() then
if accdesc.transactional && !MemHasTransactionalAccess(memaddrdesc.memattrs) then

FailTransaction(TMFailure_IMP, FALSE);

if HaveMTE2Ext() && accdesc.tagchecked then
bits(4) ptag = AArch64.PhysicalTag(address);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then

AArch64.TagCheckFault(address, accdesc);

if SPESampleInFlight then
boolean is_load = FALSE;
SPESampleLoadStore(is_load, accdesc, memaddrdesc);

PhysMemRetStatus memstatus;
boolean atomic;
if (memaddrdesc.memattrs.memtype == MemType_Normal &&

memaddrdesc.memattrs.inner.attrs == MemAttr_WB &&
memaddrdesc.memattrs.outer.attrs == MemAttr_WB) then

atomic = TRUE;
elsif (accdesc.exclusive || accdesc.atomicop ||

accdesc.acqsc || accdesc.acqpc || accdesc.relsc) then
if !aligned && !ConstrainUnpredictableBool(Unpredictable_MISALIGNEDATOMIC) then

AArch64.Abort(address, AlignmentFault(accdesc));
else

atomic = TRUE;
elsif aligned then

atomic = !accdesc.ispair;

Shared Pseudocode Functions Page 1671

else
// Misaligned accesses within 16 byte aligned memory but
// not Normal Cacheable Writeback are Atomic
atomic = boolean IMPLEMENTATION_DEFINED "FEAT_LSE2: access is atomic";

if atomic then
memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);
elsif aligned && accdesc.ispair then

assert size IN {8, 16};
constant halfsize = size DIV 2;
bits(halfsize*8) lowhalf, highhalf;
<highhalf, lowhalf> = value;

memstatus = PhysMemWrite(memaddrdesc, halfsize, accdesc, lowhalf);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, halfsize, accdesc);
memaddrdesc.paddress.address = memaddrdesc.paddress.address + halfsize;
memstatus = PhysMemWrite(memaddrdesc, halfsize, accdesc, highhalf);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, halfsize, accdesc);
else

for i = 0 to size-1
memstatus = PhysMemWrite(memaddrdesc, 1, accdesc, value<8*i+7:8*i>);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);
memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;

return;

Shared Pseudocode Functions Page 1672

Library pseudocode for aarch64/functions/memory/AArch64.MemTag

// AArch64.MemTag[] - non-assignment (read) form
// ===
// Load an Allocation Tag from memory.

bits(4) AArch64.MemTag[bits(64) address, AccessDescriptor accdesc_in]
assert accdesc_in.tagaccess && !accdesc_in.tagchecked;

AddressDescriptor memaddrdesc;
AccessDescriptor accdesc = accdesc_in;

boolean aligned = TRUE;

if HaveMTE2Ext() then
accdesc.tagaccess = AArch64.AllocationTagAccessIsEnabled(accdesc.el);

memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, TAG_GRANULE);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Return the granule tag if tagging is enabled...
if accdesc.tagaccess && memaddrdesc.memattrs.tags == MemTag_AllocationTagged then

(memstatus, tag) = PhysMemTagRead(memaddrdesc, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);
return tag;

elsif (HaveMTECanonicalTagCheckingExt() &&
accdesc.tagaccess &&
memaddrdesc.memattrs.tags == MemTag_CanonicallyTagged) then

return if address<55> == '0' then '0000' else '1111';
else

// ...otherwise read tag as zero.
return '0000';

// AArch64.MemTag[] - assignment (write) form
// ==
// Store an Allocation Tag to memory.

AArch64.MemTag[bits(64) address, AccessDescriptor accdesc_in] = bits(4) value
assert accdesc_in.tagaccess && !accdesc_in.tagchecked;

AddressDescriptor memaddrdesc;
AccessDescriptor accdesc = accdesc_in;

boolean aligned = IsAligned(address, TAG_GRANULE);

// Stores of allocation tags must be aligned
if !aligned then

AArch64.Abort(address, AlignmentFault(accdesc));

if HaveMTE2Ext() then
accdesc.tagaccess = AArch64.AllocationTagAccessIsEnabled(accdesc.el);

memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, TAG_GRANULE);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Memory array access
if accdesc.tagaccess && memaddrdesc.memattrs.tags == MemTag_AllocationTagged then

memstatus = PhysMemTagWrite(memaddrdesc, accdesc, value);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);

Shared Pseudocode Functions Page 1673

Library pseudocode for aarch64/functions/memory/AArch64.PhysicalTag

// AArch64.PhysicalTag()
// =====================
// Generate a Physical Tag from a Logical Tag in an address

bits(4) AArch64.PhysicalTag(bits(64) vaddr)
return vaddr<59:56>;

Library pseudocode for aarch64/functions/memory/AArch64.UnalignedAccessFaults

// AArch64.UnalignedAccessFaults()
// ===============================
// Determine whether the unaligned access generates an Alignment fault

boolean AArch64.UnalignedAccessFaults(AccessDescriptor accdesc, bits(64) address, integer size)
if AlignmentEnforced() then

return TRUE;
elsif accdesc.acctype == AccessType_GCS then

return TRUE;
elsif accdesc.rcw then

return TRUE;
elsif accdesc.ls64 then

return TRUE;
elsif accdesc.exclusive || accdesc.atomicop then

return !HaveLSE2Ext() || !AllInAlignedQuantity(address, size, 16);
elsif accdesc.acqsc || accdesc.acqpc || accdesc.relsc then

return (!HaveLSE2Ext() ||
(SCTLR_ELx[].nAA == '0' && !AllInAlignedQuantity(address, size, 16)));

else
return FALSE;

Library pseudocode for aarch64/functions/memory/AddressSupportsLS64

// AddressSupportsLS64()
// =====================
// Returns TRUE if the 64-byte block following the given address supports the
// LD64B and ST64B instructions, and FALSE otherwise.

boolean AddressSupportsLS64(bits(56) paddress);

Library pseudocode for aarch64/functions/memory/AllInAlignedQuantity

// AllInAlignedQuantity()
// ======================
// Returns TRUE if all accessed bytes are within one aligned quantity, FALSE otherwise.

boolean AllInAlignedQuantity(bits(64) address, integer size, integer alignment)
assert(size <= alignment);
return Align((address+size)-1, alignment) == Align(address, alignment);

Shared Pseudocode Functions Page 1674

Library pseudocode for aarch64/functions/memory/CheckSPAlignment

// CheckSPAlignment()
// ==================
// Check correct stack pointer alignment for AArch64 state.

CheckSPAlignment()
bits(64) sp = SP[];
boolean stack_align_check;
if PSTATE.EL == EL0 then

stack_align_check = (SCTLR_ELx[].SA0 != '0');
else

stack_align_check = (SCTLR_ELx[].SA != '0');

if stack_align_check && sp != Align(sp, 16) then
AArch64.SPAlignmentFault();

return;

Shared Pseudocode Functions Page 1675

Library pseudocode for aarch64/functions/memory/Mem

Shared Pseudocode Functions Page 1676

// Mem[] - non-assignment (read) form
// ==================================
// Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
// Instruction fetches would call AArch64.MemSingle directly.

bits(size*8) Mem[bits(64) address, integer size, AccessDescriptor accdesc_in]
assert size IN {1, 2, 4, 8, 16};
constant halfsize = size DIV 2;
bits(size * 8) value;
bits(halfsize * 8) lowhalf, highhalf;
AccessDescriptor accdesc = accdesc_in;

// Check alignment on size of element accessed, not overall access size
integer alignment = if accdesc.ispair then halfsize else size;
boolean aligned = IsAligned(address, alignment);

if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
AArch64.Abort(address, AlignmentFault(accdesc));

if accdesc.acctype == AccessType_ASIMD && size == 16 && IsAligned(address, 8) then
// If 128-bit SIMD&FP ordered access are treated as a pair of
// 64-bit single-copy atomic accesses, then these single copy atomic
// access can be observed in any order.
lowhalf = AArch64.MemSingle[address, halfsize, accdesc, aligned];
highhalf = AArch64.MemSingle[address+halfsize, halfsize, accdesc, aligned];
value = highhalf:lowhalf;

elsif HaveLSE2Ext() && AllInAlignedQuantity(address, size, 16) then
value = AArch64.MemSingle[address, size, accdesc, aligned];

elsif accdesc.ispair && aligned then
accdesc.ispair = FALSE;
if HaveLRCPC3Ext() && accdesc.highestaddressfirst then

highhalf = AArch64.MemSingle[address+halfsize, halfsize, accdesc, aligned];
lowhalf = AArch64.MemSingle[address, halfsize, accdesc, aligned];

else
lowhalf = AArch64.MemSingle[address, halfsize, accdesc, aligned];
highhalf = AArch64.MemSingle[address+halfsize, halfsize, accdesc, aligned];

value = highhalf:lowhalf;
elsif aligned then

value = AArch64.MemSingle[address, size, accdesc, aligned];
else

assert size > 1;
if HaveLRCPC3Ext() && accdesc.ispair && accdesc.highestaddressfirst then

// Performing memory accesses from one load or store instruction to Device memory that
// crosses a boundary corresponding to the smallest translation granule size of the
// implementation causes CONSTRAINED UNPREDICTABLE behavior.

for i = 0 to halfsize-1
// Individual byte access can be observed in any order
highhalf<8*i+7:8*i> = AArch64.MemSingle[address+halfsize +i, 1, accdesc, aligned];

for i = 0 to halfsize-1
// Individual byte access can be observed in any order
lowhalf<8*i+7:8*i> = AArch64.MemSingle[address + i, 1, accdesc, aligned];

value = highhalf:lowhalf;

else
value<7:0> = AArch64.MemSingle[address, 1, accdesc, aligned];

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device
// memory access will generate an Alignment Fault, as to get this far means the first
// byte did not, so we must be changing to a new translation page.
c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};
if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
value<8*i+7:8*i> = AArch64.MemSingle[address+i, 1, accdesc, aligned];

if BigEndian(accdesc.acctype) then
value = BigEndianReverse(value);

Shared Pseudocode Functions Page 1677

return value;

// Mem[] - assignment (write) form
// ===============================
// Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.

Mem[bits(64) address, integer size, AccessDescriptor accdesc_in] = bits(size*8) value_in
constant halfsize = size DIV 2;
bits(size*8) value = value_in;
bits(halfsize*8) lowhalf, highhalf;
AccessDescriptor accdesc = accdesc_in;

// Check alignment on size of element accessed, not overall access size
integer alignment = if accdesc.ispair then halfsize else size;
boolean aligned = IsAligned(address, alignment);

if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
AArch64.Abort(address, AlignmentFault(accdesc));

if BigEndian(accdesc.acctype) then
value = BigEndianReverse(value);

if accdesc.acctype == AccessType_ASIMD && size == 16 && IsAligned(address, 8) then
// 128-bit SIMD&FP stores are treated as a pair of 64-bit single-copy atomic accesses
// 64-bit aligned.
<highhalf, lowhalf> = value;
AArch64.MemSingle[address, halfsize, accdesc, aligned] = lowhalf;
AArch64.MemSingle[address+halfsize, halfsize, accdesc, aligned] = highhalf;

elsif HaveLSE2Ext() && AllInAlignedQuantity(address, size, 16) then
AArch64.MemSingle[address, size, accdesc, aligned] = value;

elsif accdesc.ispair && aligned then
accdesc.ispair = FALSE;
<highhalf, lowhalf> = value;
if HaveLRCPC3Ext() && accdesc.highestaddressfirst then

AArch64.MemSingle[address+halfsize, halfsize, accdesc, aligned] = highhalf;
AArch64.MemSingle[address, halfsize, accdesc, aligned] = lowhalf;

else
AArch64.MemSingle[address, halfsize, accdesc, aligned] = lowhalf;
AArch64.MemSingle[address+halfsize, halfsize, accdesc, aligned] = highhalf;

elsif aligned then
AArch64.MemSingle[address, size, accdesc, aligned] = value;

else
assert size > 1;
if HaveLRCPC3Ext() && accdesc.ispair && accdesc.highestaddressfirst then

// Performing memory accesses from one load or store instruction to Device memory that
// crosses a boundary corresponding to the smallest translation granule size of the
// implementation causes CONSTRAINED UNPREDICTABLE behavior.
<highhalf, lowhalf> = value;
for i = 0 to halfsize-1

// Individual byte access can be observed in any order
AArch64.MemSingle[address+halfsize+i, 1, accdesc, aligned] = highhalf<8*i+7:8*i>;

for i = 0 to halfsize-1
// Individual byte access can be observed in any order, but implies observability
// of highhalf
AArch64.MemSingle[address+i, 1, accdesc, aligned] = lowhalf<8*i+7:8*i>;

else
AArch64.MemSingle[address, 1, accdesc, aligned] = value<7:0>;

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device
// memory access will generate an Alignment Fault, as to get this far means the first
// byte did not, so we must be changing to a new translation page.

c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};
if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
AArch64.MemSingle[address+i, 1, accdesc, aligned] = value<8*i+7:8*i>;

return;

Shared Pseudocode Functions Page 1678

Library pseudocode for aarch64/functions/memory/MemAtomic

Shared Pseudocode Functions Page 1679

// MemAtomic()
// ===========
// Performs load and store memory operations for a given virtual address.

bits(size) MemAtomic(bits(64) address, bits(size) cmpoperand, bits(size) operand,
AccessDescriptor accdesc_in)

assert accdesc_in.atomicop;

constant integer bytes = size DIV 8;
assert bytes IN {1, 2, 4, 8, 16};

bits(size) newvalue;
bits(size) oldvalue;
AccessDescriptor accdesc = accdesc_in;
boolean aligned = IsAligned(address, bytes);

// If the instruction encoding permits tag checking, confer with system register configuration
// which may override this.
if HaveMTE2Ext() && accdesc.tagchecked then

accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, bytes) then
AArch64.Abort(address, AlignmentFault(accdesc));

// MMU or MPU lookup
AddressDescriptor memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareability != Shareability_NSH then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

// For Store-only Tag checking, the tag check is performed on the store.
if (HaveMTE2Ext() && accdesc.tagchecked &&

(!HaveMTEStoreOnlyExt() || !StoreOnlyTagCheckingEnabled(accdesc.el))) then
bits(4) ptag = AArch64.PhysicalTag(address);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then

accdesc.write = FALSE; // Tag Check Fault on a read
AArch64.TagCheckFault(address, accdesc);

// All observers in the shareability domain observe the following load and store atomically.
PhysMemRetStatus memstatus;
(memstatus, oldvalue) = PhysMemRead(memaddrdesc, bytes, accdesc);

if IsFault(memstatus) then
HandleExternalReadAbort(memstatus, memaddrdesc, bytes, accdesc);

if BigEndian(accdesc.acctype) then
oldvalue = BigEndianReverse(oldvalue);

boolean cmpfail = FALSE;
case accdesc.modop of

when MemAtomicOp_ADD newvalue = oldvalue + operand;
when MemAtomicOp_BIC newvalue = oldvalue AND NOT(operand);
when MemAtomicOp_EOR newvalue = oldvalue EOR operand;
when MemAtomicOp_ORR newvalue = oldvalue OR operand;
when MemAtomicOp_SMAX newvalue = Max(SInt(oldvalue), SInt(operand))<size-1:0>;
when MemAtomicOp_SMIN newvalue = Min(SInt(oldvalue), SInt(operand))<size-1:0>;
when MemAtomicOp_UMAX newvalue = Max(UInt(oldvalue), UInt(operand))<size-1:0>;
when MemAtomicOp_UMIN newvalue = Min(UInt(oldvalue), UInt(operand))<size-1:0>;
when MemAtomicOp_SWP newvalue = operand;
when MemAtomicOp_CAS newvalue = operand; cmpfail = cmpoperand != oldvalue;
when MemAtomicOp_GCSSS1 newvalue = operand; cmpfail = cmpoperand != oldvalue;

if HaveMTEStoreOnlyExt() && StoreOnlyTagCheckingEnabled(accdesc.el) then
// If the compare on a CAS fails, then it is CONSTRAINED UNPREDICTABLE whether the
// Tag check is performed.
if accdesc.tagchecked && cmpfail then

Shared Pseudocode Functions Page 1680

accdesc.tagchecked = ConstrainUnpredictableBool(Unpredictable_STOREONLYTAGCHECKEDCAS);

if HaveMTE2Ext() && accdesc.tagchecked then
bits(4) ptag = AArch64.PhysicalTag(address);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then

AArch64.TagCheckFault(address, accdesc);

if !cmpfail then
if BigEndian(accdesc.acctype) then

newvalue = BigEndianReverse(newvalue);
memstatus = PhysMemWrite(memaddrdesc, bytes, accdesc, newvalue);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, bytes, accdesc);

if SPESampleInFlight then
boolean is_load = FALSE;
SPESampleLoadStore(is_load, accdesc, memaddrdesc);

// Load operations return the old (pre-operation) value
return oldvalue;

Shared Pseudocode Functions Page 1681

Library pseudocode for aarch64/functions/memory/MemAtomicRCW

Shared Pseudocode Functions Page 1682

// MemAtomicRCW()
// ==============
// Perform a single-copy-atomic access with Read-Check-Write operation

(bits(4), bits(size)) MemAtomicRCW(bits(64) address, bits(size) cmpoperand, bits(size) operand,
AccessDescriptor accdesc_in)

assert accdesc_in.atomicop;
assert accdesc_in.rcw;

constant integer bytes = size DIV 8;
assert bytes IN {8, 16};

bits(4) nzcv;
bits(size) oldvalue;
bits(size) newvalue;
AccessDescriptor accdesc = accdesc_in;
boolean aligned = IsAligned(address, bytes);

// If the instruction encoding permits tag checking, confer with system register configuration
// which may override this.
if HaveMTE2Ext() && accdesc.tagchecked then

accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, bytes) then
AArch64.Abort(address, AlignmentFault(accdesc));

// MMU or MPU lookup
AddressDescriptor memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareability != Shareability_NSH then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

// For Store-only Tag checking, the tag check is performed on the store.
if (HaveMTE2Ext() && accdesc.tagchecked &&

(!HaveMTEStoreOnlyExt() || !StoreOnlyTagCheckingEnabled(accdesc.el))) then
bits(4) ptag = AArch64.PhysicalTag(address);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then

accdesc.write = FALSE; // Tag Check Fault on a read
AArch64.TagCheckFault(address, accdesc);

// All observers in the shareability domain observe the following load and store atomically.
PhysMemRetStatus memstatus;
(memstatus, oldvalue) = PhysMemRead(memaddrdesc, bytes, accdesc);

if IsFault(memstatus) then
HandleExternalReadAbort(memstatus, memaddrdesc, bytes, accdesc);

if BigEndian(accdesc.acctype) then
oldvalue = BigEndianReverse(oldvalue);

boolean cmpfail = FALSE;
case accdesc.modop of

when MemAtomicOp_BIC newvalue = oldvalue AND NOT(operand);
when MemAtomicOp_ORR newvalue = oldvalue OR operand;
when MemAtomicOp_SWP newvalue = operand;
when MemAtomicOp_CAS newvalue = operand; cmpfail = oldvalue != cmpoperand;

if cmpfail then
nzcv = '1010'; // N = 1 indicates compare failure

else
nzcv = RCWCheck(oldvalue, newvalue, accdesc.rcws);

if HaveMTEStoreOnlyExt() && StoreOnlyTagCheckingEnabled(accdesc.el) then
// If the compare on a CAS fails, then it is CONSTRAINED UNPREDICTABLE whether the
// Tag check is performed.

Shared Pseudocode Functions Page 1683

if accdesc.tagchecked && cmpfail then
accdesc.tagchecked = ConstrainUnpredictableBool(Unpredictable_STOREONLYTAGCHECKEDCAS);

if HaveMTE2Ext() && accdesc.tagchecked then
bits(4) ptag = AArch64.PhysicalTag(address);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then

AArch64.TagCheckFault(address, accdesc);

if nzcv == '0010' then
if BigEndian(accdesc.acctype) then

newvalue = BigEndianReverse(newvalue);

memstatus = PhysMemWrite(memaddrdesc, bytes, accdesc, newvalue);

if IsFault(memstatus) then
HandleExternalWriteAbort(memstatus, memaddrdesc, bytes, accdesc);

return (nzcv, oldvalue);

Shared Pseudocode Functions Page 1684

Library pseudocode for aarch64/functions/memory/MemLoad64B

// MemLoad64B()
// ============
// Performs an atomic 64-byte read from a given virtual address.

bits(512) MemLoad64B(bits(64) address, AccessDescriptor accdesc_in)
bits(512) data;
constant integer size = 64;
AccessDescriptor accdesc = accdesc_in;
boolean aligned = IsAligned(address, size);

if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
AArch64.Abort(address, AlignmentFault(accdesc));

// If the instruction encoding permits tag checking, confer with system register configuration
// which may override this.
if HaveMTE2Ext() && accdesc.tagchecked then

accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

AddressDescriptor memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareability != Shareability_NSH then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);

if HaveMTE2Ext() && accdesc.tagchecked then
bits(4) ptag = AArch64.PhysicalTag(address);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then

AArch64.TagCheckFault(address, accdesc);

if !AddressSupportsLS64(memaddrdesc.paddress.address) then
c = ConstrainUnpredictable(Unpredictable_LS64UNSUPPORTED);
assert c IN {Constraint_LIMITED_ATOMICITY, Constraint_FAULT};

if c == Constraint_FAULT then
// Generate a stage 1 Data Abort reported using the DFSC code of 110101.
AArch64.Abort(address, ExclusiveFault(accdesc));

else
// Accesses are not single-copy atomic above the byte level.
for i = 0 to size-1

PhysMemRetStatus memstatus;
(memstatus, data<8*i+7:8*i>) = PhysMemRead(memaddrdesc, 1, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, 1, accdesc);

memaddrdesc.paddress.address = memaddrdesc.paddress.address + 1;
else

PhysMemRetStatus memstatus;
(memstatus, data) = PhysMemRead(memaddrdesc, size, accdesc);
if IsFault(memstatus) then

HandleExternalReadAbort(memstatus, memaddrdesc, size, accdesc);

return data;

Shared Pseudocode Functions Page 1685

Library pseudocode for aarch64/functions/memory/MemStore64B

// MemStore64B()
// =============
// Performs an atomic 64-byte store to a given virtual address. Function does
// not return the status of the store.

MemStore64B(bits(64) address, bits(512) value, AccessDescriptor accdesc_in)
constant integer size = 64;
AccessDescriptor accdesc = accdesc_in;
boolean aligned = IsAligned(address, size);

if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
AArch64.Abort(address, AlignmentFault(accdesc));

// If the instruction encoding permits tag checking, confer with system register configuration
// which may override this.
if HaveMTE2Ext() && accdesc.tagchecked then

accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

AddressDescriptor memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);

// Effect on exclusives
if memaddrdesc.memattrs.shareability != Shareability_NSH then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), 64);

if HaveMTE2Ext() && accdesc.tagchecked then
bits(4) ptag = AArch64.PhysicalTag(address);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then

AArch64.TagCheckFault(address, accdesc);

PhysMemRetStatus memstatus;
if !AddressSupportsLS64(memaddrdesc.paddress.address) then

c = ConstrainUnpredictable(Unpredictable_LS64UNSUPPORTED);
assert c IN {Constraint_LIMITED_ATOMICITY, Constraint_FAULT};

if c == Constraint_FAULT then
// Generate a Data Abort reported using the DFSC code of 110101.
AArch64.Abort(address, ExclusiveFault(accdesc));

else
// Accesses are not single-copy atomic above the byte level.
for i = 0 to size-1

memstatus = PhysMemWrite(memaddrdesc, 1, accdesc, value<8*i+7:8*i>);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, 1, accdesc);

memaddrdesc.paddress.address = memaddrdesc.paddress.address+1;
else

memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);

return;

Shared Pseudocode Functions Page 1686

Library pseudocode for aarch64/functions/memory/MemStore64BWithRet

// MemStore64BWithRet()
// ====================
// Performs an atomic 64-byte store to a given virtual address returning
// the status value of the operation.

bits(64) MemStore64BWithRet(bits(64) address, bits(512) value, AccessDescriptor accdesc_in)
constant integer size = 64;
AccessDescriptor accdesc = accdesc_in;
boolean aligned = IsAligned(address, size);

if !aligned && AArch64.UnalignedAccessFaults(accdesc, address, size) then
AArch64.Abort(address, AlignmentFault(accdesc));

// If the instruction encoding permits tag checking, confer with system register configuration
// which may override this.
if HaveMTE2Ext() && accdesc.tagchecked then

accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

AddressDescriptor memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

AArch64.Abort(address, memaddrdesc.fault);
return ZeroExtend('1', 64);

// Effect on exclusives
if memaddrdesc.memattrs.shareability != Shareability_NSH then

ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), 64);

if HaveMTE2Ext() && accdesc.tagchecked then
bits(4) ptag = AArch64.PhysicalTag(address);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then

AArch64.TagCheckFault(address, accdesc);
return ZeroExtend('1', 64);

PhysMemRetStatus memstatus;
memstatus = PhysMemWrite(memaddrdesc, size, accdesc, value);
if IsFault(memstatus) then

HandleExternalWriteAbort(memstatus, memaddrdesc, size, accdesc);

return memstatus.store64bstatus;

Library pseudocode for aarch64/functions/memory/MemStore64BWithRetStatus

// MemStore64BWithRetStatus()
// ==========================
// Generates the return status of memory write with ST64BV or ST64BV0
// instructions. The status indicates if the operation succeeded, failed,
// or was not supported at this memory location.

bits(64) MemStore64BWithRetStatus();

Shared Pseudocode Functions Page 1687

Library pseudocode for aarch64/functions/memory/NVMem

// NVMem[] - non-assignment form
// =============================
// This function is the load memory access for the transformed System register read access
// when Enhanced Nested Virtualization is enabled with HCR_EL2.NV2 = 1.
// The address for the load memory access is calculated using
// the formula SignExtend(VNCR_EL2.BADDR : Offset<11:0>, 64) where,
// * VNCR_EL2.BADDR holds the base address of the memory location, and
// * Offset is the unique offset value defined architecturally for each System register that
// supports transformation of register access to memory access.

bits(64) NVMem[integer offset]
assert offset > 0;
constant integer size = 64;
return NVMem[offset, size];

bits(N) NVMem[integer offset, integer N]
assert offset > 0;
assert N IN {64,128};
bits(64) address = SignExtend(VNCR_EL2.BADDR:offset<11:0>, 64);
AccessDescriptor accdesc = CreateAccDescNV2(MemOp_LOAD);
return Mem[address, N DIV 8, accdesc];

// NVMem[] - assignment form
// =========================
// This function is the store memory access for the transformed System register write access
// when Enhanced Nested Virtualization is enabled with HCR_EL2.NV2 = 1.
// The address for the store memory access is calculated using
// the formula SignExtend(VNCR_EL2.BADDR : Offset<11:0>, 64) where,
// * VNCR_EL2.BADDR holds the base address of the memory location, and
// * Offset is the unique offset value defined architecturally for each System register that
// supports transformation of register access to memory access.

NVMem[integer offset] = bits(64) value
assert offset > 0;
constant integer size = 64;
NVMem[offset, size] = value;
return;

NVMem[integer offset, integer N] = bits(N) value
assert offset > 0;
assert N IN {64,128};
bits(64) address = SignExtend(VNCR_EL2.BADDR:offset<11:0>, 64);
AccessDescriptor accdesc = CreateAccDescNV2(MemOp_STORE);
Mem[address, N DIV 8, accdesc] = value;
return;

Library pseudocode for aarch64/functions/memory/PhysMemTagRead

// PhysMemTagRead()
// ================
// This is the hardware operation which perform a single-copy atomic,
// Allocation Tag granule aligned, memory access from the tag in PA space.
//
// The function address the array using desc.paddress which supplies:
// * A 52-bit physical address
// * A single NS bit to select between Secure and Non-secure parts of the array.
//
// The accdesc descriptor describes the access type: normal, exclusive, ordered, streaming,
// etc and other parameters required to access the physical memory or for setting syndrome
// register in the event of an External abort.

(PhysMemRetStatus, bits(4)) PhysMemTagRead(AddressDescriptor desc, AccessDescriptor accdesc);

Shared Pseudocode Functions Page 1688

Library pseudocode for aarch64/functions/memory/PhysMemTagWrite

// PhysMemTagWrite()
// =================
// This is the hardware operation which perform a single-copy atomic,
// Allocation Tag granule aligned, memory access to the tag in PA space.
//
// The function address the array using desc.paddress which supplies:
// * A 52-bit physical address
// * A single NS bit to select between Secure and Non-secure parts of the array.
//
// The accdesc descriptor describes the access type: normal, exclusive, ordered, streaming,
// etc and other parameters required to access the physical memory or for setting syndrome
// register in the event of an External abort.

PhysMemRetStatus PhysMemTagWrite(AddressDescriptor desc, AccessDescriptor accdesc, bits (4) value);

Library pseudocode for aarch64/functions/memory/StoreOnlyTagCheckingEnabled

// StoreOnlyTagCheckingEnabled()
// =============================
// Returns TRUE if loads executed at the given Exception level are Tag unchecked.

boolean StoreOnlyTagCheckingEnabled(bits(2) el)
assert HaveMTEStoreOnlyExt();
bit tcso;

case el of
when EL0

if !ELIsInHost(el) then
tcso = SCTLR_EL1.TCSO0;

else
tcso = SCTLR_EL2.TCSO0;

when EL1
tcso = SCTLR_EL1.TCSO;

when EL2
tcso = SCTLR_EL2.TCSO;

otherwise
tcso = SCTLR_EL3.TCSO;

return tcso == '1';

Library pseudocode for aarch64/functions/mops/CPYFOptionA

// CPYFOptionA()
// =============
// Returns TRUE if the implementation uses Option A for the
// CPYF* instructions, and FALSE otherwise.

boolean CPYFOptionA()
return boolean IMPLEMENTATION_DEFINED "CPYF* instructions use Option A";

Library pseudocode for aarch64/functions/mops/CPYOptionA

// CPYOptionA()
// ============
// Returns TRUE if the implementation uses Option A for the
// CPY* instructions, and FALSE otherwise.

boolean CPYOptionA()
return boolean IMPLEMENTATION_DEFINED "CPY* instructions use Option A";

Shared Pseudocode Functions Page 1689

Library pseudocode for aarch64/functions/mops/CPYPostSizeChoice

// CPYPostSizeChoice()
// ===================
// Returns the size of the copy that is performed by the CPYE* instructions for this
// implementation given the parameters of the destination, source and size of the copy.
// Postsize is encoded as -1*size for an option A implementation if cpysize is negative.

bits(64) CPYPostSizeChoice(bits(64) toaddress, bits(64) fromaddress, bits(64) cpysize);

Library pseudocode for aarch64/functions/mops/CPYPreSizeChoice

// CPYPreSizeChoice()
// ==================
// Returns the size of the copy that is performed by the CPYP* instructions for this
// implementation given the parameters of the destination, source and size of the copy.
// Presize is encoded as -1*size for an option A implementation if cpysize is negative.

bits(64) CPYPreSizeChoice(bits(64) toaddress, bits(64) fromaddress, bits(64) cpysize);

Library pseudocode for aarch64/functions/mops/CPYSizeChoice

// CPYSizeChoice()
// ===============
// Returns the size of the block this performed for an iteration of the copy given the
// parameters of the destination, source and size of the copy.

integer CPYSizeChoice(bits(64) toaddress, bits(64) fromaddress, bits(64) cpysize);

Library pseudocode for aarch64/functions/mops/CheckMOPSEnabled

// CheckMOPSEnabled()
// ==================
// Check for EL0 and EL1 access to the CPY* and SET* instructions.

CheckMOPSEnabled()
if (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0') &&
(!IsHCRXEL2Enabled() || HCRX_EL2.MSCEn == '0')) then
UNDEFINED;

if (PSTATE.EL == EL0 && SCTLR_EL1.MSCEn == '0' &&
(!EL2Enabled() || HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0')) then
UNDEFINED;

if PSTATE.EL == EL0 && IsInHost() && SCTLR_EL2.MSCEn == '0' then
UNDEFINED;

Shared Pseudocode Functions Page 1690

Library pseudocode for aarch64/functions/mops/CheckMemCpyParams

// CheckMemCpyParams()
// ===================
// Check if the parameters to a CPY* or CPYF* instruction are consistent with the
// PE state and well-formed.

CheckMemCpyParams(MOPSStage stage, boolean implements_option_a, bits(4) nzcv, bits(4) options,
integer d, integer s, integer n, bits(64) toaddress, bits(64) fromaddress,
bits(64) cpysize)

boolean from_epilogue = stage == MOPSStage_Epilogue;
// Check if this version is consistent with the state of the call.
if MemCpyZeroSizeCheck() || SInt(cpysize) != 0 then

boolean using_option_a = nzcv<1> == '0';
if implements_option_a != using_option_a then

boolean wrong_option = TRUE;
MismatchedMemCpyException(implements_option_a, d, s, n, wrong_option,

from_epilogue, options);

// Check if the parameters to this instruction are valid.
if stage == MOPSStage_Main then

if MemCpyParametersIllformedM(toaddress, fromaddress, cpysize) then
boolean wrong_option = FALSE;
MismatchedMemCpyException(implements_option_a, d, s, n, wrong_option,

from_epilogue, options);
else

bits(64) postsize = CPYPostSizeChoice(toaddress, fromaddress, cpysize);
if (cpysize != postsize || MemCpyParametersIllformedE(toaddress, fromaddress, cpysize)) then

boolean wrong_option = FALSE;
MismatchedMemCpyException(implements_option_a, d, s, n, wrong_option,

from_epilogue, options);

Library pseudocode for aarch64/functions/mops/CheckMemSetParams

// CheckMemSetParams()
// ===================
// Check if the parameters to a SET* or SETG* instruction are consistent with the
// PE state and well-formed.

CheckMemSetParams(MOPSStage stage, boolean implements_option_a, bits(4) nzcv, bits(2) options,
integer d, integer s, integer n, bits(64) toaddress, bits(64) setsize,
boolean is_setg)

boolean from_epilogue = stage == MOPSStage_Epilogue;

// Check if this version is consistent with the state of the call.
if MemCpyZeroSizeCheck() || SInt(setsize) != 0 then

boolean using_option_a = nzcv<1> == '0';
if implements_option_a != using_option_a then

boolean wrong_option = TRUE;
MismatchedMemSetException(implements_option_a, d, s, n, wrong_option,

from_epilogue, options, is_setg);

// Check if the parameters to this instruction are valid.
if stage == MOPSStage_Main then

if MemSetParametersIllformedM(toaddress, setsize, is_setg) then
boolean wrong_option = FALSE;
MismatchedMemSetException(implements_option_a, d, s, n, wrong_option,

from_epilogue, options, is_setg);
else

bits(64) postsize = SETPostSizeChoice(toaddress, setsize, is_setg);
if (setsize != postsize || MemSetParametersIllformedE(toaddress, setsize, is_setg)) then

boolean wrong_option = FALSE;
MismatchedMemSetException(implements_option_a, d, s, n, wrong_option,

from_epilogue, options, is_setg);

Shared Pseudocode Functions Page 1691

Library pseudocode for aarch64/functions/mops/IsMemCpyForward

// IsMemCpyForward()
// =================
// Returns TRUE if in a memcpy of size cpysize bytes from the source address fromaddress
// to destination address toaddress is done in the forward direction on this implementation.

boolean IsMemCpyForward(bits(64) toaddress, bits(64) fromaddress, bits(64) cpysize)
boolean forward;

// Check for overlapping cases
if ((UInt(fromaddress<55:0>) > UInt(toaddress<55:0>)) &&

(UInt(fromaddress<55:0>) < UInt(ZeroExtend(toaddress<55:0>, 64) + cpysize))) then
forward = TRUE;

elsif ((UInt(fromaddress<55:0>) < UInt(toaddress<55:0>)) &&
(UInt(ZeroExtend(fromaddress<55:0>, 64) + cpysize) > UInt(toaddress<55:0>))) then

forward = FALSE;

// Non-overlapping case
else

forward = boolean IMPLEMENTATION_DEFINED "CPY in the forward direction";

return forward;

Library pseudocode for aarch64/functions/mops/MOPSStage

// MOPSStage
// =========

enumeration MOPSStage { MOPSStage_Prologue, MOPSStage_Main, MOPSStage_Epilogue };

Library pseudocode for aarch64/functions/mops/MaxBlockSizeCopiedBytes

// MaxBlockSizeCopiedBytes()
// =========================
// Returns the maximum number of bytes that can used in a single block of the copy.

integer MaxBlockSizeCopiedBytes()
return integer IMPLEMENTATION_DEFINED "Maximum bytes used in a single block of a copy";

Library pseudocode for aarch64/functions/mops/MemCpyParametersIllformedE

// MemCpyParametersIllformedE()
// ============================
// Returns TRUE if the inputs are not well formed (in terms of their size and/or alignment)
// for a CPYE* instruction for this implementation given the parameters of the destination,
// source and size of the copy.

boolean MemCpyParametersIllformedE(bits(64) toaddress, bits(64) fromaddress,
bits(64) cpysize);

Library pseudocode for aarch64/functions/mops/MemCpyParametersIllformedM

// MemCpyParametersIllformedM()
// ============================
// Returns TRUE if the inputs are not well formed (in terms of their size and/or alignment)
// for a CPYM* instruction for this implementation given the parameters of the destination,
// source and size of the copy.

boolean MemCpyParametersIllformedM(bits(64) toaddress, bits(64) fromaddress,
bits(64) cpysize);

Shared Pseudocode Functions Page 1692

Library pseudocode for aarch64/functions/mops/MemCpyStageSize

// MemCpyStageSize()
// =================
// Returns the number of bytes copied by the given stage of a CPY* or CPYF* instruction.

bits(64) MemCpyStageSize(MOPSStage stage, bits(64) toaddress, bits(64) fromaddress,
bits(64) cpysize)

bits(64) stagecpysize;
if stage == MOPSStage_Prologue then

// IMP DEF selection of the amount covered by pre-processing.
stagecpysize = CPYPreSizeChoice(toaddress, fromaddress, cpysize);
assert stagecpysize<63> == cpysize<63> || IsZero(stagecpysize);

if SInt(cpysize) > 0 then
assert SInt(stagecpysize) <= SInt(cpysize);

else
assert SInt(stagecpysize) >= SInt(cpysize);

else
bits(64) postsize = CPYPostSizeChoice(toaddress, fromaddress, cpysize);
assert postsize<63> == cpysize<63> || IsZero(postsize);

if stage == MOPSStage_Main then
stagecpysize = cpysize - postsize;

else
stagecpysize = postsize;

return stagecpysize;

Library pseudocode for aarch64/functions/mops/MemCpyZeroSizeCheck

// MemCpyZeroSizeCheck()
// =====================
// Returns TRUE if the implementation option is checked on a copy of size zero remaining.

boolean MemCpyZeroSizeCheck();

Library pseudocode for aarch64/functions/mops/MemSetParametersIllformedE

// MemSetParametersIllformedE()
// ============================
// Returns TRUE if the inputs are not well formed (in terms of their size and/or
// alignment) for a SETE* or SETGE* instruction for this implementation given the
// parameters of the destination and size of the set.

boolean MemSetParametersIllformedE(bits(64) toaddress, bits(64) setsize, boolean is_setge);

Library pseudocode for aarch64/functions/mops/MemSetParametersIllformedM

// MemSetParametersIllformedM()
// ============================
// Returns TRUE if the inputs are not well formed (in terms of their size and/or
// alignment) for a SETM* or SETGM* instruction for this implementation given the
// parameters of the destination and size of the copy.

boolean MemSetParametersIllformedM(bits(64) toaddress, bits(64) setsize, boolean is_setgm);

Shared Pseudocode Functions Page 1693

Library pseudocode for aarch64/functions/mops/MemSetStageSize

// MemSetStageSize()
// =================
// Returns the number of bytes set by the given stage of a SET* or SETG* instruction.

bits(64) MemSetStageSize(MOPSStage stage, bits(64) toaddress, bits(64) setsize, boolean is_setg)
bits(64) stagesetsize;
if stage == MOPSStage_Prologue then

stagesetsize = SETPreSizeChoice(toaddress, setsize, is_setg);
assert stagesetsize<63> == setsize<63> || IsZero(stagesetsize);
if is_setg then assert stagesetsize<3:0> == '0000';

if SInt(setsize) > 0 then
assert SInt(stagesetsize) <= SInt(setsize);

else
assert SInt(stagesetsize) >= SInt(setsize);

else
bits(64) postsize = SETPostSizeChoice(toaddress, setsize, is_setg);
assert postsize<63> == setsize<63> || IsZero(postsize);
if is_setg then assert postsize<3:0> == '0000';

if stage == MOPSStage_Main then
stagesetsize = setsize - postsize;

else
stagesetsize = postsize;

return stagesetsize;

Library pseudocode for aarch64/functions/mops/MemSetZeroSizeCheck

// MemSetZeroSizeCheck()
// =====================
// Returns TRUE if the implementation option is checked on a copy of size zero remaining.

boolean MemSetZeroSizeCheck();

Library pseudocode for aarch64/functions/mops/MismatchedCpySetTargetEL

// MismatchedCpySetTargetEL()
// ==========================
// Return the target exception level for an Exception_MemCpyMemSet.

bits(2) MismatchedCpySetTargetEL()
bits(2) target_el;

if UInt(PSTATE.EL) > UInt(EL1) then
target_el = PSTATE.EL;

elsif PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1' then
target_el = EL2;

elsif (PSTATE.EL == EL1 && EL2Enabled() &&
IsHCRXEL2Enabled() && HCRX_EL2.MCE2 == '1') then
target_el = EL2;

else
target_el = EL1;

return target_el;

Shared Pseudocode Functions Page 1694

Library pseudocode for aarch64/functions/mops/MismatchedMemCpyException

// MismatchedMemCpyException()
// ===========================
// Generates an exception for a CPY* instruction if the version
// is inconsistent with the state of the call.

MismatchedMemCpyException(boolean option_a, integer destreg, integer srcreg, integer sizereg,
boolean wrong_option, boolean from_epilogue, bits(4) options)

bits(64) preferred_exception_return = ThisInstrAddr(64);
integer vect_offset = 0x0;
bits(2) target_el = MismatchedCpySetTargetEL();

ExceptionRecord except = ExceptionSyndrome(Exception_MemCpyMemSet);
except.syndrome<24> = '0';
except.syndrome<23> = '0';
except.syndrome<22:19> = options;
except.syndrome<18> = if from_epilogue then '1' else '0';
except.syndrome<17> = if wrong_option then '1' else '0';
except.syndrome<16> = if option_a then '1' else '0';
// exception.syndrome<15> is RES0
except.syndrome<14:10> = destreg<4:0>;
except.syndrome<9:5> = srcreg<4:0>;
except.syndrome<4:0> = sizereg<4:0>;

AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/functions/mops/MismatchedMemSetException

// MismatchedMemSetException()
// ===========================
// Generates an exception for a SET* instruction if the version
// is inconsistent with the state of the call.

MismatchedMemSetException(boolean option_a, integer destreg, integer datareg, integer sizereg,
boolean wrong_option, boolean from_epilogue, bits(2) options,
boolean is_SETG)

bits(64) preferred_exception_return = ThisInstrAddr(64);
integer vect_offset = 0x0;
bits(2) target_el = MismatchedCpySetTargetEL();

ExceptionRecord except = ExceptionSyndrome(Exception_MemCpyMemSet);
except.syndrome<24> = '1';
except.syndrome<23> = if is_SETG then '1' else '0';
// exception.syndrome<22:21> is RES0
except.syndrome<20:19> = options;
except.syndrome<18> = if from_epilogue then '1' else '0';
except.syndrome<17> = if wrong_option then '1' else '0';
except.syndrome<16> = if option_a then '1' else '0';
// exception.syndrome<15> is RES0
except.syndrome<14:10> = destreg<4:0>;
except.syndrome<9:5> = datareg<4:0>;
except.syndrome<4:0> = sizereg<4:0>;

AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/functions/mops/SETGOptionA

// SETGOptionA()
// =============
// Returns TRUE if the implementation uses Option A for the
// SETG* instructions, and FALSE otherwise.

boolean SETGOptionA()
return boolean IMPLEMENTATION_DEFINED "SETG* instructions use Option A";

Shared Pseudocode Functions Page 1695

Library pseudocode for aarch64/functions/mops/SETOptionA

// SETOptionA()
// ============
// Returns TRUE if the implementation uses Option A for the
// SET* instructions, and FALSE otherwise.

boolean SETOptionA()
return boolean IMPLEMENTATION_DEFINED "SET* instructions use Option A";

Library pseudocode for aarch64/functions/mops/SETPostSizeChoice

// SETPostSizeChoice()
// ===================
// Returns the size of the set that is performed by the SETE* or SETGE* instructions
// for this implementation, given the parameters of the destination and size of the set.
// Postsize is encoded as -1*size for an option A implementation if setsize is negative.

bits(64) SETPostSizeChoice(bits(64) toaddress, bits(64) setsize, boolean is_setge);

Library pseudocode for aarch64/functions/mops/SETPreSizeChoice

// SETPreSizeChoice()
// ==================
// Returns the size of the set that is performed by the SETP* or SETGP* instructions
// for this implementation, given the parameters of the destination and size of the set.
// Presize is encoded as -1*size for an option A implementation if setsize is negative.

bits(64) SETPreSizeChoice(bits(64) toaddress, bits(64) setsize, boolean is_setgp);

Library pseudocode for aarch64/functions/mops/SETSizeChoice

// SETSizeChoice()
// ===============
// Returns the size of the block thisperformed for an iteration of the set given
// the parameters of the destination and size of the set. The size of the block
// is an integer multiple of alignsize.

integer SETSizeChoice(bits(64) toaddress, bits(64) setsize, integer alignsize);

Library pseudocode for aarch64/functions/movewideop/MoveWideOp

// MoveWideOp
// ==========
// Move wide 16-bit immediate instruction types.

enumeration MoveWideOp {MoveWideOp_N, MoveWideOp_Z, MoveWideOp_K};

Shared Pseudocode Functions Page 1696

Library pseudocode for aarch64/functions/movwpreferred/MoveWidePreferred

// MoveWidePreferred()
// ===================
//
// Return TRUE if a bitmask immediate encoding would generate an immediate
// value that could also be represented by a single MOVZ or MOVN instruction.
// Used as a condition for the preferred MOV<-ORR alias.

boolean MoveWidePreferred(bit sf, bit immN, bits(6) imms, bits(6) immr)
integer s = UInt(imms);
integer r = UInt(immr);
integer width = if sf == '1' then 64 else 32;

// element size must equal total immediate size
if sf == '1' && !((immN:imms) IN {'1xxxxxx'}) then

return FALSE;
if sf == '0' && !((immN:imms) IN {'00xxxxx'}) then

return FALSE;

// for MOVZ must contain no more than 16 ones
if s < 16 then

// ones must not span halfword boundary when rotated
return (-r MOD 16) <= (15 - s);

// for MOVN must contain no more than 16 zeros
if s >= width - 15 then

// zeros must not span halfword boundary when rotated
return (r MOD 16) <= (s - (width - 15));

return FALSE;

Shared Pseudocode Functions Page 1697

Library pseudocode for aarch64/functions/pac/addpac/AddPAC

Shared Pseudocode Functions Page 1698

// AddPAC()
// ========
// Calculates the pointer authentication code for a 64-bit quantity and then
// inserts that into pointer authentication code field of that 64-bit quantity.

bits(64) AddPAC(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data)
bits(64) PAC;
bits(64) result;
bits(64) ext_ptr;
bits(64) extfield;
bit selbit;
boolean isgeneric = FALSE;
boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';
boolean mtx = EffectiveMTX(ptr, !data, PSTATE.EL) == '1';
integer top_bit = if tbi then 55 else 63;

// If tagged pointers are in use for a regime with two TTBRs, use bit<55> of
// the pointer to select between upper and lower ranges, and preserve this.
// This handles the awkward case where there is apparently no correct choice between
// the upper and lower address range - ie an addr of 1xxxxxxx0... with TBI0=0 and TBI1=1
// and 0xxxxxxx1 with TBI1=0 and TBI0=1:
if PtrHasUpperAndLowerAddRanges() then

assert S1TranslationRegime() IN {EL1, EL2};
if S1TranslationRegime() == EL1 then

// EL1 translation regime registers
if data then

if TCR_EL1.TBI1 == '1' || TCR_EL1.TBI0 == '1' then
selbit = ptr<55>;

else
selbit = ptr<63>;

else
if ((TCR_EL1.TBI1 == '1' && TCR_EL1.TBID1 == '0') ||

(TCR_EL1.TBI0 == '1' && TCR_EL1.TBID0 == '0')) then
selbit = ptr<55>;

else
selbit = ptr<63>;

else
// EL2 translation regime registers
if data then

if TCR_EL2.TBI1 == '1' || TCR_EL2.TBI0 == '1' then
selbit = ptr<55>;

else
selbit = ptr<63>;

else
if ((TCR_EL2.TBI1 == '1' && TCR_EL2.TBID1 == '0') ||

(TCR_EL2.TBI0 == '1' && TCR_EL2.TBID0 == '0')) then
selbit = ptr<55>;

else
selbit = ptr<63>;

else selbit = if tbi then ptr<55> else ptr<63>;

if HaveEnhancedPAC2() && ConstPACField() then selbit = ptr<55>;
integer bottom_PAC_bit = CalculateBottomPACBit(selbit);

// If the VA is 56 or 55 bits and Top Byte is Ignored,
// there are no unused bits left to insert the PAC
if tbi && bottom_PAC_bit >= 55 then

return ptr;

extfield = Replicate(selbit, 64);

// Compute the pointer authentication code for a ptr with good extension bits
if tbi then

ext_ptr = (ptr<63:56> :
extfield<(56-bottom_PAC_bit)-1:0> : ptr<bottom_PAC_bit-1:0>);

elsif mtx then
ext_ptr = (extfield<63:60> : ptr<59:56> :

extfield<(56-bottom_PAC_bit)-1:0> : ptr<bottom_PAC_bit-1:0>);
else

ext_ptr = extfield<(64-bottom_PAC_bit)-1:0> : ptr<bottom_PAC_bit-1:0>;

Shared Pseudocode Functions Page 1699

PAC = ComputePAC(ext_ptr, modifier, K<127:64>, K<63:0>, isgeneric);

// Check if the ptr has good extension bits and corrupt the pointer authentication code if not
bits(64) unusedbits_mask = Zeros(64);
unusedbits_mask<54:bottom_PAC_bit> = Ones((54-bottom_PAC_bit)+1);
if tbi then

unusedbits_mask<63:56> = Ones(8);
elsif mtx then

unusedbits_mask<63:60> = Ones(4);
if !IsZero(ptr AND unusedbits_mask) && ((ptr AND unusedbits_mask) != unusedbits_mask) then

if HaveEnhancedPAC() then
PAC = 0x0000000000000000<63:0>;

elsif !HaveEnhancedPAC2() then
PAC<top_bit-1> = NOT(PAC<top_bit-1>);

// Preserve the determination between upper and lower address at bit<55> and insert PAC into
// bits that are not used for the address or the tag(s).
if !HaveEnhancedPAC2() then

if tbi then
result = ptr<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;

else
result = PAC<63:56>:selbit:PAC<54:bottom_PAC_bit>:ptr<bottom_PAC_bit-1:0>;
// A compliant implementation of FEAT_MTE4 also implements FEAT_PAuth2
assert !mtx;

else
if tbi then

result = (ptr<63:56> : selbit :
(ptr<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>) :
ptr<bottom_PAC_bit-1:0>);

elsif mtx then
result = ((ptr<63:60> EOR PAC<63:60>) : ptr<59:56> : selbit :

(ptr<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>) :
ptr<bottom_PAC_bit-1:0>);

else
result = ((ptr<63:56> EOR PAC<63:56>) : selbit :

(ptr<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>) :
ptr<bottom_PAC_bit-1:0>);

return result;

Shared Pseudocode Functions Page 1700

Library pseudocode for aarch64/functions/pac/addpacda/AddPACDA

// AddPACDA()
// ==========
// Returns a 64-bit value containing x, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of x, y and the
// APDAKey_EL1.

bits(64) AddPACDA(bits(64) x, bits(64) y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APDAKey_EL1;

APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnDA else SCTLR_EL2.EnDA;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnDA;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnDA;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnDA;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then
return x;

elsif TrapEL3 && EL3SDDUndefPriority() then
UNDEFINED;

elsif TrapEL2 then
TrapPACUse(EL2);

elsif TrapEL3 then
if EL3SDDUndef() then

UNDEFINED;
else

TrapPACUse(EL3);
else

return AddPAC(x, y, APDAKey_EL1, TRUE);

Shared Pseudocode Functions Page 1701

Library pseudocode for aarch64/functions/pac/addpacdb/AddPACDB

// AddPACDB()
// ==========
// Returns a 64-bit value containing x, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of x, y and the
// APDBKey_EL1.

bits(64) AddPACDB(bits(64) x, bits(64) y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APDBKey_EL1;

APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnDB else SCTLR_EL2.EnDB;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnDB;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnDB;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnDB;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then
return x;

elsif TrapEL3 && EL3SDDUndefPriority() then
UNDEFINED;

elsif TrapEL2 then
TrapPACUse(EL2);

elsif TrapEL3 then
if EL3SDDUndef() then

UNDEFINED;
else

TrapPACUse(EL3);
else

return AddPAC(x, y, APDBKey_EL1, TRUE);

Shared Pseudocode Functions Page 1702

Library pseudocode for aarch64/functions/pac/addpacga/AddPACGA

// AddPACGA()
// ==========
// Returns a 64-bit value where the lower 32 bits are 0, and the upper 32 bits contain
// a 32-bit pointer authentication code which is derived using a cryptographic
// algorithm as a combination of x, y and the APGAKey_EL1.

bits(64) AddPACGA(bits(64) x, bits(64) y)
boolean TrapEL2;
boolean TrapEL3;
bits(128) APGAKey_EL1;
boolean isgeneric = TRUE;

APGAKey_EL1 = APGAKeyHi_EL1<63:0> : APGAKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if TrapEL3 && EL3SDDUndefPriority() then
UNDEFINED;

elsif TrapEL2 then
TrapPACUse(EL2);

elsif TrapEL3 then
if EL3SDDUndef() then

UNDEFINED;
else

TrapPACUse(EL3);
else

return ComputePAC(x, y, APGAKey_EL1<127:64>, APGAKey_EL1<63:0>, isgeneric)<63:32>:Zeros(32);

Shared Pseudocode Functions Page 1703

Library pseudocode for aarch64/functions/pac/addpacia/AddPACIA

// AddPACIA()
// ==========
// Returns a 64-bit value containing x, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of x, y, and the
// APIAKey_EL1.

bits(64) AddPACIA(bits(64) x, bits(64) y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIAKey_EL1;

APIAKey_EL1 = APIAKeyHi_EL1<63:0>:APIAKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnIA else SCTLR_EL2.EnIA;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnIA;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnIA;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnIA;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then
return x;

elsif TrapEL3 && EL3SDDUndefPriority() then
UNDEFINED;

elsif TrapEL2 then
TrapPACUse(EL2);

elsif TrapEL3 then
if EL3SDDUndef() then

UNDEFINED;
else

TrapPACUse(EL3);
else

return AddPAC(x, y, APIAKey_EL1, FALSE);

Shared Pseudocode Functions Page 1704

Library pseudocode for aarch64/functions/pac/addpacib/AddPACIB

// AddPACIB()
// ==========
// Returns a 64-bit value containing x, but replacing the pointer authentication code
// field bits with a pointer authentication code, where the pointer authentication
// code is derived using a cryptographic algorithm as a combination of x, y and the
// APIBKey_EL1.

bits(64) AddPACIB(bits(64) x, bits(64) y)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIBKey_EL1;

APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnIB else SCTLR_EL2.EnIB;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnIB;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnIB;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnIB;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then
return x;

elsif TrapEL3 && EL3SDDUndefPriority() then
UNDEFINED;

elsif TrapEL2 then
TrapPACUse(EL2);

elsif TrapEL3 then
if EL3SDDUndef() then

UNDEFINED;
else

TrapPACUse(EL3);
else

return AddPAC(x, y, APIBKey_EL1, FALSE);

Shared Pseudocode Functions Page 1705

Library pseudocode for aarch64/functions/pac/auth/AArch64.PACFailException

// AArch64.PACFailException()
// ==========================
// Generates a PAC Fail Exception

AArch64.PACFailException(bits(2) syndrome)
route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_PACFail);
except.syndrome<1:0> = syndrome;
except.syndrome<24:2> = Zeros(23); // RES0

if UInt(PSTATE.EL) > UInt(EL0) then
AArch64.TakeException(PSTATE.EL, except, preferred_exception_return, vect_offset);

elsif route_to_el2 then
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

else
AArch64.TakeException(EL1, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1706

Library pseudocode for aarch64/functions/pac/auth/Auth

Shared Pseudocode Functions Page 1707

// Auth()
// ======
// Restores the upper bits of the address to be all zeros or all ones (based on the
// value of bit[55]) and computes and checks the pointer authentication code. If the
// check passes, then the restored address is returned. If the check fails, the
// second-top and third-top bits of the extension bits in the pointer authentication code
// field are corrupted to ensure that accessing the address will give a translation fault.

bits(64) Auth(bits(64) ptr, bits(64) modifier, bits(128) K, boolean data, bit key_number,
boolean is_combined)

bits(64) PAC;
bits(64) result;
bits(64) original_ptr;
bits(2) error_code;
bits(64) extfield;
boolean isgeneric = FALSE;

// Reconstruct the extension field used of adding the PAC to the pointer
boolean tbi = EffectiveTBI(ptr, !data, PSTATE.EL) == '1';
boolean mtx = EffectiveMTX(ptr, !data, PSTATE.EL) == '1';
integer bottom_PAC_bit = CalculateBottomPACBit(ptr<55>);
extfield = Replicate(ptr<55>, 64);

// If the VA is 56 or 55 bits and Top Byte is Ignored,
// there are no unused bits left for the PAC
if tbi && bottom_PAC_bit >= 55 then

return ptr;

if tbi then
original_ptr = (ptr<63:56> :

extfield<(56-bottom_PAC_bit)-1:0> : ptr<bottom_PAC_bit-1:0>);
elsif mtx then

original_ptr = (extfield<63:60> : ptr<59:56> :
extfield<(56-bottom_PAC_bit)-1:0> : ptr<bottom_PAC_bit-1:0>);

else
original_ptr = extfield<(64-bottom_PAC_bit)-1:0> : ptr<bottom_PAC_bit-1:0>;

PAC = ComputePAC(original_ptr, modifier, K<127:64>, K<63:0>, isgeneric);
// Check pointer authentication code
if tbi then

if !HaveEnhancedPAC2() then
if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> then

result = original_ptr;
else

error_code = key_number:NOT(key_number);
result = original_ptr<63:55>:error_code:original_ptr<52:0>;

else
result = ptr;
result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
if HaveFPACCombined() || (HaveFPAC() && !is_combined) then

if result<54:bottom_PAC_bit> != Replicate(result<55>, (55-bottom_PAC_bit)) then
error_code = (if data then '1' else '0'):key_number;
AArch64.PACFailException(error_code);

elsif mtx then
assert HaveEnhancedPAC2();
result = ptr;
result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
result<63:60> = result<63:60> EOR PAC<63:60>;
if HaveFPACCombined() || (HaveFPAC() && !is_combined) then

if ((result<54:bottom_PAC_bit> != Replicate(result<55>, (55-bottom_PAC_bit))) ||
(result<63:60> != Replicate(result<55>, 4))) then
error_code = (if data then '1' else '0'):key_number;
AArch64.PACFailException(error_code);

else
if !HaveEnhancedPAC2() then

if PAC<54:bottom_PAC_bit> == ptr<54:bottom_PAC_bit> && PAC<63:56> == ptr<63:56> then
result = original_ptr;

else
error_code = key_number:NOT(key_number);
result = original_ptr<63>:error_code:original_ptr<60:0>;

Shared Pseudocode Functions Page 1708

else
result = ptr;
result<54:bottom_PAC_bit> = result<54:bottom_PAC_bit> EOR PAC<54:bottom_PAC_bit>;
result<63:56> = result<63:56> EOR PAC<63:56>;
if HaveFPACCombined() || (HaveFPAC() && !is_combined) then

if result<63:bottom_PAC_bit> != Replicate(result<55>, (64-bottom_PAC_bit)) then
error_code = (if data then '1' else '0'):key_number;
AArch64.PACFailException(error_code);

return result;

Library pseudocode for aarch64/functions/pac/authda/AuthDA

// AuthDA()
// ========
// Returns a 64-bit value containing x, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a pointer
// authentication code in the pointer authentication code field bits of x, using the same
// algorithm and key as AddPACDA().

bits(64) AuthDA(bits(64) x, bits(64) y, boolean is_combined)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APDAKey_EL1;

APDAKey_EL1 = APDAKeyHi_EL1<63:0> : APDAKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnDA else SCTLR_EL2.EnDA;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnDA;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnDA;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnDA;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then
return x;

elsif TrapEL3 && EL3SDDUndefPriority() then
UNDEFINED;

elsif TrapEL2 then
TrapPACUse(EL2);

elsif TrapEL3 then
if EL3SDDUndef() then

UNDEFINED;
else

TrapPACUse(EL3);
else

return Auth(x, y, APDAKey_EL1, TRUE, '0', is_combined);

Shared Pseudocode Functions Page 1709

Library pseudocode for aarch64/functions/pac/authdb/AuthDB

// AuthDB()
// ========
// Returns a 64-bit value containing x, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a
// pointer authentication code in the pointer authentication code field bits of x, using
// the same algorithm and key as AddPACDB().

bits(64) AuthDB(bits(64) x, bits(64) y, boolean is_combined)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APDBKey_EL1;

APDBKey_EL1 = APDBKeyHi_EL1<63:0> : APDBKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnDB else SCTLR_EL2.EnDB;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnDB;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnDB;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnDB;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then
return x;

elsif TrapEL3 && EL3SDDUndefPriority() then
UNDEFINED;

elsif TrapEL2 then
TrapPACUse(EL2);

elsif TrapEL3 then
if EL3SDDUndef() then

UNDEFINED;
else

TrapPACUse(EL3);
else

return Auth(x, y, APDBKey_EL1, TRUE, '1', is_combined);

Shared Pseudocode Functions Page 1710

Library pseudocode for aarch64/functions/pac/authia/AuthIA

// AuthIA()
// ========
// Returns a 64-bit value containing x, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a pointer
// authentication code in the pointer authentication code field bits of x, using the same
// algorithm and key as AddPACIA().

bits(64) AuthIA(bits(64) x, bits(64) y, boolean is_combined)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIAKey_EL1;

APIAKey_EL1 = APIAKeyHi_EL1<63:0> : APIAKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnIA else SCTLR_EL2.EnIA;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnIA;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnIA;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnIA;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then
return x;

elsif TrapEL3 && EL3SDDUndefPriority() then
UNDEFINED;

elsif TrapEL2 then
TrapPACUse(EL2);

elsif TrapEL3 then
if EL3SDDUndef() then

UNDEFINED;
else

TrapPACUse(EL3);
else

return Auth(x, y, APIAKey_EL1, FALSE, '0', is_combined);

Shared Pseudocode Functions Page 1711

Library pseudocode for aarch64/functions/pac/authib/AuthIB

// AuthIB()
// ========
// Returns a 64-bit value containing x, but replacing the pointer authentication code
// field bits with the extension of the address bits. The instruction checks a pointer
// authentication code in the pointer authentication code field bits of x, using the same
// algorithm and key as AddPACIB().

bits(64) AuthIB(bits(64) x, bits(64) y, boolean is_combined)
boolean TrapEL2;
boolean TrapEL3;
bits(1) Enable;
bits(128) APIBKey_EL1;

APIBKey_EL1 = APIBKeyHi_EL1<63:0> : APIBKeyLo_EL1<63:0>;
case PSTATE.EL of

when EL0
boolean IsEL1Regime = S1TranslationRegime() == EL1;
Enable = if IsEL1Regime then SCTLR_EL1.EnIB else SCTLR_EL2.EnIB;
TrapEL2 = (EL2Enabled() && HCR_EL2.API == '0' &&

(HCR_EL2.TGE == '0' || HCR_EL2.E2H == '0'));
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL1
Enable = SCTLR_EL1.EnIB;
TrapEL2 = EL2Enabled() && HCR_EL2.API == '0';
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL2
Enable = SCTLR_EL2.EnIB;
TrapEL2 = FALSE;
TrapEL3 = HaveEL(EL3) && SCR_EL3.API == '0';

when EL3
Enable = SCTLR_EL3.EnIB;
TrapEL2 = FALSE;
TrapEL3 = FALSE;

if Enable == '0' then
return x;

elsif TrapEL3 && EL3SDDUndefPriority() then
UNDEFINED;

elsif TrapEL2 then
TrapPACUse(EL2);

elsif TrapEL3 then
if EL3SDDUndef() then

UNDEFINED;
else

TrapPACUse(EL3);
else

return Auth(x, y, APIBKey_EL1, FALSE, '1', is_combined);

Shared Pseudocode Functions Page 1712

Library pseudocode for aarch64/functions/pac/calcbottompacbit/AArch64.PACEffectiveTxSZ

// AArch64.PACEffectiveTxSZ()
// ==========================
// Compute the effective value for TxSZ used to determine the placement of the PAC field

bits(6) AArch64.PACEffectiveTxSZ(Regime regime, S1TTWParams walkparams)
constant integer s1maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
constant integer s1mintxsz = AArch64.S1MinTxSZ(regime, walkparams.d128,

walkparams.ds, walkparams.tgx);

if AArch64.S1TxSZFaults(regime, walkparams) then
if ConstrainUnpredictable(Unpredictable_RESTnSZ) == Constraint_FORCE then

if UInt(walkparams.txsz) < s1mintxsz then
return s1mintxsz<5:0>;

if UInt(walkparams.txsz) > s1maxtxsz then
return s1maxtxsz<5:0>;

elsif UInt(walkparams.txsz) < s1mintxsz then
return s1mintxsz<5:0>;

elsif UInt(walkparams.txsz) > s1maxtxsz then
return s1maxtxsz<5:0>;

return walkparams.txsz;

Library pseudocode for aarch64/functions/pac/calcbottompacbit/CalculateBottomPACBit

// CalculateBottomPACBit()
// =======================

integer CalculateBottomPACBit(bit top_bit)
Regime regime;
S1TTWParams walkparams;
integer bottom_PAC_bit;

regime = TranslationRegime(PSTATE.EL);
ss = CurrentSecurityState();
walkparams = AArch64.GetS1TTWParams(regime, ss, Replicate(top_bit, 64));
bottom_PAC_bit = 64 - UInt(AArch64.PACEffectiveTxSZ(regime, walkparams));

return bottom_PAC_bit;

Library pseudocode for aarch64/functions/pac/computepac/ComputePAC

// ComputePAC()
// ============

bits(64) ComputePAC(bits(64) data, bits(64) modifier, bits(64) key0, bits(64) key1,
boolean isgeneric)

if UsePACIMP(isgeneric) then
return ComputePACIMPDEF(data, modifier, key0, key1);

if UsePACQARMA3(isgeneric) then
boolean isqarma3 = TRUE;
return ComputePACQARMA(data, modifier, key0, key1, isqarma3);

if UsePACQARMA5(isgeneric) then
boolean isqarma3 = FALSE;
return ComputePACQARMA(data, modifier, key0, key1, isqarma3);

Library pseudocode for aarch64/functions/pac/computepac/ComputePACIMPDEF

// ComputePACIMPDEF()
// ==================
// Compute IMPLEMENTATION DEFINED cryptographic algorithm to be used for PAC calculation.

bits(64) ComputePACIMPDEF(bits(64) data, bits(64) modifier, bits(64) key0, bits(64) key1);

Shared Pseudocode Functions Page 1713

Library pseudocode for aarch64/functions/pac/computepac/ComputePACQARMA

Shared Pseudocode Functions Page 1714

// ComputePACQARMA()
// =================
// Compute QARMA3 or QARMA5 cryptographic algorithm for PAC calculation

bits(64) ComputePACQARMA(bits(64) data, bits(64) modifier, bits(64) key0,
bits(64) key1, boolean isqarma3)

bits(64) workingval;
bits(64) runningmod;
bits(64) roundkey;
bits(64) modk0;
constant bits(64) Alpha = 0xC0AC29B7C97C50DD<63:0>;

integer iterations;
RC[0] = 0x0000000000000000<63:0>;
RC[1] = 0x13198A2E03707344<63:0>;
RC[2] = 0xA4093822299F31D0<63:0>;

if isqarma3 then
iterations = 2;

else // QARMA5
iterations = 4;
RC[3] = 0x082EFA98EC4E6C89<63:0>;
RC[4] = 0x452821E638D01377<63:0>;

modk0 = key0<0>:key0<63:2>:(key0<63> EOR key0<1>);
runningmod = modifier;
workingval = data EOR key0;

for i = 0 to iterations
roundkey = key1 EOR runningmod;
workingval = workingval EOR roundkey;
workingval = workingval EOR RC[i];
if i > 0 then

workingval = PACCellShuffle(workingval);
workingval = PACMult(workingval);

if isqarma3 then
workingval = PACSub1(workingval);

else
workingval = PACSub(workingval);

runningmod = TweakShuffle(runningmod<63:0>);
roundkey = modk0 EOR runningmod;
workingval = workingval EOR roundkey;
workingval = PACCellShuffle(workingval);
workingval = PACMult(workingval);
if isqarma3 then

workingval = PACSub1(workingval);
else

workingval = PACSub(workingval);
workingval = PACCellShuffle(workingval);
workingval = PACMult(workingval);
workingval = key1 EOR workingval;
workingval = PACCellInvShuffle(workingval);
if isqarma3 then

workingval = PACSub1(workingval);
else

workingval = PACInvSub(workingval);
workingval = PACMult(workingval);
workingval = PACCellInvShuffle(workingval);
workingval = workingval EOR key0;
workingval = workingval EOR runningmod;
for i = 0 to iterations

if isqarma3 then
workingval = PACSub1(workingval);

else
workingval = PACInvSub(workingval);

if i < iterations then
workingval = PACMult(workingval);
workingval = PACCellInvShuffle(workingval);

runningmod = TweakInvShuffle(runningmod<63:0>);
roundkey = key1 EOR runningmod;

Shared Pseudocode Functions Page 1715

workingval = workingval EOR RC[iterations-i];
workingval = workingval EOR roundkey;
workingval = workingval EOR Alpha;

workingval = workingval EOR modk0;

return workingval;

Library pseudocode for aarch64/functions/pac/computepac/PACCellInvShuffle

// PACCellInvShuffle()
// ===================

bits(64) PACCellInvShuffle(bits(64) indata)
bits(64) outdata;
outdata<3:0> = indata<15:12>;
outdata<7:4> = indata<27:24>;
outdata<11:8> = indata<51:48>;
outdata<15:12> = indata<39:36>;
outdata<19:16> = indata<59:56>;
outdata<23:20> = indata<47:44>;
outdata<27:24> = indata<7:4>;
outdata<31:28> = indata<19:16>;
outdata<35:32> = indata<35:32>;
outdata<39:36> = indata<55:52>;
outdata<43:40> = indata<31:28>;
outdata<47:44> = indata<11:8>;
outdata<51:48> = indata<23:20>;
outdata<55:52> = indata<3:0>;
outdata<59:56> = indata<43:40>;
outdata<63:60> = indata<63:60>;
return outdata;

Library pseudocode for aarch64/functions/pac/computepac/PACCellShuffle

// PACCellShuffle()
// ================

bits(64) PACCellShuffle(bits(64) indata)
bits(64) outdata;
outdata<3:0> = indata<55:52>;
outdata<7:4> = indata<27:24>;
outdata<11:8> = indata<47:44>;
outdata<15:12> = indata<3:0>;
outdata<19:16> = indata<31:28>;
outdata<23:20> = indata<51:48>;
outdata<27:24> = indata<7:4>;
outdata<31:28> = indata<43:40>;
outdata<35:32> = indata<35:32>;
outdata<39:36> = indata<15:12>;
outdata<43:40> = indata<59:56>;
outdata<47:44> = indata<23:20>;
outdata<51:48> = indata<11:8>;
outdata<55:52> = indata<39:36>;
outdata<59:56> = indata<19:16>;
outdata<63:60> = indata<63:60>;
return outdata;

Shared Pseudocode Functions Page 1716

Library pseudocode for aarch64/functions/pac/computepac/PACInvSub

// PACInvSub()
// ===========

bits(64) PACInvSub(bits(64) Tinput)
// This is a 4-bit substitution from the PRINCE-family cipher
bits(64) Toutput;
for i = 0 to 15

case Tinput<4*i+3:4*i> of
when '0000' Toutput<4*i+3:4*i> = '0101';
when '0001' Toutput<4*i+3:4*i> = '1110';
when '0010' Toutput<4*i+3:4*i> = '1101';
when '0011' Toutput<4*i+3:4*i> = '1000';
when '0100' Toutput<4*i+3:4*i> = '1010';
when '0101' Toutput<4*i+3:4*i> = '1011';
when '0110' Toutput<4*i+3:4*i> = '0001';
when '0111' Toutput<4*i+3:4*i> = '1001';
when '1000' Toutput<4*i+3:4*i> = '0010';
when '1001' Toutput<4*i+3:4*i> = '0110';
when '1010' Toutput<4*i+3:4*i> = '1111';
when '1011' Toutput<4*i+3:4*i> = '0000';
when '1100' Toutput<4*i+3:4*i> = '0100';
when '1101' Toutput<4*i+3:4*i> = '1100';
when '1110' Toutput<4*i+3:4*i> = '0111';
when '1111' Toutput<4*i+3:4*i> = '0011';

return Toutput;

Library pseudocode for aarch64/functions/pac/computepac/PACMult

// PACMult()
// =========

bits(64) PACMult(bits(64) Sinput)
bits(4) t0;
bits(4) t1;
bits(4) t2;
bits(4) t3;
bits(64) Soutput;

for i = 0 to 3
t0<3:0> = RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 2);
t0<3:0> = t0<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
t1<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 1);
t1<3:0> = t1<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 2);
t2<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 2) EOR RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 1);
t2<3:0> = t2<3:0> EOR RotCell(Sinput<4*(i)+3:4*(i)>, 1);
t3<3:0> = RotCell(Sinput<4*(i+12)+3:4*(i+12)>, 1) EOR RotCell(Sinput<4*(i+8)+3:4*(i+8)>, 2);
t3<3:0> = t3<3:0> EOR RotCell(Sinput<4*(i+4)+3:4*(i+4)>, 1);
Soutput<4*i+3:4*i> = t3<3:0>;
Soutput<4*(i+4)+3:4*(i+4)> = t2<3:0>;
Soutput<4*(i+8)+3:4*(i+8)> = t1<3:0>;
Soutput<4*(i+12)+3:4*(i+12)> = t0<3:0>;

return Soutput;

Shared Pseudocode Functions Page 1717

Library pseudocode for aarch64/functions/pac/computepac/PACSub

// PACSub()
// ========

bits(64) PACSub(bits(64) Tinput)
// This is a 4-bit substitution from the PRINCE-family cipher
bits(64) Toutput;
for i = 0 to 15

case Tinput<4*i+3:4*i> of
when '0000' Toutput<4*i+3:4*i> = '1011';
when '0001' Toutput<4*i+3:4*i> = '0110';
when '0010' Toutput<4*i+3:4*i> = '1000';
when '0011' Toutput<4*i+3:4*i> = '1111';
when '0100' Toutput<4*i+3:4*i> = '1100';
when '0101' Toutput<4*i+3:4*i> = '0000';
when '0110' Toutput<4*i+3:4*i> = '1001';
when '0111' Toutput<4*i+3:4*i> = '1110';
when '1000' Toutput<4*i+3:4*i> = '0011';
when '1001' Toutput<4*i+3:4*i> = '0111';
when '1010' Toutput<4*i+3:4*i> = '0100';
when '1011' Toutput<4*i+3:4*i> = '0101';
when '1100' Toutput<4*i+3:4*i> = '1101';
when '1101' Toutput<4*i+3:4*i> = '0010';
when '1110' Toutput<4*i+3:4*i> = '0001';
when '1111' Toutput<4*i+3:4*i> = '1010';

return Toutput;

Library pseudocode for aarch64/functions/pac/computepac/PacSub1

// PacSub1()
// =========

bits(64) PACSub1(bits(64) Tinput)
// This is a 4-bit substitution from Qarma sigma1
bits(64) Toutput;
for i = 0 to 15

case Tinput<4*i+3:4*i> of
when '0000' Toutput<4*i+3:4*i> = '1010';
when '0001' Toutput<4*i+3:4*i> = '1101';
when '0010' Toutput<4*i+3:4*i> = '1110';
when '0011' Toutput<4*i+3:4*i> = '0110';
when '0100' Toutput<4*i+3:4*i> = '1111';
when '0101' Toutput<4*i+3:4*i> = '0111';
when '0110' Toutput<4*i+3:4*i> = '0011';
when '0111' Toutput<4*i+3:4*i> = '0101';
when '1000' Toutput<4*i+3:4*i> = '1001';
when '1001' Toutput<4*i+3:4*i> = '1000';
when '1010' Toutput<4*i+3:4*i> = '0000';
when '1011' Toutput<4*i+3:4*i> = '1100';
when '1100' Toutput<4*i+3:4*i> = '1011';
when '1101' Toutput<4*i+3:4*i> = '0001';
when '1110' Toutput<4*i+3:4*i> = '0010';
when '1111' Toutput<4*i+3:4*i> = '0100';

return Toutput;

Library pseudocode for aarch64/functions/pac/computepac/RC

// RC[]
// ====

array bits(64) RC[0..4];

Shared Pseudocode Functions Page 1718

Library pseudocode for aarch64/functions/pac/computepac/RotCell

// RotCell()
// =========

bits(4) RotCell(bits(4) incell, integer amount)
bits(8) tmp;
bits(4) outcell;

// assert amount>3 || amount<1;
tmp<7:0> = incell<3:0>:incell<3:0>;
outcell = tmp<7-amount:4-amount>;
return outcell;

Library pseudocode for aarch64/functions/pac/computepac/TweakCellInvRot

// TweakCellInvRot()
// =================

bits(4) TweakCellInvRot(bits(4) incell)
bits(4) outcell;
outcell<3> = incell<2>;
outcell<2> = incell<1>;
outcell<1> = incell<0>;
outcell<0> = incell<0> EOR incell<3>;
return outcell;

Library pseudocode for aarch64/functions/pac/computepac/TweakCellRot

// TweakCellRot()
// ==============

bits(4) TweakCellRot(bits(4) incell)
bits(4) outcell;
outcell<3> = incell<0> EOR incell<1>;
outcell<2> = incell<3>;
outcell<1> = incell<2>;
outcell<0> = incell<1>;
return outcell;

Library pseudocode for aarch64/functions/pac/computepac/TweakInvShuffle

// TweakInvShuffle()
// =================

bits(64) TweakInvShuffle(bits(64) indata)
bits(64) outdata;
outdata<3:0> = TweakCellInvRot(indata<51:48>);
outdata<7:4> = indata<55:52>;
outdata<11:8> = indata<23:20>;
outdata<15:12> = indata<27:24>;
outdata<19:16> = indata<3:0>;
outdata<23:20> = indata<7:4>;
outdata<27:24> = TweakCellInvRot(indata<11:8>);
outdata<31:28> = indata<15:12>;
outdata<35:32> = TweakCellInvRot(indata<31:28>);
outdata<39:36> = TweakCellInvRot(indata<63:60>);
outdata<43:40> = TweakCellInvRot(indata<59:56>);
outdata<47:44> = TweakCellInvRot(indata<19:16>);
outdata<51:48> = indata<35:32>;
outdata<55:52> = indata<39:36>;
outdata<59:56> = indata<43:40>;
outdata<63:60> = TweakCellInvRot(indata<47:44>);
return outdata;

Shared Pseudocode Functions Page 1719

Library pseudocode for aarch64/functions/pac/computepac/TweakShuffle

// TweakShuffle()
// ==============

bits(64) TweakShuffle(bits(64) indata)
bits(64) outdata;
outdata<3:0> = indata<19:16>;
outdata<7:4> = indata<23:20>;
outdata<11:8> = TweakCellRot(indata<27:24>);
outdata<15:12> = indata<31:28>;
outdata<19:16> = TweakCellRot(indata<47:44>);
outdata<23:20> = indata<11:8>;
outdata<27:24> = indata<15:12>;
outdata<31:28> = TweakCellRot(indata<35:32>);
outdata<35:32> = indata<51:48>;
outdata<39:36> = indata<55:52>;
outdata<43:40> = indata<59:56>;
outdata<47:44> = TweakCellRot(indata<63:60>);
outdata<51:48> = TweakCellRot(indata<3:0>);
outdata<55:52> = indata<7:4>;
outdata<59:56> = TweakCellRot(indata<43:40>);
outdata<63:60> = TweakCellRot(indata<39:36>);
return outdata;

Library pseudocode for aarch64/functions/pac/computepac/UsePACIMP

// UsePACIMP()
// ===========
// Checks whether IMPLEMENTATION DEFINED cryptographic algorithm to be used for PAC
// calculation.

boolean UsePACIMP(boolean isgeneric)
return if isgeneric then HavePACIMPGeneric() else HavePACIMPAuth();

Library pseudocode for aarch64/functions/pac/computepac/UsePACQARMA3

// UsePACQARMA3()
// ==============
// Checks whether QARMA3 cryptographic algorithm to be used for PAC calculation.

boolean UsePACQARMA3(boolean isgeneric)
return if isgeneric then HavePACQARMA3Generic() else HavePACQARMA3Auth();

Library pseudocode for aarch64/functions/pac/computepac/UsePACQARMA5

// UsePACQARMA5()
// ==============
// Checks whether QARMA5 cryptographic algorithm to be used for PAC calculation.

boolean UsePACQARMA5(boolean isgeneric)
return if isgeneric then HavePACQARMA5Generic() else HavePACQARMA5Auth();

Library pseudocode for aarch64/functions/pac/pac/ConstPACField

// ConstPACField()
// ===============
// Returns TRUE if bit<55> can be used to determine the size of the PAC field, FALSE otherwise.

boolean ConstPACField()
return IsFeatureImplemented(FEAT_CONSTPACFIELD);

Shared Pseudocode Functions Page 1720

Library pseudocode for aarch64/functions/pac/pac/HaveEnhancedPAC

// HaveEnhancedPAC()
// =================
// Returns TRUE if support for EnhancedPAC is implemented, FALSE otherwise.

boolean HaveEnhancedPAC()
return IsFeatureImplemented(FEAT_EPAC);

Library pseudocode for aarch64/functions/pac/pac/HaveEnhancedPAC2

// HaveEnhancedPAC2()
// ==================
// Returns TRUE if support for EnhancedPAC2 is implemented, FALSE otherwise.

boolean HaveEnhancedPAC2()
return IsFeatureImplemented(FEAT_PAuth2);

Library pseudocode for aarch64/functions/pac/pac/HaveFPAC

// HaveFPAC()
// ==========
// Returns TRUE if support for FPAC is implemented, FALSE otherwise.

boolean HaveFPAC()
return IsFeatureImplemented(FEAT_FPAC);

Library pseudocode for aarch64/functions/pac/pac/HaveFPACCombined

// HaveFPACCombined()
// ==================
// Returns TRUE if support for FPACCombined is implemented, FALSE otherwise.

boolean HaveFPACCombined()
return IsFeatureImplemented(FEAT_FPACCOMBINE);

Library pseudocode for aarch64/functions/pac/pac/HavePACExt

// HavePACExt()
// ============
// Returns TRUE if support for the PAC extension is implemented, FALSE otherwise.

boolean HavePACExt()
return IsFeatureImplemented(FEAT_PAuth);

Library pseudocode for aarch64/functions/pac/pac/HavePACIMPAuth

// HavePACIMPAuth()
// ================
// Returns TRUE if support for PAC IMP Auth is implemented, FALSE otherwise.

boolean HavePACIMPAuth()
return IsFeatureImplemented(FEAT_PACIMP);

Library pseudocode for aarch64/functions/pac/pac/HavePACIMPGeneric

// HavePACIMPGeneric()
// ===================
// Returns TRUE if support for PAC IMP Generic is implemented, FALSE otherwise.

boolean HavePACIMPGeneric()
return IsFeatureImplemented(FEAT_PACIMP);

Shared Pseudocode Functions Page 1721

Library pseudocode for aarch64/functions/pac/pac/HavePACQARMA3Auth

// HavePACQARMA3Auth()
// ===================
// Returns TRUE if support for PAC QARMA3 Auth is implemented, FALSE otherwise.

boolean HavePACQARMA3Auth()
return IsFeatureImplemented(FEAT_PACQARMA3);

Library pseudocode for aarch64/functions/pac/pac/HavePACQARMA3Generic

// HavePACQARMA3Generic()
// ======================
// Returns TRUE if support for PAC QARMA3 Generic is implemented, FALSE otherwise.

boolean HavePACQARMA3Generic()
return IsFeatureImplemented(FEAT_PACQARMA3);

Library pseudocode for aarch64/functions/pac/pac/HavePACQARMA5Auth

// HavePACQARMA5Auth()
// ===================
// Returns TRUE if support for PAC QARMA5 Auth is implemented, FALSE otherwise.

boolean HavePACQARMA5Auth()
return IsFeatureImplemented(FEAT_PACQARMA5);

Library pseudocode for aarch64/functions/pac/pac/HavePACQARMA5Generic

// HavePACQARMA5Generic()
// ======================
// Returns TRUE if support for PAC QARMA5 Generic is implemented, FALSE otherwise.

boolean HavePACQARMA5Generic()
return IsFeatureImplemented(FEAT_PACQARMA5);

Library pseudocode for aarch64/functions/pac/pac/PtrHasUpperAndLowerAddRanges

// PtrHasUpperAndLowerAddRanges()
// ==============================
// Returns TRUE if the pointer has upper and lower address ranges, FALSE otherwise.

boolean PtrHasUpperAndLowerAddRanges()
regime = TranslationRegime(PSTATE.EL);
return HasUnprivileged(regime);

Shared Pseudocode Functions Page 1722

Library pseudocode for aarch64/functions/pac/strip/Strip

// Strip()
// =======
// Strip() returns a 64-bit value containing A, but replacing the pointer authentication
// code field bits with the extension of the address bits. This can apply to either
// instructions or data, where, as the use of tagged pointers is distinct, it might be
// handled differently.

bits(64) Strip(bits(64) A, boolean data)
bits(64) original_ptr;
bits(64) extfield;
boolean tbi = EffectiveTBI(A, !data, PSTATE.EL) == '1';
boolean mtx = EffectiveMTX(A, !data, PSTATE.EL) == '1';
integer bottom_PAC_bit = CalculateBottomPACBit(A<55>);
extfield = Replicate(A<55>, 64);

// If the VA is 56 or 55 bits and Top Byte is Ignored,
// there are no unused bits left for the PAC
if tbi && bottom_PAC_bit >= 55 then

return A;

if tbi then
original_ptr = (A<63:56> :

extfield<(56-bottom_PAC_bit)-1:0> : A<bottom_PAC_bit-1:0>);
elsif mtx then

original_ptr = (extfield<63:60> : A<59:56> :
extfield<(56-bottom_PAC_bit)-1:0> : A<bottom_PAC_bit-1:0>);

else
original_ptr = extfield<(64-bottom_PAC_bit)-1:0> : A<bottom_PAC_bit-1:0>;

return original_ptr;

Library pseudocode for aarch64/functions/pac/trappacuse/TrapPACUse

// TrapPACUse()
// ============
// Used for the trapping of the pointer authentication functions by higher exception
// levels.

TrapPACUse(bits(2) target_el)
assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);

bits(64) preferred_exception_return = ThisInstrAddr(64);
ExceptionRecord except;
vect_offset = 0;
except = ExceptionSyndrome(Exception_PACTrap);
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1723

Library pseudocode for aarch64/functions/predictionrestrict/AArch64.RestrictPrediction

// AArch64.RestrictPrediction()
// ============================
// Clear all predictions in the context.

AArch64.RestrictPrediction(bits(64) val, RestrictType restriction)

ExecutionCntxt c;
target_el = val<25:24>;

// If the target EL is not implemented or the instruction is executed at an
// EL lower than the specified level, the instruction is treated as a NOP.
if !HaveEL(target_el) || UInt(target_el) > UInt(PSTATE.EL) then EndOfInstruction();

bit ns = val<26>;
bit nse = val<27>;
ss = TargetSecurityState(ns, nse);

// If the combination of Security state and Exception level is not implemented,
// the instruction is treated as a NOP.
if ss == SS_Root && target_el != EL3 then EndOfInstruction();
if !HaveRME() && target_el == EL3 && ss != SS_Secure then EndOfInstruction();

c.security = ss;
c.target_el = target_el;

if EL2Enabled() then
if (PSTATE.EL == EL0 && !IsInHost()) || PSTATE.EL == EL1 then

c.is_vmid_valid = TRUE;
c.all_vmid = FALSE;
c.vmid = VMID[];

elsif (target_el == EL0 && !ELIsInHost(target_el)) || target_el == EL1 then
c.is_vmid_valid = TRUE;
c.all_vmid = val<48> == '1';
c.vmid = val<47:32>; // Only valid if val<48> == '0';

else
c.is_vmid_valid = FALSE;

else
c.is_vmid_valid = FALSE;

if PSTATE.EL == EL0 then
c.is_asid_valid = TRUE;
c.all_asid = FALSE;
c.asid = ASID[];

elsif target_el == EL0 then
c.is_asid_valid = TRUE;
c.all_asid = val<16> == '1';
c.asid = val<15:0>; // Only valid if val<16> == '0';

else
c.is_asid_valid = FALSE;

c.restriction = restriction;
RESTRICT_PREDICTIONS(c);

Shared Pseudocode Functions Page 1724

Library pseudocode for aarch64/functions/prefetch/Prefetch

// Prefetch()
// ==========

// Decode and execute the prefetch hint on ADDRESS specified by PRFOP

Prefetch(bits(64) address, bits(5) prfop)
PrefetchHint hint;
integer target;
boolean stream;

case prfop<4:3> of
when '00' hint = Prefetch_READ; // PLD: prefetch for load
when '01' hint = Prefetch_EXEC; // PLI: preload instructions
when '10' hint = Prefetch_WRITE; // PST: prepare for store
when '11' return; // unallocated hint

target = UInt(prfop<2:1>); // target cache level
stream = (prfop<0> != '0'); // streaming (non-temporal)
Hint_Prefetch(address, hint, target, stream);
return;

Library pseudocode for aarch64/functions/pstatefield/PSTATEField

// PSTATEField
// ===========
// MSR (immediate) instruction destinations.

enumeration PSTATEField {PSTATEField_DAIFSet, PSTATEField_DAIFClr,
PSTATEField_PAN, // Armv8.1
PSTATEField_UAO, // Armv8.2
PSTATEField_DIT, // Armv8.4
PSTATEField_SSBS,
PSTATEField_TCO, // Armv8.5
PSTATEField_SVCRSM,
PSTATEField_SVCRZA,
PSTATEField_SVCRSMZA,
PSTATEField_ALLINT,
PSTATEField_PM,
PSTATEField_SP
};

Shared Pseudocode Functions Page 1725

Library pseudocode for aarch64/functions/ras/AArch64.ESBOperation

// AArch64.ESBOperation()
// ======================
// Perform the AArch64 ESB operation, either for ESB executed in AArch64 state, or for
// ESB in AArch32 state when SError interrupts are routed to an Exception level using
// AArch64

AArch64.ESBOperation()
bits(2) target_el;
boolean masked;

(masked, target_el) = AArch64.PhysicalSErrorTarget();

intdis = Halted() || ExternalDebugInterruptsDisabled(target_el);
masked = masked || intdis;

// Check for a masked Physical SError pending that can be synchronized
// by an Error synchronization event.
if masked && IsSynchronizablePhysicalSErrorPending() then

// This function might be called for an interworking case, and INTdis is masking
// the SError interrupt.
if ELUsingAArch32(S1TranslationRegime()) then

bits(32) syndrome = Zeros(32);
syndrome<31> = '1'; // A
syndrome<15:0> = AArch32.PhysicalSErrorSyndrome();
DISR = syndrome;

else
implicit_esb = FALSE;
bits(64) syndrome = Zeros(64);
syndrome<31> = '1'; // A
syndrome<24:0> = AArch64.PhysicalSErrorSyndrome(implicit_esb);
DISR_EL1 = syndrome;

ClearPendingPhysicalSError(); // Set ISR_EL1.A to 0

return;

Library pseudocode for aarch64/functions/ras/AArch64.EncodeAsyncErrorSyndrome

// AArch64.EncodeAsyncErrorSyndrome()
// ==================================
// Return the encoding for corresponding ErrorState.

bits(3) AArch64.EncodeAsyncErrorSyndrome(ErrorState errorstate)
case errorstate of

when ErrorState_UC return '000';
when ErrorState_UEU return '001';
when ErrorState_UEO return '010';
when ErrorState_UER return '011';
when ErrorState_CE return '110';
otherwise Unreachable();

Library pseudocode for aarch64/functions/ras/AArch64.EncodeSyncErrorSyndrome

// AArch64.EncodeSyncErrorSyndrome()
// =================================
// Return the encoding for corresponding ErrorState.

bits(2) AArch64.EncodeSyncErrorSyndrome(ErrorState errorstate)
case errorstate of

when ErrorState_UC return '10';
when ErrorState_UEO return '11';
when ErrorState_UER return '00';
otherwise Unreachable();

Shared Pseudocode Functions Page 1726

Library pseudocode for aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome

// AArch64.PhysicalSErrorSyndrome()
// ================================
// Generate SError syndrome.

bits(25) AArch64.PhysicalSErrorSyndrome(boolean implicit_esb)
bits(25) syndrome = Zeros(25);
FaultRecord fault = GetPendingPhysicalSError();
ErrorState errorstate = AArch64.PEErrorState(fault);
if errorstate == ErrorState_Uncategorized then

syndrome = Zeros(25);
elsif errorstate == ErrorState_IMPDEF then

syndrome<24> = '1'; // IDS
syndrome<23:0> = bits(24) IMPLEMENTATION_DEFINED "IMPDEF ErrorState";

else
syndrome<24> = '0'; // IDS
syndrome<13> = (if implicit_esb then '1' else '0'); // IESB
syndrome<12:10> = AArch64.EncodeAsyncErrorSyndrome(errorstate); // AET
syndrome<9> = fault.extflag; // EA
syndrome<5:0> = '010001'; // DFSC

return syndrome;

Library pseudocode for aarch64/functions/ras/AArch64.vESBOperation

// AArch64.vESBOperation()
// =======================
// Perform the AArch64 ESB operation for virtual SError interrupts, either for ESB
// executed in AArch64 state, or for ESB in AArch32 state with EL2 using AArch64 state

AArch64.vESBOperation()
assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();

// If physical SError interrupts are routed to EL2, and TGE is not set, then a virtual
// SError interrupt might be pending
vSEI_enabled = HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
vSEI_pending = vSEI_enabled && HCR_EL2.VSE == '1';
vintdis = Halted() || ExternalDebugInterruptsDisabled(EL1);
vmasked = vintdis || PSTATE.A == '1';

// Check for a masked virtual SError pending
if vSEI_pending && vmasked then

// This function might be called for the interworking case, and INTdis is masking
// the virtual SError interrupt.
if ELUsingAArch32(EL1) then

bits(32) target = Zeros(32);
target<31> = '1'; // A
target<15:14> = VDFSR<15:14>; // AET
target<12> = VDFSR<12>; // ExT
target<9> = TTBCR.EAE; // LPAE
if TTBCR.EAE == '1' then // Long-descriptor format

target<5:0> = '010001'; // STATUS
else // Short-descriptor format

target<10,3:0> = '10110'; // FS
VDISR = target;

else
bits(64) target = Zeros(64);
target<31> = '1'; // A
target<24:0> = VSESR_EL2<24:0>;
VDISR_EL2 = target;

HCR_EL2.VSE = '0'; // Clear pending virtual SError

return;

Shared Pseudocode Functions Page 1727

Library pseudocode for aarch64/functions/ras/FirstRecordOfNode

// FirstRecordOfNode()
// ===================
// Return the first record in the node that contains the record n.

integer FirstRecordOfNode(integer n)
for q = n downto 0

if IsFirstRecordOfNode(q) then return q;
Unreachable();

Library pseudocode for aarch64/functions/ras/IsCommonFaultInjectionImplemented

// IsCommonFaultInjectionImplemented()
// ===================================
// Check if the Common Fault Injection Model Extension is implemented by the node that owns this
// error record.

boolean IsCommonFaultInjectionImplemented(integer n);

Library pseudocode for aarch64/functions/ras/IsCountableErrorsRecorded

// IsCountableErrorsRecorded()
// ===========================
// Check whether Error record n records countable errors.

boolean IsCountableErrorsRecorded(integer n);

Library pseudocode for aarch64/functions/ras/IsErrorAddressIncluded

// IsErrorAddressIncluded()
// ========================
// Check whether Error record n includes an address associated with an error.

boolean IsErrorAddressIncluded(integer n);

Library pseudocode for aarch64/functions/ras/IsErrorRecordImplemented

// IsErrorRecordImplemented()
// ==========================
// Is the error record n implemented

boolean IsErrorRecordImplemented(integer n);

Library pseudocode for aarch64/functions/ras/IsFirstRecordOfNode

// IsFirstRecordOfNode()
// =====================
// Check if the record q is the first error record in its node.

boolean IsFirstRecordOfNode(integer q);

Library pseudocode for aarch64/functions/ras/IsSPMUCounterImplemented

// IsSPMUCounterImplemented()
// ==========================
// Does the System PMU s implement the counter n.

boolean IsSPMUCounterImplemented(integer s, integer n);

Shared Pseudocode Functions Page 1728

Library pseudocode for aarch64/functions/rcw/ProtectionEnabled

// ProtectionEnabled()
// ===================
// Returns TRUE if the ProtectedBit is
// enabled in the current Exception level.

boolean ProtectionEnabled(bits(2) el)
assert HaveEL(el);
regime = S1TranslationRegime(el);
assert(!ELUsingAArch32(regime));
if (!IsD128Enabled(el)) then

case regime of
when EL1

return IsTCR2EL1Enabled() && TCR2_EL1.PnCH == '1';
when EL2

return IsTCR2EL2Enabled() && TCR2_EL2.PnCH == '1';
when EL3

return TCR_EL3.PnCH == '1';
else

return TRUE;
return FALSE;

Library pseudocode for aarch64/functions/rcw/RCW128_PROTECTED_BIT

constant integer RCW128_PROTECTED_BIT = 114;

Library pseudocode for aarch64/functions/rcw/RCW64_PROTECTED_BIT

constant integer RCW64_PROTECTED_BIT = 52;

Shared Pseudocode Functions Page 1729

Library pseudocode for aarch64/functions/rcw/RCWCheck

Shared Pseudocode Functions Page 1730

// RCWCheck()
// ==========
// Returns nzcv based on : if the new value for RCW/RCWS instructions satisfy RCW and/or RCWS checks
// Z is set to 1 if RCW checks fail
// C is set to 0 if RCWS checks fail

bits(4) RCWCheck(bits(N) old, bits(N) new, boolean soft)
assert N IN {64,128};
integer protectedbit = if N == 128 then RCW128_PROTECTED_BIT else RCW64_PROTECTED_BIT;
boolean rcw_fail = FALSE;
boolean rcws_fail = FALSE;
boolean rcw_state_fail = FALSE;
boolean rcws_state_fail = FALSE;
boolean rcw_mask_fail = FALSE;
boolean rcws_mask_fail = FALSE;

//Effective RCWMask calculation
bits(N) rcwmask = RCWMASK_EL1<N-1:0>;
if N == 64 then

rcwmask<49:18> = Replicate(rcwmask<17>,32);
rcwmask<0> = '0';

else
rcwmask<55:17> = Replicate(rcwmask<16>,39);
rcwmask<126:125,120:119,107:101,90:56,1:0> = Zeros(48);

//Effective RCWSMask calculation
bits(N) rcwsoftmask = RCWSMASK_EL1<N-1:0>;
if N == 64 then

rcwsoftmask<49:18> = Replicate(rcwsoftmask<17>,32);
rcwsoftmask<0> = '0';
if(ProtectionEnabled(PSTATE.EL)) then

rcwsoftmask<52> = '0';
else

rcwsoftmask<55:17> = Replicate(rcwsoftmask<16>,39);
rcwsoftmask<126:125,120:119,107:101,90:56,1:0> = Zeros(48);
rcwsoftmask<114> = '0';

//RCW Checks
//State Check
if (ProtectionEnabled(PSTATE.EL)) then

if old<protectedbit> == '1' then
rcw_state_fail = new<protectedbit,0> != old<protectedbit,0>;

elsif old<protectedbit> == '0' then
rcw_state_fail = new<protectedbit> != old<protectedbit>;

//Mask Check
if (ProtectionEnabled(PSTATE.EL)) then

if old<protectedbit,0> == '11' then
rcw_mask_fail = !IsZero((new EOR old) AND NOT(rcwmask));

//RCWS Checks
if soft then

//State Check
if old<0> == '1' then

rcws_state_fail = new<0> != old<0>;
elsif (!ProtectionEnabled(PSTATE.EL) ||

(ProtectionEnabled(PSTATE.EL) && old<protectedbit> == '0')) then
rcws_state_fail = new<0> != old<0> ;

//Mask Check
if old<0> == '1' then

rcws_mask_fail = !IsZero((new EOR old) AND NOT(rcwsoftmask));

rcw_fail = rcw_state_fail || rcw_mask_fail ;
rcws_fail = rcws_state_fail || rcws_mask_fail;

bit n = '0';
bit z = if rcw_fail then '1' else '0';
bit c = if rcws_fail then '0' else '1';
bit v = '0';
return <n, z, c, v>;

Shared Pseudocode Functions Page 1731

Library pseudocode for aarch64/functions/reduceop/Reduce

// Reduce()
// ========

bits(esize) Reduce(ReduceOp op, bits(N) input, integer esize)
boolean altfp = HaveAltFP() && !UsingAArch32() && FPCR.AH == '1';
return Reduce(op, input, esize, altfp);

// Reduce()
// ========
// Perform the operation 'op' on pairs of elements from the input vector,
// reducing the vector to a scalar result. The 'altfp' argument controls
// alternative floating-point behavior.

bits(esize) Reduce(ReduceOp op, bits(N) input, integer esize, boolean altfp)
assert esize IN {8,16,32,64};
integer half;
bits(esize) hi;
bits(esize) lo;
bits(esize) result;

if N == esize then
return input<esize-1:0>;

half = N DIV 2;
hi = Reduce(op, input<N-1:half>, esize, altfp);
lo = Reduce(op, input<half-1:0>, esize, altfp);

case op of
when ReduceOp_FMINNUM

result = FPMinNum(lo, hi, FPCR[]);
when ReduceOp_FMAXNUM

result = FPMaxNum(lo, hi, FPCR[]);
when ReduceOp_FMIN

result = FPMin(lo, hi, FPCR[], altfp);
when ReduceOp_FMAX

result = FPMax(lo, hi, FPCR[], altfp);
when ReduceOp_FADD

result = FPAdd(lo, hi, FPCR[]);
when ReduceOp_ADD

result = lo + hi;

return result;

Library pseudocode for aarch64/functions/reduceop/ReduceOp

// ReduceOp
// ========
// Vector reduce instruction types.

enumeration ReduceOp {ReduceOp_FMINNUM, ReduceOp_FMAXNUM,
ReduceOp_FMIN, ReduceOp_FMAX,
ReduceOp_FADD, ReduceOp_ADD};

Shared Pseudocode Functions Page 1732

Library pseudocode for aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers

// AArch64.MaybeZeroRegisterUppers()
// =================================
// On taking an exception to AArch64 from AArch32, it is CONSTRAINED UNPREDICTABLE whether the top
// 32 bits of registers visible at any lower Exception level using AArch32 are set to zero.

AArch64.MaybeZeroRegisterUppers()
assert UsingAArch32(); // Always called from AArch32 state before entering AArch64 state

integer first;
integer last;
boolean include_R15;
if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then

first = 0; last = 14; include_R15 = FALSE;
elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) then

first = 0; last = 30; include_R15 = FALSE;
else

first = 0; last = 30; include_R15 = TRUE;

for n = first to last
if (n != 15 || include_R15) && ConstrainUnpredictableBool(Unpredictable_ZEROUPPER) then

_R[n]<63:32> = Zeros(32);

return;

Library pseudocode for aarch64/functions/registers/AArch64.ResetGeneralRegisters

// AArch64.ResetGeneralRegisters()
// ===============================

AArch64.ResetGeneralRegisters()

for i = 0 to 30
X[i, 64] = bits(64) UNKNOWN;

return;

Library pseudocode for aarch64/functions/registers/AArch64.ResetSIMDFPRegisters

// AArch64.ResetSIMDFPRegisters()
// ==============================

AArch64.ResetSIMDFPRegisters()

for i = 0 to 31
V[i, 128] = bits(128) UNKNOWN;

return;

Shared Pseudocode Functions Page 1733

Library pseudocode for aarch64/functions/registers/AArch64.ResetSpecialRegisters

// AArch64.ResetSpecialRegisters()
// ===============================

AArch64.ResetSpecialRegisters()

// AArch64 special registers
SP_EL0 = bits(64) UNKNOWN;
SP_EL1 = bits(64) UNKNOWN;
SPSR_EL1 = bits(64) UNKNOWN;
ELR_EL1 = bits(64) UNKNOWN;
if HaveEL(EL2) then

SP_EL2 = bits(64) UNKNOWN;
SPSR_EL2 = bits(64) UNKNOWN;
ELR_EL2 = bits(64) UNKNOWN;

if HaveEL(EL3) then
SP_EL3 = bits(64) UNKNOWN;
SPSR_EL3 = bits(64) UNKNOWN;
ELR_EL3 = bits(64) UNKNOWN;

// AArch32 special registers that are not architecturally mapped to AArch64 registers
if HaveAArch32EL(EL1) then

SPSR_fiq<31:0> = bits(32) UNKNOWN;
SPSR_irq<31:0> = bits(32) UNKNOWN;
SPSR_abt<31:0> = bits(32) UNKNOWN;
SPSR_und<31:0> = bits(32) UNKNOWN;

// External debug special registers
DLR_EL0 = bits(64) UNKNOWN;
DSPSR_EL0 = bits(64) UNKNOWN;

return;

Library pseudocode for aarch64/functions/registers/AArch64.ResetSystemRegisters

// AArch64.ResetSystemRegisters()
// ==============================

AArch64.ResetSystemRegisters(boolean cold_reset);

Library pseudocode for aarch64/functions/registers/PC

// PC - non-assignment form
// ========================
// Read program counter.

bits(64) PC[]
return _PC;

Shared Pseudocode Functions Page 1734

Library pseudocode for aarch64/functions/registers/SP

// SP[] - assignment form
// ======================
// Write to stack pointer from a 64-bit value.

SP[] = bits(64) value
if PSTATE.SP == '0' then

SP_EL0 = value;
else

case PSTATE.EL of
when EL0 SP_EL0 = value;
when EL1 SP_EL1 = value;
when EL2 SP_EL2 = value;
when EL3 SP_EL3 = value;

return;

// SP[] - non-assignment form
// ==========================
// Read stack pointer with slice of 64 bits.

bits(64) SP[]
if PSTATE.SP == '0' then

return SP_EL0;
else

case PSTATE.EL of
when EL0 return SP_EL0;
when EL1 return SP_EL1;
when EL2 return SP_EL2;
when EL3 return SP_EL3;

Library pseudocode for aarch64/functions/registers/SPMCFGR_EL1

// SPMCFGR_EL1[] - non-assignment form
// =====================================
// Read the current configuration of System Performance monitor for
// System PMU 's'.

bits(64) SPMCFGR_EL1[integer s];

Library pseudocode for aarch64/functions/registers/SPMCGCR_EL1

// SPMCGCR_EL1[] - non-assignment form
// ===================================
// Read counter group 'n' configuration for System PMU 's'.

bits(64) SPMCGCR_EL1[integer s, integer n];

Library pseudocode for aarch64/functions/registers/SPMCNTENCLR_EL0

// SPMCNTENCLR_EL0[] - non-assignment form
// =======================================
// Read the current mapping of disabled event counters for an 's'.

bits(64) SPMCNTENCLR_EL0[integer s];

// SPMCNTENCLR_EL0[] - assignment form
// ===================================
// Disable event counters for System PMU 's'.

SPMCNTENCLR_EL0[integer s] = bits(64) value;

Shared Pseudocode Functions Page 1735

Library pseudocode for aarch64/functions/registers/SPMCNTENSET_EL0

// SPMCNTENSET_EL0[] - non-assignment form
// =======================================
// Read the current mapping for enabled event counters of System PMU 's'.

bits(64) SPMCNTENSET_EL0[integer s];

// SPMCNTENSET_EL0[] - assignment form
// ===================================
// Enable event counters of System PMU 's'.

SPMCNTENSET_EL0[integer s] = bits(64) value;

Library pseudocode for aarch64/functions/registers/SPMCR_EL0

// SPMCR_EL0[] - non-assignment form
// ==================================
// Read the control register for System PMU 's'.

bits(64) SPMCR_EL0[integer s];

// SPMCR_EL0[] - assignment form
// =============================
// Write to the control register for System PMU 's'.

SPMCR_EL0[integer s] = bits(64) value;

Library pseudocode for aarch64/functions/registers/SPMDEVAFF_EL1

// SPMDEVAFF_EL1[] - non-assignment form
// =====================================
// Read the discovery information for System PMU 's'.

bits(64) SPMDEVAFF_EL1[integer s];

Library pseudocode for aarch64/functions/registers/SPMDEVARCH_EL1

// SPMDEVARCH_EL1[] - non-assignment form
// ======================================
// Read the discovery information for System PMU 's'.

bits(64) SPMDEVARCH_EL1[integer s];

Library pseudocode for aarch64/functions/registers/SPMEVCNTR_EL0

// SPMEVCNTR_EL0[] - non-assignment form
// =====================================
// Read a System PMU Event Counter register for counter 'n' of a given
// System PMU 's'.

bits(64) SPMEVCNTR_EL0[integer s, integer n];

// SPMEVCNTR_EL0[] - assignment form
// =================================
// Write to a System PMU Event Counter register for counter 'n' of a given
// System PMU 's'.

SPMEVCNTR_EL0[integer s, integer n] = bits(64) value;

Shared Pseudocode Functions Page 1736

Library pseudocode for aarch64/functions/registers/SPMEVFILT2R_EL0

// SPMEVFILT2R_EL0[] - non-assignment form
// =======================================
// Read the additional event selection controls for
// counter 'n' of a given System PMU 's'.

bits(64) SPMEVFILT2R_EL0[integer s, integer n];

// SPMEVFILT2R_EL0[] - assignment form
// ===================================
// Configure the additional event selection controls for
// counter 'n' of a given System PMU 's'.

SPMEVFILT2R_EL0[integer s, integer n] = bits(64) value;

Library pseudocode for aarch64/functions/registers/SPMEVFILTR_EL0

// SPMEVFILTR_EL0[] - non-assignment form
// ======================================
// Read the additional event selection controls for
// counter 'n' of a given System PMU 's'.

bits(64) SPMEVFILTR_EL0[integer s, integer n];

// SPMEVFILTR_EL0[] - assignment form
// ==================================
// Configure the additional event selection controls for
// counter 'n' of a given System PMU 's'.

SPMEVFILTR_EL0[integer s, integer n] = bits(64) value;

Library pseudocode for aarch64/functions/registers/SPMEVTYPER_EL0

// SPMEVTYPER_EL0[] - non-assignment form
// ======================================
// Read the current mapping of event with event counter SPMEVCNTR_EL0
// for counter 'n' of a given System PMU 's'.

bits(64) SPMEVTYPER_EL0[integer s, integer n];

// SPMEVTYPER_EL0[] - assignment form
// ==================================
// Configure which event increments the event counter SPMEVCNTR_EL0, for
// counter 'n' of a given System PMU 's'.

SPMEVTYPER_EL0[integer s, integer n] = bits(64) value;

Library pseudocode for aarch64/functions/registers/SPMIIDR_EL1

// SPMIIDR_EL1[] - non-assignment form
// ===================================
// Read the discovery information for System PMU 's'.

bits(64) SPMIIDR_EL1[integer s];

Shared Pseudocode Functions Page 1737

Library pseudocode for aarch64/functions/registers/SPMINTENCLR_EL1

// SPMINTENCLR_EL1[] - non-assignment form
// =======================================
// Read the masking information for interrupt requests on overflows of
// implemented counters of System PMU 's'.

bits(64) SPMINTENCLR_EL1[integer s];

// SPMINTENCLR_EL1[] - assignment form
// ===================================
// Disable the generation of interrupt requests on overflows of
// implemented counters of System PMU 's'.

SPMINTENCLR_EL1[integer s] = bits(64) value;

Library pseudocode for aarch64/functions/registers/SPMINTENSET_EL1

// SPMINTENSET_EL1[] - non-assignment form
// =======================================
// Read the masking information for interrupt requests on overflows of
// implemented counters of System PMU 's'.

bits(64) SPMINTENSET_EL1[integer s];

// SPMINTENSET_EL1[] - assignment form
// ===================================
// Disable the generation of interrupt requests on overflows of
// implemented counters for System PMU 's'.

SPMINTENSET_EL1[integer s] = bits(64) value;

Library pseudocode for aarch64/functions/registers/SPMOVSCLR_EL0

// SPMOVSCLR_EL0[] - non-assignment form
// =====================================
// Read the overflow bit clear status of implemented counters for System PMU 's'.

bits(64) SPMOVSCLR_EL0[integer s];

// SPMOVSCLR_EL0[] - assignment form
// =================================
// Clear the overflow bit clear status of implemented counters for
// System PMU 's'.

SPMOVSCLR_EL0[integer s] = bits(64) value;

Library pseudocode for aarch64/functions/registers/SPMOVSSET_EL0

// SPMOVSSET_EL0[] - non-assignment form
// =====================================
// Read state of the overflow bit for the implemented event counters
// of System PMU 's'.

bits(64) SPMOVSSET_EL0[integer s];

// SPMOVSSET_EL0[] - assignment form
// =================================
// Sets the state of the overflow bit for the implemented event counters
// of System PMU 's'.

SPMOVSSET_EL0[integer s] = bits(64) value;

Shared Pseudocode Functions Page 1738

Library pseudocode for aarch64/functions/registers/SPMROOTCR_EL3

// SPMROOTCR_EL3[] - non-assignment form
// =====================================
// Read the observability of Root and Realm events by System Performance
// Monitor for System PMU 's'.

bits(64) SPMROOTCR_EL3[integer s];

// SPMROOTCR_EL3[] - assignment form
// =================================
// Configure the observability of Root and Realm events by System
// Performance Monitor for System PMU 's'.

SPMROOTCR_EL3[integer s] = bits(64) value;

Library pseudocode for aarch64/functions/registers/SPMSCR_EL1

// SPMSCR_EL1[] - non-assignment form
// ===================================
// Read the observability of Secure events by System Performance Monitor
// for System PMU 's'.

bits(64) SPMSCR_EL1[integer s];

// SPMSCR_EL1[] - assignment form
// ==============================
// Configure the observability of secure events by System Performance
// Monitor for System PMU 's'.

SPMSCR_EL1[integer s] = bits(64) value;

Library pseudocode for aarch64/functions/registers/V

// V[] - assignment form
// =====================
// Write to SIMD&FP register with implicit extension from
// 8, 16, 32, 64 or 128 bits.

V[integer n, integer width] = bits(width) value
assert n >= 0 && n <= 31;
assert width IN {8,16,32,64,128};
integer vlen = if IsSVEEnabled(PSTATE.EL) then CurrentVL else 128;
if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then

_Z[n] = ZeroExtend(value, MAX_VL);
else

_Z[n]<vlen-1:0> = ZeroExtend(value, vlen);

// V[] - non-assignment form
// =========================
// Read from SIMD&FP register with implicit slice of 8, 16
// 32, 64 or 128 bits.

bits(width) V[integer n, integer width]
assert n >= 0 && n <= 31;
assert width IN {8,16,32,64,128};
return _Z[n]<width-1:0>;

Shared Pseudocode Functions Page 1739

Library pseudocode for aarch64/functions/registers/Vpart

// Vpart[] - non-assignment form
// =============================
// Reads a 128-bit SIMD&FP register in up to two parts:
// part 0 returns the bottom 8, 16, 32 or 64 bits of a value held in the register;
// part 1 returns the top half of the bottom 64 bits or the top half of the 128-bit
// value held in the register.

bits(width) Vpart[integer n, integer part, integer width]
assert n >= 0 && n <= 31;
assert part IN {0, 1};
if part == 0 then

assert width < 128;
return V[n, width];

else
assert width IN {32,64};
bits(128) vreg = V[n, 128];
return vreg<(width * 2)-1:width>;

// Vpart[] - assignment form
// =========================
// Writes a 128-bit SIMD&FP register in up to two parts:
// part 0 zero extends a 8, 16, 32, or 64-bit value to fill the whole register;
// part 1 inserts a 64-bit value into the top half of the register.

Vpart[integer n, integer part, integer width] = bits(width) value
assert n >= 0 && n <= 31;
assert part IN {0, 1};
if part == 0 then

assert width < 128;
V[n, width] = value;

else
assert width == 64;
bits(64) vreg = V[n, 64];
V[n, 128] = value<63:0> : vreg;

Library pseudocode for aarch64/functions/registers/X

// X[] - assignment form
// =====================
// Write to general-purpose register from either a 32-bit or a 64-bit value,
// where the size of the value is passed as an argument.

X[integer n, integer width] = bits(width) value
assert n >= 0 && n <= 31;
assert width IN {32,64};
if n != 31 then

_R[n] = ZeroExtend(value, 64);
return;

// X[] - non-assignment form
// =========================
// Read from general-purpose register with an explicit slice of 8, 16, 32 or 64 bits.

bits(width) X[integer n, integer width]
assert n >= 0 && n <= 31;
assert width IN {8,16,32,64};
if n != 31 then

return _R[n]<width-1:0>;
else

return Zeros(width);

Shared Pseudocode Functions Page 1740

Library pseudocode for aarch64/functions/shiftreg/DecodeShift

// DecodeShift()
// =============
// Decode shift encodings

ShiftType DecodeShift(bits(2) op)
case op of

when '00' return ShiftType_LSL;
when '01' return ShiftType_LSR;
when '10' return ShiftType_ASR;
when '11' return ShiftType_ROR;

Library pseudocode for aarch64/functions/shiftreg/ShiftReg

// ShiftReg()
// ==========
// Perform shift of a register operand

bits(N) ShiftReg(integer reg, ShiftType shiftype, integer amount, integer N)
bits(N) result = X[reg, N];
case shiftype of

when ShiftType_LSL result = LSL(result, amount);
when ShiftType_LSR result = LSR(result, amount);
when ShiftType_ASR result = ASR(result, amount);
when ShiftType_ROR result = ROR(result, amount);

return result;

Library pseudocode for aarch64/functions/shiftreg/ShiftType

// ShiftType
// =========
// AArch64 register shifts.

enumeration ShiftType {ShiftType_LSL, ShiftType_LSR, ShiftType_ASR, ShiftType_ROR};

Shared Pseudocode Functions Page 1741

Library pseudocode for aarch64/functions/sme/CounterToPredicate

// CounterToPredicate()
// ====================

bits(width) CounterToPredicate(bits(16) pred, integer width)
integer count;
integer esize;
integer elements;
constant integer VL = CurrentVL;
constant integer PL = VL DIV 8;
integer maxbit = HighestSetBit(CeilPow2(PL * 4)<15:0>);
assert maxbit <= 14;
bits(PL*4) result;
boolean invert = pred<15> == '1';

assert width == PL || width == PL*2 || width == PL*3 || width == PL*4;

if IsZero(pred<3:0>) then
return Zeros(width);

case pred<3:0> of
when 'xxx1'

count = UInt(pred<maxbit:1>);
esize = 8;

when 'xx10'
count = UInt(pred<maxbit:2>);
esize = 16;

when 'x100'
count = UInt(pred<maxbit:3>);
esize = 32;

when '1000'
count = UInt(pred<maxbit:4>);
esize = 64;

elements = (VL * 4) DIV esize;
result = Zeros(PL*4);
constant integer psize = esize DIV 8;
for e = 0 to elements-1

bit pbit = if e < count then '1' else '0';
if invert then

pbit = NOT(pbit);
Elem[result, e, psize] = ZeroExtend(pbit, psize);

return result<width-1:0>;

Shared Pseudocode Functions Page 1742

Library pseudocode for aarch64/functions/sme/EncodePredCount

// EncodePredCount()
// =================

bits(width) EncodePredCount(integer esize, integer elements,
integer count_in, boolean invert_in, integer width)

integer count = count_in;
boolean invert = invert_in;
constant integer PL = CurrentVL DIV 8;
assert width == PL;
assert esize IN {8, 16, 32, 64};
assert count >=0 && count <= elements;
bits(16) pred;

if count == 0 then
return Zeros(width);

if invert then
count = elements - count;

elsif count == elements then
count = 0;
invert = TRUE;

bit inv = (if invert then '1' else '0');
case esize of

when 8 pred = inv : count<13:0> : '1';
when 16 pred = inv : count<12:0> : '10';
when 32 pred = inv : count<11:0> : '100';
when 64 pred = inv : count<10:0> : '1000';

return ZeroExtend(pred, width);

Library pseudocode for aarch64/functions/sme/HaveSME

// HaveSME()
// =========
// Returns TRUE if the SME extension is implemented, FALSE otherwise.

boolean HaveSME()
return IsFeatureImplemented(FEAT_SME);

Library pseudocode for aarch64/functions/sme/HaveSME2

// HaveSME2()
// ==========
// Returns TRUE if the SME2 extension is implemented, FALSE otherwise.

boolean HaveSME2()
return IsFeatureImplemented(FEAT_SME2);

Library pseudocode for aarch64/functions/sme/HaveSME2p1

// HaveSME2p1()
// ============
// Returns TRUE if the SME2.1 extension is implemented, FALSE otherwise.

boolean HaveSME2p1()
return IsFeatureImplemented(FEAT_SME2p1);

Shared Pseudocode Functions Page 1743

Library pseudocode for aarch64/functions/sme/HaveSMEB16B16

// HaveSMEB16B16()
// ===============
// Returns TRUE if the SME2.1 non-widening BFloat16 instructions are implemented, FALSE otherwise.

boolean HaveSMEB16B16()
return IsFeatureImplemented(FEAT_SVE_B16B16);

Library pseudocode for aarch64/functions/sme/HaveSMEF16F16

// HaveSMEF16F16()
// ===============
// Returns TRUE if the SME2.1 half-precision instructions are implemented, FALSE otherwise.

boolean HaveSMEF16F16()
return IsFeatureImplemented(FEAT_SME_F16F16);

Library pseudocode for aarch64/functions/sme/HaveSMEF64F64

// HaveSMEF64F64()
// ===============
// Returns TRUE if the SMEF64F64 extension is implemented, FALSE otherwise.

boolean HaveSMEF64F64()
return IsFeatureImplemented(FEAT_SME_F64F64);

Library pseudocode for aarch64/functions/sme/HaveSMEI16I64

// HaveSMEI16I64()
// ===============
// Returns TRUE if the SMEI16I64 extension is implemented, FALSE otherwise.

boolean HaveSMEI16I64()
return IsFeatureImplemented(FEAT_SME_I16I64);

Library pseudocode for aarch64/functions/sme/Lookup

bits(512) _ZT0;

Library pseudocode for aarch64/functions/sme/PredCountTest

// PredCountTest()
// ===============

bits(4) PredCountTest(integer elements, integer count, boolean invert)
bit n, z, c, v;
z = (if count == 0 then '1' else '0'); // none active
if !invert then

n = (if count != 0 then '1' else '0'); // first active
c = (if count == elements then '0' else '1'); // NOT last active

else
n = (if count == elements then '1' else '0'); // first active
c = (if count != 0 then '0' else '1'); // NOT last active

v = '0';

return n:z:c:v;

Library pseudocode for aarch64/functions/sme/System

// System Registers
// ================

array bits(MAX_VL) _ZA[0..255];

Shared Pseudocode Functions Page 1744

Library pseudocode for aarch64/functions/sme/ZAhslice

// ZAhslice[] - non-assignment form
// ================================

bits(width) ZAhslice[integer tile, integer esize, integer slice, integer width]
assert esize IN {8, 16, 32, 64, 128};
integer tiles = esize DIV 8;
assert tile >= 0 && tile < tiles;
integer slices = CurrentSVL DIV esize;
assert slice >= 0 && slice < slices;

return ZAvector[tile + slice * tiles, width];

// ZAhslice[] - assignment form
// ============================

ZAhslice[integer tile, integer esize, integer slice, integer width] = bits(width) value
assert esize IN {8, 16, 32, 64, 128};
integer tiles = esize DIV 8;
assert tile >= 0 && tile < tiles;
integer slices = CurrentSVL DIV esize;
assert slice >= 0 && slice < slices;

ZAvector[tile + slice * tiles, width] = value;

Library pseudocode for aarch64/functions/sme/ZAslice

// ZAslice[] - non-assignment form
// ===============================

bits(width) ZAslice[integer tile, integer esize, boolean vertical, integer slice, integer width]
bits(width) result;

if vertical then
result = ZAvslice[tile, esize, slice, width];

else
result = ZAhslice[tile, esize, slice, width];

return result;

// ZAslice[] - assignment form
// ===========================

ZAslice[integer tile, integer esize, boolean vertical,
integer slice, integer width] = bits(width) value

if vertical then
ZAvslice[tile, esize, slice, width] = value;

else
ZAhslice[tile, esize, slice, width] = value;

Shared Pseudocode Functions Page 1745

Library pseudocode for aarch64/functions/sme/ZAtile

// ZAtile[] - non-assignment form
// ==============================

bits(width) ZAtile[integer tile, integer esize, integer width]
constant integer SVL = CurrentSVL;
integer slices = SVL DIV esize;
assert width == SVL * slices;
bits(width) result;

for slice = 0 to slices-1
Elem[result, slice, SVL] = ZAhslice[tile, esize, slice, SVL];

return result;

// ZAtile[] - assignment form
// ==========================

ZAtile[integer tile, integer esize, integer width] = bits(width) value
constant integer SVL = CurrentSVL;
integer slices = SVL DIV esize;
assert width == SVL * slices;

for slice = 0 to slices-1
ZAhslice[tile, esize, slice, SVL] = Elem[value, slice, SVL];

Library pseudocode for aarch64/functions/sme/ZAvector

// ZAvector[] - non-assignment form
// ================================

bits(width) ZAvector[integer index, integer width]
assert width == CurrentSVL;
assert index >= 0 && index < (width DIV 8);

return _ZA[index]<width-1:0>;

// ZAvector[] - assignment form
// ============================

ZAvector[integer index, integer width] = bits(width) value
assert width == CurrentSVL;
assert index >= 0 && index < (width DIV 8);

if ConstrainUnpredictableBool(Unpredictable_SMEZEROUPPER) then
_ZA[index] = ZeroExtend(value, MAX_VL);

else
_ZA[index]<width-1:0> = value;

Shared Pseudocode Functions Page 1746

Library pseudocode for aarch64/functions/sme/ZAvslice

// ZAvslice[] - non-assignment form
// ================================

bits(width) ZAvslice[integer tile, integer esize, integer slice, integer width]
integer slices = CurrentSVL DIV esize;
bits(width) result;

for s = 0 to slices-1
bits(width) hslice = ZAhslice[tile, esize, s, width];
Elem[result, s, esize] = Elem[hslice, slice, esize];

return result;

// ZAvslice[] - assignment form
// ============================

ZAvslice[integer tile, integer esize, integer slice, integer width] = bits(width) value
integer slices = CurrentSVL DIV esize;

for s = 0 to slices-1
bits(width) hslice = ZAhslice[tile, esize, s, width];
Elem[hslice, slice, esize] = Elem[value, s, esize];
ZAhslice[tile, esize, s, width] = hslice;

Library pseudocode for aarch64/functions/sme/ZT0

// ZT0[] - non-assignment form
// ===========================

bits(width) ZT0[integer width]
assert width == 512;
return _ZT0<width-1:0>;

// ZT0[] - assignment form
// =======================

ZT0[integer width] = bits(width) value
assert width == 512;
_ZT0<width-1:0> = value;

Shared Pseudocode Functions Page 1747

Library pseudocode for aarch64/functions/sve/AArch32.IsFPEnabled

// AArch32.IsFPEnabled()
// =====================
// Returns TRUE if access to the SIMD&FP instructions or System registers are
// enabled at the target exception level in AArch32 state and FALSE otherwise.

boolean AArch32.IsFPEnabled(bits(2) el)
if el == EL0 && !ELUsingAArch32(EL1) then

return AArch64.IsFPEnabled(el);

if HaveEL(EL3) && ELUsingAArch32(EL3) && CurrentSecurityState() == SS_NonSecure then
// Check if access disabled in NSACR
if NSACR.cp10 == '0' then return FALSE;

if el IN {EL0, EL1} then
// Check if access disabled in CPACR
boolean disabled;
case CPACR.cp10 of

when '00' disabled = TRUE;
when '01' disabled = el == EL0;
when '10' disabled = ConstrainUnpredictableBool(Unpredictable_RESCPACR);
when '11' disabled = FALSE;

if disabled then return FALSE;

if el IN {EL0, EL1, EL2} && EL2Enabled() then
if !ELUsingAArch32(EL2) then

return AArch64.IsFPEnabled(EL2);
if HCPTR.TCP10 == '1' then return FALSE;

if HaveEL(EL3) && !ELUsingAArch32(EL3) then
// Check if access disabled in CPTR_EL3
if CPTR_EL3.TFP == '1' then return FALSE;

return TRUE;

Shared Pseudocode Functions Page 1748

Library pseudocode for aarch64/functions/sve/AArch64.IsFPEnabled

// AArch64.IsFPEnabled()
// =====================
// Returns TRUE if access to the SIMD&FP instructions or System registers are
// enabled at the target exception level in AArch64 state and FALSE otherwise.

boolean AArch64.IsFPEnabled(bits(2) el)
// Check if access disabled in CPACR_EL1
if el IN {EL0, EL1} && !IsInHost() then

// Check SIMD&FP at EL0/EL1
boolean disabled;
case CPACR_EL1.FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = el == EL0;
when '11' disabled = FALSE;

if disabled then return FALSE;

// Check if access disabled in CPTR_EL2
if el IN {EL0, EL1, EL2} && EL2Enabled() then

if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
boolean disabled;
case CPTR_EL2.FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then return FALSE;
else

if CPTR_EL2.TFP == '1' then return FALSE;

// Check if access disabled in CPTR_EL3
if HaveEL(EL3) then

if CPTR_EL3.TFP == '1' then return FALSE;

return TRUE;

Library pseudocode for aarch64/functions/sve/ActivePredicateElement

// ActivePredicateElement()
// ========================
// Returns TRUE if the predicate bit is 1 and FALSE otherwise

boolean ActivePredicateElement(bits(N) pred, integer e, integer esize)
assert esize IN {8, 16, 32, 64, 128};
integer n = e * (esize DIV 8);
assert n >= 0 && n < N;
return pred<n> == '1';

Library pseudocode for aarch64/functions/sve/AnyActiveElement

// AnyActiveElement()
// ==================
// Return TRUE if there is at least one active element in mask. Otherwise,
// return FALSE.

boolean AnyActiveElement(bits(N) mask, integer esize)
return LastActiveElement(mask, esize) >= 0;

Shared Pseudocode Functions Page 1749

Library pseudocode for aarch64/functions/sve/BitDeposit

// BitDeposit()
// ============
// Deposit the least significant bits from DATA into result positions
// selected by nonzero bits in MASK, setting other result bits to zero.

bits(N) BitDeposit (bits(N) data, bits(N) mask)
bits(N) res = Zeros(N);
integer db = 0;
for rb = 0 to N-1

if mask<rb> == '1' then
res<rb> = data<db>;
db = db + 1;

return res;

Library pseudocode for aarch64/functions/sve/BitExtract

// BitExtract()
// ============
// Extract and pack DATA bits selected by the nonzero bits in MASK into
// the least significant result bits, setting other result bits to zero.

bits(N) BitExtract (bits(N) data, bits(N) mask)
bits(N) res = Zeros(N);
integer rb = 0;
for db = 0 to N-1

if mask<db> == '1' then
res<rb> = data<db>;
rb = rb + 1;

return res;

Library pseudocode for aarch64/functions/sve/BitGroup

// BitGroup()
// ==========
// Extract and pack DATA bits selected by the nonzero bits in MASK into
// the least significant result bits, and pack unselected bits into the
// most significant result bits.

bits(N) BitGroup (bits(N) data, bits(N) mask)
bits(N) res;
integer rb = 0;

// compress masked bits to right
for db = 0 to N-1

if mask<db> == '1' then
res<rb> = data<db>;
rb = rb + 1;

// compress unmasked bits to left
for db = 0 to N-1

if mask<db> == '0' then
res<rb> = data<db>;
rb = rb + 1;

return res;

Library pseudocode for aarch64/functions/sve/CeilPow2

// CeilPow2()
// ==========
// For a positive integer X, return the smallest power of 2 >= X

integer CeilPow2(integer x)
if x == 0 then return 0;
if x == 1 then return 2;
return FloorPow2(x - 1) * 2;

Shared Pseudocode Functions Page 1750

Library pseudocode for aarch64/functions/sve/CheckNonStreamingSVEEnabled

// CheckNonStreamingSVEEnabled()
// =============================
// Checks for traps on SVE instructions that are not legal in streaming mode.

CheckNonStreamingSVEEnabled()
CheckSVEEnabled();

if HaveSME() && PSTATE.SM == '1' && !IsFullA64Enabled() then
SMEAccessTrap(SMEExceptionType_Streaming, PSTATE.EL);

Shared Pseudocode Functions Page 1751

Library pseudocode for aarch64/functions/sve/CheckOriginalSVEEnabled

// CheckOriginalSVEEnabled()
// =========================
// Checks for traps on SVE instructions and instructions that access SVE System
// registers.

CheckOriginalSVEEnabled()
assert HaveSVE();
boolean disabled;

if (HaveEL(EL3) && (CPTR_EL3.EZ == '0' || CPTR_EL3.TFP == '1') &&
EL3SDDUndefPriority()) then
UNDEFINED;

// Check if access disabled in CPACR_EL1
if PSTATE.EL IN {EL0, EL1} && !IsInHost() then

// Check SVE at EL0/EL1
case CPACR_EL1.ZEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0;
when '11' disabled = FALSE;

if disabled then SVEAccessTrap(EL1);

// Check SIMD&FP at EL0/EL1
case CPACR_EL1.FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0;
when '11' disabled = FALSE;

if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

// Check if access disabled in CPTR_EL2
if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then

if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
// Check SVE at EL2
case CPTR_EL2.ZEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then SVEAccessTrap(EL2);

// Check SIMD&FP at EL2
case CPTR_EL2.FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
else

if CPTR_EL2.TZ == '1' then SVEAccessTrap(EL2);
if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

// Check if access disabled in CPTR_EL3
if HaveEL(EL3) then

if CPTR_EL3.EZ == '0' then
if EL3SDDUndef() then

UNDEFINED;
else

SVEAccessTrap(EL3);

if CPTR_EL3.TFP == '1' then
if EL3SDDUndef() then

UNDEFINED;
else

AArch64.AdvSIMDFPAccessTrap(EL3);

Shared Pseudocode Functions Page 1752

Library pseudocode for aarch64/functions/sve/CheckSMEAccess

// CheckSMEAccess()
// ================
// Check that access to SME System registers is enabled.

CheckSMEAccess()
boolean disabled;
// Check if access disabled in CPACR_EL1
if PSTATE.EL IN {EL0, EL1} && !IsInHost() then

// Check SME at EL0/EL1
case CPACR_EL1.SMEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0;
when '11' disabled = FALSE;

if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL1);

if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
if HaveVirtHostExt() && HCR_EL2.E2H == '1' then

// Check SME at EL2
case CPTR_EL2.SMEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);
else

if CPTR_EL2.TSM == '1' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);

// Check if access disabled in CPTR_EL3
if HaveEL(EL3) then

if CPTR_EL3.ESM == '0' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL3);

Library pseudocode for aarch64/functions/sve/CheckSMEAndZAEnabled

// CheckSMEAndZAEnabled()
// ======================

CheckSMEAndZAEnabled()
CheckSMEEnabled();

if PSTATE.ZA == '0' then
SMEAccessTrap(SMEExceptionType_InactiveZA, PSTATE.EL);

Shared Pseudocode Functions Page 1753

Library pseudocode for aarch64/functions/sve/CheckSMEEnabled

// CheckSMEEnabled()
// =================

CheckSMEEnabled()
boolean disabled;
// Check if access disabled in CPACR_EL1
if PSTATE.EL IN {EL0, EL1} && !IsInHost() then

// Check SME at EL0/EL1
case CPACR_EL1.SMEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0;
when '11' disabled = FALSE;

if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL1);

// Check SIMD&FP at EL0/EL1
case CPACR_EL1.FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0;
when '11' disabled = FALSE;

if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);

if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
if HaveVirtHostExt() && HCR_EL2.E2H == '1' then

// Check SME at EL2
case CPTR_EL2.SMEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);

// Check SIMD&FP at EL2
case CPTR_EL2.FPEN of

when 'x0' disabled = TRUE;
when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
else

if CPTR_EL2.TSM == '1' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);
if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);

// Check if access disabled in CPTR_EL3
if HaveEL(EL3) then

if CPTR_EL3.ESM == '0' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL3);
if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);

Shared Pseudocode Functions Page 1754

Library pseudocode for aarch64/functions/sve/CheckSMEZT0Enabled

// CheckSMEZT0Enabled()
// ====================
// Checks for ZT0 enabled.

CheckSMEZT0Enabled()
// Check if ZA and ZT0 are inactive in PSTATE
if PSTATE.ZA == '0' then

SMEAccessTrap(SMEExceptionType_InactiveZA, PSTATE.EL);

// Check if EL0/EL1 accesses to ZT0 are disabled in SMCR_EL1
if PSTATE.EL IN {EL0, EL1} && !IsInHost() then

if SMCR_EL1.EZT0 == '0' then
SMEAccessTrap(SMEExceptionType_InaccessibleZT0, EL1);

// Check if EL0/EL1/EL2 accesses to ZT0 are disabled in SMCR_EL2
if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then

if SMCR_EL2.EZT0 == '0' then
SMEAccessTrap(SMEExceptionType_InaccessibleZT0, EL2);

// Check if all accesses to ZT0 are disabled in SMCR_EL3
if HaveEL(EL3) then

if SMCR_EL3.EZT0 == '0' then
SMEAccessTrap(SMEExceptionType_InaccessibleZT0, EL3);

Library pseudocode for aarch64/functions/sve/CheckSVEEnabled

// CheckSVEEnabled()
// =================
// Checks for traps on SVE instructions and instructions that
// access SVE System registers.

CheckSVEEnabled()
if HaveSME() && PSTATE.SM == '1' then

CheckSMEEnabled();
elsif HaveSME() && !HaveSVE() then

CheckStreamingSVEEnabled();
else

CheckOriginalSVEEnabled();

Library pseudocode for aarch64/functions/sve/CheckStreamingSVEAndZAEnabled

// CheckStreamingSVEAndZAEnabled()
// ===============================

CheckStreamingSVEAndZAEnabled()
CheckStreamingSVEEnabled();

if PSTATE.ZA == '0' then
SMEAccessTrap(SMEExceptionType_InactiveZA, PSTATE.EL);

Library pseudocode for aarch64/functions/sve/CheckStreamingSVEEnabled

// CheckStreamingSVEEnabled()
// ==========================

CheckStreamingSVEEnabled()
CheckSMEEnabled();

if PSTATE.SM == '0' then
SMEAccessTrap(SMEExceptionType_NotStreaming, PSTATE.EL);

Shared Pseudocode Functions Page 1755

Library pseudocode for aarch64/functions/sve/CurrentNSVL

// CurrentNSVL - non-assignment form
// =================================
// Non-Streaming VL

integer CurrentNSVL
integer vl;

if PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost()) then
vl = UInt(ZCR_EL1.LEN);

if PSTATE.EL == EL2 || (PSTATE.EL == EL0 && IsInHost()) then
vl = UInt(ZCR_EL2.LEN);

elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
vl = Min(vl, UInt(ZCR_EL2.LEN));

if PSTATE.EL == EL3 then
vl = UInt(ZCR_EL3.LEN);

elsif HaveEL(EL3) then
vl = Min(vl, UInt(ZCR_EL3.LEN));

vl = (vl + 1) * 128;
vl = ImplementedSVEVectorLength(vl);

return vl;

Library pseudocode for aarch64/functions/sve/CurrentSVL

// CurrentSVL - non-assignment form
// ================================
// Streaming SVL

integer CurrentSVL
integer vl;

if PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost()) then
vl = UInt(SMCR_EL1.LEN);

if PSTATE.EL == EL2 || (PSTATE.EL == EL0 && IsInHost()) then
vl = UInt(SMCR_EL2.LEN);

elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
vl = Min(vl, UInt(SMCR_EL2.LEN));

if PSTATE.EL == EL3 then
vl = UInt(SMCR_EL3.LEN);

elsif HaveEL(EL3) then
vl = Min(vl, UInt(SMCR_EL3.LEN));

vl = (vl + 1) * 128;
vl = ImplementedSMEVectorLength(vl);

return vl;

Library pseudocode for aarch64/functions/sve/CurrentVL

// CurrentVL - non-assignment form
// ===============================

integer CurrentVL
return if HaveSME() && PSTATE.SM == '1' then CurrentSVL else CurrentNSVL;

Shared Pseudocode Functions Page 1756

Library pseudocode for aarch64/functions/sve/DecodePredCount

// DecodePredCount()
// =================

integer DecodePredCount(bits(5) bitpattern, integer esize)
integer elements = CurrentVL DIV esize;
integer numElem;
case bitpattern of

when '00000' numElem = FloorPow2(elements);
when '00001' numElem = if elements >= 1 then 1 else 0;
when '00010' numElem = if elements >= 2 then 2 else 0;
when '00011' numElem = if elements >= 3 then 3 else 0;
when '00100' numElem = if elements >= 4 then 4 else 0;
when '00101' numElem = if elements >= 5 then 5 else 0;
when '00110' numElem = if elements >= 6 then 6 else 0;
when '00111' numElem = if elements >= 7 then 7 else 0;
when '01000' numElem = if elements >= 8 then 8 else 0;
when '01001' numElem = if elements >= 16 then 16 else 0;
when '01010' numElem = if elements >= 32 then 32 else 0;
when '01011' numElem = if elements >= 64 then 64 else 0;
when '01100' numElem = if elements >= 128 then 128 else 0;
when '01101' numElem = if elements >= 256 then 256 else 0;
when '11101' numElem = elements - (elements MOD 4);
when '11110' numElem = elements - (elements MOD 3);
when '11111' numElem = elements;
otherwise numElem = 0;

return numElem;

Library pseudocode for aarch64/functions/sve/ElemFFR

// ElemFFR[] - non-assignment form
// ===============================

bit ElemFFR[integer e, integer esize]
return PredicateElement(_FFR, e, esize);

// ElemFFR[] - assignment form
// ===========================

ElemFFR[integer e, integer esize] = bit value
integer psize = esize DIV 8;
integer n = e * psize;
assert n >= 0 && (n + psize) <= CurrentVL DIV 8;
_FFR<(n+psize)-1:n> = ZeroExtend(value, psize);
return;

Library pseudocode for aarch64/functions/sve/FFR

// FFR[] - non-assignment form
// ===========================

bits(width) FFR[integer width]
assert width == CurrentVL DIV 8;
return _FFR<width-1:0>;

// FFR[] - assignment form
// =======================

FFR[integer width] = bits(width) value
assert width == CurrentVL DIV 8;
if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then

_FFR = ZeroExtend(value, MAX_PL);
else

_FFR<width-1:0> = value;

Shared Pseudocode Functions Page 1757

Library pseudocode for aarch64/functions/sve/FPCompareNE

// FPCompareNE()
// =============

boolean FPCompareNE(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
boolean result;
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};

if op1_nan || op2_nan then
result = TRUE;
if type1 == FPType_SNaN || type2 == FPType_SNaN then

FPProcessException(FPExc_InvalidOp, fpcr);
else // All non-NaN cases can be evaluated on the values produced by FPUnpack()

result = (value1 != value2);
FPProcessDenorms(type1, type2, N, fpcr);

return result;

Library pseudocode for aarch64/functions/sve/FPCompareUN

// FPCompareUN()
// =============

boolean FPCompareUN(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

if type1 == FPType_SNaN || type2 == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpcr);

result = type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN};
if !result then

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Library pseudocode for aarch64/functions/sve/FPConvertSVE

// FPConvertSVE()
// ==============

bits(M) FPConvertSVE(bits(N) op, FPCRType fpcr_in, FPRounding rounding, integer M)
FPCRType fpcr = fpcr_in;
fpcr.AHP = '0';
return FPConvert(op, fpcr, rounding, M);

// FPConvertSVE()
// ==============

bits(M) FPConvertSVE(bits(N) op, FPCRType fpcr_in, integer M)
FPCRType fpcr = fpcr_in;
fpcr.AHP = '0';
return FPConvert(op, fpcr, FPRoundingMode(fpcr), M);

Shared Pseudocode Functions Page 1758

Library pseudocode for aarch64/functions/sve/FPExpA

// FPExpA()
// ========

bits(N) FPExpA(bits(N) op)
assert N IN {16,32,64};
bits(N) result;
bits(N) coeff;
integer idx = if N == 16 then UInt(op<4:0>) else UInt(op<5:0>);
coeff = FPExpCoefficient[idx, N];
if N == 16 then

result<15:0> = '0':op<9:5>:coeff<9:0>;
elsif N == 32 then

result<31:0> = '0':op<13:6>:coeff<22:0>;
else // N == 64

result<63:0> = '0':op<16:6>:coeff<51:0>;

return result;

Shared Pseudocode Functions Page 1759

Library pseudocode for aarch64/functions/sve/FPExpCoefficient

Shared Pseudocode Functions Page 1760

// FPExpCoefficient()
// ==================

bits(N) FPExpCoefficient[integer index, integer N]
assert N IN {16,32,64};
integer result;

if N == 16 then
case index of

when 0 result = 0x0000;
when 1 result = 0x0016;
when 2 result = 0x002d;
when 3 result = 0x0045;
when 4 result = 0x005d;
when 5 result = 0x0075;
when 6 result = 0x008e;
when 7 result = 0x00a8;
when 8 result = 0x00c2;
when 9 result = 0x00dc;
when 10 result = 0x00f8;
when 11 result = 0x0114;
when 12 result = 0x0130;
when 13 result = 0x014d;
when 14 result = 0x016b;
when 15 result = 0x0189;
when 16 result = 0x01a8;
when 17 result = 0x01c8;
when 18 result = 0x01e8;
when 19 result = 0x0209;
when 20 result = 0x022b;
when 21 result = 0x024e;
when 22 result = 0x0271;
when 23 result = 0x0295;
when 24 result = 0x02ba;
when 25 result = 0x02e0;
when 26 result = 0x0306;
when 27 result = 0x032e;
when 28 result = 0x0356;
when 29 result = 0x037f;
when 30 result = 0x03a9;
when 31 result = 0x03d4;

elsif N == 32 then
case index of

when 0 result = 0x000000;
when 1 result = 0x0164d2;
when 2 result = 0x02cd87;
when 3 result = 0x043a29;
when 4 result = 0x05aac3;
when 5 result = 0x071f62;
when 6 result = 0x08980f;
when 7 result = 0x0a14d5;
when 8 result = 0x0b95c2;
when 9 result = 0x0d1adf;
when 10 result = 0x0ea43a;
when 11 result = 0x1031dc;
when 12 result = 0x11c3d3;
when 13 result = 0x135a2b;
when 14 result = 0x14f4f0;
when 15 result = 0x16942d;
when 16 result = 0x1837f0;
when 17 result = 0x19e046;
when 18 result = 0x1b8d3a;
when 19 result = 0x1d3eda;
when 20 result = 0x1ef532;
when 21 result = 0x20b051;
when 22 result = 0x227043;
when 23 result = 0x243516;
when 24 result = 0x25fed7;
when 25 result = 0x27cd94;

Shared Pseudocode Functions Page 1761

when 26 result = 0x29a15b;
when 27 result = 0x2b7a3a;
when 28 result = 0x2d583f;
when 29 result = 0x2f3b79;
when 30 result = 0x3123f6;
when 31 result = 0x3311c4;
when 32 result = 0x3504f3;
when 33 result = 0x36fd92;
when 34 result = 0x38fbaf;
when 35 result = 0x3aff5b;
when 36 result = 0x3d08a4;
when 37 result = 0x3f179a;
when 38 result = 0x412c4d;
when 39 result = 0x4346cd;
when 40 result = 0x45672a;
when 41 result = 0x478d75;
when 42 result = 0x49b9be;
when 43 result = 0x4bec15;
when 44 result = 0x4e248c;
when 45 result = 0x506334;
when 46 result = 0x52a81e;
when 47 result = 0x54f35b;
when 48 result = 0x5744fd;
when 49 result = 0x599d16;
when 50 result = 0x5bfbb8;
when 51 result = 0x5e60f5;
when 52 result = 0x60ccdf;
when 53 result = 0x633f89;
when 54 result = 0x65b907;
when 55 result = 0x68396a;
when 56 result = 0x6ac0c7;
when 57 result = 0x6d4f30;
when 58 result = 0x6fe4ba;
when 59 result = 0x728177;
when 60 result = 0x75257d;
when 61 result = 0x77d0df;
when 62 result = 0x7a83b3;
when 63 result = 0x7d3e0c;

else // N == 64
case index of

when 0 result = 0x0000000000000;
when 1 result = 0x02C9A3E778061;
when 2 result = 0x059B0D3158574;
when 3 result = 0x0874518759BC8;
when 4 result = 0x0B5586CF9890F;
when 5 result = 0x0E3EC32D3D1A2;
when 6 result = 0x11301D0125B51;
when 7 result = 0x1429AAEA92DE0;
when 8 result = 0x172B83C7D517B;
when 9 result = 0x1A35BEB6FCB75;
when 10 result = 0x1D4873168B9AA;
when 11 result = 0x2063B88628CD6;
when 12 result = 0x2387A6E756238;
when 13 result = 0x26B4565E27CDD;
when 14 result = 0x29E9DF51FDEE1;
when 15 result = 0x2D285A6E4030B;
when 16 result = 0x306FE0A31B715;
when 17 result = 0x33C08B26416FF;
when 18 result = 0x371A7373AA9CB;
when 19 result = 0x3A7DB34E59FF7;
when 20 result = 0x3DEA64C123422;
when 21 result = 0x4160A21F72E2A;
when 22 result = 0x44E086061892D;
when 23 result = 0x486A2B5C13CD0;
when 24 result = 0x4BFDAD5362A27;
when 25 result = 0x4F9B2769D2CA7;
when 26 result = 0x5342B569D4F82;
when 27 result = 0x56F4736B527DA;
when 28 result = 0x5AB07DD485429;

Shared Pseudocode Functions Page 1762

when 29 result = 0x5E76F15AD2148;
when 30 result = 0x6247EB03A5585;
when 31 result = 0x6623882552225;
when 32 result = 0x6A09E667F3BCD;
when 33 result = 0x6DFB23C651A2F;
when 34 result = 0x71F75E8EC5F74;
when 35 result = 0x75FEB564267C9;
when 36 result = 0x7A11473EB0187;
when 37 result = 0x7E2F336CF4E62;
when 38 result = 0x82589994CCE13;
when 39 result = 0x868D99B4492ED;
when 40 result = 0x8ACE5422AA0DB;
when 41 result = 0x8F1AE99157736;
when 42 result = 0x93737B0CDC5E5;
when 43 result = 0x97D829FDE4E50;
when 44 result = 0x9C49182A3F090;
when 45 result = 0xA0C667B5DE565;
when 46 result = 0xA5503B23E255D;
when 47 result = 0xA9E6B5579FDBF;
when 48 result = 0xAE89F995AD3AD;
when 49 result = 0xB33A2B84F15FB;
when 50 result = 0xB7F76F2FB5E47;
when 51 result = 0xBCC1E904BC1D2;
when 52 result = 0xC199BDD85529C;
when 53 result = 0xC67F12E57D14B;
when 54 result = 0xCB720DCEF9069;
when 55 result = 0xD072D4A07897C;
when 56 result = 0xD5818DCFBA487;
when 57 result = 0xDA9E603DB3285;
when 58 result = 0xDFC97337B9B5F;
when 59 result = 0xE502EE78B3FF6;
when 60 result = 0xEA4AFA2A490DA;
when 61 result = 0xEFA1BEE615A27;
when 62 result = 0xF50765B6E4540;
when 63 result = 0xFA7C1819E90D8;

return result<N-1:0>;

Library pseudocode for aarch64/functions/sve/FPLogB

// FPLogB()
// ========

bits(N) FPLogB(bits(N) op, FPCRType fpcr)
assert N IN {16,32,64};
integer result;
(fptype,sign,value) = FPUnpack(op, fpcr);

if fptype == FPType_SNaN || fptype == FPType_QNaN || fptype == FPType_Zero then
FPProcessException(FPExc_InvalidOp, fpcr);
result = -(2^(N-1)); // MinInt, 100..00

elsif fptype == FPType_Infinity then
result = 2^(N-1) - 1; // MaxInt, 011..11

else
// FPUnpack has already scaled a subnormal input
value = Abs(value);
result = 0;
while value < 1.0 do

value = value * 2.0;
result = result - 1;

while value >= 2.0 do
value = value / 2.0;
result = result + 1;

FPProcessDenorm(fptype, N, fpcr);

return result<N-1:0>;

Shared Pseudocode Functions Page 1763

Library pseudocode for aarch64/functions/sve/FPMinNormal

// FPMinNormal()
// =============

bits(N) FPMinNormal(bit sign, integer N)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = Zeros(E-1):'1';
frac = Zeros(F);
return sign : exp : frac;

Library pseudocode for aarch64/functions/sve/FPOne

// FPOne()
// =======

bits(N) FPOne(bit sign, integer N)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '0':Ones(E-1);
frac = Zeros(F);
return sign : exp : frac;

Library pseudocode for aarch64/functions/sve/FPPointFive

// FPPointFive()
// =============

bits(N) FPPointFive(bit sign, integer N)
assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '0':Ones(E-2):'0';
frac = Zeros(F);
return sign : exp : frac;

Library pseudocode for aarch64/functions/sve/FPScale

// FPScale()
// =========

bits(N) FPScale(bits(N) op, integer scale, FPCRType fpcr)
assert N IN {16,32,64};
bits(N) result;
(fptype,sign,value) = FPUnpack(op, fpcr);

if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, op, fpcr);

elsif fptype == FPType_Zero then
result = FPZero(sign, N);

elsif fptype == FPType_Infinity then
result = FPInfinity(sign, N);

else
result = FPRound(value * (2.0^scale), fpcr, N);
FPProcessDenorm(fptype, N, fpcr);

return result;

Shared Pseudocode Functions Page 1764

Library pseudocode for aarch64/functions/sve/FPTrigMAdd

// FPTrigMAdd()
// ============

bits(N) FPTrigMAdd(integer x_in, bits(N) op1, bits(N) op2_in, FPCRType fpcr)
assert N IN {16,32,64};
bits(N) coeff;
bits(N) op2 = op2_in;
integer x = x_in;
assert x >= 0;
assert x < 8;

if op2<N-1> == '1' then
x = x + 8;

coeff = FPTrigMAddCoefficient[x, N];
op2 = FPAbs(op2);
result = FPMulAdd(coeff, op1, op2, fpcr);
return result;

Shared Pseudocode Functions Page 1765

Library pseudocode for aarch64/functions/sve/FPTrigMAddCoefficient

// FPTrigMAddCoefficient()
// =======================

bits(N) FPTrigMAddCoefficient[integer index, integer N]
assert N IN {16,32,64};
integer result;

if N == 16 then
case index of

when 0 result = 0x3c00;
when 1 result = 0xb155;
when 2 result = 0x2030;
when 3 result = 0x0000;
when 4 result = 0x0000;
when 5 result = 0x0000;
when 6 result = 0x0000;
when 7 result = 0x0000;
when 8 result = 0x3c00;
when 9 result = 0xb800;
when 10 result = 0x293a;
when 11 result = 0x0000;
when 12 result = 0x0000;
when 13 result = 0x0000;
when 14 result = 0x0000;
when 15 result = 0x0000;

elsif N == 32 then
case index of

when 0 result = 0x3f800000;
when 1 result = 0xbe2aaaab;
when 2 result = 0x3c088886;
when 3 result = 0xb95008b9;
when 4 result = 0x36369d6d;
when 5 result = 0x00000000;
when 6 result = 0x00000000;
when 7 result = 0x00000000;
when 8 result = 0x3f800000;
when 9 result = 0xbf000000;
when 10 result = 0x3d2aaaa6;
when 11 result = 0xbab60705;
when 12 result = 0x37cd37cc;
when 13 result = 0x00000000;
when 14 result = 0x00000000;
when 15 result = 0x00000000;

else // N == 64
case index of

when 0 result = 0x3ff0000000000000;
when 1 result = 0xbfc5555555555543;
when 2 result = 0x3f8111111110f30c;
when 3 result = 0xbf2a01a019b92fc6;
when 4 result = 0x3ec71de351f3d22b;
when 5 result = 0xbe5ae5e2b60f7b91;
when 6 result = 0x3de5d8408868552f;
when 7 result = 0x0000000000000000;
when 8 result = 0x3ff0000000000000;
when 9 result = 0xbfe0000000000000;
when 10 result = 0x3fa5555555555536;
when 11 result = 0xbf56c16c16c13a0b;
when 12 result = 0x3efa01a019b1e8d8;
when 13 result = 0xbe927e4f7282f468;
when 14 result = 0x3e21ee96d2641b13;
when 15 result = 0xbda8f76380fbb401;

return result<N-1:0>;

Shared Pseudocode Functions Page 1766

Library pseudocode for aarch64/functions/sve/FPTrigSMul

// FPTrigSMul()
// ============

bits(N) FPTrigSMul(bits(N) op1, bits(N) op2, FPCRType fpcr)
assert N IN {16,32,64};
result = FPMul(op1, op1, fpcr);
fpexc = FALSE;
(fptype, sign, value) = FPUnpack(result, fpcr, fpexc);

if !(fptype IN {FPType_QNaN, FPType_SNaN}) then
result<N-1> = op2<0>;

return result;

Library pseudocode for aarch64/functions/sve/FPTrigSSel

// FPTrigSSel()
// ============

bits(N) FPTrigSSel(bits(N) op1, bits(N) op2)
assert N IN {16,32,64};
bits(N) result;

if op2<0> == '1' then
result = FPOne(op2<1>, N);

elsif op2<1> == '1' then
result = FPNeg(op1);

else
result = op1;

return result;

Library pseudocode for aarch64/functions/sve/FirstActive

// FirstActive()
// =============

bit FirstActive(bits(N) mask, bits(N) x, integer esize)
integer elements = N DIV (esize DIV 8);
for e = 0 to elements-1

if ActivePredicateElement(mask, e, esize) then
return PredicateElement(x, e, esize);

return '0';

Library pseudocode for aarch64/functions/sve/FloorPow2

// FloorPow2()
// ===========
// For a positive integer X, return the largest power of 2 <= X

integer FloorPow2(integer x)
assert x >= 0;
integer n = 1;
if x == 0 then return 0;
while x >= 2^n do

n = n + 1;
return 2^(n - 1);

Shared Pseudocode Functions Page 1767

Library pseudocode for aarch64/functions/sve/HaveSMEFullA64

// HaveSMEFullA64()
// ================
// Returns TRUE if the SME FA64 extension is implemented, FALSE otherwise.

boolean HaveSMEFullA64()
return IsFeatureImplemented(FEAT_SME_FA64);

Library pseudocode for aarch64/functions/sve/HaveSVE

// HaveSVE()
// =========

boolean HaveSVE()
return IsFeatureImplemented(FEAT_SVE);

Library pseudocode for aarch64/functions/sve/HaveSVE2

// HaveSVE2()
// ==========
// Returns TRUE if the SVE2 extension is implemented, FALSE otherwise.

boolean HaveSVE2()
return IsFeatureImplemented(FEAT_SVE2);

Library pseudocode for aarch64/functions/sve/HaveSVE2AES

// HaveSVE2AES()
// =============
// Returns TRUE if the SVE2 AES extension is implemented, FALSE otherwise.

boolean HaveSVE2AES()
return IsFeatureImplemented(FEAT_SVE_AES);

Library pseudocode for aarch64/functions/sve/HaveSVE2BitPerm

// HaveSVE2BitPerm()
// =================
// Returns TRUE if the SVE2 Bit Permissions extension is implemented, FALSE otherwise.

boolean HaveSVE2BitPerm()
return IsFeatureImplemented(FEAT_SVE_BitPerm);

Library pseudocode for aarch64/functions/sve/HaveSVE2PMULL128

// HaveSVE2PMULL128()
// ==================
// Returns TRUE if the SVE2 128 bit PMULL extension is implemented, FALSE otherwise.

boolean HaveSVE2PMULL128()
return IsFeatureImplemented(FEAT_SVE_PMULL128);

Library pseudocode for aarch64/functions/sve/HaveSVE2SHA256

// HaveSVE2SHA256()
// ================
// Returns TRUE if the SVE2 SHA256 extension is implemented, FALSE otherwise.

boolean HaveSVE2SHA256()
return HaveSVE2() && boolean IMPLEMENTATION_DEFINED "Have SVE2 SHA256 extension";

Shared Pseudocode Functions Page 1768

Library pseudocode for aarch64/functions/sve/HaveSVE2SHA3

// HaveSVE2SHA3()
// ==============
// Returns TRUE if the SVE2 SHA3 extension is implemented, FALSE otherwise.

boolean HaveSVE2SHA3()
return IsFeatureImplemented(FEAT_SVE_SHA3);

Library pseudocode for aarch64/functions/sve/HaveSVE2SHA512

// HaveSVE2SHA512()
// ================
// Returns TRUE if the SVE2 SHA512 extension is implemented, FALSE otherwise.

boolean HaveSVE2SHA512()
return HaveSVE2() && boolean IMPLEMENTATION_DEFINED "Have SVE2 SHA512 extension";

Library pseudocode for aarch64/functions/sve/HaveSVE2SM3

// HaveSVE2SM3()
// =============
// Returns TRUE if the SVE2 SM3 extension is implemented, FALSE otherwise.

boolean HaveSVE2SM3()
return HaveSVE2() && boolean IMPLEMENTATION_DEFINED "Have SVE2 SM3 extension";

Library pseudocode for aarch64/functions/sve/HaveSVE2SM4

// HaveSVE2SM4()
// =============
// Returns TRUE if the SVE2 SM4 extension is implemented, FALSE otherwise.

boolean HaveSVE2SM4()
return IsFeatureImplemented(FEAT_SVE_SM4);

Library pseudocode for aarch64/functions/sve/HaveSVE2p1

// HaveSVE2p1()
// ============
// Returns TRUE if the SVE2.1 extension is implemented, FALSE otherwise.

boolean HaveSVE2p1()
return IsFeatureImplemented(FEAT_SVE2p1);

Library pseudocode for aarch64/functions/sve/HaveSVEB16B16

// HaveSVEB16B16()
// ===============
// Returns TRUE if the SVE2.1 non-widening BFloat16 instructions are implemented, FALSE otherwise.

boolean HaveSVEB16B16()
return IsFeatureImplemented(FEAT_SVE_B16B16);

Library pseudocode for aarch64/functions/sve/HaveSVEFP32MatMulExt

// HaveSVEFP32MatMulExt()
// ======================
// Returns TRUE if single-precision floating-point matrix multiply instruction support implemented
// and FALSE otherwise.

boolean HaveSVEFP32MatMulExt()
return IsFeatureImplemented(FEAT_F32MM);

Shared Pseudocode Functions Page 1769

Library pseudocode for aarch64/functions/sve/HaveSVEFP64MatMulExt

// HaveSVEFP64MatMulExt()
// ======================
// Returns TRUE if double-precision floating-point matrix multiply instruction support implemented
// and FALSE otherwise.

boolean HaveSVEFP64MatMulExt()
return IsFeatureImplemented(FEAT_F64MM);

Library pseudocode for aarch64/functions/sve/ImplementedSMEVectorLength

// ImplementedSMEVectorLength()
// ============================
// Reduce SVE/SME vector length to a supported value (power of two)

integer ImplementedSMEVectorLength(integer nbits_in)
integer maxbits = MaxImplementedSVL();
assert 128 <= maxbits && maxbits <= 2048 && IsPow2(maxbits);
integer nbits = Min(nbits_in, maxbits);
assert 128 <= nbits && nbits <= 2048 && Align(nbits, 128) == nbits;

// Search for a supported power-of-two VL less than or equal to nbits
while nbits > 128 do

if IsPow2(nbits) && SupportedPowerTwoSVL(nbits) then return nbits;
nbits = nbits - 128;

// Return the smallest supported power-of-two VL
nbits = 128;
while nbits < maxbits do

if SupportedPowerTwoSVL(nbits) then return nbits;
nbits = nbits * 2;

// The only option is maxbits
return maxbits;

Library pseudocode for aarch64/functions/sve/ImplementedSVEVectorLength

// ImplementedSVEVectorLength()
// ============================
// Reduce SVE vector length to a supported value (power of two)

integer ImplementedSVEVectorLength(integer nbits_in)
integer maxbits = MaxImplementedVL();
assert 128 <= maxbits && maxbits <= 2048 && IsPow2(maxbits);
integer nbits = Min(nbits_in, maxbits);
assert 128 <= nbits && nbits <= 2048 && Align(nbits, 128) == nbits;

while nbits > 128 do
if IsPow2(nbits) then return nbits;
nbits = nbits - 128;

return nbits;

Library pseudocode for aarch64/functions/sve/InStreamingMode

// InStreamingMode()
// =================

boolean InStreamingMode()
return HaveSME() && PSTATE.SM == '1';

Shared Pseudocode Functions Page 1770

Library pseudocode for aarch64/functions/sve/IsEven

// IsEven()
// ========

boolean IsEven(integer val)
return val MOD 2 == 0;

Library pseudocode for aarch64/functions/sve/IsFPEnabled

// IsFPEnabled()
// =============
// Returns TRUE if accesses to the Advanced SIMD and floating-point
// registers are enabled at the target exception level in the current
// execution state and FALSE otherwise.

boolean IsFPEnabled(bits(2) el)
if ELUsingAArch32(el) then

return AArch32.IsFPEnabled(el);
else

return AArch64.IsFPEnabled(el);

Library pseudocode for aarch64/functions/sve/IsFullA64Enabled

// IsFullA64Enabled()
// ==================
// Returns TRUE is full A64 is enabled in Streaming mode and FALSE othersise.

boolean IsFullA64Enabled()
if !HaveSMEFullA64() then return FALSE;

// Check if full SVE disabled in SMCR_EL1
if PSTATE.EL IN {EL0, EL1} && !IsInHost() then

// Check full SVE at EL0/EL1
if SMCR_EL1.FA64 == '0' then return FALSE;

// Check if full SVE disabled in SMCR_EL2
if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then

if SMCR_EL2.FA64 == '0' then return FALSE;

// Check if full SVE disabled in SMCR_EL3
if HaveEL(EL3) then

if SMCR_EL3.FA64 == '0' then return FALSE;

return TRUE;

Library pseudocode for aarch64/functions/sve/IsOdd

// IsOdd()
// =======

boolean IsOdd(integer val)
return val MOD 2 == 1;

Shared Pseudocode Functions Page 1771

Library pseudocode for aarch64/functions/sve/IsOriginalSVEEnabled

// IsOriginalSVEEnabled()
// ======================
// Returns TRUE if access to SVE functionality is enabled at the target
// exception level and FALSE otherwise.

boolean IsOriginalSVEEnabled(bits(2) el)
boolean disabled;
if ELUsingAArch32(el) then

return FALSE;

// Check if access disabled in CPACR_EL1
if el IN {EL0, EL1} && !IsInHost() then

// Check SVE at EL0/EL1
case CPACR_EL1.ZEN of

when 'x0' disabled = TRUE;
when '01' disabled = el == EL0;
when '11' disabled = FALSE;

if disabled then return FALSE;

// Check if access disabled in CPTR_EL2
if el IN {EL0, EL1, EL2} && EL2Enabled() then

if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
case CPTR_EL2.ZEN of

when 'x0' disabled = TRUE;
when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then return FALSE;
else

if CPTR_EL2.TZ == '1' then return FALSE;

// Check if access disabled in CPTR_EL3
if HaveEL(EL3) then

if CPTR_EL3.EZ == '0' then return FALSE;

return TRUE;

Library pseudocode for aarch64/functions/sve/IsPow2

// IsPow2()
// ========
// Return TRUE if positive integer X is a power of 2. Otherwise,
// return FALSE.

boolean IsPow2(integer x)
if x <= 0 then return FALSE;
return FloorPow2(x) == CeilPow2(x);

Shared Pseudocode Functions Page 1772

Library pseudocode for aarch64/functions/sve/IsSMEEnabled

// IsSMEEnabled()
// ==============
// Returns TRUE if access to SME functionality is enabled at the target
// exception level and FALSE otherwise.

boolean IsSMEEnabled(bits(2) el)
boolean disabled;
if ELUsingAArch32(el) then

return FALSE;

// Check if access disabled in CPACR_EL1
if el IN {EL0, EL1} && !IsInHost() then

// Check SME at EL0/EL1
case CPACR_EL1.SMEN of

when 'x0' disabled = TRUE;
when '01' disabled = el == EL0;
when '11' disabled = FALSE;

if disabled then return FALSE;

// Check if access disabled in CPTR_EL2
if el IN {EL0, EL1, EL2} && EL2Enabled() then

if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
case CPTR_EL2.SMEN of

when 'x0' disabled = TRUE;
when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
when '11' disabled = FALSE;

if disabled then return FALSE;
else

if CPTR_EL2.TSM == '1' then return FALSE;

// Check if access disabled in CPTR_EL3
if HaveEL(EL3) then

if CPTR_EL3.ESM == '0' then return FALSE;

return TRUE;

Library pseudocode for aarch64/functions/sve/IsSVEEnabled

// IsSVEEnabled()
// ==============
// Returns TRUE if access to SVE registers is enabled at the target exception
// level and FALSE otherwise.

boolean IsSVEEnabled(bits(2) el)
if HaveSME() && PSTATE.SM == '1' then

return IsSMEEnabled(el);
elsif HaveSVE() then

return IsOriginalSVEEnabled(el);
else

return FALSE;

Library pseudocode for aarch64/functions/sve/LastActive

// LastActive()
// ============

bit LastActive(bits(N) mask, bits(N) x, integer esize)
integer elements = N DIV (esize DIV 8);
for e = elements-1 downto 0

if ActivePredicateElement(mask, e, esize) then
return PredicateElement(x, e, esize);

return '0';

Shared Pseudocode Functions Page 1773

Library pseudocode for aarch64/functions/sve/LastActiveElement

// LastActiveElement()
// ===================

integer LastActiveElement(bits(N) mask, integer esize)
integer elements = N DIV (esize DIV 8);
for e = elements-1 downto 0

if ActivePredicateElement(mask, e, esize) then return e;
return -1;

Library pseudocode for aarch64/functions/sve/MaxImplementedSVL

// MaxImplementedSVL()
// ===================

integer MaxImplementedSVL()
return integer IMPLEMENTATION_DEFINED "Max implemented SVL";

Library pseudocode for aarch64/functions/sve/MaxImplementedVL

// MaxImplementedVL()
// ==================

integer MaxImplementedVL()
return integer IMPLEMENTATION_DEFINED "Max implemented VL";

Shared Pseudocode Functions Page 1774

Library pseudocode for aarch64/functions/sve/MaybeZeroSVEUppers

// MaybeZeroSVEUppers()
// ====================

MaybeZeroSVEUppers(bits(2) target_el)
boolean lower_enabled;

if UInt(target_el) <= UInt(PSTATE.EL) || !IsSVEEnabled(target_el) then
return;

if target_el == EL3 then
if EL2Enabled() then

lower_enabled = IsFPEnabled(EL2);
else

lower_enabled = IsFPEnabled(EL1);
elsif target_el == EL2 then

assert EL2Enabled() && !ELUsingAArch32(EL2);
if HCR_EL2.TGE == '0' then

lower_enabled = IsFPEnabled(EL1);
else

lower_enabled = IsFPEnabled(EL0);
else

assert target_el == EL1 && !ELUsingAArch32(EL1);
lower_enabled = IsFPEnabled(EL0);

if lower_enabled then
constant integer VL = if IsSVEEnabled(PSTATE.EL) then CurrentVL else 128;
constant integer PL = VL DIV 8;
for n = 0 to 31

if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
_Z[n] = ZeroExtend(_Z[n]<VL-1:0>, MAX_VL);

for n = 0 to 15
if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then

_P[n] = ZeroExtend(_P[n]<PL-1:0>, MAX_PL);
if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then

_FFR = ZeroExtend(_FFR<PL-1:0>, MAX_PL);
if HaveSME() && PSTATE.ZA == '1' then

constant integer SVL = CurrentSVL;
constant integer accessiblevecs = SVL DIV 8;
constant integer allvecs = MaxImplementedSVL() DIV 8;

for n = 0 to accessiblevecs - 1
if ConstrainUnpredictableBool(Unpredictable_SMEZEROUPPER) then

_ZA[n] = ZeroExtend(_ZA[n]<SVL-1:0>, MAX_VL);
for n = accessiblevecs to allvecs - 1

if ConstrainUnpredictableBool(Unpredictable_SMEZEROUPPER) then
_ZA[n] = Zeros(MAX_VL);

Shared Pseudocode Functions Page 1775

Library pseudocode for aarch64/functions/sve/MemNF

// MemNF[] - non-assignment form
// =============================

(bits(8*size), boolean) MemNF[bits(64) address, integer size, AccessDescriptor accdesc]
assert size IN {1, 2, 4, 8, 16};
bits(8*size) value;
boolean bad;

boolean aligned = IsAligned(address, size);

if !aligned && AlignmentEnforced() then
return (bits(8*size) UNKNOWN, TRUE);

boolean atomic = aligned || size == 1;

if !atomic then
(value<7:0>, bad) = MemSingleNF[address, 1, accdesc, aligned];

if bad then
return (bits(8*size) UNKNOWN, TRUE);

// For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
// access will generate an Alignment Fault, as to get this far means the first byte did
// not, so we must be changing to a new translation page.
if !aligned then

c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
assert c IN {Constraint_FAULT, Constraint_NONE};
if c == Constraint_NONE then aligned = TRUE;

for i = 1 to size-1
(value<8*i+7:8*i>, bad) = MemSingleNF[address+i, 1, accdesc, aligned];

if bad then
return (bits(8*size) UNKNOWN, TRUE);

else
(value, bad) = MemSingleNF[address, size, accdesc, aligned];
if bad then

return (bits(8*size) UNKNOWN, TRUE);

if BigEndian(accdesc.acctype) then
value = BigEndianReverse(value);

return (value, FALSE);

Shared Pseudocode Functions Page 1776

Library pseudocode for aarch64/functions/sve/MemSingleNF

// MemSingleNF[] - non-assignment form
// ===================================

(bits(8*size), boolean) MemSingleNF[bits(64) address, integer size, AccessDescriptor accdesc_in,
boolean aligned]

assert accdesc_in.acctype == AccessType_SVE;
assert accdesc_in.nonfault || (accdesc_in.firstfault && !accdesc_in.first);

bits(8*size) value;
AddressDescriptor memaddrdesc;
PhysMemRetStatus memstatus;
AccessDescriptor accdesc = accdesc_in;
FaultRecord fault = NoFault(accdesc);

// Implementation may suppress NF load for any reason
if ConstrainUnpredictableBool(Unpredictable_NONFAULT) then

return (bits(8*size) UNKNOWN, TRUE);

// If the instruction encoding permits tag checking, confer with system register configuration
// which may override this.
if HaveMTE2Ext() && accdesc.tagchecked then

accdesc.tagchecked = AArch64.AccessIsTagChecked(address, accdesc);

// MMU or MPU
memaddrdesc = AArch64.TranslateAddress(address, accdesc, aligned, size);

// Non-fault load from Device memory must not be performed externally
if memaddrdesc.memattrs.memtype == MemType_Device then

return (bits(8*size) UNKNOWN, TRUE);

// Check for aborts or debug exceptions
if IsFault(memaddrdesc) then

return (bits(8*size) UNKNOWN, TRUE);

if HaveMTE2Ext() && accdesc.tagchecked then
bits(4) ptag = AArch64.PhysicalTag(address);
if !AArch64.CheckTag(memaddrdesc, accdesc, ptag) then

return (bits(8*size) UNKNOWN, TRUE);

(memstatus, value) = PhysMemRead(memaddrdesc, size, accdesc);
if IsFault(memstatus) then

boolean iswrite = FALSE;
if IsExternalAbortTakenSynchronously(memstatus, iswrite, memaddrdesc, size, accdesc) then

return (bits(8*size) UNKNOWN, TRUE);
fault.merrorstate = memstatus.merrorstate;
fault.extflag = memstatus.extflag;
fault.statuscode = memstatus.statuscode;
PendSErrorInterrupt(fault);

return (value, FALSE);

Library pseudocode for aarch64/functions/sve/NoneActive

// NoneActive()
// ============

bit NoneActive(bits(N) mask, bits(N) x, integer esize)
integer elements = N DIV (esize DIV 8);
for e = 0 to elements-1

if ActivePredicateElement(mask, e, esize) && ActivePredicateElement(x, e, esize) then
return '0';

return '1';

Shared Pseudocode Functions Page 1777

Library pseudocode for aarch64/functions/sve/P

// P[] - non-assignment form
// =========================

bits(width) P[integer n, integer width]
assert n >= 0 && n <= 31;
assert width == CurrentVL DIV 8;
return _P[n]<width-1:0>;

// P[] - assignment form
// =====================

P[integer n, integer width] = bits(width) value
assert n >= 0 && n <= 31;
assert width == CurrentVL DIV 8;
if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then

_P[n] = ZeroExtend(value, MAX_PL);
else

_P[n]<width-1:0> = value;

Library pseudocode for aarch64/functions/sve/PredTest

// PredTest()
// ==========

bits(4) PredTest(bits(N) mask, bits(N) result, integer esize)
bit n = FirstActive(mask, result, esize);
bit z = NoneActive(mask, result, esize);
bit c = NOT LastActive(mask, result, esize);
bit v = '0';
return n:z:c:v;

Library pseudocode for aarch64/functions/sve/PredicateElement

// PredicateElement()
// ==================
// Returns the predicate bit

bit PredicateElement(bits(N) pred, integer e, integer esize)
assert esize IN {8, 16, 32, 64, 128};
integer n = e * (esize DIV 8);
assert n >= 0 && n < N;
return pred<n>;

Library pseudocode for aarch64/functions/sve/ReducePredicated

// ReducePredicated()
// ==================

bits(esize) ReducePredicated(ReduceOp op, bits(N) input, bits(M) mask, bits(esize) identity)
assert(N == M * 8);
integer p2bits = CeilPow2(N);
bits(p2bits) operand;
integer elements = p2bits DIV esize;

for e = 0 to elements-1
if e * esize < N && ActivePredicateElement(mask, e, esize) then

Elem[operand, e, esize] = Elem[input, e, esize];
else

Elem[operand, e, esize] = identity;

return Reduce(op, operand, esize);

Shared Pseudocode Functions Page 1778

Library pseudocode for aarch64/functions/sve/ResetSMEState

// ResetSMEState()
// ===============

ResetSMEState()
integer vectors = MAX_VL DIV 8;
for n = 0 to vectors - 1

_ZA[n] = Zeros(MAX_VL);
_ZT0 = Zeros(ZT0_LEN);

Library pseudocode for aarch64/functions/sve/ResetSVEState

// ResetSVEState()
// ===============

ResetSVEState()
for n = 0 to 31

_Z[n] = Zeros(MAX_VL);
for n = 0 to 15

_P[n] = Zeros(MAX_PL);
_FFR = Zeros(MAX_PL);
FPSR = ZeroExtend(0x0800009f<31:0>, 64);

Library pseudocode for aarch64/functions/sve/Reverse

// Reverse()
// =========
// Reverse subwords of M bits in an N-bit word

bits(N) Reverse(bits(N) word, integer M)
bits(N) result;
integer sw = N DIV M;
assert N == sw * M;
for s = 0 to sw-1

Elem[result, (sw - 1) - s, M] = Elem[word, s, M];
return result;

Shared Pseudocode Functions Page 1779

Library pseudocode for aarch64/functions/sve/SMEAccessTrap

// SMEAccessTrap()
// ===============
// Trapped access to SME registers due to CPACR_EL1, CPTR_EL2, or CPTR_EL3.

SMEAccessTrap(SMEExceptionType etype, bits(2) target_el_in)
bits(2) target_el = target_el_in;
assert UInt(target_el) >= UInt(PSTATE.EL);
if target_el == EL0 then

target_el = EL1;
boolean route_to_el2;
route_to_el2 = PSTATE.EL == EL0 && target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1';

except = ExceptionSyndrome(Exception_SMEAccessTrap);
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

case etype of
when SMEExceptionType_AccessTrap

except.syndrome<2:0> = '000';
when SMEExceptionType_Streaming

except.syndrome<2:0> = '001';
when SMEExceptionType_NotStreaming

except.syndrome<2:0> = '010';
when SMEExceptionType_InactiveZA

except.syndrome<2:0> = '011';
when SMEExceptionType_InaccessibleZT0

except.syndrome<2:0> = '100';

if route_to_el2 then
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

else
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/functions/sve/SMEExceptionType

// SMEExceptionType
// ================
enumeration SMEExceptionType {

SMEExceptionType_AccessTrap, // SME functionality trapped or disabled
SMEExceptionType_Streaming, // Illegal instruction in Streaming SVE mode
SMEExceptionType_NotStreaming, // Illegal instruction not in Streaming SVE mode
SMEExceptionType_InactiveZA, // Illegal instruction when ZA is inactive
SMEExceptionType_InaccessibleZT0, // Access to ZT0 is disabled

};

Library pseudocode for aarch64/functions/sve/SVEAccessTrap

// SVEAccessTrap()
// ===============
// Trapped access to SVE registers due to CPACR_EL1, CPTR_EL2, or CPTR_EL3.

SVEAccessTrap(bits(2) target_el)
assert UInt(target_el) >= UInt(PSTATE.EL) && target_el != EL0 && HaveEL(target_el);
route_to_el2 = target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1';

except = ExceptionSyndrome(Exception_SVEAccessTrap);
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

if route_to_el2 then
AArch64.TakeException(EL2, except, preferred_exception_return, vect_offset);

else
AArch64.TakeException(target_el, except, preferred_exception_return, vect_offset);

Shared Pseudocode Functions Page 1780

Library pseudocode for aarch64/functions/sve/SVECmp

// SVECmp
// ======

enumeration SVECmp { Cmp_EQ, Cmp_NE, Cmp_GE, Cmp_GT, Cmp_LT, Cmp_LE, Cmp_UN };

Library pseudocode for aarch64/functions/sve/SVEMoveMaskPreferred

// SVEMoveMaskPreferred()
// ======================
// Return FALSE if a bitmask immediate encoding would generate an immediate
// value that could also be represented by a single DUP instruction.
// Used as a condition for the preferred MOV<-DUPM alias.

boolean SVEMoveMaskPreferred(bits(13) imm13)
bits(64) imm;
(imm, -) = DecodeBitMasks(imm13<12>, imm13<5:0>, imm13<11:6>, TRUE, 64);

// Check for 8 bit immediates
if !IsZero(imm<7:0>) then

// Check for 'ffffffffffffffxy' or '00000000000000xy'
if IsZero(imm<63:7>) || IsOnes(imm<63:7>) then

return FALSE;

// Check for 'ffffffxyffffffxy' or '000000xy000000xy'
if imm<63:32> == imm<31:0> && (IsZero(imm<31:7>) || IsOnes(imm<31:7>)) then

return FALSE;

// Check for 'ffxyffxyffxyffxy' or '00xy00xy00xy00xy'
if (imm<63:32> == imm<31:0> && imm<31:16> == imm<15:0> &&

(IsZero(imm<15:7>) || IsOnes(imm<15:7>))) then
return FALSE;

// Check for 'xyxyxyxyxyxyxyxy'
if imm<63:32> == imm<31:0> && imm<31:16> == imm<15:0> && (imm<15:8> == imm<7:0>) then

return FALSE;

// Check for 16 bit immediates
else

// Check for 'ffffffffffffxy00' or '000000000000xy00'
if IsZero(imm<63:15>) || IsOnes(imm<63:15>) then

return FALSE;

// Check for 'ffffxy00ffffxy00' or '0000xy000000xy00'
if imm<63:32> == imm<31:0> && (IsZero(imm<31:7>) || IsOnes(imm<31:7>)) then

return FALSE;

// Check for 'xy00xy00xy00xy00'
if imm<63:32> == imm<31:0> && imm<31:16> == imm<15:0> then

return FALSE;

return TRUE;

Library pseudocode for aarch64/functions/sve/SetPSTATE_SM

// SetPSTATE_SM()
// ==============

SetPSTATE_SM(bit value)
if PSTATE.SM != value then

ResetSVEState();
PSTATE.SM = value;

Shared Pseudocode Functions Page 1781

Library pseudocode for aarch64/functions/sve/SetPSTATE_SVCR

// SetPSTATE_SVCR
// ==============

SetPSTATE_SVCR(bits(32) svcr)
SetPSTATE_SM(svcr<0>);
SetPSTATE_ZA(svcr<1>);

Library pseudocode for aarch64/functions/sve/SetPSTATE_ZA

// SetPSTATE_ZA()
// ==============

SetPSTATE_ZA(bit value)
if PSTATE.ZA != value then

ResetSMEState();
PSTATE.ZA = value;

Library pseudocode for aarch64/functions/sve/ShiftSat

// ShiftSat()
// ==========

integer ShiftSat(integer shift, integer esize)
if shift > esize+1 then return esize+1;
elsif shift < -(esize+1) then return -(esize+1);
return shift;

Library pseudocode for aarch64/functions/sve/SupportedPowerTwoSVL

// SupportedPowerTwoSVL()
// ======================
// Return an IMPLEMENTATION DEFINED specific value
// returns TRUE if SVL is supported and is a power of two, FALSE otherwise

boolean SupportedPowerTwoSVL(integer nbits);

Library pseudocode for aarch64/functions/sve/System

constant integer MAX_VL = 2048;
constant integer MAX_PL = 256;
constant integer ZT0_LEN = 512;
bits(MAX_PL) _FFR;

array bits(MAX_VL) _Z[0..31];

array bits(MAX_PL) _P[0..15];

Shared Pseudocode Functions Page 1782

Library pseudocode for aarch64/functions/sve/Z

// Z[] - non-assignment form
// =========================

bits(width) Z[integer n, integer width]
assert n >= 0 && n <= 31;
assert width == CurrentVL;
return _Z[n]<width-1:0>;

// Z[] - assignment form
// =====================

Z[integer n, integer width] = bits(width) value
assert n >= 0 && n <= 31;
assert width == CurrentVL;
if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then

_Z[n] = ZeroExtend(value, MAX_VL);
else

_Z[n]<width-1:0> = value;

Library pseudocode for aarch64/functions/syshintop/SystemHintOp

// SystemHintOp
// ============
// System Hint instruction types.

enumeration SystemHintOp {
SystemHintOp_NOP,
SystemHintOp_YIELD,
SystemHintOp_WFE,
SystemHintOp_WFI,
SystemHintOp_SEV,
SystemHintOp_SEVL,
SystemHintOp_DGH,
SystemHintOp_ESB,
SystemHintOp_PSB,
SystemHintOp_TSB,
SystemHintOp_BTI,
SystemHintOp_WFET,
SystemHintOp_WFIT,
SystemHintOp_CLRBHB,
SystemHintOp_GCSB,
SystemHintOp_CHKFEAT,
SystemHintOp_CSDB

};

Shared Pseudocode Functions Page 1783

Library pseudocode for aarch64/functions/sysop/SysOp

Shared Pseudocode Functions Page 1784

// SysOp()
// =======

SystemOp SysOp(bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2)
case op1:CRn:CRm:op2 of

when '000 0111 1000 000' return Sys_AT; // S1E1R
when '000 0111 1000 001' return Sys_AT; // S1E1W
when '000 0111 1000 010' return Sys_AT; // S1E0R
when '000 0111 1000 011' return Sys_AT; // S1E0W
when '000 0111 1001 000' return Sys_AT; // S1E1RP
when '000 0111 1001 001' return Sys_AT; // S1E1WP
when '100 0111 1000 000' return Sys_AT; // S1E2R
when '100 0111 1000 001' return Sys_AT; // S1E2W
when '100 0111 1000 100' return Sys_AT; // S12E1R
when '100 0111 1000 101' return Sys_AT; // S12E1W
when '100 0111 1000 110' return Sys_AT; // S12E0R
when '100 0111 1000 111' return Sys_AT; // S12E0W
when '110 0111 1000 000' return Sys_AT; // S1E3R
when '110 0111 1000 001' return Sys_AT; // S1E3W
when '001 0111 0010 100' return Sys_BRB; // IALL
when '001 0111 0010 101' return Sys_BRB; // INJ
when '000 0111 0110 001' return Sys_DC; // IVAC
when '000 0111 0110 010' return Sys_DC; // ISW
when '000 0111 0110 011' return Sys_DC; // IGVAC
when '000 0111 0110 100' return Sys_DC; // IGSW
when '000 0111 0110 101' return Sys_DC; // IGDVAC
when '000 0111 0110 110' return Sys_DC; // IGDSW
when '000 0111 1010 010' return Sys_DC; // CSW
when '000 0111 1010 100' return Sys_DC; // CGSW
when '000 0111 1010 110' return Sys_DC; // CGDSW
when '000 0111 1110 010' return Sys_DC; // CISW
when '000 0111 1110 100' return Sys_DC; // CIGSW
when '000 0111 1110 110' return Sys_DC; // CIGDSW
when '011 0111 0100 001' return Sys_DC; // ZVA
when '011 0111 0100 011' return Sys_DC; // GVA
when '011 0111 0100 100' return Sys_DC; // GZVA
when '011 0111 1010 001' return Sys_DC; // CVAC
when '011 0111 1010 011' return Sys_DC; // CGVAC
when '011 0111 1010 101' return Sys_DC; // CGDVAC
when '011 0111 1011 001' return Sys_DC; // CVAU
when '011 0111 1100 001' return Sys_DC; // CVAP
when '011 0111 1100 011' return Sys_DC; // CGVAP
when '011 0111 1100 101' return Sys_DC; // CGDVAP
when '011 0111 1101 001' return Sys_DC; // CVADP
when '011 0111 1101 011' return Sys_DC; // CGVADP
when '011 0111 1101 101' return Sys_DC; // CGDVADP
when '011 0111 1110 001' return Sys_DC; // CIVAC
when '011 0111 1110 011' return Sys_DC; // CIGVAC
when '011 0111 1110 101' return Sys_DC; // CIGDVAC
when '100 0111 1110 000' return Sys_DC; // CIPAE
when '100 0111 1110 111' return Sys_DC; // CIGDPAE
when '110 0111 1110 001' return Sys_DC; // CIPAPA
when '110 0111 1110 101' return Sys_DC; // CIGDPAPA
when '000 0111 0001 000' return Sys_IC; // IALLUIS
when '000 0111 0101 000' return Sys_IC; // IALLU
when '011 0111 0101 001' return Sys_IC; // IVAU
when '000 1000 0001 000' return Sys_TLBI; // VMALLE1OS
when '000 1000 0001 001' return Sys_TLBI; // VAE1OS
when '000 1000 0001 010' return Sys_TLBI; // ASIDE1OS
when '000 1000 0001 011' return Sys_TLBI; // VAAE1OS
when '000 1000 0001 101' return Sys_TLBI; // VALE1OS
when '000 1000 0001 111' return Sys_TLBI; // VAALE1OS
when '000 1000 0010 001' return Sys_TLBI; // RVAE1IS
when '000 1000 0010 011' return Sys_TLBI; // RVAAE1IS
when '000 1000 0010 101' return Sys_TLBI; // RVALE1IS
when '000 1000 0010 111' return Sys_TLBI; // RVAALE1IS
when '000 1000 0011 000' return Sys_TLBI; // VMALLE1IS
when '000 1000 0011 001' return Sys_TLBI; // VAE1IS
when '000 1000 0011 010' return Sys_TLBI; // ASIDE1IS
when '000 1000 0011 011' return Sys_TLBI; // VAAE1IS

Shared Pseudocode Functions Page 1785

when '000 1000 0011 101' return Sys_TLBI; // VALE1IS
when '000 1000 0011 111' return Sys_TLBI; // VAALE1IS
when '000 1000 0101 001' return Sys_TLBI; // RVAE1OS
when '000 1000 0101 011' return Sys_TLBI; // RVAAE1OS
when '000 1000 0101 101' return Sys_TLBI; // RVALE1OS
when '000 1000 0101 111' return Sys_TLBI; // RVAALE1OS
when '000 1000 0110 001' return Sys_TLBI; // RVAE1
when '000 1000 0110 011' return Sys_TLBI; // RVAAE1
when '000 1000 0110 101' return Sys_TLBI; // RVALE1
when '000 1000 0110 111' return Sys_TLBI; // RVAALE1
when '000 1000 0111 000' return Sys_TLBI; // VMALLE1
when '000 1000 0111 001' return Sys_TLBI; // VAE1
when '000 1000 0111 010' return Sys_TLBI; // ASIDE1
when '000 1000 0111 011' return Sys_TLBI; // VAAE1
when '000 1000 0111 101' return Sys_TLBI; // VALE1
when '000 1000 0111 111' return Sys_TLBI; // VAALE1
when '000 1001 0001 000' return Sys_TLBI; // VMALLE1OSNXS
when '000 1001 0001 001' return Sys_TLBI; // VAE1OSNXS
when '000 1001 0001 010' return Sys_TLBI; // ASIDE1OSNXS
when '000 1001 0001 011' return Sys_TLBI; // VAAE1OSNXS
when '000 1001 0001 101' return Sys_TLBI; // VALE1OSNXS
when '000 1001 0001 111' return Sys_TLBI; // VAALE1OSNXS
when '000 1001 0010 001' return Sys_TLBI; // RVAE1ISNXS
when '000 1001 0010 011' return Sys_TLBI; // RVAAE1ISNXS
when '000 1001 0010 101' return Sys_TLBI; // RVALE1ISNXS
when '000 1001 0010 111' return Sys_TLBI; // RVAALE1ISNXS
when '000 1001 0011 000' return Sys_TLBI; // VMALLE1ISNXS
when '000 1001 0011 001' return Sys_TLBI; // VAE1ISNXS
when '000 1001 0011 010' return Sys_TLBI; // ASIDE1ISNXS
when '000 1001 0011 011' return Sys_TLBI; // VAAE1ISNXS
when '000 1001 0011 101' return Sys_TLBI; // VALE1ISNXS
when '000 1001 0011 111' return Sys_TLBI; // VAALE1ISNXS
when '000 1001 0101 001' return Sys_TLBI; // RVAE1OSNXS
when '000 1001 0101 011' return Sys_TLBI; // RVAAE1OSNXS
when '000 1001 0101 101' return Sys_TLBI; // RVALE1OSNXS
when '000 1001 0101 111' return Sys_TLBI; // RVAALE1OSNXS
when '000 1001 0110 001' return Sys_TLBI; // RVAE1NXS
when '000 1001 0110 011' return Sys_TLBI; // RVAAE1NXS
when '000 1001 0110 101' return Sys_TLBI; // RVALE1NXS
when '000 1001 0110 111' return Sys_TLBI; // RVAALE1NXS
when '000 1001 0111 000' return Sys_TLBI; // VMALLE1NXS
when '000 1001 0111 001' return Sys_TLBI; // VAE1NXS
when '000 1001 0111 010' return Sys_TLBI; // ASIDE1NXS
when '000 1001 0111 011' return Sys_TLBI; // VAAE1NXS
when '000 1001 0111 101' return Sys_TLBI; // VALE1NXS
when '000 1001 0111 111' return Sys_TLBI; // VAALE1NXS
when '100 1000 0000 001' return Sys_TLBI; // IPAS2E1IS
when '100 1000 0000 010' return Sys_TLBI; // RIPAS2E1IS
when '100 1000 0000 101' return Sys_TLBI; // IPAS2LE1IS
when '100 1000 0000 110' return Sys_TLBI; // RIPAS2LE1IS
when '100 1000 0001 000' return Sys_TLBI; // ALLE2OS
when '100 1000 0001 001' return Sys_TLBI; // VAE2OS
when '100 1000 0001 100' return Sys_TLBI; // ALLE1OS
when '100 1000 0001 101' return Sys_TLBI; // VALE2OS
when '100 1000 0001 110' return Sys_TLBI; // VMALLS12E1OS
when '100 1000 0010 001' return Sys_TLBI; // RVAE2IS
when '100 1000 0010 101' return Sys_TLBI; // RVALE2IS
when '100 1000 0011 000' return Sys_TLBI; // ALLE2IS
when '100 1000 0011 001' return Sys_TLBI; // VAE2IS
when '100 1000 0011 100' return Sys_TLBI; // ALLE1IS
when '100 1000 0011 101' return Sys_TLBI; // VALE2IS
when '100 1000 0011 110' return Sys_TLBI; // VMALLS12E1IS
when '100 1000 0100 000' return Sys_TLBI; // IPAS2E1OS
when '100 1000 0100 001' return Sys_TLBI; // IPAS2E1
when '100 1000 0100 010' return Sys_TLBI; // RIPAS2E1
when '100 1000 0100 011' return Sys_TLBI; // RIPAS2E1OS
when '100 1000 0100 100' return Sys_TLBI; // IPAS2LE1OS
when '100 1000 0100 101' return Sys_TLBI; // IPAS2LE1
when '100 1000 0100 110' return Sys_TLBI; // RIPAS2LE1
when '100 1000 0100 111' return Sys_TLBI; // RIPAS2LE1OS

Shared Pseudocode Functions Page 1786

when '100 1000 0101 001' return Sys_TLBI; // RVAE2OS
when '100 1000 0101 101' return Sys_TLBI; // RVALE2OS
when '100 1000 0110 001' return Sys_TLBI; // RVAE2
when '100 1000 0110 101' return Sys_TLBI; // RVALE2
when '100 1000 0111 000' return Sys_TLBI; // ALLE2
when '100 1000 0111 001' return Sys_TLBI; // VAE2
when '100 1000 0111 100' return Sys_TLBI; // ALLE1
when '100 1000 0111 101' return Sys_TLBI; // VALE2
when '100 1000 0111 110' return Sys_TLBI; // VMALLS12E1
when '100 1001 0000 001' return Sys_TLBI; // IPAS2E1ISNXS
when '100 1001 0000 010' return Sys_TLBI; // RIPAS2E1ISNXS
when '100 1001 0000 101' return Sys_TLBI; // IPAS2LE1ISNXS
when '100 1001 0000 110' return Sys_TLBI; // RIPAS2LE1ISNXS
when '100 1001 0001 000' return Sys_TLBI; // ALLE2OSNXS
when '100 1001 0001 001' return Sys_TLBI; // VAE2OSNXS
when '100 1001 0001 100' return Sys_TLBI; // ALLE1OSNXS
when '100 1001 0001 101' return Sys_TLBI; // VALE2OSNXS
when '100 1001 0001 110' return Sys_TLBI; // VMALLS12E1OSNXS
when '100 1001 0010 001' return Sys_TLBI; // RVAE2ISNXS
when '100 1001 0010 101' return Sys_TLBI; // RVALE2ISNXS
when '100 1001 0011 000' return Sys_TLBI; // ALLE2ISNXS
when '100 1001 0011 001' return Sys_TLBI; // VAE2ISNXS
when '100 1001 0011 100' return Sys_TLBI; // ALLE1ISNXS
when '100 1001 0011 101' return Sys_TLBI; // VALE2ISNXS
when '100 1001 0011 110' return Sys_TLBI; // VMALLS12E1ISNXS
when '100 1001 0100 000' return Sys_TLBI; // IPAS2E1OSNXS
when '100 1001 0100 001' return Sys_TLBI; // IPAS2E1NXS
when '100 1001 0100 010' return Sys_TLBI; // RIPAS2E1NXS
when '100 1001 0100 011' return Sys_TLBI; // RIPAS2E1OSNXS
when '100 1001 0100 100' return Sys_TLBI; // IPAS2LE1OSNXS
when '100 1001 0100 101' return Sys_TLBI; // IPAS2LE1NXS
when '100 1001 0100 110' return Sys_TLBI; // RIPAS2LE1NXS
when '100 1001 0100 111' return Sys_TLBI; // RIPAS2LE1OSNXS
when '100 1001 0101 001' return Sys_TLBI; // RVAE2OSNXS
when '100 1001 0101 101' return Sys_TLBI; // RVALE2OSNXS
when '100 1001 0110 001' return Sys_TLBI; // RVAE2NXS
when '100 1001 0110 101' return Sys_TLBI; // RVALE2NXS
when '100 1001 0111 000' return Sys_TLBI; // ALLE2NXS
when '100 1001 0111 001' return Sys_TLBI; // VAE2NXS
when '100 1001 0111 100' return Sys_TLBI; // ALLE1NXS
when '100 1001 0111 101' return Sys_TLBI; // VALE2NXS
when '100 1001 0111 110' return Sys_TLBI; // VMALLS12E1NXS
when '110 1000 0001 000' return Sys_TLBI; // ALLE3OS
when '110 1000 0001 001' return Sys_TLBI; // VAE3OS
when '110 1000 0001 100' return Sys_TLBI; // PAALLOS
when '110 1000 0001 101' return Sys_TLBI; // VALE3OS
when '110 1000 0010 001' return Sys_TLBI; // RVAE3IS
when '110 1000 0010 101' return Sys_TLBI; // RVALE3IS
when '110 1000 0011 000' return Sys_TLBI; // ALLE3IS
when '110 1000 0011 001' return Sys_TLBI; // VAE3IS
when '110 1000 0011 101' return Sys_TLBI; // VALE3IS
when '110 1000 0100 011' return Sys_TLBI; // RPAOS
when '110 1000 0100 111' return Sys_TLBI; // RPALOS
when '110 1000 0101 001' return Sys_TLBI; // RVAE3OS
when '110 1000 0101 101' return Sys_TLBI; // RVALE3OS
when '110 1000 0110 001' return Sys_TLBI; // RVAE3
when '110 1000 0110 101' return Sys_TLBI; // RVALE3
when '110 1000 0111 000' return Sys_TLBI; // ALLE3
when '110 1000 0111 001' return Sys_TLBI; // VAE3
when '110 1000 0111 100' return Sys_TLBI; // PAALL
when '110 1000 0111 101' return Sys_TLBI; // VALE3
when '110 1001 0001 000' return Sys_TLBI; // ALLE3OSNXS
when '110 1001 0001 001' return Sys_TLBI; // VAE3OSNXS
when '110 1001 0001 101' return Sys_TLBI; // VALE3OSNXS
when '110 1001 0010 001' return Sys_TLBI; // RVAE3ISNXS
when '110 1001 0010 101' return Sys_TLBI; // RVALE3ISNXS
when '110 1001 0011 000' return Sys_TLBI; // ALLE3ISNXS
when '110 1001 0011 001' return Sys_TLBI; // VAE3ISNXS
when '110 1001 0011 101' return Sys_TLBI; // VALE3ISNXS
when '110 1001 0101 001' return Sys_TLBI; // RVAE3OSNXS

Shared Pseudocode Functions Page 1787

when '110 1001 0101 101' return Sys_TLBI; // RVALE3OSNXS
when '110 1001 0110 001' return Sys_TLBI; // RVAE3NXS
when '110 1001 0110 101' return Sys_TLBI; // RVALE3NXS
when '110 1001 0111 000' return Sys_TLBI; // ALLE3NXS
when '110 1001 0111 001' return Sys_TLBI; // VAE3NXS
when '110 1001 0111 101' return Sys_TLBI; // VALE3NXS
otherwise return Sys_SYS;

Library pseudocode for aarch64/functions/sysop/SystemOp

// SystemOp
// ========
// System instruction types.

enumeration SystemOp {Sys_AT, Sys_BRB, Sys_DC, Sys_IC, Sys_TLBI, Sys_SYS};

Shared Pseudocode Functions Page 1788

Library pseudocode for aarch64/functions/sysop_128/SysOp128

Shared Pseudocode Functions Page 1789

// SysOp128()
// ==========

SystemOp128 SysOp128(bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2)
case op1:CRn:CRm:op2 of

when '000 1000 0001 001' return Sys_TLBIP; // VAE1OS
when '000 1000 0001 011' return Sys_TLBIP; // VAAE1OS
when '000 1000 0001 101' return Sys_TLBIP; // VALE1OS
when '000 1000 0001 111' return Sys_TLBIP; // VAALE1OS
when '000 1000 0011 001' return Sys_TLBIP; // VAE1IS
when '000 1000 0011 011' return Sys_TLBIP; // VAAE1IS
when '000 1000 0011 101' return Sys_TLBIP; // VALE1IS
when '000 1000 0011 111' return Sys_TLBIP; // VAALE1IS
when '000 1000 0111 001' return Sys_TLBIP; // VAE1
when '000 1000 0111 011' return Sys_TLBIP; // VAAE1
when '000 1000 0111 101' return Sys_TLBIP; // VALE1
when '000 1000 0111 111' return Sys_TLBIP; // VAALE1
when '000 1001 0001 001' return Sys_TLBIP; // VAE1OSNXS
when '000 1001 0001 011' return Sys_TLBIP; // VAAE1OSNXS
when '000 1001 0001 101' return Sys_TLBIP; // VALE1OSNXS
when '000 1001 0001 111' return Sys_TLBIP; // VAALE1OSNXS
when '000 1001 0011 001' return Sys_TLBIP; // VAE1ISNXS
when '000 1001 0011 011' return Sys_TLBIP; // VAAE1ISNXS
when '000 1001 0011 101' return Sys_TLBIP; // VALE1ISNXS
when '000 1001 0011 111' return Sys_TLBIP; // VAALE1ISNXS
when '000 1001 0111 001' return Sys_TLBIP; // VAE1NXS
when '000 1001 0111 011' return Sys_TLBIP; // VAAE1NXS
when '000 1001 0111 101' return Sys_TLBIP; // VALE1NXS
when '000 1001 0111 111' return Sys_TLBIP; // VAALE1NXS
when '100 1000 0001 001' return Sys_TLBIP; // VAE2OS
when '100 1000 0001 101' return Sys_TLBIP; // VALE2OS
when '100 1000 0011 001' return Sys_TLBIP; // VAE2IS
when '100 1000 0011 101' return Sys_TLBIP; // VALE2IS
when '100 1000 0111 001' return Sys_TLBIP; // VAE2
when '100 1000 0111 101' return Sys_TLBIP; // VALE2
when '100 1001 0001 001' return Sys_TLBIP; // VAE2OSNXS
when '100 1001 0001 101' return Sys_TLBIP; // VALE2OSNXS
when '100 1001 0011 001' return Sys_TLBIP; // VAE2ISNXS
when '100 1001 0011 101' return Sys_TLBIP; // VALE2ISNXS
when '100 1001 0111 001' return Sys_TLBIP; // VAE2NXS
when '100 1001 0111 101' return Sys_TLBIP; // VALE2NXS
when '110 1000 0001 001' return Sys_TLBIP; // VAE3OS
when '110 1000 0001 101' return Sys_TLBIP; // VALE3OS
when '110 1000 0011 001' return Sys_TLBIP; // VAE3IS
when '110 1000 0011 101' return Sys_TLBIP; // VALE3IS
when '110 1000 0111 001' return Sys_TLBIP; // VAE3
when '110 1000 0111 101' return Sys_TLBIP; // VALE3
when '110 1001 0001 001' return Sys_TLBIP; // VAE3OSNXS
when '110 1001 0001 101' return Sys_TLBIP; // VALE3OSNXS
when '110 1001 0011 001' return Sys_TLBIP; // VAE3ISNXS
when '110 1001 0011 101' return Sys_TLBIP; // VALE3ISNXS
when '110 1001 0111 001' return Sys_TLBIP; // VAE3NXS
when '110 1001 0111 101' return Sys_TLBIP; // VALE3NXS
when '100 1000 0000 001' return Sys_TLBIP; // IPAS2E1IS
when '100 1000 0000 101' return Sys_TLBIP; // IPAS2LE1IS
when '100 1000 0100 000' return Sys_TLBIP; // IPAS2E1OS
when '100 1000 0100 001' return Sys_TLBIP; // IPAS2E1
when '100 1000 0100 100' return Sys_TLBIP; // IPAS2LE1OS
when '100 1000 0100 101' return Sys_TLBIP; // IPAS2LE1
when '100 1001 0000 001' return Sys_TLBIP; // IPAS2E1ISNXS
when '100 1001 0000 101' return Sys_TLBIP; // IPAS2LE1ISNXS
when '100 1001 0100 000' return Sys_TLBIP; // IPAS2E1OSNXS
when '100 1001 0100 001' return Sys_TLBIP; // IPAS2E1NXS
when '100 1001 0100 100' return Sys_TLBIP; // IPAS2LE1OSNXS
when '100 1001 0100 101' return Sys_TLBIP; // IPAS2LE1NXS
when '000 1000 0010 001' return Sys_TLBIP; // RVAE1IS
when '000 1000 0010 011' return Sys_TLBIP; // RVAAE1IS
when '000 1000 0010 101' return Sys_TLBIP; // RVALE1IS
when '000 1000 0010 111' return Sys_TLBIP; // RVAALE1IS
when '000 1000 0101 001' return Sys_TLBIP; // RVAE1OS

Shared Pseudocode Functions Page 1790

when '000 1000 0101 011' return Sys_TLBIP; // RVAAE1OS
when '000 1000 0101 101' return Sys_TLBIP; // RVALE1OS
when '000 1000 0101 111' return Sys_TLBIP; // RVAALE1OS
when '000 1000 0110 001' return Sys_TLBIP; // RVAE1
when '000 1000 0110 011' return Sys_TLBIP; // RVAAE1
when '000 1000 0110 101' return Sys_TLBIP; // RVALE1
when '000 1000 0110 111' return Sys_TLBIP; // RVAALE1
when '000 1001 0010 001' return Sys_TLBIP; // RVAE1ISNXS
when '000 1001 0010 011' return Sys_TLBIP; // RVAAE1ISNXS
when '000 1001 0010 101' return Sys_TLBIP; // RVALE1ISNXS
when '000 1001 0010 111' return Sys_TLBIP; // RVAALE1ISNXS
when '000 1001 0101 001' return Sys_TLBIP; // RVAE1OSNXS
when '000 1001 0101 011' return Sys_TLBIP; // RVAAE1OSNXS
when '000 1001 0101 101' return Sys_TLBIP; // RVALE1OSNXS
when '000 1001 0101 111' return Sys_TLBIP; // RVAALE1OSNXS
when '000 1001 0110 001' return Sys_TLBIP; // RVAE1NXS
when '000 1001 0110 011' return Sys_TLBIP; // RVAAE1NXS
when '000 1001 0110 101' return Sys_TLBIP; // RVALE1NXS
when '000 1001 0110 111' return Sys_TLBIP; // RVAALE1NXS
when '100 1000 0010 001' return Sys_TLBIP; // RVAE2IS
when '100 1000 0010 101' return Sys_TLBIP; // RVALE2IS
when '100 1000 0101 001' return Sys_TLBIP; // RVAE2OS
when '100 1000 0101 101' return Sys_TLBIP; // RVALE2OS
when '100 1000 0110 001' return Sys_TLBIP; // RVAE2
when '100 1000 0110 101' return Sys_TLBIP; // RVALE2
when '100 1001 0010 001' return Sys_TLBIP; // RVAE2ISNXS
when '100 1001 0010 101' return Sys_TLBIP; // RVALE2ISNXS
when '100 1001 0101 001' return Sys_TLBIP; // RVAE2OSNXS
when '100 1001 0101 101' return Sys_TLBIP; // RVALE2OSNXS
when '100 1001 0110 001' return Sys_TLBIP; // RVAE2NXS
when '100 1001 0110 101' return Sys_TLBIP; // RVALE2NXS
when '110 1000 0010 001' return Sys_TLBIP; // RVAE3IS
when '110 1000 0010 101' return Sys_TLBIP; // RVALE3IS
when '110 1000 0101 001' return Sys_TLBIP; // RVAE3OS
when '110 1000 0101 101' return Sys_TLBIP; // RVALE3OS
when '110 1000 0110 001' return Sys_TLBIP; // RVAE3
when '110 1000 0110 101' return Sys_TLBIP; // RVALE3
when '110 1001 0010 001' return Sys_TLBIP; // RVAE3ISNXS
when '110 1001 0010 101' return Sys_TLBIP; // RVALE3ISNXS
when '110 1001 0101 001' return Sys_TLBIP; // RVAE3OSNXS
when '110 1001 0101 101' return Sys_TLBIP; // RVALE3OSNXS
when '110 1001 0110 001' return Sys_TLBIP; // RVAE3NXS
when '110 1001 0110 101' return Sys_TLBIP; // RVALE3NXS
when '100 1000 0000 010' return Sys_TLBIP; // RIPAS2E1IS
when '100 1000 0000 110' return Sys_TLBIP; // RIPAS2LE1IS
when '100 1000 0100 010' return Sys_TLBIP; // RIPAS2E1
when '100 1000 0100 011' return Sys_TLBIP; // RIPAS2E1OS
when '100 1000 0100 110' return Sys_TLBIP; // RIPAS2LE1
when '100 1000 0100 111' return Sys_TLBIP; // RIPAS2LE1OS
when '100 1001 0000 010' return Sys_TLBIP; // RIPAS2E1ISNXS
when '100 1001 0000 110' return Sys_TLBIP; // RIPAS2LE1ISNXS
when '100 1001 0100 010' return Sys_TLBIP; // RIPAS2E1NXS
when '100 1001 0100 011' return Sys_TLBIP; // RIPAS2E1OSNXS
when '100 1001 0100 110' return Sys_TLBIP; // RIPAS2LE1NXS
when '100 1001 0100 111' return Sys_TLBIP; // RIPAS2LE1OSNXS
otherwise return Sys_SYSP;

Library pseudocode for aarch64/functions/sysop_128/SystemOp128

// SystemOp128()
// =============
// System instruction types.

enumeration SystemOp128 {Sys_TLBIP, Sys_SYSP};

Shared Pseudocode Functions Page 1791

Library pseudocode for aarch64/functions/sysregisters/ELR_EL

// ELR_EL[] - non-assignment form
// ==============================

bits(64) ELR_EL[bits(2) el]
bits(64) r;
case el of

when EL1 r = ELR_EL1;
when EL2 r = ELR_EL2;
when EL3 r = ELR_EL3;
otherwise Unreachable();

return r;

// ELR_EL[] - assignment form
// ==========================

ELR_EL[bits(2) el] = bits(64) value
bits(64) r = value;
case el of

when EL1 ELR_EL1 = r;
when EL2 ELR_EL2 = r;
when EL3 ELR_EL3 = r;
otherwise Unreachable();

return;

Library pseudocode for aarch64/functions/sysregisters/ELR_ELx

// ELR_ELx[] - non-assignment form
// ===============================

bits(64) ELR_ELx[]
assert PSTATE.EL != EL0;
return ELR_EL[PSTATE.EL];

// ELR_ELx[] - assignment form
// ===========================

ELR_ELx[] = bits(64) value
assert PSTATE.EL != EL0;
ELR_EL[PSTATE.EL] = value;
return;

Library pseudocode for aarch64/functions/sysregisters/ESRType

type ESRType;

Library pseudocode for aarch64/functions/sysregisters/ESR_EL

// ESR_EL[] - non-assignment form
// ==============================

ESRType ESR_EL[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = ESR_EL1;
when EL2 r = ESR_EL2;
when EL3 r = ESR_EL3;
otherwise Unreachable();

return r;

Shared Pseudocode Functions Page 1792

Library pseudocode for aarch64/functions/sysregisters/ESR_ELx

// ESR_ELx[] - non-assignment form
// ===============================

ESRType ESR_ELx[]
return ESR_EL[S1TranslationRegime()];

// ESR_ELx[] - assignment form
// ===========================

ESR_ELx[] = ESRType value
ESR_EL[S1TranslationRegime()] = value;

Library pseudocode for aarch64/functions/sysregisters/ES_EL

// ES_EL[] - assignment form
// =========================

ESR_EL[bits(2) regime] = ESRType value
bits(64) r = value;
case regime of

when EL1 ESR_EL1 = r;
when EL2 ESR_EL2 = r;
when EL3 ESR_EL3 = r;
otherwise Unreachable();

return;

Library pseudocode for aarch64/functions/sysregisters/FAR_EL

// FAR_EL[] - non-assignment form
// ==============================

bits(64) FAR_EL[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = FAR_EL1;
when EL2 r = FAR_EL2;
when EL3 r = FAR_EL3;
otherwise Unreachable();

return r;

// FAR_EL[] - assignment form
// ==========================

FAR_EL[bits(2) regime] = bits(64) value
bits(64) r = value;
case regime of

when EL1 FAR_EL1 = r;
when EL2 FAR_EL2 = r;
when EL3 FAR_EL3 = r;
otherwise Unreachable();

return;

Library pseudocode for aarch64/functions/sysregisters/FAR_ELx

// FAR_ELx[] - non-assignment form
// ===============================

bits(64) FAR_ELx[]
return FAR_EL[S1TranslationRegime()];

// FAR_ELx[] - assignment form
// ===========================

FAR_ELx[] = bits(64) value
FAR_EL[S1TranslationRegime()] = value;
return;

Shared Pseudocode Functions Page 1793

Library pseudocode for aarch64/functions/sysregisters/PFAR_EL

// PFAR_EL[] - non-assignment form
// ===============================

bits(64) PFAR_EL[bits(2) regime]
assert (HavePFAR() || (regime == EL3 && HaveRME()));
bits(64) r;
case regime of

when EL1 r = PFAR_EL1;
when EL2 r = PFAR_EL2;
when EL3 r = MFAR_EL3;
otherwise Unreachable();

return r;

// PFAR_EL[] - assignment form
// ===========================

PFAR_EL[bits(2) regime] = bits(64) value
bits(64) r = value;
assert (HavePFAR() || (HaveRME() && regime == EL3));
case regime of

when EL1 PFAR_EL1 = r;
when EL2 PFAR_EL2 = r;
when EL3 MFAR_EL3 = r;
otherwise Unreachable();

return;

Library pseudocode for aarch64/functions/sysregisters/PFAR_ELx

// PFAR_ELx[] - non-assignment form
// ================================

bits(64) PFAR_ELx[]
return PFAR_EL[S1TranslationRegime()];

// PFAR_ELx[] - assignment form
// ============================

PFAR_ELx[] = bits(64) value
PFAR_EL[S1TranslationRegime()] = value;
return;

Library pseudocode for aarch64/functions/sysregisters/S1PIRType

type S1PIRType;

Library pseudocode for aarch64/functions/sysregisters/S1PORType

type S1PORType;

Library pseudocode for aarch64/functions/sysregisters/S2PIRType

type S2PIRType;

Library pseudocode for aarch64/functions/sysregisters/S2PORType

type S2PORType;

Library pseudocode for aarch64/functions/sysregisters/SCTLRType

type SCTLRType;

Shared Pseudocode Functions Page 1794

Library pseudocode for aarch64/functions/sysregisters/SCTLR_EL

// SCTLR_EL[] - non-assignment form
// ================================

SCTLRType SCTLR_EL[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = SCTLR_EL1;
when EL2 r = SCTLR_EL2;
when EL3 r = SCTLR_EL3;
otherwise Unreachable();

return r;

Library pseudocode for aarch64/functions/sysregisters/SCTLR_ELx

// SCTLR_ELx[] - non-assignment form
// =================================

SCTLRType SCTLR_ELx[]
return SCTLR_EL[S1TranslationRegime()];

Library pseudocode for aarch64/functions/sysregisters/VBAR_EL

// VBAR_EL[] - non-assignment form
// ===============================

bits(64) VBAR_EL[bits(2) regime]
bits(64) r;
case regime of

when EL1 r = VBAR_EL1;
when EL2 r = VBAR_EL2;
when EL3 r = VBAR_EL3;
otherwise Unreachable();

return r;

Library pseudocode for aarch64/functions/sysregisters/VBAR_ELx

// VBAR_ELx[] - non-assignment form
// ================================

bits(64) VBAR_ELx[]
return VBAR_EL[S1TranslationRegime()];

Library pseudocode for aarch64/functions/system/AArch64.AllocationTagAccessIsEnabled

// AArch64.AllocationTagAccessIsEnabled()
// ======================================
// Check whether access to Allocation Tags is enabled.

boolean AArch64.AllocationTagAccessIsEnabled(bits(2) el)
if SCR_EL3.ATA == '0' && el IN {EL0, EL1, EL2} then

return FALSE;
if HCR_EL2.ATA == '0' && el IN {EL0, EL1} && EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' then

return FALSE;

Regime regime = TranslationRegime(el);
case regime of

when Regime_EL3 return SCTLR_EL3.ATA == '1';
when Regime_EL2 return SCTLR_EL2.ATA == '1';
when Regime_EL20 return if el == EL0 then SCTLR_EL2.ATA0 == '1' else SCTLR_EL2.ATA == '1';
when Regime_EL10 return if el == EL0 then SCTLR_EL1.ATA0 == '1' else SCTLR_EL1.ATA == '1';
otherwise Unreachable();

Shared Pseudocode Functions Page 1795

Library pseudocode for aarch64/functions/system/AArch64.CheckDAIFAccess

// AArch64.CheckDAIFAccess()
// =========================
// Check that an AArch64 MSR/MRS access to the DAIF flags is permitted.

AArch64.CheckDAIFAccess(PSTATEField field)
if PSTATE.EL == EL0 && field IN {PSTATEField_DAIFSet, PSTATEField_DAIFClr} then

if IsInHost() || SCTLR_EL1.UMA == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);

Library pseudocode for aarch64/functions/system/AArch64.CheckSystemAccess

// AArch64.CheckSystemAccess()
// ===========================

AArch64.CheckSystemAccess(bits(2) op0, bits(3) op1, bits(4) crn,
bits(4) crm, bits(3) op2, bits(5) rt, bit read)

if HaveBTIExt() then
BranchTargetCheck();

if (HaveTME() && TSTATE.depth > 0 &&
!CheckTransactionalSystemAccess(op0, op1, crn, crm, op2, read)) then

FailTransaction(TMFailure_ERR, FALSE);

return;

Library pseudocode for aarch64/functions/system/AArch64.ChooseNonExcludedTag

// AArch64.ChooseNonExcludedTag()
// ==============================
// Return a tag derived from the start and the offset values, excluding
// any tags in the given mask.

bits(4) AArch64.ChooseNonExcludedTag(bits(4) tag_in, bits(4) offset_in, bits(16) exclude)
bits(4) tag = tag_in;
bits(4) offset = offset_in;

if IsOnes(exclude) then
return '0000';

if offset == '0000' then
while exclude<UInt(tag)> == '1' do

tag = tag + '0001';

while offset != '0000' do
offset = offset - '0001';
tag = tag + '0001';
while exclude<UInt(tag)> == '1' do

tag = tag + '0001';

return tag;

Shared Pseudocode Functions Page 1796

Library pseudocode for aarch64/functions/system/AArch64.ExecutingBROrBLROrRetInstr

// AArch64.ExecutingBROrBLROrRetInstr()
// ====================================
// Returns TRUE if current instruction is a BR, BLR, RET, B[L]RA[B][Z], or RETA[B].

boolean AArch64.ExecutingBROrBLROrRetInstr()
if !HaveBTIExt() then return FALSE;

instr = ThisInstr();
if instr<31:25> == '1101011' && instr<20:16> == '11111' then

opc = instr<24:21>;
return opc != '0101';

else
return FALSE;

Library pseudocode for aarch64/functions/system/AArch64.ExecutingBTIInstr

// AArch64.ExecutingBTIInstr()
// ===========================
// Returns TRUE if current instruction is a BTI.

boolean AArch64.ExecutingBTIInstr()
if !HaveBTIExt() then return FALSE;

instr = ThisInstr();
if instr<31:22> == '1101010100' && instr<21:12> == '0000110010' && instr<4:0> == '11111' then

CRm = instr<11:8>;
op2 = instr<7:5>;
return (CRm == '0100' && op2<0> == '0');

else
return FALSE;

Library pseudocode for aarch64/functions/system/AArch64.ExecutingERETInstr

// AArch64.ExecutingERETInstr()
// ============================
// Returns TRUE if current instruction is ERET.

boolean AArch64.ExecutingERETInstr()
instr = ThisInstr();
return instr<31:12> == '11010110100111110000';

Library pseudocode for aarch64/functions/system/AArch64.ImpDefSysInstr

// AArch64.ImpDefSysInstr()
// ========================
// Execute an implementation-defined system instruction with write (source operand).

AArch64.ImpDefSysInstr(integer el, bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2, integer t);

Library pseudocode for aarch64/functions/system/AArch64.ImpDefSysInstr128

// AArch64.ImpDefSysInstr128()
// ===========================
// Execute an implementation-defined system instruction with write (128-bit source operand).

AArch64.ImpDefSysInstr128(integer el, bits(3) op1, bits(4) CRn,
bits(4) CRm, bits(3) op2,
integer t, integer t2);

Shared Pseudocode Functions Page 1797

Library pseudocode for aarch64/functions/system/AArch64.ImpDefSysInstrWithResult

// AArch64.ImpDefSysInstrWithResult()
// ==================================
// Execute an implementation-defined system instruction with read (result operand).

AArch64.ImpDefSysInstrWithResult(integer el, bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2);

Library pseudocode for aarch64/functions/system/AArch64.ImpDefSysRegRead

// AArch64.ImpDefSysRegRead()
// ==========================
// Read from an implementation-defined System register and write the contents of the register
// to X[t].

AArch64.ImpDefSysRegRead(bits(2) op0, bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2,
integer t);

Library pseudocode for aarch64/functions/system/AArch64.ImpDefSysRegRead128

// AArch64.ImpDefSysRegRead128()
// =============================
// Read from an 128-bit implementation-defined System register
// and write the contents of the register to X[t], X[t+1].

AArch64.ImpDefSysRegRead128(bits(2) op0, bits(3) op1, bits(4) CRn,
bits(4) CRm, bits(3) op2,
integer t, integer t2);

Library pseudocode for aarch64/functions/system/AArch64.ImpDefSysRegWrite

// AArch64.ImpDefSysRegWrite()
// ===========================
// Write to an implementation-defined System register.

AArch64.ImpDefSysRegWrite(bits(2) op0, bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2,
integer t);

Library pseudocode for aarch64/functions/system/AArch64.ImpDefSysRegWrite128

// AArch64.ImpDefSysRegWrite128()
// ==============================
// Write the contents of X[t], X[t+1] to an 128-bit implementation-defined System register.

AArch64.ImpDefSysRegWrite128(bits(2) op0, bits(3) op1, bits(4) CRn,
bits(4) CRm, bits(3) op2,
integer t, integer t2);

Library pseudocode for aarch64/functions/system/AArch64.NextRandomTagBit

// AArch64.NextRandomTagBit()
// ==========================
// Generate a random bit suitable for generating a random Allocation Tag.

bit AArch64.NextRandomTagBit()
assert GCR_EL1.RRND == '0';
bits(16) lfsr = RGSR_EL1.SEED<15:0>;
bit top = lfsr<5> EOR lfsr<3> EOR lfsr<2> EOR lfsr<0>;
RGSR_EL1.SEED<15:0> = top:lfsr<15:1>;
return top;

Shared Pseudocode Functions Page 1798

Library pseudocode for aarch64/functions/system/AArch64.RandomTag

// AArch64.RandomTag()
// ===================
// Generate a random Allocation Tag.

bits(4) AArch64.RandomTag()
bits(4) tag;
for i = 0 to 3

tag<i> = AArch64.NextRandomTagBit();
return tag;

Library pseudocode for aarch64/functions/system/AArch64.SysInstr

// AArch64.SysInstr()
// ==================
// Execute a system instruction with write (source operand).

AArch64.SysInstr(integer op0, integer op1, integer crn, integer crm, integer op2, integer t);

Library pseudocode for aarch64/functions/system/AArch64.SysInstrWithResult

// AArch64.SysInstrWithResult()
// ============================
// Execute a system instruction with read (result operand).
// Writes the result of the instruction to X[t].

AArch64.SysInstrWithResult(integer op0, integer op1, integer crn, integer crm, integer op2,
integer t);

Library pseudocode for aarch64/functions/system/AArch64.SysRegRead

// AArch64.SysRegRead()
// ====================
// Read from a System register and write the contents of the register to X[t].

AArch64.SysRegRead(integer op0, integer op1, integer crn, integer crm, integer op2, integer t);

Library pseudocode for aarch64/functions/system/AArch64.SysRegWrite

// AArch64.SysRegWrite()
// =====================
// Write to a System register.

AArch64.SysRegWrite(integer op0, integer op1, integer crn, integer crm, integer op2, integer t);

Library pseudocode for aarch64/functions/system/BTypeCompatible

boolean BTypeCompatible;

Shared Pseudocode Functions Page 1799

Library pseudocode for aarch64/functions/system/BTypeCompatible_BTI

// BTypeCompatible_BTI
// ===================
// This function determines whether a given hint encoding is compatible with the current value of
// PSTATE.BTYPE. A value of TRUE here indicates a valid Branch Target Identification instruction.

boolean BTypeCompatible_BTI(bits(2) hintcode)
case hintcode of

when '00'
return FALSE;

when '01'
return PSTATE.BTYPE != '11';

when '10'
return PSTATE.BTYPE != '10';

when '11'
return TRUE;

Library pseudocode for aarch64/functions/system/BTypeCompatible_PACIXSP

// BTypeCompatible_PACIXSP()
// =========================
// Returns TRUE if PACIASP, PACIBSP instruction is implicit compatible with PSTATE.BTYPE,
// FALSE otherwise.

boolean BTypeCompatible_PACIXSP()
if PSTATE.BTYPE IN {'01', '10'} then

return TRUE;
elsif PSTATE.BTYPE == '11' then

index = if PSTATE.EL == EL0 then 35 else 36;
return SCTLR_ELx[]<index> == '0';

else
return FALSE;

Library pseudocode for aarch64/functions/system/BTypeNext

bits(2) BTypeNext;

Library pseudocode for aarch64/functions/system/ChooseRandomNonExcludedTag

// ChooseRandomNonExcludedTag()
// ============================
// The ChooseRandomNonExcludedTag function is used when GCR_EL1.RRND == '1' to generate random
// Allocation Tags.
//
// The resulting Allocation Tag is selected from the set [0,15], excluding any Allocation Tag where
// exclude[tag_value] == 1. If 'exclude' is all Ones, the returned Allocation Tag is '0000'.
//
// This function is permitted to generate a non-deterministic selection from the set of non-excluded
// Allocation Tags. A reasonable implementation is described by the Pseudocode used when
// GCR_EL1.RRND is 0, but with a non-deterministic implementation of NextRandomTagBit().
// Implementations may choose to behave the same as GCR_EL1.RRND=0.
//
// This function can read RGSR_EL1 and/or write RGSR_EL1 to an IMPLEMENTATION DEFINED value.
// If it is not capable of writing RGSR_EL1.SEED[15:0] to zero from a previous nonzero
// RGSR_EL1.SEED value, it is IMPLEMENTATION DEFINED whether the randomness is significantly
// impacted if RGSR_EL1.SEED[15:0] is set to zero.

bits(4) ChooseRandomNonExcludedTag(bits(16) exclude_in);

Library pseudocode for aarch64/functions/system/InGuardedPage

boolean InGuardedPage;

Shared Pseudocode Functions Page 1800

Library pseudocode for aarch64/functions/system/IsHCRXEL2Enabled

// IsHCRXEL2Enabled()
// ==================
// Returns TRUE if access to HCRX_EL2 register is enabled, and FALSE otherwise.
// Indirect read of HCRX_EL2 returns 0 when access is not enabled.

boolean IsHCRXEL2Enabled()
if !HaveFeatHCX() then return FALSE;
if HaveEL(EL3) && SCR_EL3.HXEn == '0' then

return FALSE;

return EL2Enabled();

Library pseudocode for aarch64/functions/system/IsSCTLR2EL1Enabled

// IsSCTLR2EL1Enabled()
// ====================
// Returns TRUE if access to SCTLR2_EL1 register is enabled, and FALSE otherwise.
// Indirect read of SCTLR2_EL1 returns 0 when access is not enabled.

boolean IsSCTLR2EL1Enabled()
if !HaveFeatSCTLR2() then return FALSE;
if HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then

return FALSE;
elsif (EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.SCTLR2En == '0')) then

return FALSE;
else

return TRUE;

Library pseudocode for aarch64/functions/system/IsSCTLR2EL2Enabled

// IsSCTLR2EL2Enabled()
// ====================
// Returns TRUE if access to SCTLR2_EL2 register is enabled, and FALSE otherwise.
// Indirect read of SCTLR2_EL2 returns 0 when access is not enabled.

boolean IsSCTLR2EL2Enabled()
if !HaveFeatSCTLR2() then return FALSE;
if HaveEL(EL3) && SCR_EL3.SCTLR2En == '0' then

return FALSE;

return EL2Enabled();

Library pseudocode for aarch64/functions/system/IsTCR2EL1Enabled

// IsTCR2EL1Enabled()
// ==================
// Returns TRUE if access to TCR2_EL1 register is enabled, and FALSE otherwise.
// Indirect read of TCR2_EL1 returns 0 when access is not enabled.

boolean IsTCR2EL1Enabled()
if !HaveFeatTCR2() then return FALSE;
if HaveEL(EL3) && SCR_EL3.TCR2En == '0' then

return FALSE;
elsif (EL2Enabled() && (!IsHCRXEL2Enabled() || HCRX_EL2.TCR2En == '0')) then

return FALSE;
else

return TRUE;

Shared Pseudocode Functions Page 1801

Library pseudocode for aarch64/functions/system/IsTCR2EL2Enabled

// IsTCR2EL2Enabled()
// ==================
// Returns TRUE if access to TCR2_EL2 register is enabled, and FALSE otherwise.
// Indirect read of TCR2_EL2 returns 0 when access is not enabled.

boolean IsTCR2EL2Enabled()
if !HaveFeatTCR2() then return FALSE;
if HaveEL(EL3) && SCR_EL3.TCR2En == '0' then

return FALSE;

return EL2Enabled();

Library pseudocode for aarch64/functions/system/SetBTypeCompatible

// SetBTypeCompatible()
// ====================
// Sets the value of BTypeCompatible global variable used by BTI

SetBTypeCompatible(boolean x)
BTypeCompatible = x;

Library pseudocode for aarch64/functions/system/SetBTypeNext

// SetBTypeNext()
// ==============
// Set the value of BTypeNext global variable used by BTI

SetBTypeNext(bits(2) x)
BTypeNext = x;

Library pseudocode for aarch64/functions/system/SetInGuardedPage

// SetInGuardedPage()
// ==================
// Global state updated to denote if memory access is from a guarded page.

SetInGuardedPage(boolean guardedpage)
InGuardedPage = guardedpage;

Library pseudocode for aarch64/functions/system128/AArch64.SysInstr128

// AArch64.SysInstr128()
// =====================
// Execute a system instruction with write (2 64-bit source operands).

AArch64.SysInstr128(integer op0, integer op1, integer crn, integer crm,
integer op2, integer t, integer t2);

Library pseudocode for aarch64/functions/system128/AArch64.SysRegRead128

// AArch64.SysRegRead128()
// =======================
// Read from a 128-bit System register and write the contents of the register to X[t] and X[t2].

AArch64.SysRegRead128(integer op0, integer op1, integer crn, integer crm,
integer op2, integer t, integer t2);

Shared Pseudocode Functions Page 1802

Library pseudocode for aarch64/functions/system128/AArch64.SysRegWrite128

// AArch64.SysRegWrite128()
// ========================
// Read the contents of X[t] and X[t2] and write the contents to a 128-bit System register.

AArch64.SysRegWrite128(integer op0, integer op1, integer crn, integer crm,
integer op2, integer t, integer t2);

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBIP_IPAS2

// AArch64.TLBIP_IPAS2()
// =====================
// Invalidate by IPA all stage 2 only TLB entries in the indicated shareability
// domain matching the indicated VMID in the indicated regime with the indicated security state.
// Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
// IPA and related parameters of the are derived from Xt.

AArch64.TLBIP_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(128) Xt)

assert PSTATE.EL IN {EL3, EL2};

TLBIRecord r;
r.op = TLBIOp_IPAS2;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.ttl = Xt<47:44>;
r.address = ZeroExtend(Xt<107:64> : Zeros(12), 64);
r.d64 = r.ttl IN {'00xx'};
r.d128 = TRUE;

case security of
when SS_NonSecure

r.ipaspace = PAS_NonSecure;
when SS_Secure

r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;
when SS_Realm

r.ipaspace = PAS_Realm;
otherwise

// Root security state does not have stage 2 translation
Unreachable();

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1803

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBIP_RIPAS2

// AArch64.TLBIP_RIPAS2()
// ======================
// Range invalidate by IPA all stage 2 only TLB entries in the indicated
// shareability domain matching the indicated VMID in the indicated regime with the indicated
// security state.
// Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
// The range of IPA and related parameters of the are derived from Xt.

AArch64.TLBIP_RIPAS2(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(128) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_RIPAS2;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.ttl<1:0> = Xt<38:37>;
r.d64 = r.ttl<1:0> == '00';
r.d128 = TRUE;

bits(2) tg = Xt<47:46>;
integer scale = UInt(Xt<45:44>);
integer num = UInt(Xt<43:39>);
integer baseaddr = SInt(Xt<36:0>);

boolean valid;

(valid, r.tg, r.address, r.end_address) = TLBIPRange(regime, Xt);

if !valid then return;

case security of
when SS_NonSecure

r.ipaspace = PAS_NonSecure;
when SS_Secure

r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;
when SS_Realm

r.ipaspace = PAS_Realm;
otherwise

// Root security state does not have stage 2 translation
Unreachable();

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1804

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBIP_RVA

// AArch64.TLBIP_RVA()
// ===================
// Range invalidate by VA range all stage 1 TLB entries in the indicated
// shareability domain matching the indicated VMID and ASID (where regime
// supports VMID, ASID) in the indicated regime with the indicated security state.
// ASID, and range related parameters are derived from Xt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch64.TLBIP_RVA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(128) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_RVA;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.asid = Xt<63:48>;
r.ttl<1:0> = Xt<38:37>;
r.d64 = r.ttl<1:0> == '00';
r.d128 = TRUE;

boolean valid;

(valid, r.tg, r.address, r.end_address) = TLBIPRange(regime, Xt);

if !valid then return;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1805

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBIP_RVAA

// AArch64.TLBIP_RVAA()
// ====================
// Range invalidate by VA range all stage 1 TLB entries in the indicated
// shareability domain matching the indicated VMID (where regimesupports VMID)
// and all ASID in the indicated regime with the indicated security state.
// VA range related parameters are derived from Xt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch64.TLBIP_RVAA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(128) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_RVAA;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.ttl<1:0> = Xt<38:37>;
r.d64 = r.ttl<1:0> == '00';
r.d128 = TRUE;

bits(2) tg = Xt<47:46>;
integer scale = UInt(Xt<45:44>);
integer num = UInt(Xt<43:39>);
integer baseaddr = SInt(Xt<36:0>);

boolean valid;

(valid, r.tg, r.address, r.end_address) = TLBIPRange(regime, Xt);

if !valid then return;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1806

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBIP_VA

// AArch64.TLBIP_VA()
// ==================
// Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
// matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
// with the indicated security state.
// ASID, VA and related parameters are derived from Xt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch64.TLBIP_VA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(128) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VA;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.asid = Xt<63:48>;
r.ttl = Xt<47:44>;
r.address = ZeroExtend(Xt<107:64> : Zeros(12), 64);
r.d64 = r.ttl IN {'00xx'};
r.d128 = TRUE;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBIP_VAA

// AArch64.TLBIP_VAA()
// ===================
// Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
// matching the indicated VMID (where regime supports VMID) and all ASID in the indicated regime
// with the indicated security state.
// VA and related parameters are derived from Xt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch64.TLBIP_VAA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(128) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VAA;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.ttl = Xt<47:44>;
r.address = ZeroExtend(Xt<107:64> : Zeros(12), 64);
r.d64 = r.ttl IN {'00xx'};
r.d128 = TRUE;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1807

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBI_ALL

// AArch64.TLBI_ALL()
// ==================
// Invalidate all entries for the indicated translation regime with the
// the indicated security state for all TLBs within the indicated shareability domain.
// Invalidation applies to all applicable stage 1 and stage 2 entries.

AArch64.TLBI_ALL(SecurityState security, Regime regime, Shareability shareability, TLBIMemAttr attr)
assert PSTATE.EL IN {EL3, EL2};

TLBIRecord r;
r.op = TLBIOp_ALL;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBI_ASID

// AArch64.TLBI_ASID()
// ===================
// Invalidate all stage 1 entries matching the indicated VMID (where regime supports)
// and ASID in the parameter Xt in the indicated translation regime with the
// indicated security state for all TLBs within the indicated shareability domain.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch64.TLBI_ASID(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_ASID;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = TLBILevel_Any;
r.attr = attr;
r.asid = Xt<63:48>;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1808

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBI_IPAS2

// AArch64.TLBI_IPAS2()
// ====================
// Invalidate by IPA all stage 2 only TLB entries in the indicated shareability
// domain matching the indicated VMID in the indicated regime with the indicated security state.
// Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
// IPA and related parameters of the are derived from Xt.

AArch64.TLBI_IPAS2(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2};

TLBIRecord r;
r.op = TLBIOp_IPAS2;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.ttl = Xt<47:44>;
r.address = ZeroExtend(Xt<39:0> : Zeros(12), 64);
r.d64 = TRUE;
r.d128 = r.ttl IN {'00xx'};

case security of
when SS_NonSecure

r.ipaspace = PAS_NonSecure;
when SS_Secure

r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;
when SS_Realm

r.ipaspace = PAS_Realm;
otherwise

// Root security state does not have stage 2 translation
Unreachable();

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBI_PAALL

// AArch64.TLBI_PAALL()
// ====================
// TLB Invalidate ALL GPT Information.
// Invalidates cached copies of GPT entries from TLBs in the indicated
// Shareabilty domain.
// The invalidation applies to all TLB entries containing GPT information.

AArch64.TLBI_PAALL(Shareability shareability)
assert HaveRME() && PSTATE.EL == EL3;

TLBIRecord r;

// r.security and r.regime do not apply for TLBI by PA operations
r.op = TLBIOp_PAALL;
r.level = TLBILevel_Any;
r.attr = TLBI_AllAttr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);

return;

Shared Pseudocode Functions Page 1809

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBI_RIPAS2

// AArch64.TLBI_RIPAS2()
// =====================
// Range invalidate by IPA all stage 2 only TLB entries in the indicated
// shareability domain matching the indicated VMID in the indicated regime with the indicated
// security state.
// Note: stage 1 and stage 2 combined entries are not in the scope of this operation.
// The range of IPA and related parameters of the are derived from Xt.

AArch64.TLBI_RIPAS2(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_RIPAS2;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.ttl<1:0> = Xt<38:37>;
r.d64 = TRUE;
r.d128 = r.ttl<1:0> == '00';

bits(2) tg = Xt<47:46>;
integer scale = UInt(Xt<45:44>);
integer num = UInt(Xt<43:39>);
integer baseaddr = SInt(Xt<36:0>);

boolean valid;

(valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

if !valid then return;

case security of
when SS_NonSecure

r.ipaspace = PAS_NonSecure;
when SS_Secure

r.ipaspace = if Xt<63> == '1' then PAS_NonSecure else PAS_Secure;
when SS_Realm

r.ipaspace = PAS_Realm;
otherwise

// Root security state does not have stage 2 translation
Unreachable();

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1810

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBI_RPA

// AArch64.TLBI_RPA()
// ==================
// TLB Range Invalidate GPT Information by PA.
// Invalidates cached copies of GPT entries from TLBs in the indicated
// Shareabilty domain.
// The invalidation applies to TLB entries containing GPT information relating
// to the indicated physical address range.
// When the indicated level is
// TLBILevel_Any : this applies to TLB entries containing GPT information
// from all levels of the GPT walk
// TLBILevel_Last : this applies to TLB entries containing GPT information
// from the last level of the GPT walk

AArch64.TLBI_RPA(TLBILevel level, bits(64) Xt, Shareability shareability)
assert HaveRME() && PSTATE.EL == EL3;

TLBIRecord r;
integer range_bits;
integer p;

// r.security and r.regime do not apply for TLBI by PA operations
r.op = TLBIOp_RPA;
r.level = level;
r.attr = TLBI_AllAttr;

// SIZE field
case Xt<47:44> of

when '0000' range_bits = 12; // 4KB
when '0001' range_bits = 14; // 16KB
when '0010' range_bits = 16; // 64KB
when '0011' range_bits = 21; // 2MB
when '0100' range_bits = 25; // 32MB
when '0101' range_bits = 29; // 512MB
when '0110' range_bits = 30; // 1GB
when '0111' range_bits = 34; // 16GB
when '1000' range_bits = 36; // 64GB
when '1001' range_bits = 39; // 512GB
otherwise range_bits = 0; // Reserved encoding

// If SIZE selects a range smaller than PGS, then PGS is used instead
case DecodePGS(GPCCR_EL3.PGS) of

when PGS_4KB p = 12;
when PGS_16KB p = 14;
when PGS_64KB p = 16;

if range_bits < p then
range_bits = p;

bits(52) BaseADDR = Zeros(52);
case GPCCR_EL3.PGS of

when '00' BaseADDR<51:12> = Xt<39:0>; // 4KB
when '10' BaseADDR<51:14> = Xt<39:2>; // 16KB
when '01' BaseADDR<51:16> = Xt<39:4>; // 64KB

// The calculation here automatically aligns BaseADDR to the size of
// the region specififed in SIZE. However, the architecture does not
// require this alignment and if BaseADDR is not aligned to the region
// specified by SIZE then no entries are required to be invalidated.
bits(52) start_addr = BaseADDR AND NOT ZeroExtend(Ones(range_bits), 52);
bits(52) end_addr = start_addr + ZeroExtend(Ones(range_bits), 52);

// PASpace is not considered in TLBI by PA operations
r.address = ZeroExtend(start_addr, 64);
r.end_address = ZeroExtend(end_addr, 64);

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);

Shared Pseudocode Functions Page 1811

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBI_RVA

// AArch64.TLBI_RVA()
// ==================
// Range invalidate by VA range all stage 1 TLB entries in the indicated
// shareability domain matching the indicated VMID and ASID (where regime
// supports VMID, ASID) in the indicated regime with the indicated security state.
// ASID, and range related parameters are derived from Xt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch64.TLBI_RVA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_RVA;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.asid = Xt<63:48>;
r.ttl<1:0> = Xt<38:37>;
r.d64 = TRUE;
r.d128 = r.ttl<1:0> == '00';

boolean valid;

(valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

if !valid then return;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1812

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBI_RVAA

// AArch64.TLBI_RVAA()
// ===================
// Range invalidate by VA range all stage 1 TLB entries in the indicated
// shareability domain matching the indicated VMID (where regimesupports VMID)
// and all ASID in the indicated regime with the indicated security state.
// VA range related parameters are derived from Xt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch64.TLBI_RVAA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_RVAA;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.ttl<1:0> = Xt<38:37>;
r.d64 = TRUE;
r.d128 = r.ttl<1:0> == '00';

bits(2) tg = Xt<47:46>;
integer scale = UInt(Xt<45:44>);
integer num = UInt(Xt<43:39>);
integer baseaddr = SInt(Xt<36:0>);

boolean valid;

(valid, r.tg, r.address, r.end_address) = TLBIRange(regime, Xt);

if !valid then return;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1813

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBI_VA

// AArch64.TLBI_VA()
// =================
// Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
// matching the indicated VMID and ASID (where regime supports VMID, ASID) in the indicated regime
// with the indicated security state.
// ASID, VA and related parameters are derived from Xt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch64.TLBI_VA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VA;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.asid = Xt<63:48>;
r.ttl = Xt<47:44>;
r.address = ZeroExtend(Xt<43:0> : Zeros(12), 64);
r.d64 = TRUE;
r.d128 = r.ttl IN {'00xx'};

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBI_VAA

// AArch64.TLBI_VAA()
// ==================
// Invalidate by VA all stage 1 TLB entries in the indicated shareability domain
// matching the indicated VMID (where regime supports VMID) and all ASID in the indicated regime
// with the indicated security state.
// VA and related parameters are derived from Xt.
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.

AArch64.TLBI_VAA(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBILevel level, TLBIMemAttr attr, bits(64) Xt)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VAA;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.vmid = vmid;
r.level = level;
r.attr = attr;
r.ttl = Xt<47:44>;
r.address = ZeroExtend(Xt<43:0> : Zeros(12), 64);
r.d64 = TRUE;
r.d128 = r.ttl IN {'00xx'};

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Shared Pseudocode Functions Page 1814

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBI_VMALL

// AArch64.TLBI_VMALL()
// ====================
// Invalidate all stage 1 entries for the indicated translation regime with the
// the indicated security state for all TLBs within the indicated shareability
// domain that match the indicated VMID (where applicable).
// Note: stage 1 and stage 2 combined entries are in the scope of this operation.
// Note: stage 2 only entries are not in the scope of this operation.

AArch64.TLBI_VMALL(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr)

assert PSTATE.EL IN {EL3, EL2, EL1};

TLBIRecord r;
r.op = TLBIOp_VMALL;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.vmid = vmid;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/functions/tlbi/AArch64.TLBI_VMALLS12

// AArch64.TLBI_VMALLS12()
// =======================
// Invalidate all stage 1 and stage 2 entries for the indicated translation
// regime with the indicated security state for all TLBs within the indicated
// shareability domain that match the indicated VMID.

AArch64.TLBI_VMALLS12(SecurityState security, Regime regime, bits(16) vmid,
Shareability shareability, TLBIMemAttr attr)

assert PSTATE.EL IN {EL3, EL2};

TLBIRecord r;
r.op = TLBIOp_VMALLS12;
r.from_aarch64 = TRUE;
r.security = security;
r.regime = regime;
r.level = TLBILevel_Any;
r.vmid = vmid;
r.attr = attr;

TLBI(r);
if shareability != Shareability_NSH then Broadcast(shareability, r);
return;

Library pseudocode for aarch64/functions/tlbi/ASID_NONE

constant bits(16) ASID_NONE = Zeros(16);

Library pseudocode for aarch64/functions/tlbi/Broadcast

// Broadcast()
// ===========
// IMPLEMENTATION DEFINED function to broadcast TLBI operation within the indicated shareability
// domain.

Broadcast(Shareability shareability, TLBIRecord r)
IMPLEMENTATION_DEFINED;

Shared Pseudocode Functions Page 1815

Library pseudocode for aarch64/functions/tlbi/DecodeTLBITG

// DecodeTLBITG()
// ==============
// Decode translation granule size in TLBI range instructions

TGx DecodeTLBITG(bits(2) tg)
case tg of

when '01' return TGx_4KB;
when '10' return TGx_16KB;
when '11' return TGx_64KB;

Library pseudocode for aarch64/functions/tlbi/GPTTLBIMatch

// GPTTLBIMatch()
// ==============
// Determine whether the GPT TLB entry lies within the scope of invalidation

boolean GPTTLBIMatch(TLBIRecord tlbi, GPTEntry gpt_entry)
assert tlbi.op IN {TLBIOp_RPA, TLBIOp_PAALL};

boolean match;
bits(64) entry_size_mask = ZeroExtend(Ones(gpt_entry.size), 64);
bits(64) entry_end_address = ZeroExtend(gpt_entry.pa<55:0> OR entry_size_mask<55:0>, 64);
bits(64) entry_start_address = ZeroExtend(gpt_entry.pa<55:0> AND NOT entry_size_mask<55:0>, 64);

case tlbi.op of
when TLBIOp_RPA

match = (UInt(tlbi.address<55:0>) <= UInt(entry_end_address<55:0>) &&
UInt(tlbi.end_address<55:0>) > UInt(entry_start_address<55:0>) &&
(tlbi.level == TLBILevel_Any || gpt_entry.level == 1));

when TLBIOp_PAALL
match = TRUE;

return match;

Library pseudocode for aarch64/functions/tlbi/HasLargeAddress

// HasLargeAddress()
// =================
// Returns TRUE if the regime is configured for 52 bit addresses, FALSE otherwise.

boolean HasLargeAddress(Regime regime)
if !Have52BitIPAAndPASpaceExt() then

return FALSE;
case regime of

when Regime_EL3
return TCR_EL3<32> == '1';

when Regime_EL2
return TCR_EL2<32> == '1';

when Regime_EL20
return TCR_EL2<59> == '1';

when Regime_EL10
return TCR_EL1<59> == '1';

otherwise
Unreachable();

Shared Pseudocode Functions Page 1816

Library pseudocode for aarch64/functions/tlbi/ResTLBIRTTL

// ResTLBIRTTL()
// =============
// Determine whether the TTL field in TLBI instructions that do apply
// to a range of addresses contains a reserved value

boolean ResTLBIRTTL(bits(2) tg, bits(2) ttl)
case ttl of

when '00' return TRUE;
when '01' return DecodeTLBITG(tg) == TGx_16KB && !Have52BitIPAAndPASpaceExt();
otherwise return FALSE;

Library pseudocode for aarch64/functions/tlbi/ResTLBITTL

// ResTLBITTL()
// ============
// Determine whether the TTL field in TLBI instructions that do not apply
// to a range of addresses contains a reserved value

boolean ResTLBITTL(bits(4) ttl)
case ttl of

when '00xx' return TRUE;
when '0100' return !Have52BitIPAAndPASpaceExt();
when '1000' return TRUE;
when '1001' return !Have52BitIPAAndPASpaceExt();
when '1100' return TRUE;
otherwise return FALSE;

Library pseudocode for aarch64/functions/tlbi/TLBI

// TLBI()
// ======
// Invalidates TLB entries for which TLBIMatch() returns TRUE.

TLBI(TLBIRecord r)
IMPLEMENTATION_DEFINED;

Library pseudocode for aarch64/functions/tlbi/TLBILevel

// TLBILevel
// =========

enumeration TLBILevel {
TLBILevel_Any, // this applies to TLB entries at all levels
TLBILevel_Last // this applies to TLB entries at last level only

};

Shared Pseudocode Functions Page 1817

Library pseudocode for aarch64/functions/tlbi/TLBIMatch

Shared Pseudocode Functions Page 1818

// TLBIMatch()
// ===========
// Determine whether the TLB entry lies within the scope of invalidation

boolean TLBIMatch(TLBIRecord tlbi, TLBRecord tlb_entry)
boolean match;
bits(64) entry_block_mask = ZeroExtend(Ones(tlb_entry.blocksize), 64);
bits(64) entry_end_address = tlb_entry.context.ia OR entry_block_mask;
bits(64) entry_start_address = tlb_entry.context.ia AND NOT entry_block_mask;
case tlbi.op of

when TLBIOp_DALL, TLBIOp_IALL
match = (tlbi.security == tlb_entry.context.ss &&

tlbi.regime == tlb_entry.context.regime);
when TLBIOp_DASID, TLBIOp_IASID

match = (tlb_entry.context.includes_s1 &&
tlbi.security == tlb_entry.context.ss &&
tlbi.regime == tlb_entry.context.regime &&
(!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
(UseASID(tlb_entry.context) && tlb_entry.context.nG == '1' &&

tlbi.asid == tlb_entry.context.asid));
when TLBIOp_DVA, TLBIOp_IVA

boolean regime_match;
boolean context_match;
boolean address_match;
boolean level_match;
regime_match = (tlb_entry.context.includes_s1 &&

tlbi.security == tlb_entry.context.ss &&
tlbi.regime == tlb_entry.context.regime);

context_match = ((!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
(!UseASID(tlb_entry.context) || tlbi.asid == tlb_entry.context.asid ||

tlb_entry.context.nG == '0'));
integer addr_lsb = tlb_entry.blocksize;
address_match = tlbi.address<55:addr_lsb> == tlb_entry.context.ia<55:addr_lsb>;
level_match = (tlbi.level == TLBILevel_Any || !tlb_entry.walkstate.istable);
match = regime_match && context_match && address_match && level_match;

when TLBIOp_ALL
relax_regime = (tlbi.from_aarch64 &&

tlbi.regime IN {Regime_EL20, Regime_EL2} &&
tlb_entry.context.regime IN {Regime_EL20, Regime_EL2});

match = (tlbi.security == tlb_entry.context.ss &&
(tlbi.regime == tlb_entry.context.regime || relax_regime));

when TLBIOp_ASID
match = (tlb_entry.context.includes_s1 &&

tlbi.security == tlb_entry.context.ss &&
tlbi.regime == tlb_entry.context.regime &&
(!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
(UseASID(tlb_entry.context) && tlb_entry.context.nG == '1' &&

tlbi.asid == tlb_entry.context.asid));
when TLBIOp_IPAS2, TLBIPOp_IPAS2

integer addr_lsb = tlb_entry.blocksize;
match = (!tlb_entry.context.includes_s1 && tlb_entry.context.includes_s2 &&

tlbi.security == tlb_entry.context.ss &&
tlbi.regime == tlb_entry.context.regime &&
(!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
tlbi.ipaspace == tlb_entry.context.ipaspace &&
tlbi.address<55:addr_lsb> == tlb_entry.context.ia<55:addr_lsb> &&
(!tlbi.from_aarch64 || ResTLBITTL(tlbi.ttl) || (

DecodeTLBITG(tlbi.ttl<3:2>) == tlb_entry.context.tg &&
UInt(tlbi.ttl<1:0>) == tlb_entry.walkstate.level)

) &&
((tlbi.d128 && tlb_entry.context.isd128) ||
(tlbi.d64 && !tlb_entry.context.isd128) ||
(tlbi.d64 && tlbi.d128)) &&

(tlbi.level == TLBILevel_Any || !tlb_entry.walkstate.istable));
when TLBIOp_VAA, TLBIPOp_VAA

integer addr_lsb = tlb_entry.blocksize;
match = (tlb_entry.context.includes_s1 &&

tlbi.security == tlb_entry.context.ss &&
tlbi.regime == tlb_entry.context.regime &&
(!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&

Shared Pseudocode Functions Page 1819

tlbi.address<55:addr_lsb> == tlb_entry.context.ia<55:addr_lsb> &&
(!tlbi.from_aarch64 || ResTLBITTL(tlbi.ttl) || (

DecodeTLBITG(tlbi.ttl<3:2>) == tlb_entry.context.tg &&
UInt(tlbi.ttl<1:0>) == tlb_entry.walkstate.level)

) &&
((tlbi.d128 && tlb_entry.context.isd128) ||
(tlbi.d64 && !tlb_entry.context.isd128) ||
(tlbi.d64 && tlbi.d128)) &&

(tlbi.level == TLBILevel_Any || !tlb_entry.walkstate.istable));
when TLBIOp_VA, TLBIPOp_VA

integer addr_lsb = tlb_entry.blocksize;
match = (tlb_entry.context.includes_s1 &&

tlbi.security == tlb_entry.context.ss &&
tlbi.regime == tlb_entry.context.regime &&
(!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
(!UseASID(tlb_entry.context) || tlbi.asid == tlb_entry.context.asid ||

tlb_entry.context.nG == '0') &&
tlbi.address<55:addr_lsb> == tlb_entry.context.ia<55:addr_lsb> &&
(!tlbi.from_aarch64 || ResTLBITTL(tlbi.ttl) || (

DecodeTLBITG(tlbi.ttl<3:2>) == tlb_entry.context.tg &&
UInt(tlbi.ttl<1:0>) == tlb_entry.walkstate.level)

) &&
((tlbi.d128 && tlb_entry.context.isd128) ||
(tlbi.d64 && !tlb_entry.context.isd128) ||
(tlbi.d64 && tlbi.d128)) &&

(tlbi.level == TLBILevel_Any || !tlb_entry.walkstate.istable));
when TLBIOp_VMALL

match = (tlb_entry.context.includes_s1 &&
tlbi.security == tlb_entry.context.ss &&
tlbi.regime == tlb_entry.context.regime &&
(!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid));

when TLBIOp_VMALLS12
match = (tlbi.security == tlb_entry.context.ss &&

tlbi.regime == tlb_entry.context.regime &&
(!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid));

when TLBIOp_RIPAS2, TLBIPOp_RIPAS2
match = (!tlb_entry.context.includes_s1 && tlb_entry.context.includes_s2 &&

tlbi.security == tlb_entry.context.ss &&
tlbi.regime == tlb_entry.context.regime &&
(!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
tlbi.ipaspace == tlb_entry.context.ipaspace &&
(tlbi.tg != '00' && DecodeTLBITG(tlbi.tg) == tlb_entry.context.tg) &&
(!tlbi.from_aarch64 || ResTLBIRTTL(tlbi.tg, tlbi.ttl<1:0>) ||

UInt(tlbi.ttl<1:0>) == tlb_entry.walkstate.level) &&
((tlbi.d128 && tlb_entry.context.isd128) ||
(tlbi.d64 && !tlb_entry.context.isd128) ||
(tlbi.d64 && tlbi.d128)) &&

UInt(tlbi.address<55:0>) <= UInt(entry_end_address<55:0>) &&
UInt(tlbi.end_address<55:0>) > UInt(entry_start_address<55:0>));

when TLBIOp_RVAA, TLBIPOp_RVAA
match = (tlb_entry.context.includes_s1 &&

tlbi.security == tlb_entry.context.ss &&
tlbi.regime == tlb_entry.context.regime &&
(!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
(tlbi.tg != '00' && DecodeTLBITG(tlbi.tg) == tlb_entry.context.tg) &&
(!tlbi.from_aarch64 || ResTLBIRTTL(tlbi.tg, tlbi.ttl<1:0>) ||

UInt(tlbi.ttl<1:0>) == tlb_entry.walkstate.level) &&
((tlbi.d128 && tlb_entry.context.isd128) ||
(tlbi.d64 && !tlb_entry.context.isd128) ||
(tlbi.d64 && tlbi.d128)) &&

UInt(tlbi.address<55:0>) <= UInt(entry_end_address<55:0>) &&
UInt(tlbi.end_address<55:0>) > UInt(entry_start_address<55:0>));

when TLBIOp_RVA, TLBIPOp_RVA
match = (tlb_entry.context.includes_s1 &&

tlbi.security == tlb_entry.context.ss &&
tlbi.regime == tlb_entry.context.regime &&
(!UseVMID(tlb_entry.context) || tlbi.vmid == tlb_entry.context.vmid) &&
(!UseASID(tlb_entry.context) || tlbi.asid == tlb_entry.context.asid ||

tlb_entry.context.nG == '0') &&
(tlbi.tg != '00' && DecodeTLBITG(tlbi.tg) == tlb_entry.context.tg) &&

Shared Pseudocode Functions Page 1820

(!tlbi.from_aarch64 || ResTLBIRTTL(tlbi.tg, tlbi.ttl<1:0>) ||
UInt(tlbi.ttl<1:0>) == tlb_entry.walkstate.level) &&

((tlbi.d128 && tlb_entry.context.isd128) ||
(tlbi.d64 && !tlb_entry.context.isd128) ||
(tlbi.d64 && tlbi.d128)) &&

UInt(tlbi.address<55:0>) <= UInt(entry_end_address<55:0>) &&
UInt(tlbi.end_address<55:0>) > UInt(entry_start_address<55:0>));

when TLBIOp_RPA
entry_end_address<55:0> = (tlb_entry.walkstate.baseaddress.address<55:0> OR

entry_block_mask<55:0>);
entry_start_address<55:0> = (tlb_entry.walkstate.baseaddress.address<55:0> AND

NOT entry_block_mask<55:0>);
match = (tlb_entry.context.includes_gpt &&

UInt(tlbi.address<55:0>) <= UInt(entry_end_address<55:0>) &&
UInt(tlbi.end_address<55:0>) > UInt(entry_start_address<55:0>));

when TLBIOp_PAALL
match = tlb_entry.context.includes_gpt;

if tlbi.attr == TLBI_ExcludeXS && tlb_entry.context.xs == '1' then
match = FALSE;

return match;

Library pseudocode for aarch64/functions/tlbi/TLBIMemAttr

// TLBIMemAttr
// ===========
// Defines the attributes of the memory operations that must be completed in
// order to deem the TLBI operation as completed.

enumeration TLBIMemAttr {
TLBI_AllAttr, // All TLB entries within the scope of the invalidation
TLBI_ExcludeXS // Only TLB entries with XS=0 within the scope of the invalidation

};

Library pseudocode for aarch64/functions/tlbi/TLBIOp

// TLBIOp
// ======

enumeration TLBIOp {
TLBIOp_DALL, // AArch32 Data TLBI operations - deprecated
TLBIOp_DASID,
TLBIOp_DVA,
TLBIOp_IALL, // AArch32 Instruction TLBI operations - deprecated
TLBIOp_IASID,
TLBIOp_IVA,
TLBIOp_ALL,
TLBIOp_ASID,
TLBIOp_IPAS2,
TLBIPOp_IPAS2,
TLBIOp_VAA,
TLBIOp_VA,
TLBIPOp_VAA,
TLBIPOp_VA,
TLBIOp_VMALL,
TLBIOp_VMALLS12,
TLBIOp_RIPAS2,
TLBIPOp_RIPAS2,
TLBIOp_RVAA,
TLBIOp_RVA,
TLBIPOp_RVAA,
TLBIPOp_RVA,
TLBIOp_RPA,
TLBIOp_PAALL,

};

Shared Pseudocode Functions Page 1821

Library pseudocode for aarch64/functions/tlbi/TLBIPRange

// TLBIPRange()
// ============
// Extract the input address range information from encoded Xt.

(boolean, bits(2), bits(64), bits(64)) TLBIPRange(Regime regime, bits(128) Xt)
boolean valid = TRUE;
bits(64) start_address = Zeros(64);
bits(64) end_address = Zeros(64);

bits(2) tg = Xt<47:46>;
integer scale = UInt(Xt<45:44>);
integer num = UInt(Xt<43:39>);
integer tg_bits;

if tg == '00' then
return (FALSE, tg, start_address, end_address);

case tg of
when '01' // 4KB

tg_bits = 12;
start_address<55:12> = Xt<107:64>;
start_address<63:56> = Replicate(Xt<107>, 8);

when '10' // 16KB
tg_bits = 14;
start_address<55:14> = Xt<107:66>;
start_address<63:56> = Replicate(Xt<107>, 8);

when '11' // 64KB
tg_bits = 16;
start_address<55:16> = Xt<107:68>;
start_address<63:56> = Replicate(Xt<107>, 8);

otherwise
Unreachable();

integer range = (num+1) << (5*scale + 1 + tg_bits);
end_address = start_address + range<63:0>;

if end_address<55> != start_address<55> then
// overflow, saturate it
end_address = Replicate(start_address<55>, 64-55) : Ones(55);

return (valid, tg, start_address, end_address);

Shared Pseudocode Functions Page 1822

Library pseudocode for aarch64/functions/tlbi/TLBIRange

// TLBIRange()
// ===========
// Extract the input address range information from encoded Xt.

(boolean, bits(2), bits(64), bits(64)) TLBIRange(Regime regime, bits(64) Xt)
boolean valid = TRUE;
bits(64) start_address = Zeros(64);
bits(64) end_address = Zeros(64);

bits(2) tg = Xt<47:46>;
integer scale = UInt(Xt<45:44>);
integer num = UInt(Xt<43:39>);
integer tg_bits;

if tg == '00' then
return (FALSE, tg, start_address, end_address);

case tg of
when '01' // 4KB

tg_bits = 12;
if HasLargeAddress(regime) then

start_address<52:16> = Xt<36:0>;
start_address<63:53> = Replicate(Xt<36>, 11);

else
start_address<48:12> = Xt<36:0>;
start_address<63:49> = Replicate(Xt<36>, 15);

when '10' // 16KB
tg_bits = 14;
if HasLargeAddress(regime) then

start_address<52:16> = Xt<36:0>;
start_address<63:53> = Replicate(Xt<36>, 11);

else
start_address<50:14> = Xt<36:0>;
start_address<63:51> = Replicate(Xt<36>, 13);

when '11' // 64KB
tg_bits = 16;
start_address<52:16> = Xt<36:0>;
start_address<63:53> = Replicate(Xt<36>, 11);

otherwise
Unreachable();

integer range = (num+1) << (5*scale + 1 + tg_bits);
end_address = start_address + range<63:0>;

if end_address<52> != start_address<52> then
// overflow, saturate it
end_address = Replicate(start_address<52>, 64-52) : Ones(52);

return (valid, tg, start_address, end_address);

Shared Pseudocode Functions Page 1823

Library pseudocode for aarch64/functions/tlbi/TLBIRecord

// TLBIRecord
// ==========
// Details related to a TLBI operation.

type TLBIRecord is (
TLBIOp op,
boolean from_aarch64, // originated as an AArch64 operation
SecurityState security,
Regime regime,
bits(16) vmid,
bits(16) asid,
TLBILevel level,
TLBIMemAttr attr,
PASpace ipaspace, // For operations that take IPA as input address
bits(64) address, // input address, for range operations, start address
bits(64) end_address, // for range operations, end address
boolean d64, // For operations that evict VMSAv8-64 based TLB entries
boolean d128, // For operations that evict VMSAv9-128 based TLB entries
bits(4) ttl, // translation table walk level holding the leaf entry

// for the address being invalidated
// For Non-Range Invalidations:
// When the ttl is
// '00xx' : this applies to all TLB entries
// Otherwise : TLBIP instructions invalidates D128 TLB
// entries only
// TLBI instructions invalidates D64 TLB
// entries only
// For Range Invalidations:
// When the ttl is
// '00' : this applies to all TLB entries
// Otherwise : TLBIP instructions invalidates D128 TLB
// entries only
// TLBI instructions invalidates D64 TLB
// entries only

bits(2) tg // for range operations, translation granule
)

Library pseudocode for aarch64/functions/tlbi/VMID

// VMID[]
// ======
// Effective VMID.

bits(16) VMID[]
if EL2Enabled() then

if !ELUsingAArch32(EL2) then
if Have16bitVMID() && VTCR_EL2.VS == '1' then

return VTTBR_EL2.VMID;
else

return ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
else

return ZeroExtend(VTTBR.VMID, 16);
elsif HaveEL(EL2) && HaveSecureEL2Ext() then

return Zeros(16);
else

return VMID_NONE;

Library pseudocode for aarch64/functions/tlbi/VMID_NONE

constant bits(16) VMID_NONE = Zeros(16);

Shared Pseudocode Functions Page 1824

Library pseudocode for aarch64/functions/tme/CheckTransactionalSystemAccess

// CheckTransactionalSystemAccess()
// ================================
// Returns TRUE if an AArch64 MSR, MRS, or SYS instruction is permitted in
// Transactional state, based on the opcode's encoding, and FALSE otherwise.

boolean CheckTransactionalSystemAccess(bits(2) op0, bits(3) op1, bits(4) crn, bits(4) crm,
bits(3) op2, bit read)

case read:op0:op1:crn:crm:op2 of
when '0 00 011 0100 xxxx 11x' return TRUE; // MSR (imm): DAIFSet, DAIFClr
when '0 01 011 0111 0100 001' return TRUE; // DC ZVA
when '0 11 011 0100 0010 00x' return TRUE; // MSR: NZCV, DAIF
when '0 11 011 0100 0100 00x' return TRUE; // MSR: FPCR, FPSR
when '0 11 000 0100 0110 000' return TRUE; // MSR: ICC_PMR_EL1
when '0 11 011 1001 1100 100' return TRUE; // MRS: PMSWINC_EL0
when '1 11 011 0010 0101 001' // MRS: GCSPR_EL0, at EL0

return PSTATE.EL == EL0;
// MRS: GCSPR_EL1 at EL1 OR at EL2 when E2H is '1'
when '1 11 000 0010 0101 001'

return PSTATE.EL == EL1 || (PSTATE.EL == EL2 && HCR_EL2.E2H == '1');
when '1 11 100 0010 0101 001' // MRS: GCSPR_EL2, at EL2 when E2H is '0'

return PSTATE.EL == EL2 && HCR_EL2.E2H == '0';
when '1 11 110 0010 0101 001' // MRS: GCSPR_EL3, at EL3

return PSTATE.EL == EL3;
when '0 01 011 0111 0111 000' return TRUE; // GCSPUSHM
when '1 01 011 0111 0111 001' return TRUE; // GCSPOPM
when '0 01 011 0111 0111 010' return TRUE; // GCSSS1
when '1 01 011 0111 0111 011' return TRUE; // GCSSS2
when '0 01 000 0111 0111 110' return TRUE; // GCSPOPX
when '1 11 101 0010 0101 001' return FALSE; // MRS: GCSPR_EL12
when '1 11 000 0010 0101 010' return FALSE; // MRS: GCSCRE0_EL1
when '1 11 000 0010 0101 000' return FALSE; // MRS: GCSCR_EL1
when '1 11 101 0010 0101 000' return FALSE; // MRS: GCSCR_EL12
when '1 11 100 0010 0101 000' return FALSE; // MRS: GCSCR_EL2
when '1 11 110 0010 0101 000' return FALSE; // MRS: GCSCR_EL3
when '1 11 xxx 0xxx xxxx xxx' return TRUE; // MRS: op0=3, CRn=0..7
when '1 11 xxx 100x xxxx xxx' return TRUE; // MRS: op0=3, CRn=8..9
when '1 11 xxx 1010 xxxx xxx' return TRUE; // MRS: op0=3, CRn=10
when '1 11 000 1100 1x00 010' return TRUE; // MRS: op0=3, CRn=12 - ICC_HPPIRx_EL1
when '1 11 000 1100 1011 011' return TRUE; // MRS: op0=3, CRn=12 - ICC_RPR_EL1
when '1 11 xxx 1101 xxxx xxx' return TRUE; // MRS: op0=3, CRn=13
when '1 11 xxx 1110 xxxx xxx' return TRUE; // MRS: op0=3, CRn=14
when '0 01 011 0111 0011 111' return TRUE; // CPP RCTX
when '0 01 011 0111 0011 10x' return TRUE; // CFP RCTX, DVP RCTX
when 'x 11 xxx 1x11 xxxx xxx' // MRS: op1=3, CRn=11,15

return boolean IMPLEMENTATION_DEFINED;
otherwise return FALSE; // All other SYS, SYSL, MRS, MSR

Library pseudocode for aarch64/functions/tme/CommitTransactionalWrites

// CommitTransactionalWrites()
// ===========================
// Makes all transactional writes to memory observable by other PEs and reset
// the transactional read and write sets.

CommitTransactionalWrites();

Library pseudocode for aarch64/functions/tme/DiscardTransactionalWrites

// DiscardTransactionalWrites()
// ============================
// Discards all transactional writes to memory and reset the transactional
// read and write sets.

DiscardTransactionalWrites();

Shared Pseudocode Functions Page 1825

Library pseudocode for aarch64/functions/tme/FailTransaction

// FailTransaction()
// =================

FailTransaction(TMFailure cause, boolean retry)
FailTransaction(cause, retry, FALSE, Zeros(15));
return;

// FailTransaction()
// =================
// Exits Transactional state and discards transactional updates to registers
// and memory.

FailTransaction(TMFailure cause, boolean retry, boolean interrupt, bits(15) reason)
assert !retry || !interrupt;

if HaveBRBExt() && BranchRecordAllowed(PSTATE.EL) then BRBFCR_EL1.LASTFAILED = '1';

DiscardTransactionalWrites();
// For trivial implementation no transaction checkpoint was taken
if cause != TMFailure_TRIVIAL then

RestoreTransactionCheckpoint();
ClearExclusiveLocal(ProcessorID());

bits(64) result = Zeros(64);

result<23> = if interrupt then '1' else '0';
result<15> = if retry && !interrupt then '1' else '0';
case cause of

when TMFailure_TRIVIAL result<24> = '1';
when TMFailure_DBG result<22> = '1';
when TMFailure_NEST result<21> = '1';
when TMFailure_SIZE result<20> = '1';
when TMFailure_ERR result<19> = '1';
when TMFailure_IMP result<18> = '1';
when TMFailure_MEM result<17> = '1';
when TMFailure_CNCL result<16> = '1'; result<14:0> = reason;

TSTATE.depth = 0;
X[TSTATE.Rt, 64] = result;
boolean branch_conditional = FALSE;
BranchTo(TSTATE.nPC, BranchType_TMFAIL, branch_conditional);
EndOfInstruction();
return;

Library pseudocode for aarch64/functions/tme/IsTMEEnabled

// IsTMEEnabled()
// ==============
// Returns TRUE if access to TME instruction is enabled, FALSE otherwise.

boolean IsTMEEnabled()
if PSTATE.EL IN {EL0, EL1, EL2} && HaveEL(EL3) then

if SCR_EL3.TME == '0' then
return FALSE;

if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
if HCR_EL2.TME == '0' then

return FALSE;
return TRUE;

Shared Pseudocode Functions Page 1826

Library pseudocode for aarch64/functions/tme/MemHasTransactionalAccess

// MemHasTransactionalAccess()
// ===========================
// Function checks if transactional accesses are not supported for an address
// range or memory type.

boolean MemHasTransactionalAccess(MemoryAttributes memattrs)
if ((memattrs.shareability == Shareability_ISH ||

memattrs.shareability == Shareability_OSH) &&
memattrs.memtype == MemType_Normal &&
memattrs.inner.attrs == MemAttr_WB &&
memattrs.inner.hints == MemHint_RWA &&
memattrs.inner.transient == FALSE &&
memattrs.outer.hints == MemHint_RWA &&
memattrs.outer.attrs == MemAttr_WB &&
memattrs.outer.transient == FALSE) then

return TRUE;
else

return boolean IMPLEMENTATION_DEFINED "Memory Region does not support Transactional access";

Library pseudocode for aarch64/functions/tme/RestoreTransactionCheckpoint

// RestoreTransactionCheckpoint()
// ==============================
// Restores part of the PE registers from the transaction checkpoint.

RestoreTransactionCheckpoint()
SP[] = TSTATE.SP;
ICC_PMR_EL1 = TSTATE.ICC_PMR_EL1;
PSTATE.<N,Z,C,V> = TSTATE.nzcv;
PSTATE.<D,A,I,F> = TSTATE.<D,A,I,F>;

for n = 0 to 30
X[n, 64] = TSTATE.X[n];

if IsFPEnabled(PSTATE.EL) then
if IsSVEEnabled(PSTATE.EL) then

constant integer VL = CurrentVL;
constant integer PL = VL DIV 8;
for n = 0 to 31

Z[n, VL] = TSTATE.Z[n]<VL-1:0>;
for n = 0 to 15

P[n, PL] = TSTATE.P[n]<PL-1:0>;
FFR[PL] = TSTATE.FFR<PL-1:0>;

else
for n = 0 to 31

V[n, 128] = TSTATE.Z[n]<127:0>;
FPCR = TSTATE.FPCR;
FPSR = TSTATE.FPSR;

if HaveGCS() then
case PSTATE.EL of

when EL0 GCSPR_EL0 = TSTATE.GCSPR_ELx;
when EL1 GCSPR_EL1 = TSTATE.GCSPR_ELx;
when EL2 GCSPR_EL2 = TSTATE.GCSPR_ELx;
when EL3 GCSPR_EL3 = TSTATE.GCSPR_ELx;

return;

Library pseudocode for aarch64/functions/tme/StartTrackingTransactionalReadsWrites

// StartTrackingTransactionalReadsWrites()
// =======================================
// Starts tracking transactional reads and writes to memory.

StartTrackingTransactionalReadsWrites();

Shared Pseudocode Functions Page 1827

Library pseudocode for aarch64/functions/tme/TMFailure

// TMFailure
// =========
// Transactional failure causes

enumeration TMFailure {
TMFailure_CNCL, // Executed a TCANCEL instruction
TMFailure_DBG, // A debug event was generated
TMFailure_ERR, // A non-permissible operation was attempted
TMFailure_NEST, // The maximum transactional nesting level was exceeded
TMFailure_SIZE, // The transactional read or write set limit was exceeded
TMFailure_MEM, // A transactional conflict occurred
TMFailure_TRIVIAL, // Only a TRIVIAL version of TM is available
TMFailure_IMP // Any other failure cause

};

Library pseudocode for aarch64/functions/tme/TMState

// TMState
// =======
// Transactional execution state bits.
// There is no significance to the field order.

type TMState is (
integer depth, // Transaction nesting depth
integer Rt, // TSTART destination register
bits(64) nPC, // Fallback instruction address
array[0..30] of bits(64) X, // General purpose registers
array[0..31] of bits(MAX_VL) Z, // Vector registers
array[0..15] of bits(MAX_PL) P, // Predicate registers
bits(MAX_PL) FFR, // First Fault Register
bits(64) SP, // Stack Pointer at current EL
bits(64) FPCR, // Floating-point Control Register
bits(64) FPSR, // Floating-point Status Register
bits(64) ICC_PMR_EL1, // Interrupt Controller Interrupt Priority Mask Register
bits(64) GCSPR_ELx, // GCS pointer for current EL
bits(4) nzcv, // Condition flags
bits(1) D, // Debug mask bit
bits(1) A, // SError interrupt mask bit
bits(1) I, // IRQ mask bit
bits(1) F // FIQ mask bit

)

Library pseudocode for aarch64/functions/tme/TSTATE

TMState TSTATE;

Shared Pseudocode Functions Page 1828

Library pseudocode for aarch64/functions/tme/TakeTransactionCheckpoint

// TakeTransactionCheckpoint()
// ===========================
// Captures part of the PE registers into the transaction checkpoint.

TakeTransactionCheckpoint()
TSTATE.SP = SP[];
TSTATE.ICC_PMR_EL1 = ICC_PMR_EL1;
TSTATE.nzcv = PSTATE.<N,Z,C,V>;
TSTATE.<D,A,I,F> = PSTATE.<D,A,I,F>;

for n = 0 to 30
TSTATE.X[n] = X[n, 64];

if IsFPEnabled(PSTATE.EL) then
if IsSVEEnabled(PSTATE.EL) then

constant integer VL = CurrentVL;
constant integer PL = VL DIV 8;
for n = 0 to 31

TSTATE.Z[n]<VL-1:0> = Z[n, VL];
for n = 0 to 15

TSTATE.P[n]<PL-1:0> = P[n, PL];
TSTATE.FFR<PL-1:0> = FFR[PL];

else
for n = 0 to 31

TSTATE.Z[n]<127:0> = V[n, 128];
TSTATE.FPCR = FPCR;
TSTATE.FPSR = FPSR;

if HaveGCS() then
case PSTATE.EL of

when EL0 TSTATE.GCSPR_ELx = GCSPR_EL0;
when EL1 TSTATE.GCSPR_ELx = GCSPR_EL1;
when EL2 TSTATE.GCSPR_ELx = GCSPR_EL2;
when EL3 TSTATE.GCSPR_ELx = GCSPR_EL3;

return;

Library pseudocode for aarch64/functions/tme/TransactionStartTrap

// TransactionStartTrap()
// ======================
// Traps the execution of TSTART instruction.

TransactionStartTrap(integer dreg)
bits(2) targetEL;
bits(64) preferred_exception_return = ThisInstrAddr(64);
vect_offset = 0x0;

except = ExceptionSyndrome(Exception_TSTARTAccessTrap);
except.syndrome<9:5> = dreg<4:0>;

if UInt(PSTATE.EL) > UInt(EL1) then
targetEL = PSTATE.EL;

elsif EL2Enabled() && HCR_EL2.TGE == '1' then
targetEL = EL2;

else
targetEL = EL1;

AArch64.TakeException(targetEL, except, preferred_exception_return, vect_offset);

Library pseudocode for aarch64/functions/vbitop/VBitOp

// VBitOp
// ======
// Vector bit select instruction types.

enumeration VBitOp {VBitOp_VBIF, VBitOp_VBIT, VBitOp_VBSL, VBitOp_VEOR};

Shared Pseudocode Functions Page 1829

Library pseudocode for aarch64/translation/attrs/AArch64.MAIRAttr

// AArch64.MAIRAttr()
// ==================
// Retrieve the memory attribute encoding indexed in the given MAIR

bits(8) AArch64.MAIRAttr(integer index, MAIRType mair2, MAIRType mair)
bit_index = 8 * index;
assert (index < 8 || (HaveAIEExt() && (index < 16)));
if (index > 7) then

bit_index = bit_index - 64; // Read from LSB at MAIR2
return mair2<bit_index+7:bit_index>;

else
return mair<bit_index+7:bit_index>;

Library pseudocode for aarch64/translation/debug/AArch64.CheckBreakpoint

// AArch64.CheckBreakpoint()
// =========================
// Called before executing the instruction of length "size" bytes at "vaddress" in an AArch64
// translation regime, when either debug exceptions are enabled, or halting debug is enabled
// and halting is allowed.

FaultRecord AArch64.CheckBreakpoint(FaultRecord fault_in, bits(64) vaddress,
AccessDescriptor accdesc, integer size)

assert !ELUsingAArch32(S1TranslationRegime());
assert (UsingAArch32() && size IN {2,4}) || size == 4;

FaultRecord fault = fault_in;
boolean match = FALSE;
boolean mismatch = TRUE; // Default assumption that all mismatches are outside

// the range of all address match breakpoints
boolean mismatch_bp = FALSE; // Has a breakpoint been configured for a mismatch

for i = 0 to NumBreakpointsImplemented() - 1
(match_i, is_mismatch_i) = AArch64.BreakpointMatch(i, vaddress, accdesc, size);
if is_mismatch_i then

mismatch_bp = TRUE;
mismatch = mismatch && !match_i;

else
match = match || match_i;

if match || (mismatch && mismatch_bp) then
fault.statuscode = Fault_Debug;
if HaltOnBreakpointOrWatchpoint() then

reason = DebugHalt_Breakpoint;
Halt(reason);

return fault;

Shared Pseudocode Functions Page 1830

Library pseudocode for aarch64/translation/debug/AArch64.CheckDebug

// AArch64.CheckDebug()
// ====================
// Called on each access to check for a debug exception or entry to Debug state.

FaultRecord AArch64.CheckDebug(bits(64) vaddress, AccessDescriptor accdesc, integer size)

FaultRecord fault = NoFault(accdesc);
boolean generate_exception;

boolean d_side = (IsDataAccess(accdesc.acctype) || accdesc.acctype == AccessType_DC);
boolean i_side = (accdesc.acctype == AccessType_IFETCH);
if accdesc.acctype == AccessType_NV2 then

mask = '0';
ss = CurrentSecurityState();
generate_exception = (AArch64.GenerateDebugExceptionsFrom(EL2, ss, mask) &&

MDSCR_EL1.MDE == '1');
else

generate_exception = AArch64.GenerateDebugExceptions() && MDSCR_EL1.MDE == '1';
halt = HaltOnBreakpointOrWatchpoint();

if generate_exception || halt then
if d_side then

fault = AArch64.CheckWatchpoint(fault, vaddress, accdesc, size);
elsif i_side then

fault = AArch64.CheckBreakpoint(fault, vaddress, accdesc, size);

return fault;

Shared Pseudocode Functions Page 1831

Library pseudocode for aarch64/translation/debug/AArch64.CheckWatchpoint

// AArch64.CheckWatchpoint()
// =========================
// Called before accessing the memory location of "size" bytes at "address",
// when either debug exceptions are enabled for the access, or halting debug
// is enabled and halting is allowed.

FaultRecord AArch64.CheckWatchpoint(FaultRecord fault_in, bits(64) vaddress_in,
AccessDescriptor accdesc, integer size_in)

assert !ELUsingAArch32(S1TranslationRegime());
FaultRecord fault = fault_in;
bits(64) vaddress = vaddress_in;
integer size = size_in;
boolean rounded_match = FALSE;
bits(64) original_vaddress = vaddress;
integer original_size = size;

if accdesc.acctype == AccessType_DC then
if accdesc.cacheop != CacheOp_Invalidate then

return fault;
elsif !IsDataAccess(accdesc.acctype) then

return fault;

// In case of set of contiguous memory accesses each call to this function is such that:
// - the lowest accessed address is rounded down to the nearest multiple of 16 bytes
// - the highest accessed address is rounded up to the nearest multiple of 16 bytes
// Since the WPF field is set if the implementation does rounding, regardless of true or
// false match, it would be acceptable to return TRUE for either/both of the first and last
// access.
if IsSVEAccess(accdesc) || IsSMEAccess(accdesc) then

integer upper_vaddress = UInt(original_vaddress) + original_size;
if ConstrainUnpredictableBool(Unpredictable_16BYTEROUNDEDDOWNACCESS) then

vaddress = Align(vaddress, 16);
rounded_match = TRUE;

if ConstrainUnpredictableBool(Unpredictable_16BYTEROUNDEDUPACCESS) then
upper_vaddress = Align(upper_vaddress + 15, 16) ;
rounded_match = TRUE;

size = upper_vaddress - UInt(vaddress);

for i = 0 to NumWatchpointsImplemented() - 1
if AArch64.WatchpointMatch(i, vaddress, size, accdesc) then

fault.maybe_false_match = rounded_match;
fault.watchpt_num = i;
fault.statuscode = Fault_Debug;
if DBGWCR_EL1[i].LSC<0> == '1' && accdesc.read then

fault.write = FALSE;
elsif DBGWCR_EL1[i].LSC<1> == '1' && accdesc.write then

fault.write = TRUE;
if (fault.statuscode == Fault_Debug && HaltOnBreakpointOrWatchpoint() &&

!accdesc.nonfault && !(accdesc.firstfault && !accdesc.first)) then
reason = DebugHalt_Watchpoint;
EDWAR = vaddress;
is_async = FALSE;
Halt(reason, is_async, fault);

return fault;

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.IASize

// AArch64.IASize()
// ================
// Retrieve the number of bits containing the input address

integer AArch64.IASize(bits(6) txsz)
return 64 - UInt(txsz);

Shared Pseudocode Functions Page 1832

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.LeafBase

// AArch64.LeafBase()
// ==================
// Extract the address embedded in a block and page descriptor pointing to the
// base of a memory block

bits(56) AArch64.LeafBase(bits(N) descriptor, bit d128, bit ds,
TGx tgx, integer level)

bits(56) leafbase = Zeros(56);

granulebits = TGxGranuleBits(tgx);
descsizelog2 = if d128 == '1' then 4 else 3;
stride = granulebits - descsizelog2;
leafsize = granulebits + stride * (FINAL_LEVEL - level);

leafbase<47:0> = Align(descriptor<47:0>, 1 << leafsize);

if Have56BitPAExt() && d128 == '1' then
leafbase<55:48> = descriptor<55:48>;
return leafbase;

if Have52BitPAExt() && tgx == TGx_64KB then
leafbase<51:48> = descriptor<15:12>;

elsif ds == '1' then
leafbase<51:48> = descriptor<9:8>:descriptor<49:48>;

return leafbase;

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.NextTableBase

// AArch64.NextTableBase()
// =======================
// Extract the address embedded in a table descriptor pointing to the base of
// the next level table of descriptors

bits(56) AArch64.NextTableBase(bits(N) descriptor, bit d128, bits(2) skl, bit ds, TGx tgx)
bits(56) tablebase = Zeros(56);
integer granulebits = TGxGranuleBits(tgx);
integer tablesize;

if d128 == '1' then
integer descsizelog2 = 4;
integer stride = granulebits - descsizelog2;
tablesize = stride*(1 + UInt(skl)) + descsizelog2;

else
tablesize = granulebits;

case tgx of
when TGx_4KB tablebase<47:12> = descriptor<47:12>;
when TGx_16KB tablebase<47:14> = descriptor<47:14>;
when TGx_64KB tablebase<47:16> = descriptor<47:16>;

tablebase = Align(tablebase, 1 << tablesize);

if Have56BitPAExt() && d128 == '1' then
tablebase<55:48> = descriptor<55:48>;
return tablebase;

if Have52BitPAExt() && tgx == TGx_64KB then
tablebase<51:48> = descriptor<15:12>;
return tablebase;

if ds == '1' then
tablebase<51:48> = descriptor<9:8>:descriptor<49:48>;
return tablebase;

return tablebase;

Shared Pseudocode Functions Page 1833

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.PhysicalAddressSize

// AArch64.PhysicalAddressSize()
// =============================
// Retrieve the number of bits bounding the physical address

integer AArch64.PhysicalAddressSize(bit d128, bits(3) encoded_ps, TGx tgx)
integer ps;
integer max_ps;

case encoded_ps of
when '000' ps = 32;
when '001' ps = 36;
when '010' ps = 40;
when '011' ps = 42;
when '100' ps = 44;
when '101' ps = 48;
when '110' ps = 52;
when '111' ps = 56;

if !Have56BitPAExt() || d128 == '0' then
if tgx != TGx_64KB && !Have52BitIPAAndPASpaceExt() then

max_ps = Min(48, AArch64.PAMax());
elsif !Have52BitPAExt() then

max_ps = Min(48, AArch64.PAMax());
else

max_ps = Min(52, AArch64.PAMax());
else

max_ps = AArch64.PAMax();

return Min(ps, max_ps);

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.S1SLTTEntryAddress

// AArch64.S1SLTTEntryAddress()
// ============================
// Compute the first stage 1 translation table descriptor address within the
// table pointed to by the base at the start level

FullAddress AArch64.S1SLTTEntryAddress(integer level, S1TTWParams walkparams,
bits(64) ia, FullAddress tablebase)

// Input Address size
iasize = AArch64.IASize(walkparams.txsz);
granulebits = TGxGranuleBits(walkparams.tgx);
descsizelog2 = if walkparams.d128 == '1' then 4 else 3;
stride = granulebits - descsizelog2;
levels = FINAL_LEVEL - level;

bits(56) index;
lsb = levels*stride + granulebits;
msb = iasize - 1;
index = ZeroExtend(ia<msb:lsb>:Zeros(descsizelog2), 56);

FullAddress descaddress;
descaddress.address = tablebase.address OR index;
descaddress.paspace = tablebase.paspace;

return descaddress;

Shared Pseudocode Functions Page 1834

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.S1StartLevel

// AArch64.S1StartLevel()
// ======================
// Compute the initial lookup level when performing a stage 1 translation
// table walk

integer AArch64.S1StartLevel(S1TTWParams walkparams)
// Input Address size
iasize = AArch64.IASize(walkparams.txsz);
granulebits = TGxGranuleBits(walkparams.tgx);
descsizelog2 = if walkparams.d128 == '1' then 4 else 3;
stride = granulebits - descsizelog2;
s1startlevel = FINAL_LEVEL - (((iasize-1) - granulebits) DIV stride);
if walkparams.d128 == '1' then

s1startlevel = s1startlevel + UInt(walkparams.skl);
return s1startlevel;

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.S1TTBaseAddress

// AArch64.S1TTBaseAddress()
// =========================
// Retrieve the PA/IPA pointing to the base of the initial translation table of stage 1

bits(56) AArch64.S1TTBaseAddress(S1TTWParams walkparams, Regime regime, bits(N) ttbr)
bits(56) tablebase = Zeros(56);

// Input Address size
iasize = AArch64.IASize(walkparams.txsz);
granulebits = TGxGranuleBits(walkparams.tgx);
descsizelog2 = if walkparams.d128 == '1' then 4 else 3;
stride = granulebits - descsizelog2;
startlevel = AArch64.S1StartLevel(walkparams);
levels = FINAL_LEVEL - startlevel;

// Base address is aligned to size of the initial translation table in bytes
tsize = (iasize - (levels*stride + granulebits)) + descsizelog2;

if Have56BitPAExt() && walkparams.d128 == '1' then
tsize = Max(tsize, 5);
if regime == Regime_EL3 then

tablebase<55:5> = ttbr<55:5>;
else

tablebase<55:5> = ttbr<87:80>:ttbr<47:5>;
elsif ((Have52BitPAExt() && walkparams.tgx == TGx_64KB && walkparams.ps == '110') ||

(walkparams.ds == '1')) then
tsize = Max(tsize, 6);
tablebase<51:6> = ttbr<5:2>:ttbr<47:6>;

else
tablebase<47:1> = ttbr<47:1>;

tablebase = Align(tablebase, 1 << tsize);
return tablebase;

Shared Pseudocode Functions Page 1835

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.S2SLTTEntryAddress

// AArch64.S2SLTTEntryAddress()
// ============================
// Compute the first stage 2 translation table descriptor address within the
// table pointed to by the base at the start level

FullAddress AArch64.S2SLTTEntryAddress(S2TTWParams walkparams, bits(56) ipa,
FullAddress tablebase)

startlevel = AArch64.S2StartLevel(walkparams);
iasize = AArch64.IASize(walkparams.txsz);
granulebits = TGxGranuleBits(walkparams.tgx);
descsizelog2 = if walkparams.d128 == '1' then 4 else 3;
stride = granulebits - descsizelog2;
levels = FINAL_LEVEL - startlevel;

bits(56) index;
integer lsb;
integer msb;
lsb = levels*stride + granulebits;
msb = iasize - 1;
index = ZeroExtend(ipa<msb:lsb>:Zeros(descsizelog2), 56);

FullAddress descaddress;
descaddress.address = tablebase.address OR index;
descaddress.paspace = tablebase.paspace;

return descaddress;

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.S2StartLevel

// AArch64.S2StartLevel()
// ======================
// Determine the initial lookup level when performing a stage 2 translation
// table walk

integer AArch64.S2StartLevel(S2TTWParams walkparams)
if walkparams.d128 == '1' then

iasize = AArch64.IASize(walkparams.txsz);
granulebits = TGxGranuleBits(walkparams.tgx);
descsizelog2 = 4;
stride = granulebits - descsizelog2;
s2startlevel = FINAL_LEVEL - (((iasize-1) - granulebits) DIV stride);
s2startlevel = s2startlevel + UInt(walkparams.skl);

return s2startlevel;

case walkparams.tgx of
when TGx_4KB

case walkparams.sl2:walkparams.sl0 of
when '000' return 2;
when '001' return 1;
when '010' return 0;
when '011' return 3;
when '100' return -1;

when TGx_16KB
case walkparams.sl0 of

when '00' return 3;
when '01' return 2;
when '10' return 1;
when '11' return 0;

when TGx_64KB
case walkparams.sl0 of

when '00' return 3;
when '01' return 2;
when '10' return 1;

Shared Pseudocode Functions Page 1836

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.S2TTBaseAddress

// AArch64.S2TTBaseAddress()
// =========================
// Retrieve the PA/IPA pointing to the base of the initial translation table of stage 2

bits(56) AArch64.S2TTBaseAddress(S2TTWParams walkparams, PASpace paspace, bits(N) ttbr)
bits(56) tablebase = Zeros(56);

// Input Address size
iasize = AArch64.IASize(walkparams.txsz);
granulebits = TGxGranuleBits(walkparams.tgx);
descsizelog2 = if walkparams.d128 == '1' then 4 else 3;
stride = granulebits - descsizelog2;
startlevel = AArch64.S2StartLevel(walkparams);
levels = FINAL_LEVEL - startlevel;

// Base address is aligned to size of the initial translation table in bytes
tsize = (iasize - (levels*stride + granulebits)) + descsizelog2;

if Have56BitPAExt() && walkparams.d128 == '1' then
tsize = Max(tsize, 5);
if paspace == PAS_Secure then

tablebase<55:5> = ttbr<55:5>;
else

tablebase<55:5> = ttbr<87:80>:ttbr<47:5>;
elsif ((Have52BitPAExt() && walkparams.tgx == TGx_64KB && walkparams.ps == '110') ||

(walkparams.ds == '1')) then
tsize = Max(tsize, 6);
tablebase<51:6> = ttbr<5:2>:ttbr<47:6>;

else
tablebase<47:1> = ttbr<47:1>;

tablebase = Align(tablebase, 1 << tsize);
return tablebase;

Library pseudocode for aarch64/translation/vmsa_addrcalc/AArch64.TTEntryAddress

// AArch64.TTEntryAddress()
// ========================
// Compute translation table descriptor address within the table pointed to by
// the table base

FullAddress AArch64.TTEntryAddress(integer level, bit d128, bits(2) skl, TGx tgx, bits(6) txsz,
bits(64) ia, FullAddress tablebase)

// Input Address size
iasize = AArch64.IASize(txsz);
granulebits = TGxGranuleBits(tgx);
descsizelog2 = if d128 == '1' then 4 else 3;
stride = granulebits - descsizelog2;
levels = FINAL_LEVEL - level;

bits(56) index;
integer lsb;
integer msb;

lsb = levels*stride + granulebits;
if d128 == '1' then

msb = (lsb + stride*(1 + UInt(skl))) - 1;
else

msb = (lsb + stride) - 1;
index = ZeroExtend(ia<msb:lsb>:Zeros(descsizelog2), 56);

FullAddress descaddress;
descaddress.address = tablebase.address OR index;
descaddress.paspace = tablebase.paspace;

return descaddress;

Shared Pseudocode Functions Page 1837

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.AddrTop

// AArch64.AddrTop()
// =================
// Get the top bit position of the virtual address.
// Bits above are not accounted as part of the translation process.

integer AArch64.AddrTop(bit tbid, AccessType acctype, bit tbi)
if tbid == '1' && acctype == AccessType_IFETCH then

return 63;

if tbi == '1' then
return 55;

else
return 63;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.ContiguousBitFaults

// AArch64.ContiguousBitFaults()
// =============================
// If contiguous bit is set, returns whether the translation size exceeds the
// input address size and if the implementation generates a fault

boolean AArch64.ContiguousBitFaults(bit d128, bits(6) txsz, TGx tgx, integer level)
// Input Address size
iasize = AArch64.IASize(txsz);
// Translation size
tsize = TranslationSize(d128, tgx, level) + ContiguousSize(d128, tgx, level);

return (tsize > iasize &&
boolean IMPLEMENTATION_DEFINED "Translation fault on misprogrammed contiguous bit");

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.IPAIsOutOfRange

// AArch64.IPAIsOutOfRange()
// =========================
// Check bits not resolved by translation are ZERO

boolean AArch64.IPAIsOutOfRange(bits(56) ipa, S2TTWParams walkparams)
//Input Address size
iasize = AArch64.IASize(walkparams.txsz);

if iasize < 56 then
return !IsZero(ipa<55:iasize>);

else
return FALSE;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.OAOutOfRange

// AArch64.OAOutOfRange()
// ======================
// Returns whether output address is expressed in the configured size number of bits

boolean AArch64.OAOutOfRange(bits(56) address, bit d128, bits(3) ps, TGx tgx)
// Output Address size
oasize = AArch64.PhysicalAddressSize(d128, ps, tgx);

if oasize < 56 then
return !IsZero(address<55:oasize>);

else
return FALSE;

Shared Pseudocode Functions Page 1838

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S1CheckPermissions

Shared Pseudocode Functions Page 1839

// AArch64.S1CheckPermissions()
// ============================
// Checks whether stage 1 access violates permissions of target memory
// and returns a fault record

FaultRecord AArch64.S1CheckPermissions(FaultRecord fault_in, Regime regime, TTWState walkstate,
S1TTWParams walkparams, AccessDescriptor accdesc)

FaultRecord fault = fault_in;
Permissions permissions = walkstate.permissions;
S1AccessControls s1perms;

s1perms = AArch64.S1ComputePermissions(regime, walkstate, walkparams, accdesc);

if accdesc.acctype == AccessType_IFETCH then
if s1perms.overlay && s1perms.ox == '0' then

fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

elsif (walkstate.memattrs.memtype == MemType_Device &&
ConstrainUnpredictable(Unpredictable_INSTRDEVICE) == Constraint_FAULT) then

fault.statuscode = Fault_Permission;
elsif s1perms.x == '0' then

fault.statuscode = Fault_Permission;
elsif accdesc.acctype == AccessType_DC then

if accdesc.cacheop == CacheOp_Invalidate then
if s1perms.overlay && s1perms.ow == '0' then

fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

elsif s1perms.w == '0' then
fault.statuscode = Fault_Permission;

// DC from privileged context which clean cannot generate a Permission fault
elsif accdesc.el == EL0 then

if s1perms.overlay && s1perms.or == '0' then
fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

elsif (walkparams.cmow == '1' &&
accdesc.opscope == CacheOpScope_PoC &&
accdesc.cacheop == CacheOp_CleanInvalidate &&
s1perms.overlay && s1perms.ow == '0') then

fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

elsif s1perms.r == '0' then
fault.statuscode = Fault_Permission;

elsif (walkparams.cmow == '1' &&
accdesc.opscope == CacheOpScope_PoC &&
accdesc.cacheop == CacheOp_CleanInvalidate &&
s1perms.w == '0') then

fault.statuscode = Fault_Permission;
elsif accdesc.acctype == AccessType_IC then

// IC from privileged context cannot generate Permission fault
if accdesc.el == EL0 then

if (s1perms.overlay && s1perms.or == '0' &&
boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution") then

fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

elsif walkparams.cmow == '1' && s1perms.overlay && s1perms.ow == '0' then
fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

elsif (s1perms.r == '0' &&
boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution") then

fault.statuscode = Fault_Permission;
elsif walkparams.cmow == '1' && s1perms.w == '0' then

fault.statuscode = Fault_Permission;
elsif HaveGCS() && accdesc.acctype == AccessType_GCS then

if s1perms.gcs == '0' then
fault.statuscode = Fault_Permission;

elsif accdesc.write && walkparams.<ha,hd> != '11' && permissions.ndirty == '1' then
fault.statuscode = Fault_Permission;
fault.dirtybit = TRUE;
fault.write = TRUE;

elsif accdesc.read && s1perms.overlay && s1perms.or == '0' then

Shared Pseudocode Functions Page 1840

fault.statuscode = Fault_Permission;
fault.overlay = TRUE;
fault.write = FALSE;

elsif accdesc.write && s1perms.overlay && s1perms.ow == '0' then
fault.statuscode = Fault_Permission;
fault.overlay = TRUE;
fault.write = TRUE;

elsif accdesc.read && s1perms.r == '0' then
fault.statuscode = Fault_Permission;
fault.write = FALSE;

elsif accdesc.write && s1perms.w == '0' then
fault.statuscode = Fault_Permission;
fault.write = TRUE;

elsif (accdesc.write && accdesc.tagaccess &&
walkstate.memattrs.tags == MemTag_CanonicallyTagged) then

fault.statuscode = Fault_Permission;
fault.write = TRUE;
fault.s1tagnotdata = TRUE;

elsif (accdesc.write && !(walkparams.<ha,hd> == '11') && walkparams.pie == '1' &&
permissions.ndirty == '1') then

fault.statuscode = Fault_Permission;
fault.dirtybit = TRUE;
fault.write = TRUE;

return fault;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S1ComputePermissions

// AArch64.S1ComputePermissions()
// ==============================
// Computes the overall stage 1 permissions

S1AccessControls AArch64.S1ComputePermissions(Regime regime, TTWState walkstate,
S1TTWParams walkparams, AccessDescriptor accdesc)

Permissions permissions = walkstate.permissions;
S1AccessControls s1perms;

if walkparams.pie == '1' then
s1perms = AArch64.S1IndirectBasePermissions(regime, walkstate, walkparams, accdesc);

else
s1perms = AArch64.S1DirectBasePermissions(regime, walkstate, walkparams, accdesc);

if accdesc.el == EL0 && !AArch64.S1E0POEnabled(regime, walkparams.nv1) then
s1perms.overlay = FALSE;

elsif accdesc.el != EL0 && !AArch64.S1POEnabled(regime) then
s1perms.overlay = FALSE;

if s1perms.overlay then
s1overlay_perms = AArch64.S1OverlayPermissions(regime, walkstate, accdesc);
s1perms.or = s1overlay_perms.or;
s1perms.ow = s1overlay_perms.ow;
s1perms.ox = s1overlay_perms.ox;

// If wxn is set, overlay execute permissions is set to 0
if s1perms.overlay && s1perms.wxn == '1' && s1perms.ox == '1' then

s1perms.ow = '0';
elsif s1perms.wxn == '1' then

s1perms.x = '0';

return s1perms;

Shared Pseudocode Functions Page 1841

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S1DirectBasePermissions

Shared Pseudocode Functions Page 1842

// AArch64.S1DirectBasePermissions()
// =================================
// Computes the stage 1 direct base permissions

S1AccessControls AArch64.S1DirectBasePermissions(Regime regime, TTWState walkstate,
S1TTWParams walkparams, AccessDescriptor accdesc)

bit r, w, x;
bit pr, pw, px;
bit ur, uw, ux;
Permissions permissions = walkstate.permissions;
S1AccessControls s1perms;

if HasUnprivileged(regime) then
// Apply leaf permissions
case permissions.ap<2:1> of

when '00' (pr,pw,ur,uw) = ('1','1','0','0'); // Privileged access
when '01' (pr,pw,ur,uw) = ('1','1','1','1'); // No effect
when '10' (pr,pw,ur,uw) = ('1','0','0','0'); // Read-only, privileged access
when '11' (pr,pw,ur,uw) = ('1','0','1','0'); // Read-only

// Apply hierarchical permissions
case permissions.ap_table of

when '00' (pr,pw,ur,uw) = (pr, pw, ur, uw); // No effect
when '01' (pr,pw,ur,uw) = (pr, pw,'0','0'); // Privileged access
when '10' (pr,pw,ur,uw) = (pr,'0', ur,'0'); // Read-only
when '11' (pr,pw,ur,uw) = (pr,'0','0','0'); // Read-only, privileged access

// Locations writable by unprivileged cannot be executed by privileged
px = NOT(permissions.pxn OR permissions.pxn_table OR uw);
ux = NOT(permissions.uxn OR permissions.uxn_table);

if HavePANExt() && accdesc.pan && !(regime == Regime_EL10 && walkparams.nv1 == '1') then
bit pan;
if (boolean IMPLEMENTATION_DEFINED "SCR_EL3.SIF affects EPAN" &&

accdesc.ss == SS_Secure &&
walkstate.baseaddress.paspace == PAS_NonSecure &&
walkparams.sif == '1') then

ux = '0';

if (boolean IMPLEMENTATION_DEFINED "Realm EL2&0 regime affects EPAN" &&
accdesc.ss == SS_Realm && regime == Regime_EL20 &&
walkstate.baseaddress.paspace != PAS_Realm) then

ux = '0';

pan = PSTATE.PAN AND (ur OR uw OR (walkparams.epan AND ux));
pr = pr AND NOT(pan);
pw = pw AND NOT(pan);

else
// Apply leaf permissions
case permissions.ap<2> of

when '0' (pr,pw) = ('1','1'); // No effect
when '1' (pr,pw) = ('1','0'); // Read-only

// Apply hierarchical permissions
case permissions.ap_table<1> of

when '0' (pr,pw) = (pr, pw); // No effect
when '1' (pr,pw) = (pr,'0'); // Read-only

px = NOT(permissions.xn OR permissions.xn_table);

(r,w,x) = if accdesc.el == EL0 then (ur,uw,ux) else (pr,pw,px);

// Compute WXN value
wxn = walkparams.wxn AND w AND x;

// Prevent execution from Non-secure space by PE in secure state if SIF is set
if accdesc.ss == SS_Secure && walkstate.baseaddress.paspace == PAS_NonSecure then

x = x AND NOT(walkparams.sif);
// Prevent execution from non-Root space by Root

Shared Pseudocode Functions Page 1843

if accdesc.ss == SS_Root && walkstate.baseaddress.paspace != PAS_Root then
x = '0';

// Prevent execution from non-Realm space by Realm EL2 and Realm EL2&0
if (accdesc.ss == SS_Realm && regime IN {Regime_EL2, Regime_EL20} &&

walkstate.baseaddress.paspace != PAS_Realm) then
x = '0';

s1perms.r = r;
s1perms.w = w;
s1perms.x = x;
s1perms.gcs = '0';
s1perms.wxn = wxn;
s1perms.overlay = TRUE;

return s1perms;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S1HasAlignmentFault

// AArch64.S1HasAlignmentFault()
// =============================
// Returns whether stage 1 output fails alignment requirement on data accesses
// to Device memory

boolean AArch64.S1HasAlignmentFault(AccessDescriptor accdesc, boolean aligned,
bit ntlsmd, MemoryAttributes memattrs)

if accdesc.acctype == AccessType_IFETCH then
return FALSE;

elsif HaveMTEExt() && accdesc.tagaccess && accdesc.write then
return (memattrs.memtype == MemType_Device &&

ConstrainUnpredictable(Unpredictable_DEVICETAGSTORE) == Constraint_FAULT);
elsif accdesc.a32lsmd && ntlsmd == '0' then

return memattrs.memtype == MemType_Device && memattrs.device != DeviceType_GRE;
elsif accdesc.acctype == AccessType_DCZero then

return memattrs.memtype == MemType_Device;
else

return memattrs.memtype == MemType_Device && !aligned;

Shared Pseudocode Functions Page 1844

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S1IndirectBasePermissions

Shared Pseudocode Functions Page 1845

// AArch64.S1IndirectBasePermissions()
// ===================================
// Computes the stage 1 indirect base permissions

S1AccessControls AArch64.S1IndirectBasePermissions(Regime regime, TTWState walkstate,
S1TTWParams walkparams,
AccessDescriptor accdesc)

bit r, w, x, gcs, wxn, overlay;
bit pr, pw, px, pgcs, pwxn, p_overlay;
bit ur, uw, ux, ugcs, uwxn, u_overlay;
Permissions permissions = walkstate.permissions;
S1AccessControls s1perms;

// Apply privileged indirect permissions
case permissions.ppi of

when '0000' (pr,pw,px,pgcs) = ('0','0','0','0'); // No access
when '0001' (pr,pw,px,pgcs) = ('1','0','0','0'); // Privileged read
when '0010' (pr,pw,px,pgcs) = ('0','0','1','0'); // Privileged execute
when '0011' (pr,pw,px,pgcs) = ('1','0','1','0'); // Privileged read and execute
when '0100' (pr,pw,px,pgcs) = ('0','0','0','0'); // Reserved
when '0101' (pr,pw,px,pgcs) = ('1','1','0','0'); // Privileged read and write
when '0110' (pr,pw,px,pgcs) = ('1','1','1','0'); // Privileged read, write and execute
when '0111' (pr,pw,px,pgcs) = ('1','1','1','0'); // Privileged read, write and execute
when '1000' (pr,pw,px,pgcs) = ('1','0','0','0'); // Privileged read
when '1001' (pr,pw,px,pgcs) = ('1','0','0','1'); // Privileged read and gcs
when '1010' (pr,pw,px,pgcs) = ('1','0','1','0'); // Privileged read and execute
when '1011' (pr,pw,px,pgcs) = ('0','0','0','0'); // Reserved
when '1100' (pr,pw,px,pgcs) = ('1','1','0','0'); // Privileged read and write
when '1101' (pr,pw,px,pgcs) = ('0','0','0','0'); // Reserved
when '1110' (pr,pw,px,pgcs) = ('1','1','1','0'); // Privileged read, write and execute
when '1111' (pr,pw,px,pgcs) = ('0','0','0','0'); // Reserved

p_overlay = NOT(permissions.ppi[3]);
pwxn = if permissions.ppi == '0110' then '1' else '0';

if HasUnprivileged(regime) then
// Apply unprivileged indirect permissions
case permissions.upi of

when '0000' (ur,uw,ux,ugcs) = ('0','0','0','0'); // No access
when '0001' (ur,uw,ux,ugcs) = ('1','0','0','0'); // Unprivileged read
when '0010' (ur,uw,ux,ugcs) = ('0','0','1','0'); // Unprivileged execute
when '0011' (ur,uw,ux,ugcs) = ('1','0','1','0'); // Unprivileged read and execute
when '0100' (ur,uw,ux,ugcs) = ('0','0','0','0'); // Reserved
when '0101' (ur,uw,ux,ugcs) = ('1','1','0','0'); // Unprivileged read and write
when '0110' (ur,uw,ux,ugcs) = ('1','1','1','0'); // Unprivileged read, write and execute
when '0111' (ur,uw,ux,ugcs) = ('1','1','1','0'); // Unprivileged read, write and execute
when '1000' (ur,uw,ux,ugcs) = ('1','0','0','0'); // Unprivileged read
when '1001' (ur,uw,ux,ugcs) = ('1','0','0','1'); // Unprivileged read and gcs
when '1010' (ur,uw,ux,ugcs) = ('1','0','1','0'); // Unprivileged read and execute
when '1011' (ur,uw,ux,ugcs) = ('0','0','0','0'); // Reserved
when '1100' (ur,uw,ux,ugcs) = ('1','1','0','0'); // Unprivileged read and write
when '1101' (ur,uw,ux,ugcs) = ('0','0','0','0'); // Reserved
when '1110' (ur,uw,ux,ugcs) = ('1','1','1','0'); // Unprivileged read,write and execute
when '1111' (ur,uw,ux,ugcs) = ('0','0','0','0'); // Reserved

u_overlay = NOT(permissions.upi[3]);
uwxn = if permissions.upi == '0110' then '1' else '0';

// If the decoded permissions has either px or pgcs along with either uw or ugcs,
// then all effective Stage 1 Base Permissions are set to 0
if ((px == '1' || pgcs == '1') && (uw == '1' || ugcs == '1')) then

(pr,pw,px,pgcs) = ('0','0','0','0');
(ur,uw,ux,ugcs) = ('0','0','0','0');

if HavePANExt() && accdesc.pan && !(regime == Regime_EL10 && walkparams.nv1 == '1') then
if PSTATE.PAN == '1' && (permissions.upi != '0000') then

(pr,pw) = ('0','0');

if accdesc.el == EL0 then

Shared Pseudocode Functions Page 1846

(r,w,x,gcs,wxn,overlay) = (ur,uw,ux,ugcs,uwxn,u_overlay);
else

(r,w,x,gcs,wxn,overlay) = (pr,pw,px,pgcs,pwxn,p_overlay);

// Prevent execution from Non-secure space by PE in secure state if SIF is set
if accdesc.ss == SS_Secure && walkstate.baseaddress.paspace == PAS_NonSecure then

x = x AND NOT(walkparams.sif);
gcs = '0';

// Prevent execution from non-Root space by Root
if accdesc.ss == SS_Root && walkstate.baseaddress.paspace != PAS_Root then

x = '0';
gcs = '0';

// Prevent execution from non-Realm space by Realm EL2 and Realm EL2&0
if (accdesc.ss == SS_Realm && regime IN {Regime_EL2, Regime_EL20} &&

walkstate.baseaddress.paspace != PAS_Realm) then
x = '0';
gcs = '0';

s1perms.r = r;
s1perms.w = w;
s1perms.x = x;
s1perms.gcs = gcs;
s1perms.wxn = wxn;
s1perms.overlay = overlay == '1';

return s1perms;

Shared Pseudocode Functions Page 1847

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S1OverlayPermissions

// AArch64.S1OverlayPermissions()
// ==============================
// Computes the stage 1 overlay permissions

S1AccessControls AArch64.S1OverlayPermissions(Regime regime, TTWState walkstate,
AccessDescriptor accdesc)

bit r, w, x;
bit pr, pw, px;
bit ur, uw, ux;
Permissions permissions = walkstate.permissions;
S1AccessControls s1overlay_perms;

S1PORType por = AArch64.S1POR(regime);
integer bit_index = 4 * UInt(permissions.po_index);
bits(4) ppo = por<bit_index+3:bit_index>;

// Apply privileged overlay permissions
case ppo of

when '0000' (pr,pw,px) = ('0','0','0'); // No access
when '0001' (pr,pw,px) = ('1','0','0'); // Privileged read
when '0010' (pr,pw,px) = ('0','0','1'); // Privileged execute
when '0011' (pr,pw,px) = ('1','0','1'); // Privileged read and execute
when '0100' (pr,pw,px) = ('0','1','0'); // Privileged write
when '0101' (pr,pw,px) = ('1','1','0'); // Privileged read and write
when '0110' (pr,pw,px) = ('0','1','1'); // Privileged write and execute
when '0111' (pr,pw,px) = ('1','1','1'); // Privileged read, write and execute
when '1xxx' (pr,pw,px) = ('0','0','0'); // Reserved

if HasUnprivileged(regime) then
bits(4) upo = POR_EL0<bit_index+3:bit_index>;

// Apply unprivileged overlay permissions
case upo of

when '0000' (ur,uw,ux) = ('0','0','0'); // No access
when '0001' (ur,uw,ux) = ('1','0','0'); // Unprivileged read
when '0010' (ur,uw,ux) = ('0','0','1'); // Unprivileged execute
when '0011' (ur,uw,ux) = ('1','0','1'); // Unprivileged read and execute
when '0100' (ur,uw,ux) = ('0','1','0'); // Unprivileged write
when '0101' (ur,uw,ux) = ('1','1','0'); // Unprivileged read and write
when '0110' (ur,uw,ux) = ('0','1','1'); // Unprivileged write and execute
when '0111' (ur,uw,ux) = ('1','1','1'); // Unprivileged read, write and execute
when '1xxx' (ur,uw,ux) = ('0','0','0'); // Reserved

(r,w,x) = if accdesc.el == EL0 then (ur,uw,ux) else (pr,pw,px);

s1overlay_perms.or = r;
s1overlay_perms.ow = w;
s1overlay_perms.ox = x;

return s1overlay_perms;

Shared Pseudocode Functions Page 1848

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S1TxSZFaults

// AArch64.S1TxSZFaults()
// ======================
// Detect whether configuration of stage 1 TxSZ field generates a fault

boolean AArch64.S1TxSZFaults(Regime regime, S1TTWParams walkparams)
mintxsz = AArch64.S1MinTxSZ(regime, walkparams.d128, walkparams.ds, walkparams.tgx);
maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);

if UInt(walkparams.txsz) < mintxsz then
return (Have52BitVAExt() ||

boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value below minimum");
if UInt(walkparams.txsz) > maxtxsz then

return boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value above maximum";

return FALSE;

Shared Pseudocode Functions Page 1849

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2CheckPermissions

Shared Pseudocode Functions Page 1850

// AArch64.S2CheckPermissions()
// ============================
// Verifies memory access with available permissions.

(FaultRecord, boolean) AArch64.S2CheckPermissions(FaultRecord fault_in, TTWState walkstate,
S2TTWParams walkparams, AddressDescriptor ipa,
AccessDescriptor accdesc)

MemType memtype = walkstate.memattrs.memtype;
Permissions permissions = walkstate.permissions;
FaultRecord fault = fault_in;
S2AccessControls s2perms = AArch64.S2ComputePermissions(permissions, walkparams, accdesc);

bit r, w;
bit or, ow;

if accdesc.acctype == AccessType_TTW then
r = s2perms.r_mmu;
w = s2perms.w_mmu;
or = s2perms.or_mmu;
ow = s2perms.ow_mmu;

elsif accdesc.rcw then
r = s2perms.r_rcw;
w = s2perms.w_rcw;
or = s2perms.or_rcw;
ow = s2perms.ow_rcw;

else
r = s2perms.r;
w = s2perms.w;
or = s2perms.or;
ow = s2perms.ow;

if accdesc.acctype == AccessType_TTW then
if (accdesc.toplevel && accdesc.varange == VARange_LOWER &&

((walkparams.tl0 == '1' && s2perms.toplevel0 == '0') ||
(walkparams.tl1 == '1' && s2perms.<toplevel1,toplevel0> == '10'))) then

fault.statuscode = Fault_Permission;
fault.toplevel = TRUE;

elsif (accdesc.toplevel && accdesc.varange == VARange_UPPER &&
((walkparams.tl1 == '1' && s2perms.toplevel1 == '0') ||
(walkparams.tl0 == '1' && s2perms.<toplevel1,toplevel0> == '01'))) then

fault.statuscode = Fault_Permission;
fault.toplevel = TRUE;

// Stage 2 Permission fault due to AssuredOnly check
elsif (walkstate.s2assuredonly == '1' && !ipa.s1assured) then

fault.statuscode = Fault_Permission;
fault.assuredonly = TRUE;

elsif walkparams.ptw == '1' && memtype == MemType_Device then
fault.statuscode = Fault_Permission;

elsif s2perms.overlay && or == '0' then
fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

elsif accdesc.write && s2perms.overlay && ow == '0' then
fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

// Prevent translation table walks in Non-secure space by Realm state
elsif accdesc.ss == SS_Realm && walkstate.baseaddress.paspace != PAS_Realm then

fault.statuscode = Fault_Permission;
elsif r == '0' then

fault.statuscode = Fault_Permission;
elsif accdesc.write && w == '0' then

fault.statuscode = Fault_Permission;
elsif (accdesc.write && !(walkparams.<ha,hd> == '11') && walkparams.s2pie == '1' &&

permissions.s2dirty == '0') then
fault.statuscode = Fault_Permission;
fault.dirtybit = TRUE;

// Stage 2 Permission fault due to AssuredOnly check
elsif ((walkstate.s2assuredonly == '1' && !ipa.s1assured) ||

(walkstate.s2assuredonly != '1' && HaveGCS() && VTCR_EL2.GCSH == '1' &&

Shared Pseudocode Functions Page 1851

accdesc.acctype == AccessType_GCS && accdesc.el != EL0)) then
fault.statuscode = Fault_Permission;
fault.assuredonly = TRUE;

elsif accdesc.acctype == AccessType_IFETCH then
if s2perms.overlay && s2perms.ox == '0' then

fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

elsif (memtype == MemType_Device &&
ConstrainUnpredictable(Unpredictable_INSTRDEVICE) == Constraint_FAULT) then

fault.statuscode = Fault_Permission;

// Prevent execution from Non-secure space by Realm state
elsif accdesc.ss == SS_Realm && walkstate.baseaddress.paspace != PAS_Realm then

fault.statuscode = Fault_Permission;
elsif s2perms.x == '0' then

fault.statuscode = Fault_Permission;

elsif accdesc.acctype == AccessType_DC then
if accdesc.cacheop == CacheOp_Invalidate then

if !ELUsingAArch32(EL1) && s2perms.overlay && ow == '0' then
fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

if !ELUsingAArch32(EL1) && w == '0' then
fault.statuscode = Fault_Permission;

elsif !ELUsingAArch32(EL1) && accdesc.el == EL0 && s2perms.overlay && or == '0' then
fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

elsif (walkparams.cmow == '1' &&
accdesc.opscope == CacheOpScope_PoC &&
accdesc.cacheop == CacheOp_CleanInvalidate &&
s2perms.overlay && ow == '0') then

fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

elsif !ELUsingAArch32(EL1) && accdesc.el == EL0 && r == '0' then
fault.statuscode = Fault_Permission;

elsif (walkparams.cmow == '1' &&
accdesc.opscope == CacheOpScope_PoC &&
accdesc.cacheop == CacheOp_CleanInvalidate &&
w == '0') then

fault.statuscode = Fault_Permission;

elsif accdesc.acctype == AccessType_IC then
if (!ELUsingAArch32(EL1) && accdesc.el == EL0 && s2perms.overlay && or == '0' &&

boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution") then
fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

elsif walkparams.cmow == '1' && s2perms.overlay && ow == '0' then
fault.statuscode = Fault_Permission;
fault.overlay = TRUE;

elsif (!ELUsingAArch32(EL1) && accdesc.el == EL0 && r == '0' &&
boolean IMPLEMENTATION_DEFINED "Permission fault on EL0 IC_IVAU execution") then

fault.statuscode = Fault_Permission;
elsif walkparams.cmow == '1' && w == '0' then

fault.statuscode = Fault_Permission;

elsif accdesc.read && s2perms.overlay && or == '0' then
fault.statuscode = Fault_Permission;
fault.overlay = TRUE;
fault.write = FALSE;

elsif accdesc.write && s2perms.overlay && ow == '0' then
fault.statuscode = Fault_Permission;
fault.overlay = TRUE;
fault.write = TRUE;

elsif accdesc.read && r == '0' then
fault.statuscode = Fault_Permission;
fault.write = FALSE;

elsif accdesc.write && w == '0' then
fault.statuscode = Fault_Permission;
fault.write = TRUE;

Shared Pseudocode Functions Page 1852

elsif ((accdesc.tagaccess || accdesc.tagchecked) &&
ipa.memattrs.tags == MemTag_AllocationTagged &&
permissions.s2tag_na == '1' && S2DCacheEnabled()) then

fault.statuscode = Fault_Permission;
fault.tagaccess = TRUE;
fault.write = accdesc.tagaccess && accdesc.write;

elsif (accdesc.write && !(walkparams.<ha,hd> == '11') && walkparams.s2pie == '1' &&
permissions.s2dirty == '0') then

fault.statuscode = Fault_Permission;
fault.dirtybit = TRUE;
fault.write = TRUE;

// MRO* allows only RCW and MMU writes
boolean mro;
if s2perms.overlay then

mro = (s2perms.<w,w_rcw,w_mmu> AND s2perms.<ow,ow_rcw,ow_mmu>) == '011';
else

mro = s2perms.<w,w_rcw,w_mmu> == '011';

return (fault, mro);

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2ComputePermissions

// AArch64.S2ComputePermissions()
// ==============================
// Compute the overall stage 2 permissions.

S2AccessControls AArch64.S2ComputePermissions(Permissions permissions, S2TTWParams walkparams,
AccessDescriptor accdesc)

S2AccessControls s2perms;

if walkparams.s2pie == '1' then
s2perms = AArch64.S2IndirectBasePermissions(permissions, accdesc);
s2perms.overlay = HaveS2POExt() && VTCR_EL2.S2POE == '1';
if s2perms.overlay then

s2overlay_perms = AArch64.S2OverlayPermissions(permissions, accdesc);
s2perms.or = s2overlay_perms.or;
s2perms.ow = s2overlay_perms.ow;
s2perms.ox = s2overlay_perms.ox;
s2perms.or_rcw = s2overlay_perms.or_rcw;
s2perms.ow_rcw = s2overlay_perms.ow_rcw;
s2perms.or_mmu = s2overlay_perms.or_mmu;
s2perms.ow_mmu = s2overlay_perms.ow_mmu;

// Toplevel is applicable only when the effective S2 permissions is MRO
if ((s2perms.<w,w_rcw,w_mmu> AND s2perms.<ow,ow_rcw,ow_mmu>) == '011') then

s2perms.toplevel0 = s2perms.toplevel0 OR s2overlay_perms.toplevel0;
s2perms.toplevel1 = s2perms.toplevel1 OR s2overlay_perms.toplevel1;

else
s2perms.toplevel0 = '0';
s2perms.toplevel1 = '0';

else
s2perms = AArch64.S2DirectBasePermissions(permissions, accdesc);

return s2perms;

Shared Pseudocode Functions Page 1853

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2DirectBasePermissions

// AArch64.S2DirectBasePermissions()
// =================================
// Computes the stage 2 direct base permissions.

S2AccessControls AArch64.S2DirectBasePermissions(Permissions permissions,
AccessDescriptor accdesc)

S2AccessControls s2perms;
r = permissions.s2ap<0>;
w = permissions.s2ap<1>;
bit px, ux;
case (permissions.s2xn:permissions.s2xnx) of

when '00' (px,ux) = ('1','1');
when '01' (px,ux) = ('0','1');
when '10' (px,ux) = ('0','0');
when '11' (px,ux) = ('1','0');

x = if accdesc.el == EL0 then ux else px;
s2perms.r = r;
s2perms.w = w;
s2perms.x = x;
s2perms.r_rcw = r;
s2perms.w_rcw = w;
s2perms.r_mmu = r;
s2perms.w_mmu = w;

return s2perms;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2HasAlignmentFault

// AArch64.S2HasAlignmentFault()
// =============================
// Returns whether stage 2 output fails alignment requirement on data accesses
// to Device memory

boolean AArch64.S2HasAlignmentFault(AccessDescriptor accdesc, boolean aligned,
MemoryAttributes memattrs)

if accdesc.acctype == AccessType_IFETCH then
return FALSE;

elsif HaveMTEExt() && accdesc.tagaccess && accdesc.write then
return (memattrs.memtype == MemType_Device &&

ConstrainUnpredictable(Unpredictable_DEVICETAGSTORE) == Constraint_FAULT);
elsif accdesc.acctype == AccessType_DCZero then

return memattrs.memtype == MemType_Device;
else

return memattrs.memtype == MemType_Device && !aligned;

Shared Pseudocode Functions Page 1854

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2InconsistentSL

// AArch64.S2InconsistentSL()
// ==========================
// Detect inconsistent configuration of stage 2 TxSZ and SL fields

boolean AArch64.S2InconsistentSL(S2TTWParams walkparams)
startlevel = AArch64.S2StartLevel(walkparams);
levels = FINAL_LEVEL - startlevel;
granulebits = TGxGranuleBits(walkparams.tgx);
descsizelog2 = 3;
stride = granulebits - descsizelog2;

// Input address size must at least be large enough to be resolved from the start level
sl_min_iasize = (

levels * stride // Bits resolved by table walk, except initial level
+ granulebits // Bits directly mapped to output address
+ 1); // At least 1 more bit to be decoded by initial level

// Can accomodate 1 more stride in the level + concatenation of up to 2^4 tables
sl_max_iasize = sl_min_iasize + (stride-1) + 4;
// Configured Input Address size
iasize = AArch64.IASize(walkparams.txsz);

return iasize < sl_min_iasize || iasize > sl_max_iasize;

Shared Pseudocode Functions Page 1855

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2IndirectBasePermissions

// AArch64.S2IndirectBasePermissions()
// ===================================
// Computes the stage 2 indirect base permissions.

S2AccessControls AArch64.S2IndirectBasePermissions(Permissions permissions,
AccessDescriptor accdesc)

bit r, w;
bit r_rcw, w_rcw;
bit r_mmu, w_mmu;
bit px, ux;
bit toplevel0, toplevel1;
S2AccessControls s2perms;

bits(4) s2pi = permissions.s2pi;
case s2pi of

when '0000' (r,w,px,ux,w_rcw,w_mmu) = ('0','0','0','0','0','0'); // No Access
when '0001' (r,w,px,ux,w_rcw,w_mmu) = ('0','0','0','0','0','0'); // Reserved
when '0010' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO
when '0011' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO-TL1
when '0100' (r,w,px,ux,w_rcw,w_mmu) = ('0','1','0','0','0','0'); // Write Only
when '0101' (r,w,px,ux,w_rcw,w_mmu) = ('0','0','0','0','0','0'); // Reserved
when '0110' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO-TL0
when '0111' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO-TL01
when '1000' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','0','0'); // Read Only
when '1001' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','1','0','0'); // Read, Unpriv Execute
when '1010' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','1','0','0','0'); // Read, Priv Execute
when '1011' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','1','1','0','0'); // Read, All Execute
when '1100' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','0','0','1','1'); // RW
when '1101' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','0','1','1','1'); // RW, Unpriv Execute
when '1110' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','1','0','1','1'); // RW, Priv Execute
when '1111' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','1','1','1','1'); // RW, All Execute

x = if accdesc.el == EL0 then ux else px;

// RCW and MMU read permissions.
(r_rcw, r_mmu) = (r, r);

// Stage 2 Top Level Permission Attributes.
case s2pi of

when '0110' (toplevel0,toplevel1) = ('1','0');
when '0011' (toplevel0,toplevel1) = ('0','1');
when '0111' (toplevel0,toplevel1) = ('1','1');
otherwise (toplevel0,toplevel1) = ('0','0');

s2perms.r = r;
s2perms.w = w;
s2perms.x = x;
s2perms.r_rcw = r_rcw;
s2perms.r_mmu = r_mmu;
s2perms.w_rcw = w_rcw;
s2perms.w_mmu = w_mmu;
s2perms.toplevel0 = toplevel0;
s2perms.toplevel1 = toplevel1;

return s2perms;

Shared Pseudocode Functions Page 1856

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2InvalidSL

// AArch64.S2InvalidSL()
// =====================
// Detect invalid configuration of SL field

boolean AArch64.S2InvalidSL(S2TTWParams walkparams)
case walkparams.tgx of

when TGx_4KB
case walkparams.sl2:walkparams.sl0 of

when '1x1' return TRUE;
when '11x' return TRUE;
when '010' return AArch64.PAMax() < 44;
when '011' return !HaveSmallTranslationTableExt();
otherwise return FALSE;

when TGx_16KB
case walkparams.sl0 of

when '11' return walkparams.ds == '0';
when '10' return AArch64.PAMax() < 42;
otherwise return FALSE;

when TGx_64KB
case walkparams.sl0 of

when '11' return TRUE;
when '10' return AArch64.PAMax() < 44;
otherwise return FALSE;

Shared Pseudocode Functions Page 1857

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2OverlayPermissions

// AArch64.S2OverlayPermissions()
// ==============================
// Computes the stage 2 overlay permissions.

S2AccessControls AArch64.S2OverlayPermissions(Permissions permissions, AccessDescriptor accdesc)
bit r, w;
bit r_rcw, w_rcw;
bit r_mmu, w_mmu;
bit px, ux;
bit toplevel0, toplevel1;
S2AccessControls s2overlay_perms;

integer index = 4 * UInt(permissions.s2po_index);
bits(4) s2po = S2POR_EL1[index+3 : index];
case s2po of

when '0000' (r,w,px,ux,w_rcw,w_mmu) = ('0','0','0','0','0','0'); // No Access
when '0001' (r,w,px,ux,w_rcw,w_mmu) = ('0','0','0','0','0','0'); // Reserved
when '0010' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO
when '0011' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO-TL1
when '0100' (r,w,px,ux,w_rcw,w_mmu) = ('0','1','0','0','0','0'); // Write Only
when '0101' (r,w,px,ux,w_rcw,w_mmu) = ('0','0','0','0','0','0'); // Reserved
when '0110' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO-TL0
when '0111' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','1','1'); // MRO-TL01
when '1000' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','0','0','0'); // Read Only
when '1001' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','0','1','0','0'); // Read, Unpriv Execute
when '1010' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','1','0','0','0'); // Read, Priv Execute
when '1011' (r,w,px,ux,w_rcw,w_mmu) = ('1','0','1','1','0','0'); // Read, All Execute
when '1100' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','0','0','1','1'); // RW
when '1101' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','0','1','1','1'); // RW, Unpriv Execute
when '1110' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','1','0','1','1'); // RW, Priv Execute
when '1111' (r,w,px,ux,w_rcw,w_mmu) = ('1','1','1','1','1','1'); // RW, All Execute

x = if accdesc.el == EL0 then ux else px;

// RCW and MMU read permissions.
(r_rcw, r_mmu) = (r, r);

// Stage 2 Top Level Permission Attributes.
case s2po of

when '0110' (toplevel0,toplevel1) = ('1','0');
when '0011' (toplevel0,toplevel1) = ('0','1');
when '0111' (toplevel0,toplevel1) = ('1','1');
otherwise (toplevel0,toplevel1) = ('0','0');

s2overlay_perms.or = r;
s2overlay_perms.ow = w;
s2overlay_perms.ox = x;
s2overlay_perms.or_rcw = r_rcw;
s2overlay_perms.ow_rcw = w_rcw;
s2overlay_perms.or_mmu = r_mmu;
s2overlay_perms.ow_mmu = w_mmu;
s2overlay_perms.toplevel0 = toplevel0;
s2overlay_perms.toplevel1 = toplevel1;

return s2overlay_perms;

Shared Pseudocode Functions Page 1858

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.S2TxSZFaults

// AArch64.S2TxSZFaults()
// ======================
// Detect whether configuration of stage 2 TxSZ field generates a fault

boolean AArch64.S2TxSZFaults(S2TTWParams walkparams, boolean s1aarch64)
mintxsz = AArch64.S2MinTxSZ(walkparams.d128, walkparams.ds, walkparams.tgx, s1aarch64);
maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);

if UInt(walkparams.txsz) < mintxsz then
return (Have52BitPAExt() ||

boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value below minimum");
if UInt(walkparams.txsz) > maxtxsz then

return boolean IMPLEMENTATION_DEFINED "Fault on TxSZ value above maximum";

return FALSE;

Library pseudocode for aarch64/translation/vmsa_faults/AArch64.VAIsOutOfRange

// AArch64.VAIsOutOfRange()
// ========================
// Check bits not resolved by translation are identical and of accepted value

boolean AArch64.VAIsOutOfRange(bits(64) va_in, AccessType acctype,
Regime regime, S1TTWParams walkparams)

bits(64) va = va_in;

addrtop = AArch64.AddrTop(walkparams.tbid, acctype, walkparams.tbi);

// If the VA has a Logical Address Tag then the bits holding the Logical Address Tag are
// ignored when checking if the address is out of range.
if walkparams.mtx == '1' then

va<59:56> = if AArch64.GetVARange(va) == VARange_UPPER then '1111' else '0000';

// Input Address size
iasize = AArch64.IASize(walkparams.txsz);

// The min value of TxSZ can be 8, with LVA3 implemented.
// If TxSZ is set to 8 iasize becomes 64 - 8 = 56
// If tbi is also set, addrtop becomes 55
// Then the return statements check va<56:55>
// The check here is to guard against this corner case.
if addrtop < iasize then

return FALSE;

if HasUnprivileged(regime) then
if AArch64.GetVARange(va) == VARange_LOWER then

return !IsZero(va<addrtop:iasize>);
else

return !IsOnes(va<addrtop:iasize>);
else

return !IsZero(va<addrtop:iasize>);

Shared Pseudocode Functions Page 1859

Library pseudocode for aarch64/translation/vmsa_memattr/AArch64.S2ApplyFWBMemAttrs

Shared Pseudocode Functions Page 1860

// AArch64.S2ApplyFWBMemAttrs()
// ============================
// Apply stage 2 forced Write-Back on stage 1 memory attributes.

MemoryAttributes AArch64.S2ApplyFWBMemAttrs(MemoryAttributes s1_memattrs, S2TTWParams walkparams,
bits(N) descriptor)

MemoryAttributes memattrs;
s2_attr = descriptor<5:2>;
s2_sh = if walkparams.ds == '1' then walkparams.sh else descriptor<9:8>;
s2_fnxs = descriptor<11>;

if s2_attr<2> == '0' then // S2 Device, S1 any
s2_device = DecodeDevice(s2_attr<1:0>);
memattrs.memtype = MemType_Device;
if s1_memattrs.memtype == MemType_Device then

memattrs.device = S2CombineS1Device(s1_memattrs.device, s2_device);
else

memattrs.device = s2_device;

memattrs.xs = s1_memattrs.xs;

elsif s2_attr<1:0> == '11' then // S2 attr = S1 attr
memattrs = s1_memattrs;

elsif s2_attr<1:0> == '10' then // Force writeback
memattrs.memtype = MemType_Normal;
memattrs.inner.attrs = MemAttr_WB;
memattrs.outer.attrs = MemAttr_WB;

if (s1_memattrs.memtype == MemType_Normal &&
s1_memattrs.inner.attrs != MemAttr_NC) then

memattrs.inner.hints = s1_memattrs.inner.hints;
memattrs.inner.transient = s1_memattrs.inner.transient;

else
memattrs.inner.hints = MemHint_RWA;
memattrs.inner.transient = FALSE;

if (s1_memattrs.memtype == MemType_Normal &&
s1_memattrs.outer.attrs != MemAttr_NC) then

memattrs.outer.hints = s1_memattrs.outer.hints;
memattrs.outer.transient = s1_memattrs.outer.transient;

else
memattrs.outer.hints = MemHint_RWA;
memattrs.outer.transient = FALSE;

memattrs.xs = '0';

else // Non-cacheable unless S1 is device
if s1_memattrs.memtype == MemType_Device then

memattrs = s1_memattrs;
else

MemAttrHints cacheability_attr;
cacheability_attr.attrs = MemAttr_NC;

memattrs.memtype = MemType_Normal;
memattrs.inner = cacheability_attr;
memattrs.outer = cacheability_attr;

memattrs.xs = s1_memattrs.xs;

s2_shareability = DecodeShareability(s2_sh);
memattrs.shareability = S2CombineS1Shareability(s1_memattrs.shareability, s2_shareability);
memattrs.tags = S2MemTagType(memattrs, s1_memattrs.tags);
memattrs.notagaccess = (s2_attr<3:1> == '111' && memattrs.tags == MemTag_AllocationTagged);

if s2_fnxs == '1' then
memattrs.xs = '0';

memattrs.shareability = EffectiveShareability(memattrs);
return memattrs;

Shared Pseudocode Functions Page 1861

Library pseudocode for aarch64/translation/vmsa_tlbcontext/AArch64.GetS1TLBContext

// AArch64.GetS1TLBContext()
// =========================
// Gather translation context for accesses with VA to match against TLB entries

TLBContext AArch64.GetS1TLBContext(Regime regime, SecurityState ss, bits(64) va, TGx tg)
TLBContext tlbcontext;

case regime of
when Regime_EL3 tlbcontext = AArch64.TLBContextEL3(ss, va, tg);
when Regime_EL2 tlbcontext = AArch64.TLBContextEL2(ss, va, tg);
when Regime_EL20 tlbcontext = AArch64.TLBContextEL20(ss, va, tg);
when Regime_EL10 tlbcontext = AArch64.TLBContextEL10(ss, va, tg);

tlbcontext.includes_s1 = TRUE;
// The following may be amended for EL1&0 Regime if caching of stage 2 is successful
tlbcontext.includes_s2 = FALSE;
// The following may be amended if Granule Protection Check passes
tlbcontext.includes_gpt = FALSE;
return tlbcontext;

Library pseudocode for aarch64/translation/vmsa_tlbcontext/AArch64.GetS2TLBContext

// AArch64.GetS2TLBContext()
// =========================
// Gather translation context for accesses with IPA to match against TLB entries

TLBContext AArch64.GetS2TLBContext(SecurityState ss, FullAddress ipa, TGx tg)
assert EL2Enabled();

TLBContext tlbcontext;

tlbcontext.ss = ss;
tlbcontext.regime = Regime_EL10;
tlbcontext.ipaspace = ipa.paspace;
tlbcontext.vmid = VMID[];
tlbcontext.tg = tg;
tlbcontext.ia = ZeroExtend(ipa.address, 64);
if HaveCommonNotPrivateTransExt() then

tlbcontext.cnp = if ipa.paspace == PAS_Secure then VSTTBR_EL2.CnP else VTTBR_EL2.CnP;
else

tlbcontext.cnp = '0';

tlbcontext.includes_s1 = FALSE;
tlbcontext.includes_s2 = TRUE;
// This amy be amended if Granule Protection Check passes
tlbcontext.includes_gpt = FALSE;
return tlbcontext;

Shared Pseudocode Functions Page 1862

Library pseudocode for aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL10

// AArch64.TLBContextEL10()
// ========================
// Gather translation context for accesses under EL10 regime to match against TLB entries

TLBContext AArch64.TLBContextEL10(SecurityState ss, bits(64) va, TGx tg)
TLBContext tlbcontext;

tlbcontext.ss = ss;
tlbcontext.regime = Regime_EL10;
tlbcontext.vmid = VMID[];
tlbcontext.asid = if TCR_EL1.A1 == '0' then TTBR0_EL1.ASID else TTBR1_EL1.ASID;
if TCR_EL1.AS == '0' then

tlbcontext.asid<15:8> = Zeros(8);
tlbcontext.tg = tg;
tlbcontext.ia = va;

if HaveCommonNotPrivateTransExt() then
if AArch64.GetVARange(va) == VARange_LOWER then

tlbcontext.cnp = TTBR0_EL1.CnP;
else

tlbcontext.cnp = TTBR1_EL1.CnP;
else

tlbcontext.cnp = '0';

return tlbcontext;

Library pseudocode for aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL2

// AArch64.TLBContextEL2()
// =======================
// Gather translation context for accesses under EL2 regime to match against TLB entries

TLBContext AArch64.TLBContextEL2(SecurityState ss, bits(64) va, TGx tg)
TLBContext tlbcontext;

tlbcontext.ss = ss;
tlbcontext.regime = Regime_EL2;
tlbcontext.tg = tg;
tlbcontext.ia = va;
tlbcontext.cnp = if HaveCommonNotPrivateTransExt() then TTBR0_EL2.CnP else '0';

return tlbcontext;

Shared Pseudocode Functions Page 1863

Library pseudocode for aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL20

// AArch64.TLBContextEL20()
// ========================
// Gather translation context for accesses under EL20 regime to match against TLB entries

TLBContext AArch64.TLBContextEL20(SecurityState ss, bits(64) va, TGx tg)
TLBContext tlbcontext;

tlbcontext.ss = ss;
tlbcontext.regime = Regime_EL20;
tlbcontext.asid = if TCR_EL2.A1 == '0' then TTBR0_EL2.ASID else TTBR1_EL2.ASID;
if TCR_EL2.AS == '0' then

tlbcontext.asid<15:8> = Zeros(8);
tlbcontext.tg = tg;
tlbcontext.ia = va;

if HaveCommonNotPrivateTransExt() then
if AArch64.GetVARange(va) == VARange_LOWER then

tlbcontext.cnp = TTBR0_EL2.CnP;
else

tlbcontext.cnp = TTBR1_EL2.CnP;
else

tlbcontext.cnp = '0';

return tlbcontext;

Library pseudocode for aarch64/translation/vmsa_tlbcontext/AArch64.TLBContextEL3

// AArch64.TLBContextEL3()
// =======================
// Gather translation context for accesses under EL3 regime to match against TLB entries

TLBContext AArch64.TLBContextEL3(SecurityState ss, bits(64) va, TGx tg)
TLBContext tlbcontext;

tlbcontext.ss = ss;
tlbcontext.regime = Regime_EL3;
tlbcontext.tg = tg;
tlbcontext.ia = va;
tlbcontext.cnp = if HaveCommonNotPrivateTransExt() then TTBR0_EL3.CnP else '0';

return tlbcontext;

Shared Pseudocode Functions Page 1864

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.FullTranslate

// AArch64.FullTranslate()
// =======================
// Address translation as specified by VMSA
// Alignment check NOT due to memory type is expected to be done before translation

AddressDescriptor AArch64.FullTranslate(bits(64) va, AccessDescriptor accdesc, boolean aligned)
Regime regime = TranslationRegime(accdesc.el);
FaultRecord fault = NoFault(accdesc);

AddressDescriptor ipa;
(fault, ipa) = AArch64.S1Translate(fault, regime, va, aligned, accdesc);

if fault.statuscode != Fault_None then
return CreateFaultyAddressDescriptor(va, fault);

if accdesc.ss == SS_Realm then
assert EL2Enabled();

if regime == Regime_EL10 && EL2Enabled() then
s1aarch64 = TRUE;
AddressDescriptor pa;
(fault, pa) = AArch64.S2Translate(fault, ipa, s1aarch64, aligned, accdesc);

if fault.statuscode != Fault_None then
return CreateFaultyAddressDescriptor(va, fault);

else
return pa;

else
return ipa;

Shared Pseudocode Functions Page 1865

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.MemSwapTableDesc

// AArch64.MemSwapTableDesc()
// ==========================
// Perform HW update of table descriptor as an atomic operation

(FaultRecord, bits(N)) AArch64.MemSwapTableDesc(FaultRecord fault_in, bits(N) prev_desc,
bits(N) new_desc, bit ee,
AccessDescriptor descaccess,
AddressDescriptor descpaddr)

FaultRecord fault = fault_in;
boolean iswrite;

if HaveRME() then
fault.gpcf = GranuleProtectionCheck(descpaddr, descaccess);
if fault.gpcf.gpf != GPCF_None then

fault.statuscode = Fault_GPCFOnWalk;
fault.paddress = descpaddr.paddress;
fault.gpcfs2walk = fault.secondstage;
return (fault, bits(N) UNKNOWN);

// All observers in the shareability domain observe the
// following memory read and write accesses atomically.
bits(N) mem_desc;
PhysMemRetStatus memstatus;
(memstatus, mem_desc) = PhysMemRead(descpaddr, N DIV 8, descaccess);

if ee == '1' then
mem_desc = BigEndianReverse(mem_desc);

if IsFault(memstatus) then
iswrite = FALSE;
fault = HandleExternalTTWAbort(memstatus, iswrite, descpaddr, descaccess, N DIV 8, fault);
if IsFault(fault.statuscode) then

return (fault, bits(N) UNKNOWN);

if mem_desc == prev_desc then
ordered_new_desc = if ee == '1' then BigEndianReverse(new_desc) else new_desc;
memstatus = PhysMemWrite(descpaddr, N DIV 8, descaccess, ordered_new_desc);

if IsFault(memstatus) then
iswrite = TRUE;
fault = HandleExternalTTWAbort(memstatus, iswrite, descpaddr, descaccess, N DIV 8,

fault);

if IsFault(fault.statuscode) then
return (fault, bits(N) UNKNOWN);

// Reflect what is now in memory (in little endian format)
mem_desc = new_desc;

return (fault, mem_desc);

Shared Pseudocode Functions Page 1866

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.S1DisabledOutput

Shared Pseudocode Functions Page 1867

// AArch64.S1DisabledOutput()
// ==========================
// Map the VA to IPA/PA and assign default memory attributes

(FaultRecord, AddressDescriptor) AArch64.S1DisabledOutput(FaultRecord fault_in, Regime regime,
bits(64) va_in, AccessDescriptor accdesc,
boolean aligned)

bits(64) va = va_in;
walkparams = AArch64.GetS1TTWParams(regime, accdesc.ss, va);
FaultRecord fault = fault_in;

// No memory page is guarded when stage 1 address translation is disabled
SetInGuardedPage(FALSE);

// Output Address
FullAddress oa;
oa.address = va<55:0>;
case accdesc.ss of

when SS_Secure oa.paspace = PAS_Secure;
when SS_NonSecure oa.paspace = PAS_NonSecure;
when SS_Root oa.paspace = PAS_Root;
when SS_Realm oa.paspace = PAS_Realm;

MemoryAttributes memattrs;
if regime == Regime_EL10 && EL2Enabled() && walkparams.dc == '1' then

MemAttrHints default_cacheability;
default_cacheability.attrs = MemAttr_WB;
default_cacheability.hints = MemHint_RWA;
default_cacheability.transient = FALSE;

memattrs.memtype = MemType_Normal;
memattrs.outer = default_cacheability;
memattrs.inner = default_cacheability;
memattrs.shareability = Shareability_NSH;
if walkparams.dct == '1' then

memattrs.tags = MemTag_AllocationTagged;
elsif walkparams.mtx == '1' then

memattrs.tags = MemTag_CanonicallyTagged;
else

memattrs.tags = MemTag_Untagged;
memattrs.xs = '0';

elsif accdesc.acctype == AccessType_IFETCH then
MemAttrHints i_cache_attr;
if AArch64.S1ICacheEnabled(regime) then

i_cache_attr.attrs = MemAttr_WT;
i_cache_attr.hints = MemHint_RA;
i_cache_attr.transient = FALSE;

else
i_cache_attr.attrs = MemAttr_NC;

memattrs.memtype = MemType_Normal;
memattrs.outer = i_cache_attr;
memattrs.inner = i_cache_attr;
memattrs.shareability = Shareability_OSH;
memattrs.tags = MemTag_Untagged;
memattrs.xs = '1';

else
memattrs.memtype = MemType_Device;
memattrs.device = DeviceType_nGnRnE;
memattrs.shareability = Shareability_OSH;
if walkparams.mtx == '1' then

memattrs.tags = MemTag_CanonicallyTagged;
else

memattrs.tags = MemTag_Untagged;
memattrs.xs = '1';

memattrs.notagaccess = FALSE;

if walkparams.mtx == '1' && walkparams.tbi == '0' && accdesc.acctype != AccessType_IFETCH then
// For the purpose of the checks in this function, the MTE tag bits are ignored.

Shared Pseudocode Functions Page 1868

va<59:56> = if HasUnprivileged(regime) then Replicate(va<55>, 4) else '0000';

fault.level = 0;
addrtop = AArch64.AddrTop(walkparams.tbid, accdesc.acctype, walkparams.tbi);

if !IsZero(va<addrtop:AArch64.PAMax()>) then
fault.statuscode = Fault_AddressSize;

elsif AArch64.S1HasAlignmentFault(accdesc, aligned, walkparams.ntlsmd, memattrs) then
fault.statuscode = Fault_Alignment;

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

else
ipa = CreateAddressDescriptor(va_in, oa, memattrs);
ipa.mecid = AArch64.S1DisabledOutputMECID(walkparams, regime, ipa.paddress.paspace);
return (fault, ipa);

Shared Pseudocode Functions Page 1869

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.S1Translate

Shared Pseudocode Functions Page 1870

// AArch64.S1Translate()
// =====================
// Translate VA to IPA/PA depending on the regime

(FaultRecord, AddressDescriptor) AArch64.S1Translate(FaultRecord fault_in, Regime regime,
bits(64) va, boolean aligned,
AccessDescriptor accdesc)

FaultRecord fault = fault_in;
// Prepare fault fields in case a fault is detected
fault.secondstage = FALSE;
fault.s2fs1walk = FALSE;

if !AArch64.S1Enabled(regime, accdesc.acctype) then
return AArch64.S1DisabledOutput(fault, regime, va, accdesc, aligned);

walkparams = AArch64.GetS1TTWParams(regime, accdesc.ss, va);

constant integer s1mintxsz = AArch64.S1MinTxSZ(regime, walkparams.d128,
walkparams.ds, walkparams.tgx);

constant integer s1maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
if AArch64.S1TxSZFaults(regime, walkparams) then

fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN);

elsif UInt(walkparams.txsz) < s1mintxsz then
walkparams.txsz = s1mintxsz<5:0>;

elsif UInt(walkparams.txsz) > s1maxtxsz then
walkparams.txsz = s1maxtxsz<5:0>;

if AArch64.VAIsOutOfRange(va, accdesc.acctype, regime, walkparams) then
fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN);

if accdesc.el == EL0 && walkparams.e0pd == '1' then
fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN);

if HaveTME() && accdesc.el == EL0 && walkparams.nfd == '1' && accdesc.transactional then
fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN);

if HaveSVE() && accdesc.el == EL0 && walkparams.nfd == '1' && (
(accdesc.nonfault && accdesc.contiguous) ||
(accdesc.firstfault && !accdesc.first && !accdesc.contiguous)) then

fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN);

AddressDescriptor descipaddr;
TTWState walkstate;
bits(128) descriptor;
bits(128) new_desc;
bits(128) mem_desc;
repeat

if walkparams.d128 == '1' then
(fault, descipaddr, walkstate, descriptor) = AArch64.S1Walk(fault, walkparams, va,

regime, accdesc, 128);
else

(fault, descipaddr, walkstate, descriptor<63:0>) = AArch64.S1Walk(fault, walkparams,
va, regime, accdesc,
64);

descriptor<127:64> = Zeros(64);
if fault.statuscode != Fault_None then

return (fault, AddressDescriptor UNKNOWN);

if accdesc.acctype == AccessType_IFETCH then
// Flag the fetched instruction is from a guarded page

Shared Pseudocode Functions Page 1871

SetInGuardedPage(walkstate.guardedpage == '1');

if AArch64.S1HasAlignmentFault(accdesc, aligned, walkparams.ntlsmd,
walkstate.memattrs) then

fault.statuscode = Fault_Alignment;

if fault.statuscode == Fault_None then
fault = AArch64.S1CheckPermissions(fault, regime, walkstate, walkparams, accdesc);

new_desc = descriptor;
if walkparams.ha == '1' && AArch64.SettingAccessFlagPermitted(fault) then

// Set descriptor AF bit
new_desc<10> = '1';

// If HW update of dirty bit is enabled, the walk state permissions
// will already reflect a configuration permitting writes.
// The update of the descriptor occurs only if the descriptor bits in
// memory do not reflect that and the access instigates a write.

if (AArch64.SettingDirtyStatePermitted(fault) &&
walkparams.ha == '1' &&
walkparams.hd == '1' &&
(walkparams.pie == '1' || descriptor<51> == '1') &&
accdesc.write &&
!(accdesc.acctype IN {AccessType_AT, AccessType_IC, AccessType_DC})) then

// Clear descriptor AP[2]/nDirty bit permitting stage 1 writes
new_desc<7> = '0';

// Either the access flag was clear or AP[2]/nDirty is set
if new_desc != descriptor then

AddressDescriptor descpaddr;
descaccess = CreateAccDescTTEUpdate(accdesc);
if regime == Regime_EL10 && EL2Enabled() then

FaultRecord s2fault;
s1aarch64 = TRUE;
s2aligned = TRUE;
(s2fault, descpaddr) = AArch64.S2Translate(fault, descipaddr, s1aarch64, s2aligned,

descaccess);

if s2fault.statuscode != Fault_None then
return (s2fault, AddressDescriptor UNKNOWN);

else
descpaddr = descipaddr;

if walkparams.d128 == '1' then
(fault, mem_desc) = AArch64.MemSwapTableDesc(fault, descriptor, new_desc,

walkparams.ee, descaccess, descpaddr);
else

(fault, mem_desc<63:0>) = AArch64.MemSwapTableDesc(fault, descriptor<63:0>,
new_desc<63:0>, walkparams.ee,
descaccess, descpaddr);

mem_desc<127:64> = Zeros(64);

until new_desc == descriptor || mem_desc == new_desc;

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

// Output Address
oa = StageOA(va, walkparams.d128, walkparams.tgx, walkstate);
MemoryAttributes memattrs;
if (accdesc.acctype == AccessType_IFETCH &&

(walkstate.memattrs.memtype == MemType_Device || !AArch64.S1ICacheEnabled(regime))) then
// Treat memory attributes as Normal Non-Cacheable
memattrs = NormalNCMemAttr();
memattrs.xs = walkstate.memattrs.xs;

elsif (accdesc.acctype != AccessType_IFETCH && !AArch64.S1DCacheEnabled(regime) &&
walkstate.memattrs.memtype == MemType_Normal) then

// Treat memory attributes as Normal Non-Cacheable
memattrs = NormalNCMemAttr();

Shared Pseudocode Functions Page 1872

memattrs.xs = walkstate.memattrs.xs;

// The effect of SCTLR_ELx.C when '0' is Constrained UNPREDICTABLE
// on the Tagged attribute
if (HaveMTE2Ext() && walkstate.memattrs.tags == MemTag_AllocationTagged &&

!ConstrainUnpredictableBool(Unpredictable_S1CTAGGED)) then
memattrs.tags = MemTag_Untagged;

else
memattrs = walkstate.memattrs;

// Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
// to be either effective value or descriptor value
if (regime == Regime_EL10 && EL2Enabled() && HCR_EL2.VM == '1' &&

!(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
memattrs.shareability = walkstate.memattrs.shareability;

else
memattrs.shareability = EffectiveShareability(memattrs);

if accdesc.ls64 && memattrs.memtype == MemType_Normal then
if memattrs.inner.attrs != MemAttr_NC || memattrs.outer.attrs != MemAttr_NC then

fault.statuscode = Fault_Exclusive;
return (fault, AddressDescriptor UNKNOWN);

ipa = CreateAddressDescriptor(va, oa, memattrs);
ipa.s1assured = walkstate.s1assured;
varange = AArch64.GetVARange(va);
ipa.mecid = AArch64.S1OutputMECID(walkparams, regime, varange, ipa.paddress.paspace,

descriptor);
return (fault, ipa);

Shared Pseudocode Functions Page 1873

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.S2Translate

Shared Pseudocode Functions Page 1874

// AArch64.S2Translate()
// =====================
// Translate stage 1 IPA to PA and combine memory attributes

(FaultRecord, AddressDescriptor) AArch64.S2Translate(FaultRecord fault_in, AddressDescriptor ipa,
boolean s1aarch64, boolean aligned,
AccessDescriptor accdesc)

walkparams = AArch64.GetS2TTWParams(accdesc.ss, ipa.paddress.paspace, s1aarch64);
FaultRecord fault = fault_in;
boolean s2fs1mro;

// Prepare fault fields in case a fault is detected
fault.statuscode = Fault_None; // Ignore any faults from stage 1
fault.secondstage = TRUE;
fault.s2fs1walk = accdesc.acctype == AccessType_TTW;
fault.ipaddress = ipa.paddress;

if walkparams.vm != '1' then
// Stage 2 translation is disabled
return (fault, ipa);

constant integer s2mintxsz = AArch64.S2MinTxSZ(walkparams.d128, walkparams.ds,
walkparams.tgx, s1aarch64);

constant integer s2maxtxsz = AArch64.MaxTxSZ(walkparams.tgx);
if AArch64.S2TxSZFaults(walkparams, s1aarch64) then

fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN);

elsif UInt(walkparams.txsz) < s2mintxsz then
walkparams.txsz = s2mintxsz<5:0>;

elsif UInt(walkparams.txsz) > s2maxtxsz then
walkparams.txsz = s2maxtxsz<5:0>;

if (walkparams.d128 == '0' &&
(AArch64.S2InvalidSL(walkparams) || AArch64.S2InconsistentSL(walkparams))) then
fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN);

if AArch64.IPAIsOutOfRange(ipa.paddress.address, walkparams) then
fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN);

AddressDescriptor descpaddr;
TTWState walkstate;
bits(128) descriptor;
bits(128) new_desc;
bits(128) mem_desc;
repeat

if walkparams.d128 == '1' then
(fault, descpaddr, walkstate, descriptor) = AArch64.S2Walk(fault, ipa, walkparams,

accdesc, 128);
else

(fault, descpaddr, walkstate, descriptor<63:0>) = AArch64.S2Walk(fault, ipa,
walkparams, accdesc,
64);

descriptor<127:64> = Zeros(64);
if fault.statuscode != Fault_None then

return (fault, AddressDescriptor UNKNOWN);

if AArch64.S2HasAlignmentFault(accdesc, aligned, walkstate.memattrs) then
fault.statuscode = Fault_Alignment;

if fault.statuscode == Fault_None then
(fault, s2fs1mro) = AArch64.S2CheckPermissions(fault, walkstate, walkparams, ipa,

accdesc);

new_desc = descriptor;

Shared Pseudocode Functions Page 1875

if walkparams.ha == '1' && AArch64.SettingAccessFlagPermitted(fault) then
// Set descriptor AF bit
new_desc<10> = '1';

// If HW update of dirty bit is enabled, the walk state permissions
// will already reflect a configuration permitting writes.
// The update of the descriptor occurs only if the descriptor bits in
// memory do not reflect that and the access instigates a write.

if (AArch64.SettingDirtyStatePermitted(fault) &&
walkparams.ha == '1' &&
walkparams.hd == '1' &&
(walkparams.s2pie == '1' || descriptor<51> == '1') &&
accdesc.write &&
!(accdesc.acctype IN {AccessType_AT, AccessType_IC, AccessType_DC})) then

// Set descriptor S2AP[1]/Dirty bit permitting stage 2 writes
new_desc<7> = '1';

// Either the access flag was clear or S2AP[1]/Dirty is clear
if new_desc != descriptor then

AccessDescriptor descaccess = CreateAccDescTTEUpdate(accdesc);
if walkparams.d128 == '1' then

(fault, mem_desc) = AArch64.MemSwapTableDesc(fault, descriptor, new_desc,
walkparams.ee, descaccess,
descpaddr);

else
(fault, mem_desc<63:0>) = AArch64.MemSwapTableDesc(fault, descriptor<63:0>,

new_desc<63:0>, walkparams.ee,
descaccess, descpaddr);

mem_desc<127:64> = Zeros(64);

until new_desc == descriptor || mem_desc == new_desc;

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN);

ipa_64 = ZeroExtend(ipa.paddress.address, 64);
// Output Address
oa = StageOA(ipa_64, walkparams.d128, walkparams.tgx, walkstate);
MemoryAttributes s2_memattrs;
if ((accdesc.acctype == AccessType_TTW &&

walkstate.memattrs.memtype == MemType_Device && walkparams.ptw == '0') ||
(accdesc.acctype == AccessType_IFETCH &&

(walkstate.memattrs.memtype == MemType_Device || HCR_EL2.ID == '1')) ||
(accdesc.acctype != AccessType_IFETCH &&

walkstate.memattrs.memtype == MemType_Normal && !S2DCacheEnabled())) then
// Treat memory attributes as Normal Non-Cacheable
s2_memattrs = NormalNCMemAttr();
s2_memattrs.xs = walkstate.memattrs.xs;

else
s2_memattrs = walkstate.memattrs;

if accdesc.ls64 && s2_memattrs.memtype == MemType_Normal then
if s2_memattrs.inner.attrs != MemAttr_NC || s2_memattrs.outer.attrs != MemAttr_NC then

fault.statuscode = Fault_Exclusive;
return (fault, AddressDescriptor UNKNOWN);

s2aarch64 = TRUE;
MemoryAttributes memattrs;
if walkparams.fwb == '0' then

memattrs = S2CombineS1MemAttrs(ipa.memattrs, s2_memattrs, s2aarch64);
else

memattrs = s2_memattrs;

pa = CreateAddressDescriptor(ipa.vaddress, oa, memattrs);
pa.s2fs1mro = s2fs1mro;
pa.mecid = AArch64.S2OutputMECID(walkparams, pa.paddress.paspace, descriptor);
return (fault, pa);

Shared Pseudocode Functions Page 1876

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.SettingAccessFlagPermitted

// AArch64.SettingAccessFlagPermitted()
// ====================================
// Determine whether the access flag could be set by HW given the fault status

boolean AArch64.SettingAccessFlagPermitted(FaultRecord fault)
if fault.statuscode == Fault_None then

return TRUE;
elsif fault.statuscode IN {Fault_Alignment, Fault_Permission} then

return ConstrainUnpredictableBool(Unpredictable_AFUPDATE);
else

return FALSE;

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.SettingDirtyStatePermitted

// AArch64.SettingDirtyStatePermitted()
// ====================================
// Determine whether the dirty state could be set by HW given the fault status

boolean AArch64.SettingDirtyStatePermitted(FaultRecord fault)
if fault.statuscode == Fault_None then

return TRUE;
elsif fault.statuscode == Fault_Alignment then

return ConstrainUnpredictableBool(Unpredictable_DBUPDATE);
else

return FALSE;

Library pseudocode for aarch64/translation/vmsa_translation/AArch64.TranslateAddress

// AArch64.TranslateAddress()
// ==========================
// Main entry point for translating an address

AddressDescriptor AArch64.TranslateAddress(bits(64) va, AccessDescriptor accdesc,
boolean aligned, integer size)

if (SPESampleInFlight && !(accdesc.acctype IN {AccessType_IFETCH,
AccessType_SPE})) then

SPEStartCounter(SPECounterPosTranslationLatency);

AddressDescriptor result = AArch64.FullTranslate(va, accdesc, aligned);

if !IsFault(result) && accdesc.acctype != AccessType_IFETCH then
result.fault = AArch64.CheckDebug(va, accdesc, size);

if HaveRME() && !IsFault(result) && (
accdesc.acctype != AccessType_DC ||
boolean IMPLEMENTATION_DEFINED "GPC Fault on DC operations") then

result.fault.gpcf = GranuleProtectionCheck(result, accdesc);

if result.fault.gpcf.gpf != GPCF_None then
result.fault.statuscode = Fault_GPCFOnOutput;
result.fault.paddress = result.paddress;

if !IsFault(result) && accdesc.acctype == AccessType_IFETCH then
result.fault = AArch64.CheckDebug(va, accdesc, size);

if (SPESampleInFlight && !(accdesc.acctype IN {AccessType_IFETCH,
AccessType_SPE})) then

SPEStopCounter(SPECounterPosTranslationLatency);

// Update virtual address for abort functions
result.vaddress = ZeroExtend(va, 64);

return result;

Shared Pseudocode Functions Page 1877

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.BlockDescSupported

// AArch64.BlockDescSupported()
// ============================
// Determine whether a block descriptor is valid for the given granule size
// and level

boolean AArch64.BlockDescSupported(bit d128, bit ds, TGx tgx, integer level)
case tgx of

when TGx_4KB return ((level == 0 && (ds == '1' || d128 == '1')) ||
level == 1 ||
level == 2);

when TGx_16KB return ((level == 1 && (ds == '1' || d128 == '1')) ||
level == 2);

when TGx_64KB return ((level == 1 && (d128 == '1' || AArch64.PAMax() >= 52)) ||
level == 2);

return FALSE;

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.BlocknTFaults

// AArch64.BlocknTFaults()
// =======================
// Identify whether the nT bit in a block descriptor is effectively set
// causing a translation fault

boolean AArch64.BlocknTFaults(bit d128, bits(N) descriptor)
bit nT;
if !HaveBlockBBM() then

return FALSE;
nT = if d128 == '1' then descriptor<6> else descriptor<16>;
bbm_level = AArch64.BlockBBMSupportLevel();
nT_faults = (boolean IMPLEMENTATION_DEFINED

"BBM level 1 or 2 support nT bit causes Translation Fault");

return bbm_level IN {1, 2} && nT == '1' && nT_faults;

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.ContiguousBit

// AArch64.ContiguousBit()
// =======================
// Get the value of the contiguous bit

bit AArch64.ContiguousBit(TGx tgx, bit d128, integer level, bits(N) descriptor)
if d128 == '1' then

if (tgx == TGx_64KB && level == 1) || (tgx == TGx_4KB && level == 0) then
return '0'; // RES0

else
return descriptor<111>;

// When using TGx 64KB and FEAT_LPA is implememted,
// the Contiguous bit is RES0 for Block descriptors at level 1

if tgx == TGx_64KB && level == 1 then
return '0'; // RES0

// When the effective value of TCR_ELx.DS is '1',
// the Contiguous bit is RES0 for all the following:
// * For TGx 4KB, Block descriptors at level 0
// * For TGx 16KB, Block descriptors at level 1

if tgx == TGx_16KB && level == 1 then
return '0'; // RES0

if tgx == TGx_4KB && level == 0 then
return '0'; // RES0

return descriptor<52>;

Shared Pseudocode Functions Page 1878

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.DecodeDescriptorType

// AArch64.DecodeDescriptorType()
// ==============================
// Determine whether the descriptor is a page, block or table

DescriptorType AArch64.DecodeDescriptorType(bits(N) descriptor, bit d128, bit ds,
TGx tgx, integer level)

if descriptor<0> == '0' then
return DescriptorType_Invalid;

elsif d128 == '1' then
bits(2) skl = descriptor<110:109>;
if tgx IN {TGx_16KB, TGx_64KB} && UInt(skl) == 3 then

return DescriptorType_Invalid;

integer effective_level = level + UInt(skl);
if effective_level > FINAL_LEVEL then

return DescriptorType_Invalid;
elsif effective_level == FINAL_LEVEL then

return DescriptorType_Leaf;
else

return DescriptorType_Table;
else

if descriptor<1> == '1' then
if level == FINAL_LEVEL then

return DescriptorType_Leaf;
else

return DescriptorType_Table;
elsif descriptor<1> == '0' then

if AArch64.BlockDescSupported(d128, ds, tgx, level) then
return DescriptorType_Leaf;

else
return DescriptorType_Invalid;

Shared Pseudocode Functions Page 1879

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.S1ApplyOutputPerms

// AArch64.S1ApplyOutputPerms()
// ============================
// Apply output permissions encoded in stage 1 page/block descriptors

Permissions AArch64.S1ApplyOutputPerms(Permissions permissions_in, bits(N) descriptor,
Regime regime, S1TTWParams walkparams)

Permissions permissions = permissions_in;

bits (4) pi_index;
if walkparams.pie == '1' then

if walkparams.d128 == '1' then
pi_index = descriptor<118:115>;

else
pi_index = descriptor<54:53>:descriptor<51>:descriptor<6>;

bit_index = 4 * UInt(pi_index);
permissions.ppi = walkparams.pir<bit_index+3:bit_index>;
permissions.upi = walkparams.pire0<bit_index+3:bit_index>;
permissions.ndirty = descriptor<7>;

else
if regime == Regime_EL10 && EL2Enabled() && walkparams.nv1 == '1' then

permissions.ap<2:1> = descriptor<7>:'0';
permissions.pxn = descriptor<54>;

elsif HasUnprivileged(regime) then
permissions.ap<2:1> = descriptor<7:6>;
permissions.uxn = descriptor<54>;
permissions.pxn = descriptor<53>;

else
permissions.ap<2:1> = descriptor<7>:'1';
permissions.xn = descriptor<54>;

// Descriptors marked with DBM set have the effective value of AP[2] cleared.
// This implies no Permission faults caused by lack of write permissions are
// reported, and the Dirty bit can be set.
if walkparams.ha == '1' && walkparams.hd == '1' && descriptor<51> == '1' then

permissions.ap<2> = '0';

if IsFeatureImplemented(FEAT_S1POE) then
if walkparams.d128 == '1' then

permissions.po_index = descriptor<124:121>;
else

permissions.po_index = '0':descriptor<62:60>;

return permissions;

Shared Pseudocode Functions Page 1880

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.S1ApplyTablePerms

// AArch64.S1ApplyTablePerms()
// ===========================
// Apply hierarchical permissions encoded in stage 1 table descriptors

Permissions AArch64.S1ApplyTablePerms(Permissions permissions_in, bits(N) descriptor,
Regime regime, S1TTWParams walkparams)

Permissions permissions = permissions_in;
bits(2) ap_table;
bit pxn_table;
bit uxn_table;
bit xn_table;
if regime == Regime_EL10 && EL2Enabled() && walkparams.nv1 == '1' then

if walkparams.d128 == '1' then
ap_table = descriptor<126>:'0';
pxn_table = descriptor<124>;

else
ap_table = descriptor<62>:'0';
pxn_table = descriptor<60>;

permissions.ap_table = permissions.ap_table OR ap_table;
permissions.pxn_table = permissions.pxn_table OR pxn_table;

elsif HasUnprivileged(regime) then
if walkparams.d128 == '1' then

ap_table = descriptor<126:125>;
uxn_table = descriptor<124>;
pxn_table = descriptor<123>;

else
ap_table = descriptor<62:61>;
uxn_table = descriptor<60>;
pxn_table = descriptor<59>;

permissions.ap_table = permissions.ap_table OR ap_table;
permissions.uxn_table = permissions.uxn_table OR uxn_table;
permissions.pxn_table = permissions.pxn_table OR pxn_table;

else
if walkparams.d128 == '1' then

ap_table = descriptor<126>:'0';
xn_table = descriptor<124>;

else
ap_table = descriptor<62>:'0';
xn_table = descriptor<60>;

permissions.ap_table = permissions.ap_table OR ap_table;
permissions.xn_table = permissions.xn_table OR xn_table;

return permissions;

Shared Pseudocode Functions Page 1881

Library pseudocode for aarch64/translation/vmsa_ttentry/AArch64.S2ApplyOutputPerms

// AArch64.S2ApplyOutputPerms()
// ============================
// Apply output permissions encoded in stage 2 page/block descriptors

Permissions AArch64.S2ApplyOutputPerms(bits(N) descriptor, S2TTWParams walkparams)
Permissions permissions;
bits(4) s2pi_index;
if walkparams.s2pie == '1' then

if walkparams.d128 == '1' then
s2pi_index = descriptor<118:115>;

else
s2pi_index = descriptor<54:53,51,6>;

bit_index = 4 * UInt(s2pi_index);
permissions.s2pi = walkparams.s2pir<bit_index+3 : bit_index>;
permissions.s2dirty = descriptor<7>;

else
permissions.s2ap = descriptor<7:6>;
if walkparams.d128 == '1' then

permissions.s2xn = descriptor<118>;
else

permissions.s2xn = descriptor<54>;

if HaveExtendedExecuteNeverExt() then
if walkparams.d128 == '1' then

permissions.s2xnx = descriptor<117>;
else

permissions.s2xnx = descriptor<53>;
else

permissions.s2xnx = '0';

// Descriptors marked with DBM set have the effective value of S2AP[1] set.
// This implies no Permission faults caused by lack of write permissions are
// reported, and the Dirty bit can be set.
bit desc_dbm;
if walkparams.d128 == '1' then

desc_dbm = descriptor<115>;
else

desc_dbm = descriptor<51>;
if walkparams.ha == '1' && walkparams.hd == '1' && desc_dbm == '1' then

permissions.s2ap<1> = '1';
if IsFeatureImplemented(FEAT_S2POE) then

if walkparams.d128 == '1' then
permissions.s2po_index = descriptor<124:121>;

else
permissions.s2po_index = descriptor<62:59>;

return permissions;

Shared Pseudocode Functions Page 1882

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S1InitialTTWState

// AArch64.S1InitialTTWState()
// ===========================
// Set properties of first access to translation tables in stage 1

TTWState AArch64.S1InitialTTWState(S1TTWParams walkparams, bits(64) va, Regime regime,
SecurityState ss)

TTWState walkstate;
FullAddress tablebase;
Permissions permissions;
bits(128) ttbr;

ttbr = AArch64.S1TTBR(regime, va);
case ss of

when SS_Secure tablebase.paspace = PAS_Secure;
when SS_NonSecure tablebase.paspace = PAS_NonSecure;
when SS_Root tablebase.paspace = PAS_Root;
when SS_Realm tablebase.paspace = PAS_Realm;

tablebase.address = AArch64.S1TTBaseAddress(walkparams, regime, ttbr);

permissions.ap_table = '00';
if HasUnprivileged(regime) then

permissions.uxn_table = '0';
permissions.pxn_table = '0';

else
permissions.xn_table = '0';

walkstate.baseaddress = tablebase;
walkstate.level = AArch64.S1StartLevel(walkparams);
walkstate.istable = TRUE;
// In regimes that support global and non-global translations, translation
// table entries from lookup levels other than the final level of lookup
// are treated as being non-global
walkstate.nG = if HasUnprivileged(regime) then '1' else '0';
walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn, walkparams.orgn);
walkstate.permissions = permissions;
if (regime == Regime_EL10 && EL2Enabled() && (HCR_EL2.VM == '1' || HCR_EL2.DC == '1')) then

if ((AArch64.GetVARange(va) == VARange_LOWER && VTCR_EL2.TL0 == '1') ||
(AArch64.GetVARange(va) == VARange_UPPER && VTCR_EL2.TL1 == '1')) then
walkstate.s1assured = TRUE;

else
walkstate.s1assured = FALSE;

else
walkstate.s1assured = FALSE;

walkstate.disch = walkparams.disch;

return walkstate;

Shared Pseudocode Functions Page 1883

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateLeaf

Shared Pseudocode Functions Page 1884

// AArch64.S1NextWalkStateLeaf()
// =============================
// Decode stage 1 page or block descriptor as output to this stage of translation

TTWState AArch64.S1NextWalkStateLeaf(TTWState currentstate, boolean s2fs1mro, Regime regime,
SecurityState ss, S1TTWParams walkparams, bits(N) descriptor)

TTWState nextstate;
FullAddress baseaddress;
baseaddress.address = AArch64.LeafBase(descriptor, walkparams.d128,

walkparams.ds,
walkparams.tgx, currentstate.level);

if currentstate.baseaddress.paspace == PAS_Secure then
// Determine PA space of the block from NS bit
bit ns;
ns = if walkparams.d128 == '1' then descriptor<127> else descriptor<5>;
baseaddress.paspace = if ns == '0' then PAS_Secure else PAS_NonSecure;

elsif currentstate.baseaddress.paspace == PAS_Root then
// Determine PA space of the block from NSE and NS bits
bit nse;
bit ns;
<nse,ns> = if walkparams.d128 == '1' then descriptor<11,127> else descriptor<11,5>;
baseaddress.paspace = DecodePASpace(nse, ns);

// If Secure state is not implemented, but RME is,
// force Secure space accesses to Non-secure space
if baseaddress.paspace == PAS_Secure && !HaveSecureState() then

baseaddress.paspace = PAS_NonSecure;

elsif (currentstate.baseaddress.paspace == PAS_Realm &&
regime IN {Regime_EL2, Regime_EL20}) then

// Realm EL2 and EL2&0 regimes have a stage 1 NS bit
bit ns;
ns = if walkparams.d128 == '1' then descriptor<127> else descriptor<5>;
baseaddress.paspace = if ns == '0' then PAS_Realm else PAS_NonSecure;

elsif currentstate.baseaddress.paspace == PAS_Realm then
// Realm EL1&0 regime does not have a stage 1 NS bit
baseaddress.paspace = PAS_Realm;

else
baseaddress.paspace = PAS_NonSecure;

nextstate.istable = FALSE;
nextstate.level = currentstate.level;
nextstate.baseaddress = baseaddress;

bits(4) attrindx;
if walkparams.aie == '1' then

if walkparams.d128 == '1' then
attrindx = descriptor<5:2>;

else
attrindx = descriptor<59,4:2>;

else
attrindx = '0':descriptor<4:2>;

bits(2) sh;
if walkparams.d128 == '1' then

sh = descriptor<9:8>;
elsif walkparams.ds == '1' then

sh = walkparams.sh;
else

sh = descriptor<9:8>;
attr = AArch64.MAIRAttr(UInt(attrindx), walkparams.mair2, walkparams.mair);
s1aarch64 = TRUE;

nextstate.memattrs = S1DecodeMemAttrs(attr, sh, s1aarch64, walkparams);
nextstate.permissions = AArch64.S1ApplyOutputPerms(currentstate.permissions,

descriptor, regime, walkparams);
bit protectedbit;
if walkparams.d128 == '1' then

protectedbit = descriptor<114>;

Shared Pseudocode Functions Page 1885

else
protectedbit = if walkparams.pnch == '1' then descriptor<52> else '0';

if (currentstate.s1assured && s2fs1mro && protectedbit == '1') then
nextstate.s1assured = TRUE;

else
nextstate.s1assured = FALSE;

if walkparams.pnch == '1' || currentstate.disch == '1' then
nextstate.contiguous = '0';

else
nextstate.contiguous = AArch64.ContiguousBit(walkparams.tgx, walkparams.d128,

currentstate.level, descriptor);
if !HasUnprivileged(regime) then

nextstate.nG = '0';
elsif ss == SS_Secure && currentstate.baseaddress.paspace == PAS_NonSecure then

// In Secure state, a translation must be treated as non-global,
// regardless of the value of the nG bit,
// if NSTable is set to 1 at any level of the translation table walk
nextstate.nG = '1';

else
nextstate.nG = descriptor<11>;

if walkparams.d128 == '1' then
nextstate.guardedpage = descriptor<113>;

else
nextstate.guardedpage = descriptor<50>;

return nextstate;

Shared Pseudocode Functions Page 1886

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S1NextWalkStateTable

// AArch64.S1NextWalkStateTable()
// ==============================
// Decode stage 1 table descriptor to transition to the next level

TTWState AArch64.S1NextWalkStateTable(TTWState currentstate, boolean s2fs1mro, Regime regime,
S1TTWParams walkparams, bits(N) descriptor)

TTWState nextstate;
FullAddress tablebase;
bits(2) skl = if walkparams.d128 == '1' then descriptor<110:109> else '00';

tablebase.address = AArch64.NextTableBase(descriptor, walkparams.d128,
skl, walkparams.ds,
walkparams.tgx);

if currentstate.baseaddress.paspace == PAS_Secure then
// Determine PA space of the next table from NSTable bit
bit nstable;
nstable = if walkparams.d128 == '1' then descriptor<127> else descriptor<63>;
tablebase.paspace = if nstable == '0' then PAS_Secure else PAS_NonSecure;

else
// Otherwise bit 63 is RES0 and there is no NSTable bit
tablebase.paspace = currentstate.baseaddress.paspace;

nextstate.istable = TRUE;
nextstate.nG = currentstate.nG;
if walkparams.d128 == '1' then

nextstate.level = currentstate.level + UInt(skl) + 1;
else

nextstate.level = currentstate.level + 1;
nextstate.baseaddress = tablebase;
nextstate.memattrs = currentstate.memattrs;
if walkparams.hpd == '0' && walkparams.pie == '0' then

nextstate.permissions = AArch64.S1ApplyTablePerms(currentstate.permissions, descriptor,
regime, walkparams);

else
nextstate.permissions = currentstate.permissions;

bit protectedbit;
if walkparams.d128 == '1' then

protectedbit = descriptor<114>;
else

protectedbit = if walkparams.pnch == '1' then descriptor<52> else '0';
if (currentstate.s1assured && s2fs1mro && protectedbit == '1') then

nextstate.s1assured = TRUE;
else

nextstate.s1assured = FALSE;
nextstate.disch = if walkparams.d128 == '1' then descriptor<112> else '0';

return nextstate;

Shared Pseudocode Functions Page 1887

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S1Walk

Shared Pseudocode Functions Page 1888

// AArch64.S1Walk()
// ================
// Traverse stage 1 translation tables obtaining the final descriptor
// as well as the address leading to that descriptor

(FaultRecord, AddressDescriptor, TTWState, bits(N)) AArch64.S1Walk(FaultRecord fault_in,
S1TTWParams walkparams,
bits(64) va, Regime regime,
AccessDescriptor accdesc,
integer N)

FaultRecord fault = fault_in;
boolean s1aarch64;
boolean aligned;

if HasUnprivileged(regime) && AArch64.S1EPD(regime, va) == '1' then
fault.statuscode = Fault_Translation;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(N) UNKNOWN);

walkstate = AArch64.S1InitialTTWState(walkparams, va, regime, accdesc.ss);
constant integer startlevel = walkstate.level;

bits(N) descriptor;
AddressDescriptor walkaddress;
bits(2) skl = '00';
walkaddress.vaddress = va;
walkaddress.mecid = AArch64.TTWalkMECID(walkparams.emec, regime, accdesc.ss);

if !AArch64.S1DCacheEnabled(regime) then
walkaddress.memattrs = NormalNCMemAttr();
walkaddress.memattrs.xs = walkstate.memattrs.xs;

else
walkaddress.memattrs = walkstate.memattrs;

// Shareability value of stage 1 translation subject to stage 2 is IMPLEMENTATION DEFINED
// to be either effective value or descriptor value
if (regime == Regime_EL10 && EL2Enabled() && HCR_EL2.VM == '1' &&

!(boolean IMPLEMENTATION_DEFINED "Apply effective shareability at stage 1")) then
walkaddress.memattrs.shareability = walkstate.memattrs.shareability;

else
walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.memattrs);

boolean s2fs1mro = FALSE;

DescriptorType desctype;
FullAddress descaddress = AArch64.S1SLTTEntryAddress(walkstate.level, walkparams, va,

walkstate.baseaddress);

// Detect Address Size Fault by Descriptor Address
if AArch64.OAOutOfRange(descaddress.address, walkparams.d128,

walkparams.ps, walkparams.tgx) then
fault.statuscode = Fault_AddressSize;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

repeat
fault.level = walkstate.level;
walkaddress.paddress = descaddress;
walkaddress.s1assured = walkstate.s1assured;

boolean toplevel = walkstate.level == startlevel;
VARange varange = AArch64.GetVARange(va);
AccessDescriptor walkaccess = CreateAccDescS1TTW(toplevel, varange, accdesc);
FaultRecord s2fault;
AddressDescriptor s2walkaddress;
if regime == Regime_EL10 && EL2Enabled() then

s1aarch64 = TRUE;
aligned = TRUE;
(s2fault, s2walkaddress) = AArch64.S2Translate(fault, walkaddress, s1aarch64, aligned,

Shared Pseudocode Functions Page 1889

walkaccess);

if s2fault.statuscode != Fault_None then
return (s2fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(N) UNKNOWN);

s2fs1mro = s2walkaddress.s2fs1mro;
(fault, descriptor) = FetchDescriptor(walkparams.ee, s2walkaddress, walkaccess,

fault, N);
else

(fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, walkaccess,
fault, N);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(N) UNKNOWN);

bits(N) new_descriptor;
repeat

new_descriptor = descriptor;
desctype = AArch64.DecodeDescriptorType(descriptor, walkparams.d128, walkparams.ds,

walkparams.tgx, walkstate.level);
case desctype of

when DescriptorType_Table
walkstate = AArch64.S1NextWalkStateTable(walkstate, s2fs1mro,

regime, walkparams, descriptor);
skl = if walkparams.d128 == '1' then descriptor<110:109> else '00';
descaddress = AArch64.TTEntryAddress(walkstate.level, walkparams.d128, skl,

walkparams.tgx, walkparams.txsz, va,
walkstate.baseaddress);

// Detect Address Size Fault by Descriptor Address
if AArch64.OAOutOfRange(descaddress.address, walkparams.d128,

walkparams.ps, walkparams.tgx) then
fault.statuscode = Fault_AddressSize;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(N) UNKNOWN);

if walkparams.haft == '1' then
new_descriptor<10> = '1';

if (walkparams.d128 == '1' && skl != '00' &&
AArch64.BlocknTFaults(walkparams.d128, descriptor)) then

fault.statuscode = Fault_Translation;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(N) UNKNOWN);
when DescriptorType_Leaf

walkstate = AArch64.S1NextWalkStateLeaf(walkstate, s2fs1mro,
regime, accdesc.ss, walkparams,
descriptor);

when DescriptorType_Invalid
fault.statuscode = Fault_Translation;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(N) UNKNOWN);
otherwise

Unreachable();

if new_descriptor != descriptor then
AddressDescriptor descpaddr;
AccessDescriptor descaccess = CreateAccDescTTEUpdate(accdesc);
if regime == Regime_EL10 && EL2Enabled() then

s1aarch64 = TRUE;
aligned = TRUE;
(s2fault, descpaddr) = AArch64.S2Translate(fault, walkaddress,

s1aarch64, aligned,
descaccess);

if s2fault.statuscode != Fault_None then
return (s2fault, AddressDescriptor UNKNOWN,

TTWState UNKNOWN, bits(N) UNKNOWN);
else

Shared Pseudocode Functions Page 1890

descpaddr = walkaddress;

(fault, descriptor) = AArch64.MemSwapTableDesc(fault, descriptor, new_descriptor,
walkparams.ee, descaccess,
descpaddr);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN,

TTWState UNKNOWN, bits(N) UNKNOWN);
until new_descriptor == descriptor;

until desctype == DescriptorType_Leaf;

FullAddress oa = StageOA(va, walkparams.d128, walkparams.tgx, walkstate);

if (walkstate.contiguous == '1' &&
AArch64.ContiguousBitFaults(walkparams.d128, walkparams.txsz, walkparams.tgx,

walkstate.level)) then
fault.statuscode = Fault_Translation;

elsif (desctype == DescriptorType_Leaf && walkstate.level < FINAL_LEVEL &&
AArch64.BlocknTFaults(walkparams.d128, descriptor)) then

fault.statuscode = Fault_Translation;
elsif AArch64.S1AMECFault(walkparams, walkstate.baseaddress.paspace, regime, descriptor) then

fault.statuscode = Fault_Translation;
// Detect Address Size Fault by final output
elsif AArch64.OAOutOfRange(oa.address, walkparams.d128,

walkparams.ps, walkparams.tgx) then
fault.statuscode = Fault_AddressSize;

// Check descriptor AF bit
elsif (descriptor<10> == '0' && walkparams.ha == '0' &&

!(accdesc.acctype IN {AccessType_DC, AccessType_IC} &&
!boolean IMPLEMENTATION_DEFINED "Generate access flag fault on IC/DC operations")) then

fault.statuscode = Fault_AccessFlag;

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

return (fault, walkaddress, walkstate, descriptor);

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S2InitialTTWState

// AArch64.S2InitialTTWState()
// ===========================
// Set properties of first access to translation tables in stage 2

TTWState AArch64.S2InitialTTWState(SecurityState ss, S2TTWParams walkparams)
TTWState walkstate;
FullAddress tablebase;
bits(128) ttbr;

ttbr = ZeroExtend(VTTBR_EL2, 128);
case ss of

when SS_NonSecure tablebase.paspace = PAS_NonSecure;
when SS_Realm tablebase.paspace = PAS_Realm;

tablebase.address = AArch64.S2TTBaseAddress(walkparams, tablebase.paspace, ttbr);

walkstate.baseaddress = tablebase;
walkstate.level = AArch64.S2StartLevel(walkparams);
walkstate.istable = TRUE;
walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn, walkparams.orgn);

return walkstate;

Shared Pseudocode Functions Page 1891

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateLeaf

// AArch64.S2NextWalkStateLeaf()
// =============================
// Decode stage 2 page or block descriptor as output to this stage of translation

TTWState AArch64.S2NextWalkStateLeaf(TTWState currentstate, SecurityState ss,
S2TTWParams walkparams, AddressDescriptor ipa,
bits(N) descriptor)

TTWState nextstate;
FullAddress baseaddress;

if ss == SS_Secure then
baseaddress.paspace = AArch64.SS2OutputPASpace(walkparams, ipa.paddress.paspace);

elsif ss == SS_Realm then
bit ns;
ns = if walkparams.d128 == '1' then descriptor<127> else descriptor<55>;
baseaddress.paspace = if ns == '1' then PAS_NonSecure else PAS_Realm;

else
baseaddress.paspace = PAS_NonSecure;

baseaddress.address = AArch64.LeafBase(descriptor, walkparams.d128, walkparams.ds,
walkparams.tgx, currentstate.level);

nextstate.istable = FALSE;
nextstate.level = currentstate.level;
nextstate.baseaddress = baseaddress;
nextstate.permissions = AArch64.S2ApplyOutputPerms(descriptor, walkparams);

s2_attr = descriptor<5:2>;
s2_sh = if walkparams.ds == '1' then walkparams.sh else descriptor<9:8>;
s2_fnxs = descriptor<11>;
if walkparams.fwb == '1' then

nextstate.memattrs = AArch64.S2ApplyFWBMemAttrs(ipa.memattrs, walkparams, descriptor);
if s2_attr<3:1> == '111' then

nextstate.permissions.s2tag_na = '1';
else

nextstate.permissions.s2tag_na = '0';
else

s2aarch64 = TRUE;
nextstate.memattrs = S2DecodeMemAttrs(s2_attr, s2_sh, s2aarch64);
// FnXS is used later to mask the XS value from stage 1
nextstate.memattrs.xs = NOT s2_fnxs;
if s2_attr == '0100' then

nextstate.permissions.s2tag_na = '1';
else

nextstate.permissions.s2tag_na = '0';
nextstate.contiguous = AArch64.ContiguousBit(walkparams.tgx, walkparams.d128,

currentstate.level, descriptor);
if walkparams.d128 == '1' then

nextstate.s2assuredonly = descriptor<114>;
else

nextstate.s2assuredonly = if walkparams.assuredonly == '1' then descriptor<58> else '0';

return nextstate;

Shared Pseudocode Functions Page 1892

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S2NextWalkStateTable

// AArch64.S2NextWalkStateTable()
// ==============================
// Decode stage 2 table descriptor to transition to the next level

TTWState AArch64.S2NextWalkStateTable(TTWState currentstate, S2TTWParams walkparams,
bits(N) descriptor)

TTWState nextstate;
FullAddress tablebase;
bits(2) skl = if walkparams.d128 == '1' then descriptor<110:109> else '00';

tablebase.address = AArch64.NextTableBase(descriptor, walkparams.d128,
skl, walkparams.ds,
walkparams.tgx);

tablebase.paspace = currentstate.baseaddress.paspace;

nextstate.istable = TRUE;
if walkparams.d128 == '1' then

nextstate.level = currentstate.level + UInt(skl) + 1;
else

nextstate.level = currentstate.level + 1;
nextstate.baseaddress = tablebase;
nextstate.memattrs = currentstate.memattrs;

return nextstate;

Shared Pseudocode Functions Page 1893

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.S2Walk

Shared Pseudocode Functions Page 1894

// AArch64.S2Walk()
// ================
// Traverse stage 2 translation tables obtaining the final descriptor
// as well as the address leading to that descriptor

(FaultRecord, AddressDescriptor, TTWState, bits(N)) AArch64.S2Walk(FaultRecord fault_in,
AddressDescriptor ipa,
S2TTWParams walkparams,
AccessDescriptor accdesc,
integer N)

FaultRecord fault = fault_in;
ipa_64 = ZeroExtend(ipa.paddress.address, 64);

TTWState walkstate;
if accdesc.ss == SS_Secure then

walkstate = AArch64.SS2InitialTTWState(walkparams, ipa.paddress.paspace);
else

walkstate = AArch64.S2InitialTTWState(accdesc.ss, walkparams);

constant integer startlevel = walkstate.level;

bits(N) descriptor;
AccessDescriptor walkaccess = CreateAccDescS2TTW(accdesc);
AddressDescriptor walkaddress;
bits(2) skl = '00';

walkaddress.vaddress = ipa.vaddress;
walkaddress.mecid = AArch64.TTWalkMECID(walkparams.emec, Regime_EL10, accdesc.ss);

if !S2DCacheEnabled() then
walkaddress.memattrs = NormalNCMemAttr();
walkaddress.memattrs.xs = walkstate.memattrs.xs;

else
walkaddress.memattrs = walkstate.memattrs;

walkaddress.memattrs.shareability = EffectiveShareability(walkaddress.memattrs);

DescriptorType desctype;

// Initial lookup might index into concatenated tables
FullAddress descaddress = AArch64.S2SLTTEntryAddress(walkparams, ipa.paddress.address,

walkstate.baseaddress);

// Detect Address Size Fault by Descriptor Address
if AArch64.OAOutOfRange(descaddress.address, walkparams.d128, walkparams.ps,

walkparams.tgx) then
fault.statuscode = Fault_AddressSize;
fault.level = 0;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

repeat
fault.level = walkstate.level;
walkaddress.paddress = descaddress;
(fault, descriptor) = FetchDescriptor(walkparams.ee, walkaddress, walkaccess, fault, N);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

bits(N) new_descriptor;
repeat

new_descriptor = descriptor;
desctype = AArch64.DecodeDescriptorType(descriptor, walkparams.d128, walkparams.ds,

walkparams.tgx, walkstate.level);
case desctype of

when DescriptorType_Table
walkstate = AArch64.S2NextWalkStateTable(walkstate, walkparams, descriptor);
skl = if walkparams.d128 == '1' then descriptor<110:109> else '00';
descaddress = AArch64.TTEntryAddress(walkstate.level, walkparams.d128, skl,

walkparams.tgx, walkparams.txsz, ipa_64,

Shared Pseudocode Functions Page 1895

walkstate.baseaddress);

// Detect Address Size Fault by table descriptor
if AArch64.OAOutOfRange(descaddress.address, walkparams.d128, walkparams.ps,

walkparams.tgx) then
fault.statuscode = Fault_AddressSize;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(N) UNKNOWN);

if walkparams.haft == '1' then
new_descriptor<10> = '1';

if (walkparams.d128 == '1' && skl != '00' &&
AArch64.BlocknTFaults(walkparams.d128, descriptor)) then

fault.statuscode = Fault_Translation;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN,

bits(N) UNKNOWN);

when DescriptorType_Leaf
walkstate = AArch64.S2NextWalkStateLeaf(walkstate, accdesc.ss, walkparams, ipa,

descriptor);
when DescriptorType_Invalid

fault.statuscode = Fault_Translation;
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

otherwise
Unreachable();

if new_descriptor != descriptor then
AccessDescriptor descaccess = CreateAccDescTTEUpdate(accdesc);
(fault, descriptor) = AArch64.MemSwapTableDesc(fault, descriptor, new_descriptor,

walkparams.ee, descaccess,
walkaddress);

if fault.statuscode != Fault_None then
return (fault, AddressDescriptor UNKNOWN, TTWState UNKNOWN, bits(N) UNKNOWN);

until new_descriptor == descriptor;
until desctype == DescriptorType_Leaf;

FullAddress oa = StageOA(ipa_64, walkparams.d128, walkparams.tgx, walkstate);

if (walkstate.contiguous == '1' &&
AArch64.ContiguousBitFaults(walkparams.d128, walkparams.txsz, walkparams.tgx,

walkstate.level)) then
fault.statuscode = Fault_Translation;

elsif (desctype == DescriptorType_Leaf && walkstate.level < FINAL_LEVEL &&
AArch64.BlocknTFaults(walkparams.d128, descriptor)) then

fault.statuscode = Fault_Translation;
// Detect Address Size Fault by final output
elsif AArch64.OAOutOfRange(oa.address, walkparams.d128, walkparams.ps, walkparams.tgx) then

fault.statuscode = Fault_AddressSize;
// Check descriptor AF bit
elsif (descriptor<10> == '0' && walkparams.ha == '0' &&

!(accdesc.acctype IN {AccessType_DC, AccessType_IC} &&
!boolean IMPLEMENTATION_DEFINED "Generate access flag fault on IC/DC operations")) then

fault.statuscode = Fault_AccessFlag;

return (fault, walkaddress, walkstate, descriptor);

Shared Pseudocode Functions Page 1896

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.SS2InitialTTWState

// AArch64.SS2InitialTTWState()
// ============================
// Set properties of first access to translation tables in Secure stage 2

TTWState AArch64.SS2InitialTTWState(S2TTWParams walkparams, PASpace ipaspace)
TTWState walkstate;
FullAddress tablebase;
bits(128) ttbr;

if ipaspace == PAS_Secure then
ttbr = ZeroExtend(VSTTBR_EL2, 128);

else
ttbr = ZeroExtend(VTTBR_EL2, 128);

if ipaspace == PAS_Secure then
if walkparams.sw == '0' then

tablebase.paspace = PAS_Secure;
else

tablebase.paspace = PAS_NonSecure;
else

if walkparams.nsw == '0' then
tablebase.paspace = PAS_Secure;

else
tablebase.paspace = PAS_NonSecure;

tablebase.address = AArch64.S2TTBaseAddress(walkparams, tablebase.paspace, ttbr);

walkstate.baseaddress = tablebase;
walkstate.level = AArch64.S2StartLevel(walkparams);
walkstate.istable = TRUE;
walkstate.memattrs = WalkMemAttrs(walkparams.sh, walkparams.irgn, walkparams.orgn);

return walkstate;

Library pseudocode for aarch64/translation/vmsa_walk/AArch64.SS2OutputPASpace

// AArch64.SS2OutputPASpace()
// ==========================
// Assign PA Space to output of Secure stage 2 translation

PASpace AArch64.SS2OutputPASpace(S2TTWParams walkparams, PASpace ipaspace)
if ipaspace == PAS_Secure then

if walkparams.<sw,sa> == '00' then
return PAS_Secure;

else
return PAS_NonSecure;

else
if walkparams.<sw,sa,nsw,nsa> == '0000' then

return PAS_Secure;
else

return PAS_NonSecure;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.BBMSupportLevel

// AArch64.BBMSupportLevel()
// =========================
// Returns the level of FEAT_BBM supported

integer AArch64.BlockBBMSupportLevel()
if !HaveBlockBBM() then

return integer UNKNOWN;
else

return integer IMPLEMENTATION_DEFINED "Block BBM support level";

Shared Pseudocode Functions Page 1897

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.GetS1TTWParams

// AArch64.GetS1TTWParams()
// ========================
// Returns stage 1 translation table walk parameters from respective controlling
// System registers.

S1TTWParams AArch64.GetS1TTWParams(Regime regime, SecurityState ss, bits(64) va)
S1TTWParams walkparams;

varange = AArch64.GetVARange(va);

case regime of
when Regime_EL3 walkparams = AArch64.S1TTWParamsEL3();
when Regime_EL2 walkparams = AArch64.S1TTWParamsEL2(ss);
when Regime_EL20 walkparams = AArch64.S1TTWParamsEL20(ss, varange);
when Regime_EL10 walkparams = AArch64.S1TTWParamsEL10(varange);

return walkparams;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.GetS2TTWParams

// AArch64.GetS2TTWParams()
// ========================
// Gather walk parameters for stage 2 translation

S2TTWParams AArch64.GetS2TTWParams(SecurityState ss, PASpace ipaspace, boolean s1aarch64)
S2TTWParams walkparams;

if ss == SS_NonSecure then
walkparams = AArch64.NSS2TTWParams(s1aarch64);

elsif HaveSecureEL2Ext() && ss == SS_Secure then
walkparams = AArch64.SS2TTWParams(ipaspace, s1aarch64);

elsif ss == SS_Realm then
walkparams = AArch64.RLS2TTWParams(s1aarch64);

else
Unreachable();

return walkparams;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.GetVARange

// AArch64.GetVARange()
// ====================
// Determines if the VA that is to be translated lies in LOWER or UPPER address range.

VARange AArch64.GetVARange(bits(64) va)
if va<55> == '0' then

return VARange_LOWER;
else

return VARange_UPPER;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.HaveS1TG

// AArch64.HaveS1TG()
// ==================
// Determine whether the given translation granule is supported for stage 1

boolean AArch64.HaveS1TG(TGx tgx)
case tgx of

when TGx_4KB return boolean IMPLEMENTATION_DEFINED "Has 4K Translation Granule";
when TGx_16KB return boolean IMPLEMENTATION_DEFINED "Has 16K Translation Granule";
when TGx_64KB return boolean IMPLEMENTATION_DEFINED "Has 64K Translation Granule";

Shared Pseudocode Functions Page 1898

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.HaveS2TG

// AArch64.HaveS2TG()
// ==================
// Determine whether the given translation granule is supported for stage 2

boolean AArch64.HaveS2TG(TGx tgx)
assert HaveEL(EL2);

if HaveGTGExt() then
case tgx of

when TGx_4KB
return boolean IMPLEMENTATION_DEFINED "Has Stage 2 4K Translation Granule";

when TGx_16KB
return boolean IMPLEMENTATION_DEFINED "Has Stage 2 16K Translation Granule";

when TGx_64KB
return boolean IMPLEMENTATION_DEFINED "Has Stage 2 64K Translation Granule";

else
return AArch64.HaveS1TG(tgx);

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.MaxTxSZ

// AArch64.MaxTxSZ()
// =================
// Retrieve the maximum value of TxSZ indicating minimum input address size for both
// stages of translation

integer AArch64.MaxTxSZ(TGx tgx)
if HaveSmallTranslationTableExt() then

case tgx of
when TGx_4KB return 48;
when TGx_16KB return 48;
when TGx_64KB return 47;

return 39;

Shared Pseudocode Functions Page 1899

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.NSS2TTWParams

// AArch64.NSS2TTWParams()
// =======================
// Gather walk parameters specific for Non-secure stage 2 translation

S2TTWParams AArch64.NSS2TTWParams(boolean s1aarch64)
S2TTWParams walkparams;

walkparams.vm = HCR_EL2.VM OR HCR_EL2.DC;
walkparams.tgx = AArch64.S2DecodeTG0(VTCR_EL2.TG0);
walkparams.txsz = VTCR_EL2.T0SZ;
walkparams.ps = VTCR_EL2.PS;
walkparams.irgn = VTCR_EL2.IRGN0;
walkparams.orgn = VTCR_EL2.ORGN0;
walkparams.sh = VTCR_EL2.SH0;
walkparams.ee = SCTLR_EL2.EE;
walkparams.d128 = if Have128BitDescriptorExt() then VTCR_EL2.D128 else '0';
if walkparams.d128 == '1' then

walkparams.skl = VTTBR_EL2.SKL;
else

walkparams.sl0 = VTCR_EL2.SL0;

walkparams.ptw = if HCR_EL2.TGE == '0' then HCR_EL2.PTW else '0';
walkparams.fwb = if HaveStage2MemAttrControl() then HCR_EL2.FWB else '0';
walkparams.ha = if HaveAccessFlagUpdateExt() then VTCR_EL2.HA else '0';
walkparams.hd = if HaveDirtyBitModifierExt() then VTCR_EL2.HD else '0';
if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then

walkparams.ds = VTCR_EL2.DS;
else

walkparams.ds = '0';
if walkparams.tgx == TGx_4KB && Have52BitIPAAndPASpaceExt() then

walkparams.sl2 = VTCR_EL2.SL2 AND VTCR_EL2.DS;
else

walkparams.sl2 = '0';
walkparams.cmow = if HaveFeatCMOW() && IsHCRXEL2Enabled() then HCRX_EL2.CMOW else '0';
if walkparams.d128 == '1' then

walkparams.s2pie = '1';
else

walkparams.s2pie = if HaveS2PIExt() then VTCR_EL2.S2PIE else '0';
walkparams.s2pir = if HaveS2PIExt() then S2PIR_EL2 else Zeros(64);
if HaveTHExt() && walkparams.d128 != '1' then

walkparams.assuredonly = VTCR_EL2.AssuredOnly;
else

walkparams.assuredonly = '0';
walkparams.tl0 = if HaveTHExt() then VTCR_EL2.TL0 else '0';
walkparams.tl1 = if HaveTHExt() then VTCR_EL2.TL1 else '0';
if HaveAccessFlagUpdateForTableExt() && walkparams.ha == '1' then

walkparams.haft = VTCR_EL2.HAFT;
else

walkparams.haft = '0';

return walkparams;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.PAMax

// AArch64.PAMax()
// ===============
// Returns the IMPLEMENTATION DEFINED maximum number of bits capable of representing
// physical address for this processor

integer AArch64.PAMax()
return integer IMPLEMENTATION_DEFINED "Maximum Physical Address Size";

Shared Pseudocode Functions Page 1900

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.RLS2TTWParams

// AArch64.RLS2TTWParams()
// =======================
// Gather walk parameters specific for Realm stage 2 translation

S2TTWParams AArch64.RLS2TTWParams(boolean s1aarch64)
// Realm stage 2 walk parameters are similar to Non-secure
S2TTWParams walkparams = AArch64.NSS2TTWParams(s1aarch64);
walkparams.emec = if HaveFeatMEC() && IsSCTLR2EL2Enabled() then SCTLR2_EL2.EMEC else '0';
return walkparams;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1DCacheEnabled

// AArch64.S1DCacheEnabled()
// =========================
// Determine cacheability of stage 1 data accesses

boolean AArch64.S1DCacheEnabled(Regime regime)
case regime of

when Regime_EL3 return SCTLR_EL3.C == '1';
when Regime_EL2 return SCTLR_EL2.C == '1';
when Regime_EL20 return SCTLR_EL2.C == '1';
when Regime_EL10 return SCTLR_EL1.C == '1';

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1DecodeTG0

// AArch64.S1DecodeTG0()
// =====================
// Decode stage 1 granule size configuration bits TG0

TGx AArch64.S1DecodeTG0(bits(2) tg0_in)
bits(2) tg0 = tg0_in;
TGx tgx;

if tg0 == '11' then
tg0 = bits(2) IMPLEMENTATION_DEFINED "TG0 encoded granule size";

case tg0 of
when '00' tgx = TGx_4KB;
when '01' tgx = TGx_64KB;
when '10' tgx = TGx_16KB;

if !AArch64.HaveS1TG(tgx) then
case bits(2) IMPLEMENTATION_DEFINED "TG0 encoded granule size" of

when '00' tgx = TGx_4KB;
when '01' tgx = TGx_64KB;
when '10' tgx = TGx_16KB;

return tgx;

Shared Pseudocode Functions Page 1901

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1DecodeTG1

// AArch64.S1DecodeTG1()
// =====================
// Decode stage 1 granule size configuration bits TG1

TGx AArch64.S1DecodeTG1(bits(2) tg1_in)
bits(2) tg1 = tg1_in;
TGx tgx;

if tg1 == '00' then
tg1 = bits(2) IMPLEMENTATION_DEFINED "TG1 encoded granule size";

case tg1 of
when '10' tgx = TGx_4KB;
when '11' tgx = TGx_64KB;
when '01' tgx = TGx_16KB;

if !AArch64.HaveS1TG(tgx) then
case bits(2) IMPLEMENTATION_DEFINED "TG1 encoded granule size" of

when '10' tgx = TGx_4KB;
when '11' tgx = TGx_64KB;
when '01' tgx = TGx_16KB;

return tgx;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1E0POEnabled

// AArch64.S1E0POEnabled()
// =======================
// Determine whether stage 1 unprivileged permission overlay is enabled

boolean AArch64.S1E0POEnabled(Regime regime, bit nv1)
assert HasUnprivileged(regime);

if !HaveS1POExt() then
return FALSE;

case regime of
when Regime_EL20 return IsTCR2EL2Enabled() && TCR2_EL2.E0POE == '1';
when Regime_EL10 return IsTCR2EL1Enabled() && nv1 == '0' && TCR2_EL1.E0POE == '1';

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1EPD

// AArch64.S1EPD()
// ===============
// Determine whether stage 1 translation table walk is allowed for the VA range

bit AArch64.S1EPD(Regime regime, bits(64) va)
assert HasUnprivileged(regime);
varange = AArch64.GetVARange(va);

case regime of
when Regime_EL20 return if varange == VARange_LOWER then TCR_EL2.EPD0 else TCR_EL2.EPD1;
when Regime_EL10 return if varange == VARange_LOWER then TCR_EL1.EPD0 else TCR_EL1.EPD1;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1Enabled

// AArch64.S1Enabled()
// ===================
// Determine if stage 1 is enabled for the access type for this translation regime

boolean AArch64.S1Enabled(Regime regime, AccessType acctype)
case regime of

when Regime_EL3 return SCTLR_EL3.M == '1';
when Regime_EL2 return SCTLR_EL2.M == '1';
when Regime_EL20 return SCTLR_EL2.M == '1';
when Regime_EL10 return (!EL2Enabled() || HCR_EL2.<DC,TGE> == '00') && SCTLR_EL1.M == '1';

Shared Pseudocode Functions Page 1902

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1ICacheEnabled

// AArch64.S1ICacheEnabled()
// =========================
// Determine cacheability of stage 1 instruction fetches

boolean AArch64.S1ICacheEnabled(Regime regime)
case regime of

when Regime_EL3 return SCTLR_EL3.I == '1';
when Regime_EL2 return SCTLR_EL2.I == '1';
when Regime_EL20 return SCTLR_EL2.I == '1';
when Regime_EL10 return SCTLR_EL1.I == '1';

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1MinTxSZ

// AArch64.S1MinTxSZ()
// ===================
// Retrieve the minimum value of TxSZ indicating maximum input address size for stage 1

integer AArch64.S1MinTxSZ(Regime regime, bit d128, bit ds, TGx tgx)
if Have56BitVAExt() && d128 == '1' then

if HasUnprivileged(regime) then
return 9;

else
return 8;

if (Have52BitVAExt() && tgx == TGx_64KB) || ds == '1' then
return 12;

return 16;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1POEnabled

// AArch64.S1POEnabled()
// =====================
// Determine whether stage 1 privileged permission overlay is enabled

boolean AArch64.S1POEnabled(Regime regime)
if !HaveS1POExt() then

return FALSE;

case regime of
when Regime_EL3 return TCR_EL3.POE == '1';
when Regime_EL2 return IsTCR2EL2Enabled() && TCR2_EL2.POE == '1';
when Regime_EL20 return IsTCR2EL2Enabled() && TCR2_EL2.POE == '1';
when Regime_EL10 return IsTCR2EL1Enabled() && TCR2_EL1.POE == '1';

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1POR

// AArch64.S1POR()
// ===============
// Identify stage 1 permissions overlay register for the acting translation regime

S1PORType AArch64.S1POR(Regime regime)
case regime of

when Regime_EL3 return POR_EL3;
when Regime_EL2 return POR_EL2;
when Regime_EL20 return POR_EL2;
when Regime_EL10 return POR_EL1;

Shared Pseudocode Functions Page 1903

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1TTBR

// AArch64.S1TTBR()
// ================
// Identify stage 1 table base register for the acting translation regime

bits(128) AArch64.S1TTBR(Regime regime, bits(64) va)
varange = AArch64.GetVARange(va);

case regime of
when Regime_EL3 return ZeroExtend(TTBR0_EL3, 128);
when Regime_EL2 return ZeroExtend(TTBR0_EL2, 128);
when Regime_EL20

if varange == VARange_LOWER then
return ZeroExtend(TTBR0_EL2, 128);

else
return ZeroExtend(TTBR1_EL2, 128);

when Regime_EL10
if varange == VARange_LOWER then

return ZeroExtend(TTBR0_EL1, 128);
else

return ZeroExtend(TTBR1_EL1, 128);

Shared Pseudocode Functions Page 1904

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL10

Shared Pseudocode Functions Page 1905

// AArch64.S1TTWParamsEL10()
// =========================
// Gather stage 1 translation table walk parameters for EL1&0 regime
// (with EL2 enabled or disabled)

S1TTWParams AArch64.S1TTWParamsEL10(VARange varange)
S1TTWParams walkparams;

if Have128BitDescriptorExt() && IsTCR2EL1Enabled() then
walkparams.d128 = TCR2_EL1.D128;

else
walkparams.d128 = '0';

if varange == VARange_LOWER then
walkparams.tgx = AArch64.S1DecodeTG0(TCR_EL1.TG0);
walkparams.txsz = TCR_EL1.T0SZ;
walkparams.irgn = TCR_EL1.IRGN0;
walkparams.orgn = TCR_EL1.ORGN0;
walkparams.sh = TCR_EL1.SH0;
walkparams.tbi = TCR_EL1.TBI0;

walkparams.nfd = if HaveSVE() || HaveTME() then TCR_EL1.NFD0 else '0';
walkparams.tbid = if HavePACExt() then TCR_EL1.TBID0 else '0';
walkparams.e0pd = if HaveE0PDExt() then TCR_EL1.E0PD0 else '0';
walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL1.HPD0 else '0';
walkparams.mtx = if HaveMTE4Ext() then TCR_EL1.MTX0 else '0';
walkparams.skl = if walkparams.d128 == '1' then TTBR0_EL1.SKL else '00';
walkparams.disch = if walkparams.d128 == '1' then TCR2_EL1.DisCH0 else '0';

else
walkparams.tgx = AArch64.S1DecodeTG1(TCR_EL1.TG1);
walkparams.txsz = TCR_EL1.T1SZ;
walkparams.irgn = TCR_EL1.IRGN1;
walkparams.orgn = TCR_EL1.ORGN1;
walkparams.sh = TCR_EL1.SH1;
walkparams.tbi = TCR_EL1.TBI1;

walkparams.nfd = if HaveSVE() || HaveTME() then TCR_EL1.NFD1 else '0';
walkparams.tbid = if HavePACExt() then TCR_EL1.TBID1 else '0';
walkparams.e0pd = if HaveE0PDExt() then TCR_EL1.E0PD1 else '0';
walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL1.HPD1 else '0';
walkparams.mtx = if HaveMTE4Ext() then TCR_EL1.MTX1 else '0';
walkparams.skl = if walkparams.d128 == '1' then TTBR1_EL1.SKL else '00';
walkparams.disch = if walkparams.d128 == '1' then TCR2_EL1.DisCH1 else '0';

walkparams.mair = MAIR_EL1;
if HaveAIEExt() then

walkparams.mair2 = MAIR2_EL1;
walkparams.aie = if HaveAIEExt() && IsTCR2EL1Enabled() then TCR2_EL1.AIE else '0';
walkparams.wxn = SCTLR_EL1.WXN;
walkparams.ps = TCR_EL1.IPS;
walkparams.ee = SCTLR_EL1.EE;
if (HaveEL(EL3) && (!HaveRME() || HaveSecureEL2Ext())) then

walkparams.sif = SCR_EL3.SIF;
else

walkparams.sif = '0';

if EL2Enabled() then
walkparams.dc = HCR_EL2.DC;
walkparams.dct = if HaveMTE2Ext() then HCR_EL2.DCT else '0';

if HaveTrapLoadStoreMultipleDeviceExt() then
walkparams.ntlsmd = SCTLR_EL1.nTLSMD;

else
walkparams.ntlsmd = '1';

if EL2Enabled() then
if HCR_EL2.<NV,NV1> == '01' then

case ConstrainUnpredictable(Unpredictable_NVNV1) of
when Constraint_NVNV1_00 walkparams.nv1 = '0';
when Constraint_NVNV1_01 walkparams.nv1 = '1';
when Constraint_NVNV1_11 walkparams.nv1 = '1';

Shared Pseudocode Functions Page 1906

else
walkparams.nv1 = HCR_EL2.NV1;

else
walkparams.nv1 = '0';

walkparams.cmow = if HaveFeatCMOW() then SCTLR_EL1.CMOW else '0';
walkparams.ha = if HaveAccessFlagUpdateExt() then TCR_EL1.HA else '0';
walkparams.hd = if HaveDirtyBitModifierExt() then TCR_EL1.HD else '0';
if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then

walkparams.ds = TCR_EL1.DS;
else

walkparams.ds = '0';
if walkparams.d128 == '1' then

walkparams.pie = '1';
else

walkparams.pie = if HaveS1PIExt() && IsTCR2EL1Enabled() then TCR2_EL1.PIE else '0';
if HaveS1PIExt() then

walkparams.pir = PIR_EL1;
if walkparams.nv1 != '1'then

walkparams.pire0 = PIRE0_EL1;
if HavePAN3Ext() then

walkparams.epan = if walkparams.pie == '0' then SCTLR_EL1.EPAN else '1';
else

walkparams.epan = '0';
if HaveTHExt() && walkparams.d128 == '0' && IsTCR2EL1Enabled() then

walkparams.pnch = TCR2_EL1.PnCH;
else

walkparams.pnch = '0';
if HaveAccessFlagUpdateForTableExt() && walkparams.ha == '1' && IsTCR2EL1Enabled() then

walkparams.haft = TCR2_EL1.HAFT;
else

walkparams.haft = '0';
walkparams.emec = if HaveFeatMEC() && IsSCTLR2EL2Enabled() then SCTLR2_EL2.EMEC else '0';

return walkparams;

Shared Pseudocode Functions Page 1907

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL2

// AArch64.S1TTWParamsEL2()
// ========================
// Gather stage 1 translation table walk parameters for EL2 regime

S1TTWParams AArch64.S1TTWParamsEL2(SecurityState ss)
S1TTWParams walkparams;

walkparams.tgx = AArch64.S1DecodeTG0(TCR_EL2.TG0);
walkparams.txsz = TCR_EL2.T0SZ;
walkparams.ps = TCR_EL2.PS;
walkparams.irgn = TCR_EL2.IRGN0;
walkparams.orgn = TCR_EL2.ORGN0;
walkparams.sh = TCR_EL2.SH0;
walkparams.tbi = TCR_EL2.TBI;
walkparams.mair = MAIR_EL2;
if HaveAIEExt() then

walkparams.mair2 = MAIR2_EL2;
walkparams.aie = if HaveAIEExt() && IsTCR2EL2Enabled() then TCR2_EL2.AIE else '0';
walkparams.wxn = SCTLR_EL2.WXN;
walkparams.ee = SCTLR_EL2.EE;
if (HaveEL(EL3) && (!HaveRME() || HaveSecureEL2Ext())) then

walkparams.sif = SCR_EL3.SIF;
else

walkparams.sif = '0';

walkparams.tbid = if HavePACExt() then TCR_EL2.TBID else '0';
walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL2.HPD else '0';
walkparams.ha = if HaveAccessFlagUpdateExt() then TCR_EL2.HA else '0';
walkparams.hd = if HaveDirtyBitModifierExt() then TCR_EL2.HD else '0';
if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then

walkparams.ds = TCR_EL2.DS;
else

walkparams.ds = '0';
walkparams.pie = if HaveS1PIExt() && IsTCR2EL2Enabled() then TCR2_EL2.PIE else '0';
if HaveS1PIExt() then

walkparams.pir = PIR_EL2;
walkparams.mtx = if HaveMTE4Ext() then TCR_EL2.MTX else '0';
walkparams.pnch = if HaveTHExt() && IsTCR2EL2Enabled() then TCR2_EL2.PnCH else '0';
if HaveAccessFlagUpdateForTableExt() && walkparams.ha == '1' && IsTCR2EL2Enabled() then

walkparams.haft = TCR2_EL2.HAFT;
else

walkparams.haft = '0';
walkparams.emec = if HaveFeatMEC() && IsSCTLR2EL2Enabled() then SCTLR2_EL2.EMEC else '0';
if HaveFeatMEC() && ss == SS_Realm && IsTCR2EL2Enabled() then

walkparams.amec = TCR2_EL2.AMEC0;
else

walkparams.amec = '0';

return walkparams;

Shared Pseudocode Functions Page 1908

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL20

Shared Pseudocode Functions Page 1909

// AArch64.S1TTWParamsEL20()
// =========================
// Gather stage 1 translation table walk parameters for EL2&0 regime

S1TTWParams AArch64.S1TTWParamsEL20(SecurityState ss, VARange varange)
S1TTWParams walkparams;

if Have128BitDescriptorExt() && IsTCR2EL2Enabled() then
walkparams.d128 = TCR2_EL2.D128;

else
walkparams.d128 = '0';

if varange == VARange_LOWER then
walkparams.tgx = AArch64.S1DecodeTG0(TCR_EL2.TG0);
walkparams.txsz = TCR_EL2.T0SZ;
walkparams.irgn = TCR_EL2.IRGN0;
walkparams.orgn = TCR_EL2.ORGN0;
walkparams.sh = TCR_EL2.SH0;
walkparams.tbi = TCR_EL2.TBI0;

walkparams.nfd = if HaveSVE() || HaveTME() then TCR_EL2.NFD0 else '0';
walkparams.tbid = if HavePACExt() then TCR_EL2.TBID0 else '0';
walkparams.e0pd = if HaveE0PDExt() then TCR_EL2.E0PD0 else '0';
walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL2.HPD0 else '0';
walkparams.mtx = if HaveMTE4Ext() then TCR_EL2.MTX0 else '0';
walkparams.skl = if walkparams.d128 == '1' then TTBR0_EL2.SKL else '00';
walkparams.disch = if walkparams.d128 == '1' then TCR2_EL2.DisCH0 else '0';

else
walkparams.tgx = AArch64.S1DecodeTG1(TCR_EL2.TG1);
walkparams.txsz = TCR_EL2.T1SZ;
walkparams.irgn = TCR_EL2.IRGN1;
walkparams.orgn = TCR_EL2.ORGN1;
walkparams.sh = TCR_EL2.SH1;
walkparams.tbi = TCR_EL2.TBI1;

walkparams.nfd = if HaveSVE() || HaveTME() then TCR_EL2.NFD1 else '0';
walkparams.tbid = if HavePACExt() then TCR_EL2.TBID1 else '0';
walkparams.e0pd = if HaveE0PDExt() then TCR_EL2.E0PD1 else '0';
walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL2.HPD1 else '0';
walkparams.mtx = if HaveMTE4Ext() then TCR_EL2.MTX1 else '0';
walkparams.skl = if walkparams.d128 == '1' then TTBR1_EL2.SKL else '00';
walkparams.disch = if walkparams.d128 == '1' then TCR2_EL2.DisCH1 else '0';

walkparams.mair = MAIR_EL2;
if HaveAIEExt() then

walkparams.mair2 = MAIR2_EL2;
walkparams.aie = if HaveAIEExt() && IsTCR2EL2Enabled() then TCR2_EL2.AIE else '0';
walkparams.wxn = SCTLR_EL2.WXN;
walkparams.ps = TCR_EL2.IPS;
walkparams.ee = SCTLR_EL2.EE;
if (HaveEL(EL3) && (!HaveRME() || HaveSecureEL2Ext())) then

walkparams.sif = SCR_EL3.SIF;
else

walkparams.sif = '0';

if HaveTrapLoadStoreMultipleDeviceExt() then
walkparams.ntlsmd = SCTLR_EL2.nTLSMD;

else
walkparams.ntlsmd = '1';

walkparams.cmow = if HaveFeatCMOW() then SCTLR_EL2.CMOW else '0';
walkparams.ha = if HaveAccessFlagUpdateExt() then TCR_EL2.HA else '0';
walkparams.hd = if HaveDirtyBitModifierExt() then TCR_EL2.HD else '0';
if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then

walkparams.ds = TCR_EL2.DS;
else

walkparams.ds = '0';
if walkparams.d128 == '1' then

walkparams.pie = '1';
else

walkparams.pie = if HaveS1PIExt() && IsTCR2EL2Enabled() then TCR2_EL2.PIE else '0';
if HaveS1PIExt() then

Shared Pseudocode Functions Page 1910

walkparams.pir = PIR_EL2;
walkparams.pire0 = PIRE0_EL2;

if HavePAN3Ext() then
walkparams.epan = if walkparams.pie == '0' then SCTLR_EL2.EPAN else '1';

else
walkparams.epan = '0';

if HaveTHExt() && walkparams.d128 == '0' && IsTCR2EL2Enabled() then
walkparams.pnch = TCR2_EL2.PnCH;

else
walkparams.pnch = '0';

if HaveAccessFlagUpdateForTableExt() && walkparams.ha == '1' && IsTCR2EL2Enabled() then
walkparams.haft = TCR2_EL2.HAFT;

else
walkparams.haft = '0';

walkparams.emec = if HaveFeatMEC() && IsSCTLR2EL2Enabled() then SCTLR2_EL2.EMEC else '0';
if HaveFeatMEC() && ss == SS_Realm && IsTCR2EL2Enabled() then

walkparams.amec = if varange == VARange_LOWER then TCR2_EL2.AMEC0 else TCR2_EL2.AMEC1;
else

walkparams.amec = '0';

return walkparams;

Shared Pseudocode Functions Page 1911

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S1TTWParamsEL3

// AArch64.S1TTWParamsEL3()
// ========================
// Gather stage 1 translation table walk parameters for EL3 regime

S1TTWParams AArch64.S1TTWParamsEL3()
S1TTWParams walkparams;

walkparams.tgx = AArch64.S1DecodeTG0(TCR_EL3.TG0);
walkparams.txsz = TCR_EL3.T0SZ;
walkparams.ps = TCR_EL3.PS;
walkparams.irgn = TCR_EL3.IRGN0;
walkparams.orgn = TCR_EL3.ORGN0;
walkparams.sh = TCR_EL3.SH0;
walkparams.tbi = TCR_EL3.TBI;
walkparams.mair = MAIR_EL3;
if HaveAIEExt() then

walkparams.mair2 = MAIR2_EL3;
walkparams.aie = if HaveAIEExt() then TCR_EL3.AIE else '0';
walkparams.wxn = SCTLR_EL3.WXN;
walkparams.ee = SCTLR_EL3.EE;
walkparams.sif = if !HaveRME() || HaveSecureEL2Ext() then SCR_EL3.SIF else '0';

walkparams.tbid = if HavePACExt() then TCR_EL3.TBID else '0';
walkparams.hpd = if AArch64.HaveHPDExt() then TCR_EL3.HPD else '0';
walkparams.ha = if HaveAccessFlagUpdateExt() then TCR_EL3.HA else '0';
walkparams.hd = if HaveDirtyBitModifierExt() then TCR_EL3.HD else '0';
if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then

walkparams.ds = TCR_EL3.DS;
else

walkparams.ds = '0';
walkparams.d128 = if Have128BitDescriptorExt() then TCR_EL3.D128 else '0';
walkparams.skl = if walkparams.d128 == '1' then TTBR0_EL3.SKL else '00';
walkparams.disch = if walkparams.d128 == '1' then TCR_EL3.DisCH0 else '0';
if walkparams.d128 == '1' then

walkparams.pie = '1';
else

walkparams.pie = if HaveS1PIExt() then TCR_EL3.PIE else '0';
if HaveS1PIExt() then

walkparams.pir = PIR_EL3;
walkparams.mtx = if HaveMTE4Ext() then TCR_EL3.MTX else '0';
if HaveTHExt() && walkparams.d128 == '0' then

walkparams.pnch = TCR_EL3.PnCH;
else

walkparams.pnch = '0';
if HaveAccessFlagUpdateForTableExt() && walkparams.ha == '1' then

walkparams.haft = TCR_EL3.HAFT;
else

walkparams.haft = '0';
walkparams.emec = if HaveFeatMEC() then SCTLR2_EL3.EMEC else '0';

return walkparams;

Shared Pseudocode Functions Page 1912

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S2DecodeTG0

// AArch64.S2DecodeTG0()
// =====================
// Decode stage 2 granule size configuration bits TG0

TGx AArch64.S2DecodeTG0(bits(2) tg0_in)
bits(2) tg0 = tg0_in;
TGx tgx;

if tg0 == '11' then
tg0 = bits(2) IMPLEMENTATION_DEFINED "TG0 encoded granule size";

case tg0 of
when '00' tgx = TGx_4KB;
when '01' tgx = TGx_64KB;
when '10' tgx = TGx_16KB;

if !AArch64.HaveS2TG(tgx) then
case bits(2) IMPLEMENTATION_DEFINED "TG0 encoded granule size" of

when '00' tgx = TGx_4KB;
when '01' tgx = TGx_64KB;
when '10' tgx = TGx_16KB;

return tgx;

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.S2MinTxSZ

// AArch64.S2MinTxSZ()
// ===================
// Retrieve the minimum value of TxSZ indicating maximum input address size for stage 2

integer AArch64.S2MinTxSZ(bit d128, bit ds, TGx tgx, boolean s1aarch64)
ips = AArch64.PAMax();

if d128 == '0' then
if Have52BitPAExt() && tgx != TGx_64KB && ds == '0' then

ips = Min(48, AArch64.PAMax());
else

ips = Min(52, AArch64.PAMax());
min_txsz = 64 - ips;
if !s1aarch64 then

// EL1 is AArch32
min_txsz = Min(min_txsz, 24);

return min_txsz;

Shared Pseudocode Functions Page 1913

Library pseudocode for aarch64/translation/vmsa_walkparams/AArch64.SS2TTWParams

Shared Pseudocode Functions Page 1914

// AArch64.SS2TTWParams()
// ======================
// Gather walk parameters specific for secure stage 2 translation

S2TTWParams AArch64.SS2TTWParams(PASpace ipaspace, boolean s1aarch64)
S2TTWParams walkparams;

walkparams.d128 = if Have128BitDescriptorExt() then VTCR_EL2.D128 else '0';
if ipaspace == PAS_Secure then

walkparams.tgx = AArch64.S2DecodeTG0(VSTCR_EL2.TG0);
walkparams.txsz = VSTCR_EL2.T0SZ;
if walkparams.d128 == '1' then

walkparams.skl = VSTTBR_EL2.SKL;
else

walkparams.sl0 = VSTCR_EL2.SL0;
if walkparams.tgx == TGx_4KB && Have52BitIPAAndPASpaceExt() then

walkparams.sl2 = VSTCR_EL2.SL2 AND VTCR_EL2.DS;
else

walkparams.sl2 = '0';
elsif ipaspace == PAS_NonSecure then

walkparams.tgx = AArch64.S2DecodeTG0(VTCR_EL2.TG0);
walkparams.txsz = VTCR_EL2.T0SZ;
if walkparams.d128 == '1' then

walkparams.skl = VTTBR_EL2.SKL;
else

walkparams.sl0 = VTCR_EL2.SL0;
if walkparams.tgx == TGx_4KB && Have52BitIPAAndPASpaceExt() then

walkparams.sl2 = VTCR_EL2.SL2 AND VTCR_EL2.DS;
else

walkparams.sl2 = '0';
else

Unreachable();

walkparams.sw = VSTCR_EL2.SW;
walkparams.nsw = VTCR_EL2.NSW;
walkparams.sa = VSTCR_EL2.SA;
walkparams.nsa = VTCR_EL2.NSA;
walkparams.vm = HCR_EL2.VM OR HCR_EL2.DC;
walkparams.ps = VTCR_EL2.PS;
walkparams.irgn = VTCR_EL2.IRGN0;
walkparams.orgn = VTCR_EL2.ORGN0;
walkparams.sh = VTCR_EL2.SH0;
walkparams.ee = SCTLR_EL2.EE;

walkparams.ptw = if HCR_EL2.TGE == '0' then HCR_EL2.PTW else '0';
walkparams.fwb = if HaveStage2MemAttrControl() then HCR_EL2.FWB else '0';
walkparams.ha = if HaveAccessFlagUpdateExt() then VTCR_EL2.HA else '0';
walkparams.hd = if HaveDirtyBitModifierExt() then VTCR_EL2.HD else '0';
if walkparams.tgx IN {TGx_4KB, TGx_16KB} && Have52BitIPAAndPASpaceExt() then

walkparams.ds = VTCR_EL2.DS;
else

walkparams.ds = '0';
walkparams.cmow = if HaveFeatCMOW() && IsHCRXEL2Enabled() then HCRX_EL2.CMOW else '0';
if walkparams.d128 == '1' then

walkparams.s2pie = '1';
else

walkparams.s2pie = if HaveS2PIExt() then VTCR_EL2.S2PIE else '0';
walkparams.s2pir = if HaveS2PIExt() then S2PIR_EL2 else Zeros(64);
if HaveTHExt() && walkparams.d128 != '1' then

walkparams.assuredonly = VTCR_EL2.AssuredOnly;
else

walkparams.assuredonly = '0';
walkparams.tl0 = if HaveTHExt() then VTCR_EL2.TL0 else '0';
walkparams.tl1 = if HaveTHExt() then VTCR_EL2.TL1 else '0';
if HaveAccessFlagUpdateForTableExt() && walkparams.ha == '1' then

walkparams.haft = VTCR_EL2.HAFT;
else

walkparams.haft = '0';
walkparams.emec = '0';

Shared Pseudocode Functions Page 1915

return walkparams;

Library pseudocode for aarch64/translation/vmsa_walkparams/S2DCacheEnabled

// S2DCacheEnabled()
// =================
// Returns TRUE if Stage 2 Data access cacheability is enabled

boolean S2DCacheEnabled()
return HCR_EL2.CD == '0';

Library pseudocode for shared/debug/ClearStickyErrors/ClearStickyErrors

// ClearStickyErrors()
// ===================

ClearStickyErrors()
EDSCR.TXU = '0'; // Clear TX underrun flag
EDSCR.RXO = '0'; // Clear RX overrun flag

if Halted() then // in Debug state
EDSCR.ITO = '0'; // Clear ITR overrun flag

// If halted and the ITR is not empty then it is UNPREDICTABLE whether the EDSCR.ERR is cleared.
// The UNPREDICTABLE behavior also affects the instructions in flight, but this is not described
// in the pseudocode.
if (Halted() && EDSCR.ITE == '0' &&

ConstrainUnpredictableBool(Unpredictable_CLEARERRITEZERO)) then
return;

EDSCR.ERR = '0'; // Clear cumulative error flag

return;

Library pseudocode for shared/debug/DebugTarget/DebugTarget

// DebugTarget()
// =============
// Returns the debug exception target Exception level

bits(2) DebugTarget()
ss = CurrentSecurityState();
return DebugTargetFrom(ss);

Shared Pseudocode Functions Page 1916

Library pseudocode for shared/debug/DebugTarget/DebugTargetFrom

// DebugTargetFrom()
// =================

bits(2) DebugTargetFrom(SecurityState from_state)
boolean route_to_el2;
if HaveEL(EL2) && (from_state != SS_Secure ||

(HaveSecureEL2Ext() && (!HaveEL(EL3) || SCR_EL3.EEL2 == '1'))) then
if ELUsingAArch32(EL2) then

route_to_el2 = (HDCR.TDE == '1' || HCR.TGE == '1');
else

route_to_el2 = (MDCR_EL2.TDE == '1' || HCR_EL2.TGE == '1');
else

route_to_el2 = FALSE;

bits(2) target;
if route_to_el2 then

target = EL2;
elsif HaveEL(EL3) && !HaveAArch64() && from_state == SS_Secure then

target = EL3;
else

target = EL1;

return target;

Library pseudocode for shared/debug/DoubleLockStatus/DoubleLockStatus

// DoubleLockStatus()
// ==================
// Returns the state of the OS Double Lock.
// FALSE if OSDLR_EL1.DLK == 0 or DBGPRCR_EL1.CORENPDRQ == 1 or the PE is in Debug state.
// TRUE if OSDLR_EL1.DLK == 1 and DBGPRCR_EL1.CORENPDRQ == 0 and the PE is in Non-debug state.

boolean DoubleLockStatus()
if !HaveDoubleLock() then

return FALSE;
elsif ELUsingAArch32(EL1) then

return DBGOSDLR.DLK == '1' && DBGPRCR.CORENPDRQ == '0' && !Halted();
else

return OSDLR_EL1.DLK == '1' && DBGPRCR_EL1.CORENPDRQ == '0' && !Halted();

Library pseudocode for shared/debug/OSLockStatus/OSLockStatus

// OSLockStatus()
// ==============
// Returns the state of the OS Lock.

boolean OSLockStatus()
return (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK) == '1';

Library pseudocode for shared/debug/SoftwareLockStatus/Component

// Component
// =========
// Component Types.

enumeration Component {
Component_PMU,
Component_Debug,
Component_CTI

};

Shared Pseudocode Functions Page 1917

Library pseudocode for shared/debug/SoftwareLockStatus/GetAccessComponent

// GetAccessComponent()
// ====================
// Returns the accessed component.

Component GetAccessComponent();

Library pseudocode for shared/debug/SoftwareLockStatus/SoftwareLockStatus

// SoftwareLockStatus()
// ====================
// Returns the state of the Software Lock.

boolean SoftwareLockStatus()
Component component = GetAccessComponent();
if !HaveSoftwareLock(component) then

return FALSE;
case component of

when Component_Debug
return EDLSR.SLK == '1';

when Component_PMU
return PMLSR.SLK == '1';

when Component_CTI
return CTILSR.SLK == '1';

otherwise
Unreachable();

Library pseudocode for shared/debug/authentication/AccessState

// AccessState()
// =============
// Returns the Security state of the access.

SecurityState AccessState();

Shared Pseudocode Functions Page 1918

Library pseudocode for shared/debug/authentication/AllowExternalDebugAccess

// AllowExternalDebugAccess()
// ==========================
// Returns TRUE if an external debug interface access to the External debug registers
// is allowed, FALSE otherwise.

boolean AllowExternalDebugAccess()
// The access may also be subject to OS Lock, power-down, etc.
return AllowExternalDebugAccess(AccessState());

// AllowExternalDebugAccess()
// ==========================
// Returns TRUE if an external debug interface access to the External debug registers
// is allowed for the given Security state, FALSE otherwise.

boolean AllowExternalDebugAccess(SecurityState access_state)
// The access may also be subject to OS Lock, power-down, etc.
if HaveRME() then

case MDCR_EL3.<EDADE,EDAD> of
when '00' return TRUE;
when '01' return access_state IN {SS_Root, SS_Secure};
when '10' return access_state IN {SS_Root, SS_Realm};
when '11' return access_state == SS_Root;

if HaveSecureExtDebugView() then
if access_state == SS_Secure then return TRUE;

else
if !ExternalInvasiveDebugEnabled() then return FALSE;
if ExternalSecureInvasiveDebugEnabled() then return TRUE;

if HaveEL(EL3) then
EDAD_bit = if ELUsingAArch32(EL3) then SDCR.EDAD else MDCR_EL3.EDAD;
return EDAD_bit == '0';

else
return NonSecureOnlyImplementation();

Shared Pseudocode Functions Page 1919

Library pseudocode for shared/debug/authentication/AllowExternalPMSSAccess

// AllowExternalPMSSAccess()
// =========================
// Returns TRUE if an external debug interface access to the PMU Snapshot
// registers is allowed, FALSE otherwise.

boolean AllowExternalPMSSAccess()
// The access may also be subject to OS Lock, power-down, etc.
return AllowExternalPMSSAccess(AccessState());

// AllowExternalPMSSAccess()
// =========================
// Returns TRUE if an external debug interface access to the PMU Snapshot
// registers is allowed for the given Security state, FALSE otherwise.

boolean AllowExternalPMSSAccess(SecurityState access_state)
assert IsFeatureImplemented(FEAT_PMUv3_SS) && HaveAArch64();
assert HaveSecureExtDebugView(); // Required when PMU Snapshot implemented

// The access may also be subject to the OS Double Lock, power-down, etc.
bits(2) epmssad = if HaveEL(EL3) then MDCR_EL3.EPMSSAD else '11';

// Check for reserved values
if !HaveRME() && epmssad IN {'01','10'} then

Constraint c;
(c, epmssad) = ConstrainUnpredictableBits(Unpredictable_RESEPMSSAD, 2);
// The value returned by ConstrainUnpredictableBits() must be a
// non-reserved value

SecurityState allowed_state = (if HaveRME() then SS_Root else SS_Secure);

case epmssad of
when '00' return access_state == allowed_state;
when '01' return HaveRME() && access_state IN {SS_Root, SS_Realm};
when '10' return HaveRME() && access_state IN {SS_Root, SS_Secure};
when '11' return TRUE;

Shared Pseudocode Functions Page 1920

Library pseudocode for shared/debug/authentication/AllowExternalPMUAccess

// AllowExternalPMUAccess()
// ========================
// Returns TRUE if an external debug interface access to the PMU registers is
// allowed, FALSE otherwise.

boolean AllowExternalPMUAccess()
// The access may also be subject to OS Lock, power-down, etc.
return AllowExternalPMUAccess(AccessState());

// AllowExternalPMUAccess()
// ========================
// Returns TRUE if an external debug interface access to the PMU registers is
// allowed for the given Security state, FALSE otherwise.

boolean AllowExternalPMUAccess(SecurityState access_state)
// The access may also be subject to OS Lock, power-down, etc.
if HaveRME() then

case MDCR_EL3.<EPMADE,EPMAD> of
when '00' return TRUE;
when '01' return access_state IN {SS_Root, SS_Secure};
when '10' return access_state IN {SS_Root, SS_Realm};
when '11' return access_state == SS_Root;

if HaveSecureExtDebugView() then
if access_state == SS_Secure then return TRUE;

else
if !ExternalInvasiveDebugEnabled() then return FALSE;
if ExternalSecureInvasiveDebugEnabled() then return TRUE;

if HaveEL(EL3) then
EPMAD_bit = if ELUsingAArch32(EL3) then SDCR.EPMAD else MDCR_EL3.EPMAD;
return EPMAD_bit == '0';

else
return NonSecureOnlyImplementation();

Shared Pseudocode Functions Page 1921

Library pseudocode for shared/debug/authentication/AllowExternalTraceAccess

// AllowExternalTraceAccess()
// ==========================
// Returns TRUE if an external Trace access to the Trace registers is allowed, FALSE otherwise.

boolean AllowExternalTraceAccess()
if !HaveTraceBufferExtension() then

return TRUE;
else

return AllowExternalTraceAccess(AccessState());

// AllowExternalTraceAccess()
// ==========================
// Returns TRUE if an external Trace access to the Trace registers is allowed for the
// given Security state, FALSE otherwise.

boolean AllowExternalTraceAccess(SecurityState access_state)
// The access may also be subject to OS lock, power-down, etc.
if !HaveTraceBufferExtension() then return TRUE;
assert HaveSecureExtDebugView();
if HaveRME() then

case MDCR_EL3.<ETADE,ETAD> of
when '00' return TRUE;
when '01' return access_state IN {SS_Root, SS_Secure};
when '10' return access_state IN {SS_Root, SS_Realm};
when '11' return access_state == SS_Root;

if access_state == SS_Secure then return TRUE;
if HaveEL(EL3) then

// External Trace access is not supported for EL3 using AArch32
assert !ELUsingAArch32(EL3);
return MDCR_EL3.ETAD == '0';

else
return NonSecureOnlyImplementation();

Library pseudocode for shared/debug/authentication/Debug_authentication

Signal DBGEN;
Signal NIDEN;
Signal SPIDEN;
Signal SPNIDEN;
Signal RLPIDEN;
Signal RTPIDEN;

Library pseudocode for shared/debug/authentication/ExternalInvasiveDebugEnabled

// ExternalInvasiveDebugEnabled()
// ==============================
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, this function returns the state of the DBGEN signal.

boolean ExternalInvasiveDebugEnabled()
return DBGEN == Signal_High;

Shared Pseudocode Functions Page 1922

Library pseudocode for shared/debug/authentication/ExternalNoninvasiveDebugAllowed

// ExternalNoninvasiveDebugAllowed()
// =================================
// Returns TRUE if Trace and PC Sample-based Profiling are allowed

boolean ExternalNoninvasiveDebugAllowed()
return ExternalNoninvasiveDebugAllowed(PSTATE.EL);

// ExternalNoninvasiveDebugAllowed()
// =================================

boolean ExternalNoninvasiveDebugAllowed(bits(2) el)
if !ExternalNoninvasiveDebugEnabled() then return FALSE;
ss = SecurityStateAtEL(el);

if ((ELUsingAArch32(EL3) || ELUsingAArch32(EL1)) && el == EL0 &&
ss == SS_Secure && SDER.SUNIDEN == '1') then
return TRUE;

case ss of
when SS_NonSecure return TRUE;
when SS_Secure return ExternalSecureNoninvasiveDebugEnabled();
when SS_Realm return ExternalRealmNoninvasiveDebugEnabled();
when SS_Root return ExternalRootNoninvasiveDebugEnabled();

Library pseudocode for shared/debug/authentication/ExternalNoninvasiveDebugEnabled

// ExternalNoninvasiveDebugEnabled()
// =================================
// This function returns TRUE if the FEAT_Debugv8p4 is implemented.
// Otherwise, this function is IMPLEMENTATION DEFINED, and, in the
// recommended interface, ExternalNoninvasiveDebugEnabled returns
// the state of the (DBGEN OR NIDEN) signal.

boolean ExternalNoninvasiveDebugEnabled()
return !HaveNoninvasiveDebugAuth() || ExternalInvasiveDebugEnabled() || NIDEN == Signal_High;

Library pseudocode for shared/debug/authentication/ExternalRealmInvasiveDebugEnabled

// ExternalRealmInvasiveDebugEnabled()
// ===================================
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, this function returns the state of the
// (DBGEN AND RLPIDEN) signal.

boolean ExternalRealmInvasiveDebugEnabled()
if !HaveRME() then return FALSE;
return ExternalInvasiveDebugEnabled() && RLPIDEN == Signal_High;

Library pseudocode for shared/debug/authentication/ExternalRealmNoninvasiveDebugEnabled

// ExternalRealmNoninvasiveDebugEnabled()
// ======================================
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, this function returns the state of the
// (DBGEN AND RLPIDEN) signal.

boolean ExternalRealmNoninvasiveDebugEnabled()
if !HaveRME() then return FALSE;
return ExternalRealmInvasiveDebugEnabled();

Shared Pseudocode Functions Page 1923

Library pseudocode for shared/debug/authentication/ExternalRootInvasiveDebugEnabled

// ExternalRootInvasiveDebugEnabled()
// ==================================
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, this function returns the state of the
// (DBGEN AND RLPIDEN AND RTPIDEN AND SPIDEN) signal when FEAT_SEL2 is implemented
// and the (DBGEN AND RLPIDEN AND RTPIDEN) signal when FEAT_SEL2 is not implemented.

boolean ExternalRootInvasiveDebugEnabled()
if !HaveRME() then return FALSE;
return (ExternalInvasiveDebugEnabled() &&

(!HaveSecureEL2Ext() || ExternalSecureInvasiveDebugEnabled()) &&
ExternalRealmInvasiveDebugEnabled() &&
RTPIDEN == Signal_High);

Library pseudocode for shared/debug/authentication/ExternalRootNoninvasiveDebugEnabled

// ExternalRootNoninvasiveDebugEnabled()
// =====================================
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, this function returns the state of the
// (DBGEN AND RLPIDEN AND SPIDEN AND RTPIDEN) signal.

boolean ExternalRootNoninvasiveDebugEnabled()
if !HaveRME() then return FALSE;
return ExternalRootInvasiveDebugEnabled();

Library pseudocode for shared/debug/authentication/ExternalSecureInvasiveDebugEnabled

// ExternalSecureInvasiveDebugEnabled()
// ====================================
// The definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, this function returns the state of the (DBGEN AND SPIDEN) signal.
// CoreSight allows asserting SPIDEN without also asserting DBGEN, but this is not recommended.

boolean ExternalSecureInvasiveDebugEnabled()
if !HaveEL(EL3) && !SecureOnlyImplementation() then return FALSE;
return ExternalInvasiveDebugEnabled() && SPIDEN == Signal_High;

Library pseudocode for shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled

// ExternalSecureNoninvasiveDebugEnabled()
// =======================================
// This function returns the value of ExternalSecureInvasiveDebugEnabled() when FEAT_Debugv8p4
// is implemented. Otherwise, the definition of this function is IMPLEMENTATION DEFINED.
// In the recommended interface, this function returns the state of the (DBGEN OR NIDEN) AND
// (SPIDEN OR SPNIDEN) signal.

boolean ExternalSecureNoninvasiveDebugEnabled()
if !HaveEL(EL3) && !SecureOnlyImplementation() then return FALSE;
if HaveNoninvasiveDebugAuth() then

return (ExternalNoninvasiveDebugEnabled() &&
(SPIDEN == Signal_High || SPNIDEN == Signal_High));

else
return ExternalSecureInvasiveDebugEnabled();

Library pseudocode for shared/debug/authentication/IsAccessSecure

// IsAccessSecure()
// ================
// Returns TRUE when an access is Secure

boolean IsAccessSecure();

Shared Pseudocode Functions Page 1924

Library pseudocode for shared/debug/authentication/IsCorePowered

// IsCorePowered()
// ===============
// Returns TRUE if the Core power domain is powered on, FALSE otherwise.

boolean IsCorePowered();

Library pseudocode for shared/debug/breakpoint/CheckValidStateMatch

// CheckValidStateMatch()
// ======================
// Checks for an invalid state match that will generate Constrained
// Unpredictable behavior, otherwise returns Constraint_NONE.

(Constraint, bits(2), bit, bit, bits(2)) CheckValidStateMatch(bits(2) ssc_in, bit ssce_in,
bit hmc_in, bits(2) pxc_in,
boolean isbreakpnt)

if !HaveRME() then assert ssce_in == '0';
boolean reserved = FALSE;
bits(2) ssc = ssc_in;
bit ssce = ssce_in;
bit hmc = hmc_in;
bits(2) pxc = pxc_in;

// Values that are not allocated in any architecture version
case hmc:ssce:ssc:pxc of

when '0 0 11 10' reserved = TRUE;
when '0 0 1x xx' reserved = !HaveSecureState();
when '1 0 00 x0' reserved = TRUE;
when '1 0 01 10' reserved = TRUE;
when '1 0 1x 10' reserved = TRUE;
when 'x 1 xx xx' reserved = ssc != '01' || (hmc:pxc) IN {'000','110'};
otherwise reserved = FALSE;

// Match 'Usr/Sys/Svc' valid only for AArch32 breakpoints
if (!isbreakpnt || !HaveAArch32EL(EL1)) && hmc:pxc == '000' && ssc != '11' then

reserved = TRUE;

// Both EL3 and EL2 are not implemented
if !HaveEL(EL3) && !HaveEL(EL2) && (hmc != '0' || ssc != '00') then

reserved = TRUE;

// EL3 is not implemented
if !HaveEL(EL3) && ssc IN {'01','10'} && hmc:ssc:pxc != '10100' then

reserved = TRUE;

// EL3 using AArch64 only
if (!HaveEL(EL3) || !HaveAArch64()) && hmc:ssc:pxc == '11000' then

reserved = TRUE;

// EL2 is not implemented
if !HaveEL(EL2) && hmc:ssc:pxc == '11100' then

reserved = TRUE;

// Secure EL2 is not implemented
if !HaveSecureEL2Ext() && (hmc:ssc:pxc) IN {'01100','10100','x11x1'} then

reserved = TRUE;

if reserved then
// If parameters are set to a reserved type, behaves as either disabled or a defined type
Constraint c;
(c, <hmc,ssc,ssce,pxc>) = ConstrainUnpredictableBits(Unpredictable_RESBPWPCTRL, 6);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then

return (c, bits(2) UNKNOWN, bit UNKNOWN, bit UNKNOWN, bits(2) UNKNOWN);
// Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value

return (Constraint_NONE, ssc, ssce, hmc, pxc);

Shared Pseudocode Functions Page 1925

Library pseudocode for shared/debug/breakpoint/ContextMatchingBreakpointRange

// ContextMatchingBreakpointRange()
// ================================
// Returns two numbers indicating the index of the first and last context-aware breakpoint.

(integer, integer) ContextMatchingBreakpointRange()
integer b = NumBreakpointsImplemented();
integer c = NumContextAwareBreakpointsImplemented();

if b <= 16 then
return (b - c, b - 1);

elsif c <= 16 then
return (16 - c, 15);

else
return (0, c - 1);

Library pseudocode for shared/debug/breakpoint/IsContextMatchingBreakpoint

// IsContextMatchingBreakpoint()
// =============================
// Returns TRUE if DBGBCR_EL1[n] is a context-aware breakpoint.

boolean IsContextMatchingBreakpoint(integer n)
(lower, upper) = ContextMatchingBreakpointRange();
return n >= lower && n <= upper;

Library pseudocode for shared/debug/breakpoint/NumBreakpointsImplemented

// NumBreakpointsImplemented()
// ===========================
// Returns the number of breakpoints implemented.

integer NumBreakpointsImplemented()
return integer IMPLEMENTATION_DEFINED "Number of breakpoints";

Library pseudocode for shared/debug/breakpoint/NumContextAwareBreakpointsImplemented

// NumContextAwareBreakpointsImplemented()
// =======================================
// Returns the number of context-aware breakpoints implemented.

integer NumContextAwareBreakpointsImplemented()
return integer IMPLEMENTATION_DEFINED "Number of context-aware breakpoints";

Library pseudocode for shared/debug/breakpoint/NumWatchpointsImplemented

// NumWatchpointsImplemented()
// ===========================
// Returns the number of watchpoints implemented.

integer NumWatchpointsImplemented()
return integer IMPLEMENTATION_DEFINED "Number of watchpoints";

Library pseudocode for shared/debug/cti/CTI_ProcessEvent

// CTI_ProcessEvent()
// ==================
// Process a discrete event on a Cross Trigger output event trigger.

CTI_ProcessEvent(CrossTriggerOut id);

Shared Pseudocode Functions Page 1926

Library pseudocode for shared/debug/cti/CTI_SetEventLevel

// CTI_SetEventLevel()
// ===================
// Set a Cross Trigger multi-cycle input event trigger to the specified level.

CTI_SetEventLevel(CrossTriggerIn id, Signal level);

Library pseudocode for shared/debug/cti/CTI_SignalEvent

// CTI_SignalEvent()
// =================
// Signal a discrete event on a Cross Trigger input event trigger.

CTI_SignalEvent(CrossTriggerIn id);

Library pseudocode for shared/debug/cti/CrossTrigger

// CrossTrigger
// ============

enumeration CrossTriggerOut {CrossTriggerOut_DebugRequest, CrossTriggerOut_RestartRequest,
CrossTriggerOut_IRQ, CrossTriggerOut_RSVD3,
CrossTriggerOut_TraceExtIn0, CrossTriggerOut_TraceExtIn1,
CrossTriggerOut_TraceExtIn2, CrossTriggerOut_TraceExtIn3};

enumeration CrossTriggerIn {CrossTriggerIn_CrossHalt, CrossTriggerIn_PMUOverflow,
CrossTriggerIn_RSVD2, CrossTriggerIn_RSVD3,
CrossTriggerIn_TraceExtOut0, CrossTriggerIn_TraceExtOut1,
CrossTriggerIn_TraceExtOut2, CrossTriggerIn_TraceExtOut3};

Library pseudocode for shared/debug/dccanditr/CheckForDCCInterrupts

// CheckForDCCInterrupts()
// =======================

CheckForDCCInterrupts()
commrx = (EDSCR.RXfull == '1');
commtx = (EDSCR.TXfull == '0');

// COMMRX and COMMTX support is optional and not recommended for new designs.
// SetInterruptRequestLevel(InterruptID_COMMRX, if commrx then HIGH else LOW);
// SetInterruptRequestLevel(InterruptID_COMMTX, if commtx then HIGH else LOW);

// The value to be driven onto the common COMMIRQ signal.
boolean commirq;
if ELUsingAArch32(EL1) then

commirq = ((commrx && DBGDCCINT.RX == '1') ||
(commtx && DBGDCCINT.TX == '1'));

else
commirq = ((commrx && MDCCINT_EL1.RX == '1') ||

(commtx && MDCCINT_EL1.TX == '1'));
SetInterruptRequestLevel(InterruptID_COMMIRQ, if commirq then Signal_High else Signal_Low);

return;

Shared Pseudocode Functions Page 1927

Library pseudocode for shared/debug/dccanditr/DBGDTRRX_EL0

// DBGDTRRX_EL0[] (external write)
// ===============================
// Called on writes to debug register 0x08C.

DBGDTRRX_EL0[boolean memory_mapped] = bits(32) value

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "generate error response";
return;

if EDSCR.ERR == '1' then return; // Error flag set: ignore write

if EDSCR.RXfull == '1' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0') then
EDSCR.RXO = '1'; EDSCR.ERR = '1'; // Overrun condition: ignore write
return;

EDSCR.RXfull = '1';
DTRRX = value;

if Halted() && EDSCR.MA == '1' then
EDSCR.ITE = '0'; // See comments in EDITR[] (external write)
if !UsingAArch32() then

ExecuteA64(0xD5330501<31:0>); // A64 "MRS X1,DBGDTRRX_EL0"
ExecuteA64(0xB8004401<31:0>); // A64 "STR W1,[X0],#4"
X[1, 64] = bits(64) UNKNOWN;

else
ExecuteT32(0xEE10<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MRS R1,DBGDTRRXint"
ExecuteT32(0xF840<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "STR R1,[R0],#4"
R[1] = bits(32) UNKNOWN;

// If the store aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
if EDSCR.ERR == '1' then

EDSCR.RXfull = bit UNKNOWN;
DBGDTRRX_EL0 = bits(64) UNKNOWN;

else
// "MRS X1,DBGDTRRX_EL0" calls DBGDTR_EL0[] (read) which clears RXfull.
assert EDSCR.RXfull == '0';

EDSCR.ITE = '1'; // See comments in EDITR[] (external write)
return;

// DBGDTRRX_EL0[] (external read)
// ==============================

bits(32) DBGDTRRX_EL0[boolean memory_mapped]
return DTRRX;

Shared Pseudocode Functions Page 1928

Library pseudocode for shared/debug/dccanditr/DBGDTRTX_EL0

// DBGDTRTX_EL0[] (external read)
// ==============================
// Called on reads of debug register 0x080.

bits(32) DBGDTRTX_EL0[boolean memory_mapped]

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "generate error response";
return bits(32) UNKNOWN;

underrun = EDSCR.TXfull == '0' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0');
value = if underrun then bits(32) UNKNOWN else DTRTX;

if EDSCR.ERR == '1' then return value; // Error flag set: no side-effects

if underrun then
EDSCR.TXU = '1'; EDSCR.ERR = '1'; // Underrun condition: block side-effects
return value; // Return UNKNOWN

EDSCR.TXfull = '0';
if Halted() && EDSCR.MA == '1' then

EDSCR.ITE = '0'; // See comments in EDITR[] (external write)

if !UsingAArch32() then
ExecuteA64(0xB8404401<31:0>); // A64 "LDR W1,[X0],#4"

else
ExecuteT32(0xF850<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "LDR R1,[R0],#4"

// If the load aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
if EDSCR.ERR == '1' then

EDSCR.TXfull = bit UNKNOWN;
DBGDTRTX_EL0 = bits(64) UNKNOWN;

else
if !UsingAArch32() then

ExecuteA64(0xD5130501<31:0>); // A64 "MSR DBGDTRTX_EL0,X1"
else

ExecuteT32(0xEE00<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MSR DBGDTRTXint,R1"
// "MSR DBGDTRTX_EL0,X1" calls DBGDTR_EL0[] (write) which sets TXfull.
assert EDSCR.TXfull == '1';

if !UsingAArch32() then
X[1, 64] = bits(64) UNKNOWN;

else
R[1] = bits(32) UNKNOWN;

EDSCR.ITE = '1'; // See comments in EDITR[] (external write)

return value;

// DBGDTRTX_EL0[] (external write)
// ===============================

DBGDTRTX_EL0[boolean memory_mapped] = bits(32) value
DTRTX = value;
return;

Shared Pseudocode Functions Page 1929

Library pseudocode for shared/debug/dccanditr/DBGDTR_EL0

// DBGDTR_EL0[] (write)
// ====================
// System register writes to DBGDTR_EL0, DBGDTRTX_EL0 (AArch64) and DBGDTRTXint (AArch32)

DBGDTR_EL0[] = bits(N) value_in
bits(N) value = value_in;
// For MSR DBGDTRTX_EL0,<Rt> N=32, value=X[t]<31:0>, X[t]<63:32> is ignored
// For MSR DBGDTR_EL0,<Xt> N=64, value=X[t]<63:0>
assert N IN {32,64};
if EDSCR.TXfull == '1' then

value = bits(N) UNKNOWN;
// On a 64-bit write, implement a half-duplex channel
if N == 64 then DTRRX = value<63:32>;
DTRTX = value<31:0>; // 32-bit or 64-bit write
EDSCR.TXfull = '1';
return;

// DBGDTR_EL0[] (read)
// ===================
// System register reads of DBGDTR_EL0, DBGDTRRX_EL0 (AArch64) and DBGDTRRXint (AArch32)

bits(N) DBGDTR_EL0[]
// For MRS <Rt>,DBGDTRTX_EL0 N=32, X[t]=Zeros(32):result
// For MRS <Xt>,DBGDTR_EL0 N=64, X[t]=result
assert N IN {32,64};
bits(N) result;
if EDSCR.RXfull == '0' then

result = bits(N) UNKNOWN;
else

// On a 64-bit read, implement a half-duplex channel
// NOTE: the word order is reversed on reads with regards to writes
if N == 64 then result<63:32> = DTRTX;
result<31:0> = DTRRX;

EDSCR.RXfull = '0';
return result;

Library pseudocode for shared/debug/dccanditr/DTR

bits(32) DTRRX;
bits(32) DTRTX;

Shared Pseudocode Functions Page 1930

Library pseudocode for shared/debug/dccanditr/EDITR

// EDITR[] (external write)
// ========================
// Called on writes to debug register 0x084.

EDITR[boolean memory_mapped] = bits(32) value
if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits

IMPLEMENTATION_DEFINED "generate error response";
return;

if EDSCR.ERR == '1' then return; // Error flag set: ignore write

if !Halted() then return; // Non-debug state: ignore write

if EDSCR.ITE == '0' || EDSCR.MA == '1' then
EDSCR.ITO = '1'; EDSCR.ERR = '1'; // Overrun condition: block write
return;

// ITE indicates whether the processor is ready to accept another instruction; the processor
// may support multiple outstanding instructions. Unlike the "InstrCompl" flag in [v7A] there
// is no indication that the pipeline is empty (all instructions have completed). In this
// pseudocode, the assumption is that only one instruction can be executed at a time,
// meaning ITE acts like "InstrCompl".
EDSCR.ITE = '0';

if !UsingAArch32() then
ExecuteA64(value);

else
ExecuteT32(value<15:0>/*hw1*/, value<31:16> /*hw2*/);

EDSCR.ITE = '1';

return;

Shared Pseudocode Functions Page 1931

Library pseudocode for shared/debug/halting/DCPSInstruction

Shared Pseudocode Functions Page 1932

// DCPSInstruction()
// =================
// Operation of the DCPS instruction in Debug state

DCPSInstruction(bits(2) target_el)

SynchronizeContext();

bits(2) handle_el;
case target_el of

when EL1
if PSTATE.EL == EL2 || (PSTATE.EL == EL3 && !UsingAArch32()) then

handle_el = PSTATE.EL;
elsif EL2Enabled() && HCR_EL2.TGE == '1' then

UNDEFINED;
else

handle_el = EL1;
when EL2

if !HaveEL(EL2) then
UNDEFINED;

elsif PSTATE.EL == EL3 && !UsingAArch32() then
handle_el = EL3;

elsif !IsSecureEL2Enabled() && CurrentSecurityState() == SS_Secure then
UNDEFINED;

else
handle_el = EL2;

when EL3
if EDSCR.SDD == '1' || !HaveEL(EL3) then

UNDEFINED;
else

handle_el = EL3;
otherwise

Unreachable();

from_secure = CurrentSecurityState() == SS_Secure;
if ELUsingAArch32(handle_el) then

if PSTATE.M == M32_Monitor then SCR.NS = '0';
assert UsingAArch32(); // Cannot move from AArch64 to AArch32
case handle_el of

when EL1
AArch32.WriteMode(M32_Svc);
if HavePANExt() && SCTLR.SPAN == '0' then

PSTATE.PAN = '1';
when EL2 AArch32.WriteMode(M32_Hyp);
when EL3

AArch32.WriteMode(M32_Monitor);
if HavePANExt() then

if !from_secure then
PSTATE.PAN = '0';

elsif SCTLR.SPAN == '0' then
PSTATE.PAN = '1';

if handle_el == EL2 then
ELR_hyp = bits(32) UNKNOWN; HSR = bits(32) UNKNOWN;

else
LR = bits(32) UNKNOWN;

SPSR_curr[] = bits(32) UNKNOWN;
PSTATE.E = SCTLR_ELx[].EE;
DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;

else // Targeting AArch64
from_32 = UsingAArch32();
if from_32 then AArch64.MaybeZeroRegisterUppers();
if from_32 && HaveSME() && PSTATE.SM == '1' then

ResetSVEState();
else

MaybeZeroSVEUppers(target_el);
PSTATE.nRW = '0'; PSTATE.SP = '1'; PSTATE.EL = handle_el;
if HavePANExt() && ((handle_el == EL1 && SCTLR_EL1.SPAN == '0') ||

(handle_el == EL2 && HCR_EL2.E2H == '1' &&
HCR_EL2.TGE == '1' && SCTLR_EL2.SPAN == '0')) then

Shared Pseudocode Functions Page 1933

PSTATE.PAN = '1';
ELR_ELx[] = bits(64) UNKNOWN; SPSR_ELx[] = bits(64) UNKNOWN; ESR_ELx[] = bits(64) UNKNOWN;
DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(64) UNKNOWN;
if HaveUAOExt() then PSTATE.UAO = '0';
if HaveMTEExt() then PSTATE.TCO = '1';
if HaveGCS() then PSTATE.EXLOCK = '0';

UpdateEDSCRFields(); // Update EDSCR PE state flags
sync_errors = HaveIESB() && SCTLR_ELx[].IESB == '1';
if HaveDoubleFaultExt() && !UsingAArch32() then

sync_errors = (sync_errors ||
(EffectiveEA() == '1' && SCR_EL3.NMEA == '1' && PSTATE.EL == EL3));

// SCTLR_ELx[].IESB might be ignored in Debug state.
if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then

sync_errors = FALSE;
if sync_errors then

SynchronizeErrors();
return;

Library pseudocode for shared/debug/halting/DRPSInstruction

// DRPSInstruction()
// =================
// Operation of the A64 DRPS and T32 ERET instructions in Debug state

DRPSInstruction()

sync_errors = HaveIESB() && SCTLR_ELx[].IESB == '1';
if HaveDoubleFaultExt() && !UsingAArch32() then

sync_errors = (sync_errors ||
(EffectiveEA() == '1' && SCR_EL3.NMEA == '1' && PSTATE.EL == EL3));

// SCTLR_ELx[].IESB might be ignored in Debug state.
if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then

sync_errors = FALSE;
if sync_errors then

SynchronizeErrors();

SynchronizeContext();

DebugRestorePSR();

return;

Library pseudocode for shared/debug/halting/DebugHalt

constant bits(6) DebugHalt_Breakpoint = '000111';
constant bits(6) DebugHalt_EDBGRQ = '010011';
constant bits(6) DebugHalt_Step_Normal = '011011';
constant bits(6) DebugHalt_Step_Exclusive = '011111';
constant bits(6) DebugHalt_OSUnlockCatch = '100011';
constant bits(6) DebugHalt_ResetCatch = '100111';
constant bits(6) DebugHalt_Watchpoint = '101011';
constant bits(6) DebugHalt_HaltInstruction = '101111';
constant bits(6) DebugHalt_SoftwareAccess = '110011';
constant bits(6) DebugHalt_ExceptionCatch = '110111';
constant bits(6) DebugHalt_Step_NoSyndrome = '111011';

Shared Pseudocode Functions Page 1934

Library pseudocode for shared/debug/halting/DebugRestorePSR

// DebugRestorePSR()
// =================

DebugRestorePSR()
// PSTATE.{N,Z,C,V,Q,GE,SS,D,A,I,F} are not observable and ignored in Debug state, so
// behave as if UNKNOWN.
if UsingAArch32() then

bits(32) spsr = SPSR_curr[];
SetPSTATEFromPSR(spsr);
PSTATE.<N,Z,C,V,Q,GE,SS,A,I,F> = bits(13) UNKNOWN;
// In AArch32, all instructions are T32 and unconditional.
PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0
DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;

else
bits(64) spsr = SPSR_ELx[];
SetPSTATEFromPSR(spsr);
PSTATE.<N,Z,C,V,SS,D,A,I,F> = bits(9) UNKNOWN;
DLR_EL0 = bits(64) UNKNOWN; DSPSR_EL0 = bits(64) UNKNOWN;

UpdateEDSCRFields(); // Update EDSCR PE state flags

Library pseudocode for shared/debug/halting/DisableITRAndResumeInstructionPrefetch

// DisableITRAndResumeInstructionPrefetch()
// ==

DisableITRAndResumeInstructionPrefetch();

Library pseudocode for shared/debug/halting/ExecuteA64

// ExecuteA64()
// ============
// Execute an A64 instruction in Debug state.

ExecuteA64(bits(32) instr);

Library pseudocode for shared/debug/halting/ExecuteT32

// ExecuteT32()
// ============
// Execute a T32 instruction in Debug state.

ExecuteT32(bits(16) hw1, bits(16) hw2);

Shared Pseudocode Functions Page 1935

Library pseudocode for shared/debug/halting/ExitDebugState

// ExitDebugState()
// ================

ExitDebugState()
assert Halted();
SynchronizeContext();

// Although EDSCR.STATUS signals that the PE is restarting, debuggers must use EDPRSR.SDR to
// detect that the PE has restarted.
EDSCR.STATUS = '000001'; // Signal restarting
// Clear any pending Halting debug events
if Havev8p8Debug() then

EDESR<3:0> = '0000';
else

EDESR<2:0> = '000';

bits(64) new_pc;
bits(64) spsr;

if UsingAArch32() then
new_pc = ZeroExtend(DLR, 64);
if Havev8p9Debug() then

spsr = DSPSR2 : DSPSR;
else

spsr = ZeroExtend(DSPSR, 64);
else

new_pc = DLR_EL0;
spsr = DSPSR_EL0;

boolean illegal_psr_state = IllegalExceptionReturn(spsr);
// If this is an illegal return, SetPSTATEFromPSR() will set PSTATE.IL.
SetPSTATEFromPSR(spsr); // Can update privileged bits, even at EL0

boolean branch_conditional = FALSE;
if UsingAArch32() then

if ConstrainUnpredictableBool(Unpredictable_RESTARTALIGNPC) then new_pc<0> = '0';
// AArch32 branch
BranchTo(new_pc<31:0>, BranchType_DBGEXIT, branch_conditional);

else
// If targeting AArch32 then PC[63:32,1:0] might be set to UNKNOWN.
if illegal_psr_state && spsr<4> == '1' then

new_pc<63:32> = bits(32) UNKNOWN;
new_pc<1:0> = bits(2) UNKNOWN;

if HaveBRBExt() then
BRBEDebugStateExit(new_pc);

// A type of branch that is never predicted
BranchTo(new_pc, BranchType_DBGEXIT, branch_conditional);

(EDSCR.STATUS,EDPRSR.SDR) = ('000010','1'); // Atomically signal restarted
EDPRSR.HALTED = '0';
UpdateEDSCRFields(); // Stop signalling PE state
DisableITRAndResumeInstructionPrefetch();

return;

Shared Pseudocode Functions Page 1936

Library pseudocode for shared/debug/halting/Halt

Shared Pseudocode Functions Page 1937

// Halt()
// ======

Halt(bits(6) reason)
boolean is_async = FALSE;
FaultRecord fault = NoFault();
Halt(reason, is_async, fault);

// Halt()
// ======

Halt(bits(6) reason, boolean is_async, FaultRecord fault)
if HaveTME() && TSTATE.depth > 0 then

FailTransaction(TMFailure_DBG, FALSE);

CTI_SignalEvent(CrossTriggerIn_CrossHalt); // Trigger other cores to halt

bits(64) preferred_restart_address = ThisInstrAddr(64);
bits(64) spsr = GetPSRFromPSTATE(DebugState, 64);

if (HaveBTIExt() && !is_async && !(reason IN {DebugHalt_Step_Normal, DebugHalt_Step_Exclusive,
DebugHalt_Step_NoSyndrome, DebugHalt_Breakpoint, DebugHalt_HaltInstruction}) &&
ConstrainUnpredictableBool(Unpredictable_ZEROBTYPE)) then
spsr<11:10> = '00';

if UsingAArch32() then
DLR = preferred_restart_address<31:0>;
DSPSR = spsr<31:0>;
if Havev8p9Debug() then

DSPSR2 = spsr<63:32>;
else

DLR_EL0 = preferred_restart_address;
DSPSR_EL0 = spsr;

EDSCR.ITE = '1';
EDSCR.ITO = '0';
if HaveRME() then

if PSTATE.EL == EL3 then
EDSCR.SDD = '0';

else
EDSCR.SDD = if ExternalRootInvasiveDebugEnabled() then '0' else '1';

elsif CurrentSecurityState() == SS_Secure then
EDSCR.SDD = '0'; // If entered in Secure state, allow debug

elsif HaveEL(EL3) then
EDSCR.SDD = if ExternalSecureInvasiveDebugEnabled() then '0' else '1';

else
EDSCR.SDD = '1'; // Otherwise EDSCR.SDD is RES1

EDSCR.MA = '0';

// In Debug state:
// * PSTATE.{SS,SSBS,D,A,I,F} are not observable and ignored so behave-as-if UNKNOWN.
// * PSTATE.{N,Z,C,V,Q,GE,E,M,nRW,EL,SP,DIT} are also not observable, but since these
// are not changed on exception entry, this function also leaves them unchanged.
// * PSTATE.{IT,T} are ignored.
// * PSTATE.IL is ignored and behave-as-if 0.
// * PSTATE.BTYPE is ignored and behave-as-if 0.
// * PSTATE.TCO is set 1.
// * PSTATE.{UAO,PAN} are observable and not changed on entry into Debug state.

if UsingAArch32() then
PSTATE.<IT,SS,SSBS,A,I,F,T> = bits(14) UNKNOWN;

else
PSTATE.<SS,SSBS,D,A,I,F> = bits(6) UNKNOWN;

PSTATE.TCO = '1';
PSTATE.BTYPE = '00';

PSTATE.IL = '0';
StopInstructionPrefetchAndEnableITR();
(EDSCR.STATUS,EDPRSR.HALTED) = (reason,'1');
UpdateEDSCRFields(); // Update EDSCR PE state flags.

Shared Pseudocode Functions Page 1938

if IsFeatureImplemented(FEAT_EDHSR) then
UpdateEDHSR(reason, fault); // Update EDHSR fields.

if !is_async then EndOfInstruction();
return;

Library pseudocode for shared/debug/halting/HaltOnBreakpointOrWatchpoint

// HaltOnBreakpointOrWatchpoint()
// ==============================
// Returns TRUE if the Breakpoint and Watchpoint debug events should be considered for Debug
// state entry, FALSE if they should be considered for a debug exception.

boolean HaltOnBreakpointOrWatchpoint()
return HaltingAllowed() && EDSCR.HDE == '1' && OSLSR_EL1.OSLK == '0';

Library pseudocode for shared/debug/halting/Halted

// Halted()
// ========

boolean Halted()
return !(EDSCR.STATUS IN {'000001', '000010'}); // Halted

Library pseudocode for shared/debug/halting/HaltingAllowed

// HaltingAllowed()
// ================
// Returns TRUE if halting is currently allowed, FALSE if halting is prohibited.

boolean HaltingAllowed()
if Halted() || DoubleLockStatus() then

return FALSE;
ss = CurrentSecurityState();
case ss of

when SS_NonSecure return ExternalInvasiveDebugEnabled();
when SS_Secure return ExternalSecureInvasiveDebugEnabled();
when SS_Root return ExternalRootInvasiveDebugEnabled();
when SS_Realm return ExternalRealmInvasiveDebugEnabled();

Library pseudocode for shared/debug/halting/Restarting

// Restarting()
// ============

boolean Restarting()
return EDSCR.STATUS == '000001'; // Restarting

Library pseudocode for shared/debug/halting/StopInstructionPrefetchAndEnableITR

// StopInstructionPrefetchAndEnableITR()
// =====================================

StopInstructionPrefetchAndEnableITR();

Shared Pseudocode Functions Page 1939

Library pseudocode for shared/debug/halting/UpdateDbgAuthStatus

// UpdateDbgAuthStatus()
// =====================
// Provides information about the state of the
// implementation defined authentication interface for debug.

UpdateDbgAuthStatus()
bits(2) nsid, nsnid;
bits(2) sid, snid;
bits(32) regVal = Zeros(32);
if HaveEL(EL3) then

if ExternalInvasiveDebugEnabled() then
nsid = '11'; // Non-Secure Invasive debug implemented and enabled.

else
nsid = '10'; // Non-Secure Invasive debug implemented and disabled.

if IsFeatureImplemented(FEAT_Debugv8p4) || ExternalNoninvasiveDebugEnabled() then
nsnid = '11'; // Non-Secure Non-Invasive debug implemented and enabled.

else
nsnid = '10'; // Non-Secure Non-Invasive debug implemented and disabled.

if ExternalSecureInvasiveDebugEnabled() then
sid = '11'; // Secure Invasive debug implemented and enabled.

else
sid = '10'; // Secure Invasive debug implemented and disabled.

if IsFeatureImplemented(FEAT_Debugv8p4) || ExternalSecureNoninvasiveDebugEnabled() then
snid = '11'; // Field has the same value as DBGAUTHSTATUS_EL1.SID

else
snid = '10'; // Secure Non-Invasive debug implemented and disabled.

else
sid = '00';
snid = '00';
nsid = '00';
nsnid = '00';

DBGAUTHSTATUS_EL1.NSID = nsid;
DBGAUTHSTATUS_EL1.NSNID = nsnid;
DBGAUTHSTATUS_EL1.SID = sid;
DBGAUTHSTATUS_EL1.SNID = snid;
return;

Library pseudocode for shared/debug/halting/UpdateEDHSR

// UpdateEDHSR()
// =============
// Update EDHSR watchpoint related fields.

UpdateEDHSR(bits(6) reason, FaultRecord fault)
bits(64) syndrome = Zeros(64);
if reason == DebugHalt_Watchpoint then

if HaveGCS() && fault.accessdesc.acctype == AccessType_GCS then
syndrome<40> = '1'; // GCS

syndrome<23:0> = WatchpointRelatedSyndrome(fault, EDWAR);
else

syndrome = bits(64) UNKNOWN;
EDHSR = syndrome;

Shared Pseudocode Functions Page 1940

Library pseudocode for shared/debug/halting/UpdateEDSCRFields

// UpdateEDSCRFields()
// ===================
// Update EDSCR PE state fields

UpdateEDSCRFields()

if !Halted() then
EDSCR.EL = '00';
if HaveRME() then

// SDD bit.
EDSCR.SDD = if ExternalRootInvasiveDebugEnabled() then '0' else '1';
EDSCR.<NSE,NS> = bits(2) UNKNOWN;

else
// SDD bit.
EDSCR.SDD = if ExternalSecureInvasiveDebugEnabled() then '0' else '1';
EDSCR.NS = bit UNKNOWN;

EDSCR.RW = '1111';
else

EDSCR.EL = PSTATE.EL;
// SError Pending.
if EL2Enabled() && HCR_EL2.<AMO,TGE> == '10' && PSTATE.EL IN {EL0,EL1} then

EDSCR.A = if IsVirtualSErrorPending() then '1' else '0';
else

EDSCR.A = if IsPhysicalSErrorPending() then '1' else '0';

ss = CurrentSecurityState();
if HaveRME() then

case ss of
when SS_Secure EDSCR.<NSE,NS> = '00';
when SS_NonSecure EDSCR.<NSE,NS> = '01';
when SS_Root EDSCR.<NSE,NS> = '10';
when SS_Realm EDSCR.<NSE,NS> = '11';

else
EDSCR.NS = if ss == SS_Secure then '0' else '1';

bits(4) RW;
RW<1> = if ELUsingAArch32(EL1) then '0' else '1';
if PSTATE.EL != EL0 then

RW<0> = RW<1>;
else

RW<0> = if UsingAArch32() then '0' else '1';
if !HaveEL(EL2) || (HaveEL(EL3) && SCR_curr[].NS == '0' && !IsSecureEL2Enabled()) then

RW<2> = RW<1>;
else

RW<2> = if ELUsingAArch32(EL2) then '0' else '1';
if !HaveEL(EL3) then

RW<3> = RW<2>;
else

RW<3> = if ELUsingAArch32(EL3) then '0' else '1';

// The least-significant bits of EDSCR.RW are UNKNOWN if any higher EL is using AArch32.
if RW<3> == '0' then RW<2:0> = bits(3) UNKNOWN;
elsif RW<2> == '0' then RW<1:0> = bits(2) UNKNOWN;
elsif RW<1> == '0' then RW<0> = bit UNKNOWN;
EDSCR.RW = RW;

return;

Shared Pseudocode Functions Page 1941

Library pseudocode for shared/debug/haltingevents/CheckExceptionCatch

// CheckExceptionCatch()
// =====================
// Check whether an Exception Catch debug event is set on the current Exception level

CheckExceptionCatch(boolean exception_entry)
// Called after an exception entry or exit, that is, such that the Security state
// and PSTATE.EL are correct for the exception target. When FEAT_Debugv8p2
// is not implemented, this function might also be called at any time.
ss = SecurityStateAtEL(PSTATE.EL);
integer base;

case ss of
when SS_Secure base = 0;
when SS_NonSecure base = 4;
when SS_Realm base = 16;
when SS_Root base = 0;

if HaltingAllowed() then
boolean halt;
if HaveExtendedECDebugEvents() then

exception_exit = !exception_entry;
increment = if ss == SS_Realm then 4 else 8;
ctrl = EDECCR<UInt(PSTATE.EL) + base + increment>:EDECCR<UInt(PSTATE.EL) + base>;
case ctrl of

when '00' halt = FALSE;
when '01' halt = TRUE;
when '10' halt = (exception_exit == TRUE);
when '11' halt = (exception_entry == TRUE);

else
halt = (EDECCR<UInt(PSTATE.EL) + base> == '1');

if halt then
if Havev8p8Debug() && exception_entry then

EDESR.EC = '1';
else

Halt(DebugHalt_ExceptionCatch);

Library pseudocode for shared/debug/haltingevents/CheckHaltingStep

// CheckHaltingStep()
// ==================
// Check whether EDESR.SS has been set by Halting Step

CheckHaltingStep(boolean is_async)
step_enabled = EDECR.SS == '1' && HaltingAllowed();
active_pending = step_enabled && EDESR.SS == '1';
if active_pending then

if HaltingStep_DidNotStep() then
FaultRecord fault = NoFault();
Halt(DebugHalt_Step_NoSyndrome, is_async, fault);

elsif HaltingStep_SteppedEX() then
FaultRecord fault = NoFault();
Halt(DebugHalt_Step_Exclusive, is_async, fault);

else
FaultRecord fault = NoFault();
Halt(DebugHalt_Step_Normal, is_async, fault);

if step_enabled then ShouldAdvanceHS = TRUE;
return;

Shared Pseudocode Functions Page 1942

Library pseudocode for shared/debug/haltingevents/CheckOSUnlockCatch

// CheckOSUnlockCatch()
// ====================
// Called on unlocking the OS Lock to pend an OS Unlock Catch debug event

CheckOSUnlockCatch()
if ((HaveDoPD() && CTIDEVCTL.OSUCE == '1') ||

(!HaveDoPD() && EDECR.OSUCE == '1')) then
if !Halted() then EDESR.OSUC = '1';

Library pseudocode for shared/debug/haltingevents/CheckPendingExceptionCatch

// CheckPendingExceptionCatch()
// ============================
// Check whether EDESR.EC has been set by an Exception Catch debug event.

CheckPendingExceptionCatch(boolean is_async)
if Havev8p8Debug() && HaltingAllowed() && EDESR.EC == '1' then

FaultRecord fault = NoFault();
Halt(DebugHalt_ExceptionCatch, is_async, fault);

Library pseudocode for shared/debug/haltingevents/CheckPendingOSUnlockCatch

// CheckPendingOSUnlockCatch()
// ===========================
// Check whether EDESR.OSUC has been set by an OS Unlock Catch debug event

CheckPendingOSUnlockCatch()
if HaltingAllowed() && EDESR.OSUC == '1' then

boolean is_async = TRUE;
FaultRecord fault = NoFault();
Halt(DebugHalt_OSUnlockCatch, is_async, fault);

Library pseudocode for shared/debug/haltingevents/CheckPendingResetCatch

// CheckPendingResetCatch()
// ========================
// Check whether EDESR.RC has been set by a Reset Catch debug event

CheckPendingResetCatch()
if HaltingAllowed() && EDESR.RC == '1' then

boolean is_async = TRUE;
FaultRecord fault = NoFault();
Halt(DebugHalt_ResetCatch, is_async, fault);

Library pseudocode for shared/debug/haltingevents/CheckResetCatch

// CheckResetCatch()
// =================
// Called after reset

CheckResetCatch()
if (HaveDoPD() && CTIDEVCTL.RCE == '1') || (!HaveDoPD() && EDECR.RCE == '1') then

EDESR.RC = '1';
// If halting is allowed then halt immediately
if HaltingAllowed() then Halt(DebugHalt_ResetCatch);

Shared Pseudocode Functions Page 1943

Library pseudocode for shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters

// CheckSoftwareAccessToDebugRegisters()
// =====================================
// Check for access to Breakpoint and Watchpoint registers.

CheckSoftwareAccessToDebugRegisters()
os_lock = (if ELUsingAArch32(EL1) then DBGOSLSR.OSLK else OSLSR_EL1.OSLK);
if HaltingAllowed() && EDSCR.TDA == '1' && os_lock == '0' then

Halt(DebugHalt_SoftwareAccess);

Library pseudocode for shared/debug/haltingevents/CheckTRBEHalt

// CheckTRBEHalt()
// ===============

CheckTRBEHalt()
if !Havev8p9Debug() || !HaveFeatTRBEExt() then

return;

if (HaltingAllowed() && TraceBufferEnabled() &&
TRBSR_EL1.IRQ == '1' && EDECR.TRBE == '1') then
Halt(DebugHalt_EDBGRQ);

Library pseudocode for shared/debug/haltingevents/ExternalDebugRequest

// ExternalDebugRequest()
// ======================

ExternalDebugRequest()
if HaltingAllowed() then

boolean is_async = TRUE;
FaultRecord fault = NoFault();
Halt(DebugHalt_EDBGRQ, is_async, fault);

// Otherwise the CTI continues to assert the debug request until it is taken.

Library pseudocode for shared/debug/haltingevents/HSAdvance

// HSAdvance()
// ===========
// Advance the Halting Step State Machine

HSAdvance()
if !ShouldAdvanceHS then return;
step_enabled = EDECR.SS == '1' && HaltingAllowed();
active_not_pending = step_enabled && EDESR.SS == '0';
if active_not_pending then EDESR.SS = '1'; // set as pending.
ShouldAdvanceHS = FALSE;
return;

Library pseudocode for shared/debug/haltingevents/HaltingStep_DidNotStep

// HaltingStep_DidNotStep()
// ========================
// Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
// if it was not itself stepped.

boolean HaltingStep_DidNotStep();

Shared Pseudocode Functions Page 1944

Library pseudocode for shared/debug/haltingevents/HaltingStep_SteppedEX

// HaltingStep_SteppedEX()
// =======================
// Returns TRUE if the previously executed instruction was a Load-Exclusive class instruction
// executed in the active-not-pending state.

boolean HaltingStep_SteppedEX();

Library pseudocode for shared/debug/interrupts/ExternalDebugInterruptsDisabled

// ExternalDebugInterruptsDisabled()
// =================================
// Determine whether EDSCR disables interrupts routed to 'target'.

boolean ExternalDebugInterruptsDisabled(bits(2) target)
boolean int_dis;
SecurityState ss = SecurityStateAtEL(target);
if Havev8p4Debug() then

if EDSCR.INTdis[0] == '1' then
case ss of

when SS_NonSecure int_dis = ExternalInvasiveDebugEnabled();
when SS_Secure int_dis = ExternalSecureInvasiveDebugEnabled();
when SS_Realm int_dis = ExternalRealmInvasiveDebugEnabled();
when SS_Root int_dis = ExternalRootInvasiveDebugEnabled();

else
int_dis = FALSE;

else
case target of

when EL3
int_dis = (EDSCR.INTdis == '11' && ExternalSecureInvasiveDebugEnabled());

when EL2
int_dis = (EDSCR.INTdis IN {'1x'} && ExternalInvasiveDebugEnabled());

when EL1
if ss == SS_Secure then

int_dis = (EDSCR.INTdis IN {'1x'} && ExternalSecureInvasiveDebugEnabled());
else

int_dis = (EDSCR.INTdis != '00' && ExternalInvasiveDebugEnabled());
return int_dis;

Library pseudocode for shared/debug/pmu

array integer PMUEventAccumulator[0..30]; // Accumulates PMU events for a cycle

array boolean PMULastThresholdValue[0..30];// A record of the threshold result for each

Library pseudocode for shared/debug/pmu/CYCLE_COUNTER_ID

constant integer CYCLE_COUNTER_ID = 31;

Shared Pseudocode Functions Page 1945

Library pseudocode for shared/debug/pmu/CheckForPMUOverflow

// CheckForPMUOverflow()
// =====================
// Signal Performance Monitors overflow IRQ and CTI overflow events.
// Called before each instruction is executed.

CheckForPMUOverflow()
boolean check_cnten = FALSE;
boolean check_e = TRUE;
boolean check_inten = TRUE;
boolean include_lo = TRUE;
boolean include_hi = TRUE;
boolean exclude_cyc = FALSE;
boolean exclude_sync = FALSE;

boolean enabled = PMUInterruptEnabled();
boolean pmuirq = PMUOverflowCondition(check_e, check_cnten, check_inten,

include_hi, include_lo,
exclude_cyc, exclude_sync);

SetInterruptRequestLevel(InterruptID_PMUIRQ,
if enabled && pmuirq then Signal_High else Signal_Low);

CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then Signal_High else Signal_Low);

// The request remains set until the condition is cleared.
// For example, an interrupt handler or cross-triggered event handler clears
// the overflow status flag by writing to PMOVSCLR_EL0.

if HavePMUv3p9() && Havev8p9Debug() then
if pmuirq && HaltingAllowed() && EDECR.PME == '1' then

Halt(DebugHalt_EDBGRQ);

if ShouldBRBEFreeze() then
BRBEFreeze();

return;

Shared Pseudocode Functions Page 1946

Library pseudocode for shared/debug/pmu/CountPMUEvents

Shared Pseudocode Functions Page 1947

// CountPMUEvents()
// ================
// Return TRUE if counter "idx" should count its event.
// For the cycle counter, idx == CYCLE_COUNTER_ID (32).
// For the instruction counter, idx == INSTRUCTION_COUNTER_ID (33).

boolean CountPMUEvents(integer idx)
constant integer num_counters = GetNumEventCounters();
assert (idx == CYCLE_COUNTER_ID || idx < num_counters ||

(idx == INSTRUCTION_COUNTER_ID && HavePMUv3ICNTR()));

boolean debug;
boolean enabled;
boolean prohibited;
boolean filtered;
boolean frozen;
boolean resvd_for_el2;
bit E;

// Event counting is disabled in Debug state
debug = Halted();

// Software can reserve some counters for EL2
resvd_for_el2 = PMUCounterIsHyp(idx);
ss = CurrentSecurityState();

// Main enable controls
case idx of

when INSTRUCTION_COUNTER_ID
assert HaveAArch64();
enabled = PMCR_EL0.E == '1' && PMCNTENSET_EL0.F0 == '1';

when CYCLE_COUNTER_ID
if HaveAArch64() then

enabled = PMCR_EL0.E == '1' && PMCNTENSET_EL0.C == '1';
else

enabled = PMCR.E == '1' && PMCNTENSET.C == '1';
otherwise

if resvd_for_el2 then
E = if HaveAArch64() then MDCR_EL2.HPME else HDCR.HPME;

else
E = if HaveAArch64() then PMCR_EL0.E else PMCR.E;

if HaveAArch64() then
enabled = E == '1' && PMCNTENSET_EL0<idx> == '1';

else
enabled = E == '1' && PMCNTENSET<idx> == '1';

// Event counting is allowed unless it is prohibited by any rule below
prohibited = FALSE;

// Event counting in Secure state is prohibited if all of:
// * EL3 is implemented
// * One of the following is true:
// - EL3 is using AArch64, MDCR_EL3.SPME == 0, and either:
// - FEAT_PMUv3p7 is not implemented
// - MDCR_EL3.MPMX == 0
// - EL3 is using AArch32 and SDCR.SPME == 0
// * Executing at EL0 using AArch32 and one of the following is true:
// - EL3 is using AArch32 and SDER.SUNIDEN == 0
// - EL3 is using AArch64, EL1 is using AArch32, and SDER32_EL3.SUNIDEN == 0
if HaveEL(EL3) && ss == SS_Secure then

if !ELUsingAArch32(EL3) then
prohibited = MDCR_EL3.SPME == '0' && HavePMUv3p7() && MDCR_EL3.MPMX == '0';

else
prohibited = SDCR.SPME == '0';

if prohibited && PSTATE.EL == EL0 then
if ELUsingAArch32(EL3) then

prohibited = SDER.SUNIDEN == '0';
elsif ELUsingAArch32(EL1) then

Shared Pseudocode Functions Page 1948

prohibited = SDER32_EL3.SUNIDEN == '0';

// Event counting at EL3 is prohibited if all of:
// * FEAT_PMUv3p7 is implemented
// * EL3 is using AArch64
// * One of the following is true:
// - MDCR_EL3.SPME == 0
// - PMNx is not reserved for EL2
// * MDCR_EL3.MPMX == 1
if !prohibited && HavePMUv3p7() && PSTATE.EL == EL3 && HaveAArch64() then

prohibited = MDCR_EL3.MPMX == '1' && (MDCR_EL3.SPME == '0' || !resvd_for_el2);

// Event counting at EL2 is prohibited if all of:
// * The HPMD Extension is implemented
// * PMNx is not reserved for EL2
// * EL2 is using AArch64 and MDCR_EL2.HPMD == 1 or EL2 is using AArch32 and HDCR.HPMD == 1
if !prohibited && PSTATE.EL == EL2 && HaveHPMDExt() && !resvd_for_el2 then

hpmd = if HaveAArch64() then MDCR_EL2.HPMD else HDCR.HPMD;
prohibited = hpmd == '1';

// The IMPLEMENTATION DEFINED authentication interface might override software
if prohibited && !HaveNoSecurePMUDisableOverride() then

prohibited = !ExternalSecureNoninvasiveDebugEnabled();

// Event counting might be frozen
frozen = FALSE;

// If FEAT_PMUv3p7 is implemented, event counting can be frozen
if HavePMUv3p7() then

bit FZ;
if resvd_for_el2 then

FZ = if HaveAArch64() then MDCR_EL2.HPMFZO else HDCR.HPMFZO;
else

FZ = if HaveAArch64() then PMCR_EL0.FZO else PMCR.FZO;

frozen = (FZ == '1') && HiLoPMUOverflow(resvd_for_el2);

frozen = frozen || SPEFreezeOnEvent(idx);

// PMCR_EL0.DP or PMCR.DP disables the cycle counter when event counting is prohibited
if (prohibited || frozen) && idx == CYCLE_COUNTER_ID then

dp = if HaveAArch64() then PMCR_EL0.DP else PMCR.DP;
enabled = enabled && dp == '0';
// Otherwise whether event counting is prohibited does not affect the cycle counter
prohibited = FALSE;
frozen = FALSE;

// If FEAT_PMUv3p5 is implemented, cycle counting can be prohibited.
// This is not overridden by PMCR_EL0.DP.
if HavePMUv3p5() && idx == CYCLE_COUNTER_ID then

if HaveEL(EL3) && ss == SS_Secure then
sccd = if HaveAArch64() then MDCR_EL3.SCCD else SDCR.SCCD;
if sccd == '1' then

prohibited = TRUE;

if PSTATE.EL == EL2 then
hccd = if HaveAArch64() then MDCR_EL2.HCCD else HDCR.HCCD;
if hccd == '1' then

prohibited = TRUE;

// If FEAT_PMUv3p7 is implemented, cycle counting an be prohibited at EL3.
// This is not overriden by PMCR_EL0.DP.
if HavePMUv3p7() && idx == CYCLE_COUNTER_ID then

if PSTATE.EL == EL3 && HaveAArch64() && MDCR_EL3.MCCD == '1' then
prohibited = TRUE;

// Event counting can be filtered by the {P, U, NSK, NSU, NSH, M, SH, RLK, RLU, RLH} bits
bits(32) filter;
case idx of

when INSTRUCTION_COUNTER_ID

Shared Pseudocode Functions Page 1949

filter = PMICFILTR_EL0<31:0>;
when CYCLE_COUNTER_ID

filter = if HaveAArch64() then PMCCFILTR_EL0<31:0> else PMCCFILTR;
otherwise

filter = if HaveAArch64() then PMEVTYPER_EL0[idx]<31:0> else PMEVTYPER[idx];

P = filter<31>;
U = filter<30>;
NSK = if HaveEL(EL3) then filter<29> else '0';
NSU = if HaveEL(EL3) then filter<28> else '0';
NSH = if HaveEL(EL2) then filter<27> else '0';
M = if HaveEL(EL3) && HaveAArch64() then filter<26> else '0';
SH = if HaveEL(EL3) && HaveSecureEL2Ext() then filter<24> else '0';
RLK = if HaveRME() then filter<22> else '0';
RLU = if HaveRME() then filter<21> else '0';
RLH = if HaveRME() then filter<20> else '0';

ss = CurrentSecurityState();
case PSTATE.EL of

when EL0
case ss of

when SS_NonSecure filtered = U != NSU;
when SS_Secure filtered = U == '1';
when SS_Realm filtered = U != RLU;

when EL1
case ss of

when SS_NonSecure filtered = P != NSK;
when SS_Secure filtered = P == '1';
when SS_Realm filtered = P != RLK;

when EL2
case ss of

when SS_NonSecure filtered = NSH == '0';
when SS_Secure filtered = NSH == SH;
when SS_Realm filtered = NSH == RLH;

when EL3
if HaveAArch64() then

filtered = M != P;
else

filtered = P == '1';

return !debug && enabled && !prohibited && !filtered && !frozen;

Library pseudocode for shared/debug/pmu/GetNumEventCounters

// GetNumEventCounters()
// =====================
// Returns the number of event counters implemented. This is indicated to software at the
// highest Exception level by PMCR.N in AArch32 state, and PMCR_EL0.N in AArch64 state.

integer GetNumEventCounters()
return integer IMPLEMENTATION_DEFINED "Number of event counters";

Library pseudocode for shared/debug/pmu/HasElapsed64Cycles

// HasElapsed64Cycles()
// ====================
// Returns TRUE if 64 cycles have elapsed between the last count, and FALSE otherwise.

boolean HasElapsed64Cycles();

Shared Pseudocode Functions Page 1950

Library pseudocode for shared/debug/pmu/HiLoPMUOverflow

// HiLoPMUOverflow()
// =================

boolean HiLoPMUOverflow(boolean resvd_for_el2)
boolean check_cnten = FALSE;
boolean check_e = FALSE;
boolean check_inten = FALSE;
boolean include_lo = !resvd_for_el2;
boolean include_hi = resvd_for_el2;
boolean exclude_cyc = FALSE;
boolean exclude_sync = FALSE;

boolean overflow = PMUOverflowCondition(check_e, check_cnten, check_inten,
include_hi, include_lo,
exclude_cyc, exclude_sync);

return overflow;

Library pseudocode for shared/debug/pmu/INSTRUCTION_COUNTER_ID

constant integer INSTRUCTION_COUNTER_ID = 32;

Library pseudocode for shared/debug/pmu/IncrementInstructionCounter

// IncrementInstructionCounter()
// =============================
// Increment the instruction counter and possibly set overflow bits.

IncrementInstructionCounter(integer increment)
if CountPMUEvents(INSTRUCTION_COUNTER_ID) then

integer old_value = UInt(PMICNTR_EL0);
integer new_value = old_value + increment;
PMICNTR_EL0 = new_value<63:0>;

// The effective value of PMCR_EL0.LP is '1' for the instruction counter
if old_value<64> != new_value<64> then

PMOVSSET_EL0.F0 = '1';
PMOVSCLR_EL0.F0 = '1';

return;

Shared Pseudocode Functions Page 1951

Library pseudocode for shared/debug/pmu/PMUCaptureEvent

// PMUCaptureEvent()
// =================
// If permitted and enabled, generate a PMU snapshot Capture event.

PMUCaptureEvent()
assert HaveEL(EL3) && IsFeatureImplemented(FEAT_PMUv3_SS) && HaveAArch64();
boolean debug_state = Halted();

if !PMUCaptureEventAllowed() then
// Indicate a Capture event in progress
PMSSCR_EL1.<NC,SS> = '10';
return;

for idx = 0 to GetNumEventCounters() - 1
PMEVCNTSVR_EL1[idx] = PMEVCNTR_EL0[idx];

PMCCNTSVR_EL1 = PMCCNTR_EL0;

if HavePMUv3ICNTR() then
PMICNTSVR_EL1 = PMICNTR_EL0;

if IsFeatureImplemented(FEAT_PCSRv8p9) && PMPCSCTL.SS == '1' then
if pc_sample.valid && !debug_state then

SetPCSample();
else

SetPCSRUnknown();

if (HaveBRBExt() && BranchRecordAllowed(PSTATE.EL) && BRBCR_EL1.FZPSS == '1' &&
(!HaveEL(EL2) || BRBCR_EL2.FZPSS == '1')) then

BRBEFreeze();

// Indicate a successful Capture event
PMSSCR_EL1.<NC,SS> = '00';
if !debug_state || ConstrainUnpredictableBool(Unpredictable_PMUSNAPSHOTEVENT) then

PMUEvent(PMU_EVENT_PMU_SNAPSHOT);

return;

Library pseudocode for shared/debug/pmu/PMUCaptureEventAllowed

// PMUCaptureEventAllowed()
// ========================
// Returns TRUE if PMU Capture events are allowed, and FALSE otherwise.

boolean PMUCaptureEventAllowed()
if !IsFeatureImplemented(FEAT_PMUv3_SS) || OSLockStatus() || !HaveAArch64() then

return FALSE;
if HaveEL(EL3) && MDCR_EL3.PMSSE != '01' then

return MDCR_EL3.PMSSE == '11';
elsif EL2Enabled() && ELUsingAArch32(EL2) then

return FALSE;
elsif EL2Enabled() && MDCR_EL2.PMSSE != '01' then

return MDCR_EL2.PMSSE == '11';
elsif ELUsingAArch32(EL1) then

return FALSE;
else

bits(2) pmsse_el1 = PMECR_EL1.SSE;
if pmsse_el1 == '01' then // Reserved value

Constraint c;
(c, pmsse_el1) = ConstrainUnpredictableBits(Unpredictable_RESPMSSE, 2);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then pmsse_el1 = '00';
// Otherwise the value returned by ConstrainUnpredictableBits must be
// a non-reserved value

return pmsse_el1 == '11';

Shared Pseudocode Functions Page 1952

Library pseudocode for shared/debug/pmu/PMUCaptureEventEnabled

// PMUCaptureEventEnabled()
// ========================
// Returns TRUE if PMU Capture events are enabled, and FALSE otherwise.

boolean PMUCaptureEventEnabled()
if !IsFeatureImplemented(FEAT_PMUv3_SS) || !HaveAArch64() then

return FALSE;
if HaveEL(EL3) && MDCR_EL3.PMSSE != '01' then

return MDCR_EL3.PMSSE IN {'1x'};
elsif EL2Enabled() && ELUsingAArch32(EL2) then

return FALSE;
elsif EL2Enabled() && MDCR_EL2.PMSSE != '01' then

return MDCR_EL2.PMSSE IN {'1x'};
elsif ELUsingAArch32(EL1) then

return FALSE;
else

bits(2) pmsse_el1 = PMECR_EL1.SSE;
if pmsse_el1 == '01' then // Reserved value

Constraint c;
(c, pmsse_el1) = ConstrainUnpredictableBits(Unpredictable_RESPMSSE, 2);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then pmsse_el1 = '00';
// Otherwise the value returned by ConstrainUnpredictableBits must be
// a non-reserved value

return pmsse_el1 IN {'1x'};

Shared Pseudocode Functions Page 1953

Library pseudocode for shared/debug/pmu/PMUCountValue

// PMUCountValue()
// ===============
// Implements the PMU threshold function, if implemented.
// Returns the value to increment event counter 'n' by.
// 'Vb' is the base value of the event that event counter 'n' is configured to count.

integer PMUCountValue(integer n, integer Vb)
if !HavePMUv3TH() || !HaveAArch64() then

return Vb;

integer T = UInt(PMEVTYPER_EL0[n].TH);
boolean Vc;

case PMEVTYPER_EL0[n].TC<2:1> of
when '00' Vc = (Vb != T); // Disabled or not-equal
when '01' Vc = (Vb == T); // Equals
when '10' Vc = (Vb >= T); // Greater-than-or-equal
when '11' Vc = (Vb < T); // Less-than

integer Vt;
if PMEVTYPER_EL0[n].TC<0> == '0' then

Vt = (if Vc then Vb else 0); // Count values
else

Vt = (if Vc then 1 else 0); // Count matches

integer v;
if HavePMUv3EDGE() && PMEVTYPER_EL0[n].TE == '1' then

Vp = PMULastThresholdValue[n];

tc = PMEVTYPER_EL0[n].TC<1:0>;
// Check for reserved case
if tc == '00' then

Constraint c;
(c, tc) = ConstrainUnpredictableBits(Unpredictable_RESTC, 2);
if c == Constraint_DISABLED then tc = '00';
// Otherwise the value returned by ConstrainUnpredictableBits
// must be a not-reserved value.

case tc of
when '00' v = Vt; // Reserved - treat as disabled
when '10' v = (if Vp != Vc then 1 else 0); // Both edges
when 'x1' v = (if !Vp && Vc then 1 else 0); // Single edge

else
v = Vt;

PMULastThresholdValue[n] = Vc;

return v;

Shared Pseudocode Functions Page 1954

Library pseudocode for shared/debug/pmu/PMUCounterIsHyp

// PMUCounterIsHyp()
// =================
// Returns TRUE if a counter is reserved for use by EL2, FALSE otherwise.

boolean PMUCounterIsHyp(integer n)
if n == INSTRUCTION_COUNTER_ID then return FALSE;
if n == CYCLE_COUNTER_ID then return FALSE;

boolean resvd_for_el2;
if HaveEL(EL2) then // Software can reserve some event counters for EL2

bits(5) hpmn_bits = if HaveAArch64() then MDCR_EL2.HPMN else HDCR.HPMN;
resvd_for_el2 = n >= UInt(hpmn_bits);
if UInt(hpmn_bits) > GetNumEventCounters() || (!HaveFeatHPMN0() && IsZero(hpmn_bits)) then

resvd_for_el2 = ConstrainUnpredictableBool(Unpredictable_CounterReservedForEL2);
else

resvd_for_el2 = FALSE;

return resvd_for_el2;

Library pseudocode for shared/debug/pmu/PMUCounterMask

// PMUCounterMask()
// ================
// Return bitmask of accessible PMU counters.

bits(64) PMUCounterMask()
integer n;
if UsingAArch32() then

n = AArch32.GetNumEventCountersAccessible();
else

n = AArch64.GetNumEventCountersAccessible();

mask = ZeroExtend(Ones(n), 64);
mask<CYCLE_COUNTER_ID> = '1';
if HaveAArch64() && HavePMUv3ICNTR() then mask<INSTRUCTION_COUNTER_ID> = '1';
return mask;

Shared Pseudocode Functions Page 1955

Library pseudocode for shared/debug/pmu/PMUEvent

constant bits(16) PMU_EVENT_PMU_SNAPSHOT = 0x8127<15:0>;
constant bits(16) PMU_EVENT_SAMPLE_FEED_BR = 0x812A<15:0>;
constant bits(16) PMU_EVENT_SAMPLE_FEED_LD = 0x812B<15:0>;
constant bits(16) PMU_EVENT_SAMPLE_FEED_ST = 0x812C<15:0>;
constant bits(16) PMU_EVENT_SAMPLE_FEED_OP = 0x812D<15:0>;
constant bits(16) PMU_EVENT_SAMPLE_FEED_EVENT = 0x812E<15:0>;
constant bits(16) PMU_EVENT_SAMPLE_FEED_LAT = 0x812F<15:0>;
constant bits(16) PMU_EVENT_DSNP_HIT_RD = 0x8194<15:0>;
constant bits(16) PMU_EVENT_L1D_CACHE_HITM_RD = 0x8214<15:0>;
constant bits(16) PMU_EVENT_L2D_CACHE_HITM_RD = 0x8215<15:0>;
constant bits(16) PMU_EVENT_L3D_CACHE_HITM_RD = 0x8216<15:0>;
constant bits(16) PMU_EVENT_LL_CACHE_HITM_RD = 0x8217<15:0>;
constant bits(16) PMU_EVENT_L1D_LFB_HIT_RD = 0x8244<15:0>;
constant bits(16) PMU_EVENT_L2D_LFB_HIT_RD = 0x8245<15:0>;
constant bits(16) PMU_EVENT_L3D_LFB_HIT_RD = 0x8246<15:0>;
constant bits(16) PMU_EVENT_LL_LFB_HIT_RD = 0x8247<15:0>;

// PMUEvent()
// ==========
// Generate a PMU event. By default, increment by 1.

PMUEvent(bits(16) pmuevent)
PMUEvent(pmuevent, 1);

// PMUEvent()
// ==========
// Accumulate a PMU Event.

PMUEvent(bits(16) pmuevent, integer increment)
if SPESampleInFlight then

SPEEvent(pmuevent);
integer counters = GetNumEventCounters();
if counters != 0 then

for idx = 0 to counters - 1
PMUEvent(pmuevent, increment, idx);

if HaveAArch64() && HavePMUv3ICNTR() && pmuevent == PMU_EVENT_INST_RETIRED then
IncrementInstructionCounter(increment);

// PMUEvent()
// ==========
// Accumulate a PMU Event for a specific event counter.

PMUEvent(bits(16) pmuevent, integer increment, integer idx)
if !HavePMUv3() then

return;

if UsingAArch32() then
if PMEVTYPER[idx].evtCount == pmuevent then

PMUEventAccumulator[idx] = PMUEventAccumulator[idx] + increment;
else

if PMEVTYPER_EL0[idx].evtCount == pmuevent then
PMUEventAccumulator[idx] = PMUEventAccumulator[idx] + increment;

Shared Pseudocode Functions Page 1956

Library pseudocode for shared/debug/pmu/PMUOverflowCondition

Shared Pseudocode Functions Page 1957

// PMUOverflowCondition()
// ======================
// Checks for PMU overflow under certain parameter conditions
// If 'check_e' is TRUE, then check the applicable one of PMCR_EL0.E and MDCR_EL2.HPME.
// If 'check_cnten' is TRUE, then check the applicable PMCNTENCLR_EL0 bit.
// If 'check_cnten' is TRUE, then check the applicable PMINTENCLR_EL1 bit.
// If 'include_lo' is TRUE, then check counters in the set [0..(HPMN-1)], CCNTR
// and ICNTR, unless excluded by other flags.
// If 'include_hi' is TRUE, then check counters in the set [HPMN..(N-1)].
// If 'exclude_cyc' is TRUE, then CCNTR is NOT checked.
// If 'exclude_sync' is TRUE, then counters in synchronous mode are NOT checked.

boolean PMUOverflowCondition(boolean check_e, boolean check_cnten,
boolean check_inten,
boolean include_hi, boolean include_lo,
boolean exclude_cyc, boolean exclude_sync)

integer counters = GetNumEventCounters();

bits(64) ovsf;

if HaveAArch64() then
ovsf = PMOVSCLR_EL0;

// Remove unimplemented counters - these fields are RES0
ovsf<63:33> = Zeros(31);

if !HavePMUv3ICNTR() then
ovsf<INSTRUCTION_COUNTER_ID> = '0';

else
ovsf = ZeroExtend(PMOVSR, 64);

if counters < 31 then
ovsf<30:counters> = Zeros(31-counters);

for idx = 0 to counters - 1
bit E;

boolean is_hyp = PMUCounterIsHyp(idx);
if HaveAArch64() then

E = (if is_hyp then MDCR_EL2.HPME else PMCR_EL0.E);

if exclude_sync then
bit sync = (PMCNTENCLR_EL0<idx> AND PMEVTYPER_EL0[idx].SYNC);
ovsf<idx> = ovsf<idx> AND NOT sync;

else
E = (if is_hyp then HDCR.HPME else PMCR.E);

if check_e then
ovsf<idx> = ovsf<idx> AND E;

if (!is_hyp && !include_lo) || (is_hyp && !include_hi) then
ovsf<idx> = '0';

// Cycle counter
if exclude_cyc || !include_lo then

ovsf<CYCLE_COUNTER_ID> = '0';

if check_e then
ovsf<CYCLE_COUNTER_ID> = ovsf<CYCLE_COUNTER_ID> AND PMCR_EL0.E;

// Instruction counter
if HaveAArch64() && HavePMUv3ICNTR() then

if !include_lo then
ovsf<INSTRUCTION_COUNTER_ID> = '0';

if exclude_sync then
bit sync = (PMCNTENCLR_EL0.F0 AND PMICFILTR_EL0.SYNC);
ovsf<INSTRUCTION_COUNTER_ID> = ovsf<INSTRUCTION_COUNTER_ID> AND NOT sync;

if check_e then
ovsf<INSTRUCTION_COUNTER_ID> = ovsf<INSTRUCTION_COUNTER_ID> AND PMCR_EL0.E;

Shared Pseudocode Functions Page 1958

if check_cnten then
bits(64) cnten = if HaveAArch64() then PMCNTENCLR_EL0 else ZeroExtend(PMCNTENCLR, 64);
ovsf = ovsf AND cnten;

if check_inten then
bits(64) inten = if HaveAArch64() then PMINTENCLR_EL1 else ZeroExtend(PMINTENCLR, 64);
ovsf = ovsf AND inten;

return !IsZero(ovsf);

Library pseudocode for shared/debug/samplebasedprofiling/CreatePCSample

// CreatePCSample()
// ================

CreatePCSample()
// In a simple sequential execution of the program, CreatePCSample is executed each time the PE
// executes an instruction that can be sampled. An implementation is not constrained such that
// reads of EDPCSRlo return the current values of PC, etc.

if IsFeatureImplemented(FEAT_PCSRv8p9) && PCSRSuspended() then return;
pc_sample.valid = ExternalNoninvasiveDebugAllowed() && !Halted();
pc_sample.pc = ThisInstrAddr(64);
pc_sample.el = PSTATE.EL;
pc_sample.rw = if UsingAArch32() then '0' else '1';
pc_sample.ss = CurrentSecurityState();
pc_sample.contextidr = if ELUsingAArch32(EL1) then CONTEXTIDR else CONTEXTIDR_EL1<31:0>;
pc_sample.has_el2 = PSTATE.EL != EL3 && EL2Enabled();

if pc_sample.has_el2 then
if ELUsingAArch32(EL2) then

pc_sample.vmid = ZeroExtend(VTTBR.VMID, 16);
elsif !Have16bitVMID() || VTCR_EL2.VS == '0' then

pc_sample.vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
else

pc_sample.vmid = VTTBR_EL2.VMID;
if (HaveVirtHostExt() || HaveV82Debug()) && !ELUsingAArch32(EL2) then

pc_sample.contextidr_el2 = CONTEXTIDR_EL2<31:0>;
else

pc_sample.contextidr_el2 = bits(32) UNKNOWN;
pc_sample.el0h = PSTATE.EL == EL0 && IsInHost();

return;

Library pseudocode for shared/debug/samplebasedprofiling/PCSRSuspended

// PCSRSuspended()
// ===============
// Returns TRUE if PC Sample-based Profiling is suspended, and FALSE otherwise.

boolean PCSRSuspended()
if PMPCSCTL.IMP == '1' then

return PMPCSCTL.EN == '0';
else

return boolean IMPLEMENTATION_DEFINED "PCSR is suspended";

Shared Pseudocode Functions Page 1959

Library pseudocode for shared/debug/samplebasedprofiling/PCSample

PCSample pc_sample;

// PCSample
// ========

type PCSample is (
boolean valid,
bits(64) pc,
bits(2) el,
bit rw,
SecurityState ss,
boolean has_el2,
bits(32) contextidr,
bits(32) contextidr_el2,
boolean el0h,
bits(16) vmid

)

Library pseudocode for shared/debug/samplebasedprofiling/Read_EDPCSRlo

// Read_EDPCSRlo()
// ===============

bits(32) Read_EDPCSRlo(boolean memory_mapped)

if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
IMPLEMENTATION_DEFINED "generate error response";
return bits(32) UNKNOWN;

// The Software lock is OPTIONAL.
update = !memory_mapped || EDLSR.SLK == '0'; // Software locked: no side-effects
bits(32) sample;
if pc_sample.valid then

sample = pc_sample.pc<31:0>;
if update then

if HaveVirtHostExt() && EDSCR.SC2 == '1' then
EDPCSRhi.PC = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
EDPCSRhi.EL = pc_sample.el;
EDPCSRhi.NS = (if pc_sample.ss == SS_Secure then '0' else '1');

else
EDPCSRhi = (if pc_sample.rw == '0' then Zeros(32) else pc_sample.pc<63:32>);

EDCIDSR = pc_sample.contextidr;
if (HaveVirtHostExt() || HaveV82Debug()) && EDSCR.SC2 == '1' then

EDVIDSR = (if pc_sample.has_el2 then pc_sample.contextidr_el2
else bits(32) UNKNOWN);

else
EDVIDSR.VMID = (if pc_sample.has_el2 && pc_sample.el IN {EL1,EL0}

then pc_sample.vmid else Zeros(16));
EDVIDSR.NS = (if pc_sample.ss == SS_Secure then '0' else '1');
EDVIDSR.E2 = (if pc_sample.el == EL2 then '1' else '0');
EDVIDSR.E3 = (if pc_sample.el == EL3 then '1' else '0') AND pc_sample.rw;
// The conditions for setting HV are not specified if PCSRhi is zero.
// An example implementation may be "pc_sample.rw".
EDVIDSR.HV = (if !IsZero(EDPCSRhi) then '1'

else bit IMPLEMENTATION_DEFINED "0 or 1");
else

sample = Ones(32);
if update then

EDPCSRhi = bits(32) UNKNOWN;
EDCIDSR = bits(32) UNKNOWN;
EDVIDSR = bits(32) UNKNOWN;

return sample;

Shared Pseudocode Functions Page 1960

Library pseudocode for shared/debug/samplebasedprofiling/Read_PMPCSR

// Read_PMPCSR()
// =============

bits(64) Read_PMPCSR(boolean memory_mapped)
if EDPRSR<6:5,0> != '001' then

IMPLEMENTATION_DEFINED "generate error response";
return bits(64) UNKNOWN;

// The Software lock is OPTIONAL.
update = !memory_mapped || PMLSR.SLK == '0'; // Software locked: no side-effects

if IsFeatureImplemented(FEAT_PCSRv8p9) && update then
if IsFeatureImplemented(FEAT_PMUv3_SS) && PMPCSCTL.SS == '1' then

update = FALSE;
elsif PMPCSCTL.<IMP,EN> == '10' || (PMPCSCTL.IMP == '0' && PCSRSuspended()) then

pc_sample.valid = FALSE;
SetPCSRActive();

if pc_sample.valid then
if update then SetPCSample();
return PMPCSR;

else
if update then SetPCSRUnknown();
return (bits(32) UNKNOWN : Ones(32));

Library pseudocode for shared/debug/samplebasedprofiling/SetPCSRActive

// SetPCSRActive()
// ===============
// Sets PC Sample-based Profiling to active state.

SetPCSRActive()
if PMPCSCTL.IMP == '1' then

PMPCSCTL.EN = '1';
// If PMPCSCTL.IMP reads as `0b0`, then PMPCSCTL.EN is RES0, and it is
// IMPLEMENTATION DEFINED whether PSCR is suspended or active at reset.

Library pseudocode for shared/debug/samplebasedprofiling/SetPCSRUnknown

// SetPCSRUnknown()
// ================
// Sets the PC sample registers to UNKNOWN values because PC sampling
// is prohibited.

SetPCSRUnknown()
PMPCSR<31:0> = Ones(32);
PMPCSR<55:32> = bits(24) UNKNOWN;
PMPCSR.EL = bits(2) UNKNOWN;
PMPCSR.NS = bit UNKNOWN;

PMCID1SR = bits(32) UNKNOWN;
PMCID2SR = bits(32) UNKNOWN;

PMVIDSR.VMID = bits(16) UNKNOWN;

return;

Shared Pseudocode Functions Page 1961

Library pseudocode for shared/debug/samplebasedprofiling/SetPCSample

// SetPCSample()
// =============
// Sets the PC sample registers to the appropriate sample values.

SetPCSample()
PMPCSR<31:0> = pc_sample.pc<31:0>;
PMPCSR<55:32> = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
PMPCSR.EL = pc_sample.el;
if HaveRME() then

case pc_sample.ss of
when SS_Secure

PMPCSR.NSE = '0'; PMPCSR.NS = '0';
when SS_NonSecure

PMPCSR.NSE = '0'; PMPCSR.NS = '1';
when SS_Root

PMPCSR.NSE = '1'; PMPCSR.NS = '0';
when SS_Realm

PMPCSR.NSE = '1'; PMPCSR.NS = '1';
else

PMPCSR.NS = (if pc_sample.ss == SS_Secure then '0' else '1');

PMCID1SR = pc_sample.contextidr;
PMCID2SR = if pc_sample.has_el2 then pc_sample.contextidr_el2 else bits(32) UNKNOWN;

PMVIDSR.VMID = (if pc_sample.has_el2 && pc_sample.el IN {EL1,EL0} && !pc_sample.el0h
then pc_sample.vmid else bits(16) UNKNOWN);

return;

Library pseudocode for shared/debug/softwarestep/CheckSoftwareStep

// CheckSoftwareStep()
// ===================
// Take a Software Step exception if in the active-pending state

CheckSoftwareStep()

// Other self-hosted debug functions will call AArch32.GenerateDebugExceptions() if called from
// AArch32 state. However, because Software Step is only active when the debug target Exception
// level is using AArch64, CheckSoftwareStep only calls AArch64.GenerateDebugExceptions().
step_enabled = (!ELUsingAArch32(DebugTarget()) && AArch64.GenerateDebugExceptions() &&

MDSCR_EL1.SS == '1');
active_pending = step_enabled && PSTATE.SS == '0'; // active-pending
if active_pending then

AArch64.SoftwareStepException();
ShouldAdvanceSS = TRUE;
return;

Shared Pseudocode Functions Page 1962

Library pseudocode for shared/debug/softwarestep/DebugExceptionReturnSS

// DebugExceptionReturnSS()
// ========================
// Returns value to write to PSTATE.SS on an exception return or Debug state exit.

bit DebugExceptionReturnSS(bits(N) spsr)
assert Halted() || Restarting() || PSTATE.EL != EL0;

boolean enabled_at_source;
if Restarting() then

enabled_at_source = FALSE;
elsif UsingAArch32() then

enabled_at_source = AArch32.GenerateDebugExceptions();
else

enabled_at_source = AArch64.GenerateDebugExceptions();

boolean valid;
bits(2) dest_el;
if IllegalExceptionReturn(spsr) then

dest_el = PSTATE.EL;
else

(valid, dest_el) = ELFromSPSR(spsr); assert valid;

dest_ss = SecurityStateAtEL(dest_el);
bit mask;
boolean enabled_at_dest;
dest_using_32 = (if dest_el == EL0 then spsr<4> == '1' else ELUsingAArch32(dest_el));
if dest_using_32 then

enabled_at_dest = AArch32.GenerateDebugExceptionsFrom(dest_el, dest_ss);
else

mask = spsr<9>;
enabled_at_dest = AArch64.GenerateDebugExceptionsFrom(dest_el, dest_ss, mask);

ELd = DebugTargetFrom(dest_ss);
bit SS_bit;
if !ELUsingAArch32(ELd) && MDSCR_EL1.SS == '1' && !enabled_at_source && enabled_at_dest then

SS_bit = spsr<21>;
else

SS_bit = '0';

return SS_bit;

Library pseudocode for shared/debug/softwarestep/SSAdvance

// SSAdvance()
// ===========
// Advance the Software Step state machine.

SSAdvance()

// A simpler implementation of this function just clears PSTATE.SS to zero regardless of the
// current Software Step state machine. However, this check is made to illustrate that the
// processor only needs to consider advancing the state machine from the active-not-pending
// state.
if !ShouldAdvanceSS then return;
target = DebugTarget();
step_enabled = !ELUsingAArch32(target) && MDSCR_EL1.SS == '1';
active_not_pending = step_enabled && PSTATE.SS == '1';
if active_not_pending then PSTATE.SS = '0';
ShouldAdvanceSS = FALSE;
return;

Shared Pseudocode Functions Page 1963

Library pseudocode for shared/debug/softwarestep/SoftwareStep_DidNotStep

// SoftwareStep_DidNotStep()
// =========================
// Returns TRUE if the previously executed instruction was executed in the
// inactive state, that is, if it was not itself stepped.
// Might return TRUE or FALSE if the previously executed instruction was an ISB
// or ERET executed in the active-not-pending state, or if another exception
// was taken before the Software Step exception. Returns FALSE otherwise,
// indicating that the previously executed instruction was executed in the
// active-not-pending state, that is, the instruction was stepped.

boolean SoftwareStep_DidNotStep();

Library pseudocode for shared/debug/softwarestep/SoftwareStep_SteppedEX

// SoftwareStep_SteppedEX()
// ========================
// Returns a value that describes the previously executed instruction. The
// result is valid only if SoftwareStep_DidNotStep() returns FALSE.
// Might return TRUE or FALSE if the instruction was an AArch32 LDREX or LDAEX
// that failed its condition code test. Otherwise returns TRUE if the
// instruction was a Load-Exclusive class instruction, and FALSE if the
// instruction was not a Load-Exclusive class instruction.
boolean SoftwareStep_SteppedEX();

Library pseudocode for shared/exceptions/exceptions/ConditionSyndrome

// ConditionSyndrome()
// ===================
// Return CV and COND fields of instruction syndrome

bits(5) ConditionSyndrome()

bits(5) syndrome;

if UsingAArch32() then
cond = AArch32.CurrentCond();
if PSTATE.T == '0' then // A32

syndrome<4> = '1';
// A conditional A32 instruction that is known to pass its condition code check
// can be presented either with COND set to 0xE, the value for unconditional, or
// the COND value held in the instruction.
if ConditionHolds(cond) && ConstrainUnpredictableBool(Unpredictable_ESRCONDPASS) then

syndrome<3:0> = '1110';
else

syndrome<3:0> = cond;
else // T32

// When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
// * CV set to 0 and COND is set to an UNKNOWN value
// * CV set to 1 and COND is set to the condition code for the condition that
// applied to the instruction.
if boolean IMPLEMENTATION_DEFINED "Condition valid for trapped T32" then

syndrome<4> = '1';
syndrome<3:0> = cond;

else
syndrome<4> = '0';
syndrome<3:0> = bits(4) UNKNOWN;

else
syndrome<4> = '1';
syndrome<3:0> = '1110';

return syndrome;

Shared Pseudocode Functions Page 1964

Library pseudocode for shared/exceptions/exceptions/Exception

// Exception
// =========
// Classes of exception.

enumeration Exception {
Exception_Uncategorized, // Uncategorized or unknown reason
Exception_WFxTrap, // Trapped WFI or WFE instruction
Exception_CP15RTTrap, // Trapped AArch32 MCR or MRC access, coproc=0b111
Exception_CP15RRTTrap, // Trapped AArch32 MCRR or MRRC access, coproc=0b1111
Exception_CP14RTTrap, // Trapped AArch32 MCR or MRC access, coproc=0b1110
Exception_CP14DTTrap, // Trapped AArch32 LDC or STC access, coproc=0b1110
Exception_CP14RRTTrap, // Trapped AArch32 MRRC access, coproc=0b1110
Exception_AdvSIMDFPAccessTrap, // HCPTR-trapped access to SIMD or FP
Exception_FPIDTrap, // Trapped access to SIMD or FP ID register
Exception_LDST64BTrap, // Trapped access to ST64BV, ST64BV0, ST64B and LD64B
// Trapped BXJ instruction not supported in Armv8
Exception_PACTrap, // Trapped invalid PAC use
Exception_IllegalState, // Illegal Execution state
Exception_SupervisorCall, // Supervisor Call
Exception_HypervisorCall, // Hypervisor Call
Exception_MonitorCall, // Monitor Call or Trapped SMC instruction
Exception_SystemRegisterTrap, // Trapped MRS or MSR System register access
Exception_ERetTrap, // Trapped invalid ERET use
Exception_InstructionAbort, // Instruction Abort or Prefetch Abort
Exception_PCAlignment, // PC alignment fault
Exception_DataAbort, // Data Abort
Exception_NV2DataAbort, // Data abort at EL1 reported as being from EL2
Exception_PACFail, // PAC Authentication failure
Exception_SPAlignment, // SP alignment fault
Exception_FPTrappedException, // IEEE trapped FP exception
Exception_SError, // SError interrupt
Exception_Breakpoint, // (Hardware) Breakpoint
Exception_SoftwareStep, // Software Step
Exception_Watchpoint, // Watchpoint
Exception_NV2Watchpoint, // Watchpoint at EL1 reported as being from EL2
Exception_SoftwareBreakpoint, // Software Breakpoint Instruction
Exception_VectorCatch, // AArch32 Vector Catch
Exception_IRQ, // IRQ interrupt
Exception_SVEAccessTrap, // HCPTR trapped access to SVE
Exception_SMEAccessTrap, // HCPTR trapped access to SME
Exception_TSTARTAccessTrap, // Trapped TSTART access
Exception_GPC, // Granule protection check
Exception_BranchTarget, // Branch Target Identification
Exception_MemCpyMemSet, // Exception from a CPY* or SET* instruction
Exception_GCSFail, // GCS Exceptions
Exception_PMU, // PMU exception
Exception_SystemRegister128Trap, // Trapped MRRS or MSRR System register or SYSP access
Exception_FIQ}; // FIQ interrupt

Library pseudocode for shared/exceptions/exceptions/ExceptionRecord

// ExceptionRecord
// ===============

type ExceptionRecord is (
Exception exceptype, // Exception class
bits(25) syndrome, // Syndrome record
bits(24) syndrome2, // Syndrome record
FullAddress paddress, // Physical fault address
bits(64) vaddress, // Virtual fault address
boolean ipavalid, // Validity of Intermediate Physical fault address
boolean pavalid, // Validity of Physical fault address
bit NS, // Intermediate Physical fault address space
bits(56) ipaddress, // Intermediate Physical fault address
boolean trappedsyscallinst) // Trapped SVC or SMC instruction

Shared Pseudocode Functions Page 1965

Library pseudocode for shared/exceptions/exceptions/ExceptionSyndrome

// ExceptionSyndrome()
// ===================
// Return a blank exception syndrome record for an exception of the given type.

ExceptionRecord ExceptionSyndrome(Exception exceptype)

ExceptionRecord r;

r.exceptype = exceptype;

// Initialize all other fields
r.syndrome = Zeros(25);
r.syndrome2 = Zeros(24);
r.vaddress = Zeros(64);
r.ipavalid = FALSE;
r.NS = '0';
r.ipaddress = Zeros(56);
r.paddress.paspace = PASpace UNKNOWN;
r.paddress.address = bits(56) UNKNOWN;
r.trappedsyscallinst = FALSE;
return r;

Library pseudocode for shared/exceptions/traps/Undefined

// Undefined()
// ===========

Undefined()
if UsingAArch32() then

AArch32.Undefined();
else

AArch64.Undefined();

Shared Pseudocode Functions Page 1966

Library pseudocode for shared/functions/aborts/EncodeLDFSC

// EncodeLDFSC()
// =============
// Function that gives the Long-descriptor FSC code for types of Fault

bits(6) EncodeLDFSC(Fault statuscode, integer level)
bits(6) result;

// 128-bit descriptors will start from level -2 for 4KB to resolve bits IA[55:51]
if level == -2 then

assert Have56BitPAExt();
case statuscode of

when Fault_AddressSize result = '101100';
when Fault_Translation result = '101010';
when Fault_SyncExternalOnWalk result = '010010';
when Fault_SyncParityOnWalk result = '011010'; assert !HaveRASExt();
when Fault_GPCFOnWalk result = '100010';
otherwise Unreachable();

return result;

if level == -1 then
assert Have52BitIPAAndPASpaceExt();
case statuscode of

when Fault_AddressSize result = '101001';
when Fault_Translation result = '101011';
when Fault_SyncExternalOnWalk result = '010011';
when Fault_SyncParityOnWalk result = '011011'; assert !HaveRASExt();
when Fault_GPCFOnWalk result = '100011';
otherwise Unreachable();

return result;
case statuscode of

when Fault_AddressSize result = '0000':level<1:0>; assert level IN {0,1,2,3};
when Fault_AccessFlag result = '0010':level<1:0>; assert level IN {0,1,2,3};
when Fault_Permission result = '0011':level<1:0>; assert level IN {0,1,2,3};
when Fault_Translation result = '0001':level<1:0>; assert level IN {0,1,2,3};
when Fault_SyncExternal result = '010000';
when Fault_SyncExternalOnWalk result = '0101':level<1:0>; assert level IN {0,1,2,3};
when Fault_SyncParity result = '011000';
when Fault_SyncParityOnWalk result = '0111':level<1:0>; assert level IN {0,1,2,3};
when Fault_AsyncParity result = '011001';
when Fault_AsyncExternal result = '010001'; assert UsingAArch32();
when Fault_TagCheck result = '010001'; assert HaveMTE2Ext();
when Fault_Alignment result = '100001';
when Fault_Debug result = '100010';
when Fault_GPCFOnWalk result = '1001':level<1:0>; assert level IN {0,1,2,3};
when Fault_GPCFOnOutput result = '101000';
when Fault_TLBConflict result = '110000';
when Fault_HWUpdateAccessFlag result = '110001';
when Fault_Lockdown result = '110100'; // IMPLEMENTATION DEFINED
when Fault_Exclusive result = '110101'; // IMPLEMENTATION DEFINED
otherwise Unreachable();

return result;

Shared Pseudocode Functions Page 1967

Library pseudocode for shared/functions/aborts/IPAValid

// IPAValid()
// ==========
// Return TRUE if the IPA is reported for the abort

boolean IPAValid(FaultRecord fault)
assert fault.statuscode != Fault_None;

if fault.gpcf.gpf != GPCF_None then
return fault.secondstage;

elsif fault.s2fs1walk then
return fault.statuscode IN {

Fault_AccessFlag,
Fault_Permission,
Fault_Translation,
Fault_AddressSize

};
elsif fault.secondstage then

return fault.statuscode IN {
Fault_AccessFlag,
Fault_Translation,
Fault_AddressSize

};
else

return FALSE;

Library pseudocode for shared/functions/aborts/IsAsyncAbort

// IsAsyncAbort()
// ==============
// Returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE
// otherwise.

boolean IsAsyncAbort(Fault statuscode)
assert statuscode != Fault_None;

return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

// IsAsyncAbort()
// ==============

boolean IsAsyncAbort(FaultRecord fault)
return IsAsyncAbort(fault.statuscode);

Library pseudocode for shared/functions/aborts/IsDebugException

// IsDebugException()
// ==================

boolean IsDebugException(FaultRecord fault)
assert fault.statuscode != Fault_None;
return fault.statuscode == Fault_Debug;

Shared Pseudocode Functions Page 1968

Library pseudocode for shared/functions/aborts/IsExternalAbort

// IsExternalAbort()
// =================
// Returns TRUE if the abort currently being processed is an External abort and FALSE otherwise.

boolean IsExternalAbort(Fault statuscode)
assert statuscode != Fault_None;

return (statuscode IN {
Fault_SyncExternal,
Fault_SyncParity,
Fault_SyncExternalOnWalk,
Fault_SyncParityOnWalk,
Fault_AsyncExternal,
Fault_AsyncParity

});

// IsExternalAbort()
// =================

boolean IsExternalAbort(FaultRecord fault)
return IsExternalAbort(fault.statuscode) || fault.gpcf.gpf == GPCF_EABT;

Library pseudocode for shared/functions/aborts/IsExternalSyncAbort

// IsExternalSyncAbort()
// =====================
// Returns TRUE if the abort currently being processed is an external
// synchronous abort and FALSE otherwise.

boolean IsExternalSyncAbort(Fault statuscode)
assert statuscode != Fault_None;

return (statuscode IN {
Fault_SyncExternal,
Fault_SyncParity,
Fault_SyncExternalOnWalk,
Fault_SyncParityOnWalk

});

// IsExternalSyncAbort()
// =====================

boolean IsExternalSyncAbort(FaultRecord fault)
return IsExternalSyncAbort(fault.statuscode) || fault.gpcf.gpf == GPCF_EABT;

Shared Pseudocode Functions Page 1969

Library pseudocode for shared/functions/aborts/IsFault

// IsFault()
// =========
// Return TRUE if a fault is associated with an address descriptor

boolean IsFault(AddressDescriptor addrdesc)
return addrdesc.fault.statuscode != Fault_None;

// IsFault()
// =========
// Return TRUE if a fault is associated with a memory access.

boolean IsFault(Fault fault)
return fault != Fault_None;

// IsFault()
// =========
// Return TRUE if a fault is associated with status returned by memory.

boolean IsFault(PhysMemRetStatus retstatus)
return retstatus.statuscode != Fault_None;

Library pseudocode for shared/functions/aborts/IsSErrorInterrupt

// IsSErrorInterrupt()
// ===================
// Returns TRUE if the abort currently being processed is an SError interrupt, and FALSE
// otherwise.

boolean IsSErrorInterrupt(Fault statuscode)
assert statuscode != Fault_None;

return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

// IsSErrorInterrupt()
// ===================

boolean IsSErrorInterrupt(FaultRecord fault)
return IsSErrorInterrupt(fault.statuscode);

Library pseudocode for shared/functions/aborts/IsSecondStage

// IsSecondStage()
// ===============

boolean IsSecondStage(FaultRecord fault)
assert fault.statuscode != Fault_None;

return fault.secondstage;

Library pseudocode for shared/functions/aborts/LSInstructionSyndrome

// LSInstructionSyndrome()
// =======================
// Returns the extended syndrome information for a second stage fault.
// <10> - Syndrome valid bit. The syndrome is valid only for certain types of access instruction.
// <9:8> - Access size.
// <7> - Sign extended (for loads).
// <6:2> - Transfer register.
// <1> - Transfer register is 64-bit.
// <0> - Instruction has acquire/release semantics.

bits(11) LSInstructionSyndrome();

Shared Pseudocode Functions Page 1970

Library pseudocode for shared/functions/aborts/ReportAsGPCException

// ReportAsGPCException()
// ======================
// Determine whether the given GPCF is reported as a Granule Protection Check Exception
// rather than a Data or Instruction Abort

boolean ReportAsGPCException(FaultRecord fault)
assert HaveRME();
assert fault.statuscode IN {Fault_GPCFOnWalk, Fault_GPCFOnOutput};
assert fault.gpcf.gpf != GPCF_None;

case fault.gpcf.gpf of
when GPCF_Walk return TRUE;
when GPCF_AddressSize return TRUE;
when GPCF_EABT return TRUE;
when GPCF_Fail return SCR_EL3.GPF == '1' && PSTATE.EL != EL3;

Library pseudocode for shared/functions/cache/CACHE_OP

// CACHE_OP()
// ==========
// Performs Cache maintenance operations as per CacheRecord.

CACHE_OP(CacheRecord cache)
IMPLEMENTATION_DEFINED;

Library pseudocode for shared/functions/cache/CPASAtPAS

// CPASAtPAS()
// ===========
// Get cache PA space for given PA space.

CachePASpace CPASAtPAS(PASpace pas)
case pas of

when PAS_NonSecure
return CPAS_NonSecure;

when PAS_Secure
return CPAS_Secure;

when PAS_Root
return CPAS_Root;

when PAS_Realm
return CPAS_Realm;

Library pseudocode for shared/functions/cache/CPASAtSecurityState

// CPASAtSecurityState()
// =====================
// Get cache PA space for given security state.

CachePASpace CPASAtSecurityState(SecurityState ss)
case ss of

when SS_NonSecure
return CPAS_NonSecure;

when SS_Secure
return CPAS_SecureNonSecure;

when SS_Root
return CPAS_Any;

when SS_Realm
return CPAS_RealmNonSecure;

Shared Pseudocode Functions Page 1971

Library pseudocode for shared/functions/cache/CacheRecord

// CacheRecord
// ===========
// Details related to a cache operation.

type CacheRecord is (
AccessType acctype, // Access type
CacheOp cacheop, // Cache operation
CacheOpScope opscope, // Cache operation type
CacheType cachetype, // Cache type
bits(64) regval,
FullAddress paddress,
bits(64) vaddress, // For VA operations
integer setnum, // For SW operations
integer waynum, // For SW operations
integer level, // For SW operations
Shareability shareability,
boolean translated,
boolean is_vmid_valid, // is vmid valid for current context
bits(16) vmid,
boolean is_asid_valid, // is asid valid for current context
bits(16) asid,
SecurityState security,
// For cache operations to full cache or by setnum/waynum
// For operations by address, PA space in paddress
CachePASpace cpas

)

Library pseudocode for shared/functions/cache/DCInstNeedsTranslation

// DCInstNeedsTranslation()
// ========================
// Check whether Data Cache operation needs translation.

boolean DCInstNeedsTranslation(CacheOpScope opscope)
if opscope == CacheOpScope_PoE then

return FALSE;

if opscope == CacheOpScope_PoPA then
return FALSE;

if CLIDR_EL1.LoC == '000' then
return !(boolean IMPLEMENTATION_DEFINED

"No fault generated for DC operations if PoC is before any level of cache");

if CLIDR_EL1.LoUU == '000' && opscope == CacheOpScope_PoU then
return !(boolean IMPLEMENTATION_DEFINED

"No fault generated for DC operations if PoU is before any level of cache");

return TRUE;

Library pseudocode for shared/functions/cache/DecodeSW

// DecodeSW()
// ==========
// Decode input value into setnum, waynum and level for SW instructions.

(integer, integer, integer) DecodeSW(bits(64) regval, CacheType cachetype)
level = UInt(regval[3:1]);
(setnum, waynum, linesize) = GetCacheInfo(level, cachetype);
return (setnum, waynum, level);

Shared Pseudocode Functions Page 1972

Library pseudocode for shared/functions/cache/GetCacheInfo

// GetCacheInfo()
// ==============
// Returns numsets, assosciativity & linesize.

(integer, integer, integer) GetCacheInfo(integer level, CacheType cachetype);

Library pseudocode for shared/functions/cache/ICInstNeedsTranslation

// ICInstNeedsTranslation()
// ========================
// Check whether Instruction Cache operation needs translation.

boolean ICInstNeedsTranslation(CacheOpScope opscope)
return boolean IMPLEMENTATION_DEFINED "Instruction Cache needs translation";

Library pseudocode for shared/functions/common/ASR

// ASR()
// =====

bits(N) ASR(bits(N) x, integer shift)
assert shift >= 0;
bits(N) result;
if shift == 0 then

result = x;
else

(result, -) = ASR_C(x, shift);
return result;

Library pseudocode for shared/functions/common/ASR_C

// ASR_C()
// =======

(bits(N), bit) ASR_C(bits(N) x, integer shift)
assert shift > 0 && shift < 256;
extended_x = SignExtend(x, shift+N);
result = extended_x<(shift+N)-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

Library pseudocode for shared/functions/common/Abs

// Abs()
// =====

integer Abs(integer x)
return if x >= 0 then x else -x;

// Abs()
// =====

real Abs(real x)
return if x >= 0.0 then x else -x;

Shared Pseudocode Functions Page 1973

Library pseudocode for shared/functions/common/Align

// Align()
// =======

integer Align(integer x, integer y)
return y * (x DIV y);

// Align()
// =======

bits(N) Align(bits(N) x, integer y)
return Align(UInt(x), y)<N-1:0>;

Library pseudocode for shared/functions/common/BitCount

// BitCount()
// ==========

integer BitCount(bits(N) x)
integer result = 0;
for i = 0 to N-1

if x<i> == '1' then
result = result + 1;

return result;

Library pseudocode for shared/functions/common/CountLeadingSignBits

// CountLeadingSignBits()
// ======================

integer CountLeadingSignBits(bits(N) x)
return CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>);

Library pseudocode for shared/functions/common/CountLeadingZeroBits

// CountLeadingZeroBits()
// ======================

integer CountLeadingZeroBits(bits(N) x)
return N - (HighestSetBit(x) + 1);

Library pseudocode for shared/functions/common/Elem

// Elem[] - non-assignment form
// ============================

bits(size) Elem[bits(N) vector, integer e, integer size]
assert e >= 0 && (e+1)*size <= N;
return vector<(e*size+size)-1 : e*size>;

// Elem[] - assignment form
// ========================

Elem[bits(N) &vector, integer e, integer size] = bits(size) value
assert e >= 0 && (e+1)*size <= N;
vector<(e+1)*size-1:e*size> = value;
return;

Library pseudocode for shared/functions/common/Extend

// Extend()
// ========

bits(N) Extend(bits(M) x, integer N, boolean unsigned)
return if unsigned then ZeroExtend(x, N) else SignExtend(x, N);

Shared Pseudocode Functions Page 1974

Library pseudocode for shared/functions/common/HighestSetBit

// HighestSetBit()
// ===============

integer HighestSetBit(bits(N) x)
for i = N-1 downto 0

if x<i> == '1' then return i;
return -1;

Library pseudocode for shared/functions/common/Int

// Int()
// =====

integer Int(bits(N) x, boolean unsigned)
result = if unsigned then UInt(x) else SInt(x);
return result;

Library pseudocode for shared/functions/common/IsAligned

// IsAligned()
// ===========

boolean IsAligned(bits(N) x, integer y)
return x == Align(x, y);

Library pseudocode for shared/functions/common/IsOnes

// IsOnes()
// ========

boolean IsOnes(bits(N) x)
return x == Ones(N);

Library pseudocode for shared/functions/common/IsZero

// IsZero()
// ========

boolean IsZero(bits(N) x)
return x == Zeros(N);

Library pseudocode for shared/functions/common/IsZeroBit

// IsZeroBit()
// ===========

bit IsZeroBit(bits(N) x)
return if IsZero(x) then '1' else '0';

Library pseudocode for shared/functions/common/LSL

// LSL()
// =====

bits(N) LSL(bits(N) x, integer shift)
assert shift >= 0;
bits(N) result;
if shift == 0 then

result = x;
else

(result, -) = LSL_C(x, shift);
return result;

Shared Pseudocode Functions Page 1975

Library pseudocode for shared/functions/common/LSL_C

// LSL_C()
// =======

(bits(N), bit) LSL_C(bits(N) x, integer shift)
assert shift > 0 && shift < 256;
extended_x = x : Zeros(shift);
result = extended_x<N-1:0>;
carry_out = extended_x<N>;
return (result, carry_out);

Library pseudocode for shared/functions/common/LSR

// LSR()
// =====

bits(N) LSR(bits(N) x, integer shift)
assert shift >= 0;
bits(N) result;
if shift == 0 then

result = x;
else

(result, -) = LSR_C(x, shift);
return result;

Library pseudocode for shared/functions/common/LSR_C

// LSR_C()
// =======

(bits(N), bit) LSR_C(bits(N) x, integer shift)
assert shift > 0 && shift < 256;
extended_x = ZeroExtend(x, shift+N);
result = extended_x<(shift+N)-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

Library pseudocode for shared/functions/common/LowestSetBit

// LowestSetBit()
// ==============

integer LowestSetBit(bits(N) x)
for i = 0 to N-1

if x<i> == '1' then return i;
return N;

Library pseudocode for shared/functions/common/Max

// Max()
// =====

integer Max(integer a, integer b)
return if a >= b then a else b;

// Max()
// =====

real Max(real a, real b)
return if a >= b then a else b;

Shared Pseudocode Functions Page 1976

Library pseudocode for shared/functions/common/Min

// Min()
// =====

integer Min(integer a, integer b)
return if a <= b then a else b;

// Min()
// =====

real Min(real a, real b)
return if a <= b then a else b;

Library pseudocode for shared/functions/common/Ones

// Ones()
// ======

bits(N) Ones(integer N)
return Replicate('1',N);

Library pseudocode for shared/functions/common/ROR

// ROR()
// =====

bits(N) ROR(bits(N) x, integer shift)
assert shift >= 0;
bits(N) result;
if shift == 0 then

result = x;
else

(result, -) = ROR_C(x, shift);
return result;

Library pseudocode for shared/functions/common/ROR_C

// ROR_C()
// =======

(bits(N), bit) ROR_C(bits(N) x, integer shift)
assert shift != 0 && shift < 256;
m = shift MOD N;
result = LSR(x,m) OR LSL(x,N-m);
carry_out = result<N-1>;
return (result, carry_out);

Library pseudocode for shared/functions/common/RShr

// RShr()
// ======
// Shift integer value right with rounding

integer RShr(integer value, integer shift, boolean round)
assert shift > 0;
if round then

return (value + (1 << (shift - 1))) >> shift;
else

return value >> shift;

Shared Pseudocode Functions Page 1977

Library pseudocode for shared/functions/common/Replicate

// Replicate()
// ===========

bits(M*N) Replicate(bits(M) x, integer N);

Library pseudocode for shared/functions/common/RoundDown

// RoundDown()
// ===========

integer RoundDown(real x);

Library pseudocode for shared/functions/common/RoundTowardsZero

// RoundTowardsZero()
// ==================

integer RoundTowardsZero(real x)
return if x == 0.0 then 0 else if x >= 0.0 then RoundDown(x) else RoundUp(x);

Library pseudocode for shared/functions/common/RoundUp

// RoundUp()
// =========

integer RoundUp(real x);

Library pseudocode for shared/functions/common/SInt

// SInt()
// ======

integer SInt(bits(N) x)
result = 0;
for i = 0 to N-1

if x<i> == '1' then result = result + 2^i;
if x<N-1> == '1' then result = result - 2^N;
return result;

Library pseudocode for shared/functions/common/SignExtend

// SignExtend()
// ============

bits(N) SignExtend(bits(M) x, integer N)
assert N >= M;
return Replicate(x<M-1>, N-M) : x;

Library pseudocode for shared/functions/common/Signal

// Signal
// ======
// Available signal types

enumeration Signal {Signal_Low, Signal_High};

Shared Pseudocode Functions Page 1978

Library pseudocode for shared/functions/common/Split

// Split()
// =======

(bits(M-N), bits(N)) Split(bits(M) value, integer N)
assert M > N;
return (value<M-1:N>, value<N-1:0>);

Library pseudocode for shared/functions/common/UInt

// UInt()
// ======

integer UInt(bits(N) x)
result = 0;
for i = 0 to N-1

if x<i> == '1' then result = result + 2^i;
return result;

Library pseudocode for shared/functions/common/ZeroExtend

// ZeroExtend()
// ============

bits(N) ZeroExtend(bits(M) x, integer N)
assert N >= M;
return Zeros(N-M) : x;

Library pseudocode for shared/functions/common/Zeros

// Zeros()
// =======

bits(N) Zeros(integer N)
return Replicate('0',N);

Shared Pseudocode Functions Page 1979

Library pseudocode for shared/functions/counters/AArch32.CheckTimerConditions

// AArch32.CheckTimerConditions()
// ==============================
// Checking timer conditions for all A32 timer registers

AArch32.CheckTimerConditions()
boolean status;
bits(64) offset;
offset = Zeros(64);
assert !HaveAArch64();

if HaveEL(EL3) then
if CNTP_CTL_S.ENABLE == '1' then

status = IsTimerConditionMet(offset, CNTP_CVAL_S,
CNTP_CTL_S.IMASK, InterruptID_CNTPS);

CNTP_CTL_S.ISTATUS = if status then '1' else '0';

if CNTP_CTL_NS.ENABLE == '1' then
status = IsTimerConditionMet(offset, CNTP_CVAL_NS,

CNTP_CTL_NS.IMASK, InterruptID_CNTP);
CNTP_CTL_NS.ISTATUS = if status then '1' else '0';

else
if CNTP_CTL.ENABLE == '1' then

status = IsTimerConditionMet(offset, CNTP_CVAL,
CNTP_CTL.IMASK, InterruptID_CNTP);

CNTP_CTL.ISTATUS = if status then '1' else '0';

if HaveEL(EL2) && CNTHP_CTL.ENABLE == '1' then
status = IsTimerConditionMet(offset, CNTHP_CVAL,

CNTHP_CTL.IMASK, InterruptID_CNTHP);
CNTHP_CTL.ISTATUS = if status then '1' else '0';

if CNTV_CTL_EL0.ENABLE == '1' then
status = IsTimerConditionMet(CNTVOFF_EL2, CNTV_CVAL_EL0,

CNTV_CTL_EL0.IMASK, InterruptID_CNTV);
CNTV_CTL_EL0.ISTATUS = if status then '1' else '0';

return;

Shared Pseudocode Functions Page 1980

Library pseudocode for shared/functions/counters/AArch64.CheckTimerConditions

// AArch64.CheckTimerConditions()
// ==============================
// Checking timer conditions for all A64 timer registers

AArch64.CheckTimerConditions()
boolean status;
bits(64) offset;
bit imask;
SecurityState ss = CurrentSecurityState();
boolean ecv = FALSE;
if HaveECVExt() then

ecv = CNTHCTL_EL2.ECV == '1' && SCR_EL3.ECVEn == '1' && EL2Enabled();
if ecv then

offset = CNTPOFF_EL2;
else

offset = Zeros(64);
if CNTP_CTL_EL0.ENABLE == '1' then

imask = CNTP_CTL_EL0.IMASK;
if HaveRME() && ss IN {SS_Root, SS_Realm} && CNTHCTL_EL2.CNTPMASK == '1' then

imask = '1';
status = IsTimerConditionMet(offset, CNTP_CVAL_EL0,

imask, InterruptID_CNTP);
CNTP_CTL_EL0.ISTATUS = if status then '1' else '0';

if ((HaveEL(EL3) || (HaveEL(EL2) && !HaveSecureEL2Ext())) &&
CNTHP_CTL_EL2.ENABLE == '1') then
status = IsTimerConditionMet(Zeros(64), CNTHP_CVAL_EL2,

CNTHP_CTL_EL2.IMASK, InterruptID_CNTHP);
CNTHP_CTL_EL2.ISTATUS = if status then '1' else '0';

if HaveEL(EL2) && HaveSecureEL2Ext() && CNTHPS_CTL_EL2.ENABLE == '1' then
status = IsTimerConditionMet(Zeros(64), CNTHPS_CVAL_EL2,

CNTHPS_CTL_EL2.IMASK, InterruptID_CNTHPS);
CNTHPS_CTL_EL2.ISTATUS = if status then '1' else '0';

if CNTPS_CTL_EL1.ENABLE == '1' then
status = IsTimerConditionMet(offset, CNTPS_CVAL_EL1,

CNTPS_CTL_EL1.IMASK, InterruptID_CNTPS);
CNTPS_CTL_EL1.ISTATUS = if status then '1' else '0';

if CNTV_CTL_EL0.ENABLE == '1' then
imask = CNTV_CTL_EL0.IMASK;
if HaveRME() && ss IN {SS_Root, SS_Realm} && CNTHCTL_EL2.CNTVMASK == '1' then

imask = '1';
status = IsTimerConditionMet(CNTVOFF_EL2, CNTV_CVAL_EL0,

imask, InterruptID_CNTV);
CNTV_CTL_EL0.ISTATUS = if status then '1' else '0';

if ((HaveVirtHostExt() && (HaveEL(EL3) || !HaveSecureEL2Ext())) &&
CNTHV_CTL_EL2.ENABLE == '1') then
status = IsTimerConditionMet(Zeros(64), CNTHV_CVAL_EL2,

CNTHV_CTL_EL2.IMASK, InterruptID_CNTHV);
CNTHV_CTL_EL2.ISTATUS = if status then '1' else '0';

if ((HaveSecureEL2Ext() && HaveVirtHostExt()) &&
CNTHVS_CTL_EL2.ENABLE == '1') then
status = IsTimerConditionMet(Zeros(64), CNTHVS_CVAL_EL2,

CNTHVS_CTL_EL2.IMASK, InterruptID_CNTHVS);
CNTHVS_CTL_EL2.ISTATUS = if status then '1' else '0';

return;

Shared Pseudocode Functions Page 1981

Library pseudocode for shared/functions/counters/GenericCounterTick

// GenericCounterTick()
// ====================
// Increments PhysicalCount value for every clock tick.

GenericCounterTick()
bits(64) prev_physical_count;
if CNTCR.EN == '0' then

if !HaveAArch64() then
AArch32.CheckTimerConditions();

else
AArch64.CheckTimerConditions();

return;
prev_physical_count = PhysicalCountInt();
if HaveCNTSCExt() && CNTCR.SCEN == '1' then

PhysicalCount = PhysicalCount + ZeroExtend(CNTSCR, 88);
else

PhysicalCount<87:24> = PhysicalCount<87:24> + 1;
if !HaveAArch64() then

AArch32.CheckTimerConditions();
else

AArch64.CheckTimerConditions();
TestEventCNTP(prev_physical_count, PhysicalCountInt());
TestEventCNTV(prev_physical_count, PhysicalCountInt());
return;

Library pseudocode for shared/functions/counters/IsTimerConditionMet

// IsTimerConditionMet()
// =====================

boolean IsTimerConditionMet(bits(64) offset, bits(64) compare_value,
bits(1) imask, InterruptID intid)

boolean condition_met;
Signal level;
condition_met = (UInt(PhysicalCountInt() - offset) -

UInt(compare_value)) >= 0;
level = if condition_met && imask == '0' then Signal_High else Signal_Low;
SetInterruptRequestLevel(intid, level);
return condition_met;

Library pseudocode for shared/functions/counters/PhysicalCount

bits(88) PhysicalCount;

Library pseudocode for shared/functions/counters/SetEventRegister

// SetEventRegister()
// ==================
// Sets the Event Register of this PE

SetEventRegister()
EventRegister = '1';
return;

Shared Pseudocode Functions Page 1982

Library pseudocode for shared/functions/counters/TestEventCNTP

// TestEventCNTP()
// ===============
// Generate Event stream from the physical counter

TestEventCNTP(bits(64) prev_physical_count, bits(64) current_physical_count)
bits(64) offset;
bits(1) samplebit, previousbit;
if CNTHCTL_EL2.EVNTEN == '1' then

n = UInt(CNTHCTL_EL2.EVNTI);
if HaveECVExt() && CNTHCTL_EL2.EVNTIS == '1' then

n = n + 8;
boolean ecv = FALSE;
if HaveECVExt() then

ecv = (EL2Enabled() && CNTHCTL_EL2.ECV == '1' &&
SCR_EL3.ECVEn == '1');

offset = if ecv then CNTPOFF_EL2 else Zeros(64);
samplebit = (current_physical_count - offset)<n>;
previousbit = (prev_physical_count - offset)<n>;
if CNTHCTL_EL2.EVNTDIR == '0' then

if previousbit == '0' && samplebit == '1' then SetEventRegister();
else

if previousbit == '1' && samplebit == '0' then SetEventRegister();
return;

Library pseudocode for shared/functions/counters/TestEventCNTV

// TestEventCNTV()
// ===============
// Generate Event stream from the virtual counter

TestEventCNTV(bits(64) prev_physical_count, bits(64) current_physical_count)
bits(64) offset;
bits(1) samplebit, previousbit;
if (!(HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11') &&

CNTKCTL_EL1.EVNTEN == '1') then
n = UInt(CNTKCTL_EL1.EVNTI);
if HaveECVExt() && CNTKCTL_EL1.EVNTIS == '1' then

n = n + 8;
if HaveEL(EL2) && (!EL2Enabled() || HCR_EL2.<E2H,TGE> != '11') then

offset = CNTVOFF_EL2;
else

offset = Zeros(64);
samplebit = (current_physical_count - offset)<n>;
previousbit = (prev_physical_count - offset)<n>;
if CNTKCTL_EL1.EVNTDIR == '0' then

if previousbit == '0' && samplebit == '1' then SetEventRegister();
else

if previousbit == '1' && samplebit == '0' then SetEventRegister();
return;

Library pseudocode for shared/functions/crc/BitReverse

// BitReverse()
// ============

bits(N) BitReverse(bits(N) data)
bits(N) result;
for i = 0 to N-1

result<(N-i)-1> = data<i>;
return result;

Shared Pseudocode Functions Page 1983

Library pseudocode for shared/functions/crc/HaveCRCExt

// HaveCRCExt()
// ============

boolean HaveCRCExt()
return IsFeatureImplemented(FEAT_CRC32);

Library pseudocode for shared/functions/crc/Poly32Mod2

// Poly32Mod2()
// ============

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation

bits(32) Poly32Mod2(bits(N) data_in, bits(32) poly)
assert N > 32;
bits(N) data = data_in;
for i = N-1 downto 32

if data<i> == '1' then
data<i-1:0> = data<i-1:0> EOR (poly:Zeros(i-32));

return data<31:0>;

Library pseudocode for shared/functions/crypto/AESInvMixColumns

// AESInvMixColumns()
// ==================
// Transformation in the Inverse Cipher that is the inverse of AESMixColumns.

bits(128) AESInvMixColumns(bits (128) op)
bits(4*8) in0 = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
bits(4*8) in1 = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;
bits(4*8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
bits(4*8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;

bits(4*8) out0;
bits(4*8) out1;
bits(4*8) out2;
bits(4*8) out3;

for c = 0 to 3
out0<c*8+:8> = (FFmul0E(in0<c*8+:8>) EOR FFmul0B(in1<c*8+:8>) EOR FFmul0D(in2<c*8+:8>) EOR

FFmul09(in3<c*8+:8>));
out1<c*8+:8> = (FFmul09(in0<c*8+:8>) EOR FFmul0E(in1<c*8+:8>) EOR FFmul0B(in2<c*8+:8>) EOR

FFmul0D(in3<c*8+:8>));
out2<c*8+:8> = (FFmul0D(in0<c*8+:8>) EOR FFmul09(in1<c*8+:8>) EOR FFmul0E(in2<c*8+:8>) EOR

FFmul0B(in3<c*8+:8>));
out3<c*8+:8> = (FFmul0B(in0<c*8+:8>) EOR FFmul0D(in1<c*8+:8>) EOR FFmul09(in2<c*8+:8>) EOR

FFmul0E(in3<c*8+:8>));

return (
out3<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> :
out3<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> :
out3<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> :
out3<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8>

);

Shared Pseudocode Functions Page 1984

Library pseudocode for shared/functions/crypto/AESInvShiftRows

// AESInvShiftRows()
// =================
// Transformation in the Inverse Cipher that is inverse of AESShiftRows.

bits(128) AESInvShiftRows(bits(128) op)
return (

op< 31: 24> : op< 55: 48> : op< 79: 72> : op<103: 96> :
op<127:120> : op< 23: 16> : op< 47: 40> : op< 71: 64> :
op< 95: 88> : op<119:112> : op< 15: 8> : op< 39: 32> :
op< 63: 56> : op< 87: 80> : op<111:104> : op< 7: 0>

);

Library pseudocode for shared/functions/crypto/AESInvSubBytes

// AESInvSubBytes()
// ================
// Transformation in the Inverse Cipher that is the inverse of AESSubBytes.

bits(128) AESInvSubBytes(bits(128) op)
// Inverse S-box values
bits(16*16*8) GF2_inv = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0x7d0c2155631469e126d677ba7e042b17<127:0> :
/*E*/ 0x619953833cbbebc8b0f52aae4d3be0a0<127:0> :
/*D*/ 0xef9cc9939f7ae52d0d4ab519a97f5160<127:0> :
/*C*/ 0x5fec8027591012b131c7078833a8dd1f<127:0> :
/*B*/ 0xf45acd78fec0db9a2079d2c64b3e56fc<127:0> :
/*A*/ 0x1bbe18aa0e62b76f89c5291d711af147<127:0> :
/*9*/ 0x6edf751ce837f9e28535ade72274ac96<127:0> :
/*8*/ 0x73e6b4f0cecff297eadc674f4111913a<127:0> :
/*7*/ 0x6b8a130103bdafc1020f3fca8f1e2cd0<127:0> :
/*6*/ 0x0645b3b80558e4f70ad3bc8c00abd890<127:0> :
/*5*/ 0x849d8da75746155edab9edfd5048706c<127:0> :
/*4*/ 0x92b6655dcc5ca4d41698688664f6f872<127:0> :
/*3*/ 0x25d18b6d49a25b76b224d92866a12e08<127:0> :
/*2*/ 0x4ec3fa420b954cee3d23c2a632947b54<127:0> :
/*1*/ 0xcbe9dec444438e3487ff2f9b8239e37c<127:0> :
/*0*/ 0xfbd7f3819ea340bf38a53630d56a0952<127:0>

);
bits(128) out;
for i = 0 to 15

out<i*8+:8> = GF2_inv<UInt(op<i*8+:8>)*8+:8>;
return out;

Shared Pseudocode Functions Page 1985

Library pseudocode for shared/functions/crypto/AESMixColumns

// AESMixColumns()
// ===============
// Transformation in the Cipher that takes all of the columns of the
// State and mixes their data (independently of one another) to
// produce new columns.

bits(128) AESMixColumns(bits (128) op)
bits(4*8) in0 = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
bits(4*8) in1 = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;
bits(4*8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
bits(4*8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;

bits(4*8) out0;
bits(4*8) out1;
bits(4*8) out2;
bits(4*8) out3;

for c = 0 to 3
out0<c*8+:8> = (FFmul02(in0<c*8+:8>) EOR FFmul03(in1<c*8+:8>) EOR

in2<c*8+:8> EOR in3<c*8+:8>);
out1<c*8+:8> = (FFmul02(in1<c*8+:8>) EOR FFmul03(in2<c*8+:8>) EOR

in3<c*8+:8> EOR in0<c*8+:8>);
out2<c*8+:8> = (FFmul02(in2<c*8+:8>) EOR FFmul03(in3<c*8+:8>) EOR

in0<c*8+:8> EOR in1<c*8+:8>);
out3<c*8+:8> = (FFmul02(in3<c*8+:8>) EOR FFmul03(in0<c*8+:8>) EOR

in1<c*8+:8> EOR in2<c*8+:8>);

return (
out3<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> :
out3<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> :
out3<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> :
out3<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8>

);

Library pseudocode for shared/functions/crypto/AESShiftRows

// AESShiftRows()
// ==============
// Transformation in the Cipher that processes the State by cyclically
// shifting the last three rows of the State by different offsets.

bits(128) AESShiftRows(bits(128) op)
return (

op< 95: 88> : op< 55: 48> : op< 15: 8> : op<103: 96> :
op< 63: 56> : op< 23: 16> : op<111:104> : op< 71: 64> :
op< 31: 24> : op<119:112> : op< 79: 72> : op< 39: 32> :
op<127:120> : op< 87: 80> : op< 47: 40> : op< 7: 0>

);

Shared Pseudocode Functions Page 1986

Library pseudocode for shared/functions/crypto/AESSubBytes

// AESSubBytes()
// =============
// Transformation in the Cipher that processes the State using a nonlinear
// byte substitution table (S-box) that operates on each of the State bytes
// independently.

bits(128) AESSubBytes(bits(128) op)
// S-box values
bits(16*16*8) GF2 = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0x16bb54b00f2d99416842e6bf0d89a18c<127:0> :
/*E*/ 0xdf2855cee9871e9b948ed9691198f8e1<127:0> :
/*D*/ 0x9e1dc186b95735610ef6034866b53e70<127:0> :
/*C*/ 0x8a8bbd4b1f74dde8c6b4a61c2e2578ba<127:0> :
/*B*/ 0x08ae7a65eaf4566ca94ed58d6d37c8e7<127:0> :
/*A*/ 0x79e4959162acd3c25c2406490a3a32e0<127:0> :
/*9*/ 0xdb0b5ede14b8ee4688902a22dc4f8160<127:0> :
/*8*/ 0x73195d643d7ea7c41744975fec130ccd<127:0> :
/*7*/ 0xd2f3ff1021dab6bcf5389d928f40a351<127:0> :
/*6*/ 0xa89f3c507f02f94585334d43fbaaefd0<127:0> :
/*5*/ 0xcf584c4a39becb6a5bb1fc20ed00d153<127:0> :
/*4*/ 0x842fe329b3d63b52a05a6e1b1a2c8309<127:0> :
/*3*/ 0x75b227ebe28012079a059618c323c704<127:0> :
/*2*/ 0x1531d871f1e5a534ccf73f362693fdb7<127:0> :
/*1*/ 0xc072a49cafa2d4adf04759fa7dc982ca<127:0> :
/*0*/ 0x76abd7fe2b670130c56f6bf27b777c63<127:0>

);
bits(128) out;
for i = 0 to 15

out<i*8+:8> = GF2<UInt(op<i*8+:8>)*8+:8>;
return out;

Library pseudocode for shared/functions/crypto/FFmul02

// FFmul02()
// =========

bits(8) FFmul02(bits(8) b)
bits(256*8) FFmul_02 = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0xE5E7E1E3EDEFE9EBF5F7F1F3FDFFF9FB<127:0> :
/*E*/ 0xC5C7C1C3CDCFC9CBD5D7D1D3DDDFD9DB<127:0> :
/*D*/ 0xA5A7A1A3ADAFA9ABB5B7B1B3BDBFB9BB<127:0> :
/*C*/ 0x858781838D8F898B959791939D9F999B<127:0> :
/*B*/ 0x656761636D6F696B757771737D7F797B<127:0> :
/*A*/ 0x454741434D4F494B555751535D5F595B<127:0> :
/*9*/ 0x252721232D2F292B353731333D3F393B<127:0> :
/*8*/ 0x050701030D0F090B151711131D1F191B<127:0> :
/*7*/ 0xFEFCFAF8F6F4F2F0EEECEAE8E6E4E2E0<127:0> :
/*6*/ 0xDEDCDAD8D6D4D2D0CECCCAC8C6C4C2C0<127:0> :
/*5*/ 0xBEBCBAB8B6B4B2B0AEACAAA8A6A4A2A0<127:0> :
/*4*/ 0x9E9C9A98969492908E8C8A8886848280<127:0> :
/*3*/ 0x7E7C7A78767472706E6C6A6866646260<127:0> :
/*2*/ 0x5E5C5A58565452504E4C4A4846444240<127:0> :
/*1*/ 0x3E3C3A38363432302E2C2A2826242220<127:0> :
/*0*/ 0x1E1C1A18161412100E0C0A0806040200<127:0>

);
return FFmul_02<UInt(b)*8+:8>;

Shared Pseudocode Functions Page 1987

Library pseudocode for shared/functions/crypto/FFmul03

// FFmul03()
// =========

bits(8) FFmul03(bits(8) b)
bits(256*8) FFmul_03 = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0x1A191C1F16151013020104070E0D080B<127:0> :
/*E*/ 0x2A292C2F26252023323134373E3D383B<127:0> :
/*D*/ 0x7A797C7F76757073626164676E6D686B<127:0> :
/*C*/ 0x4A494C4F46454043525154575E5D585B<127:0> :
/*B*/ 0xDAD9DCDFD6D5D0D3C2C1C4C7CECDC8CB<127:0> :
/*A*/ 0xEAE9ECEFE6E5E0E3F2F1F4F7FEFDF8FB<127:0> :
/*9*/ 0xBAB9BCBFB6B5B0B3A2A1A4A7AEADA8AB<127:0> :
/*8*/ 0x8A898C8F86858083929194979E9D989B<127:0> :
/*7*/ 0x818287848D8E8B88999A9F9C95969390<127:0> :
/*6*/ 0xB1B2B7B4BDBEBBB8A9AAAFACA5A6A3A0<127:0> :
/*5*/ 0xE1E2E7E4EDEEEBE8F9FAFFFCF5F6F3F0<127:0> :
/*4*/ 0xD1D2D7D4DDDEDBD8C9CACFCCC5C6C3C0<127:0> :
/*3*/ 0x414247444D4E4B48595A5F5C55565350<127:0> :
/*2*/ 0x717277747D7E7B78696A6F6C65666360<127:0> :
/*1*/ 0x212227242D2E2B28393A3F3C35363330<127:0> :
/*0*/ 0x111217141D1E1B18090A0F0C05060300<127:0>

);
return FFmul_03<UInt(b)*8+:8>;

Library pseudocode for shared/functions/crypto/FFmul09

// FFmul09()
// =========

bits(8) FFmul09(bits(8) b)
bits(256*8) FFmul_09 = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0x464F545D626B70790E071C152A233831<127:0> :
/*E*/ 0xD6DFC4CDF2FBE0E99E978C85BAB3A8A1<127:0> :
/*D*/ 0x7D746F6659504B42353C272E1118030A<127:0> :
/*C*/ 0xEDE4FFF6C9C0DBD2A5ACB7BE8188939A<127:0> :
/*B*/ 0x3039222B141D060F78716A635C554E47<127:0> :
/*A*/ 0xA0A9B2BB848D969FE8E1FAF3CCC5DED7<127:0> :
/*9*/ 0x0B0219102F263D34434A5158676E757C<127:0> :
/*8*/ 0x9B928980BFB6ADA4D3DAC1C8F7FEE5EC<127:0> :
/*7*/ 0xAAA3B8B18E879C95E2EBF0F9C6CFD4DD<127:0> :
/*6*/ 0x3A3328211E170C05727B6069565F444D<127:0> :
/*5*/ 0x9198838AB5BCA7AED9D0CBC2FDF4EFE6<127:0> :
/*4*/ 0x0108131A252C373E49405B526D647F76<127:0> :
/*3*/ 0xDCD5CEC7F8F1EAE3949D868FB0B9A2AB<127:0> :
/*2*/ 0x4C455E5768617A73040D161F2029323B<127:0> :
/*1*/ 0xE7EEF5FCC3CAD1D8AFA6BDB48B829990<127:0> :
/*0*/ 0x777E656C535A41483F362D241B120900<127:0>

);
return FFmul_09<UInt(b)*8+:8>;

Shared Pseudocode Functions Page 1988

Library pseudocode for shared/functions/crypto/FFmul0B

// FFmul0B()
// =========

bits(8) FFmul0B(bits(8) b)
bits(256*8) FFmul_0B = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0xA3A8B5BE8F849992FBF0EDE6D7DCC1CA<127:0> :
/*E*/ 0x1318050E3F3429224B405D56676C717A<127:0> :
/*D*/ 0xD8D3CEC5F4FFE2E9808B969DACA7BAB1<127:0> :
/*C*/ 0x68637E75444F5259303B262D1C170A01<127:0> :
/*B*/ 0x555E434879726F640D061B10212A373C<127:0> :
/*A*/ 0xE5EEF3F8C9C2DFD4BDB6ABA0919A878C<127:0> :
/*9*/ 0x2E2538330209141F767D606B5A514C47<127:0> :
/*8*/ 0x9E958883B2B9A4AFC6CDD0DBEAE1FCF7<127:0> :
/*7*/ 0x545F424978736E650C071A11202B363D<127:0> :
/*6*/ 0xE4EFF2F9C8C3DED5BCB7AAA1909B868D<127:0> :
/*5*/ 0x2F2439320308151E777C616A5B504D46<127:0> :
/*4*/ 0x9F948982B3B8A5AEC7CCD1DAEBE0FDF6<127:0> :
/*3*/ 0xA2A9B4BF8E859893FAF1ECE7D6DDC0CB<127:0> :
/*2*/ 0x1219040F3E3528234A415C57666D707B<127:0> :
/*1*/ 0xD9D2CFC4F5FEE3E8818A979CADA6BBB0<127:0> :
/*0*/ 0x69627F74454E5358313A272C1D160B00<127:0>

);
return FFmul_0B<UInt(b)*8+:8>;

Library pseudocode for shared/functions/crypto/FFmul0D

// FFmul0D()
// =========

bits(8) FFmul0D(bits(8) b)
bits(256*8) FFmul_0D = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0x979A8D80A3AEB9B4FFF2E5E8CBC6D1DC<127:0> :
/*E*/ 0x474A5D50737E69642F2235381B16010C<127:0> :
/*D*/ 0x2C21363B1815020F44495E53707D6A67<127:0> :
/*C*/ 0xFCF1E6EBC8C5D2DF94998E83A0ADBAB7<127:0> :
/*B*/ 0xFAF7E0EDCEC3D4D9929F8885A6ABBCB1<127:0> :
/*A*/ 0x2A27303D1E130409424F5855767B6C61<127:0> :
/*9*/ 0x414C5B5675786F622924333E1D10070A<127:0> :
/*8*/ 0x919C8B86A5A8BFB2F9F4E3EECDC0D7DA<127:0> :
/*7*/ 0x4D40575A7974636E25283F32111C0B06<127:0> :
/*6*/ 0x9D90878AA9A4B3BEF5F8EFE2C1CCDBD6<127:0> :
/*5*/ 0xF6FBECE1C2CFD8D59E938489AAA7B0BD<127:0> :
/*4*/ 0x262B3C31121F08054E4354597A77606D<127:0> :
/*3*/ 0x202D3A3714190E034845525F7C71666B<127:0> :
/*2*/ 0xF0FDEAE7C4C9DED39895828FACA1B6BB<127:0> :
/*1*/ 0x9B96818CAFA2B5B8F3FEE9E4C7CADDD0<127:0> :
/*0*/ 0x4B46515C7F726568232E3934171A0D00<127:0>

);
return FFmul_0D<UInt(b)*8+:8>;

Shared Pseudocode Functions Page 1989

Library pseudocode for shared/functions/crypto/FFmul0E

// FFmul0E()
// =========

bits(8) FFmul0E(bits(8) b)
bits(256*8) FFmul_0E = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0x8D83919FB5BBA9A7FDF3E1EFC5CBD9D7<127:0> :
/*E*/ 0x6D63717F555B49471D13010F252B3937<127:0> :
/*D*/ 0x56584A446E60727C26283A341E10020C<127:0> :
/*C*/ 0xB6B8AAA48E80929CC6C8DAD4FEF0E2EC<127:0> :
/*B*/ 0x202E3C321816040A505E4C426866747A<127:0> :
/*A*/ 0xC0CEDCD2F8F6E4EAB0BEACA28886949A<127:0> :
/*9*/ 0xFBF5E7E9C3CDDFD18B859799B3BDAFA1<127:0> :
/*8*/ 0x1B150709232D3F316B657779535D4F41<127:0> :
/*7*/ 0xCCC2D0DEF4FAE8E6BCB2A0AE848A9896<127:0> :
/*6*/ 0x2C22303E141A08065C52404E646A7876<127:0> :
/*5*/ 0x17190B052F21333D67697B755F51434D<127:0> :
/*4*/ 0xF7F9EBE5CFC1D3DD87899B95BFB1A3AD<127:0> :
/*3*/ 0x616F7D735957454B111F0D032927353B<127:0> :
/*2*/ 0x818F9D93B9B7A5ABF1FFEDE3C9C7D5DB<127:0> :
/*1*/ 0xBAB4A6A8828C9E90CAC4D6D8F2FCEEE0<127:0> :
/*0*/ 0x5A544648626C7E702A243638121C0E00<127:0>

);
return FFmul_0E<UInt(b)*8+:8>;

Library pseudocode for shared/functions/crypto/HaveAESExt

// HaveAESExt()
// ============
// TRUE if AES cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveAESExt()
return IsFeatureImplemented(FEAT_AES);

Library pseudocode for shared/functions/crypto/HaveBit128PMULLExt

// HaveBit128PMULLExt()
// ====================
// TRUE if 128 bit form of PMULL instructions support is implemented,
// FALSE otherwise.

boolean HaveBit128PMULLExt()
return IsFeatureImplemented(FEAT_PMULL);

Library pseudocode for shared/functions/crypto/HaveSHA1Ext

// HaveSHA1Ext()
// =============
// TRUE if SHA1 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA1Ext()
return IsFeatureImplemented(FEAT_SHA1);

Library pseudocode for shared/functions/crypto/HaveSHA256Ext

// HaveSHA256Ext()
// ===============
// TRUE if SHA256 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA256Ext()
return IsFeatureImplemented(FEAT_SHA256);

Shared Pseudocode Functions Page 1990

Library pseudocode for shared/functions/crypto/HaveSHA3Ext

// HaveSHA3Ext()
// =============
// TRUE if SHA3 cryptographic instructions support is implemented,
// and when SHA1 and SHA2 basic cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA3Ext()
return IsFeatureImplemented(FEAT_SHA3);

Library pseudocode for shared/functions/crypto/HaveSHA512Ext

// HaveSHA512Ext()
// ===============
// TRUE if SHA512 cryptographic instructions support is implemented,
// and when SHA1 and SHA2 basic cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSHA512Ext()
return IsFeatureImplemented(FEAT_SHA512);

Library pseudocode for shared/functions/crypto/HaveSM3Ext

// HaveSM3Ext()
// ============
// TRUE if SM3 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSM3Ext()
return IsFeatureImplemented(FEAT_SM3);

Library pseudocode for shared/functions/crypto/HaveSM4Ext

// HaveSM4Ext()
// ============
// TRUE if SM4 cryptographic instructions support is implemented,
// FALSE otherwise.

boolean HaveSM4Ext()
return IsFeatureImplemented(FEAT_SM4);

Library pseudocode for shared/functions/crypto/ROL

// ROL()
// =====

bits(N) ROL(bits(N) x, integer shift)
assert shift >= 0 && shift <= N;
if (shift == 0) then

return x;
return ROR(x, N-shift);

Shared Pseudocode Functions Page 1991

Library pseudocode for shared/functions/crypto/SHA256hash

// SHA256hash()
// ============

bits(128) SHA256hash(bits (128) x_in, bits(128) y_in, bits(128) w, boolean part1)
bits(32) chs, maj, t;
bits(128) x = x_in;
bits(128) y = y_in;

for e = 0 to 3
chs = SHAchoose(y<31:0>, y<63:32>, y<95:64>);
maj = SHAmajority(x<31:0>, x<63:32>, x<95:64>);
t = y<127:96> + SHAhashSIGMA1(y<31:0>) + chs + Elem[w, e, 32];
x<127:96> = t + x<127:96>;
y<127:96> = t + SHAhashSIGMA0(x<31:0>) + maj;
<y, x> = ROL(y : x, 32);

return (if part1 then x else y);

Library pseudocode for shared/functions/crypto/SHAchoose

// SHAchoose()
// ===========

bits(32) SHAchoose(bits(32) x, bits(32) y, bits(32) z)
return (((y EOR z) AND x) EOR z);

Library pseudocode for shared/functions/crypto/SHAhashSIGMA0

// SHAhashSIGMA0()
// ===============

bits(32) SHAhashSIGMA0(bits(32) x)
return ROR(x, 2) EOR ROR(x, 13) EOR ROR(x, 22);

Library pseudocode for shared/functions/crypto/SHAhashSIGMA1

// SHAhashSIGMA1()
// ===============

bits(32) SHAhashSIGMA1(bits(32) x)
return ROR(x, 6) EOR ROR(x, 11) EOR ROR(x, 25);

Library pseudocode for shared/functions/crypto/SHAmajority

// SHAmajority()
// =============

bits(32) SHAmajority(bits(32) x, bits(32) y, bits(32) z)
return ((x AND y) OR ((x OR y) AND z));

Library pseudocode for shared/functions/crypto/SHAparity

// SHAparity()
// ===========

bits(32) SHAparity(bits(32) x, bits(32) y, bits(32) z)
return (x EOR y EOR z);

Shared Pseudocode Functions Page 1992

Library pseudocode for shared/functions/crypto/Sbox

// Sbox()
// ======
// Used in SM4E crypto instruction

bits(8) Sbox(bits(8) sboxin)
bits(8) sboxout;
bits(2048) sboxstring = (

/* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
/*F*/ 0xd690e9fecce13db716b614c228fb2c05<127:0> :
/*E*/ 0x2b679a762abe04c3aa44132649860699<127:0> :
/*D*/ 0x9c4250f491ef987a33540b43edcfac62<127:0> :
/*C*/ 0xe4b31ca9c908e89580df94fa758f3fa6<127:0> :
/*B*/ 0x4707a7fcf37317ba83593c19e6854fa8<127:0> :
/*A*/ 0x686b81b27164da8bf8eb0f4b70569d35<127:0> :
/*9*/ 0x1e240e5e6358d1a225227c3b01217887<127:0> :
/*8*/ 0xd40046579fd327524c3602e7a0c4c89e<127:0> :
/*7*/ 0xeabf8ad240c738b5a3f7f2cef96115a1<127:0> :
/*6*/ 0xe0ae5da49b341a55ad933230f58cb1e3<127:0> :
/*5*/ 0x1df6e22e8266ca60c02923ab0d534e6f<127:0> :
/*4*/ 0xd5db3745defd8e2f03ff6a726d6c5b51<127:0> :
/*3*/ 0x8d1baf92bbddbc7f11d95c411f105ad8<127:0> :
/*2*/ 0x0ac13188a5cd7bbd2d74d012b8e5b4b0<127:0> :
/*1*/ 0x8969974a0c96777e65b9f109c56ec684<127:0> :
/*0*/ 0x18f07dec3adc4d2079ee5f3ed7cb3948<127:0>

);

sboxout = sboxstring<(255-UInt(sboxin))*8+7:(255-UInt(sboxin))*8>;
return sboxout;

Library pseudocode for shared/functions/exclusive/ClearExclusiveByAddress

// ClearExclusiveByAddress()
// =========================
// Clear the global Exclusives monitors for all PEs EXCEPT processorid if they
// record any part of the physical address region of size bytes starting at paddress.
// It is IMPLEMENTATION DEFINED whether the global Exclusives monitor for processorid
// is also cleared if it records any part of the address region.

ClearExclusiveByAddress(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/ClearExclusiveLocal

// ClearExclusiveLocal()
// =====================
// Clear the local Exclusives monitor for the specified processorid.

ClearExclusiveLocal(integer processorid);

Library pseudocode for shared/functions/exclusive/ExclusiveMonitorsStatus

// ExclusiveMonitorsStatus()
// =========================
// Returns '0' to indicate success if the last memory write by this PE was to
// the same physical address region endorsed by ExclusiveMonitorsPass().
// Returns '1' to indicate failure if address translation resulted in a different
// physical address.

bit ExclusiveMonitorsStatus();

Shared Pseudocode Functions Page 1993

Library pseudocode for shared/functions/exclusive/IsExclusiveGlobal

// IsExclusiveGlobal()
// ===================
// Return TRUE if the global Exclusives monitor for processorid includes all of
// the physical address region of size bytes starting at paddress.

boolean IsExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/IsExclusiveLocal

// IsExclusiveLocal()
// ==================
// Return TRUE if the local Exclusives monitor for processorid includes all of
// the physical address region of size bytes starting at paddress.

boolean IsExclusiveLocal(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/MarkExclusiveGlobal

// MarkExclusiveGlobal()
// =====================
// Record the physical address region of size bytes starting at paddress in
// the global Exclusives monitor for processorid.

MarkExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/MarkExclusiveLocal

// MarkExclusiveLocal()
// ====================
// Record the physical address region of size bytes starting at paddress in
// the local Exclusives monitor for processorid.

MarkExclusiveLocal(FullAddress paddress, integer processorid, integer size);

Library pseudocode for shared/functions/exclusive/ProcessorID

// ProcessorID()
// =============
// Return the ID of the currently executing PE.

integer ProcessorID();

Library pseudocode for shared/functions/extension/AArch32.HaveHPDExt

// AArch32.HaveHPDExt()
// ====================

boolean AArch32.HaveHPDExt()
return IsFeatureImplemented(FEAT_AA32HPD);

Library pseudocode for shared/functions/extension/AArch64.HaveHPDExt

// AArch64.HaveHPDExt()
// ====================

boolean AArch64.HaveHPDExt()
return IsFeatureImplemented(FEAT_HPDS);

Shared Pseudocode Functions Page 1994

Library pseudocode for shared/functions/extension/Have128BitDescriptorExt

// Have128BitDescriptorExt()
// =========================
// Returns TRUE if 128-bit Descriptor extension
// support is implemented and FALSE otherwise.

boolean Have128BitDescriptorExt()
return IsFeatureImplemented(FEAT_D128);

Library pseudocode for shared/functions/extension/Have16bitVMID

// Have16bitVMID()
// ===============
// Returns TRUE if EL2 and support for a 16-bit VMID are implemented.

boolean Have16bitVMID()
return IsFeatureImplemented(FEAT_VMID16);

Library pseudocode for shared/functions/extension/Have52BitIPAAndPASpaceExt

// Have52BitIPAAndPASpaceExt()
// ===========================
// Returns TRUE if 52-bit IPA and PA extension support
// is implemented, and FALSE otherwise.

boolean Have52BitIPAAndPASpaceExt()
return IsFeatureImplemented(FEAT_LPA2);

Library pseudocode for shared/functions/extension/Have52BitPAExt

// Have52BitPAExt()
// ================
// Returns TRUE if Large Physical Address extension
// support is implemented and FALSE otherwise.

boolean Have52BitPAExt()
return IsFeatureImplemented(FEAT_LPA);

Library pseudocode for shared/functions/extension/Have52BitVAExt

// Have52BitVAExt()
// ================
// Returns TRUE if Large Virtual Address extension
// support is implemented and FALSE otherwise.

boolean Have52BitVAExt()
return IsFeatureImplemented(FEAT_LVA);

Library pseudocode for shared/functions/extension/Have56BitPAExt

// Have56BitPAExt()
// ================
// Returns TRUE if 56-bit Physical Address extension
// support is implemented and FALSE otherwise.

boolean Have56BitPAExt()
return IsFeatureImplemented(FEAT_D128);

Shared Pseudocode Functions Page 1995

Library pseudocode for shared/functions/extension/Have56BitVAExt

// Have56BitVAExt()
// ================
// Returns TRUE if 56-bit Virtual Address extension
// support is implemented and FALSE otherwise.

boolean Have56BitVAExt()
return IsFeatureImplemented(FEAT_LVA3);

Library pseudocode for shared/functions/extension/HaveAArch32BF16Ext

// HaveAArch32BF16Ext()
// ====================
// Returns TRUE if AArch32 BFloat16 instruction support is implemented, and FALSE otherwise.

boolean HaveAArch32BF16Ext()
return IsFeatureImplemented(FEAT_AA32BF16);

Library pseudocode for shared/functions/extension/HaveAArch32Int8MatMulExt

// HaveAArch32Int8MatMulExt()
// ==========================
// Returns TRUE if AArch32 8-bit integer matrix multiply instruction support
// implemented, and FALSE otherwise.

boolean HaveAArch32Int8MatMulExt()
return IsFeatureImplemented(FEAT_AA32I8MM);

Library pseudocode for shared/functions/extension/HaveAIEExt

// HaveAIEExt()
// ============
// Returns TRUE if AIE extension
// support is implemented and FALSE otherwise.

boolean HaveAIEExt()
return IsFeatureImplemented(FEAT_AIE);

Library pseudocode for shared/functions/extension/HaveAccessFlagUpdateExt

// HaveAccessFlagUpdateExt()
// =========================

boolean HaveAccessFlagUpdateExt()
return IsFeatureImplemented(FEAT_HAFDBS);

Library pseudocode for shared/functions/extension/HaveAccessFlagUpdateForTableExt

// HaveAccessFlagUpdateForTableExt()
// =================================
// Returns TRUE if support for Access Flag Update for Table Descriptors
// is implemented, and FALSE otherwise.

boolean HaveAccessFlagUpdateForTableExt()
return IsFeatureImplemented(FEAT_HAFT);

Shared Pseudocode Functions Page 1996

Library pseudocode for shared/functions/extension/HaveAltFP

// HaveAltFP()
// ===========
// Returns TRUE if alternative Floating-point extension support
// is implemented, and FALSE otherwise.

boolean HaveAltFP()
return IsFeatureImplemented(FEAT_AFP);

Library pseudocode for shared/functions/extension/HaveAtomicExt

// HaveAtomicExt()
// ===============

boolean HaveAtomicExt()
return IsFeatureImplemented(FEAT_LSE);

Library pseudocode for shared/functions/extension/HaveBF16Ext

// HaveBF16Ext()
// =============
// Returns TRUE if AArch64 BFloat16 instruction support is implemented, and FALSE otherwise.

boolean HaveBF16Ext()
return IsFeatureImplemented(FEAT_BF16);

Library pseudocode for shared/functions/extension/HaveBRBEv1p1

// HaveBRBEv1p1()
// ==============
// Returns TRUE if BRBEv1p1 extension is implemented, and FALSE otherwise.

boolean HaveBRBEv1p1()
return IsFeatureImplemented(FEAT_BRBEv1p1);

Library pseudocode for shared/functions/extension/HaveBRBExt

// HaveBRBExt()
// ============
// Returns TRUE if Branch Record Buffer Extension is implemented, and FALSE otherwise.

boolean HaveBRBExt()
return IsFeatureImplemented(FEAT_BRBE);

Library pseudocode for shared/functions/extension/HaveBTIExt

// HaveBTIExt()
// ============
// Returns TRUE if support for Branch Target Indentification is implemented.

boolean HaveBTIExt()
return IsFeatureImplemented(FEAT_BTI);

Library pseudocode for shared/functions/extension/HaveBlockBBM

// HaveBlockBBM()
// ==============
// Returns TRUE if support for changing block size without requiring
// break-before-make is implemented.

boolean HaveBlockBBM()
return IsFeatureImplemented(FEAT_BBM);

Shared Pseudocode Functions Page 1997

Library pseudocode for shared/functions/extension/HaveCNTSCExt

// HaveCNTSCExt()
// ==============
// Returns TRUE if the Generic Counter Scaling is implemented, and FALSE
// otherwise.

boolean HaveCNTSCExt()
return IsFeatureImplemented(FEAT_CNTSC);

Library pseudocode for shared/functions/extension/HaveCSSC

// HaveCSSC()
// ==========
// Returns TRUE if the Common Short Sequence Compression instructions extension is implemented,
// and FALSE otherwise.

boolean HaveCSSC()
return IsFeatureImplemented(FEAT_CSSC);

Library pseudocode for shared/functions/extension/HaveCommonNotPrivateTransExt

// HaveCommonNotPrivateTransExt()
// ==============================

boolean HaveCommonNotPrivateTransExt()
return IsFeatureImplemented(FEAT_TTCNP);

Library pseudocode for shared/functions/extension/HaveDGHExt

// HaveDGHExt()
// ============
// Returns TRUE if Data Gathering Hint instruction support is implemented, and
// FALSE otherwise.

boolean HaveDGHExt()
return IsFeatureImplemented(FEAT_DGH);

Library pseudocode for shared/functions/extension/HaveDITExt

// HaveDITExt()
// ============

boolean HaveDITExt()
return IsFeatureImplemented(FEAT_DIT);

Library pseudocode for shared/functions/extension/HaveDOTPExt

// HaveDOTPExt()
// =============
// Returns TRUE if Dot Product feature support is implemented, and FALSE otherwise.

boolean HaveDOTPExt()
return IsFeatureImplemented(FEAT_DotProd);

Library pseudocode for shared/functions/extension/HaveDirtyBitModifierExt

// HaveDirtyBitModifierExt()
// =========================

boolean HaveDirtyBitModifierExt()
return IsFeatureImplemented(FEAT_HAFDBS);

Shared Pseudocode Functions Page 1998

Library pseudocode for shared/functions/extension/HaveDoPD

// HaveDoPD()
// ==========
// Returns TRUE if Debug Over Power Down extension
// support is implemented and FALSE otherwise.

boolean HaveDoPD()
return IsFeatureImplemented(FEAT_DoPD);

Library pseudocode for shared/functions/extension/HaveDoubleFault2Ext

// HaveDoubleFault2Ext()
// =====================
// Returns TRUE if support for the DoubleFault2 feature is implemented, and FALSE otherwise.

boolean HaveDoubleFault2Ext()
return IsFeatureImplemented(FEAT_DoubleFault2);

Library pseudocode for shared/functions/extension/HaveDoubleFaultExt

// HaveDoubleFaultExt()
// ====================

boolean HaveDoubleFaultExt()
return IsFeatureImplemented(FEAT_DoubleFault);

Library pseudocode for shared/functions/extension/HaveDoubleLock

// HaveDoubleLock()
// ================
// Returns TRUE if support for the OS Double Lock is implemented.

boolean HaveDoubleLock()
return IsFeatureImplemented(FEAT_DoubleLock);

Library pseudocode for shared/functions/extension/HaveE0PDExt

// HaveE0PDExt()
// =============
// Returns TRUE if support for constant fault times for unprivileged accesses
// to the memory map is implemented.

boolean HaveE0PDExt()
return IsFeatureImplemented(FEAT_E0PD);

Library pseudocode for shared/functions/extension/HaveEBF16

// HaveEBF16()
// ===========
// Returns TRUE if the EBF16 extension is implemented, FALSE otherwise.

boolean HaveEBF16()
return IsFeatureImplemented(FEAT_EBF16);

Library pseudocode for shared/functions/extension/HaveECVExt

// HaveECVExt()
// ============
// Returns TRUE if Enhanced Counter Virtualization extension
// support is implemented, and FALSE otherwise.

boolean HaveECVExt()
return IsFeatureImplemented(FEAT_ECV);

Shared Pseudocode Functions Page 1999

Library pseudocode for shared/functions/extension/HaveETExt

// HaveETExt()
// ===========
// Returns TRUE if Embedded Trace Extension is implemented, and FALSE otherwise.

boolean HaveETExt()
return IsFeatureImplemented(FEAT_ETE);

Library pseudocode for shared/functions/extension/HaveExtendedCacheSets

// HaveExtendedCacheSets()
// =======================

boolean HaveExtendedCacheSets()
return IsFeatureImplemented(FEAT_CCIDX);

Library pseudocode for shared/functions/extension/HaveExtendedECDebugEvents

// HaveExtendedECDebugEvents()
// ===========================

boolean HaveExtendedECDebugEvents()
return IsFeatureImplemented(FEAT_Debugv8p2);

Library pseudocode for shared/functions/extension/HaveExtendedExecuteNeverExt

// HaveExtendedExecuteNeverExt()
// =============================

boolean HaveExtendedExecuteNeverExt()
return IsFeatureImplemented(FEAT_XNX);

Library pseudocode for shared/functions/extension/HaveFCADDExt

// HaveFCADDExt()
// ==============

boolean HaveFCADDExt()
return IsFeatureImplemented(FEAT_FCMA);

Library pseudocode for shared/functions/extension/HaveFGTExt

// HaveFGTExt()
// ============
// Returns TRUE if Fine-Grained Traps is implemented, and FALSE otherwise.

boolean HaveFGTExt()
return IsFeatureImplemented(FEAT_FGT);

Library pseudocode for shared/functions/extension/HaveFJCVTZSExt

// HaveFJCVTZSExt()
// ================

boolean HaveFJCVTZSExt()
return IsFeatureImplemented(FEAT_JSCVT);

Shared Pseudocode Functions Page 2000

Library pseudocode for shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext

// HaveFP16MulNoRoundingToFP32Ext()
// ================================
// Returns TRUE if has FP16 multiply with no intermediate rounding accumulate
// to FP32 instructions, and FALSE otherwise

boolean HaveFP16MulNoRoundingToFP32Ext()
return IsFeatureImplemented(FEAT_FHM);

Library pseudocode for shared/functions/extension/HaveFeatABLE

// HaveFeatABLE()
// ==============
// Returns TRUE if support for linking watchpoints to address matching
// breakpoints is implemented, and FALSE otherwise.

boolean HaveFeatABLE()
return IsFeatureImplemented(FEAT_ABLE);

Library pseudocode for shared/functions/extension/HaveFeatCLRBHB

// HaveFeatCLRBHB()
// ================
// Returns TRUE if the CLRBHB instruction is implemented, and FALSE otherwise.

boolean HaveFeatCLRBHB()
return IsFeatureImplemented(FEAT_CLRBHB);

Library pseudocode for shared/functions/extension/HaveFeatCMOW

// HaveFeatCMOW()
// ==============
// Returns TRUE if the SCTLR_EL1.CMOW bit is implemented and the SCTLR_EL2.CMOW and
// HCRX_EL2.CMOW bits are implemented if EL2 is implemented.

boolean HaveFeatCMOW()
return IsFeatureImplemented(FEAT_CMOW);

Library pseudocode for shared/functions/extension/HaveFeatHBC

// HaveFeatHBC()
// =============
// Returns TRUE if the BC instruction is implemented, and FALSE otherwise.

boolean HaveFeatHBC()
return IsFeatureImplemented(FEAT_HBC);

Library pseudocode for shared/functions/extension/HaveFeatHCX

// HaveFeatHCX()
// =============
// Returns TRUE if HCRX_EL2 Trap Control register is implemented,
// and FALSE otherwise.

boolean HaveFeatHCX()
return IsFeatureImplemented(FEAT_HCX);

Shared Pseudocode Functions Page 2001

Library pseudocode for shared/functions/extension/HaveFeatHPMN0

// HaveFeatHPMN0()
// ===============
// Returns TRUE if HDCR.HPMN or MDCR_EL2.HPMN is permitted to be 0 without
// generating UNPREDICTABLE behavior, and FALSE otherwise.

boolean HaveFeatHPMN0()
return IsFeatureImplemented(FEAT_HPMN0);

Library pseudocode for shared/functions/extension/HaveFeatLS64

// HaveFeatLS64()
// ==============
// Returns TRUE if the LD64B, ST64B instructions are
// supported, and FALSE otherwise.

boolean HaveFeatLS64()
return IsFeatureImplemented(FEAT_LS64);

Library pseudocode for shared/functions/extension/HaveFeatLS64_ACCDATA

// HaveFeatLS64_ACCDATA()
// ======================
// Returns TRUE if the ST64BV0 instruction is
// supported, and FALSE otherwise.

boolean HaveFeatLS64_ACCDATA()
return IsFeatureImplemented(FEAT_LS64_ACCDATA);

Library pseudocode for shared/functions/extension/HaveFeatLS64_V

// HaveFeatLS64_V()
// ================
// Returns TRUE if the ST64BV instruction is
// supported, and FALSE otherwise.

boolean HaveFeatLS64_V()
return IsFeatureImplemented(FEAT_LS64_V);

Library pseudocode for shared/functions/extension/HaveFeatMEC

// HaveFeatMEC()
// =============
// Returns TRUE if Memory Encryption Contexts are implemented, and FALSE otherwise.

boolean HaveFeatMEC()
return IsFeatureImplemented(FEAT_MEC);

Library pseudocode for shared/functions/extension/HaveFeatMOPS

// HaveFeatMOPS()
// ==============
// Returns TRUE if the CPY* and SET* instructions are supported, and FALSE otherwise.

boolean HaveFeatMOPS()
return IsFeatureImplemented(FEAT_MOPS);

Shared Pseudocode Functions Page 2002

Library pseudocode for shared/functions/extension/HaveFeatNMI

// HaveFeatNMI()
// =============
// Returns TRUE if the Non-Maskable Interrupt extension is
// implemented, and FALSE otherwise.

boolean HaveFeatNMI()
return IsFeatureImplemented(FEAT_NMI);

Library pseudocode for shared/functions/extension/HaveFeatRPRES

// HaveFeatRPRES()
// ===============
// Returns TRUE if reciprocal estimate implements 12-bit precision
// when FPCR.AH=1, and FALSE otherwise.

boolean HaveFeatRPRES()
return IsFeatureImplemented(FEAT_RPRES);

Library pseudocode for shared/functions/extension/HaveFeatSCTLR2

// HaveFeatSCTLR2()
// ================
// Returns TRUE if SCTLR2 extension
// support is implemented and FALSE otherwise.

boolean HaveFeatSCTLR2()
return IsFeatureImplemented(FEAT_SCTLR2);

Library pseudocode for shared/functions/extension/HaveFeatTCR2

// HaveFeatTCR2()
// ==============
// Returns TRUE if TCR2 extension
// support is implemented and FALSE otherwise.

boolean HaveFeatTCR2()
return IsFeatureImplemented(FEAT_TCR2);

Library pseudocode for shared/functions/extension/HaveFeatTIDCP1

// HaveFeatTIDCP1()
// ================
// Returns TRUE if the SCTLR_EL1.TIDCP bit is implemented and the SCTLR_EL2.TIDCP bit
// is implemented if EL2 is implemented.

boolean HaveFeatTIDCP1()
return IsFeatureImplemented(FEAT_TIDCP1);

Library pseudocode for shared/functions/extension/HaveFeatTRBEExt

// HaveFeatTRBEExt()
// =================
// Returns TRUE if the Trace Buffer Extension external mode is implemented, and FALSE otherwise.

boolean HaveFeatTRBEExt()
return IsFeatureImplemented(FEAT_TRBE_EXT);

Shared Pseudocode Functions Page 2003

Library pseudocode for shared/functions/extension/HaveFeatWFxT

// HaveFeatWFxT()
// ==============
// Returns TRUE if WFET and WFIT instruction support is implemented,
// and FALSE otherwise.

boolean HaveFeatWFxT()
return IsFeatureImplemented(FEAT_WFxT);

Library pseudocode for shared/functions/extension/HaveFeatXS

// HaveFeatXS()
// ============
// Returns TRUE if XS attribute and the TLBI and DSB instructions with nXS qualifier
// are supported, and FALSE otherwise.

boolean HaveFeatXS()
return IsFeatureImplemented(FEAT_XS);

Library pseudocode for shared/functions/extension/HaveFlagFormatExt

// HaveFlagFormatExt()
// ===================
// Returns TRUE if flag format conversion instructions implemented.

boolean HaveFlagFormatExt()
return IsFeatureImplemented(FEAT_FlagM2);

Library pseudocode for shared/functions/extension/HaveFlagManipulateExt

// HaveFlagManipulateExt()
// =======================
// Returns TRUE if flag manipulate instructions are implemented.

boolean HaveFlagManipulateExt()
return IsFeatureImplemented(FEAT_FlagM);

Library pseudocode for shared/functions/extension/HaveFrintExt

// HaveFrintExt()
// ==============
// Returns TRUE if FRINT instructions are implemented.

boolean HaveFrintExt()
return IsFeatureImplemented(FEAT_FRINTTS);

Library pseudocode for shared/functions/extension/HaveGCS

// HaveGCS()
// =========
// Returns TRUE if support for Guarded Control Stack is
// implemented, and FALSE otherwise.

boolean HaveGCS()
return IsFeatureImplemented(FEAT_GCS);

Library pseudocode for shared/functions/extension/HaveGTGExt

// HaveGTGExt()
// ============
// Returns TRUE if support for guest translation granule size is implemented.

boolean HaveGTGExt()
return IsFeatureImplemented(FEAT_GTG);

Shared Pseudocode Functions Page 2004

Library pseudocode for shared/functions/extension/HaveHPMDExt

// HaveHPMDExt()
// =============

boolean HaveHPMDExt()
return IsFeatureImplemented(FEAT_PMUv3p1);

Library pseudocode for shared/functions/extension/HaveIDSExt

// HaveIDSExt()
// ============
// Returns TRUE if ID register handling feature is implemented.

boolean HaveIDSExt()
return IsFeatureImplemented(FEAT_IDST);

Library pseudocode for shared/functions/extension/HaveIESB

// HaveIESB()
// ==========

boolean HaveIESB()
return IsFeatureImplemented(FEAT_IESB);

Library pseudocode for shared/functions/extension/HaveInt8MatMulExt

// HaveInt8MatMulExt()
// ===================
// Returns TRUE if AArch64 8-bit integer matrix multiply instruction support
// implemented, and FALSE otherwise.

boolean HaveInt8MatMulExt()
return IsFeatureImplemented(FEAT_I8MM);

Library pseudocode for shared/functions/extension/HaveLRCPC3Ext

// HaveLRCPC3Ext()
// ===============
// Returns TRUE if FEAT_LRCPC3 instructions are supported, and FALSE otherwise.

boolean HaveLRCPC3Ext()
return IsFeatureImplemented(FEAT_LRCPC3);

Library pseudocode for shared/functions/extension/HaveLSE128

// HaveLSE128()
// ============
// Returns TRUE if LSE128 is implemented, and FALSE otherwise.

boolean HaveLSE128()
return IsFeatureImplemented(FEAT_LSE128);

Library pseudocode for shared/functions/extension/HaveLSE2Ext

// HaveLSE2Ext()
// =============
// Returns TRUE if LSE2 is implemented, and FALSE otherwise.

boolean HaveLSE2Ext()
return IsFeatureImplemented(FEAT_LSE2);

Shared Pseudocode Functions Page 2005

Library pseudocode for shared/functions/extension/HaveMPAMExt

// HaveMPAMExt()
// =============
// Returns TRUE if MPAM is implemented, and FALSE otherwise.

boolean HaveMPAMExt()
return IsFeatureImplemented(FEAT_MPAM);

Library pseudocode for shared/functions/extension/HaveMPAMv0p1Ext

// HaveMPAMv0p1Ext()
// =================
// Returns TRUE if MPAMv0p1 is implemented, and FALSE otherwise.

boolean HaveMPAMv0p1Ext()
return IsFeatureImplemented(FEAT_MPAMv0p1);

Library pseudocode for shared/functions/extension/HaveMPAMv1p1Ext

// HaveMPAMv1p1Ext()
// =================
// Returns TRUE if MPAMv1p1 is implemented, and FALSE otherwise.

boolean HaveMPAMv1p1Ext()
return IsFeatureImplemented(FEAT_MPAMv1p1);

Library pseudocode for shared/functions/extension/HaveMTE2Ext

// HaveMTE2Ext()
// =============
// Returns TRUE if MTE support is beyond EL0, and FALSE otherwise.

boolean HaveMTE2Ext()
return IsFeatureImplemented(FEAT_MTE2);

Library pseudocode for shared/functions/extension/HaveMTE4Ext

// HaveMTE4Ext()
// =============
// Returns TRUE if functionality in FEAT_MTE4 is implemented, and FALSE otherwise.

boolean HaveMTE4Ext()
return IsFeatureImplemented(FEAT_MTE4);

Library pseudocode for shared/functions/extension/HaveMTEAsymFaultExt

// HaveMTEAsymFaultExt()
// =====================
// Returns TRUE if MTE Asymmetric Fault Handling support is
// implemented, and FALSE otherwise.

boolean HaveMTEAsymFaultExt()
return IsFeatureImplemented(FEAT_MTE4);

Library pseudocode for shared/functions/extension/HaveMTEAsyncExt

// HaveMTEAsyncExt()
// =================
// Returns TRUE if MTE supports Asynchronous faulting, and FALSE otherwise.

boolean HaveMTEAsyncExt()
return IsFeatureImplemented(FEAT_MTE4);

Shared Pseudocode Functions Page 2006

Library pseudocode for shared/functions/extension/HaveMTECanonicalTagCheckingExt

// HaveMTECanonicalTagCheckingExt()
// ================================
// Returns TRUE if MTE Canonical Tag Checking functionality is
// implemented, and FALSE otherwise.

boolean HaveMTECanonicalTagCheckingExt()
return IsFeatureImplemented(FEAT_MTE_CANONICAL_TAGS);

Library pseudocode for shared/functions/extension/HaveMTEExt

// HaveMTEExt()
// ============
// Returns TRUE if instruction-only MTE implemented, and FALSE otherwise.

boolean HaveMTEExt()
return IsFeatureImplemented(FEAT_MTE);

Library pseudocode for shared/functions/extension/HaveMTEPermExt

// HaveMTEPermExt()
// ================
// Returns TRUE if MTE_PERM implemented, and FALSE otherwise.

boolean HaveMTEPermExt()
return IsFeatureImplemented(FEAT_MTE_PERM);

Library pseudocode for shared/functions/extension/HaveMTEStoreOnlyExt

// HaveMTEStoreOnlyExt()
// =====================
// Returns TRUE if MTE Store-only Tag Checking functionality is
// implemented, and FALSE otherwise.

boolean HaveMTEStoreOnlyExt()
return IsFeatureImplemented(FEAT_MTE_STORE_ONLY);

Library pseudocode for shared/functions/extension/HaveNV2Ext

// HaveNV2Ext()
// ============
// Returns TRUE if Enhanced Nested Virtualization is implemented.

boolean HaveNV2Ext()
return IsFeatureImplemented(FEAT_NV2);

Library pseudocode for shared/functions/extension/HaveNVExt

// HaveNVExt()
// ===========
// Returns TRUE if Nested Virtualization is implemented.

boolean HaveNVExt()
return IsFeatureImplemented(FEAT_NV);

Library pseudocode for shared/functions/extension/HaveNoSecurePMUDisableOverride

// HaveNoSecurePMUDisableOverride()
// ================================

boolean HaveNoSecurePMUDisableOverride()
return IsFeatureImplemented(FEAT_Debugv8p2);

Shared Pseudocode Functions Page 2007

Library pseudocode for shared/functions/extension/HaveNoninvasiveDebugAuth

// HaveNoninvasiveDebugAuth()
// ==========================
// Returns TRUE if the Non-invasive debug controls are implemented.

boolean HaveNoninvasiveDebugAuth()
return !IsFeatureImplemented(FEAT_Debugv8p4);

Library pseudocode for shared/functions/extension/HavePAN3Ext

// HavePAN3Ext()
// =============
// Returns TRUE if SCTLR_EL1.EPAN and SCTLR_EL2.EPAN support is implemented,
// and FALSE otherwise.

boolean HavePAN3Ext()
return IsFeatureImplemented(FEAT_PAN3);

Library pseudocode for shared/functions/extension/HavePANExt

// HavePANExt()
// ============

boolean HavePANExt()
return IsFeatureImplemented(FEAT_PAN);

Library pseudocode for shared/functions/extension/HavePFAR

// HavePFAR()
// ==========
// Returns TRUE if the Physical Fault Address Extension is implemented, and FALSE
// otherwise.

boolean HavePFAR()
return IsFeatureImplemented(FEAT_PFAR);

Library pseudocode for shared/functions/extension/HavePMUv3

// HavePMUv3()
// ===========
// Returns TRUE if the Performance Monitors extension is implemented, and FALSE otherwise.

boolean HavePMUv3()
return IsFeatureImplemented(FEAT_PMUv3);

Library pseudocode for shared/functions/extension/HavePMUv3EDGE

// HavePMUv3EDGE()
// ===============
// Returns TRUE if support for PMU event edge detection is implemented, and FALSE otherwise.

boolean HavePMUv3EDGE()
return IsFeatureImplemented(FEAT_PMUv3_EDGE);

Library pseudocode for shared/functions/extension/HavePMUv3ICNTR

// HavePMUv3ICNTR()
// ================
// Returns TRUE if support for the Fixed-function instruction counter is
// implemented, and FALSE otherwise.

boolean HavePMUv3ICNTR()
return IsFeatureImplemented(FEAT_PMUv3_ICNTR);

Shared Pseudocode Functions Page 2008

Library pseudocode for shared/functions/extension/HavePMUv3TH

// HavePMUv3TH()
// =============
// Returns TRUE if the PMUv3 threshold extension is implemented, and FALSE otherwise.

boolean HavePMUv3TH()
return IsFeatureImplemented(FEAT_PMUv3_TH);

Library pseudocode for shared/functions/extension/HavePMUv3p1

// HavePMUv3p1()
// =============
// Returns TRUE if the Performance Monitors extension is implemented, and FALSE otherwise.

boolean HavePMUv3p1()
return IsFeatureImplemented(FEAT_PMUv3p1);

Library pseudocode for shared/functions/extension/HavePMUv3p4

// HavePMUv3p4()
// =============
// Returns TRUE if the PMUv3.4 extension is implemented, and FALSE otherwise.

boolean HavePMUv3p4()
return IsFeatureImplemented(FEAT_PMUv3p4);

Library pseudocode for shared/functions/extension/HavePMUv3p5

// HavePMUv3p5()
// =============
// Returns TRUE if the PMUv3.5 extension is implemented, and FALSE otherwise.

boolean HavePMUv3p5()
return IsFeatureImplemented(FEAT_PMUv3p5);

Library pseudocode for shared/functions/extension/HavePMUv3p7

// HavePMUv3p7()
// =============
// Returns TRUE if the PMUv3.7 extension is implemented, and FALSE otherwise.

boolean HavePMUv3p7()
return IsFeatureImplemented(FEAT_PMUv3p7);

Library pseudocode for shared/functions/extension/HavePMUv3p9

// HavePMUv3p9()
// =============
// Returns TRUE if the PMUv3.9 extension is implemented, and FALSE otherwise.

boolean HavePMUv3p9()
return IsFeatureImplemented(FEAT_PMUv3p9);

Library pseudocode for shared/functions/extension/HavePageBasedHardwareAttributes

// HavePageBasedHardwareAttributes()
// =================================

boolean HavePageBasedHardwareAttributes()
return IsFeatureImplemented(FEAT_HPDS2);

Shared Pseudocode Functions Page 2009

Library pseudocode for shared/functions/extension/HaveQRDMLAHExt

// HaveQRDMLAHExt()
// ================

boolean HaveQRDMLAHExt()
return IsFeatureImplemented(FEAT_RDM);

Library pseudocode for shared/functions/extension/HaveRASExt

// HaveRASExt()
// ============

boolean HaveRASExt()
return IsFeatureImplemented(FEAT_RAS);

Library pseudocode for shared/functions/extension/HaveRASv2Ext

// HaveRASv2Ext()
// ==============
// Returns TRUE if support for RASv2 is implemented, and FALSE otherwise.

boolean HaveRASv2Ext()
return IsFeatureImplemented(FEAT_RASv2);

Library pseudocode for shared/functions/extension/HaveRME

// HaveRME()
// =========
// Returns TRUE if the Realm Management Extension is implemented, and FALSE
// otherwise.

boolean HaveRME()
return IsFeatureImplemented(FEAT_RME);

Library pseudocode for shared/functions/extension/HaveRNG

// HaveRNG()
// =========
// Returns TRUE if Random Number Generator extension
// support is implemented and FALSE otherwise.

boolean HaveRNG()
return IsFeatureImplemented(FEAT_RNG);

Library pseudocode for shared/functions/extension/HaveS1PIExt

// HaveS1PIExt()
// =============
// Returns TRUE if the S1 Permission Indirection extension is
// implemented and FALSE otherwise.

boolean HaveS1PIExt()
return IsFeatureImplemented(FEAT_S1PIE);

Library pseudocode for shared/functions/extension/HaveS1POExt

// HaveS1POExt()
// =============
// Returns TRUE if the S1 Permission Overlay extension is
// implemented and FALSE otherwise.

boolean HaveS1POExt()
return IsFeatureImplemented(FEAT_S1POE);

Shared Pseudocode Functions Page 2010

Library pseudocode for shared/functions/extension/HaveS2PIExt

// HaveS2PIExt()
// =============
// Returns TRUE if the S2 Permission Indirection extension is
// implemented and FALSE otherwise.

boolean HaveS2PIExt()
return IsFeatureImplemented(FEAT_S2PIE);

Library pseudocode for shared/functions/extension/HaveS2POExt

// HaveS2POExt()
// =============
// Returns TRUE if the S2 Permission Overlay extension is
// implemented and FALSE otherwise.

boolean HaveS2POExt()
return IsFeatureImplemented(FEAT_S2POE);

Library pseudocode for shared/functions/extension/HaveSBExt

// HaveSBExt()
// ===========
// Returns TRUE if support for SB is implemented, and FALSE otherwise.

boolean HaveSBExt()
return IsFeatureImplemented(FEAT_SB);

Library pseudocode for shared/functions/extension/HaveSSBSExt

// HaveSSBSExt()
// =============
// Returns TRUE if support for SSBS is implemented, and FALSE otherwise.

boolean HaveSSBSExt()
return IsFeatureImplemented(FEAT_SSBS);

Library pseudocode for shared/functions/extension/HaveSecureEL2Ext

// HaveSecureEL2Ext()
// ==================
// Returns TRUE if Secure EL2 is implemented.

boolean HaveSecureEL2Ext()
return IsFeatureImplemented(FEAT_SEL2);

Library pseudocode for shared/functions/extension/HaveSecureExtDebugView

// HaveSecureExtDebugView()
// ========================
// Returns TRUE if support for Secure and Non-secure views of debug peripherals
// is implemented.

boolean HaveSecureExtDebugView()
return IsFeatureImplemented(FEAT_Debugv8p4);

Library pseudocode for shared/functions/extension/HaveSelfHostedTrace

// HaveSelfHostedTrace()
// =====================

boolean HaveSelfHostedTrace()
return IsFeatureImplemented(FEAT_TRF);

Shared Pseudocode Functions Page 2011

Library pseudocode for shared/functions/extension/HaveSmallTranslationTblExt

// HaveSmallTranslationTblExt()
// ============================
// Returns TRUE if Small Translation Table Support is implemented.

boolean HaveSmallTranslationTableExt()
return IsFeatureImplemented(FEAT_TTST);

Library pseudocode for shared/functions/extension/HaveSoftwareLock

// HaveSoftwareLock()
// ==================
// Returns TRUE if Software Lock is implemented.

boolean HaveSoftwareLock(Component component)
if Havev8p4Debug() then

return FALSE;
if HaveDoPD() && component != Component_CTI then

return FALSE;
case component of

when Component_Debug
return boolean IMPLEMENTATION_DEFINED "Debug has Software Lock";

when Component_PMU
return boolean IMPLEMENTATION_DEFINED "PMU has Software Lock";

when Component_CTI
return boolean IMPLEMENTATION_DEFINED "CTI has Software Lock";

otherwise
Unreachable();

Library pseudocode for shared/functions/extension/HaveStage2MemAttrControl

// HaveStage2MemAttrControl()
// ==========================
// Returns TRUE if support for Stage2 control of memory types and cacheability
// attributes is implemented.

boolean HaveStage2MemAttrControl()
return IsFeatureImplemented(FEAT_S2FWB);

Library pseudocode for shared/functions/extension/HaveStatisticalProfiling

// HaveStatisticalProfiling()
// ==========================
// Returns TRUE if Statistical Profiling Extension is implemented,
// and FALSE otherwise.

boolean HaveStatisticalProfiling()
return IsFeatureImplemented(FEAT_SPE);

Library pseudocode for shared/functions/extension/HaveStatisticalProfilingFDS

// HaveStatisticalProfilingFDS()
// =============================
// Returns TRUE if the SPE_FDS extension is implemented, and FALSE otherwise.

boolean HaveStatisticalProfilingFDS()
return IsFeatureImplemented(FEAT_SPE_FDS);

Shared Pseudocode Functions Page 2012

Library pseudocode for shared/functions/extension/HaveStatisticalProfilingv1p1

// HaveStatisticalProfilingv1p1()
// ==============================
// Returns TRUE if the SPEv1p1 extension is implemented, and FALSE otherwise.

boolean HaveStatisticalProfilingv1p1()
return IsFeatureImplemented(FEAT_SPEv1p1);

Library pseudocode for shared/functions/extension/HaveStatisticalProfilingv1p2

// HaveStatisticalProfilingv1p2()
// ==============================
// Returns TRUE if the SPEv1p2 extension is implemented, and FALSE otherwise.

boolean HaveStatisticalProfilingv1p2()
return IsFeatureImplemented(FEAT_SPEv1p2);

Library pseudocode for shared/functions/extension/HaveStatisticalProfilingv1p4

// HaveStatisticalProfilingv1p4()
// ==============================
// Returns TRUE if the SPEv1p4 extension is implemented, and FALSE otherwise.

boolean HaveStatisticalProfilingv1p4()
return IsFeatureImplemented(FEAT_SPEv1p4);

Library pseudocode for shared/functions/extension/HaveSysInstr128

// HaveSysInstr128()
// =================
// Returns TRUE if support for System Instructions that can
// take 128-bit inputs is implemented, and FALSE otherwise.

boolean HaveSysInstr128()
return IsFeatureImplemented(FEAT_SYSINSTR128);

Library pseudocode for shared/functions/extension/HaveSysReg128

// HaveSysReg128()
// ===============
// Returns TRUE if support for 128-bit System Registers is implemented, and FALSE otherwise.

boolean HaveSysReg128()
return IsFeatureImplemented(FEAT_SYSREG128);

Library pseudocode for shared/functions/extension/HaveTHExt

// HaveTHExt()
// ===========
// Returns TRUE if support for Translation Hardening Extension is implemented.

boolean HaveTHExt()
return IsFeatureImplemented(FEAT_THE);

Library pseudocode for shared/functions/extension/HaveTME

// HaveTME()
// =========

boolean HaveTME()
return IsFeatureImplemented(FEAT_TME);

Shared Pseudocode Functions Page 2013

Library pseudocode for shared/functions/extension/HaveTWEDExt

// HaveTWEDExt()
// =============
// Returns TRUE if Delayed Trapping of WFE instruction support is implemented,
// and FALSE otherwise.

boolean HaveTWEDExt()
return IsFeatureImplemented(FEAT_TWED);

Library pseudocode for shared/functions/extension/HaveTraceBufferExtension

// HaveTraceBufferExtension()
// ==========================
// Returns TRUE if Trace Buffer Extension is implemented, and FALSE otherwise.

boolean HaveTraceBufferExtension()
return IsFeatureImplemented(FEAT_TRBE);

Library pseudocode for shared/functions/extension/HaveTraceExt

// HaveTraceExt()
// ==============
// Returns TRUE if Trace functionality as described by the Trace Architecture
// is implemented.

boolean HaveTraceExt()
return boolean IMPLEMENTATION_DEFINED "Has Trace Architecture functionality";

Library pseudocode for shared/functions/extension/HaveTrapLoadStoreMultipleDeviceExt

// HaveTrapLoadStoreMultipleDeviceExt()
// ====================================

boolean HaveTrapLoadStoreMultipleDeviceExt()
return IsFeatureImplemented(FEAT_LSMAOC);

Library pseudocode for shared/functions/extension/HaveUAOExt

// HaveUAOExt()
// ============

boolean HaveUAOExt()
return IsFeatureImplemented(FEAT_UAO);

Library pseudocode for shared/functions/extension/HaveV82Debug

// HaveV82Debug()
// ==============

boolean HaveV82Debug()
return IsFeatureImplemented(FEAT_Debugv8p2);

Library pseudocode for shared/functions/extension/HaveVirtHostExt

// HaveVirtHostExt()
// =================

boolean HaveVirtHostExt()
return IsFeatureImplemented(FEAT_VHE);

Shared Pseudocode Functions Page 2014

Library pseudocode for shared/functions/extension/Havev8p4Debug

// Havev8p4Debug()
// ===============
// Returns TRUE if support for the Debugv8p4 feature is implemented and FALSE otherwise.

boolean Havev8p4Debug()
return IsFeatureImplemented(FEAT_Debugv8p4);

Library pseudocode for shared/functions/extension/Havev8p8Debug

// Havev8p8Debug()
// ===============
// Returns TRUE if support for the Debugv8p8 feature is implemented and FALSE otherwise.

boolean Havev8p8Debug()
return IsFeatureImplemented(FEAT_Debugv8p8);

Library pseudocode for shared/functions/extension/Havev8p9Debug

// Havev8p9Debug()
// ===============
// Returns TRUE if support for the Debugv8p9 feature is implemented, and FALSE otherwise.

boolean Havev8p9Debug()
return IsFeatureImplemented(FEAT_Debugv8p9);

Library pseudocode for shared/functions/extension/InsertIESBBeforeException

// InsertIESBBeforeException()
// ===========================
// Returns an implementation defined choice whether to insert an implicit error synchronization
// barrier before exception.
// If SCTLR_ELx.IESB is 1 when an exception is generated to ELx, any pending Unrecoverable
// SError interrupt must be taken before executing any instructions in the exception handler.
// However, this can be before the branch to the exception handler is made.

boolean InsertIESBBeforeException(bits(2) el)
return (HaveIESB() && boolean IMPLEMENTATION_DEFINED

"Has Implicit Error Synchronization Barrier before Exception");

Library pseudocode for shared/functions/extension/IsG1ActivityMonitorImplemented

// IsG1ActivityMonitorImplemented()
// ================================
// Returns TRUE if a G1 activity monitor is implemented for the counter
// and FALSE otherwise.

boolean IsG1ActivityMonitorImplemented(integer i);

Library pseudocode for shared/functions/extension/IsG1ActivityMonitorOffsetImplemented

// IsG1ActivityMonitorOffsetImplemented()
// ======================================
// Returns TRUE if a G1 activity monitor offset is implemented for the counter,
// and FALSE otherwise.

boolean IsG1ActivityMonitorOffsetImplemented(integer i);

Shared Pseudocode Functions Page 2015

Library pseudocode for shared/functions/externalaborts/AArch32.PEErrorState

// AArch32.PEErrorState()
// ======================
// Returns the error state by PE on taking an SError Interrupt
// to AArch32 level.

ErrorState AArch32.PEErrorState(FaultRecord fault)
if (!ErrorIsContained() ||

(!ErrorIsSynchronized() && !StateIsRecoverable()) ||
ReportErrorAsUC()) then

return ErrorState_UC;

if !StateIsRecoverable() || ReportErrorAsUEU() then
return ErrorState_UEU;

if ActionRequired() || ReportErrorAsUER() then
return ErrorState_UER;

return ErrorState_UEO;

Library pseudocode for shared/functions/externalaborts/AArch64.PEErrorState

// AArch64.PEErrorState()
// ======================
// Returns the error state by PE on taking a Synchronous
// or Asynchronous exception.

ErrorState AArch64.PEErrorState(FaultRecord fault)
if !IsExternalSyncAbort(fault) && ExtAbortToA64(fault) then

if ReportErrorAsUncategorized() then
return ErrorState_Uncategorized;

if ReportErrorAsIMPDEF() then
return ErrorState_IMPDEF;

assert !FaultIsCorrected();
if (!ErrorIsContained() ||

(!ErrorIsSynchronized() && !StateIsRecoverable()) ||
ReportErrorAsUC()) then

return ErrorState_UC;

if !StateIsRecoverable() || ReportErrorAsUEU() then
if IsExternalSyncAbort(fault) then // Implies taken to AArch64

return ErrorState_UC;
else

return ErrorState_UEU;

if (ActionRequired() || ReportErrorAsUER()) then
return ErrorState_UER;

return ErrorState_UEO;

Library pseudocode for shared/functions/externalaborts/ActionRequired

// ActionRequired()
// ================
// Return an implementation specific value:
// returns TRUE if action is required, FALSE otherwise.

boolean ActionRequired();

Library pseudocode for shared/functions/externalaborts/ClearPendingPhysicalSError

// ClearPendingPhysicalSError()
// ============================
// Clear a pending physical SError interrupt.

ClearPendingPhysicalSError();

Shared Pseudocode Functions Page 2016

Library pseudocode for shared/functions/externalaborts/ClearPendingVirtualSError

// ClearPendingVirtualSError()
// ===========================
// Clear a pending virtual SError interrupt.

ClearPendingVirtualSError()
if ELUsingAArch32(EL2) then

HCR.VA = '0';
else

HCR_EL2.VSE = '0';

Library pseudocode for shared/functions/externalaborts/ErrorIsContained

// ErrorIsContained()
// ==================
// Return an implementation specific value:
// TRUE if Error is contained by the PE, FALSE otherwise.

boolean ErrorIsContained();

Library pseudocode for shared/functions/externalaborts/ErrorIsSynchronized

// ErrorIsSynchronized()
// =====================
// Return an implementation specific value:
// returns TRUE if Error is synchronized by any synchronization event
// FALSE otherwise.

boolean ErrorIsSynchronized();

Library pseudocode for shared/functions/externalaborts/ExtAbortToA64

// ExtAbortToA64()
// ===============
// Returns TRUE if synchronous exception is being taken to A64 exception
// level.

boolean ExtAbortToA64(FaultRecord fault)
// Check if routed to AArch64 state
route_to_aarch64 = PSTATE.EL == EL0 && !ELUsingAArch32(EL1);

if !route_to_aarch64 && EL2Enabled() && !ELUsingAArch32(EL2) then
route_to_aarch64 = (HCR_EL2.TGE == '1' || IsSecondStage(fault) ||

(HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault)) ||
(IsDebugException(fault) && MDCR_EL2.TDE == '1'));

if !route_to_aarch64 && HaveEL(EL3) && !ELUsingAArch32(EL3) then
route_to_aarch64 = SCR_curr[].EA == '1' && IsExternalAbort(fault);

return route_to_aarch64 && IsExternalSyncAbort(fault.statuscode);

Library pseudocode for shared/functions/externalaborts/FaultIsCorrected

// FaultIsCorrected()
// ==================
// Return an implementation specific value:
// TRUE if fault is corrected by the PE, FALSE otherwise.

boolean FaultIsCorrected();

Shared Pseudocode Functions Page 2017

Library pseudocode for shared/functions/externalaborts/GetPendingPhysicalSError

// GetPendingPhysicalSError()
// ==========================
// Returns the FaultRecord containing details of pending Physical SError
// interrupt.

FaultRecord GetPendingPhysicalSError();

Library pseudocode for shared/functions/externalaborts/HandleExternalAbort

// HandleExternalAbort()
// =====================
// Takes a Synchronous/Asynchronous abort based on fault.

HandleExternalAbort(PhysMemRetStatus memretstatus, boolean iswrite,
AddressDescriptor memaddrdesc, integer size,
AccessDescriptor accdesc)

assert (memretstatus.statuscode IN {Fault_SyncExternal, Fault_AsyncExternal} ||
(!HaveRASExt() && memretstatus.statuscode IN {Fault_SyncParity,

Fault_AsyncParity}));

fault = NoFault(accdesc);
fault.statuscode = memretstatus.statuscode;
fault.write = iswrite;
fault.extflag = memretstatus.extflag;
// It is implementation specific whether External aborts signaled
// in-band synchronously are taken synchronously or asynchronously
if (IsExternalSyncAbort(fault) &&

!IsExternalAbortTakenSynchronously(memretstatus, iswrite, memaddrdesc,
size, accdesc)) then

if fault.statuscode == Fault_SyncParity then
fault.statuscode = Fault_AsyncParity;

else
fault.statuscode = Fault_AsyncExternal;

if HaveRASExt() then
fault.merrorstate = memretstatus.merrorstate;

if IsExternalSyncAbort(fault) then
if UsingAArch32() then

AArch32.Abort(memaddrdesc.vaddress<31:0>, fault);
else

AArch64.Abort(memaddrdesc.vaddress, fault);

else
PendSErrorInterrupt(fault);

Library pseudocode for shared/functions/externalaborts/HandleExternalReadAbort

// HandleExternalReadAbort()
// =========================
// Wrapper function for HandleExternalAbort function in case of an External
// Abort on memory read.

HandleExternalReadAbort(PhysMemRetStatus memstatus, AddressDescriptor memaddrdesc,
integer size, AccessDescriptor accdesc)

iswrite = FALSE;
HandleExternalAbort(memstatus, iswrite, memaddrdesc, size, accdesc);

Shared Pseudocode Functions Page 2018

Library pseudocode for shared/functions/externalaborts/HandleExternalTTWAbort

// HandleExternalTTWAbort()
// ========================
// Take Asynchronous abort or update FaultRecord for Translation Table Walk
// based on PhysMemRetStatus.

FaultRecord HandleExternalTTWAbort(PhysMemRetStatus memretstatus, boolean iswrite,
AddressDescriptor memaddrdesc,
AccessDescriptor accdesc, integer size,
FaultRecord input_fault)

output_fault = input_fault;
output_fault.extflag = memretstatus.extflag;
output_fault.statuscode = memretstatus.statuscode;
if (IsExternalSyncAbort(output_fault) &&

!IsExternalAbortTakenSynchronously(memretstatus, iswrite, memaddrdesc,
size, accdesc)) then

if output_fault.statuscode == Fault_SyncParity then
output_fault.statuscode = Fault_AsyncParity;

else
output_fault.statuscode = Fault_AsyncExternal;

// If a synchronous fault is on a translation table walk, then update
// the fault type
if IsExternalSyncAbort(output_fault) then

if output_fault.statuscode == Fault_SyncParity then
output_fault.statuscode = Fault_SyncParityOnWalk;

else
output_fault.statuscode = Fault_SyncExternalOnWalk;

if HaveRASExt() then
output_fault.merrorstate = memretstatus.merrorstate;

if !IsExternalSyncAbort(output_fault) then
PendSErrorInterrupt(output_fault);
output_fault.statuscode = Fault_None;

return output_fault;

Library pseudocode for shared/functions/externalaborts/HandleExternalWriteAbort

// HandleExternalWriteAbort()
// ==========================
// Wrapper function for HandleExternalAbort function in case of an External
// Abort on memory write.

HandleExternalWriteAbort(PhysMemRetStatus memstatus, AddressDescriptor memaddrdesc,
integer size, AccessDescriptor accdesc)

iswrite = TRUE;
HandleExternalAbort(memstatus, iswrite, memaddrdesc, size, accdesc);

Shared Pseudocode Functions Page 2019

Library pseudocode for shared/functions/externalaborts/IsExternalAbortTakenSynchronously

// IsExternalAbortTakenSynchronously()
// ===================================
// Return an implementation specific value:
// TRUE if the fault returned for the access can be taken synchronously,
// FALSE otherwise.
//
// This might vary between accesses, for example depending on the error type
// or memory type being accessed.
// External aborts on data accesses and translation table walks on data accesses
// can be either synchronous or asynchronous.
//
// When FEAT_DoubleFault is not implemented, External aborts on instruction
// fetches and translation table walks on instruction fetches can be either
// synchronous or asynchronous.
// When FEAT_DoubleFault is implemented, all External abort exceptions on
// instruction fetches and translation table walks on instruction fetches
// must be synchronous.

boolean IsExternalAbortTakenSynchronously(PhysMemRetStatus memstatus,
boolean iswrite,
AddressDescriptor desc,
integer size,
AccessDescriptor accdesc);

Library pseudocode for shared/functions/externalaborts/IsPhysicalSErrorPending

// IsPhysicalSErrorPending()
// =========================
// Returns TRUE if a physical SError interrupt is pending.

boolean IsPhysicalSErrorPending();

Library pseudocode for shared/functions/externalaborts/IsSErrorEdgeTriggered

// IsSErrorEdgeTriggered()
// =======================
// Returns TRUE if the physical SError interrupt is edge-triggered
// and FALSE otherwise.

boolean IsSErrorEdgeTriggered()
if HaveDoubleFaultExt() then

return TRUE;
else

return boolean IMPLEMENTATION_DEFINED "Edge-triggered SError";

Library pseudocode for shared/functions/externalaborts/IsSynchronizablePhysicalSErrorPending

// IsSynchronizablePhysicalSErrorPending()
// =======================================
// Returns TRUE if a synchronizable physical SError interrupt is pending.

boolean IsSynchronizablePhysicalSErrorPending();

Library pseudocode for shared/functions/externalaborts/IsVirtualSErrorPending

// IsVirtualSErrorPending()
// ========================
// Return TRUE if a virtual SError interrupt is pending.

boolean IsVirtualSErrorPending()
if ELUsingAArch32(EL2) then

return HCR.VA == '1';
else

return HCR_EL2.VSE == '1';

Shared Pseudocode Functions Page 2020

Library pseudocode for shared/functions/externalaborts/PendSErrorInterrupt

// PendSErrorInterrupt()
// =====================
// Pend the SError Interrupt.

PendSErrorInterrupt(FaultRecord fault);

Library pseudocode for shared/functions/externalaborts/ReportErrorAsIMPDEF

// ReportErrorAsIMPDEF()
// =====================
// Return an implementation specific value:
// returns TRUE if Error is IMPDEF, FALSE otherwise.

boolean ReportErrorAsIMPDEF();

Library pseudocode for shared/functions/externalaborts/ReportErrorAsUC

// ReportErrorAsUC()
// =================
// Return an implementation specific value:
// returns TRUE if Error is Uncontainable, FALSE otherwise.

boolean ReportErrorAsUC();

Library pseudocode for shared/functions/externalaborts/ReportErrorAsUER

// ReportErrorAsUER()
// ==================
// Return an implementation specific value:
// returns TRUE if Error is Recoverable, FALSE otherwise.

boolean ReportErrorAsUER();

Library pseudocode for shared/functions/externalaborts/ReportErrorAsUEU

// ReportErrorAsUEU()
// ==================
// Return an implementation specific value:
// returns TRUE if Error is Unrecoverable, FALSE otherwise.

boolean ReportErrorAsUEU();

Library pseudocode for shared/functions/externalaborts/ReportErrorAsUncategorized

// ReportErrorAsUncategorized()
// ===========================
// Return an implementation specific value:
// returns TRUE if Error is uncategorized, FALSE otherwise.

boolean ReportErrorAsUncategorized();

Library pseudocode for shared/functions/externalaborts/StateIsRecoverable

// StateIsRecoverable()
// =====================
// Return an implementation specific value:
// returns TRUE is PE State is unrecoverable else FALSE.

boolean StateIsRecoverable();

Shared Pseudocode Functions Page 2021

Library pseudocode for shared/functions/float/bfloat/BFAdd

// BFAdd()
// =======
// Non-widening BFloat16 addition used by SVE2 instructions.

bits(N) BFAdd(bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean fpexc = TRUE;
return BFAdd(op1, op2, fpcr, fpexc);

// BFAdd()
// =======
// Non-widening BFloat16 addition following computational behaviors
// corresponding to instructions that read and write BFloat16 values.
// Calculates op1 + op2.
// The 'fpcr' argument supplies the FPCR control bits.

bits(N) BFAdd(bits(N) op1, bits(N) op2, FPCRType fpcr, boolean fpexc)

assert N == 16;
FPRounding rounding = FPRoundingMode(fpcr);
boolean done;
bits(2*N) result;

bits(2*N) op1_s = op1 : Zeros(N);
bits(2*N) op2_s = op2 : Zeros(N);
(type1,sign1,value1) = FPUnpack(op1_s, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2_s, fpcr, fpexc);

(done,result) = FPProcessNaNs(type1, type2, op1_s, op2_s, fpcr, fpexc);

if !done then
inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if inf1 && inf2 && sign1 == NOT(sign2) then
result = FPDefaultNaN(fpcr, 2*N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
result = FPInfinity('0', 2*N);

elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
result = FPInfinity('1', 2*N);

elsif zero1 && zero2 && sign1 == sign2 then
result = FPZero(sign1, 2*N);

else
result_value = value1 + value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign, 2*N);

else
result = FPRoundBF(result_value, fpcr, rounding, fpexc, 2*N);

if fpexc then FPProcessDenorms(type1, type2, 2*N, fpcr);

return result<2*N-1:N>;

Library pseudocode for shared/functions/float/bfloat/BFAdd_ZA

// BFAdd_ZA()
// ==========
// Non-widening BFloat16 addition used by SME2 ZA-targeting instructions.

bits(N) BFAdd_ZA(bits(N) op1, bits(N) op2, FPCRType fpcr_in)
boolean fpexc = FALSE;
FPCRType fpcr = fpcr_in;
fpcr.DN = '1'; // Generate default NaN values
return BFAdd(op1, op2, fpcr, fpexc);

Shared Pseudocode Functions Page 2022

Library pseudocode for shared/functions/float/bfloat/BFDotAdd

// BFDotAdd()
// ==========
// BFloat16 2-way dot-product and add to single-precision
// result = addend + op1_a*op2_a + op1_b*op2_b

bits(N) BFDotAdd(bits(N) addend, bits(N DIV 2) op1_a, bits(N DIV 2) op1_b,
bits(N DIV 2) op2_a, bits(N DIV 2) op2_b, FPCRType fpcr_in)

assert N == 32;
FPCRType fpcr = fpcr_in;

bits(N) prod;

bits(N) result;
if !HaveEBF16() || fpcr.EBF == '0' then // Standard BFloat16 behaviors

prod = FPAdd_BF16(BFMulH(op1_a, op2_a), BFMulH(op1_b, op2_b));
result = FPAdd_BF16(addend, prod);

else // Extended BFloat16 behaviors
boolean isbfloat16 = TRUE;
boolean fpexc = FALSE; // Do not generate floating-point exceptions
fpcr.DN = '1'; // Generate default NaN values
prod = FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc, N);
result = FPAdd(addend, prod, fpcr, fpexc);

return result;

Library pseudocode for shared/functions/float/bfloat/BFInfinity

// BFInfinity()
// ============

bits(N) BFInfinity(bit sign, integer N)
assert N == 16;
constant integer E = 8;
constant integer F = N - (E + 1);
return sign : Ones(E) : Zeros(F);

Library pseudocode for shared/functions/float/bfloat/BFMatMulAdd

// BFMatMulAdd()
// =============
// BFloat16 matrix multiply and add to single-precision matrix
// result[2, 2] = addend[2, 2] + (op1[2, 4] * op2[4, 2])

bits(N) BFMatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2)

assert N == 128;

bits(N) result;
bits(32) sum;

for i = 0 to 1
for j = 0 to 1

sum = Elem[addend, 2*i + j, 32];
for k = 0 to 1

bits(16) elt1_a = Elem[op1, 4*i + 2*k + 0, 16];
bits(16) elt1_b = Elem[op1, 4*i + 2*k + 1, 16];
bits(16) elt2_a = Elem[op2, 4*j + 2*k + 0, 16];
bits(16) elt2_b = Elem[op2, 4*j + 2*k + 1, 16];
sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);

Elem[result, 2*i + j, 32] = sum;

return result;

Shared Pseudocode Functions Page 2023

Library pseudocode for shared/functions/float/bfloat/BFMax

// BFMax()
// =======
// BFloat16 maximum.

bits(N) BFMax(bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
return BFMax(op1, op2, fpcr, altfp);

// BFMax()
// =======
// BFloat16 maximum following computational behaviors
// corresponding to instructions that read and write BFloat16 values.
// Compare op1 and op2 and return the larger value after rounding.
// The 'fpcr' argument supplies the FPCR control bits and 'altfp' determines
// if the function should use alternative floating-point behavior.

bits(N) BFMax(bits(N) op1, bits(N) op2, FPCRType fpcr_in, boolean altfp)

assert N == 16;
FPCRType fpcr = fpcr_in;
boolean fpexc = TRUE;
FPRounding rounding = FPRoundingMode(fpcr);
boolean done;
bits(2*N) result;

bits(2*N) op1_s = op1 : Zeros(N);
bits(2*N) op2_s = op2 : Zeros(N);
(type1,sign1,value1) = FPUnpack(op1_s, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2_s, fpcr, fpexc);

if altfp && type1 == FPType_Zero && type2 == FPType_Zero && sign1 != sign2 then
// Alternate handling of zeros with differing sign
return BFZero(sign2, N);

elsif altfp && (type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN}) then
// Alternate handling of NaN inputs
FPProcessException(FPExc_InvalidOp, fpcr);
return (if type2 == FPType_Zero then BFZero(sign2, N) else op2);

(done,result) = FPProcessNaNs(type1, type2, op1_s, op2_s, fpcr);
if !done then

FPType fptype;
bit sign;
real value;
if value1 > value2 then

(fptype,sign,value) = (type1,sign1,value1);
else

(fptype,sign,value) = (type2,sign2,value2);
if fptype == FPType_Infinity then

result = FPInfinity(sign, 2*N);
elsif fptype == FPType_Zero then

sign = sign1 AND sign2; // Use most positive sign
result = FPZero(sign, 2*N);

else
if altfp then // Denormal output is not flushed to zero

fpcr.FZ = '0';
result = FPRoundBF(value, fpcr, rounding, fpexc, 2*N);

if fpexc then FPProcessDenorms(type1, type2, 2*N, fpcr);

return result<2*N-1:N>;

Shared Pseudocode Functions Page 2024

Library pseudocode for shared/functions/float/bfloat/BFMaxNum

// BFMaxNum()
// ==========
// BFloat16 maximum number following computational behaviors corresponding
// to instructions that read and write BFloat16 values.
// Compare op1 and op2 and return the smaller number operand after rounding.
// The 'fpcr' argument supplies the FPCR control bits.

bits(N) BFMaxNum(bits(N) op1_in, bits(N) op2_in, FPCRType fpcr)

assert N == 16;
boolean fpexc = TRUE;
boolean isbfloat16 = TRUE;
bits(N) op1 = op1_in;
bits(N) op2 = op2_in;
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
bits(N) result;

(type1,-,-) = FPUnpackBase(op1, fpcr, fpexc, isbfloat16);
(type2,-,-) = FPUnpackBase(op2, fpcr, fpexc, isbfloat16);

boolean type1_nan = type1 IN {FPType_QNaN, FPType_SNaN};
boolean type2_nan = type2 IN {FPType_QNaN, FPType_SNaN};

if !(altfp && type1_nan && type2_nan) then
// Treat a single quiet-NaN as -Infinity.
if type1 == FPType_QNaN && type2 != FPType_QNaN then

op1 = BFInfinity('1', N);
elsif type1 != FPType_QNaN && type2 == FPType_QNaN then

op2 = BFInfinity('1', N);

boolean altfmaxfmin = FALSE; // Do not use alternate NaN handling
result = BFMax(op1, op2, fpcr, altfmaxfmin);

return result;

Shared Pseudocode Functions Page 2025

Library pseudocode for shared/functions/float/bfloat/BFMin

// BFMin()
// =======
// BFloat16 minimum.

bits(N) BFMin(bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
return BFMin(op1, op2, fpcr, altfp);

// BFMin()
// =======
// BFloat16 minimum following computational behaviors
// corresponding to instructions that read and write BFloat16 values.
// Compare op1 and op2 and return the smaller value after rounding.
// The 'fpcr' argument supplies the FPCR control bits and 'altfp' determines
// if the function should use alternative floating-point behavior.

bits(N) BFMin(bits(N) op1, bits(N) op2, FPCRType fpcr_in, boolean altfp)

assert N == 16;
FPCRType fpcr = fpcr_in;
boolean fpexc = TRUE;
FPRounding rounding = FPRoundingMode(fpcr);
boolean done;
bits(2*N) result;

bits(2*N) op1_s = op1 : Zeros(N);
bits(2*N) op2_s = op2 : Zeros(N);
(type1,sign1,value1) = FPUnpack(op1_s, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2_s, fpcr, fpexc);

if altfp && type1 == FPType_Zero && type2 == FPType_Zero && sign1 != sign2 then
// Alternate handling of zeros with differing sign
return BFZero(sign2, N);

elsif altfp && (type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN}) then
// Alternate handling of NaN inputs
FPProcessException(FPExc_InvalidOp, fpcr);
return (if type2 == FPType_Zero then BFZero(sign2, N) else op2);

(done,result) = FPProcessNaNs(type1, type2, op1_s, op2_s, fpcr);
if !done then

FPType fptype;
bit sign;
real value;
if value1 < value2 then

(fptype,sign,value) = (type1,sign1,value1);
else

(fptype,sign,value) = (type2,sign2,value2);
if fptype == FPType_Infinity then

result = FPInfinity(sign, 2*N);
elsif fptype == FPType_Zero then

sign = sign1 OR sign2; // Use most negative sign
result = FPZero(sign, 2*N);

else
if altfp then // Denormal output is not flushed to zero

fpcr.FZ = '0';
result = FPRoundBF(value, fpcr, rounding, fpexc, 2*N);

if fpexc then FPProcessDenorms(type1, type2, 2*N, fpcr);

return result<2*N-1:N>;

Shared Pseudocode Functions Page 2026

Library pseudocode for shared/functions/float/bfloat/BFMinNum

// BFMinNum()
// ==========
// BFloat16 minimum number following computational behaviors corresponding
// to instructions that read and write BFloat16 values.
// Compare op1 and op2 and return the smaller number operand after rounding.
// The 'fpcr' argument supplies the FPCR control bits.

bits(N) BFMinNum(bits(N) op1_in, bits(N) op2_in, FPCRType fpcr)

assert N == 16;
boolean fpexc = TRUE;
boolean isbfloat16 = TRUE;
bits(N) op1 = op1_in;
bits(N) op2 = op2_in;
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
bits(N) result;

(type1,-,-) = FPUnpackBase(op1, fpcr, fpexc, isbfloat16);
(type2,-,-) = FPUnpackBase(op2, fpcr, fpexc, isbfloat16);

boolean type1_nan = type1 IN {FPType_QNaN, FPType_SNaN};
boolean type2_nan = type2 IN {FPType_QNaN, FPType_SNaN};

if !(altfp && type1_nan && type2_nan) then
// Treat a single quiet-NaN as +Infinity.
if type1 == FPType_QNaN && type2 != FPType_QNaN then

op1 = BFInfinity('0', N);
elsif type1 != FPType_QNaN && type2 == FPType_QNaN then

op2 = BFInfinity('0', N);

boolean altfmaxfmin = FALSE; // Do not use alternate NaN handling
result = BFMin(op1, op2, fpcr, altfmaxfmin);

return result;

Shared Pseudocode Functions Page 2027

Library pseudocode for shared/functions/float/bfloat/BFMul

// BFMul()
// =======
// Non-widening BFloat16 multiply used by SVE2 instructions.

bits(N) BFMul(bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean fpexc = TRUE;
return BFMul(op1, op2, fpcr, fpexc);

// BFMul()
// =======
// Non-widening BFloat16 multiply following computational behaviors
// corresponding to instructions that read and write BFloat16 values.
// Calculates op1 * op2.
// The 'fpcr' argument supplies the FPCR control bits.

bits(N) BFMul(bits(N) op1, bits(N) op2, FPCRType fpcr, boolean fpexc)

assert N == 16;
FPRounding rounding = FPRoundingMode(fpcr);
boolean done;
bits(2*N) result;

bits(2*N) op1_s = op1 : Zeros(N);
bits(2*N) op2_s = op2 : Zeros(N);
(type1,sign1,value1) = FPUnpack(op1_s, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2_s, fpcr, fpexc);

(done,result) = FPProcessNaNs(type1, type2, op1_s, op2_s, fpcr, fpexc);

if !done then
inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if (inf1 && zero2) || (zero1 && inf2) then
result = FPDefaultNaN(fpcr, 2*N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

elsif inf1 || inf2 then
result = FPInfinity(sign1 EOR sign2, 2*N);

elsif zero1 || zero2 then
result = FPZero(sign1 EOR sign2, 2*N);

else
result = FPRoundBF(value1*value2, fpcr, rounding, fpexc, 2*N);

if fpexc then FPProcessDenorms(type1, type2, 2*N, fpcr);

return result<2*N-1:N>;

Shared Pseudocode Functions Page 2028

Library pseudocode for shared/functions/float/bfloat/BFMulAdd

Shared Pseudocode Functions Page 2029

// BFMulAdd()
// ==========
// Non-widening BFloat16 fused multiply-add used by SVE2 instructions.

bits(N) BFMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean fpexc = TRUE;
return BFMulAdd(addend, op1, op2, fpcr, fpexc);

// BFMulAdd()
// ==========
// Non-widening BFloat16 fused multiply-add following computational behaviors
// corresponding to instructions that read and write BFloat16 values.
// Calculates addend + op1*op2 with a single rounding.
// The 'fpcr' argument supplies the FPCR control bits.

bits(N) BFMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr, boolean fpexc)

assert N == 16;
FPRounding rounding = FPRoundingMode(fpcr);
boolean done;
bits(2*N) result;

bits(2*N) addend_s = addend : Zeros(N);
bits(2*N) op1_s = op1 : Zeros(N);
bits(2*N) op2_s = op2 : Zeros(N);
(typeA,signA,valueA) = FPUnpack(addend_s, fpcr, fpexc);
(type1,sign1,value1) = FPUnpack(op1_s, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2_s, fpcr, fpexc);

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

(done,result) = FPProcessNaNs3(typeA, type1, type2, addend_s, op1_s, op2_s, fpcr, fpexc);

if !(HaveAltFP() && !UsingAArch32() && fpcr.AH == '1') then
if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then

result = FPDefaultNaN(fpcr, 2*N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

if !done then
infA = (typeA == FPType_Infinity);
zeroA = (typeA == FPType_Zero);

// Determine sign and type product will have if it does not cause an
// Invalid Operation.
signP = sign1 EOR sign2;
infP = inf1 || inf2;
zeroP = zero1 || zero2;

// Non SNaN-generated Invalid Operation cases are multiplies of zero
// by infinity and additions of opposite-signed infinities.
invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

if invalidop then
result = FPDefaultNaN(fpcr, 2*N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

// Other cases involving infinities produce an infinity of the same sign.
elsif (infA && signA == '0') || (infP && signP == '0') then

result = FPInfinity('0', 2*N);
elsif (infA && signA == '1') || (infP && signP == '1') then

result = FPInfinity('1', 2*N);

// Cases where the result is exactly zero and its sign is not determined by the
// rounding mode are additions of same-signed zeros.
elsif zeroA && zeroP && signA == signP then

result = FPZero(signA, 2*N);

Shared Pseudocode Functions Page 2030

// Otherwise calculate numerical result and round it.
else

result_value = valueA + (value1 * value2);
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign, 2*N);

else
result = FPRoundBF(result_value, fpcr, rounding, fpexc, 2*N);

if !invalidop && fpexc then
FPProcessDenorms3(typeA, type1, type2, 2*N, fpcr);

return result<2*N-1:N>;

Library pseudocode for shared/functions/float/bfloat/BFMulAddH

// BFMulAddH()
// ===========
// Used by BFMLALB, BFMLALT, BFMLSLB and BFMLSLT instructions.

bits(N) BFMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCRType fpcr_in)
assert N == 32;
bits(N) value1 = op1 : Zeros(N DIV 2);
bits(N) value2 = op2 : Zeros(N DIV 2);
FPCRType fpcr = fpcr_in;
boolean altfp = HaveAltFP() && fpcr.AH == '1'; // When TRUE:
boolean fpexc = !altfp; // Do not generate floating point exceptions
if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
if altfp then fpcr.RMode = '00'; // Use RNE rounding mode
return FPMulAdd(addend, value1, value2, fpcr, fpexc);

Library pseudocode for shared/functions/float/bfloat/BFMulAddH_ZA

// BFMulAddH_ZA()
// ==============
// Used by SME2 ZA-targeting BFMLAL and BFMLSL instructions.

bits(N) BFMulAddH_ZA(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCRType fpcr)
assert N == 32;
bits(N) value1 = op1 : Zeros(N DIV 2);
bits(N) value2 = op2 : Zeros(N DIV 2);
return FPMulAdd_ZA(addend, value1, value2, fpcr);

Library pseudocode for shared/functions/float/bfloat/BFMulAdd_ZA

// BFMulAdd_ZA()
// =============
// Non-widening BFloat16 fused multiply-add used by SME2 ZA-targeting instructions.

bits(N) BFMulAdd_ZA(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr_in)
boolean fpexc = FALSE;
FPCRType fpcr = fpcr_in;
fpcr.DN = '1'; // Generate default NaN values
return BFMulAdd(addend, op1, op2, fpcr, fpexc);

Shared Pseudocode Functions Page 2031

Library pseudocode for shared/functions/float/bfloat/BFMulH

// BFMulH()
// ========
// BFloat16 widening multiply to single-precision following BFloat16
// computation behaviors.

bits(2*N) BFMulH(bits(N) op1, bits(N) op2)

assert N == 16;
bits(2*N) result;

FPCRType fpcr = FPCR[];
(type1,sign1,value1) = BFUnpack(op1);
(type2,sign2,value2) = BFUnpack(op2);
if type1 == FPType_QNaN || type2 == FPType_QNaN then

result = FPDefaultNaN(fpcr, 2*N);
else

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);
if (inf1 && zero2) || (zero1 && inf2) then

result = FPDefaultNaN(fpcr, 2*N);
elsif inf1 || inf2 then

result = FPInfinity(sign1 EOR sign2, 2*N);
elsif zero1 || zero2 then

result = FPZero(sign1 EOR sign2, 2*N);
else

result = BFRound(value1*value2, 2*N);

return result;

Library pseudocode for shared/functions/float/bfloat/BFNeg

// BFNeg()
// =======

bits(N) BFNeg(bits(N) op)
assert N == 16;
boolean honor_altfp = TRUE; // Honor alternate handling
return BFNeg(op, honor_altfp);

// BFNeg()
// =======

bits(N) BFNeg(bits(N) op, boolean honor_altfp)

assert N == 16;
if honor_altfp && !UsingAArch32() && HaveAltFP() then

FPCRType fpcr = FPCR[];
if fpcr.AH == '1' then

boolean fpexc = FALSE;
boolean isbfloat16 = TRUE;
(fptype, -, -) = FPUnpackBase(op, fpcr, fpexc, isbfloat16);
if fptype IN {FPType_SNaN, FPType_QNaN} then

return op; // When fpcr.AH=1, sign of NaN has no consequence

return NOT(op<N-1>) : op<N-2:0>;

Shared Pseudocode Functions Page 2032

Library pseudocode for shared/functions/float/bfloat/BFRound

// BFRound()
// =========
// Converts a real number OP into a single-precision value using the
// Round to Odd rounding mode and following BFloat16 computation behaviors.

bits(N) BFRound(real op, integer N)

assert N == 32;
assert op != 0.0;
bits(N) result;

// Format parameters - minimum exponent, numbers of exponent and fraction bits.
minimum_exp = -126; E = 8; F = 23;

// Split value into sign, unrounded mantissa and exponent.
bit sign;
real mantissa;
if op < 0.0 then

sign = '1'; mantissa = -op;
else

sign = '0'; mantissa = op;
exponent = 0;
while mantissa < 1.0 do

mantissa = mantissa * 2.0; exponent = exponent - 1;
while mantissa >= 2.0 do

mantissa = mantissa / 2.0; exponent = exponent + 1;

// Fixed Flush-to-zero.
if exponent < minimum_exp then

return FPZero(sign, N);

// Start creating the exponent value for the result. Start by biasing the actual exponent
// so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
biased_exp = Max((exponent - minimum_exp) + 1, 0);
if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

// Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
error = mantissa * 2.0^F - Real(int_mant);

// Round to Odd
if error != 0.0 then

int_mant<0> = '1';

// Deal with overflow and generate result.
if biased_exp >= 2^E - 1 then

result = FPInfinity(sign, N); // Overflows generate appropriately-signed Infinity
else

result = sign : biased_exp<(N-2)-F:0> : int_mant<F-1:0>;

return result;

Shared Pseudocode Functions Page 2033

Library pseudocode for shared/functions/float/bfloat/BFSub

// BFSub()
// =======
// Non-widening BFloat16 subtraction used by SVE2 instructions.

bits(N) BFSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean fpexc = TRUE;
return BFSub(op1, op2, fpcr, fpexc);

// BFSub()
// =======
// Non-widening BFloat16 subtraction following computational behaviors
// corresponding to instructions that read and write BFloat16 values.
// Calculates op1 - op2.
// The 'fpcr' argument supplies the FPCR control bits.

bits(N) BFSub(bits(N) op1, bits(N) op2, FPCRType fpcr, boolean fpexc)

assert N == 16;
FPRounding rounding = FPRoundingMode(fpcr);
boolean done;
bits(2*N) result;

bits(2*N) op1_s = op1 : Zeros(N);
bits(2*N) op2_s = op2 : Zeros(N);
(type1,sign1,value1) = FPUnpack(op1_s, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2_s, fpcr, fpexc);

(done,result) = FPProcessNaNs(type1, type2, op1_s, op2_s, fpcr, fpexc);

if !done then
inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if inf1 && inf2 && sign1 == sign2 then
result = FPDefaultNaN(fpcr, 2*N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
result = FPInfinity('0', 2*N);

elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
result = FPInfinity('1', 2*N);

elsif zero1 && zero2 && sign1 == NOT(sign2) then
result = FPZero(sign1, 2*N);

else
result_value = value1 - value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign, 2*N);

else
result = FPRoundBF(result_value, fpcr, rounding, fpexc, 2*N);

if fpexc then FPProcessDenorms(type1, type2, 2*N, fpcr);

return result<2*N-1:N>;

Library pseudocode for shared/functions/float/bfloat/BFSub_ZA

// BFSub_ZA()
// ==========
// Non-widening BFloat16 subtraction used by SME2 ZA-targeting instructions.

bits(N) BFSub_ZA(bits(N) op1, bits(N) op2, FPCRType fpcr_in)
boolean fpexc = FALSE;
FPCRType fpcr = fpcr_in;
fpcr.DN = '1'; // Generate default NaN values
return BFSub(op1, op2, fpcr, fpexc);

Shared Pseudocode Functions Page 2034

Library pseudocode for shared/functions/float/bfloat/BFUnpack

// BFUnpack()
// ==========
// Unpacks a BFloat16 or single-precision value into its type,
// sign bit and real number that it represents.
// The real number result has the correct sign for numbers and infinities,
// is very large in magnitude for infinities, and is 0.0 for NaNs.
// (These values are chosen to simplify the description of
// comparisons and conversions.)

(FPType, bit, real) BFUnpack(bits(N) fpval)

assert N IN {16,32};

bit sign;
bits(8) exp;
bits(23) frac;
if N == 16 then

sign = fpval<15>;
exp = fpval<14:7>;
frac = fpval<6:0> : Zeros(16);

else // N == 32
sign = fpval<31>;
exp = fpval<30:23>;
frac = fpval<22:0>;

FPType fptype;
real value;
if IsZero(exp) then

fptype = FPType_Zero; value = 0.0; // Fixed Flush to Zero
elsif IsOnes(exp) then

if IsZero(frac) then
fptype = FPType_Infinity; value = 2.0^1000000;

else // no SNaN for BF16 arithmetic
fptype = FPType_QNaN; value = 0.0;

else
fptype = FPType_Nonzero;
value = 2.0^(UInt(exp)-127) * (1.0 + Real(UInt(frac)) * 2.0^-23);

if sign == '1' then value = -value;

return (fptype, sign, value);

Library pseudocode for shared/functions/float/bfloat/BFZero

// BFZero()
// ========

bits(N) BFZero(bit sign, integer N)
assert N == 16;
constant integer E = 8;
constant integer F = N - (E + 1);
return sign : Zeros(E) : Zeros(F);

Shared Pseudocode Functions Page 2035

Library pseudocode for shared/functions/float/bfloat/FPAdd_BF16

// FPAdd_BF16()
// ============
// Single-precision add following BFloat16 computation behaviors.

bits(N) FPAdd_BF16(bits(N) op1, bits(N) op2)

assert N == 32;
bits(N) result;

FPCRType fpcr = FPCR[];
(type1,sign1,value1) = BFUnpack(op1);
(type2,sign2,value2) = BFUnpack(op2);
if type1 == FPType_QNaN || type2 == FPType_QNaN then

result = FPDefaultNaN(fpcr, N);
else

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);
if inf1 && inf2 && sign1 == NOT(sign2) then

result = FPDefaultNaN(fpcr, N);
elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then

result = FPInfinity('0', N);
elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then

result = FPInfinity('1', N);
elsif zero1 && zero2 && sign1 == sign2 then

result = FPZero(sign1, N);
else

result_value = value1 + value2;
if result_value == 0.0 then

result = FPZero('0', N); // Positive sign when Round to Odd
else

result = BFRound(result_value, N);

return result;

Shared Pseudocode Functions Page 2036

Library pseudocode for shared/functions/float/bfloat/FPConvertBF

// FPConvertBF()
// =============
// Converts a single-precision OP to BFloat16 value using the
// Round to Nearest Even rounding mode when executed from AArch64 state and
// FPCR.AH == '1', otherwise rounding is controlled by FPCR/FPSCR.

bits(N DIV 2) FPConvertBF(bits(N) op, FPCRType fpcr_in, FPRounding rounding_in)

assert N == 32;
constant integer halfsize = N DIV 2;
FPCRType fpcr = fpcr_in;
FPRounding rounding = rounding_in;
bits(N) result; // BF16 value in top 16 bits
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
boolean fpexc = !altfp; // Generate no floating-point exceptions
if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
if altfp then rounding = FPRounding_TIEEVEN; // Use RNE rounding mode

// Unpack floating-point operand, with always flush-to-zero if fpcr.AH == '1'.
(fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

if fptype == FPType_SNaN || fptype == FPType_QNaN then
if fpcr.DN == '1' then

result = FPDefaultNaN(fpcr, N);
else

result = FPConvertNaN(op, N);
if fptype == FPType_SNaN then

if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
elsif fptype == FPType_Infinity then

result = FPInfinity(sign, N);
elsif fptype == FPType_Zero then

result = FPZero(sign, N);
else

result = FPRoundBF(value, fpcr, rounding, fpexc, N);

// Returns correctly rounded BF16 value from top 16 bits
return result<(2*halfsize)-1:halfsize>;

// FPConvertBF()
// =============
// Converts a single-precision operand to BFloat16 value.

bits(N DIV 2) FPConvertBF(bits(N) op, FPCRType fpcr)
return FPConvertBF(op, fpcr, FPRoundingMode(fpcr));

Library pseudocode for shared/functions/float/bfloat/FPRoundBF

// FPRoundBF()
// ===========
// Converts a real number OP into a BFloat16 value using the supplied
// rounding mode RMODE. The 'fpexc' argument controls the generation of
// floating-point exceptions.

bits(N) FPRoundBF(real op, FPCRType fpcr, FPRounding rounding, boolean fpexc, integer N)
assert N == 32;
boolean isbfloat16 = TRUE;
return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc, N);

Shared Pseudocode Functions Page 2037

Library pseudocode for shared/functions/float/fixedtofp/FixedToFP

// FixedToFP()
// ===========

// Convert M-bit fixed point 'op' with FBITS fractional bits to
// N-bit precision floating point, controlled by UNSIGNED and ROUNDING.

bits(N) FixedToFP(bits(M) op, integer fbits, boolean unsigned, FPCRType fpcr,
FPRounding rounding, integer N)

assert N IN {16,32,64};
assert M IN {16,32,64};
bits(N) result;
assert fbits >= 0;
assert rounding != FPRounding_ODD;

// Correct signed-ness
int_operand = Int(op, unsigned);

// Scale by fractional bits and generate a real value
real_operand = Real(int_operand) / 2.0^fbits;

if real_operand == 0.0 then
result = FPZero('0', N);

else
result = FPRound(real_operand, fpcr, rounding, N);

return result;

Library pseudocode for shared/functions/float/fpabs/FPAbs

// FPAbs()
// =======

bits(N) FPAbs(bits(N) op)

assert N IN {16,32,64};
if !UsingAArch32() && HaveAltFP() then

FPCRType fpcr = FPCR[];
if fpcr.AH == '1' then

(fptype, -, -) = FPUnpack(op, fpcr, FALSE);
if fptype IN {FPType_SNaN, FPType_QNaN} then

return op; // When fpcr.AH=1, sign of NaN has no consequence

return '0' : op<N-2:0>;

Shared Pseudocode Functions Page 2038

Library pseudocode for shared/functions/float/fpadd/FPAdd

// FPAdd()
// =======

bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean fpexc = TRUE; // Generate floating-point exceptions
return FPAdd(op1, op2, fpcr, fpexc);

// FPAdd()
// =======

bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCRType fpcr, boolean fpexc)

assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);

(type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);

(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, fpexc);
if !done then

inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
if inf1 && inf2 && sign1 == NOT(sign2) then

result = FPDefaultNaN(fpcr, N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
result = FPInfinity('0', N);

elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
result = FPInfinity('1', N);

elsif zero1 && zero2 && sign1 == sign2 then
result = FPZero(sign1, N);

else
result_value = value1 + value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign, N);

else
result = FPRound(result_value, fpcr, rounding, fpexc, N);

if fpexc then FPProcessDenorms(type1, type2, N, fpcr);

return result;

Library pseudocode for shared/functions/float/fpadd/FPAdd_ZA

// FPAdd_ZA()
// ==========
// Calculates op1+op2 for SME2 ZA-targeting instructions.

bits(N) FPAdd_ZA(bits(N) op1, bits(N) op2, FPCRType fpcr_in)
FPCRType fpcr = fpcr_in;
boolean fpexc = FALSE; // Do not generate floating-point exceptions
fpcr.DN = '1'; // Generate default NaN values
return FPAdd(op1, op2, fpcr, fpexc);

Shared Pseudocode Functions Page 2039

Library pseudocode for shared/functions/float/fpcompare/FPCompare

// FPCompare()
// ===========

bits(4) FPCompare(bits(N) op1, bits(N) op2, boolean signal_nans, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

bits(4) result;
if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then

result = '0011';
if type1 == FPType_SNaN || type2 == FPType_SNaN || signal_nans then

FPProcessException(FPExc_InvalidOp, fpcr);
else

// All non-NaN cases can be evaluated on the values produced by FPUnpack()
if value1 == value2 then

result = '0110';
elsif value1 < value2 then

result = '1000';
else // value1 > value2

result = '0010';

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Library pseudocode for shared/functions/float/fpcompareeq/FPCompareEQ

// FPCompareEQ()
// =============

boolean FPCompareEQ(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

boolean result;
if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then

result = FALSE;
if type1 == FPType_SNaN || type2 == FPType_SNaN then

FPProcessException(FPExc_InvalidOp, fpcr);
else

// All non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (value1 == value2);
FPProcessDenorms(type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 2040

Library pseudocode for shared/functions/float/fpcomparege/FPCompareGE

// FPCompareGE()
// =============

boolean FPCompareGE(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

boolean result;
if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then

result = FALSE;
FPProcessException(FPExc_InvalidOp, fpcr);

else
// All non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (value1 >= value2);
FPProcessDenorms(type1, type2, N, fpcr);

return result;

Library pseudocode for shared/functions/float/fpcomparegt/FPCompareGT

// FPCompareGT()
// =============

boolean FPCompareGT(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

boolean result;
if type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN} then

result = FALSE;
FPProcessException(FPExc_InvalidOp, fpcr);

else
// All non-NaN cases can be evaluated on the values produced by FPUnpack()
result = (value1 > value2);
FPProcessDenorms(type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 2041

Library pseudocode for shared/functions/float/fpconvert/FPConvert

// FPConvert()
// ===========

// Convert floating point 'op' with N-bit precision to M-bit precision,
// with rounding controlled by ROUNDING.
// This is used by the FP-to-FP conversion instructions and so for
// half-precision data ignores FZ16, but observes AHP.

bits(M) FPConvert(bits(N) op, FPCRType fpcr, FPRounding rounding, integer M)

assert M IN {16,32,64};
assert N IN {16,32,64};
bits(M) result;

// Unpack floating-point operand optionally with flush-to-zero.
(fptype,sign,value) = FPUnpackCV(op, fpcr);

alt_hp = (M == 16) && (fpcr.AHP == '1');

if fptype == FPType_SNaN || fptype == FPType_QNaN then
if alt_hp then

result = FPZero(sign, M);
elsif fpcr.DN == '1' then

result = FPDefaultNaN(fpcr, M);
else

result = FPConvertNaN(op, M);
if fptype == FPType_SNaN || alt_hp then

FPProcessException(FPExc_InvalidOp,fpcr);
elsif fptype == FPType_Infinity then

if alt_hp then
result = sign:Ones(M-1);
FPProcessException(FPExc_InvalidOp, fpcr);

else
result = FPInfinity(sign, M);

elsif fptype == FPType_Zero then
result = FPZero(sign, M);

else
result = FPRoundCV(value, fpcr, rounding, M);
FPProcessDenorm(fptype, N, fpcr);

return result;

// FPConvert()
// ===========

bits(M) FPConvert(bits(N) op, FPCRType fpcr, integer M)
return FPConvert(op, fpcr, FPRoundingMode(fpcr), M);

Shared Pseudocode Functions Page 2042

Library pseudocode for shared/functions/float/fpconvertnan/FPConvertNaN

// FPConvertNaN()
// ==============
// Converts a NaN of one floating-point type to another

bits(M) FPConvertNaN(bits(N) op, integer M)

assert N IN {16,32,64};
assert M IN {16,32,64};
bits(M) result;
bits(51) frac;

sign = op<N-1>;

// Unpack payload from input NaN
case N of

when 64 frac = op<50:0>;
when 32 frac = op<21:0>:Zeros(29);
when 16 frac = op<8:0>:Zeros(42);

// Repack payload into output NaN, while
// converting an SNaN to a QNaN.
case M of

when 64 result = sign:Ones(M-52):frac;
when 32 result = sign:Ones(M-23):frac<50:29>;
when 16 result = sign:Ones(M-10):frac<50:42>;

return result;

Library pseudocode for shared/functions/float/fpcrtype/FPCRType

type FPCRType;

Library pseudocode for shared/functions/float/fpdecoderm/FPDecodeRM

// FPDecodeRM()
// ============

// Decode most common AArch32 floating-point rounding encoding.

FPRounding FPDecodeRM(bits(2) rm)

FPRounding result;
case rm of

when '00' result = FPRounding_TIEAWAY; // A
when '01' result = FPRounding_TIEEVEN; // N
when '10' result = FPRounding_POSINF; // P
when '11' result = FPRounding_NEGINF; // M

return result;

Library pseudocode for shared/functions/float/fpdecoderounding/FPDecodeRounding

// FPDecodeRounding()
// ==================

// Decode floating-point rounding mode and common AArch64 encoding.

FPRounding FPDecodeRounding(bits(2) rmode)
case rmode of

when '00' return FPRounding_TIEEVEN; // N
when '01' return FPRounding_POSINF; // P
when '10' return FPRounding_NEGINF; // M
when '11' return FPRounding_ZERO; // Z

Shared Pseudocode Functions Page 2043

Library pseudocode for shared/functions/float/fpdefaultnan/FPDefaultNaN

// FPDefaultNaN()
// ==============

bits(N) FPDefaultNaN(integer N)
FPCRType fpcr = FPCR[];
return FPDefaultNaN(fpcr, N);

bits(N) FPDefaultNaN(FPCRType fpcr, integer N)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
bit sign = if HaveAltFP() && !UsingAArch32() then fpcr.AH else '0';

bits(E) exp = Ones(E);
bits(F) frac = '1':Zeros(F-1);

return sign : exp : frac;

Library pseudocode for shared/functions/float/fpdiv/FPDiv

// FPDiv()
// =======

bits(N) FPDiv(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);

if !done then
inf1 = type1 == FPType_Infinity;
inf2 = type2 == FPType_Infinity;
zero1 = type1 == FPType_Zero;
zero2 = type2 == FPType_Zero;

if (inf1 && inf2) || (zero1 && zero2) then
result = FPDefaultNaN(fpcr, N);
FPProcessException(FPExc_InvalidOp, fpcr);

elsif inf1 || zero2 then
result = FPInfinity(sign1 EOR sign2, N);
if !inf1 then FPProcessException(FPExc_DivideByZero, fpcr);

elsif zero1 || inf2 then
result = FPZero(sign1 EOR sign2, N);

else
result = FPRound(value1/value2, fpcr, N);

if !zero2 then
FPProcessDenorms(type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 2044

Library pseudocode for shared/functions/float/fpdot/FPDot

Shared Pseudocode Functions Page 2045

// FPDot()
// =======
// Calculates single-precision result of 2-way 16-bit floating-point dot-product
// with a single rounding.
// The 'fpcr' argument supplies the FPCR control bits and 'isbfloat16'
// determines whether input operands are BFloat16 or half-precision type.
// and 'fpexc' controls the generation of floating-point exceptions.

bits(N) FPDot(bits(N DIV 2) op1_a, bits(N DIV 2) op1_b, bits(N DIV 2) op2_a,
bits(N DIV 2) op2_b, FPCRType fpcr, boolean isbfloat16, integer N)

boolean fpexc = TRUE; // Generate floating-point exceptions
return FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc, N);

bits(N) FPDot(bits(N DIV 2) op1_a, bits(N DIV 2) op1_b, bits(N DIV 2) op2_a,
bits(N DIV 2) op2_b, FPCRType fpcr_in, boolean isbfloat16, boolean fpexc, integer N)

FPCRType fpcr = fpcr_in;

assert N == 32;
bits(N) result;
boolean done;
fpcr.AHP = '0'; // Ignore alternative half-precision option
rounding = FPRoundingMode(fpcr);

(type1_a,sign1_a,value1_a) = FPUnpackBase(op1_a, fpcr, fpexc, isbfloat16);
(type1_b,sign1_b,value1_b) = FPUnpackBase(op1_b, fpcr, fpexc, isbfloat16);
(type2_a,sign2_a,value2_a) = FPUnpackBase(op2_a, fpcr, fpexc, isbfloat16);
(type2_b,sign2_b,value2_b) = FPUnpackBase(op2_b, fpcr, fpexc, isbfloat16);

inf1_a = (type1_a == FPType_Infinity); zero1_a = (type1_a == FPType_Zero);
inf1_b = (type1_b == FPType_Infinity); zero1_b = (type1_b == FPType_Zero);
inf2_a = (type2_a == FPType_Infinity); zero2_a = (type2_a == FPType_Zero);
inf2_b = (type2_b == FPType_Infinity); zero2_b = (type2_b == FPType_Zero);

(done,result) = FPProcessNaNs4(type1_a, type1_b, type2_a, type2_b,
op1_a, op1_b, op2_a, op2_b, fpcr, fpexc, N);

if (((inf1_a && zero2_a) || (zero1_a && inf2_a)) &&
((inf1_b && zero2_b) || (zero1_b && inf2_b))) then
result = FPDefaultNaN(fpcr, N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

if !done then
// Determine sign and type products will have if it does not cause an Invalid
// Operation.
signPa = sign1_a EOR sign2_a;
signPb = sign1_b EOR sign2_b;
infPa = inf1_a || inf2_a;
infPb = inf1_b || inf2_b;
zeroPa = zero1_a || zero2_a;
zeroPb = zero1_b || zero2_b;

// Non SNaN-generated Invalid Operation cases are multiplies of zero
// by infinity and additions of opposite-signed infinities.
invalidop = ((inf1_a && zero2_a) || (zero1_a && inf2_a) ||

(inf1_b && zero2_b) || (zero1_b && inf2_b) || (infPa && infPb && signPa != signPb));

if invalidop then
result = FPDefaultNaN(fpcr, N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

// Other cases involving infinities produce an infinity of the same sign.
elsif (infPa && signPa == '0') || (infPb && signPb == '0') then

result = FPInfinity('0', N);
elsif (infPa && signPa == '1') || (infPb && signPb == '1') then

result = FPInfinity('1', N);

// Cases where the result is exactly zero and its sign is not determined by the
// rounding mode are additions of same-signed zeros.
elsif zeroPa && zeroPb && signPa == signPb then

result = FPZero(signPa, N);

Shared Pseudocode Functions Page 2046

// Otherwise calculate fused sum of products and round it.
else

result_value = (value1_a * value2_a) + (value1_b * value2_b);
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign, N);

else
result = FPRound(result_value, fpcr, rounding, fpexc, N);

return result;

Library pseudocode for shared/functions/float/fpdot/FPDotAdd

// FPDotAdd()
// ==========
// Half-precision 2-way dot-product and add to single-precision.

bits(N) FPDotAdd(bits(N) addend, bits(N DIV 2) op1_a, bits(N DIV 2) op1_b,
bits(N DIV 2) op2_a, bits(N DIV 2) op2_b, FPCRType fpcr)

assert N == 32;

bits(N) prod;
boolean isbfloat16 = FALSE;
boolean fpexc = TRUE; // Generate floating-point exceptions
prod = FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc, N);
result = FPAdd(addend, prod, fpcr, fpexc);

return result;

Library pseudocode for shared/functions/float/fpdot/FPDotAdd_ZA

// FPDotAdd_ZA()
// =============
// Half-precision 2-way dot-product and add to single-precision
// for SME ZA-targeting instructions.

bits(N) FPDotAdd_ZA(bits(N) addend, bits(N DIV 2) op1_a, bits(N DIV 2) op1_b,
bits(N DIV 2) op2_a, bits(N DIV 2) op2_b, FPCRType fpcr_in)

FPCRType fpcr = fpcr_in;
assert N == 32;

bits(N) prod;
boolean isbfloat16 = FALSE;
boolean fpexc = FALSE; // Do not generate floating-point exceptions
fpcr.DN = '1'; // Generate default NaN values
prod = FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc, N);
result = FPAdd(addend, prod, fpcr, fpexc);

return result;

Library pseudocode for shared/functions/float/fpexc/FPExc

// FPExc
// =====

enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

Shared Pseudocode Functions Page 2047

Library pseudocode for shared/functions/float/fpinfinity/FPInfinity

// FPInfinity()
// ============

bits(N) FPInfinity(bit sign, integer N)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
bits(E) exp = Ones(E);
bits(F) frac = Zeros(F);

return sign : exp : frac;

Library pseudocode for shared/functions/float/fpmatmul/FPMatMulAdd

// FPMatMulAdd()
// =============
//
// Floating point matrix multiply and add to same precision matrix
// result[2, 2] = addend[2, 2] + (op1[2, 2] * op2[2, 2])

bits(N) FPMatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, integer esize, FPCRType fpcr)

assert N == esize * 2 * 2;
bits(N) result;
bits(esize) prod0, prod1, sum;

for i = 0 to 1
for j = 0 to 1

sum = Elem[addend, 2*i + j, esize];
prod0 = FPMul(Elem[op1, 2*i + 0, esize],

Elem[op2, 2*j + 0, esize], fpcr);
prod1 = FPMul(Elem[op1, 2*i + 1, esize],

Elem[op2, 2*j + 1, esize], fpcr);
sum = FPAdd(sum, FPAdd(prod0, prod1, fpcr), fpcr);
Elem[result, 2*i + j, esize] = sum;

return result;

Shared Pseudocode Functions Page 2048

Library pseudocode for shared/functions/float/fpmax/FPMax

// FPMax()
// =======

bits(N) FPMax(bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
return FPMax(op1, op2, fpcr, altfp);

// FPMax()
// =======
// Compare two inputs and return the larger value after rounding. The
// 'fpcr' argument supplies the FPCR control bits and 'altfp' determines
// if the function should use alternative floating-point behavior.

bits(N) FPMax(bits(N) op1, bits(N) op2, FPCRType fpcr_in, boolean altfp)

assert N IN {16,32,64};
boolean done;
bits(N) result;
FPCRType fpcr = fpcr_in;
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

if altfp && type1 == FPType_Zero && type2 == FPType_Zero && sign1 != sign2 then
// Alternate handling of zeros with differing sign
return FPZero(sign2, N);

elsif altfp && (type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN}) then
// Alternate handling of NaN inputs
FPProcessException(FPExc_InvalidOp, fpcr);
return (if type2 == FPType_Zero then FPZero(sign2, N) else op2);

(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

FPType fptype;
bit sign;
real value;
if value1 > value2 then

(fptype,sign,value) = (type1,sign1,value1);
else

(fptype,sign,value) = (type2,sign2,value2);
if fptype == FPType_Infinity then

result = FPInfinity(sign, N);
elsif fptype == FPType_Zero then

sign = sign1 AND sign2; // Use most positive sign
result = FPZero(sign, N);

else
// The use of FPRound() covers the case where there is a trapped underflow exception
// for a denormalized number even though the result is exact.
rounding = FPRoundingMode(fpcr);
if altfp then // Denormal output is not flushed to zero

fpcr.FZ = '0';
fpcr.FZ16 = '0';

result = FPRound(value, fpcr, rounding, TRUE, N);

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 2049

Library pseudocode for shared/functions/float/fpmaxnormal/FPMaxNormal

// FPMaxNormal()
// =============

bits(N) FPMaxNormal(bit sign, integer N)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = Ones(E-1):'0';
frac = Ones(F);

return sign : exp : frac;

Library pseudocode for shared/functions/float/fpmaxnum/FPMaxNum

// FPMaxNum()
// ==========

bits(N) FPMaxNum(bits(N) op1_in, bits(N) op2_in, FPCRType fpcr)

assert N IN {16,32,64};
bits(N) op1 = op1_in;
bits(N) op2 = op2_in;
(type1,-,-) = FPUnpack(op1, fpcr);
(type2,-,-) = FPUnpack(op2, fpcr);

boolean type1_nan = type1 IN {FPType_QNaN, FPType_SNaN};
boolean type2_nan = type2 IN {FPType_QNaN, FPType_SNaN};
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';

if !(altfp && type1_nan && type2_nan) then
// Treat a single quiet-NaN as -Infinity.
if type1 == FPType_QNaN && type2 != FPType_QNaN then

op1 = FPInfinity('1', N);
elsif type1 != FPType_QNaN && type2 == FPType_QNaN then

op2 = FPInfinity('1', N);

altfmaxfmin = FALSE; // Restrict use of FMAX/FMIN NaN propagation rules
result = FPMax(op1, op2, fpcr, altfmaxfmin);

return result;

Library pseudocode for shared/functions/float/fpmerge/IsMerging

// IsMerging()
// ===========
// Returns TRUE if the output elements other than the lowest are taken from
// the destination register.

boolean IsMerging(FPCRType fpcr)
bit nep = if HaveSME() && PSTATE.SM == '1' && !IsFullA64Enabled() then '0' else fpcr.NEP;
return HaveAltFP() && !UsingAArch32() && nep == '1';

Shared Pseudocode Functions Page 2050

Library pseudocode for shared/functions/float/fpmin/FPMin

// FPMin()
// =======

bits(N) FPMin(bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
return FPMin(op1, op2, fpcr, altfp);

// FPMin()
// =======
// Compare two operands and return the smaller operand after rounding. The
// 'fpcr' argument supplies the FPCR control bits and 'altfp' determines
// if the function should use alternative behavior.

bits(N) FPMin(bits(N) op1, bits(N) op2, FPCRType fpcr_in, boolean altfp)

assert N IN {16,32,64};
boolean done;
bits(N) result;
FPCRType fpcr = fpcr_in;
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

if altfp && type1 == FPType_Zero && type2 == FPType_Zero && sign1 != sign2 then
// Alternate handling of zeros with differing sign
return FPZero(sign2, N);

elsif altfp && (type1 IN {FPType_SNaN, FPType_QNaN} || type2 IN {FPType_SNaN, FPType_QNaN}) then
// Alternate handling of NaN inputs
FPProcessException(FPExc_InvalidOp, fpcr);
return (if type2 == FPType_Zero then FPZero(sign2, N) else op2);

(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

FPType fptype;
bit sign;
real value;
FPRounding rounding;
if value1 < value2 then

(fptype,sign,value) = (type1,sign1,value1);
else

(fptype,sign,value) = (type2,sign2,value2);
if fptype == FPType_Infinity then

result = FPInfinity(sign, N);
elsif fptype == FPType_Zero then

sign = sign1 OR sign2; // Use most negative sign
result = FPZero(sign, N);

else
// The use of FPRound() covers the case where there is a trapped underflow exception
// for a denormalized number even though the result is exact.
rounding = FPRoundingMode(fpcr);
if altfp then // Denormal output is not flushed to zero

fpcr.FZ = '0';
fpcr.FZ16 = '0';

result = FPRound(value, fpcr, rounding, TRUE, N);

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 2051

Library pseudocode for shared/functions/float/fpminnum/FPMinNum

// FPMinNum()
// ==========

bits(N) FPMinNum(bits(N) op1_in, bits(N) op2_in, FPCRType fpcr)

assert N IN {16,32,64};
bits(N) op1 = op1_in;
bits(N) op2 = op2_in;
(type1,-,-) = FPUnpack(op1, fpcr);
(type2,-,-) = FPUnpack(op2, fpcr);

boolean type1_nan = type1 IN {FPType_QNaN, FPType_SNaN};
boolean type2_nan = type2 IN {FPType_QNaN, FPType_SNaN};
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';

if !(altfp && type1_nan && type2_nan) then
// Treat a single quiet-NaN as +Infinity.
if type1 == FPType_QNaN && type2 != FPType_QNaN then

op1 = FPInfinity('0', N);
elsif type1 != FPType_QNaN && type2 == FPType_QNaN then

op2 = FPInfinity('0', N);

altfmaxfmin = FALSE; // Restrict use of FMAX/FMIN NaN propagation rules
result = FPMin(op1, op2, fpcr, altfmaxfmin);

return result;

Library pseudocode for shared/functions/float/fpmul/FPMul

// FPMul()
// =======

bits(N) FPMul(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);
(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if (inf1 && zero2) || (zero1 && inf2) then
result = FPDefaultNaN(fpcr, N);
FPProcessException(FPExc_InvalidOp, fpcr);

elsif inf1 || inf2 then
result = FPInfinity(sign1 EOR sign2, N);

elsif zero1 || zero2 then
result = FPZero(sign1 EOR sign2, N);

else
result = FPRound(value1*value2, fpcr, N);

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Shared Pseudocode Functions Page 2052

Library pseudocode for shared/functions/float/fpmuladd/FPMulAdd

Shared Pseudocode Functions Page 2053

// FPMulAdd()
// ==========

bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean fpexc = TRUE; // Generate floating-point exceptions
return FPMulAdd(addend, op1, op2, fpcr, fpexc);

// FPMulAdd()
// ==========
//
// Calculates addend + op1*op2 with a single rounding. The 'fpcr' argument
// supplies the FPCR control bits, and 'fpexc' controls the generation of
// floating-point exceptions.

bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2,
FPCRType fpcr, boolean fpexc)

assert N IN {16,32,64};

(typeA,signA,valueA) = FPUnpack(addend, fpcr, fpexc);
(type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
rounding = FPRoundingMode(fpcr);
inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

(done,result) = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, fpcr, fpexc);

if !(HaveAltFP() && !UsingAArch32() && fpcr.AH == '1') then
if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then

result = FPDefaultNaN(fpcr, N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

if !done then
infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

// Determine sign and type product will have if it does not cause an
// Invalid Operation.
signP = sign1 EOR sign2;
infP = inf1 || inf2;
zeroP = zero1 || zero2;

// Non SNaN-generated Invalid Operation cases are multiplies of zero
// by infinity and additions of opposite-signed infinities.
invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

if invalidop then
result = FPDefaultNaN(fpcr, N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

// Other cases involving infinities produce an infinity of the same sign.
elsif (infA && signA == '0') || (infP && signP == '0') then

result = FPInfinity('0', N);
elsif (infA && signA == '1') || (infP && signP == '1') then

result = FPInfinity('1', N);

// Cases where the result is exactly zero and its sign is not determined by the
// rounding mode are additions of same-signed zeros.
elsif zeroA && zeroP && signA == signP then

result = FPZero(signA, N);

// Otherwise calculate numerical result and round it.
else

result_value = valueA + (value1 * value2);
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign, N);

else
result = FPRound(result_value, fpcr, rounding, fpexc, N);

if !invalidop && fpexc then

Shared Pseudocode Functions Page 2054

FPProcessDenorms3(typeA, type1, type2, N, fpcr);

return result;

Library pseudocode for shared/functions/float/fpmuladd/FPMulAdd_ZA

// FPMulAdd_ZA()
// =============
// Calculates addend + op1*op2 with a single rounding for SME ZA-targeting
// instructions.

bits(N) FPMulAdd_ZA(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr_in)
FPCRType fpcr = fpcr_in;
boolean fpexc = FALSE; // Do not generate floating-point exceptions
fpcr.DN = '1'; // Generate default NaN values
return FPMulAdd(addend, op1, op2, fpcr, fpexc);

Shared Pseudocode Functions Page 2055

Library pseudocode for shared/functions/float/fpmuladdh/FPMulAddH

Shared Pseudocode Functions Page 2056

// FPMulAddH()
// ===========
// Calculates addend + op1*op2.

bits(N) FPMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCRType fpcr)
boolean fpexc = TRUE; // Generate floating-point exceptions
return FPMulAddH(addend, op1, op2, fpcr, fpexc);

// FPMulAddH()
// ===========
// Calculates addend + op1*op2.

bits(N) FPMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2,
FPCRType fpcr, boolean fpexc)

assert N == 32;
rounding = FPRoundingMode(fpcr);
(typeA,signA,valueA) = FPUnpack(addend, fpcr, fpexc);
(type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);
inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

(done,result) = FPProcessNaNs3H(typeA, type1, type2, addend, op1, op2, fpcr, fpexc);

if !(HaveAltFP() && !UsingAArch32() && fpcr.AH == '1') then
if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then

result = FPDefaultNaN(fpcr, N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

if !done then
infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

// Determine sign and type product will have if it does not cause an
// Invalid Operation.
signP = sign1 EOR sign2;
infP = inf1 || inf2;
zeroP = zero1 || zero2;

// Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
// additions of opposite-signed infinities.
invalidop = (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP);

if invalidop then
result = FPDefaultNaN(fpcr, N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

// Other cases involving infinities produce an infinity of the same sign.
elsif (infA && signA == '0') || (infP && signP == '0') then

result = FPInfinity('0', N);
elsif (infA && signA == '1') || (infP && signP == '1') then

result = FPInfinity('1', N);

// Cases where the result is exactly zero and its sign is not determined by the
// rounding mode are additions of same-signed zeros.
elsif zeroA && zeroP && signA == signP then

result = FPZero(signA, N);

// Otherwise calculate numerical result and round it.
else

result_value = valueA + (value1 * value2);
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign, N);

else
result = FPRound(result_value, fpcr, rounding, fpexc, N);

if !invalidop && fpexc then
FPProcessDenorm(typeA, N, fpcr);

Shared Pseudocode Functions Page 2057

return result;

Library pseudocode for shared/functions/float/fpmuladdh/FPMulAddH_ZA

// FPMulAddH_ZA()
// ==============
// Calculates addend + op1*op2 for SME2 ZA-targeting instructions.

bits(N) FPMulAddH_ZA(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCRType fpcr_in)
FPCRType fpcr = fpcr_in;
boolean fpexc = FALSE; // Do not generate floating-point exceptions
fpcr.DN = '1'; // Generate default NaN values
return FPMulAddH(addend, op1, op2, fpcr, fpexc);

Library pseudocode for shared/functions/float/fpmuladdh/FPProcessNaNs3H

// FPProcessNaNs3H()
// =================

(boolean, bits(N)) FPProcessNaNs3H(FPType type1, FPType type2, FPType type3,
bits(N) op1, bits(N DIV 2) op2, bits(N DIV 2) op3,
FPCRType fpcr, boolean fpexc)

assert N IN {32,64};

bits(N) result;
FPType type_nan;
// When TRUE, use alternative NaN propagation rules.
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
boolean op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
boolean op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};
boolean op3_nan = type3 IN {FPType_SNaN, FPType_QNaN};
if altfp then

if (type1 == FPType_SNaN || type2 == FPType_SNaN || type3 == FPType_SNaN) then
type_nan = FPType_SNaN;

else
type_nan = FPType_QNaN;

boolean done;
if altfp && op1_nan && op2_nan && op3_nan then // <n> register NaN selected

done = TRUE; result = FPConvertNaN(FPProcessNaN(type_nan, op2, fpcr, fpexc), N);
elsif altfp && op2_nan && (op1_nan || op3_nan) then // <n> register NaN selected

done = TRUE; result = FPConvertNaN(FPProcessNaN(type_nan, op2, fpcr, fpexc), N);
elsif altfp && op3_nan && op1_nan then // <m> register NaN selected

done = TRUE; result = FPConvertNaN(FPProcessNaN(type_nan, op3, fpcr, fpexc), N);
elsif type1 == FPType_SNaN then

done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
elsif type2 == FPType_SNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc), N);
elsif type3 == FPType_SNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc), N);
elsif type1 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);
elsif type2 == FPType_QNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc), N);
elsif type3 == FPType_QNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc), N);
else

done = FALSE; result = Zeros(N); // 'Don't care' result
return (done, result);

Shared Pseudocode Functions Page 2058

Library pseudocode for shared/functions/float/fpmulx/FPMulX

// FPMulX()
// ========

bits(N) FPMulX(bits(N) op1, bits(N) op2, FPCRType fpcr)

assert N IN {16,32,64};
bits(N) result;
boolean done;
(type1,sign1,value1) = FPUnpack(op1, fpcr);
(type2,sign2,value2) = FPUnpack(op2, fpcr);

(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
if !done then

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if (inf1 && zero2) || (zero1 && inf2) then
result = FPTwo(sign1 EOR sign2, N);

elsif inf1 || inf2 then
result = FPInfinity(sign1 EOR sign2, N);

elsif zero1 || zero2 then
result = FPZero(sign1 EOR sign2, N);

else
result = FPRound(value1*value2, fpcr, N);

FPProcessDenorms(type1, type2, N, fpcr);

return result;

Library pseudocode for shared/functions/float/fpneg/FPNeg

// FPNeg()
// =======

bits(N) FPNeg(bits(N) op)

assert N IN {16,32,64};
if !UsingAArch32() && HaveAltFP() then

FPCRType fpcr = FPCR[];
if fpcr.AH == '1' then

(fptype, -, -) = FPUnpack(op, fpcr, FALSE);
if fptype IN {FPType_SNaN, FPType_QNaN} then

return op; // When fpcr.AH=1, sign of NaN has no consequence

return NOT(op<N-1>) : op<N-2:0>;

Library pseudocode for shared/functions/float/fponepointfive/FPOnePointFive

// FPOnePointFive()
// ================

bits(N) FPOnePointFive(bit sign, integer N)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '0':Ones(E-1);
frac = '1':Zeros(F-1);
result = sign : exp : frac;

return result;

Shared Pseudocode Functions Page 2059

Library pseudocode for shared/functions/float/fpprocessdenorms/FPProcessDenorm

// FPProcessDenorm()
// =================
// Handles denormal input in case of single-precision or double-precision
// when using alternative floating-point mode.

FPProcessDenorm(FPType fptype, integer N, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
if altfp && N != 16 && fptype == FPType_Denormal then

FPProcessException(FPExc_InputDenorm, fpcr);

Library pseudocode for shared/functions/float/fpprocessdenorms/FPProcessDenorms

// FPProcessDenorms()
// ==================
// Handles denormal input in case of single-precision or double-precision
// when using alternative floating-point mode.

FPProcessDenorms(FPType type1, FPType type2, integer N, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal) then

FPProcessException(FPExc_InputDenorm, fpcr);

Library pseudocode for shared/functions/float/fpprocessdenorms/FPProcessDenorms3

// FPProcessDenorms3()
// ===================
// Handles denormal input in case of single-precision or double-precision
// when using alternative floating-point mode.

FPProcessDenorms3(FPType type1, FPType type2, FPType type3, integer N, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal ||

type3 == FPType_Denormal) then
FPProcessException(FPExc_InputDenorm, fpcr);

Library pseudocode for shared/functions/float/fpprocessdenorms/FPProcessDenorms4

// FPProcessDenorms4()
// ===================
// Handles denormal input in case of single-precision or double-precision
// when using alternative floating-point mode.

FPProcessDenorms4(FPType type1, FPType type2, FPType type3, FPType type4, integer N, FPCRType fpcr)
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal ||

type3 == FPType_Denormal || type4 == FPType_Denormal) then
FPProcessException(FPExc_InputDenorm, fpcr);

Shared Pseudocode Functions Page 2060

Library pseudocode for shared/functions/float/fpprocessexception/FPProcessException

// FPProcessException()
// ====================
//
// The 'fpcr' argument supplies FPCR control bits. Status information is
// updated directly in the FPSR where appropriate.

FPProcessException(FPExc except, FPCRType fpcr)

integer cumul;
// Determine the cumulative exception bit number
case except of

when FPExc_InvalidOp cumul = 0;
when FPExc_DivideByZero cumul = 1;
when FPExc_Overflow cumul = 2;
when FPExc_Underflow cumul = 3;
when FPExc_Inexact cumul = 4;
when FPExc_InputDenorm cumul = 7;

enable = cumul + 8;
if fpcr<enable> == '1' && (!HaveSME() || PSTATE.SM == '0' || IsFullA64Enabled()) then

// Trapping of the exception enabled.
// It is IMPLEMENTATION DEFINED whether the enable bit may be set at all,
// and if so then how exceptions and in what order that they may be
// accumulated before calling FPTrappedException().
bits(8) accumulated_exceptions = GetAccumulatedFPExceptions();
accumulated_exceptions<cumul> = '1';
if boolean IMPLEMENTATION_DEFINED "Support trapping of floating-point exceptions" then

if UsingAArch32() then
AArch32.FPTrappedException(accumulated_exceptions);

else
is_ase = IsASEInstruction();
AArch64.FPTrappedException(is_ase, accumulated_exceptions);

else
// The exceptions generated by this instruction are accumulated by the PE and
// FPTrappedException is called later during its execution, before the next
// instruction is executed. This field is cleared at the start of each FP instruction.
SetAccumulatedFPExceptions(accumulated_exceptions);

elsif UsingAArch32() then
// Set the cumulative exception bit
FPSCR<cumul> = '1';

else
// Set the cumulative exception bit
FPSR<cumul> = '1';

return;

Shared Pseudocode Functions Page 2061

Library pseudocode for shared/functions/float/fpprocessnan/FPProcessNaN

// FPProcessNaN()
// ==============

bits(N) FPProcessNaN(FPType fptype, bits(N) op, FPCRType fpcr)
boolean fpexc = TRUE; // Generate floating-point exceptions
return FPProcessNaN(fptype, op, fpcr, fpexc);

// FPProcessNaN()
// ==============
// Handle NaN input operands, returning the operand or default NaN value
// if fpcr.DN is selected. The 'fpcr' argument supplies the FPCR control bits.
// The 'fpexc' argument controls the generation of exceptions, regardless of
// whether 'fptype' is a signalling NaN or a quiet NaN.

bits(N) FPProcessNaN(FPType fptype, bits(N) op, FPCRType fpcr, boolean fpexc)

assert N IN {16,32,64};
assert fptype IN {FPType_QNaN, FPType_SNaN};
integer topfrac;

case N of
when 16 topfrac = 9;
when 32 topfrac = 22;
when 64 topfrac = 51;

result = op;
if fptype == FPType_SNaN then

result<topfrac> = '1';
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

if fpcr.DN == '1' then // DefaultNaN requested
result = FPDefaultNaN(fpcr, N);

return result;

Shared Pseudocode Functions Page 2062

Library pseudocode for shared/functions/float/fpprocessnans/FPProcessNaNs

// FPProcessNaNs()
// ===============

(boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2, bits(N) op1,
bits(N) op2, FPCRType fpcr)

boolean fpexc = TRUE; // Generate floating-point exceptions
return FPProcessNaNs(type1, type2, op1, op2, fpcr, fpexc);

// FPProcessNaNs()
// ===============
//
// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the
// result of the operation.
//
// The 'fpcr' argument supplies FPCR control bits and 'altfmaxfmin' controls
// alternative floating-point behavior for FMAX, FMIN and variants. 'fpexc'
// controls the generation of floating-point exceptions. Status information
// is updated directly in the FPSR where appropriate.

(boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2, bits(N) op1, bits(N) op2,
FPCRType fpcr, boolean fpexc)

assert N IN {16,32,64};
boolean done;
bits(N) result;
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
boolean op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
boolean op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};
boolean any_snan = type1 == FPType_SNaN || type2 == FPType_SNaN;
FPType type_nan = if any_snan then FPType_SNaN else FPType_QNaN;

if altfp && op1_nan && op2_nan then
// <n> register NaN selected
done = TRUE; result = FPProcessNaN(type_nan, op1, fpcr, fpexc);

elsif type1 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);

elsif type2 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);

elsif type1 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);

elsif type2 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);

else
done = FALSE; result = Zeros(N); // 'Don't care' result

return (done, result);

Shared Pseudocode Functions Page 2063

Library pseudocode for shared/functions/float/fpprocessnans3/FPProcessNaNs3

// FPProcessNaNs3()
// ================

(boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
bits(N) op1, bits(N) op2, bits(N) op3,
FPCRType fpcr)

boolean fpexc = TRUE; // Generate floating-point exceptions
return FPProcessNaNs3(type1, type2, type3, op1, op2, op3, fpcr, fpexc);

// FPProcessNaNs3()
// ================
// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the
// result of the operation.
//
// The 'fpcr' argument supplies FPCR control bits and 'fpexc' controls the
// generation of floating-point exceptions. Status information is updated
// directly in the FPSR where appropriate.

(boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
bits(N) op1, bits(N) op2, bits(N) op3,
FPCRType fpcr, boolean fpexc)

assert N IN {16,32,64};
bits(N) result;
boolean op1_nan = type1 IN {FPType_SNaN, FPType_QNaN};
boolean op2_nan = type2 IN {FPType_SNaN, FPType_QNaN};
boolean op3_nan = type3 IN {FPType_SNaN, FPType_QNaN};

boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
FPType type_nan;
if altfp then

if type1 == FPType_SNaN || type2 == FPType_SNaN || type3 == FPType_SNaN then
type_nan = FPType_SNaN;

else
type_nan = FPType_QNaN;

boolean done;
if altfp && op1_nan && op2_nan && op3_nan then

// <n> register NaN selected
done = TRUE; result = FPProcessNaN(type_nan, op2, fpcr, fpexc);

elsif altfp && op2_nan && (op1_nan || op3_nan) then
// <n> register NaN selected
done = TRUE; result = FPProcessNaN(type_nan, op2, fpcr, fpexc);

elsif altfp && op3_nan && op1_nan then
// <m> register NaN selected
done = TRUE; result = FPProcessNaN(type_nan, op3, fpcr, fpexc);

elsif type1 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);

elsif type2 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);

elsif type3 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type3, op3, fpcr, fpexc);

elsif type1 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type1, op1, fpcr, fpexc);

elsif type2 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpcr, fpexc);

elsif type3 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type3, op3, fpcr, fpexc);

else
done = FALSE; result = Zeros(N); // 'Don't care' result

return (done, result);

Shared Pseudocode Functions Page 2064

Library pseudocode for shared/functions/float/fpprocessnans4/FPProcessNaNs4

// FPProcessNaNs4()
// ================
// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the
// result of the operation.
//
// The 'fpcr' argument supplies FPCR control bits.
// Status information is updated directly in the FPSR where appropriate.
// The 'fpexc' controls the generation of floating-point exceptions.

(boolean, bits(N)) FPProcessNaNs4(FPType type1, FPType type2, FPType type3, FPType type4,
bits(N DIV 2) op1, bits(N DIV 2) op2, bits(N DIV 2) op3,
bits(N DIV 2) op4, FPCRType fpcr, boolean fpexc, integer N)

assert N == 32;

bits(N) result;
boolean done;
// The FPCR.AH control does not affect these checks
if type1 == FPType_SNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type1, op1, fpcr, fpexc), N);
elsif type2 == FPType_SNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc), N);
elsif type3 == FPType_SNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc), N);
elsif type4 == FPType_SNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type4, op4, fpcr, fpexc), N);
elsif type1 == FPType_QNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type1, op1, fpcr, fpexc), N);
elsif type2 == FPType_QNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc), N);
elsif type3 == FPType_QNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc), N);
elsif type4 == FPType_QNaN then

done = TRUE; result = FPConvertNaN(FPProcessNaN(type4, op4, fpcr, fpexc), N);
else

done = FALSE; result = Zeros(N); // 'Don't care' result

return (done, result);

Shared Pseudocode Functions Page 2065

Library pseudocode for shared/functions/float/fprecipestimate/FPRecipEstimate

Shared Pseudocode Functions Page 2066

// FPRecipEstimate()
// =================

bits(N) FPRecipEstimate(bits(N) operand, FPCRType fpcr_in)

assert N IN {16,32,64};
FPCRType fpcr = fpcr_in;
bits(N) result;
boolean overflow_to_inf;
// When using alternative floating-point behavior, do not generate
// floating-point exceptions, flush denormal input and output to zero,
// and use RNE rounding mode.
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
boolean fpexc = !altfp;
if altfp then fpcr.<FIZ,FZ> = '11';
if altfp then fpcr.RMode = '00';

(fptype,sign,value) = FPUnpack(operand, fpcr, fpexc);

FPRounding rounding = FPRoundingMode(fpcr);
if fptype == FPType_SNaN || fptype == FPType_QNaN then

result = FPProcessNaN(fptype, operand, fpcr, fpexc);
elsif fptype == FPType_Infinity then

result = FPZero(sign, N);
elsif fptype == FPType_Zero then

result = FPInfinity(sign, N);
if fpexc then FPProcessException(FPExc_DivideByZero, fpcr);

elsif (
(N == 16 && Abs(value) < 2.0^-16) ||
(N == 32 && Abs(value) < 2.0^-128) ||
(N == 64 && Abs(value) < 2.0^-1024)

) then
case rounding of

when FPRounding_TIEEVEN
overflow_to_inf = TRUE;

when FPRounding_POSINF
overflow_to_inf = (sign == '0');

when FPRounding_NEGINF
overflow_to_inf = (sign == '1');

when FPRounding_ZERO
overflow_to_inf = FALSE;

result = if overflow_to_inf then FPInfinity(sign, N) else FPMaxNormal(sign, N);
if fpexc then

FPProcessException(FPExc_Overflow, fpcr);
FPProcessException(FPExc_Inexact, fpcr);

elsif ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16))
&& (

(N == 16 && Abs(value) >= 2.0^14) ||
(N == 32 && Abs(value) >= 2.0^126) ||
(N == 64 && Abs(value) >= 2.0^1022)

) then
// Result flushed to zero of correct sign
result = FPZero(sign, N);

// Flush-to-zero never generates a trapped exception.
if UsingAArch32() then

FPSCR.UFC = '1';
else

if fpexc then FPSR.UFC = '1';
else

// Scale to a fixed point value in the range 0.5 <= x < 1.0 in steps of 1/512, and
// calculate result exponent. Scaled value has copied sign bit,
// exponent = 1022 = double-precision biased version of -1,
// fraction = original fraction
bits(52) fraction;
integer exp;
case N of

when 16
fraction = operand<9:0> : Zeros(42);
exp = UInt(operand<14:10>);

Shared Pseudocode Functions Page 2067

when 32
fraction = operand<22:0> : Zeros(29);
exp = UInt(operand<30:23>);

when 64
fraction = operand<51:0>;
exp = UInt(operand<62:52>);

if exp == 0 then
if fraction<51> == '0' then

exp = -1;
fraction = fraction<49:0>:'00';

else
fraction = fraction<50:0>:'0';

integer scaled;
boolean increasedprecision = N==32 && HaveFeatRPRES() && altfp;

if !increasedprecision then
scaled = UInt('1':fraction<51:44>);

else
scaled = UInt('1':fraction<51:41>);

integer result_exp;
case N of

when 16 result_exp = 29 - exp; // In range 29-30 = -1 to 29+1 = 30
when 32 result_exp = 253 - exp; // In range 253-254 = -1 to 253+1 = 254
when 64 result_exp = 2045 - exp; // In range 2045-2046 = -1 to 2045+1 = 2046

// Scaled is in range 256 .. 511 or 2048 .. 4095 range representing a
// fixed-point number in range [0.5 .. 1.0].
estimate = RecipEstimate(scaled, increasedprecision);

// Estimate is in the range 256 .. 511 or 4096 .. 8191 representing a
// fixed-point result in the range [1.0 .. 2.0].
// Convert to scaled floating point result with copied sign bit,
// high-order bits from estimate, and exponent calculated above.
if !increasedprecision then

fraction = estimate<7:0> : Zeros(44);
else

fraction = estimate<11:0> : Zeros(40);

if result_exp == 0 then
fraction = '1' : fraction<51:1>;

elsif result_exp == -1 then
fraction = '01' : fraction<51:2>;
result_exp = 0;

case N of
when 16 result = sign : result_exp<N-12:0> : fraction<51:42>;
when 32 result = sign : result_exp<N-25:0> : fraction<51:29>;
when 64 result = sign : result_exp<N-54:0> : fraction<51:0>;

return result;

Shared Pseudocode Functions Page 2068

Library pseudocode for shared/functions/float/fprecipestimate/RecipEstimate

// RecipEstimate()
// ===============
// Compute estimate of reciprocal of 9-bit fixed-point number.
//
// a is in range 256 .. 511 or 2048 .. 4096 representing a number in
// the range 0.5 <= x < 1.0.
// increasedprecision determines if the mantissa is 8-bit or 12-bit.
// result is in the range 256 .. 511 or 4096 .. 8191 representing a
// number in the range 1.0 to 511/256 or 1.00 to 8191/4096.

integer RecipEstimate(integer a_in, boolean increasedprecision)

integer a = a_in;
integer r;
if !increasedprecision then

assert 256 <= a && a < 512;
a = a*2+1; // Round to nearest
integer b = (2 ^ 19) DIV a;
r = (b+1) DIV 2; // Round to nearest
assert 256 <= r && r < 512;

else
assert 2048 <= a && a < 4096;
a = a*2+1; // Round to nearest
real real_val = Real(2^25)/Real(a);
r = RoundDown(real_val);
real error = real_val - Real(r);
boolean round_up = error > 0.5; // Error cannot be exactly 0.5 so do not need tie case
if round_up then r = r+1;
assert 4096 <= r && r < 8192;

return r;

Shared Pseudocode Functions Page 2069

Library pseudocode for shared/functions/float/fprecpx/FPRecpX

// FPRecpX()
// =========

bits(N) FPRecpX(bits(N) op, FPCRType fpcr_in)

assert N IN {16,32,64};
FPCRType fpcr = fpcr_in;
integer esize;
case N of

when 16 esize = 5;
when 32 esize = 8;
when 64 esize = 11;

bits(N) result;
bits(esize) exp;
bits(esize) max_exp;
constant bits(N-(esize+1)) frac = Zeros(N-(esize+1));

boolean altfp = HaveAltFP() && fpcr.AH == '1';
boolean fpexc = !altfp; // Generate no floating-point exceptions
if altfp then fpcr.<FIZ,FZ> = '11'; // Flush denormal input and output to zero
(fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

case N of
when 16 exp = op<(10+esize)-1:10>;
when 32 exp = op<(23+esize)-1:23>;
when 64 exp = op<(52+esize)-1:52>;

max_exp = Ones(esize) - 1;

if fptype == FPType_SNaN || fptype == FPType_QNaN then
result = FPProcessNaN(fptype, op, fpcr, fpexc);

else
if IsZero(exp) then // Zero and denormals

result = sign:max_exp:frac;
else // Infinities and normals

result = sign:NOT(exp):frac;

return result;

Library pseudocode for shared/functions/float/fpround/FPRound

// FPRound()
// =========
// Generic conversion from precise, unbounded real data type to IEEE format.

bits(N) FPRound(real op, FPCRType fpcr, integer N)
return FPRound(op, fpcr, FPRoundingMode(fpcr), N);

// FPRound()
// =========
// For directed FP conversion, includes an explicit 'rounding' argument.

bits(N) FPRound(real op, FPCRType fpcr_in, FPRounding rounding, integer N)
boolean fpexc = TRUE; // Generate floating-point exceptions
return FPRound(op, fpcr_in, rounding, fpexc, N);

// FPRound()
// =========
// For AltFP, includes an explicit FPEXC argument to disable exception
// generation and switches off Arm alternate half-precision mode.

bits(N) FPRound(real op, FPCRType fpcr_in, FPRounding rounding, boolean fpexc, integer N)
FPCRType fpcr = fpcr_in;
fpcr.AHP = '0';
boolean isbfloat16 = FALSE;
return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc, N);

Shared Pseudocode Functions Page 2070

Library pseudocode for shared/functions/float/fpround/FPRoundBase

Shared Pseudocode Functions Page 2071

// FPRoundBase()
// =============
// For BFloat16, includes an explicit 'isbfloat16' argument.

bits(N) FPRoundBase(real op, FPCRType fpcr, FPRounding rounding, boolean isbfloat16, integer N)
boolean fpexc = TRUE; // Generate floating-point exceptions
return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc, N);

// FPRoundBase()
// =============
// Convert a real number 'op' into an N-bit floating-point value using the
// supplied rounding mode 'rounding'.
//
// The 'fpcr' argument supplies FPCR control bits and 'fpexc' controls the
// generation of floating-point exceptions. Status information is updated
// directly in the FPSR where appropriate.

bits(N) FPRoundBase(real op, FPCRType fpcr, FPRounding rounding,
boolean isbfloat16, boolean fpexc, integer N)

assert N IN {16,32,64};
assert op != 0.0;
assert rounding != FPRounding_TIEAWAY;
bits(N) result;

// Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
integer minimum_exp;
integer F;
integer E;
if N == 16 then

minimum_exp = -14; E = 5; F = 10;
elsif N == 32 && isbfloat16 then

minimum_exp = -126; E = 8; F = 7;
elsif N == 32 then

minimum_exp = -126; E = 8; F = 23;
else // N == 64

minimum_exp = -1022; E = 11; F = 52;

// Split value into sign, unrounded mantissa and exponent.
bit sign;
real mantissa;
if op < 0.0 then

sign = '1'; mantissa = -op;
else

sign = '0'; mantissa = op;
exponent = 0;
while mantissa < 1.0 do

mantissa = mantissa * 2.0; exponent = exponent - 1;
while mantissa >= 2.0 do

mantissa = mantissa / 2.0; exponent = exponent + 1;

// When TRUE, detection of underflow occurs after rounding and the test for a
// denormalized number for single and double precision values occurs after rounding.
altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';

// Deal with flush-to-zero before rounding if FPCR.AH != '1'.
if (!altfp && ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16)) &&

exponent < minimum_exp) then
// Flush-to-zero never generates a trapped exception.
if UsingAArch32() then

FPSCR.UFC = '1';
else

if fpexc then FPSR.UFC = '1';
return FPZero(sign, N);

biased_exp_unconstrained = (exponent - minimum_exp) + 1;
int_mant_unconstrained = RoundDown(mantissa * 2.0^F);
error_unconstrained = mantissa * 2.0^F - Real(int_mant_unconstrained);

// Start creating the exponent value for the result. Start by biasing the actual exponent

Shared Pseudocode Functions Page 2072

// so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
biased_exp = Max((exponent - minimum_exp) + 1, 0);
if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);

// Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
error = mantissa * 2.0^F - Real(int_mant);

// Underflow occurs if exponent is too small before rounding, and result is inexact or
// the Underflow exception is trapped. This applies before rounding if FPCR.AH != '1'.
boolean trapped_UF = fpcr.UFE == '1' && (!InStreamingMode() || IsFullA64Enabled());
if !altfp && biased_exp == 0 && (error != 0.0 || trapped_UF) then

if fpexc then FPProcessException(FPExc_Underflow, fpcr);

// Round result according to rounding mode.
boolean round_up_unconstrained;
boolean round_up;
boolean overflow_to_inf;
if altfp then

case rounding of
when FPRounding_TIEEVEN

round_up_unconstrained = (error_unconstrained > 0.5 ||
(error_unconstrained == 0.5 && int_mant_unconstrained<0> == '1'));

round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
overflow_to_inf = TRUE;

when FPRounding_POSINF
round_up_unconstrained = (error_unconstrained != 0.0 && sign == '0');
round_up = (error != 0.0 && sign == '0');
overflow_to_inf = (sign == '0');

when FPRounding_NEGINF
round_up_unconstrained = (error_unconstrained != 0.0 && sign == '1');
round_up = (error != 0.0 && sign == '1');
overflow_to_inf = (sign == '1');

when FPRounding_ZERO, FPRounding_ODD
round_up_unconstrained = FALSE;
round_up = FALSE;
overflow_to_inf = FALSE;

if round_up_unconstrained then
int_mant_unconstrained = int_mant_unconstrained + 1;
if int_mant_unconstrained == 2^(F+1) then // Rounded up to next exponent

biased_exp_unconstrained = biased_exp_unconstrained + 1;
int_mant_unconstrained = int_mant_unconstrained DIV 2;

// Deal with flush-to-zero and underflow after rounding if FPCR.AH == '1'.
if biased_exp_unconstrained < 1 && int_mant_unconstrained != 0 then

// the result of unconstrained rounding is less than the minimum normalized number
if (fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16) then // Flush-to-zero

if fpexc then
FPSR.UFC = '1';
FPProcessException(FPExc_Inexact, fpcr);

return FPZero(sign, N);
elsif error != 0.0 || trapped_UF then

if fpexc then FPProcessException(FPExc_Underflow, fpcr);
else // altfp == FALSE

case rounding of
when FPRounding_TIEEVEN

round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
overflow_to_inf = TRUE;

when FPRounding_POSINF
round_up = (error != 0.0 && sign == '0');
overflow_to_inf = (sign == '0');

when FPRounding_NEGINF
round_up = (error != 0.0 && sign == '1');
overflow_to_inf = (sign == '1');

when FPRounding_ZERO, FPRounding_ODD
round_up = FALSE;
overflow_to_inf = FALSE;

Shared Pseudocode Functions Page 2073

if round_up then
int_mant = int_mant + 1;
if int_mant == 2^F then // Rounded up from denormalized to normalized

biased_exp = 1;
if int_mant == 2^(F+1) then // Rounded up to next exponent

biased_exp = biased_exp + 1;
int_mant = int_mant DIV 2;

// Handle rounding to odd
if error != 0.0 && rounding == FPRounding_ODD then

int_mant<0> = '1';

// Deal with overflow and generate result.
if N != 16 || fpcr.AHP == '0' then // Single, double or IEEE half precision

if biased_exp >= 2^E - 1 then
result = if overflow_to_inf then FPInfinity(sign, N) else FPMaxNormal(sign, N);
if fpexc then FPProcessException(FPExc_Overflow, fpcr);
error = 1.0; // Ensure that an Inexact exception occurs

else
result = sign : biased_exp<E-1:0> : int_mant<F-1:0> : Zeros(N-(E+F+1));

else // Alternative half precision
if biased_exp >= 2^E then

result = sign : Ones(N-1);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
error = 0.0; // Ensure that an Inexact exception does not occur

else
result = sign : biased_exp<E-1:0> : int_mant<F-1:0> : Zeros(N-(E+F+1));

// Deal with Inexact exception.
if error != 0.0 then

if fpexc then FPProcessException(FPExc_Inexact, fpcr);

return result;

Library pseudocode for shared/functions/float/fpround/FPRoundCV

// FPRoundCV()
// ===========
// Used for FP to FP conversion instructions.
// For half-precision data ignores FZ16 and observes AHP.

bits(N) FPRoundCV(real op, FPCRType fpcr_in, FPRounding rounding, integer N)
FPCRType fpcr = fpcr_in;
fpcr.FZ16 = '0';
boolean fpexc = TRUE; // Generate floating-point exceptions
boolean isbfloat16 = FALSE;
return FPRoundBase(op, fpcr, rounding, isbfloat16, fpexc, N);

Library pseudocode for shared/functions/float/fprounding/FPRounding

// FPRounding
// ==========
// The conversion and rounding functions take an explicit
// rounding mode enumeration instead of booleans or FPCR values.

enumeration FPRounding {FPRounding_TIEEVEN, FPRounding_POSINF,
FPRounding_NEGINF, FPRounding_ZERO,
FPRounding_TIEAWAY, FPRounding_ODD};

Library pseudocode for shared/functions/float/fproundingmode/FPRoundingMode

// FPRoundingMode()
// ================
// Return the current floating-point rounding mode.

FPRounding FPRoundingMode(FPCRType fpcr)
return FPDecodeRounding(fpcr.RMode);

Shared Pseudocode Functions Page 2074

Library pseudocode for shared/functions/float/fproundint/FPRoundInt

// FPRoundInt()
// ============

// Round op to nearest integral floating point value using rounding mode in FPCR/FPSCR.
// If EXACT is TRUE, set FPSR.IXC if result is not numerically equal to op.

bits(N) FPRoundInt(bits(N) op, FPCRType fpcr, FPRounding rounding, boolean exact)

assert rounding != FPRounding_ODD;
assert N IN {16,32,64};

// When alternative floating-point support is TRUE, do not generate
// Input Denormal floating-point exceptions.
altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
fpexc = !altfp;

// Unpack using FPCR to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

bits(N) result;
if fptype == FPType_SNaN || fptype == FPType_QNaN then

result = FPProcessNaN(fptype, op, fpcr);
elsif fptype == FPType_Infinity then

result = FPInfinity(sign, N);
elsif fptype == FPType_Zero then

result = FPZero(sign, N);
else

// Extract integer component.
int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment.
boolean round_up;
case rounding of

when FPRounding_TIEEVEN
round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));

when FPRounding_POSINF
round_up = (error != 0.0);

when FPRounding_NEGINF
round_up = FALSE;

when FPRounding_ZERO
round_up = (error != 0.0 && int_result < 0);

when FPRounding_TIEAWAY
round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

if round_up then int_result = int_result + 1;

// Convert integer value into an equivalent real value.
real_result = Real(int_result);

// Re-encode as a floating-point value, result is always exact.
if real_result == 0.0 then

result = FPZero(sign, N);
else

result = FPRound(real_result, fpcr, FPRounding_ZERO, N);

// Generate inexact exceptions.
if error != 0.0 && exact then

FPProcessException(FPExc_Inexact, fpcr);

return result;

Shared Pseudocode Functions Page 2075

Library pseudocode for shared/functions/float/fproundintn/FPRoundIntN

Shared Pseudocode Functions Page 2076

// FPRoundIntN()
// =============

bits(N) FPRoundIntN(bits(N) op, FPCRType fpcr, FPRounding rounding, integer intsize)
assert rounding != FPRounding_ODD;
assert N IN {32,64};
assert intsize IN {32, 64};
integer exp;
bits(N) result;
boolean round_up;
constant integer E = (if N == 32 then 8 else 11);
constant integer F = N - (E + 1);

// When alternative floating-point support is TRUE, do not generate
// Input Denormal floating-point exceptions.
altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
fpexc = !altfp;

// Unpack using FPCR to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

if fptype IN {FPType_SNaN, FPType_QNaN, FPType_Infinity} then
if N == 32 then

exp = 126 + intsize;
result = '1':exp<(E-1):0>:Zeros(F);

else
exp = 1022+intsize;
result = '1':exp<(E-1):0>:Zeros(F);

FPProcessException(FPExc_InvalidOp, fpcr);
elsif fptype == FPType_Zero then

result = FPZero(sign, N);
else

// Extract integer component.
int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment.
case rounding of

when FPRounding_TIEEVEN
round_up = error > 0.5 || (error == 0.5 && int_result<0> == '1');

when FPRounding_POSINF
round_up = error != 0.0;

when FPRounding_NEGINF
round_up = FALSE;

when FPRounding_ZERO
round_up = error != 0.0 && int_result < 0;

when FPRounding_TIEAWAY
round_up = error > 0.5 || (error == 0.5 && int_result >= 0);

if round_up then int_result = int_result + 1;
overflow = int_result > 2^(intsize-1)-1 || int_result < -1*2^(intsize-1);

if overflow then
if N == 32 then

exp = 126 + intsize;
result = '1':exp<(E-1):0>:Zeros(F);

else
exp = 1022 + intsize;
result = '1':exp<(E-1):0>:Zeros(F);

FPProcessException(FPExc_InvalidOp, fpcr);
// This case shouldn't set Inexact.
error = 0.0;

else
// Convert integer value into an equivalent real value.
real_result = Real(int_result);

// Re-encode as a floating-point value, result is always exact.
if real_result == 0.0 then

result = FPZero(sign, N);

Shared Pseudocode Functions Page 2077

else
result = FPRound(real_result, fpcr, FPRounding_ZERO, N);

// Generate inexact exceptions.
if error != 0.0 then

FPProcessException(FPExc_Inexact, fpcr);

return result;

Shared Pseudocode Functions Page 2078

Library pseudocode for shared/functions/float/fprsqrtestimate/FPRSqrtEstimate

Shared Pseudocode Functions Page 2079

// FPRSqrtEstimate()
// =================

bits(N) FPRSqrtEstimate(bits(N) operand, FPCRType fpcr_in)

assert N IN {16,32,64};
FPCRType fpcr = fpcr_in;

// When using alternative floating-point behavior, do not generate
// floating-point exceptions and flush denormal input to zero.
boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
boolean fpexc = !altfp;
if altfp then fpcr.<FIZ,FZ> = '11';

(fptype,sign,value) = FPUnpack(operand, fpcr, fpexc);

bits(N) result;
if fptype == FPType_SNaN || fptype == FPType_QNaN then

result = FPProcessNaN(fptype, operand, fpcr, fpexc);
elsif fptype == FPType_Zero then

result = FPInfinity(sign, N);
if fpexc then FPProcessException(FPExc_DivideByZero, fpcr);

elsif sign == '1' then
result = FPDefaultNaN(fpcr, N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

elsif fptype == FPType_Infinity then
result = FPZero('0', N);

else
// Scale to a fixed-point value in the range 0.25 <= x < 1.0 in steps of 512, with the
// evenness or oddness of the exponent unchanged, and calculate result exponent.
// Scaled value has copied sign bit, exponent = 1022 or 1021 = double-precision
// biased version of -1 or -2, fraction = original fraction extended with zeros.

bits(52) fraction;
integer exp;
case N of

when 16
fraction = operand<9:0> : Zeros(42);
exp = UInt(operand<14:10>);

when 32
fraction = operand<22:0> : Zeros(29);
exp = UInt(operand<30:23>);

when 64
fraction = operand<51:0>;
exp = UInt(operand<62:52>);

if exp == 0 then
while fraction<51> == '0' do

fraction = fraction<50:0> : '0';
exp = exp - 1;

fraction = fraction<50:0> : '0';

integer scaled;
boolean increasedprecision = N==32 && HaveFeatRPRES() && altfp;

if !increasedprecision then
if exp<0> == '0' then

scaled = UInt('1':fraction<51:44>);
else

scaled = UInt('01':fraction<51:45>);
else

if exp<0> == '0' then
scaled = UInt('1':fraction<51:41>);

else
scaled = UInt('01':fraction<51:42>);

integer result_exp;
case N of

when 16 result_exp = (44 - exp) DIV 2;
when 32 result_exp = (380 - exp) DIV 2;

Shared Pseudocode Functions Page 2080

when 64 result_exp = (3068 - exp) DIV 2;

estimate = RecipSqrtEstimate(scaled, increasedprecision);

// Estimate is in the range 256 .. 511 or 4096 .. 8191 representing a
// fixed-point result in the range [1.0 .. 2.0].
// Convert to scaled floating point result with copied sign bit and high-order
// fraction bits, and exponent calculated above.
case N of

when 16 result = '0' : result_exp<N-12:0> : estimate<7:0>:Zeros(2);
when 32

if !increasedprecision then
result = '0' : result_exp<N-25:0> : estimate<7:0>:Zeros(15);

else
result = '0' : result_exp<N-25:0> : estimate<11:0>:Zeros(11);

when 64 result = '0' : result_exp<N-54:0> : estimate<7:0>:Zeros(44);

return result;

Shared Pseudocode Functions Page 2081

Library pseudocode for shared/functions/float/fprsqrtestimate/RecipSqrtEstimate

// RecipSqrtEstimate()
// ===================
// Compute estimate of reciprocal square root of 9-bit fixed-point number.
//
// a_in is in range 128 .. 511 or 1024 .. 4095, with increased precision,
// representing a number in the range 0.25 <= x < 1.0.
// increasedprecision determines if the mantissa is 8-bit or 12-bit.
// result is in the range 256 .. 511 or 4096 .. 8191, with increased precision,
// representing a number in the range 1.0 to 511/256 or 8191/4096.

integer RecipSqrtEstimate(integer a_in, boolean increasedprecision)

integer a = a_in;
integer r;
if !increasedprecision then

assert 128 <= a && a < 512;
if a < 256 then // 0.25 .. 0.5

a = a*2+1; // a in units of 1/512 rounded to nearest
else // 0.5 .. 1.0

a = (a >> 1) << 1; // Discard bottom bit
a = (a+1)*2; // a in units of 1/256 rounded to nearest

integer b = 512;
while a*(b+1)*(b+1) < 2^28 do

b = b+1;
// b = largest b such that b < 2^14 / sqrt(a)
r = (b+1) DIV 2; // Round to nearest
assert 256 <= r && r < 512;

else
assert 1024 <= a && a < 4096;
real real_val;
real error;
integer int_val;

if a < 2048 then // 0.25... 0.5
a = a*2 + 1; // Take 10 bits of fraction and force a 1 at the bottom
real_val = Real(a)/2.0;

else // 0.5..1.0
a = (a >> 1) << 1; // Discard bottom bit
a = a+1; // Take 10 bits of fraction and force a 1 at the bottom
real_val = Real(a);

real_val = Sqrt(real_val); // This number will lie in the range of 32 to 64
// Round to nearest even for a DP float number

real_val = real_val * Real(2^47); // The integer is the size of the whole DP mantissa
int_val = RoundDown(real_val); // Calculate rounding value
error = real_val - Real(int_val);
round_up = error > 0.5; // Error cannot be exactly 0.5 so do not need tie case
if round_up then int_val = int_val+1;

real_val = Real(2^65)/Real(int_val); // Lies in the range 4096 <= real_val < 8192
int_val = RoundDown(real_val); // Round that (to nearest even) to give integer
error = real_val - Real(int_val);
round_up = (error > 0.5 || (error == 0.5 && int_val<0> == '1'));
if round_up then int_val = int_val+1;

r = int_val;
assert 4096 <= r && r < 8192;

return r;

Shared Pseudocode Functions Page 2082

Library pseudocode for shared/functions/float/fpsqrt/FPSqrt

// FPSqrt()
// ========

bits(N) FPSqrt(bits(N) op, FPCRType fpcr)

assert N IN {16,32,64};
(fptype,sign,value) = FPUnpack(op, fpcr);

bits(N) result;
if fptype == FPType_SNaN || fptype == FPType_QNaN then

result = FPProcessNaN(fptype, op, fpcr);
elsif fptype == FPType_Zero then

result = FPZero(sign, N);
elsif fptype == FPType_Infinity && sign == '0' then

result = FPInfinity(sign, N);
elsif sign == '1' then

result = FPDefaultNaN(fpcr, N);
FPProcessException(FPExc_InvalidOp, fpcr);

else
result = FPRound(Sqrt(value), fpcr, N);
FPProcessDenorm(fptype, N, fpcr);

return result;

Shared Pseudocode Functions Page 2083

Library pseudocode for shared/functions/float/fpsub/FPSub

// FPSub()
// =======

bits(N) FPSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
boolean fpexc = TRUE; // Generate floating-point exceptions
return FPSub(op1, op2, fpcr, fpexc);

// FPSub()
// =======

bits(N) FPSub(bits(N) op1, bits(N) op2, FPCRType fpcr, boolean fpexc)

assert N IN {16,32,64};
rounding = FPRoundingMode(fpcr);

(type1,sign1,value1) = FPUnpack(op1, fpcr, fpexc);
(type2,sign2,value2) = FPUnpack(op2, fpcr, fpexc);

(done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr, fpexc);
if !done then

inf1 = (type1 == FPType_Infinity);
inf2 = (type2 == FPType_Infinity);
zero1 = (type1 == FPType_Zero);
zero2 = (type2 == FPType_Zero);

if inf1 && inf2 && sign1 == sign2 then
result = FPDefaultNaN(fpcr, N);
if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);

elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
result = FPInfinity('0', N);

elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
result = FPInfinity('1', N);

elsif zero1 && zero2 && sign1 == NOT(sign2) then
result = FPZero(sign1, N);

else
result_value = value1 - value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode

result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
result = FPZero(result_sign, N);

else
result = FPRound(result_value, fpcr, rounding, fpexc, N);

if fpexc then FPProcessDenorms(type1, type2, N, fpcr);

return result;

Library pseudocode for shared/functions/float/fpsub/FPSub_ZA

// FPSub_ZA()
// ==========
// Calculates op1-op2 for SME2 ZA-targeting instructions.

bits(N) FPSub_ZA(bits(N) op1, bits(N) op2, FPCRType fpcr_in)
FPCRType fpcr = fpcr_in;
boolean fpexc = FALSE; // Do not generate floating-point exceptions
fpcr.DN = '1'; // Generate default NaN values
return FPSub(op1, op2, fpcr, fpexc);

Shared Pseudocode Functions Page 2084

Library pseudocode for shared/functions/float/fpthree/FPThree

// FPThree()
// =========

bits(N) FPThree(bit sign, integer N)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '1':Zeros(E-1);
frac = '1':Zeros(F-1);
result = sign : exp : frac;

return result;

Shared Pseudocode Functions Page 2085

Library pseudocode for shared/functions/float/fptofixed/FPToFixed

// FPToFixed()
// ===========

// Convert N-bit precision floating point 'op' to M-bit fixed point with
// FBITS fractional bits, controlled by UNSIGNED and ROUNDING.

bits(M) FPToFixed(bits(N) op, integer fbits, boolean unsigned, FPCRType fpcr,
FPRounding rounding, integer M)

assert N IN {16,32,64};
assert M IN {16,32,64};
assert fbits >= 0;
assert rounding != FPRounding_ODD;

// When alternative floating-point support is TRUE, do not generate
// Input Denormal floating-point exceptions.
altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
fpexc = !altfp;

// Unpack using fpcr to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr, fpexc);

// If NaN, set cumulative flag or take exception.
if fptype == FPType_SNaN || fptype == FPType_QNaN then

FPProcessException(FPExc_InvalidOp, fpcr);

// Scale by fractional bits and produce integer rounded towards minus-infinity.
value = value * 2.0^fbits;
int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment.
boolean round_up;
case rounding of

when FPRounding_TIEEVEN
round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));

when FPRounding_POSINF
round_up = (error != 0.0);

when FPRounding_NEGINF
round_up = FALSE;

when FPRounding_ZERO
round_up = (error != 0.0 && int_result < 0);

when FPRounding_TIEAWAY
round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

if round_up then int_result = int_result + 1;

// Generate saturated result and exceptions.
(result, overflow) = SatQ(int_result, M, unsigned);
if overflow then

FPProcessException(FPExc_InvalidOp, fpcr);
elsif error != 0.0 then

FPProcessException(FPExc_Inexact, fpcr);

return result;

Shared Pseudocode Functions Page 2086

Library pseudocode for shared/functions/float/fptofixedjs/FPToFixedJS

// FPToFixedJS()
// =============

// Converts a double precision floating point input value
// to a signed integer, with rounding to zero.

(bits(N), bit) FPToFixedJS(bits(M) op, FPCRType fpcr, boolean Is64, integer N)

assert M == 64 && N == 32;

// If FALSE, never generate Input Denormal floating-point exceptions.
fpexc_idenorm = !(HaveAltFP() && !UsingAArch32() && fpcr.AH == '1');

// Unpack using fpcr to determine if subnormals are flushed-to-zero.
(fptype,sign,value) = FPUnpack(op, fpcr, fpexc_idenorm);

z = '1';
// If NaN, set cumulative flag or take exception.
if fptype == FPType_SNaN || fptype == FPType_QNaN then

FPProcessException(FPExc_InvalidOp, fpcr);
z = '0';

int_result = RoundDown(value);
error = value - Real(int_result);

// Determine whether supplied rounding mode requires an increment.

round_it_up = (error != 0.0 && int_result < 0);
if round_it_up then int_result = int_result + 1;

integer result;
if int_result < 0 then

result = int_result - 2^32*RoundUp(Real(int_result)/Real(2^32));
else

result = int_result - 2^32*RoundDown(Real(int_result)/Real(2^32));

// Generate exceptions.
if int_result < -(2^31) || int_result > (2^31)-1 then

FPProcessException(FPExc_InvalidOp, fpcr);
z = '0';

elsif error != 0.0 then
FPProcessException(FPExc_Inexact, fpcr);
z = '0';

elsif sign == '1' && value == 0.0 then
z = '0';

elsif sign == '0' && value == 0.0 && !IsZero(op<51:0>) then
z = '0';

if fptype == FPType_Infinity then result = 0;

return (result<N-1:0>, z);

Library pseudocode for shared/functions/float/fptwo/FPTwo

// FPTwo()
// =======

bits(N) FPTwo(bit sign, integer N)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = '1':Zeros(E-1);
frac = Zeros(F);
result = sign : exp : frac;

return result;

Shared Pseudocode Functions Page 2087

Library pseudocode for shared/functions/float/fptype/FPType

// FPType
// ======

enumeration FPType {FPType_Zero,
FPType_Denormal,
FPType_Nonzero,
FPType_Infinity,
FPType_QNaN,
FPType_SNaN};

Library pseudocode for shared/functions/float/fpunpack/FPUnpack

// FPUnpack()
// ==========

(FPType, bit, real) FPUnpack(bits(N) fpval, FPCRType fpcr_in)
FPCRType fpcr = fpcr_in;
fpcr.AHP = '0';
boolean fpexc = TRUE; // Generate floating-point exceptions
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
return (fp_type, sign, value);

// FPUnpack()
// ==========
//
// Used by data processing, int/fixed to FP and FP to int/fixed conversion instructions.
// For half-precision data it ignores AHP, and observes FZ16.

(FPType, bit, real) FPUnpack(bits(N) fpval, FPCRType fpcr_in, boolean fpexc)
FPCRType fpcr = fpcr_in;
fpcr.AHP = '0';
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
return (fp_type, sign, value);

Shared Pseudocode Functions Page 2088

Library pseudocode for shared/functions/float/fpunpack/FPUnpackBase

Shared Pseudocode Functions Page 2089

// FPUnpackBase()
// ==============

(FPType, bit, real) FPUnpackBase(bits(N) fpval, FPCRType fpcr, boolean fpexc)
boolean isbfloat16 = FALSE;
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc, isbfloat16);
return (fp_type, sign, value);

// FPUnpackBase()
// ==============
//
// Unpack a floating-point number into its type, sign bit and the real number
// that it represents. The real number result has the correct sign for numbers
// and infinities, is very large in magnitude for infinities, and is 0.0 for
// NaNs. (These values are chosen to simplify the description of comparisons
// and conversions.)
//
// The 'fpcr_in' argument supplies FPCR control bits, 'fpexc' controls the
// generation of floating-point exceptions and 'isbfloat16' determines whether
// N=16 signifies BFloat16 or half-precision type. Status information is updated
// directly in the FPSR where appropriate.

(FPType, bit, real) FPUnpackBase(bits(N) fpval, FPCRType fpcr_in, boolean fpexc,
boolean isbfloat16)

assert N IN {16,32,64};

FPCRType fpcr = fpcr_in;

boolean altfp = HaveAltFP() && !UsingAArch32();
boolean fiz = altfp && fpcr.FIZ == '1';
boolean fz = fpcr.FZ == '1' && !(altfp && fpcr.AH == '1');
real value;
bit sign;
FPType fptype;

if N == 16 && !isbfloat16 then
sign = fpval<15>;
exp16 = fpval<14:10>;
frac16 = fpval<9:0>;
if IsZero(exp16) then

if IsZero(frac16) || fpcr.FZ16 == '1' then
fptype = FPType_Zero; value = 0.0;

else
fptype = FPType_Denormal; value = 2.0^-14 * (Real(UInt(frac16)) * 2.0^-10);

elsif IsOnes(exp16) && fpcr.AHP == '0' then // Infinity or NaN in IEEE format
if IsZero(frac16) then

fptype = FPType_Infinity; value = 2.0^1000000;
else

fptype = if frac16<9> == '1' then FPType_QNaN else FPType_SNaN;
value = 0.0;

else
fptype = FPType_Nonzero;
value = 2.0^(UInt(exp16)-15) * (1.0 + Real(UInt(frac16)) * 2.0^-10);

elsif N == 32 || isbfloat16 then
bits(8) exp32;
bits(23) frac32;
if isbfloat16 then

sign = fpval<15>;
exp32 = fpval<14:7>;
frac32 = fpval<6:0> : Zeros(16);

else
sign = fpval<31>;
exp32 = fpval<30:23>;
frac32 = fpval<22:0>;

if IsZero(exp32) then
if IsZero(frac32) then

// Produce zero if value is zero.

Shared Pseudocode Functions Page 2090

fptype = FPType_Zero; value = 0.0;
elsif fz || fiz then // Flush-to-zero if FIZ==1 or AH,FZ==01

fptype = FPType_Zero; value = 0.0;
// Check whether to raise Input Denormal floating-point exception.
// fpcr.FIZ==1 does not raise Input Denormal exception.
if fz then

// Denormalized input flushed to zero
if fpexc then FPProcessException(FPExc_InputDenorm, fpcr);

else
fptype = FPType_Denormal; value = 2.0^-126 * (Real(UInt(frac32)) * 2.0^-23);

elsif IsOnes(exp32) then
if IsZero(frac32) then

fptype = FPType_Infinity; value = 2.0^1000000;
else

fptype = if frac32<22> == '1' then FPType_QNaN else FPType_SNaN;
value = 0.0;

else
fptype = FPType_Nonzero;
value = 2.0^(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) * 2.0^-23);

else // N == 64
sign = fpval<63>;
exp64 = fpval<62:52>;
frac64 = fpval<51:0>;

if IsZero(exp64) then
if IsZero(frac64) then

// Produce zero if value is zero.
fptype = FPType_Zero; value = 0.0;

elsif fz || fiz then // Flush-to-zero if FIZ==1 or AH,FZ==01
fptype = FPType_Zero; value = 0.0;
// Check whether to raise Input Denormal floating-point exception.
// fpcr.FIZ==1 does not raise Input Denormal exception.
if fz then

// Denormalized input flushed to zero
if fpexc then FPProcessException(FPExc_InputDenorm, fpcr);

else
fptype = FPType_Denormal; value = 2.0^-1022 * (Real(UInt(frac64)) * 2.0^-52);

elsif IsOnes(exp64) then
if IsZero(frac64) then

fptype = FPType_Infinity; value = 2.0^1000000;
else

fptype = if frac64<51> == '1' then FPType_QNaN else FPType_SNaN;
value = 0.0;

else
fptype = FPType_Nonzero;
value = 2.0^(UInt(exp64)-1023) * (1.0 + Real(UInt(frac64)) * 2.0^-52);

if sign == '1' then value = -value;

return (fptype, sign, value);

Library pseudocode for shared/functions/float/fpunpack/FPUnpackCV

// FPUnpackCV()
// ============
//
// Used for FP to FP conversion instructions.
// For half-precision data ignores FZ16 and observes AHP.

(FPType, bit, real) FPUnpackCV(bits(N) fpval, FPCRType fpcr_in)
FPCRType fpcr = fpcr_in;
fpcr.FZ16 = '0';
boolean fpexc = TRUE; // Generate floating-point exceptions
(fp_type, sign, value) = FPUnpackBase(fpval, fpcr, fpexc);
return (fp_type, sign, value);

Shared Pseudocode Functions Page 2091

Library pseudocode for shared/functions/float/fpzero/FPZero

// FPZero()
// ========

bits(N) FPZero(bit sign, integer N)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = N - (E + 1);
exp = Zeros(E);
frac = Zeros(F);
result = sign : exp : frac;

return result;

Library pseudocode for shared/functions/float/vfpexpandimm/VFPExpandImm

// VFPExpandImm()
// ==============

bits(N) VFPExpandImm(bits(8) imm8, integer N)

assert N IN {16,32,64};
constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
constant integer F = (N - E) - 1;
sign = imm8<7>;
exp = NOT(imm8<6>):Replicate(imm8<6>,E-3):imm8<5:4>;
frac = imm8<3:0>:Zeros(F-4);
result = sign : exp : frac;

return result;

Library pseudocode for shared/functions/integer/AddWithCarry

// AddWithCarry()
// ==============
// Integer addition with carry input, returning result and NZCV flags

(bits(N), bits(4)) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
integer unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
integer signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
bits(N) result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
bit n = result<N-1>;
bit z = if IsZero(result) then '1' else '0';
bit c = if UInt(result) == unsigned_sum then '0' else '1';
bit v = if SInt(result) == signed_sum then '0' else '1';
return (result, n:z:c:v);

Shared Pseudocode Functions Page 2092

Library pseudocode for shared/functions/interrupts/InterruptID

// InterruptID
// ===========

enumeration InterruptID {
InterruptID_PMUIRQ,
InterruptID_COMMIRQ,
InterruptID_CTIIRQ,
InterruptID_COMMRX,
InterruptID_COMMTX,
InterruptID_CNTP,
InterruptID_CNTHP,
InterruptID_CNTHPS,
InterruptID_CNTPS,
InterruptID_CNTV,
InterruptID_CNTHV,
InterruptID_CNTHVS,
InterruptID_PMBIRQ,

};

Library pseudocode for shared/functions/interrupts/SetInterruptRequestLevel

// SetInterruptRequestLevel()
// ==========================
// Set a level-sensitive interrupt to the specified level.

SetInterruptRequestLevel(InterruptID id, Signal level);

Library pseudocode for shared/functions/memory/AArch64.BranchAddr

// AArch64.BranchAddr()
// ====================
// Return the virtual address with tag bits removed.
// This is typically used when the address will be stored to the program counter.

bits(64) AArch64.BranchAddr(bits(64) vaddress, bits(2) el)
assert !UsingAArch32();
msbit = AddrTop(vaddress, TRUE, el);
if msbit == 63 then

return vaddress;
elsif (el IN {EL0, EL1} || IsInHost()) && vaddress<msbit> == '1' then

return SignExtend(vaddress<msbit:0>, 64);
else

return ZeroExtend(vaddress<msbit:0>, 64);

Shared Pseudocode Functions Page 2093

Library pseudocode for shared/functions/memory/AccessDescriptor

// AccessDescriptor
// ================
// Memory access or translation invocation details that steer architectural behavior

type AccessDescriptor is (
AccessType acctype,
bits(2) el, // Acting EL for the access
SecurityState ss, // Acting Security State for the access
boolean acqsc, // Acquire with Sequential Consistency
boolean acqpc, // FEAT_LRCPC: Acquire with Processor Consistency
boolean relsc, // Release with Sequential Consistency
boolean limitedordered, // FEAT_LOR: Acquire/Release with limited ordering
boolean exclusive, // Access has Exclusive semantics
boolean atomicop, // FEAT_LSE: Atomic read-modify-write access
MemAtomicOp modop, // FEAT_LSE: The modification operation in the 'atomicop' access
boolean nontemporal, // Hints the access is non-temporal
boolean read, // Read from memory or only require read permissions
boolean write, // Write to memory or only require write permissions
CacheOp cacheop, // DC/IC: Cache operation
CacheOpScope opscope, // DC/IC: Scope of cache operation
CacheType cachetype, // DC/IC: Type of target cache
boolean pan, // FEAT_PAN: The access is subject to PSTATE.PAN
boolean transactional, // FEAT_TME: Access is part of a transaction
boolean nonfault, // SVE: Non-faulting load
boolean firstfault, // SVE: First-fault load
boolean first, // SVE: First-fault load for the first active element
boolean contiguous, // SVE: Contiguous load/store not gather load/scatter store
boolean streamingsve, // SME: Access made by PE while in streaming SVE mode
boolean ls64, // FEAT_LS64: Accesses by accelerator support loads/stores
boolean mops, // FEAT_MOPS: Memory operation (CPY/SET) accesses
boolean rcw, // FEAT_THE: Read-Check-Write access
boolean rcws, // FEAT_THE: Read-Check-Write Software access
boolean toplevel, // FEAT_THE: Translation table walk access for TTB address
VARange varange, // FEAT_THE: The corresponding TTBR supplying the TTB
boolean a32lsmd, // A32 Load/Store Multiple Data access
boolean tagchecked, // FEAT_MTE2: Access is tag checked
boolean tagaccess, // FEAT_MTE: Access targets the tag bits
boolean ispair, // Access represents a Load/Store pair access
boolean highestaddressfirst, // FEAT_LRCPC3: Highest address is accessed first
MPAMinfo mpam // FEAT_MPAM: MPAM information

)

Library pseudocode for shared/functions/memory/AccessType

// AccessType
// ==========

enumeration AccessType {
AccessType_IFETCH, // Instruction FETCH
AccessType_GPR, // Software load/store to a General Purpose Register
AccessType_ASIMD, // Software ASIMD extension load/store instructions
AccessType_SVE, // Software SVE load/store instructions
AccessType_SME, // Software SME load/store instructions
AccessType_IC, // Sysop IC
AccessType_DC, // Sysop DC (not DC {Z,G,GZ}VA)
AccessType_DCZero, // Sysop DC {Z,G,GZ}VA
AccessType_AT, // Sysop AT
AccessType_NV2, // NV2 memory redirected access
AccessType_SPE, // Statistical Profiling buffer access
AccessType_GCS, // Guarded Control Stack access
AccessType_TRBE, // Trace Buffer access
AccessType_GPTW, // Granule Protection Table Walk
AccessType_TTW // Translation Table Walk

};

Shared Pseudocode Functions Page 2094

Library pseudocode for shared/functions/memory/AddrTop

// AddrTop()
// =========
// Return the MSB number of a virtual address in the stage 1 translation regime for "el".
// If EL1 is using AArch64 then addresses from EL0 using AArch32 are zero-extended to 64 bits.

integer AddrTop(bits(64) address, boolean IsInstr, bits(2) el)
assert HaveEL(el);
regime = S1TranslationRegime(el);
if ELUsingAArch32(regime) then

// AArch32 translation regime.
return 31;

else
if EffectiveTBI(address, IsInstr, el) == '1' then

return 55;
else

return 63;

Library pseudocode for shared/functions/memory/AlignmentEnforced

// AlignmentEnforced()
// ===================
// For the active translation regime, determine if alignment is required by all accesses

boolean AlignmentEnforced()
Regime regime = TranslationRegime(PSTATE.EL);

bit A;
case regime of

when Regime_EL3 A = SCTLR_EL3.A;
when Regime_EL30 A = SCTLR.A;
when Regime_EL2 A = if ELUsingAArch32(EL2) then HSCTLR.A else SCTLR_EL2.A;
when Regime_EL20 A = SCTLR_EL2.A;
when Regime_EL10 A = if ELUsingAArch32(EL1) then SCTLR.A else SCTLR_EL1.A;
otherwise Unreachable();

return A == '1';

Library pseudocode for shared/functions/memory/Allocation

constant bits(2) MemHint_No = '00'; // No Read-Allocate, No Write-Allocate
constant bits(2) MemHint_WA = '01'; // No Read-Allocate, Write-Allocate
constant bits(2) MemHint_RA = '10'; // Read-Allocate, No Write-Allocate
constant bits(2) MemHint_RWA = '11'; // Read-Allocate, Write-Allocate

Library pseudocode for shared/functions/memory/BigEndian

// BigEndian()
// ===========

boolean BigEndian(AccessType acctype)
boolean bigend;
if HaveNV2Ext() && acctype == AccessType_NV2 then

return SCTLR_EL2.EE == '1';

if UsingAArch32() then
bigend = (PSTATE.E != '0');

elsif PSTATE.EL == EL0 then
bigend = (SCTLR_ELx[].E0E != '0');

else
bigend = (SCTLR_ELx[].EE != '0');

return bigend;

Shared Pseudocode Functions Page 2095

Library pseudocode for shared/functions/memory/BigEndianReverse

// BigEndianReverse()
// ==================

bits(width) BigEndianReverse (bits(width) value)
assert width IN {8, 16, 32, 64, 128};
integer half = width DIV 2;
if width == 8 then return value;
return BigEndianReverse(value<half-1:0>) : BigEndianReverse(value<width-1:half>);

Library pseudocode for shared/functions/memory/Cacheability

constant bits(2) MemAttr_NC = '00'; // Non-cacheable
constant bits(2) MemAttr_WT = '10'; // Write-through
constant bits(2) MemAttr_WB = '11'; // Write-back

Library pseudocode for shared/functions/memory/CreateAccDescA32LSMD

// CreateAccDescA32LSMD()
// ======================
// Access descriptor for A32 loads/store multiple general purpose registers

AccessDescriptor CreateAccDescA32LSMD(MemOp memop)
AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;
accdesc.pan = TRUE;
accdesc.a32lsmd = TRUE;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescASIMD

// CreateAccDescASIMD()
// ====================
// Access descriptor for ASIMD&FP loads/stores

AccessDescriptor CreateAccDescASIMD(MemOp memop, boolean nontemporal, boolean tagchecked)
AccessDescriptor accdesc = NewAccDesc(AccessType_ASIMD);

accdesc.nontemporal = nontemporal;
accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;
accdesc.pan = TRUE;
accdesc.streamingsve = InStreamingMode();
if (accdesc.streamingsve && boolean IMPLEMENTATION_DEFINED

"No tag checking of SIMD&FP loads and stores in Streaming SVE mode") then
accdesc.tagchecked = FALSE;

else
accdesc.tagchecked = tagchecked;

accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Shared Pseudocode Functions Page 2096

Library pseudocode for shared/functions/memory/CreateAccDescASIMDAcqRel

// CreateAccDescASIMDAcqRel()
// ==========================
// Access descriptor for ASIMD&FP loads/stores with ordering semantics

AccessDescriptor CreateAccDescASIMDAcqRel(MemOp memop, boolean tagchecked)
AccessDescriptor accdesc = NewAccDesc(AccessType_ASIMD);

accdesc.acqpc = memop == MemOp_LOAD;
accdesc.relsc = memop == MemOp_STORE;
accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;
accdesc.pan = TRUE;
accdesc.streamingsve = InStreamingMode();
if (accdesc.streamingsve && boolean IMPLEMENTATION_DEFINED

"No tag checking of SIMD&FP loads and stores in Streaming SVE mode") then
accdesc.tagchecked = FALSE;

else
accdesc.tagchecked = tagchecked;

accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescAT

// CreateAccDescAT()
// =================
// Access descriptor for address translation operations

AccessDescriptor CreateAccDescAT(SecurityState ss, bits(2) el, ATAccess ataccess)
AccessDescriptor accdesc = NewAccDesc(AccessType_AT);

accdesc.el = el;
accdesc.ss = ss;
case ataccess of

when ATAccess_Read
(accdesc.read, accdesc.write, accdesc.pan) = (TRUE, FALSE, FALSE);

when ATAccess_ReadPAN
(accdesc.read, accdesc.write, accdesc.pan) = (TRUE, FALSE, TRUE);

when ATAccess_Write
(accdesc.read, accdesc.write, accdesc.pan) = (FALSE, TRUE, FALSE);

when ATAccess_WritePAN
(accdesc.read, accdesc.write, accdesc.pan) = (FALSE, TRUE, TRUE);

when ATAccess_Any
(accdesc.read, accdesc.write, accdesc.pan) = (FALSE, FALSE, FALSE);

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescAcqRel

// CreateAccDescAcqRel()
// =====================
// Access descriptor for general purpose register loads/stores with ordering semantics

AccessDescriptor CreateAccDescAcqRel(MemOp memop, boolean tagchecked)
AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

accdesc.acqsc = memop == MemOp_LOAD;
accdesc.relsc = memop == MemOp_STORE;
accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;
accdesc.pan = TRUE;
accdesc.tagchecked = tagchecked;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Shared Pseudocode Functions Page 2097

Library pseudocode for shared/functions/memory/CreateAccDescAtomicOp

// CreateAccDescAtomicOp()
// =======================
// Access descriptor for atomic read-modify-write memory accesses

AccessDescriptor CreateAccDescAtomicOp(MemAtomicOp modop, boolean acquire, boolean release,
boolean tagchecked)

AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

accdesc.acqsc = acquire;
accdesc.relsc = release;
accdesc.atomicop = TRUE;
accdesc.modop = modop;
accdesc.read = TRUE;
accdesc.write = TRUE;
accdesc.pan = TRUE;
accdesc.tagchecked = tagchecked;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescDC

// CreateAccDescDC()
// =================
// Access descriptor for data cache operations

AccessDescriptor CreateAccDescDC(CacheRecord cache)
AccessDescriptor accdesc = NewAccDesc(AccessType_DC);

accdesc.cacheop = cache.cacheop;
accdesc.cachetype = cache.cachetype;
accdesc.opscope = cache.opscope;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescDCZero

// CreateAccDescDCZero()
// =====================
// Access descriptor for data cache zero operations

AccessDescriptor CreateAccDescDCZero(boolean tagaccess, boolean tagchecked)
AccessDescriptor accdesc = NewAccDesc(AccessType_DCZero);

accdesc.write = TRUE;
accdesc.pan = TRUE;
accdesc.tagchecked = tagchecked;
accdesc.tagaccess = tagaccess;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Shared Pseudocode Functions Page 2098

Library pseudocode for shared/functions/memory/CreateAccDescExLDST

// CreateAccDescExLDST()
// =====================
// Access descriptor for general purpose register loads/stores with exclusive semantics

AccessDescriptor CreateAccDescExLDST(MemOp memop, boolean acqrel, boolean tagchecked)
AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

accdesc.acqsc = acqrel && memop == MemOp_LOAD;
accdesc.relsc = acqrel && memop == MemOp_STORE;
accdesc.exclusive = TRUE;
accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;
accdesc.pan = TRUE;
accdesc.tagchecked = tagchecked;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescGCS

// CreateAccDescGCS()
// ==================
// Access descriptor for memory accesses to the Guarded Control Stack

AccessDescriptor CreateAccDescGCS(bits(2) el, MemOp memop)
AccessDescriptor accdesc = NewAccDesc(AccessType_GCS);

accdesc.el = el;
accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescGCSSS1

// CreateAccDescGCSSS1()
// =====================
// Access descriptor for memory accesses to the Guarded Control Stack that switch stacks

AccessDescriptor CreateAccDescGCSSS1(bits(2) el)
AccessDescriptor accdesc = NewAccDesc(AccessType_GCS);

accdesc.el = el;
accdesc.atomicop = TRUE;
accdesc.modop = MemAtomicOp_GCSSS1;
accdesc.read = TRUE;
accdesc.write = TRUE;

return accdesc;

Shared Pseudocode Functions Page 2099

Library pseudocode for shared/functions/memory/CreateAccDescGPR

// CreateAccDescGPR()
// ==================
// Access descriptor for general purpose register loads/stores
// without exclusive or ordering semantics

AccessDescriptor CreateAccDescGPR(MemOp memop, boolean nontemporal, boolean privileged,
boolean tagchecked)

AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

accdesc.el = if !privileged then EL0 else PSTATE.EL;
accdesc.nontemporal = nontemporal;
accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;
accdesc.pan = TRUE;
accdesc.tagchecked = tagchecked;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescGPTW

// CreateAccDescGPTW()
// ===================
// Access descriptor for Granule Protection Table walks

AccessDescriptor CreateAccDescGPTW(AccessDescriptor accdesc_in)
AccessDescriptor accdesc = NewAccDesc(AccessType_GPTW);

accdesc.el = accdesc_in.el;
accdesc.ss = accdesc_in.ss;
accdesc.read = TRUE;
accdesc.mpam = accdesc_in.mpam;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescIC

// CreateAccDescIC()
// =================
// Access descriptor for instruction cache operations

AccessDescriptor CreateAccDescIC(CacheRecord cache)
AccessDescriptor accdesc = NewAccDesc(AccessType_IC);

accdesc.cacheop = cache.cacheop;
accdesc.cachetype = cache.cachetype;
accdesc.opscope = cache.opscope;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescIFetch

// CreateAccDescIFetch()
// =====================
// Access descriptor for instruction fetches

AccessDescriptor CreateAccDescIFetch()
AccessDescriptor accdesc = NewAccDesc(AccessType_IFETCH);

return accdesc;

Shared Pseudocode Functions Page 2100

Library pseudocode for shared/functions/memory/CreateAccDescLDAcqPC

// CreateAccDescLDAcqPC()
// ======================
// Access descriptor for general purpose register loads with local ordering semantics

AccessDescriptor CreateAccDescLDAcqPC(boolean tagchecked)
AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

accdesc.acqpc = TRUE;
accdesc.read = TRUE;
accdesc.pan = TRUE;
accdesc.tagchecked = tagchecked;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescLDGSTG

// CreateAccDescLDGSTG()
// =====================
// Access descriptor for tag memory loads/stores

AccessDescriptor CreateAccDescLDGSTG(MemOp memop)
AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;
accdesc.pan = TRUE;
accdesc.tagaccess = TRUE;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescLOR

// CreateAccDescLOR()
// ==================
// Access descriptor for general purpose register loads/stores with limited ordering semantics

AccessDescriptor CreateAccDescLOR(MemOp memop, boolean tagchecked)
AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

accdesc.acqsc = memop == MemOp_LOAD;
accdesc.relsc = memop == MemOp_STORE;
accdesc.limitedordered = TRUE;
accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;
accdesc.pan = TRUE;
accdesc.tagchecked = tagchecked;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Shared Pseudocode Functions Page 2101

Library pseudocode for shared/functions/memory/CreateAccDescLS64

// CreateAccDescLS64()
// ===================
// Access descriptor for accelerator-supporting memory accesses

AccessDescriptor CreateAccDescLS64(MemOp memop, boolean tagchecked)
AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;
accdesc.pan = TRUE;
accdesc.ls64 = TRUE;
accdesc.tagchecked = tagchecked;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescMOPS

// CreateAccDescMOPS()
// ===================
// Access descriptor for data memory copy and set instructions

AccessDescriptor CreateAccDescMOPS(MemOp memop, boolean privileged, boolean nontemporal)
AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

accdesc.el = if !privileged then EL0 else PSTATE.EL;
accdesc.nontemporal = nontemporal;
accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;
accdesc.pan = TRUE;
accdesc.mops = TRUE;
accdesc.tagchecked = TRUE;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescNV2

// CreateAccDescNV2()
// ==================
// Access descriptor nested virtualization memory indirection loads/stores

AccessDescriptor CreateAccDescNV2(MemOp memop)
AccessDescriptor accdesc = NewAccDesc(AccessType_NV2);

accdesc.el = EL2;
accdesc.ss = SecurityStateAtEL(EL2);
accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Shared Pseudocode Functions Page 2102

Library pseudocode for shared/functions/memory/CreateAccDescRCW

// CreateAccDescRCW()
// ==================
// Access descriptor for atomic read-check-write memory accesses

AccessDescriptor CreateAccDescRCW(MemAtomicOp modop, boolean soft, boolean acquire,
boolean release, boolean tagchecked)

AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

accdesc.acqsc = acquire;
accdesc.relsc = release;
accdesc.rcw = TRUE;
accdesc.rcws = soft;
accdesc.atomicop = TRUE;
accdesc.modop = modop;
accdesc.read = TRUE;
accdesc.write = TRUE;
accdesc.pan = TRUE;
accdesc.tagchecked = tagchecked;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescS1TTW

// CreateAccDescS1TTW()
// ====================
// Access descriptor for stage 1 translation table walks

AccessDescriptor CreateAccDescS1TTW(boolean toplevel, VARange varange, AccessDescriptor accdesc_in)
AccessDescriptor accdesc = NewAccDesc(AccessType_TTW);

accdesc.el = accdesc_in.el;
accdesc.ss = accdesc_in.ss;
accdesc.read = TRUE;
accdesc.toplevel = toplevel;
accdesc.varange = varange;
accdesc.mpam = accdesc_in.mpam;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescS2TTW

// CreateAccDescS2TTW()
// ====================
// Access descriptor for stage 2 translation table walks

AccessDescriptor CreateAccDescS2TTW(AccessDescriptor accdesc_in)
AccessDescriptor accdesc = NewAccDesc(AccessType_TTW);

accdesc.el = accdesc_in.el;
accdesc.ss = accdesc_in.ss;
accdesc.read = TRUE;
accdesc.mpam = accdesc_in.mpam;

return accdesc;

Shared Pseudocode Functions Page 2103

Library pseudocode for shared/functions/memory/CreateAccDescSME

// CreateAccDescSME()
// ==================
// Access descriptor for SME loads/stores

AccessDescriptor CreateAccDescSME(MemOp memop, boolean nontemporal, boolean contiguous,
boolean tagchecked)

AccessDescriptor accdesc = NewAccDesc(AccessType_SME);

accdesc.nontemporal = nontemporal;
accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;
accdesc.pan = TRUE;
accdesc.contiguous = contiguous;
accdesc.streamingsve = TRUE;
if boolean IMPLEMENTATION_DEFINED "No tag checking of SME LDR & STR instructions" then

accdesc.tagchecked = FALSE;
else

accdesc.tagchecked = tagchecked;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescSPE

// CreateAccDescSPE()
// ==================
// Access descriptor for memory accesses by Statistical Profiling unit

AccessDescriptor CreateAccDescSPE(SecurityState owning_ss, bits(2) owning_el)
AccessDescriptor accdesc = NewAccDesc(AccessType_SPE);

accdesc.el = owning_el;
accdesc.ss = owning_ss;
accdesc.write = TRUE;
accdesc.mpam = GenMPAMatEL(AccessType_SPE, owning_el);

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescSTGMOPS

// CreateAccDescSTGMOPS()
// ======================
// Access descriptor for tag memory set instructions

AccessDescriptor CreateAccDescSTGMOPS(boolean privileged, boolean nontemporal)
AccessDescriptor accdesc = NewAccDesc(AccessType_GPR);

accdesc.el = if !privileged then EL0 else PSTATE.EL;
accdesc.nontemporal = nontemporal;
accdesc.write = TRUE;
accdesc.pan = TRUE;
accdesc.mops = TRUE;
accdesc.tagaccess = TRUE;
accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Shared Pseudocode Functions Page 2104

Library pseudocode for shared/functions/memory/CreateAccDescSVE

// CreateAccDescSVE()
// ==================
// Access descriptor for general SVE loads/stores

AccessDescriptor CreateAccDescSVE(MemOp memop, boolean nontemporal, boolean contiguous,
boolean tagchecked)

AccessDescriptor accdesc = NewAccDesc(AccessType_SVE);

accdesc.nontemporal = nontemporal;
accdesc.read = memop == MemOp_LOAD;
accdesc.write = memop == MemOp_STORE;
accdesc.pan = TRUE;
accdesc.contiguous = contiguous;
accdesc.streamingsve = InStreamingMode();
if (accdesc.streamingsve && boolean IMPLEMENTATION_DEFINED

"No tag checking of SIMD&FP loads and stores in Streaming SVE mode") then
accdesc.tagchecked = FALSE;

else
accdesc.tagchecked = tagchecked;

accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescSVEFF

// CreateAccDescSVEFF()
// ====================
// Access descriptor for first-fault SVE loads

AccessDescriptor CreateAccDescSVEFF(boolean contiguous, boolean tagchecked)
AccessDescriptor accdesc = NewAccDesc(AccessType_SVE);

accdesc.read = TRUE;
accdesc.pan = TRUE;
accdesc.firstfault = TRUE;
accdesc.first = TRUE;
accdesc.contiguous = contiguous;
accdesc.streamingsve = InStreamingMode();
if (accdesc.streamingsve && boolean IMPLEMENTATION_DEFINED

"No tag checking of SIMD&FP loads and stores in Streaming SVE mode") then
accdesc.tagchecked = FALSE;

else
accdesc.tagchecked = tagchecked;

accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Shared Pseudocode Functions Page 2105

Library pseudocode for shared/functions/memory/CreateAccDescSVENF

// CreateAccDescSVENF()
// ====================
// Access descriptor for non-fault SVE loads

AccessDescriptor CreateAccDescSVENF(boolean contiguous, boolean tagchecked)
AccessDescriptor accdesc = NewAccDesc(AccessType_SVE);

accdesc.read = TRUE;
accdesc.pan = TRUE;
accdesc.nonfault = TRUE;
accdesc.contiguous = contiguous;
accdesc.streamingsve = InStreamingMode();
if (accdesc.streamingsve && boolean IMPLEMENTATION_DEFINED

"No tag checking of SIMD&FP loads and stores in Streaming SVE mode") then
accdesc.tagchecked = FALSE;

else
accdesc.tagchecked = tagchecked;

accdesc.transactional = HaveTME() && TSTATE.depth > 0;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescTRBE

// CreateAccDescTRBE()
// ===================
// Access descriptor for memory accesses by Trace Buffer Unit

AccessDescriptor CreateAccDescTRBE(SecurityState owning_ss, bits(2) owning_el)
AccessDescriptor accdesc = NewAccDesc(AccessType_TRBE);

accdesc.el = owning_el;
accdesc.ss = owning_ss;
accdesc.write = TRUE;

return accdesc;

Library pseudocode for shared/functions/memory/CreateAccDescTTEUpdate

// CreateAccDescTTEUpdate()
// ========================
// Access descriptor for translation table entry HW update

AccessDescriptor CreateAccDescTTEUpdate(AccessDescriptor accdesc_in)
AccessDescriptor accdesc = NewAccDesc(AccessType_TTW);

accdesc.el = accdesc_in.el;
accdesc.ss = accdesc_in.ss;
accdesc.atomicop = TRUE;
accdesc.modop = MemAtomicOp_CAS;
accdesc.read = TRUE;
accdesc.write = TRUE;
accdesc.mpam = accdesc_in.mpam;

return accdesc;

Library pseudocode for shared/functions/memory/DataMemoryBarrier

// DataMemoryBarrier()
// ===================

DataMemoryBarrier(MBReqDomain domain, MBReqTypes types);

Shared Pseudocode Functions Page 2106

Library pseudocode for shared/functions/memory/DataSynchronizationBarrier

// DataSynchronizationBarrier()
// ============================

DataSynchronizationBarrier(MBReqDomain domain, MBReqTypes types, boolean nXS);

Library pseudocode for shared/functions/memory/DeviceType

// DeviceType
// ==========
// Extended memory types for Device memory.

enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE, DeviceType_nGnRE, DeviceType_nGnRnE};

Library pseudocode for shared/functions/memory/EffectiveMTX

// EffectiveMTX()
// ==============
// Returns the effective MTX in the AArch64 stage 1 translation regime for "el".

bit EffectiveMTX(bits(64) address, boolean is_instr, bits(2) el)
bit mtx;
assert HaveEL(el);
regime = S1TranslationRegime(el);
assert(!ELUsingAArch32(regime));

if !HaveMTE4Ext() || is_instr then
mtx = '0';

else
case regime of

when EL1
mtx = if address<55> == '1' then TCR_EL1.MTX1 else TCR_EL1.MTX0;

when EL2
if HaveVirtHostExt() && ELIsInHost(el) then

mtx = if address<55> == '1' then TCR_EL2.MTX1 else TCR_EL2.MTX0;
else

mtx = TCR_EL2.MTX;
when EL3

mtx = TCR_EL3.MTX;

return mtx;

Shared Pseudocode Functions Page 2107

Library pseudocode for shared/functions/memory/EffectiveTBI

// EffectiveTBI()
// ==============
// Returns the effective TBI in the AArch64 stage 1 translation regime for "el".

bit EffectiveTBI(bits(64) address, boolean IsInstr, bits(2) el)
bit tbi;
bit tbid;
assert HaveEL(el);
regime = S1TranslationRegime(el);
assert(!ELUsingAArch32(regime));

case regime of
when EL1

tbi = if address<55> == '1' then TCR_EL1.TBI1 else TCR_EL1.TBI0;
if HavePACExt() then

tbid = if address<55> == '1' then TCR_EL1.TBID1 else TCR_EL1.TBID0;
when EL2

if HaveVirtHostExt() && ELIsInHost(el) then
tbi = if address<55> == '1' then TCR_EL2.TBI1 else TCR_EL2.TBI0;
if HavePACExt() then

tbid = if address<55> == '1' then TCR_EL2.TBID1 else TCR_EL2.TBID0;
else

tbi = TCR_EL2.TBI;
if HavePACExt() then tbid = TCR_EL2.TBID;

when EL3
tbi = TCR_EL3.TBI;
if HavePACExt() then tbid = TCR_EL3.TBID;

return (if tbi == '1' && (!HavePACExt() || tbid == '0' || !IsInstr) then '1' else '0');

Library pseudocode for shared/functions/memory/EffectiveTCMA

// EffectiveTCMA()
// ===============
// Returns the effective TCMA of a virtual address in the stage 1 translation regime for "el".

bit EffectiveTCMA(bits(64) address, bits(2) el)
bit tcma;
assert HaveEL(el);
regime = S1TranslationRegime(el);
assert(!ELUsingAArch32(regime));

case regime of
when EL1

tcma = if address<55> == '1' then TCR_EL1.TCMA1 else TCR_EL1.TCMA0;
when EL2

if HaveVirtHostExt() && ELIsInHost(el) then
tcma = if address<55> == '1' then TCR_EL2.TCMA1 else TCR_EL2.TCMA0;

else
tcma = TCR_EL2.TCMA;

when EL3
tcma = TCR_EL3.TCMA;

return tcma;

Shared Pseudocode Functions Page 2108

Library pseudocode for shared/functions/memory/ErrorState

// ErrorState
// ==========
// The allowed error states that can be returned by memory and used by the PE.

enumeration ErrorState {ErrorState_UC, // Uncontainable
ErrorState_UEU, // Unrecoverable state
ErrorState_UEO, // Restartable state
ErrorState_UER, // Recoverable state
ErrorState_CE, // Corrected
ErrorState_Uncategorized,
ErrorState_IMPDEF};

Library pseudocode for shared/functions/memory/Fault

// Fault
// =====
// Fault types.

enumeration Fault {Fault_None,
Fault_AccessFlag,
Fault_Alignment,
Fault_Background,
Fault_Domain,
Fault_Permission,
Fault_Translation,
Fault_AddressSize,
Fault_SyncExternal,
Fault_SyncExternalOnWalk,
Fault_SyncParity,
Fault_SyncParityOnWalk,
Fault_GPCFOnWalk,
Fault_GPCFOnOutput,
Fault_AsyncParity,
Fault_AsyncExternal,
Fault_TagCheck,
Fault_Debug,
Fault_TLBConflict,
Fault_BranchTarget,
Fault_HWUpdateAccessFlag,
Fault_Lockdown,
Fault_Exclusive,
Fault_ICacheMaint};

Shared Pseudocode Functions Page 2109

Library pseudocode for shared/functions/memory/FaultRecord

// FaultRecord
// ===========
// Fields that relate only to Faults.

type FaultRecord is (
Fault statuscode, // Fault Status
AccessDescriptor accessdesc, // Details of the faulting access
FullAddress ipaddress, // Intermediate physical address
GPCFRecord gpcf, // Granule Protection Check Fault record
FullAddress paddress, // Physical address
boolean gpcfs2walk, // GPC for a stage 2 translation table walk
boolean s2fs1walk, // Is on a Stage 1 translation table walk
boolean write, // TRUE for a write, FALSE for a read
boolean s1tagnotdata, // TRUE for a fault due to tag not accessible at stage 1.
boolean tagaccess, // TRUE for a fault due to NoTagAccess permission.
integer level, // For translation, access flag and Permission faults
bit extflag, // IMPLEMENTATION DEFINED syndrome for External aborts
boolean secondstage, // Is a Stage 2 abort
boolean assuredonly, // Stage 2 Permission fault due to AssuredOnly attribute
boolean toplevel, // Stage 2 Permission fault due to TopLevel
boolean overlay, // Fault due to overlay permissions
boolean dirtybit, // Fault due to dirty state
bits(4) domain, // Domain number, AArch32 only
ErrorState merrorstate, // Incoming error state from memory
boolean maybe_false_match, // Watchpoint matches rounded range
integer watchpt_num, // Matching watchpoint number
bits(4) debugmoe // Debug method of entry, from AArch32 only

)

Library pseudocode for shared/functions/memory/FullAddress

// FullAddress
// ===========
// Physical or Intermediate Physical Address type.
// Although AArch32 only has access to 40 bits of physical or intermediate physical address space,
// the full address type has 56 bits to allow interprocessing with AArch64.
// The maximum physical or intermediate physical address size is IMPLEMENTATION DEFINED,
// but never exceeds 56 bits.

type FullAddress is (
PASpace paspace,
bits(56) address

)

Library pseudocode for shared/functions/memory/GPCF

// GPCF
// ====
// Possible Granule Protection Check Fault reasons

enumeration GPCF {
GPCF_None, // No fault
GPCF_AddressSize, // GPT address size fault
GPCF_Walk, // GPT walk fault
GPCF_EABT, // Synchronous External abort on GPT fetch
GPCF_Fail // Granule protection fault

};

Shared Pseudocode Functions Page 2110

Library pseudocode for shared/functions/memory/GPCFRecord

// GPCFRecord
// ==========
// Full details of a Granule Protection Check Fault

type GPCFRecord is (
GPCF gpf,
integer level

)

Library pseudocode for shared/functions/memory/Hint_Prefetch

// Hint_Prefetch()
// ===============
// Signals the memory system that memory accesses of type HINT to or from the specified address are
// likely in the near future. The memory system may take some action to speed up the memory
// accesses when they do occur, such as pre-loading the specified address into one or more
// caches as indicated by the innermost cache level target (0=L1, 1=L2, etc) and non-temporal hint
// stream. Any or all prefetch hints may be treated as a NOP. A prefetch hint must not cause a
// synchronous abort due to Alignment or Translation faults and the like. Its only effect on
// software-visible state should be on caches and TLBs associated with address, which must be
// accessible by reads, writes or execution, as defined in the translation regime of the current
// Exception level. It is guaranteed not to access Device memory.
// A Prefetch_EXEC hint must not result in an access that could not be performed by a speculative
// instruction fetch, therefore if all associated MMUs are disabled, then it cannot access any
// memory location that cannot be accessed by instruction fetches.

Hint_Prefetch(bits(64) address, PrefetchHint hint, integer target, boolean stream);

Library pseudocode for shared/functions/memory/Hint_RangePrefetch

// Hint_RangePrefetch()
// ====================
// Signals the memory system that data memory accesses from a specified range
// of addresses are likely to occur in the near future. The memory system can
// respond by taking actions that are expected to speed up the memory accesses
// when they do occur, such as preloading the locations within the specified
// address ranges into one or more caches.

Hint_RangePrefetch(bits(64) address, integer length, integer stride,
integer count, integer reuse, bits(6) operation);

Library pseudocode for shared/functions/memory/IsDataAccess

// IsDataAccess()
// ==============
// Return TRUE if access is to data memory.

boolean IsDataAccess(AccessType acctype)
return !(acctype IN {AccessType_IFETCH,

AccessType_TTW,
AccessType_DC,
AccessType_IC,
AccessType_AT});

Library pseudocode for shared/functions/memory/IsSMEAccess

// IsSMEAccess()
// =============
// Return TRUE if access is of SME load/stores.

boolean IsSMEAccess(AccessDescriptor accdesc)
return HaveSME() && accdesc.acctype == AccessType_SME;

Shared Pseudocode Functions Page 2111

Library pseudocode for shared/functions/memory/IsSVEAccess

// IsSVEAccess()
// =============
// Return TRUE if memory access is load/stores in an SVE mode.

boolean IsSVEAccess(AccessDescriptor accdesc)
return HaveSVE() && accdesc.acctype == AccessType_SVE;

Library pseudocode for shared/functions/memory/MBReqDomain

// MBReqDomain
// ===========
// Memory barrier domain.

enumeration MBReqDomain {MBReqDomain_Nonshareable, MBReqDomain_InnerShareable,
MBReqDomain_OuterShareable, MBReqDomain_FullSystem};

Library pseudocode for shared/functions/memory/MBReqTypes

// MBReqTypes
// ==========
// Memory barrier read/write.

enumeration MBReqTypes {MBReqTypes_Reads, MBReqTypes_Writes, MBReqTypes_All};

Library pseudocode for shared/functions/memory/MPAM

// MPAM Types
// ==========

type PARTIDtype = bits(16);

type PMGtype = bits(8);

enumeration PARTIDspaceType {
PIdSpace_Secure,
PIdSpace_Root,
PIdSpace_Realm,
PIdSpace_NonSecure

};

type MPAMinfo is (
PARTIDspaceType mpam_sp,
PARTIDtype partid,
PMGtype pmg

)

Shared Pseudocode Functions Page 2112

Library pseudocode for shared/functions/memory/MemAtomicOp

// MemAtomicOp
// ===========
// Atomic data processing instruction types.

enumeration MemAtomicOp {
MemAtomicOp_GCSSS1,
MemAtomicOp_ADD,
MemAtomicOp_BIC,
MemAtomicOp_EOR,
MemAtomicOp_ORR,
MemAtomicOp_SMAX,
MemAtomicOp_SMIN,
MemAtomicOp_UMAX,
MemAtomicOp_UMIN,
MemAtomicOp_SWP,
MemAtomicOp_CAS

};

enumeration CacheOp {
CacheOp_Clean,
CacheOp_Invalidate,
CacheOp_CleanInvalidate

};

enumeration CacheOpScope {
CacheOpScope_SetWay,
CacheOpScope_PoU,
CacheOpScope_PoC,
CacheOpScope_PoE,
CacheOpScope_PoP,
CacheOpScope_PoDP,
CacheOpScope_PoPA,
CacheOpScope_ALLU,
CacheOpScope_ALLUIS

};

enumeration CacheType {
CacheType_Data,
CacheType_Tag,
CacheType_Data_Tag,
CacheType_Instruction

};

enumeration CachePASpace {
CPAS_NonSecure,
CPAS_Any, // Applicable only for DC *SW / IC IALLU* in Root state:

// match entries from any PA Space
CPAS_RealmNonSecure, // Applicable only for DC *SW / IC IALLU* in Realm state:

// match entries from Realm or Non-Secure PAS
CPAS_Realm,
CPAS_Root,
CPAS_SecureNonSecure, // Applicable only for DC *SW / IC IALLU* in Secure state:

// match entries from Secure or Non-Secure PAS
CPAS_Secure

};

Library pseudocode for shared/functions/memory/MemAttrHints

// MemAttrHints
// ============
// Attributes and hints for Normal memory.

type MemAttrHints is (
bits(2) attrs, // See MemAttr_*, Cacheability attributes
bits(2) hints, // See MemHint_*, Allocation hints
boolean transient

)

Shared Pseudocode Functions Page 2113

Library pseudocode for shared/functions/memory/MemOp

// MemOp
// =====
// Memory access instruction types.

enumeration MemOp {MemOp_LOAD, MemOp_STORE, MemOp_PREFETCH};

Library pseudocode for shared/functions/memory/MemType

// MemType
// =======
// Basic memory types.

enumeration MemType {MemType_Normal, MemType_Device};

Library pseudocode for shared/functions/memory/Memory

// Memory Tag type
// ===============

enumeration MemTagType {
MemTag_Untagged,
MemTag_AllocationTagged,
MemTag_CanonicallyTagged

};

Library pseudocode for shared/functions/memory/MemoryAttributes

// MemoryAttributes
// ================
// Memory attributes descriptor

type MemoryAttributes is (
MemType memtype,
DeviceType device, // For Device memory types
MemAttrHints inner, // Inner hints and attributes
MemAttrHints outer, // Outer hints and attributes
Shareability shareability, // Shareability attribute
MemTagType tags, // MTE tag type for this memory.
boolean notagaccess, // Allocation Tag access permission
bit xs // XS attribute

)

Shared Pseudocode Functions Page 2114

Library pseudocode for shared/functions/memory/NewAccDesc

// NewAccDesc()
// ============
// Create a new AccessDescriptor with initialised fields

AccessDescriptor NewAccDesc(AccessType acctype)
AccessDescriptor accdesc;

accdesc.acctype = acctype;
accdesc.el = PSTATE.EL;
accdesc.ss = SecurityStateAtEL(PSTATE.EL);
accdesc.acqsc = FALSE;
accdesc.acqpc = FALSE;
accdesc.relsc = FALSE;
accdesc.limitedordered = FALSE;
accdesc.exclusive = FALSE;
accdesc.rcw = FALSE;
accdesc.rcws = FALSE;
accdesc.atomicop = FALSE;
accdesc.nontemporal = FALSE;
accdesc.read = FALSE;
accdesc.write = FALSE;
accdesc.pan = FALSE;
accdesc.nonfault = FALSE;
accdesc.firstfault = FALSE;
accdesc.first = FALSE;
accdesc.contiguous = FALSE;
accdesc.streamingsve = FALSE;
accdesc.ls64 = FALSE;
accdesc.mops = FALSE;
accdesc.a32lsmd = FALSE;
accdesc.tagchecked = FALSE;
accdesc.tagaccess = FALSE;
accdesc.transactional = FALSE;
accdesc.mpam = GenMPAMcurEL(acctype);
accdesc.ispair = FALSE;
accdesc.highestaddressfirst = FALSE;

return accdesc;

Library pseudocode for shared/functions/memory/PASpace

// PASpace
// =======
// Physical address spaces

enumeration PASpace {
PAS_NonSecure,
PAS_Secure,
PAS_Root,
PAS_Realm

};

Shared Pseudocode Functions Page 2115

Library pseudocode for shared/functions/memory/Permissions

// Permissions
// ===========
// Access Control bits in translation table descriptors

type Permissions is (
bits(2) ap_table, // Stage 1 hierarchical access permissions
bit xn_table, // Stage 1 hierarchical execute-never for single EL regimes
bit pxn_table, // Stage 1 hierarchical privileged execute-never
bit uxn_table, // Stage 1 hierarchical unprivileged execute-never
bits(3) ap, // Stage 1 access permissions
bit xn, // Stage 1 execute-never for single EL regimes
bit uxn, // Stage 1 unprivileged execute-never
bit pxn, // Stage 1 privileged execute-never
bits(4) ppi, // Stage 1 privileged indirect permissions
bits(4) upi, // Stage 1 unprivileged indirect permissions
bit ndirty, // Stage 1 dirty state for indirect permissions scheme
bits(4) s2pi, // Stage 2 indirect permissions
bit s2dirty, // Stage 2 dirty state
bits(4) po_index, // Stage 1 overlay permissions index
bits(4) s2po_index, // Stage 2 overlay permissions index
bits(2) s2ap, // Stage 2 access permissions
bit s2tag_na, // Stage 2 tag access
bit s2xnx, // Stage 2 extended execute-never
bit s2xn // Stage 2 execute-never

)

Library pseudocode for shared/functions/memory/PhysMemRead

// PhysMemRead()
// =============
// Returns the value read from memory, and a status.
// Returned value is UNKNOWN if an External abort occurred while reading the
// memory.
// Otherwise the PhysMemRetStatus statuscode is Fault_None.

(PhysMemRetStatus, bits(8*size)) PhysMemRead(AddressDescriptor desc, integer size,
AccessDescriptor accdesc);

Library pseudocode for shared/functions/memory/PhysMemRetStatus

// PhysMemRetStatus
// ================
// Fields that relate only to return values of PhysMem functions.

type PhysMemRetStatus is (
Fault statuscode, // Fault Status
bit extflag, // IMPLEMENTATION DEFINED syndrome for External aborts
ErrorState merrorstate, // Optional error state returned on a physical memory access
bits(64) store64bstatus // Status of 64B store

)

Library pseudocode for shared/functions/memory/PhysMemWrite

// PhysMemWrite()
// ==============
// Writes the value to memory, and returns the status of the write.
// If there is an External abort on the write, the PhysMemRetStatus indicates this.
// Otherwise the statuscode of PhysMemRetStatus is Fault_None.

PhysMemRetStatus PhysMemWrite(AddressDescriptor desc, integer size, AccessDescriptor accdesc,
bits(8*size) value);

Shared Pseudocode Functions Page 2116

Library pseudocode for shared/functions/memory/PrefetchHint

// PrefetchHint
// ============
// Prefetch hint types.

enumeration PrefetchHint {Prefetch_READ, Prefetch_WRITE, Prefetch_EXEC};

Library pseudocode for shared/functions/memory/S1AccessControls

// S1AccessControls
// ================
// Effective access controls defined by stage 1 translation

type S1AccessControls is (
bit r, // Stage 1 base read permission
bit w, // Stage 1 base write permission
bit x, // Stage 1 base execute permission
bit gcs, // Stage 1 GCS permission
boolean overlay, // Stage 1 overlay feature enabled
bit or, // Stage 1 overlay read permission
bit ow, // Stage 1 overlay write permission
bit ox, // Stage 1 overlay execute permission
bit wxn // Stage 1 write permission implies execute-never

)

Library pseudocode for shared/functions/memory/S2AccessControls

// S2AccessControls
// ================
// Effective access controls defined by stage 2 translation

type S2AccessControls is (
bit r, // Stage 2 read permission.
bit w, // Stage 2 write permission.
bit x, // Stage 2 execute permission.
bit r_rcw, // Stage 2 Read perms for RCW instruction.
bit w_rcw, // Stage 2 Write perms for RCW instruction.
bit r_mmu, // Stage 2 Read perms for TTW data.
bit w_mmu, // Stage 2 Write perms for TTW data.
bit toplevel0, // IPA as top level table for TTBR0_EL1.
bit toplevel1, // IPA as top level table for TTBR1_EL1.
boolean overlay, // Overlay enable
bit or, // Stage 2 overlay read permission.
bit ow, // Stage 2 overlay write permission.
bit ox, // Stage 2 overlay execute permission.
bit or_rcw, // Stage 2 overlay Read perms for RCW instruction.
bit ow_rcw, // Stage 2 overlay Write perms for RCW instruction.
bit or_mmu, // Stage 2 overlay Read perms for TTW data.
bit ow_mmu, // Stage 2 overlay Write perms for TTW data.

)

Library pseudocode for shared/functions/memory/Shareability

// Shareability
// ============

enumeration Shareability {
Shareability_NSH,
Shareability_ISH,
Shareability_OSH

};

Shared Pseudocode Functions Page 2117

Library pseudocode for shared/functions/memory/SpeculativeStoreBypassBarrierToPA

// SpeculativeStoreBypassBarrierToPA()
// ===================================

SpeculativeStoreBypassBarrierToPA();

Library pseudocode for shared/functions/memory/SpeculativeStoreBypassBarrierToVA

// SpeculativeStoreBypassBarrierToVA()
// ===================================

SpeculativeStoreBypassBarrierToVA();

Library pseudocode for shared/functions/memory/Tag

constant integer LOG2_TAG_GRANULE = 4;

constant integer TAG_GRANULE = 1 << LOG2_TAG_GRANULE;

Library pseudocode for shared/functions/memory/VARange

// VARange
// =======
// Virtual address ranges

enumeration VARange {
VARange_LOWER,
VARange_UPPER

};

Library pseudocode for shared/functions/mpam/AltPARTIDspace

// AltPARTIDspace()
// ================
// From the Security state, EL and ALTSP configuration, determine
// whether to primary space or the alt space is selected and which
// PARTID space is the alternative space. Return that alternative
// PARTID space if selected or the primary space if not.

PARTIDspaceType AltPARTIDspace(bits(2) el, SecurityState security,
PARTIDspaceType primaryPIdSpace)

case security of
when SS_NonSecure

assert el != EL3;
return primaryPIdSpace;

when SS_Secure
assert el != EL3;
if primaryPIdSpace == PIdSpace_NonSecure then

return primaryPIdSpace;
return AltPIdSecure(el, primaryPIdSpace);

when SS_Root
assert el == EL3;
if MPAM3_EL3.ALTSP_EL3 == '1' then

if MPAM3_EL3.RT_ALTSP_NS == '1' then
return PIdSpace_NonSecure;

else
return PIdSpace_Secure;

else
return primaryPIdSpace;

when SS_Realm
assert el != EL3;
return AltPIdRealm(el, primaryPIdSpace);

otherwise
Unreachable();

Shared Pseudocode Functions Page 2118

Library pseudocode for shared/functions/mpam/AltPIdRealm

// AltPIdRealm()
// =============
// Compute PARTID space as either the primary PARTID space or
// alternative PARTID space in the Realm Security state.
// Helper for AltPARTIDspace.

PARTIDspaceType AltPIdRealm(bits(2) el, PARTIDspaceType primaryPIdSpace)
PARTIDspaceType PIdSpace = primaryPIdSpace;
case el of

when EL0
if ELIsInHost(EL0) then

if !UsePrimarySpaceEL2() then
PIdSpace = PIdSpace_NonSecure;

elsif !UsePrimarySpaceEL10() then
PIdSpace = PIdSpace_NonSecure;

when EL1
if !UsePrimarySpaceEL10() then

PIdSpace = PIdSpace_NonSecure;
when EL2

if !UsePrimarySpaceEL2() then
PIdSpace = PIdSpace_NonSecure;

otherwise
Unreachable();

return PIdSpace;

Library pseudocode for shared/functions/mpam/AltPIdSecure

// AltPIdSecure()
// ==============
// Compute PARTID space as either the primary PARTID space or
// alternative PARTID space in the Secure Security state.
// Helper for AltPARTIDspace.

PARTIDspaceType AltPIdSecure(bits(2) el, PARTIDspaceType primaryPIdSpace)
PARTIDspaceType PIdSpace = primaryPIdSpace;
boolean el2en = EL2Enabled();
case el of

when EL0
if el2en then

if ELIsInHost(EL0) then
if !UsePrimarySpaceEL2() then

PIdSpace = PIdSpace_NonSecure;
elsif !UsePrimarySpaceEL10() then

PIdSpace = PIdSpace_NonSecure;
elsif MPAM3_EL3.ALTSP_HEN == '0' && MPAM3_EL3.ALTSP_HFC == '1' then

PIdSpace = PIdSpace_NonSecure;
when EL1

if el2en then
if !UsePrimarySpaceEL10() then

PIdSpace = PIdSpace_NonSecure;
elsif MPAM3_EL3.ALTSP_HEN == '0' && MPAM3_EL3.ALTSP_HFC == '1' then

PIdSpace = PIdSpace_NonSecure;
when EL2

if !UsePrimarySpaceEL2() then
PIdSpace = PIdSpace_NonSecure;

otherwise
Unreachable();

return PIdSpace;

Shared Pseudocode Functions Page 2119

Library pseudocode for shared/functions/mpam/DefaultMPAMinfo

// DefaultMPAMinfo()
// =================
// Returns default MPAM info. The partidspace argument sets
// the PARTID space of the default MPAM information returned.

MPAMinfo DefaultMPAMinfo(PARTIDspaceType partidspace)
MPAMinfo DefaultInfo;
DefaultInfo.mpam_sp = partidspace;
DefaultInfo.partid = DefaultPARTID;
DefaultInfo.pmg = DefaultPMG;
return DefaultInfo;

Library pseudocode for shared/functions/mpam/DefaultPARTID

constant PARTIDtype DefaultPARTID = 0<15:0>;

Library pseudocode for shared/functions/mpam/DefaultPMG

constant PMGtype DefaultPMG = 0<7:0>;

Shared Pseudocode Functions Page 2120

Library pseudocode for shared/functions/mpam/GenMPAMatEL

// GenMPAMatEL()
// =============
// Returns MPAMinfo for the specified EL.
// May be called if MPAM is not implemented (but in an version that supports
// MPAM), MPAM is disabled, or in AArch32. In AArch32, convert the mode to
// EL if can and use that to drive MPAM information generation. If mode
// cannot be converted, MPAM is not implemented, or MPAM is disabled return
// default MPAM information for the current security state.

MPAMinfo GenMPAMatEL(AccessType acctype, bits(2) el)
bits(2) mpamEL;
boolean validEL = FALSE;
SecurityState security = SecurityStateAtEL(el);
boolean InD = FALSE;
boolean InSM = FALSE;
PARTIDspaceType pspace = PARTIDspaceFromSS(security);
if pspace == PIdSpace_NonSecure && !MPAMisEnabled() then

return DefaultMPAMinfo(pspace);
if UsingAArch32() then

(validEL, mpamEL) = ELFromM32(PSTATE.M);
else

mpamEL = if acctype == AccessType_NV2 then EL2 else el;
validEL = TRUE;

case acctype of
when AccessType_IFETCH, AccessType_IC

InD = TRUE;
when AccessType_SME

InSM = (boolean IMPLEMENTATION_DEFINED "Shared SMCU" ||
boolean IMPLEMENTATION_DEFINED "MPAMSM_EL1 label precedence");

when AccessType_ASIMD
InSM = (HaveSME() && PSTATE.SM == '1' &&

(boolean IMPLEMENTATION_DEFINED "Shared SMCU" ||
boolean IMPLEMENTATION_DEFINED "MPAMSM_EL1 label precedence"));

when AccessType_SVE
InSM = (HaveSME() && PSTATE.SM == '1' &&

(boolean IMPLEMENTATION_DEFINED "Shared SMCU" ||
boolean IMPLEMENTATION_DEFINED "MPAMSM_EL1 label precedence"));

otherwise
// Other access types are DATA accesses
InD = FALSE;

if !validEL then
return DefaultMPAMinfo(pspace);

elsif HaveRME() && MPAMIDR_EL1.HAS_ALTSP == '1' then
// Substitute alternative PARTID space if selected
pspace = AltPARTIDspace(mpamEL, security, pspace);

if HaveMPAMv0p1Ext() && MPAMIDR_EL1.HAS_FORCE_NS == '1' then
if MPAM3_EL3.FORCE_NS == '1' && security == SS_Secure then

pspace = PIdSpace_NonSecure;
if (HaveMPAMv0p1Ext() || HaveMPAMv1p1Ext()) && MPAMIDR_EL1.HAS_SDEFLT == '1' then

if MPAM3_EL3.SDEFLT == '1' && security == SS_Secure then
return DefaultMPAMinfo(pspace);

if !MPAMisEnabled() then
return DefaultMPAMinfo(pspace);

else
return genMPAM(mpamEL, InD, InSM, pspace);

Shared Pseudocode Functions Page 2121

Library pseudocode for shared/functions/mpam/GenMPAMcurEL

// GenMPAMcurEL()
// ==============
// Returns MPAMinfo for the current EL and security state.
// May be called if MPAM is not implemented (but in an version that supports
// MPAM), MPAM is disabled, or in AArch32. In AArch32, convert the mode to
// EL if can and use that to drive MPAM information generation. If mode
// cannot be converted, MPAM is not implemented, or MPAM is disabled return
// default MPAM information for the current security state.

MPAMinfo GenMPAMcurEL(AccessType acctype)
return GenMPAMatEL(acctype, PSTATE.EL);

Library pseudocode for shared/functions/mpam/MAP_vPARTID

// MAP_vPARTID()
// =============
// Performs conversion of virtual PARTID into physical PARTID
// Contains all of the error checking and implementation
// choices for the conversion.

(PARTIDtype, boolean) MAP_vPARTID(PARTIDtype vpartid)
// should not ever be called if EL2 is not implemented
// or is implemented but not enabled in the current
// security state.
PARTIDtype ret;
boolean err;
integer virt = UInt(vpartid);
integer vpmrmax = UInt(MPAMIDR_EL1.VPMR_MAX);

// vpartid_max is largest vpartid supported
integer vpartid_max = (vpmrmax << 2) + 3;

// One of many ways to reduce vpartid to value less than vpartid_max.
if UInt(vpartid) > vpartid_max then

virt = virt MOD (vpartid_max+1);

// Check for valid mapping entry.
if MPAMVPMV_EL2<virt> == '1' then

// vpartid has a valid mapping so access the map.
ret = mapvpmw(virt);
err = FALSE;

// Is the default virtual PARTID valid?
elsif MPAMVPMV_EL2<0> == '1' then

// Yes, so use default mapping for vpartid == 0.
ret = MPAMVPM0_EL2<0 +: 16>;
err = FALSE;

// Neither is valid so use default physical PARTID.
else

ret = DefaultPARTID;
err = TRUE;

// Check that the physical PARTID is in-range.
// This physical PARTID came from a virtual mapping entry.
integer partid_max = UInt(MPAMIDR_EL1.PARTID_MAX);
if UInt(ret) > partid_max then

// Out of range, so return default physical PARTID
ret = DefaultPARTID;
err = TRUE;

return (ret, err);

Shared Pseudocode Functions Page 2122

Library pseudocode for shared/functions/mpam/MPAMisEnabled

// MPAMisEnabled()
// ===============
// Returns TRUE if MPAMisEnabled.

boolean MPAMisEnabled()
el = HighestEL();
case el of

when EL3 return MPAM3_EL3.MPAMEN == '1';
when EL2 return MPAM2_EL2.MPAMEN == '1';
when EL1 return MPAM1_EL1.MPAMEN == '1';

Library pseudocode for shared/functions/mpam/MPAMisVirtual

// MPAMisVirtual()
// ===============
// Returns TRUE if MPAM is configured to be virtual at EL.

boolean MPAMisVirtual(bits(2) el)
return (MPAMIDR_EL1.HAS_HCR == '1' && EL2Enabled() &&

((el == EL0 && MPAMHCR_EL2.EL0_VPMEN == '1' &&
(HCR_EL2.E2H == '0' || HCR_EL2.TGE == '0')) ||

(el == EL1 && MPAMHCR_EL2.EL1_VPMEN == '1')));

Library pseudocode for shared/functions/mpam/PARTIDspaceFromSS

// PARTIDspaceFromSS()
// ===================
// Returns the primary PARTID space from the Security State.

PARTIDspaceType PARTIDspaceFromSS(SecurityState security)
case security of

when SS_NonSecure
return PIdSpace_NonSecure;

when SS_Root
return PIdSpace_Root;

when SS_Realm
return PIdSpace_Realm;

when SS_Secure
return PIdSpace_Secure;

otherwise
Unreachable();

Library pseudocode for shared/functions/mpam/UsePrimarySpaceEL10

// UsePrimarySpaceEL10()
// =====================
// Checks whether Primary space is configured in the
// MPAM3_EL3 and MPAM2_EL2 ALTSP control bits that affect
// MPAM ALTSP use at EL1 and EL0.

boolean UsePrimarySpaceEL10()
if MPAM3_EL3.ALTSP_HEN == '0' then

return MPAM3_EL3.ALTSP_HFC == '0';
return !MPAMisEnabled() || !EL2Enabled() || MPAM2_EL2.ALTSP_HFC == '0';

Shared Pseudocode Functions Page 2123

Library pseudocode for shared/functions/mpam/UsePrimarySpaceEL2

// UsePrimarySpaceEL2()
// ====================
// Checks whether Primary space is configured in the
// MPAM3_EL3 and MPAM2_EL2 ALTSP control bits that affect
// MPAM ALTSP use at EL2.

boolean UsePrimarySpaceEL2()
if MPAM3_EL3.ALTSP_HEN == '0' then

return MPAM3_EL3.ALTSP_HFC == '0';
return !MPAMisEnabled() || MPAM2_EL2.ALTSP_EL2 == '0';

Library pseudocode for shared/functions/mpam/genMPAM

// genMPAM()
// =========
// Returns MPAMinfo for exception level el.
// If InD is TRUE returns MPAM information using PARTID_I and PMG_I fields
// of MPAMel_ELx register and otherwise using PARTID_D and PMG_D fields.
// If InSM is TRUE returns MPAM information using PARTID_D and PMG_D fields
// of MPAMSM_EL1 register.
// Produces a PARTID in PARTID space pspace.

MPAMinfo genMPAM(bits(2) el, boolean InD, boolean InSM, PARTIDspaceType pspace)
MPAMinfo returninfo;
PARTIDtype partidel;
boolean perr;
// gstplk is guest OS application locked by the EL2 hypervisor to
// only use EL1 the virtual machine's PARTIDs.
boolean gstplk = (el == EL0 && EL2Enabled() &&

MPAMHCR_EL2.GSTAPP_PLK == '1' &&
HCR_EL2.TGE == '0');

bits(2) eff_el = if gstplk then EL1 else el;
(partidel, perr) = genPARTID(eff_el, InD, InSM);
PMGtype groupel = genPMG(eff_el, InD, InSM, perr);
returninfo.mpam_sp = pspace;
returninfo.partid = partidel;
returninfo.pmg = groupel;
return returninfo;

Library pseudocode for shared/functions/mpam/genPARTID

// genPARTID()
// ===========
// Returns physical PARTID and error boolean for exception level el.
// If InD is TRUE then PARTID is from MPAMel_ELx.PARTID_I and
// otherwise from MPAMel_ELx.PARTID_D.
// If InSM is TRUE then PARTID is from MPAMSM_EL1.PARTID_D.

(PARTIDtype, boolean) genPARTID(bits(2) el, boolean InD, boolean InSM)
PARTIDtype partidel = getMPAM_PARTID(el, InD, InSM);
PARTIDtype partid_max = MPAMIDR_EL1.PARTID_MAX;
if UInt(partidel) > UInt(partid_max) then

return (DefaultPARTID, TRUE);
if MPAMisVirtual(el) then

return MAP_vPARTID(partidel);
else

return (partidel, FALSE);

Shared Pseudocode Functions Page 2124

Library pseudocode for shared/functions/mpam/genPMG

// genPMG()
// ========
// Returns PMG for exception level el and I- or D-side (InD).
// If PARTID generation (genPARTID) encountered an error, genPMG() should be
// called with partid_err as TRUE.

PMGtype genPMG(bits(2) el, boolean InD, boolean InSM, boolean partid_err)
integer pmg_max = UInt(MPAMIDR_EL1.PMG_MAX);
// It is CONSTRAINED UNPREDICTABLE whether partid_err forces PMG to
// use the default or if it uses the PMG from getMPAM_PMG.
if partid_err then

return DefaultPMG;
PMGtype groupel = getMPAM_PMG(el, InD, InSM);
if UInt(groupel) <= pmg_max then

return groupel;
return DefaultPMG;

Library pseudocode for shared/functions/mpam/getMPAM_PARTID

// getMPAM_PARTID()
// ================
// Returns a PARTID from one of the MPAMn_ELx or MPAMSM_EL1 registers.
// If InSM is TRUE, the MPAMSM_EL1 register is used. Otherwise,
// MPAMn selects the MPAMn_ELx register used.
// If InD is TRUE, selects the PARTID_I field of that
// register. Otherwise, selects the PARTID_D field.

PARTIDtype getMPAM_PARTID(bits(2) MPAMn, boolean InD, boolean InSM)
PARTIDtype partid;
boolean el2avail = EL2Enabled();

if InSM then
partid = MPAMSM_EL1.PARTID_D;
return partid;

if InD then
case MPAMn of

when '11' partid = MPAM3_EL3.PARTID_I;
when '10' partid = if el2avail then MPAM2_EL2.PARTID_I else Zeros(16);
when '01' partid = MPAM1_EL1.PARTID_I;
when '00' partid = MPAM0_EL1.PARTID_I;
otherwise partid = PARTIDtype UNKNOWN;

else
case MPAMn of

when '11' partid = MPAM3_EL3.PARTID_D;
when '10' partid = if el2avail then MPAM2_EL2.PARTID_D else Zeros(16);
when '01' partid = MPAM1_EL1.PARTID_D;
when '00' partid = MPAM0_EL1.PARTID_D;
otherwise partid = PARTIDtype UNKNOWN;

return partid;

Shared Pseudocode Functions Page 2125

Library pseudocode for shared/functions/mpam/getMPAM_PMG

// getMPAM_PMG()
// =============
// Returns a PMG from one of the MPAMn_ELx or MPAMSM_EL1 registers.
// If InSM is TRUE, the MPAMSM_EL1 register is used. Otherwise,
// MPAMn selects the MPAMn_ELx register used.
// If InD is TRUE, selects the PMG_I field of that
// register. Otherwise, selects the PMG_D field.

PMGtype getMPAM_PMG(bits(2) MPAMn, boolean InD, boolean InSM)
PMGtype pmg;
boolean el2avail = EL2Enabled();

if InSM then
pmg = MPAMSM_EL1.PMG_D;
return pmg;

if InD then
case MPAMn of

when '11' pmg = MPAM3_EL3.PMG_I;
when '10' pmg = if el2avail then MPAM2_EL2.PMG_I else Zeros(8);
when '01' pmg = MPAM1_EL1.PMG_I;
when '00' pmg = MPAM0_EL1.PMG_I;
otherwise pmg = PMGtype UNKNOWN;

else
case MPAMn of

when '11' pmg = MPAM3_EL3.PMG_D;
when '10' pmg = if el2avail then MPAM2_EL2.PMG_D else Zeros(8);
when '01' pmg = MPAM1_EL1.PMG_D;
when '00' pmg = MPAM0_EL1.PMG_D;
otherwise pmg = PMGtype UNKNOWN;

return pmg;

Library pseudocode for shared/functions/mpam/mapvpmw

// mapvpmw()
// =========
// Map a virtual PARTID into a physical PARTID using
// the MPAMVPMn_EL2 registers.
// vpartid is now assumed in-range and valid (checked by caller)
// returns physical PARTID from mapping entry.

PARTIDtype mapvpmw(integer vpartid)
bits(64) vpmw;
integer wd = vpartid DIV 4;
case wd of

when 0 vpmw = MPAMVPM0_EL2;
when 1 vpmw = MPAMVPM1_EL2;
when 2 vpmw = MPAMVPM2_EL2;
when 3 vpmw = MPAMVPM3_EL2;
when 4 vpmw = MPAMVPM4_EL2;
when 5 vpmw = MPAMVPM5_EL2;
when 6 vpmw = MPAMVPM6_EL2;
when 7 vpmw = MPAMVPM7_EL2;
otherwise vpmw = Zeros(64);

// vpme_lsb selects LSB of field within register
integer vpme_lsb = (vpartid MOD 4) * 16;
return vpmw<vpme_lsb +: 16>;

Shared Pseudocode Functions Page 2126

Library pseudocode for shared/functions/predictionrestrict/ASID

// ASID[]
// ======
// Effective ASID.

bits(16) ASID[]
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H, TGE> == '11' then

if TCR_EL2.A1 == '1' then
return TTBR1_EL2.ASID;

else
return TTBR0_EL2.ASID;

elsif !ELUsingAArch32(EL1) then
if TCR_EL1.A1 == '1' then

return TTBR1_EL1.ASID;
else

return TTBR0_EL1.ASID;

else
if TTBCR.EAE == '0' then

return ZeroExtend(CONTEXTIDR.ASID, 16);
else

if TTBCR.A1 == '1' then
return ZeroExtend(TTBR1.ASID, 16);

else
return ZeroExtend(TTBR0.ASID, 16);

Library pseudocode for shared/functions/predictionrestrict/ExecutionCntxt

// ExecutionCntxt
// ===============
// Context information for prediction restriction operation.

type ExecutionCntxt is (
boolean is_vmid_valid, // is vmid valid for current context
boolean all_vmid, // should the operation be applied for all vmids
bits(16) vmid, // if all_vmid = FALSE, vmid to which operation is applied
boolean is_asid_valid, // is asid valid for current context
boolean all_asid, // should the operation be applied for all asids
bits(16) asid, // if all_asid = FALSE, ASID to which operation is applied
bits(2) target_el, // target EL at which operation is performed
SecurityState security,
RestrictType restriction // type of restriction operation

)

Library pseudocode for shared/functions/predictionrestrict/RESTRICT_PREDICTIONS

// RESTRICT_PREDICTIONS()
// ======================
// Clear all speculated values.

RESTRICT_PREDICTIONS(ExecutionCntxt c)
IMPLEMENTATION_DEFINED;

Library pseudocode for shared/functions/predictionrestrict/RestrictType

// RestrictType
// ============
// Type of restriction on speculation.

enumeration RestrictType {
RestrictType_DataValue,
RestrictType_ControlFlow,
RestrictType_CachePrefetch,
RestrictType_Other // Any other trained speculation mechanisms than those above

};

Shared Pseudocode Functions Page 2127

Library pseudocode for shared/functions/predictionrestrict/TargetSecurityState

// TargetSecurityState()
// =====================
// Decode the target security state for the prediction context.

SecurityState TargetSecurityState(bit NS, bit NSE)
curr_ss = SecurityStateAtEL(PSTATE.EL);
if curr_ss == SS_NonSecure then

return SS_NonSecure;
elsif curr_ss == SS_Secure then

case NS of
when '0' return SS_Secure;
when '1' return SS_NonSecure;

elsif HaveRME() then
if curr_ss == SS_Root then

case NSE:NS of
when '00' return SS_Secure;
when '01' return SS_NonSecure;
when '11' return SS_Realm;
when '10' return SS_Root;

elsif curr_ss == SS_Realm then
return SS_Realm;

Library pseudocode for shared/functions/registers/BranchTo

// BranchTo()
// ==========
// Set program counter to a new address, with a branch type.
// Parameter branch_conditional indicates whether the executed branch has a conditional encoding.
// In AArch64 state the address might include a tag in the top eight bits.

BranchTo(bits(N) target, BranchType branch_type, boolean branch_conditional)
Hint_Branch(branch_type);
if N == 32 then

assert UsingAArch32();
_PC = ZeroExtend(target, 64);

else
assert N == 64 && !UsingAArch32();
bits(64) target_vaddress = AArch64.BranchAddr(target<63:0>, PSTATE.EL);
if (HaveBRBExt() &&

branch_type IN {BranchType_DIR, BranchType_INDIR,
BranchType_DIRCALL, BranchType_INDCALL,
BranchType_RET}) then

BRBEBranch(branch_type, branch_conditional, target_vaddress);
boolean branch_taken = TRUE;

if HaveStatisticalProfiling() then
SPEBranch(target, branch_type, branch_conditional, branch_taken);

_PC = target_vaddress;
return;

Shared Pseudocode Functions Page 2128

Library pseudocode for shared/functions/registers/BranchToAddr

// BranchToAddr()
// ==============
// Set program counter to a new address, with a branch type.
// In AArch64 state the address does not include a tag in the top eight bits.

BranchToAddr(bits(N) target, BranchType branch_type)
Hint_Branch(branch_type);
if N == 32 then

assert UsingAArch32();
_PC = ZeroExtend(target, 64);

else
assert N == 64 && !UsingAArch32();
_PC = target<63:0>;

return;

Library pseudocode for shared/functions/registers/BranchType

// BranchType
// ==========
// Information associated with a change in control flow.

enumeration BranchType {
BranchType_DIRCALL, // Direct Branch with link
BranchType_INDCALL, // Indirect Branch with link
BranchType_ERET, // Exception return (indirect)
BranchType_DBGEXIT, // Exit from Debug state
BranchType_RET, // Indirect branch with function return hint
BranchType_DIR, // Direct branch
BranchType_INDIR, // Indirect branch
BranchType_EXCEPTION, // Exception entry
BranchType_TMFAIL, // Transaction failure
BranchType_RESET, // Reset
BranchType_UNKNOWN}; // Other

Library pseudocode for shared/functions/registers/Hint_Branch

// Hint_Branch()
// =============
// Report the hint passed to BranchTo() and BranchToAddr(), for consideration when processing
// the next instruction.

Hint_Branch(BranchType hint);

Library pseudocode for shared/functions/registers/NextInstrAddr

// NextInstrAddr()
// ===============
// Return address of the sequentially next instruction.

bits(N) NextInstrAddr(integer N);

Library pseudocode for shared/functions/registers/ResetExternalDebugRegisters

// ResetExternalDebugRegisters()
// =============================
// Reset the External Debug registers in the Core power domain.

ResetExternalDebugRegisters(boolean cold_reset);

Shared Pseudocode Functions Page 2129

Library pseudocode for shared/functions/registers/ThisInstrAddr

// ThisInstrAddr()
// ===============
// Return address of the current instruction.

bits(N) ThisInstrAddr(integer N)
assert N == 64 || (N == 32 && UsingAArch32());
return _PC<N-1:0>;

Library pseudocode for shared/functions/registers/_PC

bits(64) _PC;

Library pseudocode for shared/functions/registers/_R

// _R[] - the general-purpose register file
// ==

array bits(64) _R[0..30];

Library pseudocode for shared/functions/sysregisters/SPSR_ELx

// SPSR_ELx[] - non-assignment form
// ================================

bits(64) SPSR_ELx[]
bits(64) result;
case PSTATE.EL of

when EL1 result = SPSR_EL1<63:0>;
when EL2 result = SPSR_EL2<63:0>;
when EL3 result = SPSR_EL3<63:0>;
otherwise Unreachable();

return result;

// SPSR_ELx[] - assignment form
// ============================

SPSR_ELx[] = bits(64) value
case PSTATE.EL of

when EL1 SPSR_EL1<63:0> = value<63:0>;
when EL2 SPSR_EL2<63:0> = value<63:0>;
when EL3 SPSR_EL3<63:0> = value<63:0>;
otherwise Unreachable();

return;

Shared Pseudocode Functions Page 2130

Library pseudocode for shared/functions/sysregisters/SPSR_curr

// SPSR_curr[] - non-assignment form
// =================================

bits(32) SPSR_curr[]
bits(32) result;
case PSTATE.M of

when M32_FIQ result = SPSR_fiq<31:0>;
when M32_IRQ result = SPSR_irq<31:0>;
when M32_Svc result = SPSR_svc<31:0>;
when M32_Monitor result = SPSR_mon<31:0>;
when M32_Abort result = SPSR_abt<31:0>;
when M32_Hyp result = SPSR_hyp<31:0>;
when M32_Undef result = SPSR_und<31:0>;
otherwise Unreachable();

return result;

// SPSR_curr[] - assignment form
// =============================

SPSR_curr[] = bits(32) value
case PSTATE.M of

when M32_FIQ SPSR_fiq<31:0> = value<31:0>;
when M32_IRQ SPSR_irq<31:0> = value<31:0>;
when M32_Svc SPSR_svc<31:0> = value<31:0>;
when M32_Monitor SPSR_mon<31:0> = value<31:0>;
when M32_Abort SPSR_abt<31:0> = value<31:0>;
when M32_Hyp SPSR_hyp<31:0> = value<31:0>;
when M32_Undef SPSR_und<31:0> = value<31:0>;
otherwise Unreachable();

return;

Library pseudocode for shared/functions/system/AArch64.ChkFeat

// AArch64.ChkFeat()
// =================
// Indicates the status of some features

bits(64) AArch64.ChkFeat(bits(64) feat_select)
bits(64) feat_en = Zeros(64);
feat_en[0] = if HaveGCS() && GCSEnabled(PSTATE.EL) then '1' else '0';
return feat_select AND NOT(feat_en);

Library pseudocode for shared/functions/system/AddressNotInNaturallyAlignedBlock

// AddressNotInNaturallyAlignedBlock()
// ===================================
// The 'address' is not in a naturally aligned block if it doesn't meet all the below conditions:
// * is a power-of-two size.
// * Is no larger than the DC ZVA block size if ESR_ELx.FnP is being set to 0b0, or EDHSR is not
// implemented or EDHSR.FnP is being set to 0b0 (as appropriate).
// * Is no larger than the smallest implemented translation granule if ESR_ELx.FnP, or EDHSR.FnP
// (as appropriate) is being set to 0b1.
// * Contains a watchpointed address accessed by the memory access or set of contiguous memory
// accesses that triggered the watchpoint.

boolean AddressNotInNaturallyAlignedBlock(bits(64) address);

Shared Pseudocode Functions Page 2131

Library pseudocode for shared/functions/system/BranchTargetCheck

// BranchTargetCheck()
// ===================
// This function is executed checks if the current instruction is a valid target for a branch
// taken into, or inside, a guarded page. It is executed on every cycle once the current
// instruction has been decoded and the values of InGuardedPage and BTypeCompatible have been
// determined for the current instruction.

BranchTargetCheck()
assert HaveBTIExt() && !UsingAArch32();

// The branch target check considers two state variables:
// * InGuardedPage, which is evaluated during instruction fetch.
// * BTypeCompatible, which is evaluated during instruction decode.
if InGuardedPage && PSTATE.BTYPE != '00' && !BTypeCompatible && !Halted() then

bits(64) pc = ThisInstrAddr(64);
AArch64.BranchTargetException(pc<51:0>);

boolean branch_instr = AArch64.ExecutingBROrBLROrRetInstr();
boolean bti_instr = AArch64.ExecutingBTIInstr();

// PSTATE.BTYPE defaults to 00 for instructions that do not explictly set BTYPE.
if !(branch_instr || bti_instr) then

BTypeNext = '00';

Library pseudocode for shared/functions/system/ClearEventRegister

// ClearEventRegister()
// ====================
// Clear the Event Register of this PE.

ClearEventRegister()
EventRegister = '0';
return;

Library pseudocode for shared/functions/system/ConditionHolds

// ConditionHolds()
// ================
// Return TRUE iff COND currently holds

boolean ConditionHolds(bits(4) cond)
// Evaluate base condition.
boolean result;
case cond<3:1> of

when '000' result = (PSTATE.Z == '1'); // EQ or NE
when '001' result = (PSTATE.C == '1'); // CS or CC
when '010' result = (PSTATE.N == '1'); // MI or PL
when '011' result = (PSTATE.V == '1'); // VS or VC
when '100' result = (PSTATE.C == '1' && PSTATE.Z == '0'); // HI or LS
when '101' result = (PSTATE.N == PSTATE.V); // GE or LT
when '110' result = (PSTATE.N == PSTATE.V && PSTATE.Z == '0'); // GT or LE
when '111' result = TRUE; // AL

// Condition flag values in the set '111x' indicate always true
// Otherwise, invert condition if necessary.
if cond<0> == '1' && cond != '1111' then

result = !result;

return result;

Library pseudocode for shared/functions/system/ConsumptionOfSpeculativeDataBarrier

// ConsumptionOfSpeculativeDataBarrier()
// =====================================

ConsumptionOfSpeculativeDataBarrier();

Shared Pseudocode Functions Page 2132

Library pseudocode for shared/functions/system/CurrentInstrSet

// CurrentInstrSet()
// =================

InstrSet CurrentInstrSet()
InstrSet result;
if UsingAArch32() then

result = if PSTATE.T == '0' then InstrSet_A32 else InstrSet_T32;
// PSTATE.J is RES0. Implementation of T32EE or Jazelle state not permitted.

else
result = InstrSet_A64;

return result;

Library pseudocode for shared/functions/system/CurrentPL

// CurrentPL()
// ===========

PrivilegeLevel CurrentPL()
return PLOfEL(PSTATE.EL);

Library pseudocode for shared/functions/system/CurrentSecurityState

// CurrentSecurityState()
// ======================
// Returns the effective security state at the exception level based off current settings.

SecurityState CurrentSecurityState()
return SecurityStateAtEL(PSTATE.EL);

Library pseudocode for shared/functions/system/DSBAlias

// DSBAlias
// ========
// Aliases of DSB.

enumeration DSBAlias {DSBAlias_SSBB, DSBAlias_PSSBB, DSBAlias_DSB};

Library pseudocode for shared/functions/system/EL0

constant bits(2) EL3 = '11';
constant bits(2) EL2 = '10';
constant bits(2) EL1 = '01';
constant bits(2) EL0 = '00';

Library pseudocode for shared/functions/system/EL2Enabled

// EL2Enabled()
// ============
// Returns TRUE if EL2 is present and executing
// - with the PE in Non-secure state when Non-secure EL2 is implemented, or
// - with the PE in Realm state when Realm EL2 is implemented, or
// - with the PE in Secure state when Secure EL2 is implemented and enabled, or
// - when EL3 is not implemented.

boolean EL2Enabled()
return HaveEL(EL2) && (!HaveEL(EL3) || SCR_curr[].NS == '1' || IsSecureEL2Enabled());

Shared Pseudocode Functions Page 2133

Library pseudocode for shared/functions/system/EL3SDDUndef

// EL3SDDUndef()
// =============
// Returns TRUE if in Debug state and EDSCR.SDD is set.

boolean EL3SDDUndef()
return Halted() && EDSCR.SDD == '1';

Library pseudocode for shared/functions/system/EL3SDDUndefPriority

// EL3SDDUndefPriority()
// =====================
// Returns TRUE if in Debug state, EDSCR.SDD is set, and an EL3 trap by an
// EL3 control register has priority over other traps.
// The IMPLEMENTATION DEFINED priority may be different for each case.

boolean EL3SDDUndefPriority()
return (Halted() && EDSCR.SDD == '1' &&

boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'");

Library pseudocode for shared/functions/system/ELFromM32

// ELFromM32()
// ===========

(boolean,bits(2)) ELFromM32(bits(5) mode)
// Convert an AArch32 mode encoding to an Exception level.
// Returns (valid,EL):
// 'valid' is TRUE if 'mode<4:0>' encodes a mode that is both valid for this implementation
// and the current value of SCR.NS/SCR_EL3.NS.
// 'EL' is the Exception level decoded from 'mode'.
bits(2) el;
boolean valid = !BadMode(mode); // Check for modes that are not valid for this implementation
bits(2) effective_nse_ns = EffectiveSCR_EL3_NSE() : EffectiveSCR_EL3_NS();

case mode of
when M32_Monitor

el = EL3;
when M32_Hyp

el = EL2;
when M32_FIQ, M32_IRQ, M32_Svc, M32_Abort, M32_Undef, M32_System

// If EL3 is implemented and using AArch32, then these modes are EL3 modes in Secure
// state, and EL1 modes in Non-secure state. If EL3 is not implemented or is using
// AArch64, then these modes are EL1 modes.
el = (if HaveEL(EL3) && !HaveAArch64() && SCR.NS == '0' then EL3 else EL1);

when M32_User
el = EL0;

otherwise
valid = FALSE; // Passed an illegal mode value

if valid && el == EL2 && HaveEL(EL3) && SCR_curr[].NS == '0' then
valid = FALSE; // EL2 only valid in Non-secure state in AArch32

elsif valid && HaveRME() && effective_nse_ns == '10' then
valid = FALSE; // Illegal Exception Return from EL3 if SCR_EL3.<NSE,NS>

// selects a reserved encoding

if !valid then el = bits(2) UNKNOWN;
return (valid, el);

Shared Pseudocode Functions Page 2134

Library pseudocode for shared/functions/system/ELFromSPSR

// ELFromSPSR()
// ============

// Convert an SPSR value encoding to an Exception level.
// Returns (valid,EL):
// 'valid' is TRUE if 'spsr<4:0>' encodes a valid mode for the current state.
// 'EL' is the Exception level decoded from 'spsr'.

(boolean,bits(2)) ELFromSPSR(bits(N) spsr)
bits(2) el;
boolean valid;
bits(2) effective_nse_ns;
if spsr<4> == '0' then // AArch64 state

el = spsr<3:2>;
effective_nse_ns = EffectiveSCR_EL3_NSE() : EffectiveSCR_EL3_NS();
if !HaveAArch64() then

valid = FALSE; // No AArch64 support
elsif !HaveEL(el) then

valid = FALSE; // Exception level not implemented
elsif spsr<1> == '1' then

valid = FALSE; // M[1] must be 0
elsif el == EL0 && spsr<0> == '1' then

valid = FALSE; // for EL0, M[0] must be 0
elsif HaveRME() && el != EL3 && effective_nse_ns == '10' then

valid = FALSE; // Only EL3 valid in Root state
elsif el == EL2 && HaveEL(EL3) && !IsSecureEL2Enabled() && SCR_EL3.NS == '0' then

valid = FALSE; // Unless Secure EL2 is enabled, EL2 valid only in Non-secure state
else

valid = TRUE;
elsif HaveAArch32() then // AArch32 state

(valid, el) = ELFromM32(spsr<4:0>);
else

valid = FALSE;

if !valid then el = bits(2) UNKNOWN;
return (valid,el);

Library pseudocode for shared/functions/system/ELIsInHost

// ELIsInHost()
// ============

boolean ELIsInHost(bits(2) el)
if !HaveVirtHostExt() || ELUsingAArch32(EL2) then

return FALSE;
case el of

when EL3
return FALSE;

when EL2
return EL2Enabled() && HCR_EL2.E2H == '1';

when EL1
return FALSE;

when EL0
return EL2Enabled() && HCR_EL2.<E2H,TGE> == '11';

otherwise
Unreachable();

Shared Pseudocode Functions Page 2135

Library pseudocode for shared/functions/system/ELStateUsingAArch32

// ELStateUsingAArch32()
// =====================

boolean ELStateUsingAArch32(bits(2) el, boolean secure)
// See ELStateUsingAArch32K() for description. Must only be called in circumstances where
// result is valid (typically, that means 'el IN {EL1,EL2,EL3}').
(known, aarch32) = ELStateUsingAArch32K(el, secure);
assert known;
return aarch32;

Library pseudocode for shared/functions/system/ELStateUsingAArch32K

// ELStateUsingAArch32K()
// ======================

(boolean,boolean) ELStateUsingAArch32K(bits(2) el, boolean secure)
// Returns (known, aarch32):
// 'known' is FALSE for EL0 if the current Exception level is not EL0 and EL1 is
// using AArch64, since it cannot determine the state of EL0; TRUE otherwise.
// 'aarch32' is TRUE if the specified Exception level is using AArch32; FALSE otherwise.
if !HaveAArch32EL(el) then

return (TRUE, FALSE); // Exception level is using AArch64
elsif secure && el == EL2 then

return (TRUE, FALSE); // Secure EL2 is using AArch64
elsif !HaveAArch64() then

return (TRUE, TRUE); // Highest Exception level, therefore all levels are using AArch32

// Remainder of function deals with the interprocessing cases when highest
// Exception level is using AArch64

boolean aarch32 = boolean UNKNOWN;
boolean known = TRUE;

aarch32_below_el3 = (HaveEL(EL3) && (!secure || !HaveSecureEL2Ext() || SCR_EL3.EEL2 == '0') &&
SCR_EL3.RW == '0');

aarch32_at_el1 = (aarch32_below_el3 ||
(HaveEL(EL2) && (!secure || (HaveSecureEL2Ext() && SCR_EL3.EEL2 == '1')) &&
!(HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11') &&
HCR_EL2.RW == '0'));

if el == EL0 && !aarch32_at_el1 then // Only know if EL0 using AArch32 from PSTATE
if PSTATE.EL == EL0 then

aarch32 = PSTATE.nRW == '1'; // EL0 controlled by PSTATE
else

known = FALSE; // EL0 state is UNKNOWN
else

aarch32 = (aarch32_below_el3 && el != EL3) || (aarch32_at_el1 && el IN {EL1,EL0});

if !known then aarch32 = boolean UNKNOWN;
return (known, aarch32);

Library pseudocode for shared/functions/system/ELUsingAArch32

// ELUsingAArch32()
// ================

boolean ELUsingAArch32(bits(2) el)
return ELStateUsingAArch32(el, IsSecureBelowEL3());

Library pseudocode for shared/functions/system/ELUsingAArch32K

// ELUsingAArch32K()
// =================

(boolean,boolean) ELUsingAArch32K(bits(2) el)
return ELStateUsingAArch32K(el, IsSecureBelowEL3());

Shared Pseudocode Functions Page 2136

Library pseudocode for shared/functions/system/EffectiveEA

// EffectiveEA()
// =============
// Returns effective SCR_EL3.EA value

bit EffectiveEA()
if Halted() && EDSCR.SDD == '0' then

return '0';
else

return if HaveAArch64() then SCR_EL3.EA else SCR.EA;

Library pseudocode for shared/functions/system/EffectiveSCR_EL3_NS

// EffectiveSCR_EL3_NS()
// =====================
// Return Effective SCR_EL3.NS value.

bit EffectiveSCR_EL3_NS()
if !HaveSecureState() then

return '1';
elsif !HaveEL(EL3) then

return '0';
else

return SCR_EL3.NS;

Library pseudocode for shared/functions/system/EffectiveSCR_EL3_NSE

// EffectiveSCR_EL3_NSE()
// ======================
// Return Effective SCR_EL3.NSE value.

bit EffectiveSCR_EL3_NSE()
return if !HaveRME() then '0' else SCR_EL3.NSE;

Library pseudocode for shared/functions/system/EffectiveSCR_EL3_RW

// EffectiveSCR_EL3_RW()
// =====================
// Returns effective SCR_EL3.RW value

bit EffectiveSCR_EL3_RW()
if !HaveAArch64() then

return '0';
if !HaveAArch32EL(EL2) && !HaveAArch32EL(EL1) then

return '1';
if HaveAArch32EL(EL1) then

if !HaveAArch32EL(EL2) && SCR_EL3.NS == '1' then
return '1';

if HaveSecureEL2Ext() && SCR_EL3.EEL2 == '1' && SCR_EL3.NS == '0' then
return '1';

return SCR_EL3.RW;

Library pseudocode for shared/functions/system/EffectiveTGE

// EffectiveTGE()
// ==============
// Returns effective TGE value

bit EffectiveTGE()
if EL2Enabled() then

return if ELUsingAArch32(EL2) then HCR.TGE else HCR_EL2.TGE;
else

return '0'; // Effective value of TGE is zero

Shared Pseudocode Functions Page 2137

Library pseudocode for shared/functions/system/EndOfInstruction

// EndOfInstruction()
// ==================
// Terminate processing of the current instruction.

EndOfInstruction();

Library pseudocode for shared/functions/system/EnterLowPowerState

// EnterLowPowerState()
// ====================
// PE enters a low-power state.

EnterLowPowerState();

Library pseudocode for shared/functions/system/EventRegister

bits(1) EventRegister;

Library pseudocode for shared/functions/system/ExceptionalOccurrenceTargetState

// ExceptionalOccurrenceTargetState
// ================================
// Enumeration to represent the target state of an Exceptional Occurrence.
// The Exceptional Occurrence can be either Exception or Debug State entry.

enumeration ExceptionalOccurrenceTargetState {
AArch32_NonDebugState,
AArch64_NonDebugState,
DebugState

};

Library pseudocode for shared/functions/system/FIQPending

// FIQPending()
// ============
// Returns a tuple indicating if there is any pending physical FIQ
// and if the pending FIQ has superpriority.

(boolean, boolean) FIQPending();

Library pseudocode for shared/functions/system/GetAccumulatedFPExceptions

// GetAccumulatedFPExceptions()
// ============================
// Returns FP exceptions accumulated by the PE.

bits(8) GetAccumulatedFPExceptions();

Library pseudocode for shared/functions/system/GetLoadStoreType

// GetLoadStoreType()
// ==================
// Returns the Load/Store Type. Used when a Translation fault,
// Access flag fault, or Permission fault generates a Data Abort.

bits(2) GetLoadStoreType();

Shared Pseudocode Functions Page 2138

Library pseudocode for shared/functions/system/GetPSRFromPSTATE

// GetPSRFromPSTATE()
// ==================
// Return a PSR value which represents the current PSTATE

bits(N) GetPSRFromPSTATE(ExceptionalOccurrenceTargetState targetELState, integer N)
if UsingAArch32() && targetELState == AArch32_NonDebugState then

assert N == 32;
else

assert N == 64;

bits(N) spsr = Zeros(N);
spsr<31:28> = PSTATE.<N,Z,C,V>;
if HavePANExt() then spsr<22> = PSTATE.PAN;
spsr<20> = PSTATE.IL;
if PSTATE.nRW == '1' then // AArch32 state

if targetELState != AArch32_NonDebugState then
spsr<33> = PSTATE.PPEND;

spsr<27> = PSTATE.Q;
spsr<26:25> = PSTATE.IT<1:0>;
if HaveSSBSExt() then spsr<23> = PSTATE.SSBS;
if HaveDITExt() then

if targetELState == AArch32_NonDebugState then
spsr<21> = PSTATE.DIT;

else // AArch64_NonDebugState or DebugState
spsr<24> = PSTATE.DIT;

if targetELState IN {AArch64_NonDebugState, DebugState} then
spsr<21> = PSTATE.SS;

spsr<19:16> = PSTATE.GE;
spsr<15:10> = PSTATE.IT<7:2>;
spsr<9> = PSTATE.E;
spsr<8:6> = PSTATE.<A,I,F>; // No PSTATE.D in AArch32 state
spsr<5> = PSTATE.T;
assert PSTATE.M<4> == PSTATE.nRW; // bit [4] is the discriminator
spsr<4:0> = PSTATE.M;

else // AArch64 state
if HaveGCS() then spsr<34> = PSTATE.EXLOCK;
if IsFeatureImplemented(FEAT_SEBEP) then spsr<33> = PSTATE.PPEND;
if IsFeatureImplemented(FEAT_EBEP) then spsr<32> = PSTATE.PM;
if HaveMTEExt() then spsr<25> = PSTATE.TCO;
if HaveDITExt() then spsr<24> = PSTATE.DIT;
if HaveUAOExt() then spsr<23> = PSTATE.UAO;
spsr<21> = PSTATE.SS;
if HaveFeatNMI() then spsr<13> = PSTATE.ALLINT;
if HaveSSBSExt() then spsr<12> = PSTATE.SSBS;
if HaveBTIExt() then spsr<11:10> = PSTATE.BTYPE;
spsr<9:6> = PSTATE.<D,A,I,F>;
spsr<4> = PSTATE.nRW;
spsr<3:2> = PSTATE.EL;
spsr<0> = PSTATE.SP;

return spsr;

Library pseudocode for shared/functions/system/HasArchVersion

// HasArchVersion()
// ================
// Returns TRUE if the implemented architecture includes the extensions defined in the specified
// architecture version.

boolean HasArchVersion(boolean version)
return version;

Shared Pseudocode Functions Page 2139

Library pseudocode for shared/functions/system/HaveAArch32

// HaveAArch32()
// =============
// Return TRUE if AArch32 state is supported at at least EL0.

boolean HaveAArch32()
return IsFeatureImplemented(FEAT_AA32EL0);

Library pseudocode for shared/functions/system/HaveAArch32EL

// HaveAArch32EL()
// ===============
// Return TRUE if Exception level 'el' supports AArch32 in this implementation

boolean HaveAArch32EL(bits(2) el)
case el of

when EL0 return IsFeatureImplemented(FEAT_AA32EL0);
when EL1 return IsFeatureImplemented(FEAT_AA32EL1);
when EL2 return IsFeatureImplemented(FEAT_AA32EL2);
when EL3 return IsFeatureImplemented(FEAT_AA32EL3);

Library pseudocode for shared/functions/system/HaveAArch64

// HaveAArch64()
// =============
// Return TRUE if the highest Exception level is using AArch64 state.

boolean HaveAArch64()
return (IsFeatureImplemented(FEAT_AA64EL0) || IsFeatureImplemented(FEAT_AA64EL1) ||

IsFeatureImplemented(FEAT_AA64EL2) || IsFeatureImplemented(FEAT_AA64EL3));

Library pseudocode for shared/functions/system/HaveEL

// HaveEL()
// ========
// Return TRUE if Exception level 'el' is supported

boolean HaveEL(bits(2) el)
case el of

when EL1,EL0
return TRUE; // EL1 and EL0 must exist

when EL2
return IsFeatureImplemented(FEAT_AA64EL2) || IsFeatureImplemented(FEAT_AA32EL2);

when EL3
return IsFeatureImplemented(FEAT_AA64EL3) || IsFeatureImplemented(FEAT_AA32EL3);

otherwise
Unreachable();

Shared Pseudocode Functions Page 2140

Library pseudocode for shared/functions/system/HaveELUsingSecurityState

// HaveELUsingSecurityState()
// ==========================
// Returns TRUE if Exception level 'el' with Security state 'secure' is supported,
// FALSE otherwise.

boolean HaveELUsingSecurityState(bits(2) el, boolean secure)

case el of
when EL3

assert secure;
return HaveEL(EL3);

when EL2
if secure then

return HaveEL(EL2) && HaveSecureEL2Ext();
else

return HaveEL(EL2);
otherwise

return (HaveEL(EL3) ||
(secure == boolean IMPLEMENTATION_DEFINED "Secure-only implementation"));

Library pseudocode for shared/functions/system/HaveFP16Ext

// HaveFP16Ext()
// =============
// Return TRUE if FP16 extension is supported

boolean HaveFP16Ext()
return IsFeatureImplemented(FEAT_FP16);

Library pseudocode for shared/functions/system/HaveSecureState

// HaveSecureState()
// =================
// Return TRUE if Secure State is supported.

boolean HaveSecureState()
if !HaveEL(EL3) then

return SecureOnlyImplementation();
if HaveRME() && !HaveSecureEL2Ext() then

return FALSE;
return TRUE;

Library pseudocode for shared/functions/system/HighestEL

// HighestEL()
// ===========
// Returns the highest implemented Exception level.

bits(2) HighestEL()
if HaveEL(EL3) then

return EL3;
elsif HaveEL(EL2) then

return EL2;
else

return EL1;

Library pseudocode for shared/functions/system/Hint_CLRBHB

// Hint_CLRBHB()
// =============
// Provides a hint to clear the branch history for the current context.

Hint_CLRBHB();

Shared Pseudocode Functions Page 2141

Library pseudocode for shared/functions/system/Hint_DGH

// Hint_DGH()
// ==========
// Provides a hint to close any gathering occurring within the micro-architecture.

Hint_DGH();

Library pseudocode for shared/functions/system/Hint_WFE

// Hint_WFE()
// ==========
// Provides a hint indicating that the PE can enter a low-power state
// and remain there until a wakeup event occurs or, for WFET, a local
// timeout event is generated when the virtual timer value equals or
// exceeds the supplied threshold value.

Hint_WFE(integer localtimeout, WFxType wfxtype)
if IsEventRegisterSet() then

ClearEventRegister();
elsif HaveFeatWFxT() && LocalTimeoutEvent(localtimeout) then

// No further operation if the local timeout has expired.
EndOfInstruction();

else
bits(2) target_el;
trap = FALSE;
if PSTATE.EL == EL0 then

// Check for traps described by the OS which may be EL1 or EL2.
if HaveTWEDExt() then

sctlr = SCTLR_ELx[];
trap = sctlr.nTWE == '0';
target_el = EL1;

else
AArch64.CheckForWFxTrap(EL1, wfxtype);

if !trap && PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
// Check for traps described by the Hypervisor.
if HaveTWEDExt() then

trap = HCR_EL2.TWE == '1';
target_el = EL2;

else
AArch64.CheckForWFxTrap(EL2, wfxtype);

if !trap && HaveEL(EL3) && PSTATE.EL != EL3 then
// Check for traps described by the Secure Monitor.
if HaveTWEDExt() then

trap = SCR_EL3.TWE == '1';
target_el = EL3;

else
AArch64.CheckForWFxTrap(EL3, wfxtype);

if trap && PSTATE.EL != EL3 then
// Determine if trap delay is enabled and delay amount
(delay_enabled, delay) = WFETrapDelay(target_el);
if !WaitForEventUntilDelay(delay_enabled, delay) then

// Event did not arrive before delay expired so trap WFE
AArch64.WFxTrap(wfxtype, target_el);

else
WaitForEvent(localtimeout);

Shared Pseudocode Functions Page 2142

Library pseudocode for shared/functions/system/Hint_WFI

// Hint_WFI()
// ==========
// Provides a hint indicating that the PE can enter a low-power state and
// remain there until a wakeup event occurs or, for WFIT, a local timeout
// event is generated when the virtual timer value equals or exceeds the
// supplied threshold value.

Hint_WFI(integer localtimeout, WFxType wfxtype)
if HaveTME() && TSTATE.depth > 0 then

FailTransaction(TMFailure_ERR, FALSE);

if InterruptPending() || (HaveFeatWFxT() && LocalTimeoutEvent(localtimeout)) then
// No further operation if an interrupt is pending or the local timeout has expired.
EndOfInstruction();

else
if PSTATE.EL == EL0 then

// Check for traps described by the OS.
AArch64.CheckForWFxTrap(EL1, wfxtype);

if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !IsInHost() then
// Check for traps described by the Hypervisor.
AArch64.CheckForWFxTrap(EL2, wfxtype);

if HaveEL(EL3) && PSTATE.EL != EL3 then
// Check for traps described by the Secure Monitor.
AArch64.CheckForWFxTrap(EL3, wfxtype);

WaitForInterrupt(localtimeout);

Library pseudocode for shared/functions/system/Hint_Yield

// Hint_Yield()
// ============
// Provides a hint that the task performed by a thread is of low
// importance so that it could yield to improve overall performance.

Hint_Yield();

Library pseudocode for shared/functions/system/IRQPending

// IRQPending()
// ============
// Returns a tuple indicating if there is any pending physical IRQ
// and if the pending IRQ has superpriority.

(boolean, boolean) IRQPending();

Shared Pseudocode Functions Page 2143

Library pseudocode for shared/functions/system/IllegalExceptionReturn

// IllegalExceptionReturn()
// ========================

boolean IllegalExceptionReturn(bits(N) spsr)

// Check for illegal return:
// * To an unimplemented Exception level.
// * To EL2 in Secure state, when SecureEL2 is not enabled.
// * To EL0 using AArch64 state, with SPSR.M[0]==1.
// * To AArch64 state with SPSR.M[1]==1.
// * To AArch32 state with an illegal value of SPSR.M.
(valid, target) = ELFromSPSR(spsr);
if !valid then return TRUE;

// Check for return to higher Exception level
if UInt(target) > UInt(PSTATE.EL) then return TRUE;

spsr_mode_is_aarch32 = (spsr<4> == '1');

// Check for illegal return:
// * To EL1, EL2 or EL3 with register width specified in the SPSR different from the
// Execution state used in the Exception level being returned to, as determined by
// the SCR_EL3.RW or HCR_EL2.RW bits, or as configured from reset.
// * To EL0 using AArch64 state when EL1 is using AArch32 state as determined by the
// SCR_EL3.RW or HCR_EL2.RW bits or as configured from reset.
// * To AArch64 state from AArch32 state (should be caught by above)
(known, target_el_is_aarch32) = ELUsingAArch32K(target);
assert known || (target == EL0 && !ELUsingAArch32(EL1));
if known && spsr_mode_is_aarch32 != target_el_is_aarch32 then return TRUE;

// Check for illegal return from AArch32 to AArch64
if UsingAArch32() && !spsr_mode_is_aarch32 then return TRUE;

// Check for illegal return to EL1 when HCR.TGE is set and when either of
// * SecureEL2 is enabled.
// * SecureEL2 is not enabled and EL1 is in Non-secure state.
if EL2Enabled() && target == EL1 && HCR_EL2.TGE == '1' then

if (!IsSecureBelowEL3() || IsSecureEL2Enabled()) then return TRUE;

if (HaveGCS() && PSTATE.EXLOCK == '0' &&
PSTATE.EL == target && GetCurrentEXLOCKEN()) then

return TRUE;

return FALSE;

Library pseudocode for shared/functions/system/InstrSet

// InstrSet
// ========

enumeration InstrSet {InstrSet_A64, InstrSet_A32, InstrSet_T32};

Library pseudocode for shared/functions/system/InstructionSynchronizationBarrier

// InstructionSynchronizationBarrier()
// ===================================
InstructionSynchronizationBarrier();

Shared Pseudocode Functions Page 2144

Library pseudocode for shared/functions/system/InterruptPending

// InterruptPending()
// ==================
// Returns TRUE if there are any pending physical or virtual
// interrupts, and FALSE otherwise.

boolean InterruptPending()
boolean pending_virtual_interrupt = FALSE;
(irq_pending, -) = IRQPending();
(fiq_pending, -) = FIQPending();
boolean pending_physical_interrupt = (irq_pending || fiq_pending ||

IsPhysicalSErrorPending());

if EL2Enabled() && PSTATE.EL IN {EL0, EL1} && HCR_EL2.TGE == '0' then
boolean virq_pending = HCR_EL2.IMO == '1' && (VirtualIRQPending() || HCR_EL2.VI == '1') ;
boolean vfiq_pending = HCR_EL2.FMO == '1' && (VirtualFIQPending() || HCR_EL2.VF == '1');
boolean vsei_pending = HCR_EL2.AMO == '1' && (IsVirtualSErrorPending() ||

HCR_EL2.VSE == '1');
pending_virtual_interrupt = vsei_pending || virq_pending || vfiq_pending;

return pending_physical_interrupt || pending_virtual_interrupt;

Library pseudocode for shared/functions/system/IsASEInstruction

// IsASEInstruction()
// ==================
// Returns TRUE if the current instruction is an ASIMD or SVE vector instruction.

boolean IsASEInstruction();

Library pseudocode for shared/functions/system/IsCurrentSecurityState

// IsCurrentSecurityState()
// ========================
// Returns TRUE if the current Security state matches
// the given Security state, and FALSE otherwise.

boolean IsCurrentSecurityState(SecurityState ss)
return CurrentSecurityState() == ss;

Library pseudocode for shared/functions/system/IsEventRegisterSet

// IsEventRegisterSet()
// ====================
// Return TRUE if the Event Register of this PE is set, and FALSE if it is clear.

boolean IsEventRegisterSet()
return EventRegister == '1';

Library pseudocode for shared/functions/system/IsHighestEL

// IsHighestEL()
// =============
// Returns TRUE if given exception level is the highest exception level implemented

boolean IsHighestEL(bits(2) el)
return HighestEL() == el;

Library pseudocode for shared/functions/system/IsInHost

// IsInHost()
// ==========

boolean IsInHost()
return ELIsInHost(PSTATE.EL);

Shared Pseudocode Functions Page 2145

Library pseudocode for shared/functions/system/IsSecure

// IsSecure()
// ==========
// Returns TRUE if current Exception level is in Secure state.

boolean IsSecure()
if HaveEL(EL3) && !UsingAArch32() && PSTATE.EL == EL3 then

return TRUE;
elsif HaveEL(EL3) && UsingAArch32() && PSTATE.M == M32_Monitor then

return TRUE;
return IsSecureBelowEL3();

Library pseudocode for shared/functions/system/IsSecureBelowEL3

// IsSecureBelowEL3()
// ==================
// Return TRUE if an Exception level below EL3 is in Secure state
// or would be following an exception return to that level.
//
// Differs from IsSecure in that it ignores the current EL or Mode
// in considering security state.
// That is, if at AArch64 EL3 or in AArch32 Monitor mode, whether an
// exception return would pass to Secure or Non-secure state.

boolean IsSecureBelowEL3()
if HaveEL(EL3) then

return SCR_curr[].NS == '0';
elsif HaveEL(EL2) && (!HaveSecureEL2Ext() || !HaveAArch64()) then

// If Secure EL2 is not an architecture option then we must be Non-secure.
return FALSE;

else
// TRUE if processor is Secure or FALSE if Non-secure.
return boolean IMPLEMENTATION_DEFINED "Secure-only implementation";

Library pseudocode for shared/functions/system/IsSecureEL2Enabled

// IsSecureEL2Enabled()
// ====================
// Returns TRUE if Secure EL2 is enabled, FALSE otherwise.

boolean IsSecureEL2Enabled()
if HaveEL(EL2) && HaveSecureEL2Ext() then

if HaveEL(EL3) then
if !ELUsingAArch32(EL3) && SCR_EL3.EEL2 == '1' then

return TRUE;
else

return FALSE;
else

return SecureOnlyImplementation();
else

return FALSE;

Library pseudocode for shared/functions/system/LocalTimeoutEvent

// LocalTimeoutEvent()
// ===================
// Returns TRUE if CNTVCT_EL0 equals or exceeds the localtimeout value.

boolean LocalTimeoutEvent(integer localtimeout);

Shared Pseudocode Functions Page 2146

Library pseudocode for shared/functions/system/Mode_Bits

constant bits(5) M32_User = '10000';
constant bits(5) M32_FIQ = '10001';
constant bits(5) M32_IRQ = '10010';
constant bits(5) M32_Svc = '10011';
constant bits(5) M32_Monitor = '10110';
constant bits(5) M32_Abort = '10111';
constant bits(5) M32_Hyp = '11010';
constant bits(5) M32_Undef = '11011';
constant bits(5) M32_System = '11111';

Library pseudocode for shared/functions/system/NonSecureOnlyImplementation

// NonSecureOnlyImplementation()
// =============================
// Returns TRUE if the security state is always Non-secure for this implementation.

boolean NonSecureOnlyImplementation()
return boolean IMPLEMENTATION_DEFINED "Non-secure only implementation";

Library pseudocode for shared/functions/system/PLOfEL

// PLOfEL()
// ========

PrivilegeLevel PLOfEL(bits(2) el)
case el of

when EL3 return if !HaveAArch64() then PL1 else PL3;
when EL2 return PL2;
when EL1 return PL1;
when EL0 return PL0;

Library pseudocode for shared/functions/system/PSTATE

ProcState PSTATE;

Library pseudocode for shared/functions/system/PhysicalCountInt

// PhysicalCountInt()
// ==================
// Returns the integral part of physical count value of the System counter.

bits(64) PhysicalCountInt()
return PhysicalCount<87:24>;

Library pseudocode for shared/functions/system/PrivilegeLevel

// PrivilegeLevel
// ==============
// Privilege Level abstraction.

enumeration PrivilegeLevel {PL3, PL2, PL1, PL0};

Shared Pseudocode Functions Page 2147

Library pseudocode for shared/functions/system/ProcState

// ProcState
// =========
// Armv8 processor state bits.
// There is no significance to the field order.

type ProcState is (
bits (1) N, // Negative condition flag
bits (1) Z, // Zero condition flag
bits (1) C, // Carry condition flag
bits (1) V, // Overflow condition flag
bits (1) D, // Debug mask bit [AArch64 only]
bits (1) A, // SError interrupt mask bit
bits (1) I, // IRQ mask bit
bits (1) F, // FIQ mask bit
bits (1) EXLOCK, // Lock exception return state
bits (1) PAN, // Privileged Access Never Bit [v8.1]
bits (1) UAO, // User Access Override [v8.2]
bits (1) DIT, // Data Independent Timing [v8.4]
bits (1) TCO, // Tag Check Override [v8.5, AArch64 only]
bits (1) PM, // PMU exception Mask
bits (1) PPEND, // synchronous PMU exception to be observed
bits (2) BTYPE, // Branch Type [v8.5]
bits (1) ZA, // Accumulation array enabled [SME]
bits (1) SM, // Streaming SVE mode enabled [SME]
bits (1) ALLINT, // Interrupt mask bit
bits (1) SS, // Software step bit
bits (1) IL, // Illegal Execution state bit
bits (2) EL, // Exception level
bits (1) nRW, // Execution state: 0=AArch64, 1=AArch32
bits (1) SP, // Stack pointer select: 0=SP0, 1=SPx [AArch64 only]
bits (1) Q, // Cumulative saturation flag [AArch32 only]
bits (4) GE, // Greater than or Equal flags [AArch32 only]
bits (1) SSBS, // Speculative Store Bypass Safe
bits (8) IT, // If-then bits, RES0 in CPSR [AArch32 only]
bits (1) J, // J bit, RES0 [AArch32 only, RES0 in SPSR and CPSR]
bits (1) T, // T32 bit, RES0 in CPSR [AArch32 only]
bits (1) E, // Endianness bit [AArch32 only]
bits (5) M // Mode field [AArch32 only]

)

Library pseudocode for shared/functions/system/RestoredITBits

// RestoredITBits()
// ================
// Get the value of PSTATE.IT to be restored on this exception return.

bits(8) RestoredITBits(bits(N) spsr)
it = spsr<15:10,26:25>;

// When PSTATE.IL is set, it is CONSTRAINED UNPREDICTABLE whether the IT bits are each set
// to zero or copied from the SPSR.
if PSTATE.IL == '1' then

if ConstrainUnpredictableBool(Unpredictable_ILZEROIT) then return '00000000';
else return it;

// The IT bits are forced to zero when they are set to a reserved value.
if !IsZero(it<7:4>) && IsZero(it<3:0>) then

return '00000000';

// The IT bits are forced to zero when returning to A32 state, or when returning to an EL
// with the ITD bit set to 1, and the IT bits are describing a multi-instruction block.
itd = if PSTATE.EL == EL2 then HSCTLR.ITD else SCTLR.ITD;
if (spsr<5> == '0' && !IsZero(it)) || (itd == '1' && !IsZero(it<2:0>)) then

return '00000000';
else

return it;

Shared Pseudocode Functions Page 2148

Library pseudocode for shared/functions/system/SCRType

type SCRType;

Library pseudocode for shared/functions/system/SCR_curr

// SCR_curr[]
// ==========

SCRType SCR_curr[]
// AArch32 secure & AArch64 EL3 registers are not architecturally mapped
assert HaveEL(EL3);
bits(64) r;
if !HaveAArch64() then

r = ZeroExtend(SCR, 64);
else

r = SCR_EL3;
return r;

Library pseudocode for shared/functions/system/SecureOnlyImplementation

// SecureOnlyImplementation()
// ==========================
// Returns TRUE if the security state is always Secure for this implementation.

boolean SecureOnlyImplementation()
return boolean IMPLEMENTATION_DEFINED "Secure-only implementation";

Library pseudocode for shared/functions/system/SecurityState

// SecurityState
// =============
// The Security state of an execution context

enumeration SecurityState {
SS_NonSecure,
SS_Root,
SS_Realm,
SS_Secure

};

Shared Pseudocode Functions Page 2149

Library pseudocode for shared/functions/system/SecurityStateAtEL

// SecurityStateAtEL()
// ===================
// Returns the effective security state at the exception level based off current settings.

SecurityState SecurityStateAtEL(bits(2) EL)
if HaveRME() then

if EL == EL3 then return SS_Root;
effective_nse_ns = SCR_EL3.NSE : EffectiveSCR_EL3_NS();
case effective_nse_ns of

when '00' if HaveSecureEL2Ext() then return SS_Secure; else Unreachable();
when '01' return SS_NonSecure;
when '11' return SS_Realm;
otherwise Unreachable();

if !HaveEL(EL3) then
if SecureOnlyImplementation() then

return SS_Secure;
else

return SS_NonSecure;
elsif EL == EL3 then

return SS_Secure;
else

// For EL2 call only when EL2 is enabled in current security state
assert(EL != EL2 || EL2Enabled());
if !ELUsingAArch32(EL3) then

return if SCR_EL3.NS == '1' then SS_NonSecure else SS_Secure;
else

return if SCR.NS == '1' then SS_NonSecure else SS_Secure;

Library pseudocode for shared/functions/system/SendEvent

// SendEvent()
// ===========
// Signal an event to all PEs in a multiprocessor system to set their Event Registers.
// When a PE executes the SEV instruction, it causes this function to be executed.

SendEvent();

Library pseudocode for shared/functions/system/SendEventLocal

// SendEventLocal()
// ================
// Set the local Event Register of this PE.
// When a PE executes the SEVL instruction, it causes this function to be executed.

SendEventLocal()
EventRegister = '1';
return;

Library pseudocode for shared/functions/system/SetAccumulatedFPExceptions

// SetAccumulatedFPExceptions()
// ============================
// Stores FP Exceptions accumulated by the PE.

SetAccumulatedFPExceptions(bits(8) accumulated_exceptions);

Shared Pseudocode Functions Page 2150

Library pseudocode for shared/functions/system/SetPSTATEFromPSR

// SetPSTATEFromPSR()
// ==================

SetPSTATEFromPSR(bits(N) spsr)
boolean illegal_psr_state = IllegalExceptionReturn(spsr);
SetPSTATEFromPSR(spsr, illegal_psr_state);

// SetPSTATEFromPSR()
// ==================
// Set PSTATE based on a PSR value

SetPSTATEFromPSR(bits(N) spsr_in, boolean illegal_psr_state)
bits(N) spsr = spsr_in;
boolean from_aarch64 = !UsingAArch32();
PSTATE.SS = DebugExceptionReturnSS(spsr);
if IsFeatureImplemented(FEAT_SEBEP) then

assert N == 64;
ExceptionReturnPPEND(ZeroExtend(spsr, 64));

ShouldAdvanceSS = FALSE;
if illegal_psr_state then

PSTATE.IL = '1';
if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
if HaveBTIExt() then PSTATE.BTYPE = bits(2) UNKNOWN;
if HaveUAOExt() then PSTATE.UAO = bit UNKNOWN;
if HaveDITExt() then PSTATE.DIT = bit UNKNOWN;
if HaveMTEExt() then PSTATE.TCO = bit UNKNOWN;

else
// State that is reinstated only on a legal exception return
PSTATE.IL = spsr<20>;
if spsr<4> == '1' then // AArch32 state

AArch32.WriteMode(spsr<4:0>); // Sets PSTATE.EL correctly
if HaveSSBSExt() then PSTATE.SSBS = spsr<23>;

else // AArch64 state
PSTATE.nRW = '0';
PSTATE.EL = spsr<3:2>;
PSTATE.SP = spsr<0>;
if HaveBTIExt() then PSTATE.BTYPE = spsr<11:10>;
if HaveSSBSExt() then PSTATE.SSBS = spsr<12>;
if HaveUAOExt() then PSTATE.UAO = spsr<23>;
if HaveDITExt() then PSTATE.DIT = spsr<24>;
if HaveMTEExt() then PSTATE.TCO = spsr<25>;
if HaveGCS() then PSTATE.EXLOCK = spsr<34>;

// If PSTATE.IL is set, it is CONSTRAINED UNPREDICTABLE whether the T bit is set to zero or
// copied from SPSR.
if PSTATE.IL == '1' && PSTATE.nRW == '1' then

if ConstrainUnpredictableBool(Unpredictable_ILZEROT) then spsr<5> = '0';

// State that is reinstated regardless of illegal exception return
PSTATE.<N,Z,C,V> = spsr<31:28>;
if HavePANExt() then PSTATE.PAN = spsr<22>;
if PSTATE.nRW == '1' then // AArch32 state

PSTATE.Q = spsr<27>;
PSTATE.IT = RestoredITBits(spsr);
ShouldAdvanceIT = FALSE;
if HaveDITExt() then

PSTATE.DIT = (if (Restarting() || from_aarch64) then spsr<24> else spsr<21>);
PSTATE.GE = spsr<19:16>;
PSTATE.E = spsr<9>;
PSTATE.<A,I,F> = spsr<8:6>; // No PSTATE.D in AArch32 state
PSTATE.T = spsr<5>; // PSTATE.J is RES0

else // AArch64 state
PSTATE.PM = spsr<32>;
if HaveFeatNMI() then PSTATE.ALLINT = spsr<13>;
PSTATE.<D,A,I,F> = spsr<9:6>; // No PSTATE.<Q,IT,GE,E,T> in AArch64 state

return;

Shared Pseudocode Functions Page 2151

Library pseudocode for shared/functions/system/ShouldAdvanceHS

boolean ShouldAdvanceHS;

Library pseudocode for shared/functions/system/ShouldAdvanceIT

boolean ShouldAdvanceIT;

Library pseudocode for shared/functions/system/ShouldAdvanceSS

boolean ShouldAdvanceSS;

Library pseudocode for shared/functions/system/ShouldSetPPEND

boolean ShouldSetPPEND;

Library pseudocode for shared/functions/system/SmallestTranslationGranule

// SmallestTranslationGranule()
// ============================
// Smallest implemented translation granule.

integer SmallestTranslationGranule()
if boolean IMPLEMENTATION_DEFINED "Has 4K Translation Granule" then return 12;
if boolean IMPLEMENTATION_DEFINED "Has 16K Translation Granule" then return 14;
if boolean IMPLEMENTATION_DEFINED "Has 64K Translation Granule" then return 16;

Library pseudocode for shared/functions/system/SpeculationBarrier

// SpeculationBarrier()
// ====================

SpeculationBarrier();

Library pseudocode for shared/functions/system/SyncCounterOverflowed

boolean SyncCounterOverflowed;

Library pseudocode for shared/functions/system/SynchronizeContext

// SynchronizeContext()
// ====================

SynchronizeContext();

Library pseudocode for shared/functions/system/SynchronizeErrors

// SynchronizeErrors()
// ===================
// Implements the error synchronization event.

SynchronizeErrors();

Library pseudocode for shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts

// TakeUnmaskedPhysicalSErrorInterrupts()
// ======================================
// Take any pending unmasked physical SError interrupt.

TakeUnmaskedPhysicalSErrorInterrupts(boolean iesb_req);

Shared Pseudocode Functions Page 2152

Library pseudocode for shared/functions/system/TakeUnmaskedSErrorInterrupts

// TakeUnmaskedSErrorInterrupts()
// ==============================
// Take any pending unmasked physical SError interrupt or unmasked virtual SError
// interrupt.

TakeUnmaskedSErrorInterrupts();

Library pseudocode for shared/functions/system/ThisInstr

// ThisInstr()
// ===========

bits(32) ThisInstr();

Library pseudocode for shared/functions/system/ThisInstrLength

// ThisInstrLength()
// =================

integer ThisInstrLength();

Library pseudocode for shared/functions/system/Unreachable

// Unreachable()
// =============

Unreachable()
assert FALSE;

Library pseudocode for shared/functions/system/UsingAArch32

// UsingAArch32()
// ==============
// Return TRUE if the current Exception level is using AArch32, FALSE if using AArch64.

boolean UsingAArch32()
boolean aarch32 = (PSTATE.nRW == '1');
if !HaveAArch32() then assert !aarch32;
if !HaveAArch64() then assert aarch32;
return aarch32;

Library pseudocode for shared/functions/system/ValidSecurityStateAtEL

// ValidSecurityStateAtEL()
// ========================
// Returns TRUE if the current settings and architecture choices for this
// implementation permit a valid Security state at the indicated EL.

boolean ValidSecurityStateAtEL(bits(2) el)
if !HaveEL(el) then

return FALSE;

if el == EL3 then
return TRUE;

if HaveRME() then
bits(2) effective_nse_ns = SCR_EL3.NSE : EffectiveSCR_EL3_NS();
if effective_nse_ns == '10' then

return FALSE;

if el == EL2 then
return EL2Enabled();

return TRUE;

Shared Pseudocode Functions Page 2153

Library pseudocode for shared/functions/system/VirtualFIQPending

// VirtualFIQPending()
// ===================
// Returns TRUE if there is any pending virtual FIQ.

boolean VirtualFIQPending();

Library pseudocode for shared/functions/system/VirtualIRQPending

// VirtualIRQPending()
// ===================
// Returns TRUE if there is any pending virtual IRQ.

boolean VirtualIRQPending();

Library pseudocode for shared/functions/system/WFxType

// WFxType
// =======
// WFx instruction types.

enumeration WFxType {WFxType_WFE, WFxType_WFI, WFxType_WFET, WFxType_WFIT};

Library pseudocode for shared/functions/system/WaitForEvent

// WaitForEvent()
// ==============
// PE optionally suspends execution until one of the following occurs:
// - A WFE wakeup event.
// - A reset.
// - The implementation chooses to resume execution.
// - A Wait for Event with Timeout (WFET) is executing, and a local timeout event occurs
// It is IMPLEMENTATION DEFINED whether restarting execution after the period of
// suspension causes the Event Register to be cleared.

WaitForEvent(integer localtimeout)
if !(IsEventRegisterSet() || (HaveFeatWFxT() && LocalTimeoutEvent(localtimeout))) then

EnterLowPowerState();
return;

Library pseudocode for shared/functions/system/WaitForInterrupt

// WaitForInterrupt()
// ==================
// PE optionally suspends execution until one of the following occurs:
// - A WFI wakeup event.
// - A reset.
// - The implementation chooses to resume execution.
// - A Wait for Interrupt with Timeout (WFIT) is executing, and a local timeout event occurs.

WaitForInterrupt(integer localtimeout)
if !(HaveFeatWFxT() && LocalTimeoutEvent(localtimeout)) then

EnterLowPowerState();
return;

Shared Pseudocode Functions Page 2154

Library pseudocode for shared/functions/system/WatchpointRelatedSyndrome

// WatchpointRelatedSyndrome()
// ===========================
// Update common Watchpoint related fields.

bits(24) WatchpointRelatedSyndrome(FaultRecord fault, bits(64) vaddress)
bits(24) syndrome = Zeros(24);

if fault.maybe_false_match then
syndrome<16> = '1';

else
syndrome<16> = bit IMPLEMENTATION_DEFINED "WPF value on TRUE Watchpoint match";

if IsSVEAccess(fault.accessdesc) || IsSMEAccess(fault.accessdesc) then
if HaltOnBreakpointOrWatchpoint() then

if boolean IMPLEMENTATION_DEFINED "EDWAR is not valid on watchpoint debug event" then
syndrome<10> = '1'; // FnV

else
if boolean IMPLEMENTATION_DEFINED "FAR is not valid on watchpoint exception" then

syndrome<10> = '1'; // FnV
else

if WatchpointFARNotPrecise(fault) then
syndrome<15> = '1'; // FnP

// Watchpoint number is valid if FEAT_Debugv8p9 is implemented or
// if Feat_Debugv8p2 is implemented and below set of conditions are satisfied:
// - Either FnV = 1 or FnP = 1.
// - If the address recorded in FAR is not within a naturally-aligned block of memory.
// Otherwise , it is IMPLEMENTATION DEFINED if watchpoint number is valid.
if Havev8p9Debug() then

syndrome<17> = '1'; // WPTV
syndrome<23:18> = fault.watchpt_num<5:0>; // WPT

elsif HaveV82Debug() then
if syndrome<15> == '1' || syndrome<10> == '1' then // Either of FnP or FnV is 1

syndrome<17> = '1'; // WPTV
elsif AddressNotInNaturallyAlignedBlock(vaddress) then

syndrome<17> = '1'; // WPTV
elsif boolean IMPLEMENTATION_DEFINED "WPTV field is valid" then

syndrome<17> = '1';
if syndrome<17> == '1' then

syndrome<23:18> = fault.watchpt_num<5:0>; // WPT
else

syndrome<23:18> = bits(6) UNKNOWN;

return syndrome;

Library pseudocode for shared/functions/unpredictable/ConstrainUnpredictable

// ConstrainUnpredictable()
// ========================
// Return the appropriate Constraint result to control the caller's behavior.
// The return value is IMPLEMENTATION DEFINED within a permitted list for each
// UNPREDICTABLE case.
// (The permitted list is determined by an assert or case statement at the call site.)

Constraint ConstrainUnpredictable(Unpredictable which);

Shared Pseudocode Functions Page 2155

Library pseudocode for shared/functions/unpredictable/ConstrainUnpredictableBits

// ConstrainUnpredictableBits()
// ============================

// This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
// If the result is Constraint_UNKNOWN then the function also returns UNKNOWN value, but that
// value is always an allocated value; that is, one for which the behavior is not itself
// CONSTRAINED.

(Constraint,bits(width)) ConstrainUnpredictableBits(Unpredictable which, integer width);

Library pseudocode for shared/functions/unpredictable/ConstrainUnpredictableBool

// ConstrainUnpredictableBool()
// ============================
// This is a variant of the ConstrainUnpredictable function where the result is either
// Constraint_TRUE or Constraint_FALSE.

boolean ConstrainUnpredictableBool(Unpredictable which);

Library pseudocode for shared/functions/unpredictable/ConstrainUnpredictableInteger

// ConstrainUnpredictableInteger()
// ===============================
// This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
// If the result is Constraint_UNKNOWN then the function also returns an UNKNOWN
// value in the range low to high, inclusive.

(Constraint,integer) ConstrainUnpredictableInteger(integer low, integer high,
Unpredictable which);

Library pseudocode for shared/functions/unpredictable/ConstrainUnpredictableProcedure

// ConstrainUnpredictableProcedure()
// =================================
// This is a variant of ConstrainUnpredictable that implements a Constrained
// Unpredictable behavior for a given Unpredictable situation.
// The behavior is within permitted behaviors for a given Unpredictable situation,
// these are documented in the textual part of the architecture specification.
//
// This function is expected to be refined in an IMPLEMENTATION DEFINED manner.
// The details of possible outcomes may not be present in the code and must be interpreted
// for each use with respect to the CONSTRAINED UNPREDICTABLE specifications
// for the specific area.

ConstrainUnpredictableProcedure(Unpredictable which);

Shared Pseudocode Functions Page 2156

Library pseudocode for shared/functions/unpredictable/Constraint

// Constraint
// ==========
// List of Constrained Unpredictable behaviors.

enumeration Constraint {// General
Constraint_NONE, // Instruction executes with

// no change or side-effect
// to its described behavior

Constraint_UNKNOWN, // Destination register
// has UNKNOWN value

Constraint_UNDEF, // Instruction is UNDEFINED
Constraint_UNDEFEL0, // Instruction is UNDEFINED at EL0 only
Constraint_NOP, // Instruction executes as NOP
Constraint_TRUE,
Constraint_FALSE,
Constraint_DISABLED,
Constraint_UNCOND, // Instruction executes unconditionally
Constraint_COND, // Instruction executes conditionally
Constraint_ADDITIONAL_DECODE, // Instruction executes

// with additional decode
// Load-store
Constraint_WBSUPPRESS,
Constraint_FAULT,
Constraint_LIMITED_ATOMICITY, // Accesses are not

// single-copy atomic
// above the byte level

Constraint_NVNV1_00,
Constraint_NVNV1_01,
Constraint_NVNV1_11,
Constraint_EL1TIMESTAMP, // Constrain to Virtual Timestamp
Constraint_EL2TIMESTAMP, // Constrain to Virtual Timestamp
Constraint_OSH, // Constrain to Outer Shareable
Constraint_ISH, // Constrain to Inner Shareable
Constraint_NSH, // Constrain to Nonshareable

Constraint_NC, // Constrain to Noncacheable
Constraint_WT, // Constrain to Writethrough
Constraint_WB, // Constrain to Writeback

// IPA too large
Constraint_FORCE, Constraint_FORCENOSLCHECK,
// An unallocated System register value maps onto an allocated value
Constraint_MAPTOALLOCATED,
// PMSCR_PCT reserved values select Virtual timestamp
Constraint_PMSCR_PCT_VIRT

};

Shared Pseudocode Functions Page 2157

Library pseudocode for shared/functions/unpredictable/Unpredictable

Shared Pseudocode Functions Page 2158

// Unpredictable
// =============
// List of Constrained Unpredictable situations.

enumeration Unpredictable {
// VMSR on MVFR
Unpredictable_VMSR,
// Writeback/transfer register overlap (load)
Unpredictable_WBOVERLAPLD,
// Writeback/transfer register overlap (store)
Unpredictable_WBOVERLAPST,
// Load Pair transfer register overlap
Unpredictable_LDPOVERLAP,
// Store-exclusive base/status register overlap
Unpredictable_BASEOVERLAP,
// Store-exclusive data/status register overlap
Unpredictable_DATAOVERLAP,
// Load-store alignment checks
Unpredictable_DEVPAGE2,
// Instruction fetch from Device memory
Unpredictable_INSTRDEVICE,
// Reserved CPACR value
Unpredictable_RESCPACR,
// Reserved MAIR value
Unpredictable_RESMAIR,
// Effect of SCTLR_ELx.C on Tagged attribute
Unpredictable_S1CTAGGED,
// Reserved Stage 2 MemAttr value
Unpredictable_S2RESMEMATTR,
// Reserved TEX:C:B value
Unpredictable_RESTEXCB,
// Reserved PRRR value
Unpredictable_RESPRRR,
// Reserved DACR field
Unpredictable_RESDACR,
// Reserved VTCR.S value
Unpredictable_RESVTCRS,
// Reserved TCR.TnSZ value
Unpredictable_RESTnSZ,
// Reserved SCTLR_ELx.TCF value
Unpredictable_RESTCF,
// Tag stored to Device memory
Unpredictable_DEVICETAGSTORE,
// Out-of-range TCR.TnSZ value
Unpredictable_OORTnSZ,

// IPA size exceeds PA size
Unpredictable_LARGEIPA,
// Syndrome for a known-passing conditional A32 instruction
Unpredictable_ESRCONDPASS,
// Illegal State exception: zero PSTATE.IT
Unpredictable_ILZEROIT,
// Illegal State exception: zero PSTATE.T
Unpredictable_ILZEROT,
// Debug: prioritization of Vector Catch
Unpredictable_BPVECTORCATCHPRI,
// Debug Vector Catch: match on 2nd halfword
Unpredictable_VCMATCHHALF,
// Debug Vector Catch: match on Data Abort
// or Prefetch abort
Unpredictable_VCMATCHDAPA,
// Debug watchpoints: nonzero MASK and non-ones BAS
Unpredictable_WPMASKANDBAS,
// Debug watchpoints: non-contiguous BAS
Unpredictable_WPBASCONTIGUOUS,
// Debug watchpoints: reserved MASK
Unpredictable_RESWPMASK,
// Debug watchpoints: nonzero MASKed bits of address
Unpredictable_WPMASKEDBITS,
// Debug breakpoints and watchpoints: reserved control bits

Shared Pseudocode Functions Page 2159

Unpredictable_RESBPWPCTRL,
// Debug breakpoints: not implemented
Unpredictable_BPNOTIMPL,
// Debug breakpoints: reserved type
Unpredictable_RESBPTYPE,
// Debug breakpoints and watchpoints: reserved MDSELR_EL1.BANK
Unpredictable_RESMDSELR,
// Debug breakpoints: not-context-aware breakpoint
Unpredictable_BPNOTCTXCMP,
// Debug breakpoints: match on 2nd halfword of instruction
Unpredictable_BPMATCHHALF,
// Debug breakpoints: mismatch on 2nd halfword of instruction
Unpredictable_BPMISMATCHHALF,
// Debug breakpoints: a breakpoint is linked to that is not
// programmed with linking enabled
Unpredictable_BPLINKINGDISABLED,
// Debug breakpoints: reserved MASK
Unpredictable_RESBPMASK,
// Debug breakpoints: MASK is set for a Context matching
// breakpoint or when DBGBCR_EL1[n].BAS != '1111'
Unpredictable_BPMASK,
// Debug breakpoints: nonzero MASKed bits of address
Unpredictable_BPMASKEDBITS,
// Debug breakpoints: A linked breakpoint is
// linked to an address matching breakpoint
Unpredictable_BPLINKEDADDRMATCH,
// Debug: restart to a misaligned AArch32 PC value
Unpredictable_RESTARTALIGNPC,
// Debug: restart to a not-zero-extended AArch32 PC value
Unpredictable_RESTARTZEROUPPERPC,
// Zero top 32 bits of X registers in AArch32 state
Unpredictable_ZEROUPPER,
// Zero top 32 bits of PC on illegal return to
// AArch32 state
Unpredictable_ERETZEROUPPERPC,
// Force address to be aligned when interworking
// branch to A32 state
Unpredictable_A32FORCEALIGNPC,
// SMC disabled
Unpredictable_SMD,
// FF speculation
Unpredictable_NONFAULT,
// Zero top bits of Z registers in EL change
Unpredictable_SVEZEROUPPER,
// Load mem data in NF loads
Unpredictable_SVELDNFDATA,
// Write zeros in NF loads
Unpredictable_SVELDNFZERO,
// SP alignment fault when predicate is all zero
Unpredictable_CHECKSPNONEACTIVE,
// Zero top bits of ZA registers in EL change
Unpredictable_SMEZEROUPPER,
// Watchpoint match of last rounded up memory access in case of
// 16 byte rounding
Unpredictable_16BYTEROUNDEDUPACCESS,
// Watchpoint match of first rounded down memory access in case of
// 16 byte rounding
Unpredictable_16BYTEROUNDEDDOWNACCESS,
// HCR_EL2.<NV,NV1> == '01'
Unpredictable_NVNV1,
// Reserved shareability encoding
Unpredictable_Shareability,
// Access Flag Update by HW
Unpredictable_AFUPDATE,
// Dirty Bit State Update by HW
Unpredictable_DBUPDATE,
// Consider SCTLR_ELx[].IESB in Debug state
Unpredictable_IESBinDebug,
// Bad settings for PMSFCR_EL1/PMSEVFR_EL1/PMSLATFR_EL1
Unpredictable_BADPMSFCR,

Shared Pseudocode Functions Page 2160

// Zero saved BType value in SPSR_ELx/DPSR_EL0
Unpredictable_ZEROBTYPE,
// Timestamp constrained to virtual or physical
Unpredictable_EL2TIMESTAMP,
Unpredictable_EL1TIMESTAMP,
// Reserved MDCR_EL3.<NSTBE,NSTB> or MDCR_EL3.<NSPBE,NSPB> value
Unpredictable_RESERVEDNSxB,

// WFET or WFIT instruction in Debug state
Unpredictable_WFxTDEBUG,
// Address does not support LS64 instructions
Unpredictable_LS64UNSUPPORTED,
// Misaligned exclusives, atomics, acquire/release
// to region that is not Normal Cacheable WB
Unpredictable_MISALIGNEDATOMIC,
// 128-bit Atomic or 128-bit RCW{S} transfer register overlap
Unpredictable_LSE128OVERLAP,
// Clearing DCC/ITR sticky flags when instruction is in flight
Unpredictable_CLEARERRITEZERO,
// ALUEXCEPTIONRETURN when in user/system mode in
// A32 instructions
Unpredictable_ALUEXCEPTIONRETURN,
// Trap to register in debug state are ignored
Unpredictable_IGNORETRAPINDEBUG,
// Compare DBGBVR.RESS for BP/WP
Unpredictable_DBGxVR_RESS,
// Inaccessible event counter
Unpredictable_PMUEVENTCOUNTER,
// Reserved PMSCR.PCT behavior
Unpredictable_PMSCR_PCT,
// MDCR_EL2.HPMN or HDCR.HPMN is larger than PMCR.N or
// FEAT_HPMN0 is not implemented and HPMN is 0.
Unpredictable_CounterReservedForEL2,
// Generate BRB_FILTRATE event on BRB injection
Unpredictable_BRBFILTRATE,
// Generate PMU_SNAPSHOT event in Debug state
Unpredictable_PMUSNAPSHOTEVENT,
// Reserved MDCR_EL3.EPMSSAD value
Unpredictable_RESEPMSSAD,
// Reserved PMECR_EL1.SSE value
Unpredictable_RESPMSSE,
// Enable for PMU exception and PMUIRQ
Unpredictable_RESPMEE,
// Operands for CPY*/SET* instructions overlap or
// use 0b11111 as a register specifier
Unpredictable_MOPSOVERLAP31,
// Store-only Tag checking on a failed Atomic Compare and Swap
Unpredictable_STOREONLYTAGCHECKEDCAS,
// Reserved MDCR_EL3.ETBAD value
Unpredictable_RES_ETBAD,
// accessing DBGDSCRint via MRC in debug state
Unpredictable_MRC_APSR_TARGET,
// Reserved PMEVTYPER<n>_EL0.TC value
Unpredictable_RESTC

};

Shared Pseudocode Functions Page 2161

Library pseudocode for shared/functions/vector/AdvSIMDExpandImm

// AdvSIMDExpandImm()
// ==================

bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)
bits(64) imm64;
case cmode<3:1> of

when '000'
imm64 = Replicate(Zeros(24):imm8, 2);

when '001'
imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);

when '010'
imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);

when '011'
imm64 = Replicate(imm8:Zeros(24), 2);

when '100'
imm64 = Replicate(Zeros(8):imm8, 4);

when '101'
imm64 = Replicate(imm8:Zeros(8), 4);

when '110'
if cmode<0> == '0' then

imm64 = Replicate(Zeros(16):imm8:Ones(8), 2);
else

imm64 = Replicate(Zeros(8):imm8:Ones(16), 2);
when '111'

if cmode<0> == '0' && op == '0' then
imm64 = Replicate(imm8, 8);

if cmode<0> == '0' && op == '1' then
imm8a = Replicate(imm8<7>, 8); imm8b = Replicate(imm8<6>, 8);
imm8c = Replicate(imm8<5>, 8); imm8d = Replicate(imm8<4>, 8);
imm8e = Replicate(imm8<3>, 8); imm8f = Replicate(imm8<2>, 8);
imm8g = Replicate(imm8<1>, 8); imm8h = Replicate(imm8<0>, 8);
imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;

if cmode<0> == '1' && op == '0' then
imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
imm64 = Replicate(imm32, 2);

if cmode<0> == '1' && op == '1' then
if UsingAArch32() then ReservedEncoding();
imm64 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);

return imm64;

Library pseudocode for shared/functions/vector/MatMulAdd

// MatMulAdd()
// ===========
//
// Signed or unsigned 8-bit integer matrix multiply and add to 32-bit integer matrix
// result[2, 2] = addend[2, 2] + (op1[2, 8] * op2[8, 2])

bits(N) MatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, boolean op1_unsigned,
boolean op2_unsigned)

assert N == 128;

bits(N) result;
bits(32) sum;
integer prod;

for i = 0 to 1
for j = 0 to 1

sum = Elem[addend, 2*i + j, 32];
for k = 0 to 7

prod = (Int(Elem[op1, 8*i + k, 8], op1_unsigned) *
Int(Elem[op2, 8*j + k, 8], op2_unsigned));

sum = sum + prod;
Elem[result, 2*i + j, 32] = sum;

return result;

Shared Pseudocode Functions Page 2162

Library pseudocode for shared/functions/vector/PolynomialMult

// PolynomialMult()
// ================

bits(M+N) PolynomialMult(bits(M) op1, bits(N) op2)
result = Zeros(M+N);
extended_op2 = ZeroExtend(op2, M+N);
for i=0 to M-1

if op1<i> == '1' then
result = result EOR LSL(extended_op2, i);

return result;

Library pseudocode for shared/functions/vector/SatQ

// SatQ()
// ======

(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
(result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
return (result, sat);

Library pseudocode for shared/functions/vector/SignedSatQ

// SignedSatQ()
// ============

(bits(N), boolean) SignedSatQ(integer i, integer N)
integer result;
boolean saturated;
if i > 2^(N-1) - 1 then

result = 2^(N-1) - 1; saturated = TRUE;
elsif i < -(2^(N-1)) then

result = -(2^(N-1)); saturated = TRUE;
else

result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

Library pseudocode for shared/functions/vector/UnsignedRSqrtEstimate

// UnsignedRSqrtEstimate()
// =======================

bits(N) UnsignedRSqrtEstimate(bits(N) operand)
assert N == 32;
bits(N) result;
if operand<N-1:N-2> == '00' then // Operands <= 0x3FFFFFFF produce 0xFFFFFFFF

result = Ones(N);
else

// input is in the range 0x40000000 .. 0xffffffff representing [0.25 .. 1.0)
// estimate is in the range 256 .. 511 representing [1.0 .. 2.0)
increasedprecision = FALSE;
estimate = RecipSqrtEstimate(UInt(operand<31:23>), increasedprecision);
// result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
result = estimate<8:0> : Zeros(N-9);

return result;

Shared Pseudocode Functions Page 2163

Library pseudocode for shared/functions/vector/UnsignedRecipEstimate

// UnsignedRecipEstimate()
// =======================

bits(N) UnsignedRecipEstimate(bits(N) operand)
assert N == 32;
bits(N) result;
if operand<N-1> == '0' then // Operands <= 0x7FFFFFFF produce 0xFFFFFFFF

result = Ones(N);
else

// input is in the range 0x80000000 .. 0xffffffff representing [0.5 .. 1.0)

// estimate is in the range 256 to 511 representing [1.0 .. 2.0)
increasedprecision = FALSE;
estimate = RecipEstimate(UInt(operand<31:23>), increasedprecision);

// result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
result = estimate<8:0> : Zeros(N-9);

return result;

Library pseudocode for shared/functions/vector/UnsignedSatQ

// UnsignedSatQ()
// ==============

(bits(N), boolean) UnsignedSatQ(integer i, integer N)
integer result;
boolean saturated;
if i > 2^N - 1 then

result = 2^N - 1; saturated = TRUE;
elsif i < 0 then

result = 0; saturated = TRUE;
else

result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

Library pseudocode for shared/trace/Common/DebugMemWrite

// DebugMemWrite()
// ===============
// Write data to memory one byte at a time. Starting at the passed virtual address.
// Used by SPE.

(PhysMemRetStatus, AddressDescriptor) DebugMemWrite(bits(64) vaddress, AccessDescriptor accdesc,
boolean aligned, bits(8) data)

PhysMemRetStatus memstatus = PhysMemRetStatus UNKNOWN;

// Translate virtual address
AddressDescriptor addrdesc;
integer size = 1;
addrdesc = AArch64.TranslateAddress(vaddress, accdesc, aligned, size);

if IsFault(addrdesc) then
return (memstatus, addrdesc);

memstatus = PhysMemWrite(addrdesc, 1, accdesc, data);

return (memstatus, addrdesc);

Shared Pseudocode Functions Page 2164

Library pseudocode for shared/trace/Common/DebugWriteExternalAbort

Shared Pseudocode Functions Page 2165

// DebugWriteExternalAbort()
// =========================
// Populate the syndrome register for an External abort caused by a call of DebugMemWrite().

DebugWriteExternalAbort(PhysMemRetStatus memstatus, AddressDescriptor addrdesc,
bits(64) start_vaddr)

boolean iswrite = TRUE;

boolean handle_as_SError = FALSE;
boolean async_external_abort = FALSE;
bits(64) syndrome;
case addrdesc.fault.accessdesc.acctype of

when AccessType_SPE
handle_as_SError = boolean IMPLEMENTATION_DEFINED "SPE SyncExternal as SError";
async_external_abort = boolean IMPLEMENTATION_DEFINED "SPE async External abort";
syndrome = PMBSR_EL1<63:0>;

otherwise
Unreachable();

boolean ttw_abort;
ttw_abort = addrdesc.fault.statuscode IN {Fault_SyncExternalOnWalk,

Fault_SyncParityOnWalk};
Fault statuscode = if ttw_abort then addrdesc.fault.statuscode else memstatus.statuscode;
bit extflag = if ttw_abort then addrdesc.fault.extflag else memstatus.extflag;
if (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity} || handle_as_SError) then

// ASYNC Fault -> SError or SYNC Fault handled as SError
FaultRecord fault = NoFault();
boolean parity = statuscode IN {Fault_SyncParity, Fault_AsyncParity,

Fault_SyncParityOnWalk};
fault.statuscode = if parity then Fault_AsyncParity else Fault_AsyncExternal;
if HaveRASExt() then

fault.merrorstate = memstatus.merrorstate;
fault.extflag = extflag;
fault.accessdesc.acctype = addrdesc.fault.accessdesc.acctype;
PendSErrorInterrupt(fault);

else
// SYNC Fault, not handled by SError
// Generate Buffer Management Event
// EA bit
syndrome<18> = '1';

// DL bit for SPE
if addrdesc.fault.accessdesc.acctype == AccessType_SPE && (async_external_abort ||

(start_vaddr != addrdesc.vaddress)) then
syndrome<19> = '1';

// Do not change following values if previous Buffer Management Event
// has not been handled.
// S bit
if IsZero(syndrome<17>) then

syndrome<17> = '1';

// EC bits
bits(6) ec;
if (HaveRME() && addrdesc.fault.gpcf.gpf != GPCF_None &&

addrdesc.fault.gpcf.gpf != GPCF_Fail) then
ec = '011110';

else
ec = if addrdesc.fault.secondstage then '100101' else '100100';

syndrome<31:26> = ec;

// MSS bits
if async_external_abort then

syndrome<15:0> = Zeros(10) : '010001';
else

syndrome<15:0> = Zeros(10) : EncodeLDFSC(statuscode, addrdesc.fault.level);

case addrdesc.fault.accessdesc.acctype of
when AccessType_SPE

Shared Pseudocode Functions Page 2166

PMBSR_EL1<63:0> = syndrome;
otherwise

Unreachable();

Library pseudocode for shared/trace/Common/DebugWriteFault

// DebugWriteFault()
// =================
// Populate the syndrome register for a Translation fault caused by a call of DebugMemWrite().

DebugWriteFault(bits(64) vaddress, FaultRecord fault)
bits(64) syndrome;
case fault.accessdesc.acctype of

when AccessType_SPE
syndrome = PMBSR_EL1<63:0>;

otherwise
Unreachable();

// MSS
syndrome<15:0> = Zeros(10) : EncodeLDFSC(fault.statuscode, fault.level);

// MSS2
syndrome<55:32> = Zeros(24);

// EC bits
bits(6) ec;
if HaveRME() && fault.gpcf.gpf != GPCF_None && fault.gpcf.gpf != GPCF_Fail then

ec = '011110';
else

ec = if fault.secondstage then '100101' else '100100';
syndrome<31:26> = ec;

// S bit
syndrome<17> = '1';

if fault.statuscode == Fault_Permission then
// assuredonly bit
syndrome<39> = if fault.assuredonly then '1' else '0';
// overlay bit
syndrome<38> = if fault.overlay then '1' else '0';
// dirtybit
syndrome<37> = if fault.dirtybit then '1' else '0';

case fault.accessdesc.acctype of
when AccessType_SPE

PMBSR_EL1<63:0> = syndrome;
otherwise

Unreachable();

// Buffer Write Pointer already points to the address that generated the fault.
// Writing to memory never started so no data loss. DL is unchanged.

return;

Shared Pseudocode Functions Page 2167

Library pseudocode for shared/trace/Common/GetTimestamp

// GetTimestamp()
// ==============
// Returns the Timestamp depending on the type

bits(64) GetTimestamp(TimeStamp timeStampType)
case timeStampType of

when TimeStamp_Physical
return PhysicalCountInt();

when TimeStamp_Virtual
return PhysicalCountInt() - CNTVOFF_EL2;

when TimeStamp_OffsetPhysical
bits(64) physoff = if PhysicalOffsetIsValid() then CNTPOFF_EL2 else Zeros(64);
return PhysicalCountInt() - physoff;

when TimeStamp_None
return Zeros(64);

when TimeStamp_CoreSight
return bits(64) IMPLEMENTATION_DEFINED "CoreSight timestamp";

otherwise
Unreachable();

Library pseudocode for shared/trace/Common/PhysicalOffsetIsValid

// PhysicalOffsetIsValid()
// =======================
// Returns whether the Physical offset for the timestamp is valid

boolean PhysicalOffsetIsValid()
if !HaveAArch64() then

return FALSE;
elsif !HaveEL(EL2) || !HaveECVExt() then

return FALSE;
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && EffectiveSCR_EL3_RW() == '0' then

return FALSE;
elsif HaveEL(EL3) && SCR_EL3.ECVEn == '0' then

return FALSE;
elsif CNTHCTL_EL2.ECV == '0' then

return FALSE;
else

return TRUE;

Library pseudocode for shared/trace/TraceBranch/BranchNotTaken

// BranchNotTaken()
// ================
// Called when a branch is not taken.

BranchNotTaken(BranchType branchtype, boolean branch_conditional)
boolean branchtaken = FALSE;
if HaveStatisticalProfiling() then

SPEBranch(bits(64) UNKNOWN, branchtype, branch_conditional, branchtaken);
return;

Shared Pseudocode Functions Page 2168

Library pseudocode for shared/trace/TraceBuffer/AllowExternalTraceBufferAccess

// AllowExternalTraceBufferAccess()
// ================================
// Returns TRUE if an external debug interface access to the Trace Buffer
// registers is allowed, FALSE otherwise.
// The access may also be subject to OS Lock, power-down, etc.

boolean AllowExternalTraceBufferAccess()
return AllowExternalTraceBufferAccess(AccessState());

// AllowExternalTraceBufferAccess()
// ================================
// Returns TRUE if an external debug interface access to the Trace Buffer
// registers is allowed for the given Security state, FALSE otherwise.
// The access may also be subject to OS Lock, power-down, etc.

boolean AllowExternalTraceBufferAccess(SecurityState access_state)
assert IsFeatureImplemented(FEAT_TRBE_EXT);
assert IsFeatureImplemented(FEAT_Debugv8p4); // Required when Trace Buffer implemented

bits(2) etbad = if HaveEL(EL3) then MDCR_EL3.ETBAD else '11';

// Check for reserved values
if !IsFeatureImplemented(FEAT_RME) && etbad IN {'01','10'} then

Constraint c;
(c, etbad) = ConstrainUnpredictableBits(Unpredictable_RES_ETBAD, 2);
assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
if c == Constraint_DISABLED then return FALSE;
// Otherwise the value returned by ConstrainUnpredictableBits must be a
// not-reserved value

case etbad of
when '00'

SecurityState ss = (if IsFeatureImplemented(FEAT_RME) then SS_Root else SS_Secure);
return access_state == ss;

when '01'
return access_state IN {SS_Root, SS_Realm};

when '10'
return access_state IN {SS_Root, SS_Secure};

when '11'
return TRUE;

Library pseudocode for shared/trace/TraceBuffer/TraceBufferEnabled

// TraceBufferEnabled()
// ====================

boolean TraceBufferEnabled()
if !HaveTraceBufferExtension() || TRBLIMITR_EL1.E == '0' then

return FALSE;
if !SelfHostedTraceEnabled() then

return FALSE;
(-, el) = TraceBufferOwner();
return !ELUsingAArch32(el);

Shared Pseudocode Functions Page 2169

Library pseudocode for shared/trace/TraceBuffer/TraceBufferOwner

// TraceBufferOwner()
// ==================
// Return the owning Security state and Exception level. Must only be called
// when SelfHostedTraceEnabled() is TRUE.

(SecurityState, bits(2)) TraceBufferOwner()
assert HaveTraceBufferExtension() && SelfHostedTraceEnabled();

SecurityState owning_ss;
if HaveEL(EL3) then

bits(3) state_bits;
if HaveRME() then

state_bits = MDCR_EL3.<NSTBE,NSTB>;
if (state_bits IN {'10x'} ||

(!HaveSecureEL2Ext() && state_bits IN {'00x'})) then
// Reserved value
(-, state_bits) = ConstrainUnpredictableBits(Unpredictable_RESERVEDNSxB, 3);

else
state_bits = '0' : MDCR_EL3.NSTB;

case state_bits of
when '00x' owning_ss = SS_Secure;
when '01x' owning_ss = SS_NonSecure;
when '11x' owning_ss = SS_Realm;

else
owning_ss = if SecureOnlyImplementation() then SS_Secure else SS_NonSecure;

bits(2) owning_el;
if HaveEL(EL2) && (owning_ss != SS_Secure || IsSecureEL2Enabled()) then

owning_el = if MDCR_EL2.E2TB == '00' then EL2 else EL1;
else

owning_el = EL1;
return (owning_ss, owning_el);

Library pseudocode for shared/trace/TraceBuffer/TraceBufferRunning

// TraceBufferRunning()
// ====================

boolean TraceBufferRunning()
return TraceBufferEnabled() && TRBSR_EL1.S == '0';

Shared Pseudocode Functions Page 2170

Library pseudocode for shared/trace/TraceInstrumentationAllowed/TraceInstrumentationAllowed

// TraceInstrumentationAllowed()
// =============================
// Returns TRUE if Instrumentation Trace is allowed
// in the given Exception level and Security state.

boolean TraceInstrumentationAllowed(SecurityState ss, bits(2) el)
if !IsFeatureImplemented(FEAT_ITE) then return FALSE;
if ELUsingAArch32(el) then return FALSE;

if TraceAllowed(el) then
bit ite_bit;
case el of

when EL3 ite_bit = '0';
when EL2 ite_bit = TRCITECR_EL2.E2E;
when EL1 ite_bit = TRCITECR_EL1.E1E;
when EL0

if EffectiveTGE() == '1' then
ite_bit = TRCITECR_EL2.E0HE;

else
ite_bit = TRCITECR_EL1.E0E;

if SelfHostedTraceEnabled() then
return ite_bit == '1';

else
bit el_bit;
bit ss_bit;
case el of

when EL0 el_bit = TRCITEEDCR.E0;
when EL1 el_bit = TRCITEEDCR.E1;
when EL2 el_bit = TRCITEEDCR.E2;
when EL3 el_bit = TRCITEEDCR.E3;

case ss of
when SS_Realm ss_bit = TRCITEEDCR.RL;
when SS_Secure ss_bit = TRCITEEDCR.S;
when SS_NonSecure ss_bit = TRCITEEDCR.NS;
otherwise ss_bit = '1';

boolean ed_allowed = ss_bit == '1' && el_bit == '1';

if TRCCONFIGR.ITO == '1' then
return ed_allowed;

else
return ed_allowed && ite_bit == '1';

else
return FALSE;

Library pseudocode for shared/trace/selfhosted/EffectiveE0HTRE

// EffectiveE0HTRE()
// =================
// Returns effective E0HTRE value

bit EffectiveE0HTRE()
return if ELUsingAArch32(EL2) then HTRFCR.E0HTRE else TRFCR_EL2.E0HTRE;

Library pseudocode for shared/trace/selfhosted/EffectiveE0TRE

// EffectiveE0TRE()
// ================
// Returns effective E0TRE value

bit EffectiveE0TRE()
return if ELUsingAArch32(EL1) then TRFCR.E0TRE else TRFCR_EL1.E0TRE;

Shared Pseudocode Functions Page 2171

Library pseudocode for shared/trace/selfhosted/EffectiveE1TRE

// EffectiveE1TRE()
// ================
// Returns effective E1TRE value

bit EffectiveE1TRE()
return if UsingAArch32() then TRFCR.E1TRE else TRFCR_EL1.E1TRE;

Library pseudocode for shared/trace/selfhosted/EffectiveE2TRE

// EffectiveE2TRE()
// ================
// Returns effective E2TRE value

bit EffectiveE2TRE()
return if UsingAArch32() then HTRFCR.E2TRE else TRFCR_EL2.E2TRE;

Library pseudocode for shared/trace/selfhosted/SelfHostedTraceEnabled

// SelfHostedTraceEnabled()
// ========================
// Returns TRUE if Self-hosted Trace is enabled.

boolean SelfHostedTraceEnabled()
bit secure_trace_enable = '0';
if !(HaveTraceExt() && HaveSelfHostedTrace()) then return FALSE;
if EDSCR.TFO == '0' then return TRUE;
if HaveRME() then

secure_trace_enable = if HaveSecureEL2Ext() then MDCR_EL3.STE else '0';
return ((secure_trace_enable == '1' && !ExternalSecureNoninvasiveDebugEnabled()) ||

(MDCR_EL3.RLTE == '1' && !ExternalRealmNoninvasiveDebugEnabled()));
if HaveEL(EL3) then

secure_trace_enable = if ELUsingAArch32(EL3) then SDCR.STE else MDCR_EL3.STE;
else

secure_trace_enable = if SecureOnlyImplementation() then '1' else '0';

if secure_trace_enable == '1' && !ExternalSecureNoninvasiveDebugEnabled() then
return TRUE;

return FALSE;

Shared Pseudocode Functions Page 2172

Library pseudocode for shared/trace/selfhosted/TraceAllowed

// TraceAllowed()
// ==============
// Returns TRUE if Self-hosted Trace is allowed in the given Exception level.

boolean TraceAllowed(bits(2) el)
if !HaveTraceExt() then return FALSE;
if SelfHostedTraceEnabled() then

boolean trace_allowed;
ss = SecurityStateAtEL(el);
// Detect scenarios where tracing in this Security state is never allowed.
case ss of

when SS_NonSecure
trace_allowed = TRUE;

when SS_Secure
bit trace_bit;
if HaveEL(EL3) then

trace_bit = if ELUsingAArch32(EL3) then SDCR.STE else MDCR_EL3.STE;
else

trace_bit = '1';
trace_allowed = trace_bit == '1';

when SS_Realm
trace_allowed = MDCR_EL3.RLTE == '1';

when SS_Root
trace_allowed = FALSE;

// Tracing is prohibited if the trace buffer owning security state is not the
// current Security state or the owning Exception level is a lower Exception level.
if HaveTraceBufferExtension() && TraceBufferEnabled() then

(owning_ss, owning_el) = TraceBufferOwner();
if (ss != owning_ss || UInt(owning_el) < UInt(el) ||

(EffectiveTGE() == '1' && owning_el == EL1)) then
trace_allowed = FALSE;

bit TRE_bit;
case el of

when EL3 TRE_bit = if !HaveAArch64() then TRFCR.E1TRE else '0';
when EL2 TRE_bit = EffectiveE2TRE();
when EL1 TRE_bit = EffectiveE1TRE();
when EL0

if EffectiveTGE() == '1' then
TRE_bit = EffectiveE0HTRE();

else
TRE_bit = EffectiveE0TRE();

return trace_allowed && TRE_bit == '1';
else

return ExternalNoninvasiveDebugAllowed(el);

Library pseudocode for shared/trace/selfhosted/TraceContextIDR2

// TraceContextIDR2()
// ==================

boolean TraceContextIDR2()
if !TraceAllowed(PSTATE.EL)|| !HaveEL(EL2) then return FALSE;
return (!SelfHostedTraceEnabled() || TRFCR_EL2.CX == '1');

Library pseudocode for shared/trace/selfhosted/TraceSynchronizationBarrier

// TraceSynchronizationBarrier()
// =============================
// Memory barrier instruction that preserves the relative order of memory accesses to System
// registers due to trace operations and other memory accesses to the same registers

TraceSynchronizationBarrier();

Shared Pseudocode Functions Page 2173

Library pseudocode for shared/trace/selfhosted/TraceTimeStamp

// TraceTimeStamp()
// ================

TimeStamp TraceTimeStamp()
if SelfHostedTraceEnabled() then

if HaveEL(EL2) then
TS_el2 = TRFCR_EL2.TS;
if !HaveECVExt() && TS_el2 == '10' then

// Reserved value
(-, TS_el2) = ConstrainUnpredictableBits(Unpredictable_EL2TIMESTAMP, 2);

case TS_el2 of
when '00'

// Falls out to check TRFCR_EL1.TS
when '01'

return TimeStamp_Virtual;
when '10'

assert HaveECVExt(); // Otherwise ConstrainUnpredictableBits removes this case
return TimeStamp_OffsetPhysical;

when '11'
return TimeStamp_Physical;

TS_el1 = TRFCR_EL1.TS;
if TS_el1 == '00' || (!HaveECVExt() && TS_el1 == '10') then

// Reserved value
(-, TS_el1) = ConstrainUnpredictableBits(Unpredictable_EL1TIMESTAMP, 2);

case TS_el1 of
when '01'

return TimeStamp_Virtual;
when '10'

assert HaveECVExt();
return TimeStamp_OffsetPhysical;

when '11'
return TimeStamp_Physical;

otherwise
Unreachable(); // ConstrainUnpredictableBits removes this case

else
return TimeStamp_CoreSight;

Library pseudocode for shared/trace/system/IsTraceCorePowered

// IsTraceCorePowered()
// ====================
// Returns TRUE if the Trace Core Power Domain is powered up

boolean IsTraceCorePowered();

Library pseudocode for shared/translation/at

enumeration TranslationStage {
TranslationStage_1,
TranslationStage_12

};

enumeration ATAccess {
ATAccess_Read,
ATAccess_Write,
ATAccess_Any,
ATAccess_ReadPAN,
ATAccess_WritePAN

};

Shared Pseudocode Functions Page 2174

Library pseudocode for shared/translation/at/EncodePARAttrs

// EncodePARAttrs()
// ================
// Convert orthogonal attributes and hints to 64-bit PAR ATTR field.

bits(8) EncodePARAttrs(MemoryAttributes memattrs)
bits(8) result;

if HaveMTEExt() && memattrs.tags == MemTag_AllocationTagged then
if HaveMTEPermExt() && memattrs.notagaccess then

result<7:0> = '11100000';
else

result<7:0> = '11110000';
return result;

if memattrs.memtype == MemType_Device then
result<7:4> = '0000';
case memattrs.device of

when DeviceType_nGnRnE result<3:0> = '0000';
when DeviceType_nGnRE result<3:0> = '0100';
when DeviceType_nGRE result<3:0> = '1000';
when DeviceType_GRE result<3:0> = '1100';
otherwise Unreachable();

result<0> = NOT memattrs.xs;
else

if memattrs.xs == '0' then
if (memattrs.outer.attrs == MemAttr_WT && memattrs.inner.attrs == MemAttr_WT &&

!memattrs.outer.transient && memattrs.outer.hints == MemHint_RA) then
return '10100000';

elsif memattrs.outer.attrs == MemAttr_NC && memattrs.inner.attrs == MemAttr_NC then
return '01000000';

if memattrs.outer.attrs == MemAttr_WT then
result<7:6> = if memattrs.outer.transient then '00' else '10';
result<5:4> = memattrs.outer.hints;

elsif memattrs.outer.attrs == MemAttr_WB then
result<7:6> = if memattrs.outer.transient then '01' else '11';
result<5:4> = memattrs.outer.hints;

else // MemAttr_NC
result<7:4> = '0100';

if memattrs.inner.attrs == MemAttr_WT then
result<3:2> = if memattrs.inner.transient then '00' else '10';
result<1:0> = memattrs.inner.hints;

elsif memattrs.inner.attrs == MemAttr_WB then
result<3:2> = if memattrs.inner.transient then '01' else '11';
result<1:0> = memattrs.inner.hints;

else // MemAttr_NC
result<3:0> = '0100';

return result;

Shared Pseudocode Functions Page 2175

Library pseudocode for shared/translation/at/PAREncodeShareability

// PAREncodeShareability()
// =======================
// Derive 64-bit PAR SH field.

bits(2) PAREncodeShareability(MemoryAttributes memattrs)
if (memattrs.memtype == MemType_Device ||

(memattrs.inner.attrs == MemAttr_NC &&
memattrs.outer.attrs == MemAttr_NC)) then

// Force Outer-Shareable on Device and Normal Non-Cacheable memory
return '10';

case memattrs.shareability of
when Shareability_NSH return '00';
when Shareability_ISH return '11';
when Shareability_OSH return '10';

Library pseudocode for shared/translation/at/ReportedPARAttrs

// ReportedPARAttrs()
// ==================
// The value returned in this field can be the resulting attribute, as determined by any permitted
// implementation choices and any applicable configuration bits, instead of the value that appears
// in the translation table descriptor.

bits(8) ReportedPARAttrs(bits(8) parattrs);

Library pseudocode for shared/translation/at/ReportedPARShareability

// ReportedPARShareability()
// =========================
// The value returned in SH field can be the resulting attribute, as determined by any
// permitted implementation choices and any applicable configuration bits, instead of
// the value that appears in the translation table descriptor.

bits(2) ReportedPARShareability(bits(2) sh);

Library pseudocode for shared/translation/attrs/DecodeDevice

// DecodeDevice()
// ==============
// Decode output Device type

DeviceType DecodeDevice(bits(2) device)
case device of

when '00' return DeviceType_nGnRnE;
when '01' return DeviceType_nGnRE;
when '10' return DeviceType_nGRE;
when '11' return DeviceType_GRE;

Shared Pseudocode Functions Page 2176

Library pseudocode for shared/translation/attrs/DecodeLDFAttr

// DecodeLDFAttr()
// ===============
// Decode memory attributes using LDF (Long Descriptor Format) mapping

MemAttrHints DecodeLDFAttr(bits(4) attr)
MemAttrHints ldfattr;

if attr IN {'x0xx'} then ldfattr.attrs = MemAttr_WT; // Write-through
elsif attr == '0100' then ldfattr.attrs = MemAttr_NC; // Non-cacheable
elsif attr IN {'x1xx'} then ldfattr.attrs = MemAttr_WB; // Write-back
else Unreachable();

// Allocation hints are applicable only to cacheable memory.
if ldfattr.attrs != MemAttr_NC then

case attr<1:0> of
when '00' ldfattr.hints = MemHint_No; // No allocation hints
when '01' ldfattr.hints = MemHint_WA; // Write-allocate
when '10' ldfattr.hints = MemHint_RA; // Read-allocate
when '11' ldfattr.hints = MemHint_RWA; // Read/Write allocate

// The Transient hint applies only to cacheable memory with some allocation hints.
if ldfattr.attrs != MemAttr_NC && ldfattr.hints != MemHint_No then

ldfattr.transient = attr<3> == '0';

return ldfattr;

Library pseudocode for shared/translation/attrs/DecodeSDFAttr

// DecodeSDFAttr()
// ===============
// Decode memory attributes using SDF (Short Descriptor Format) mapping

MemAttrHints DecodeSDFAttr(bits(2) rgn)
MemAttrHints sdfattr;

case rgn of
when '00' // Non-cacheable (no allocate)

sdfattr.attrs = MemAttr_NC;
when '01' // Write-back, Read and Write allocate

sdfattr.attrs = MemAttr_WB;
sdfattr.hints = MemHint_RWA;

when '10' // Write-through, Read allocate
sdfattr.attrs = MemAttr_WT;
sdfattr.hints = MemHint_RA;

when '11' // Write-back, Read allocate
sdfattr.attrs = MemAttr_WB;
sdfattr.hints = MemHint_RA;

sdfattr.transient = FALSE;

return sdfattr;

Shared Pseudocode Functions Page 2177

Library pseudocode for shared/translation/attrs/DecodeShareability

// DecodeShareability()
// ====================
// Decode shareability of target memory region

Shareability DecodeShareability(bits(2) sh)
case sh of

when '10' return Shareability_OSH;
when '11' return Shareability_ISH;
when '00' return Shareability_NSH;
otherwise

case ConstrainUnpredictable(Unpredictable_Shareability) of
when Constraint_OSH return Shareability_OSH;
when Constraint_ISH return Shareability_ISH;
when Constraint_NSH return Shareability_NSH;

Library pseudocode for shared/translation/attrs/EffectiveShareability

// EffectiveShareability()
// =======================
// Force Outer Shareability on Device and Normal iNCoNC memory

Shareability EffectiveShareability(MemoryAttributes memattrs)
if (memattrs.memtype == MemType_Device ||

(memattrs.inner.attrs == MemAttr_NC &&
memattrs.outer.attrs == MemAttr_NC)) then

return Shareability_OSH;
else

return memattrs.shareability;

Library pseudocode for shared/translation/attrs/NormalNCMemAttr

// NormalNCMemAttr()
// =================
// Normal Non-cacheable memory attributes

MemoryAttributes NormalNCMemAttr()
MemAttrHints non_cacheable;
non_cacheable.attrs = MemAttr_NC;

MemoryAttributes nc_memattrs;
nc_memattrs.memtype = MemType_Normal;
nc_memattrs.outer = non_cacheable;
nc_memattrs.inner = non_cacheable;
nc_memattrs.shareability = Shareability_OSH;
nc_memattrs.tags = MemTag_Untagged;
nc_memattrs.notagaccess = FALSE;

return nc_memattrs;

Library pseudocode for shared/translation/attrs/S1ConstrainUnpredictableRESMAIR

// S1ConstrainUnpredictableRESMAIR()
// =================================
// Determine whether a reserved value occupies MAIR_ELx.AttrN

boolean S1ConstrainUnpredictableRESMAIR(bits(8) attr, boolean s1aarch64)
case attr of

when '0000xx01' return !(s1aarch64 && HaveFeatXS());
when '0000xxxx' return attr<1:0> != '00';
when '01000000' return !(s1aarch64 && HaveFeatXS());
when '10100000' return !(s1aarch64 && HaveFeatXS());
when '11110000' return !(s1aarch64 && HaveMTE2Ext());
when 'xxxx0000' return TRUE;
otherwise return FALSE;

Shared Pseudocode Functions Page 2178

Library pseudocode for shared/translation/attrs/S1DecodeMemAttrs

// S1DecodeMemAttrs()
// ==================
// Decode MAIR-format memory attributes assigned in stage 1

MemoryAttributes S1DecodeMemAttrs(bits(8) attr_in, bits(2) sh, boolean s1aarch64,
S1TTWParams walkparams)

bits(8) attr = attr_in;
if S1ConstrainUnpredictableRESMAIR(attr, s1aarch64) then

(-, attr) = ConstrainUnpredictableBits(Unpredictable_RESMAIR, 8);

MemoryAttributes memattrs;
case attr of

when '0000xxxx' // Device memory
memattrs.memtype = MemType_Device;
memattrs.device = DecodeDevice(attr<3:2>);
memattrs.xs = if s1aarch64 then NOT attr<0> else '1';

when '01000000'
assert s1aarch64 && HaveFeatXS();
memattrs.memtype = MemType_Normal;
memattrs.outer.attrs = MemAttr_NC;
memattrs.inner.attrs = MemAttr_NC;
memattrs.xs = '0';

when '10100000'
assert s1aarch64 && HaveFeatXS();
memattrs.memtype = MemType_Normal;
memattrs.outer.attrs = MemAttr_WT;
memattrs.outer.hints = MemHint_RA;
memattrs.outer.transient = FALSE;
memattrs.inner.attrs = MemAttr_WT;
memattrs.inner.hints = MemHint_RA;
memattrs.inner.transient = FALSE;
memattrs.xs = '0';

when '11110000' // Tagged memory
assert s1aarch64 && HaveMTE2Ext();
memattrs.memtype = MemType_Normal;
memattrs.outer.attrs = MemAttr_WB;
memattrs.outer.hints = MemHint_RWA;
memattrs.outer.transient = FALSE;
memattrs.inner.attrs = MemAttr_WB;
memattrs.inner.hints = MemHint_RWA;
memattrs.inner.transient = FALSE;
memattrs.xs = '0';

otherwise
memattrs.memtype = MemType_Normal;
memattrs.outer = DecodeLDFAttr(attr<7:4>);
memattrs.inner = DecodeLDFAttr(attr<3:0>);

if (memattrs.inner.attrs == MemAttr_WB &&
memattrs.outer.attrs == MemAttr_WB) then

memattrs.xs = '0';
else

memattrs.xs = '1';

if s1aarch64 && attr IN {'11110000'} then
memattrs.tags = MemTag_AllocationTagged;

elsif s1aarch64 && walkparams.mtx == '1' then
memattrs.tags = MemTag_CanonicallyTagged;

else
memattrs.tags = MemTag_Untagged;

memattrs.notagaccess = FALSE;

memattrs.shareability = DecodeShareability(sh);

return memattrs;

Shared Pseudocode Functions Page 2179

Library pseudocode for shared/translation/attrs/S2CombineS1AttrHints

// S2CombineS1AttrHints()
// ======================
// Determine resultant Normal memory cacheability and allocation hints from
// combining stage 1 Normal memory attributes and stage 2 cacheability attributes.

MemAttrHints S2CombineS1AttrHints(MemAttrHints s1_attrhints, MemAttrHints s2_attrhints)
MemAttrHints attrhints;

if s1_attrhints.attrs == MemAttr_NC || s2_attrhints.attrs == MemAttr_NC then
attrhints.attrs = MemAttr_NC;

elsif s1_attrhints.attrs == MemAttr_WT || s2_attrhints.attrs == MemAttr_WT then
attrhints.attrs = MemAttr_WT;

else
attrhints.attrs = MemAttr_WB;

// Stage 2 does not assign any allocation hints
// Instead, they are inherited from stage 1
if attrhints.attrs != MemAttr_NC then

attrhints.hints = s1_attrhints.hints;
attrhints.transient = s1_attrhints.transient;

return attrhints;

Library pseudocode for shared/translation/attrs/S2CombineS1Device

// S2CombineS1Device()
// ===================
// Determine resultant Device type from combining output memory attributes
// in stage 1 and Device attributes in stage 2

DeviceType S2CombineS1Device(DeviceType s1_device, DeviceType s2_device)
if s1_device == DeviceType_nGnRnE || s2_device == DeviceType_nGnRnE then

return DeviceType_nGnRnE;
elsif s1_device == DeviceType_nGnRE || s2_device == DeviceType_nGnRE then

return DeviceType_nGnRE;
elsif s1_device == DeviceType_nGRE || s2_device == DeviceType_nGRE then

return DeviceType_nGRE;
else

return DeviceType_GRE;

Shared Pseudocode Functions Page 2180

Library pseudocode for shared/translation/attrs/S2CombineS1MemAttrs

// S2CombineS1MemAttrs()
// =====================
// Combine stage 2 with stage 1 memory attributes

MemoryAttributes S2CombineS1MemAttrs(MemoryAttributes s1_memattrs, MemoryAttributes s2_memattrs,
boolean s2aarch64)

MemoryAttributes memattrs;

if s1_memattrs.memtype == MemType_Device && s2_memattrs.memtype == MemType_Device then
memattrs.memtype = MemType_Device;
memattrs.device = S2CombineS1Device(s1_memattrs.device, s2_memattrs.device);

elsif s1_memattrs.memtype == MemType_Device then // S2 Normal, S1 Device
memattrs = s1_memattrs;

elsif s2_memattrs.memtype == MemType_Device then // S2 Device, S1 Normal
memattrs = s2_memattrs;

else // S2 Normal, S1 Normal
memattrs.memtype = MemType_Normal;
memattrs.inner = S2CombineS1AttrHints(s1_memattrs.inner, s2_memattrs.inner);
memattrs.outer = S2CombineS1AttrHints(s1_memattrs.outer, s2_memattrs.outer);

memattrs.tags = S2MemTagType(memattrs, s1_memattrs.tags);

if !HaveMTEPermExt() then
memattrs.notagaccess = FALSE;

else
memattrs.notagaccess = (s2_memattrs.notagaccess &&

s1_memattrs.tags == MemTag_AllocationTagged);
memattrs.shareability = S2CombineS1Shareability(s1_memattrs.shareability,

s2_memattrs.shareability);

if (memattrs.memtype == MemType_Normal &&
memattrs.inner.attrs == MemAttr_WB &&
memattrs.outer.attrs == MemAttr_WB) then

memattrs.xs = '0';
elsif s2aarch64 then

memattrs.xs = s2_memattrs.xs AND s1_memattrs.xs;
else

memattrs.xs = s1_memattrs.xs;

memattrs.shareability = EffectiveShareability(memattrs);
return memattrs;

Library pseudocode for shared/translation/attrs/S2CombineS1Shareability

// S2CombineS1Shareability()
// =========================
// Combine stage 2 shareability with stage 1

Shareability S2CombineS1Shareability(Shareability s1_shareability,
Shareability s2_shareability)

if (s1_shareability == Shareability_OSH ||
s2_shareability == Shareability_OSH) then

return Shareability_OSH;
elsif (s1_shareability == Shareability_ISH ||

s2_shareability == Shareability_ISH) then
return Shareability_ISH;

else
return Shareability_NSH;

Shared Pseudocode Functions Page 2181

Library pseudocode for shared/translation/attrs/S2DecodeCacheability

// S2DecodeCacheability()
// ======================
// Determine the stage 2 cacheability for Normal memory

MemAttrHints S2DecodeCacheability(bits(2) attr)
MemAttrHints s2attr;

case attr of
when '01' s2attr.attrs = MemAttr_NC; // Non-cacheable
when '10' s2attr.attrs = MemAttr_WT; // Write-through
when '11' s2attr.attrs = MemAttr_WB; // Write-back
otherwise // Constrained unpredictable

case ConstrainUnpredictable(Unpredictable_S2RESMEMATTR) of
when Constraint_NC s2attr.attrs = MemAttr_NC;
when Constraint_WT s2attr.attrs = MemAttr_WT;
when Constraint_WB s2attr.attrs = MemAttr_WB;

// Stage 2 does not assign hints or the transient property
// They are inherited from stage 1 if the result of the combination allows it
s2attr.hints = bits(2) UNKNOWN;
s2attr.transient = boolean UNKNOWN;

return s2attr;

Library pseudocode for shared/translation/attrs/S2DecodeMemAttrs

// S2DecodeMemAttrs()
// ==================
// Decode stage 2 memory attributes

MemoryAttributes S2DecodeMemAttrs(bits(4) attr, bits(2) sh, boolean s2aarch64)
MemoryAttributes memattrs;

case attr of
when '00xx' // Device memory

memattrs.memtype = MemType_Device;
memattrs.device = DecodeDevice(attr<1:0>);

when '0100' // Normal, Inner+Outer WB cacheable NoTagAccess memory
if s2aarch64 && HaveMTEPermExt() then

memattrs.memtype = MemType_Normal;
memattrs.outer = S2DecodeCacheability('11'); // Write-back
memattrs.inner = S2DecodeCacheability('11'); // Write-back

else
memattrs.memtype = MemType_Normal;
memattrs.outer = S2DecodeCacheability(attr<3:2>);
memattrs.inner = S2DecodeCacheability(attr<1:0>);

otherwise // Normal memory
memattrs.memtype = MemType_Normal;
memattrs.outer = S2DecodeCacheability(attr<3:2>);
memattrs.inner = S2DecodeCacheability(attr<1:0>);

memattrs.shareability = DecodeShareability(sh);

if s2aarch64 && HaveMTEPermExt() then
memattrs.notagaccess = attr == '0100';

else
memattrs.notagaccess = FALSE;

return memattrs;

Shared Pseudocode Functions Page 2182

Library pseudocode for shared/translation/attrs/S2MemTagType

// S2MemTagType()
// ==============
// Determine whether the combined output memory attributes of stage 1 and
// stage 2 indicate tagged memory

MemTagType S2MemTagType(MemoryAttributes s2_memattrs, MemTagType s1_tagtype)

if !HaveMTE2Ext() then
return MemTag_Untagged;

if ((s1_tagtype == MemTag_AllocationTagged) &&
(s2_memattrs.memtype == MemType_Normal) &&
(s2_memattrs.inner.attrs == MemAttr_WB) &&
(s2_memattrs.inner.hints == MemHint_RWA) &&
(!s2_memattrs.inner.transient) &&
(s2_memattrs.outer.attrs == MemAttr_WB) &&
(s2_memattrs.outer.hints == MemHint_RWA) &&
(!s2_memattrs.outer.transient)) then
return MemTag_AllocationTagged;

// Return what stage 1 asked for if we can, otherwise Untagged.
if s1_tagtype != MemTag_AllocationTagged then

return s1_tagtype;

return MemTag_Untagged;

Library pseudocode for shared/translation/attrs/WalkMemAttrs

// WalkMemAttrs()
// ==============
// Retrieve memory attributes of translation table walk

MemoryAttributes WalkMemAttrs(bits(2) sh, bits(2) irgn, bits(2) orgn)
MemoryAttributes walkmemattrs;

walkmemattrs.memtype = MemType_Normal;
walkmemattrs.shareability = DecodeShareability(sh);
walkmemattrs.inner = DecodeSDFAttr(irgn);
walkmemattrs.outer = DecodeSDFAttr(orgn);
walkmemattrs.tags = MemTag_Untagged;
if (walkmemattrs.inner.attrs == MemAttr_WB &&

walkmemattrs.outer.attrs == MemAttr_WB) then
walkmemattrs.xs = '0';

else
walkmemattrs.xs = '1';

walkmemattrs.notagaccess = FALSE;

return walkmemattrs;

Shared Pseudocode Functions Page 2183

Library pseudocode for shared/translation/faults/AlignmentFault

// AlignmentFault()
// ================
// Return a fault record indicating an Alignment fault not due to memory type has occured
// for a specific access

FaultRecord AlignmentFault(AccessDescriptor accdesc)
FaultRecord fault;

fault.statuscode = Fault_Alignment;
fault.accessdesc = accdesc;
fault.secondstage = FALSE;
fault.s2fs1walk = FALSE;
fault.write = !accdesc.read && accdesc.write;
fault.gpcfs2walk = FALSE;
fault.gpcf = GPCNoFault();

return fault;

Library pseudocode for shared/translation/faults/ExclusiveFault

// ExclusiveFault()
// ================
// Return a fault record indicating an Exclusive fault for a specific access

FaultRecord ExclusiveFault(AccessDescriptor accdesc)
FaultRecord fault;

fault.statuscode = Fault_Exclusive;
fault.accessdesc = accdesc;
fault.secondstage = FALSE;
fault.s2fs1walk = FALSE;
fault.write = !accdesc.read && accdesc.write;
fault.gpcfs2walk = FALSE;
fault.gpcf = GPCNoFault();

return fault;

Shared Pseudocode Functions Page 2184

Library pseudocode for shared/translation/faults/NoFault

// NoFault()
// =========
// Return a clear fault record indicating no faults have occured

FaultRecord NoFault()
FaultRecord fault;

fault.statuscode = Fault_None;
fault.accessdesc = AccessDescriptor UNKNOWN;
fault.secondstage = FALSE;
fault.s2fs1walk = FALSE;
fault.dirtybit = FALSE;
fault.overlay = FALSE;
fault.toplevel = FALSE;
fault.assuredonly = FALSE;
fault.s1tagnotdata = FALSE;
fault.tagaccess = FALSE;
fault.gpcfs2walk = FALSE;
fault.gpcf = GPCNoFault();

return fault;

// NoFault()
// =========
// Return a clear fault record indicating no faults have occured for a specific access

FaultRecord NoFault(AccessDescriptor accdesc)
FaultRecord fault;

fault.statuscode = Fault_None;
fault.accessdesc = accdesc;
fault.secondstage = FALSE;
fault.s2fs1walk = FALSE;
fault.dirtybit = FALSE;
fault.overlay = FALSE;
fault.toplevel = FALSE;
fault.assuredonly = FALSE;
fault.s1tagnotdata = FALSE;
fault.tagaccess = FALSE;
fault.write = !accdesc.read && accdesc.write;
fault.gpcfs2walk = FALSE;
fault.gpcf = GPCNoFault();

return fault;

Library pseudocode for shared/translation/gpc/AbovePPS

// AbovePPS()
// ==========
// Returns TRUE if an address exceeds the range configured in GPCCR_EL3.PPS.

boolean AbovePPS(bits(56) address)
pps = DecodePPS();
if pps >= 56 then

return FALSE;

return !IsZero(address<55:pps>);

Shared Pseudocode Functions Page 2185

Library pseudocode for shared/translation/gpc/DecodeGPTBlock

// DecodeGPTBlock()
// ================
// Validate and decode a GPT Block descriptor

(GPCF, GPTEntry) DecodeGPTBlock(PGSe pgs, bits(64) gpt_entry)
assert gpt_entry<3:0> == GPT_Block;
GPTEntry result;

if !IsZero(gpt_entry<63:8>) then
return (GPCF_Walk, GPTEntry UNKNOWN);

if !GPIValid(gpt_entry<7:4>) then
return (GPCF_Walk, GPTEntry UNKNOWN);

result.gpi = gpt_entry<7:4>;
result.level = 0;

// GPT information from a level 0 GPT Block descriptor is permitted
// to be cached in a TLB as though the Block is a contiguous region
// of granules each of the size configured in GPCCR_EL3.PGS.
case pgs of

when PGS_4KB result.size = GPTRange_4KB;
when PGS_16KB result.size = GPTRange_16KB;
when PGS_64KB result.size = GPTRange_64KB;
otherwise Unreachable();

result.contig_size = GPTL0Size();

return (GPCF_None, result);

Library pseudocode for shared/translation/gpc/DecodeGPTContiguous

// DecodeGPTContiguous()
// =====================
// Validate and decode a GPT Contiguous descriptor

(GPCF, GPTEntry) DecodeGPTContiguous(PGSe pgs, bits(64) gpt_entry)
assert gpt_entry<3:0> == GPT_Contig;
GPTEntry result;

if !IsZero(gpt_entry<63:10>) then
return (GPCF_Walk, result);

result.gpi = gpt_entry<7:4>;
if !GPIValid(result.gpi) then

return (GPCF_Walk, result);

case pgs of
when PGS_4KB result.size = GPTRange_4KB;
when PGS_16KB result.size = GPTRange_16KB;
when PGS_64KB result.size = GPTRange_64KB;
otherwise Unreachable();

case gpt_entry<9:8> of
when '01' result.contig_size = GPTRange_2MB;
when '10' result.contig_size = GPTRange_32MB;
when '11' result.contig_size = GPTRange_512MB;
otherwise return (GPCF_Walk, GPTEntry UNKNOWN);

result.level = 1;

return (GPCF_None, result);

Shared Pseudocode Functions Page 2186

Library pseudocode for shared/translation/gpc/DecodeGPTGranules

// DecodeGPTGranules()
// ===================
// Validate and decode a GPT Granules descriptor

(GPCF, GPTEntry) DecodeGPTGranules(PGSe pgs, integer index, bits(64) gpt_entry)
GPTEntry result;

for i = 0 to 15
if !GPIValid(gpt_entry<i*4 +:4>) then

return (GPCF_Walk, result);

result.gpi = gpt_entry<index*4 +:4>;

case pgs of
when PGS_4KB result.size = GPTRange_4KB;
when PGS_16KB result.size = GPTRange_16KB;
when PGS_64KB result.size = GPTRange_64KB;
otherwise Unreachable();

result.contig_size = result.size; // No contiguity
result.level = 1;

return (GPCF_None, result);

Library pseudocode for shared/translation/gpc/DecodeGPTTable

// DecodeGPTTable()
// ================
// Validate and decode a GPT Table descriptor

(GPCF, GPTTable) DecodeGPTTable(PGSe pgs, bits(64) gpt_entry)
assert gpt_entry<3:0> == GPT_Table;
GPTTable result;

if !IsZero(gpt_entry<63:52,11:4>) then
return (GPCF_Walk, GPTTable UNKNOWN);

l0sz = GPTL0Size();
integer p;
case pgs of

when PGS_4KB p = 12;
when PGS_16KB p = 14;
when PGS_64KB p = 16;
otherwise Unreachable();

if !IsZero(gpt_entry<(l0sz-p)-2:12>) then
return (GPCF_Walk, GPTTable UNKNOWN);

case pgs of
when PGS_4KB result.address = gpt_entry<55:17>:Zeros(17);
when PGS_16KB result.address = gpt_entry<55:15>:Zeros(15);
when PGS_64KB result.address = gpt_entry<55:13>:Zeros(13);
otherwise Unreachable();

// The address must be within the range covered by the GPT
if AbovePPS(result.address) then

return (GPCF_AddressSize, GPTTable UNKNOWN);

return (GPCF_None, result);

Shared Pseudocode Functions Page 2187

Library pseudocode for shared/translation/gpc/DecodePGS

// DecodePGS()
// ===========

PGSe DecodePGS(bits(2) pgs)
case pgs of

when '00' return PGS_4KB;
when '10' return PGS_16KB;
when '01' return PGS_64KB;
otherwise Unreachable();

Library pseudocode for shared/translation/gpc/DecodePPS

// DecodePPS()
// ===========
// Size of region protected by the GPT, in bits.

integer DecodePPS()
case GPCCR_EL3.PPS of

when '000' return 32;
when '001' return 36;
when '010' return 40;
when '011' return 42;
when '100' return 44;
when '101' return 48;
when '110' return 52;
otherwise Unreachable();

Library pseudocode for shared/translation/gpc/GPCFault

// GPCFault()
// ==========
// Constructs and returns a GPCF

GPCFRecord GPCFault(GPCF gpf, integer level)
GPCFRecord fault;
fault.gpf = gpf;
fault.level = level;
return fault;

Library pseudocode for shared/translation/gpc/GPCNoFault

// GPCNoFault()
// ============
// Returns the default properties of a GPCF that does not represent a fault

GPCFRecord GPCNoFault()
GPCFRecord result;
result.gpf = GPCF_None;
return result;

Shared Pseudocode Functions Page 2188

Library pseudocode for shared/translation/gpc/GPCRegistersConsistent

// GPCRegistersConsistent()
// ========================
// Returns whether the GPT registers are configured correctly.
// This returns false if any fields select a Reserved value.

boolean GPCRegistersConsistent()

// Check for Reserved register values
if GPCCR_EL3.PPS == '111' || DecodePPS() > AArch64.PAMax() then

return FALSE;
if GPCCR_EL3.PGS == '11' then

return FALSE;
if GPCCR_EL3.SH == '01' then

return FALSE;

// Inner and Outer Non-cacheable requires Outer Shareable
if GPCCR_EL3.<ORGN, IRGN> == '0000' && GPCCR_EL3.SH != '10' then

return FALSE;

return TRUE;

Library pseudocode for shared/translation/gpc/GPICheck

// GPICheck()
// ==========
// Returns whether an access to a given physical address space is permitted
// given the configured GPI value.
// paspace: Physical address space of the access
// gpi: Value read from GPT for the access

boolean GPICheck(PASpace paspace, bits(4) gpi)

case gpi of
when GPT_NoAccess return FALSE;
when GPT_Secure assert HaveSecureEL2Ext();return paspace == PAS_Secure;
when GPT_NonSecure return paspace == PAS_NonSecure;
when GPT_Root return paspace == PAS_Root;
when GPT_Realm return paspace == PAS_Realm;
when GPT_Any return TRUE;
otherwise Unreachable();

Library pseudocode for shared/translation/gpc/GPIIndex

// GPIIndex()
// ==========

integer GPIIndex(bits(56) pa)
case DecodePGS(GPCCR_EL3.PGS) of

when PGS_4KB return UInt(pa<15:12>);
when PGS_16KB return UInt(pa<17:14>);
when PGS_64KB return UInt(pa<19:16>);
otherwise Unreachable();

Shared Pseudocode Functions Page 2189

Library pseudocode for shared/translation/gpc/GPIValid

// GPIValid()
// ==========
// Returns whether a given value is a valid encoding for a GPI value

boolean GPIValid(bits(4) gpi)
if gpi == GPT_Secure then

return HaveSecureEL2Ext();

return gpi IN {GPT_NoAccess,
GPT_NonSecure,
GPT_Root,
GPT_Realm,
GPT_Any};

Library pseudocode for shared/translation/gpc/GPTL0Size

// GPTL0Size()
// ===========
// Returns number of bits covered by a level 0 GPT entry

integer GPTL0Size()
case GPCCR_EL3.L0GPTSZ of

when '0000' return GPTRange_1GB;
when '0100' return GPTRange_16GB;
when '0110' return GPTRange_64GB;
when '1001' return GPTRange_512GB;
otherwise Unreachable();

return 30;

Library pseudocode for shared/translation/gpc/GPTLevel0Index

// GPTLevel0Index()
// ================
// Compute the level 0 index based on input PA.

integer GPTLevel0Index(bits(56) pa)
// Input address and index bounds
pps = DecodePPS();
l0sz = GPTL0Size();
if pps <= l0sz then

return 0;

return UInt(pa<pps-1:l0sz>);

Library pseudocode for shared/translation/gpc/GPTLevel1Index

// GPTLevel1Index()
// ================
// Compute the level 1 index based on input PA.

integer GPTLevel1Index(bits(56) pa)
// Input address and index bounds
l0sz = GPTL0Size();
case DecodePGS(GPCCR_EL3.PGS) of

when PGS_4KB return UInt(pa<l0sz-1:16>);
when PGS_16KB return UInt(pa<l0sz-1:18>);
when PGS_64KB return UInt(pa<l0sz-1:20>);
otherwise Unreachable();

Shared Pseudocode Functions Page 2190

Library pseudocode for shared/translation/gpc/GPTWalk

Shared Pseudocode Functions Page 2191

// GPTWalk()
// =========
// Get the GPT entry for a given physical address, pa

(GPCFRecord, GPTEntry) GPTWalk(bits(56) pa, AccessDescriptor accdesc)

// GPT base address
bits(56) base;
pgs = DecodePGS(GPCCR_EL3.PGS);

// The level 0 GPT base address is aligned to the greater of:
// * the size of the level 0 GPT, determined by GPCCR_EL3.{PPS, L0GPTSZ}.
// * 4KB
base = ZeroExtend(GPTBR_EL3.BADDR:Zeros(12), 56);
pps = DecodePPS();
l0sz = GPTL0Size();
integer alignment = Max((pps - l0sz) + 3, 12);
base = base AND NOT ZeroExtend(Ones(alignment), 56);

AccessDescriptor gptaccdesc = CreateAccDescGPTW(accdesc);

// Access attributes and address for GPT fetches
AddressDescriptor gptaddrdesc;
gptaddrdesc.memattrs = WalkMemAttrs(GPCCR_EL3.SH, GPCCR_EL3.ORGN, GPCCR_EL3.IRGN);
gptaddrdesc.fault = NoFault(gptaccdesc);

// Address of level 0 GPT entry
gptaddrdesc.paddress.paspace = PAS_Root;
gptaddrdesc.paddress.address = base + GPTLevel0Index(pa) * 8;

// Fetch L0GPT entry
bits(64) level_0_entry;
PhysMemRetStatus memstatus;
(memstatus, level_0_entry) = PhysMemRead(gptaddrdesc, 8, gptaccdesc);
if IsFault(memstatus) then

return (GPCFault(GPCF_EABT, 0), GPTEntry UNKNOWN);

GPTEntry result;
GPTTable table;
GPCF gpf;
case level_0_entry<3:0> of

when GPT_Block
// Decode the GPI value and return that
(gpf, result) = DecodeGPTBlock(pgs, level_0_entry);
result.pa = pa;
return (GPCFault(gpf, 0), result);

when GPT_Table
// Decode the table entry and continue walking
(gpf, table) = DecodeGPTTable(pgs, level_0_entry);
if gpf != GPCF_None then

return (GPCFault(gpf, 0), GPTEntry UNKNOWN);
otherwise

// GPF - invalid encoding
return (GPCFault(GPCF_Walk, 0), GPTEntry UNKNOWN);

// Must be a GPT Table entry
assert level_0_entry<3:0> == GPT_Table;

// Address of level 1 GPT entry
offset = GPTLevel1Index(pa) * 8;
gptaddrdesc.paddress.address = table.address + offset;

// Fetch L1GPT entry
bits(64) level_1_entry;
(memstatus, level_1_entry) = PhysMemRead(gptaddrdesc, 8, gptaccdesc);
if IsFault(memstatus) then

return (GPCFault(GPCF_EABT, 1), GPTEntry UNKNOWN);

case level_1_entry<3:0> of
when GPT_Contig

Shared Pseudocode Functions Page 2192

(gpf, result) = DecodeGPTContiguous(pgs, level_1_entry);
otherwise

gpi_index = GPIIndex(pa);
(gpf, result) = DecodeGPTGranules(pgs, gpi_index, level_1_entry);

if gpf != GPCF_None then
return (GPCFault(gpf, 1), GPTEntry UNKNOWN);

result.pa = pa;
return (GPCNoFault(), result);

Library pseudocode for shared/translation/gpc/GranuleProtectionCheck

// GranuleProtectionCheck()
// ========================
// Returns whether a given access is permitted, according to the
// granule protection check.
// addrdesc and accdesc describe the access to be checked.

GPCFRecord GranuleProtectionCheck(AddressDescriptor addrdesc, AccessDescriptor accdesc)

assert HaveRME();
// The address to be checked
address = addrdesc.paddress;

// Bypass mode - all accesses pass
if GPCCR_EL3.GPC == '0' then

return GPCNoFault();

// Configuration consistency check
if !GPCRegistersConsistent() then

return GPCFault(GPCF_Walk, 0);

// Input address size check
if AbovePPS(address.address) then

if address.paspace == PAS_NonSecure then
return GPCNoFault();

else
return GPCFault(GPCF_Fail, 0);

// GPT base address size check
bits(56) gpt_base = ZeroExtend(GPTBR_EL3.BADDR:Zeros(12), 56);
if AbovePPS(gpt_base) then

return GPCFault(GPCF_AddressSize, 0);

// GPT lookup
(gpcf, gpt_entry) = GPTWalk(address.address, accdesc);
if gpcf.gpf != GPCF_None then

return gpcf;

// Check input physical address space against GPI
permitted = GPICheck(address.paspace, gpt_entry.gpi);

if !permitted then
gpcf = GPCFault(GPCF_Fail, gpt_entry.level);
return gpcf;

// Check passed

return GPCNoFault();

Shared Pseudocode Functions Page 2193

Library pseudocode for shared/translation/gpc/PGS

// PGS
// ===
// Physical granule size

enumeration PGSe {
PGS_4KB,
PGS_16KB,
PGS_64KB

};

Library pseudocode for shared/translation/gpc/Table

constant bits(4) GPT_NoAccess = '0000';
constant bits(4) GPT_Table = '0011';
constant bits(4) GPT_Block = '0001';
constant bits(4) GPT_Contig = '0001';
constant bits(4) GPT_Secure = '1000';
constant bits(4) GPT_NonSecure = '1001';
constant bits(4) GPT_Root = '1010';
constant bits(4) GPT_Realm = '1011';
constant bits(4) GPT_Any = '1111';
constant integer GPTRange_4KB = 12;
constant integer GPTRange_16KB = 14;
constant integer GPTRange_64KB = 16;
constant integer GPTRange_2MB = 21;
constant integer GPTRange_32MB = 25;
constant integer GPTRange_512MB = 29;
constant integer GPTRange_1GB = 30;
constant integer GPTRange_16GB = 34;
constant integer GPTRange_64GB = 36;
constant integer GPTRange_512GB = 39;

type GPTTable is (
bits(56) address // Base address of next table

)

type GPTEntry is (
bits(4) gpi, // GPI value for this region
integer size, // Region size
integer contig_size, // Contiguous region size
integer level, // Level of GPT lookup
bits(56) pa // PA uniquely identifying the GPT entry

)

Shared Pseudocode Functions Page 2194

Library pseudocode for shared/translation/translation/S1TranslationRegime

// S1TranslationRegime()
// =====================
// Stage 1 translation regime for the given Exception level

bits(2) S1TranslationRegime(bits(2) el)
if el != EL0 then

return el;
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.NS == '0' then

return EL3;
elsif HaveVirtHostExt() && ELIsInHost(el) then

return EL2;
else

return EL1;

// S1TranslationRegime()
// =====================
// Returns the Exception level controlling the current Stage 1 translation regime. For the most
// part this is unused in code because the System register accessors (SCTLR_ELx[], etc.) implicitly
// return the correct value.

bits(2) S1TranslationRegime()
return S1TranslationRegime(PSTATE.EL);

Library pseudocode for shared/translation/vmsa/AddressDescriptor

constant integer FINAL_LEVEL = 3;

// AddressDescriptor
// =================
// Descriptor used to access the underlying memory array.

type AddressDescriptor is (
FaultRecord fault, // fault.statuscode indicates whether the address is valid
MemoryAttributes memattrs,
FullAddress paddress,
boolean s1assured, // Stage 1 Assured Translation Property
boolean s2fs1mro, // Stage 2 MRO permission for Satge 1
bits(16) mecid, // FEAT_MEC: Memory Encryption Context ID
bits(64) vaddress

)

Shared Pseudocode Functions Page 2195

Library pseudocode for shared/translation/vmsa/ContiguousSize

// ContiguousSize()
// ================
// Return the number of entries log 2 marking a contiguous output range

integer ContiguousSize(bit d128, TGx tgx, integer level)
if d128 == '1' then

case tgx of
when TGx_4KB

assert level IN {1, 2, 3};
return if level == 1 then 2 else 4;

when TGx_16KB
assert level IN {1, 2, 3};
if level == 1 then

return 2;
elsif level == 2 then

return 4;
else

return 6;
when TGx_64KB

assert level IN {2, 3};
return if level == 2 then 6 else 4;

else
case tgx of

when TGx_4KB
assert level IN {1, 2, 3};
return 4;

when TGx_16KB
assert level IN {2, 3};
return if level == 2 then 5 else 7;

when TGx_64KB
assert level IN {2, 3};
return 5;

Library pseudocode for shared/translation/vmsa/CreateAddressDescriptor

// CreateAddressDescriptor()
// =========================
// Set internal members for address descriptor type to valid values

AddressDescriptor CreateAddressDescriptor(bits(64) va, FullAddress pa,
MemoryAttributes memattrs)

AddressDescriptor addrdesc;

addrdesc.paddress = pa;
addrdesc.vaddress = va;
addrdesc.memattrs = memattrs;
addrdesc.fault = NoFault();
addrdesc.s1assured = FALSE;

return addrdesc;

Library pseudocode for shared/translation/vmsa/CreateFaultyAddressDescriptor

// CreateFaultyAddressDescriptor()
// ===============================
// Set internal members for address descriptor type with values indicating error

AddressDescriptor CreateFaultyAddressDescriptor(bits(64) va, FaultRecord fault)
AddressDescriptor addrdesc;

addrdesc.vaddress = va;
addrdesc.fault = fault;

return addrdesc;

Shared Pseudocode Functions Page 2196

Library pseudocode for shared/translation/vmsa/DecodePASpace

// DecodePASpace()
// ===============
// Decode the target PA Space

PASpace DecodePASpace (bit nse, bit ns)
case nse:ns of

when '00' return PAS_Secure;
when '01' return PAS_NonSecure;
when '10' return PAS_Root;
when '11' return PAS_Realm;

Library pseudocode for shared/translation/vmsa/DescriptorType

// DescriptorType
// ==============
// Translation table descriptor formats

enumeration DescriptorType {
DescriptorType_Table,
DescriptorType_Leaf,
DescriptorType_Invalid

};

Library pseudocode for shared/translation/vmsa/Domains

constant bits(2) Domain_NoAccess = '00';
constant bits(2) Domain_Client = '01';
constant bits(2) Domain_Manager = '11';

Library pseudocode for shared/translation/vmsa/FetchDescriptor

// FetchDescriptor()
// =================
// Fetch a translation table descriptor

(FaultRecord, bits(N)) FetchDescriptor(bit ee, AddressDescriptor walkaddress,
AccessDescriptor walkaccess, FaultRecord fault_in,
integer N)

// 32-bit descriptors for AArch32 Short-descriptor format
// 64-bit descriptors for AArch64 or AArch32 Long-descriptor format
// 128-bit descriptors for AArch64 when FEAT_D128 is set and {V}TCR_ELx.d128 is set
assert N == 32 || N == 64 || N == 128;
bits(N) descriptor;
FaultRecord fault = fault_in;

if HaveRME() then
fault.gpcf = GranuleProtectionCheck(walkaddress, walkaccess);
if fault.gpcf.gpf != GPCF_None then

fault.statuscode = Fault_GPCFOnWalk;
fault.paddress = walkaddress.paddress;
fault.gpcfs2walk = fault.secondstage;
return (fault, bits(N) UNKNOWN);

PhysMemRetStatus memstatus;
(memstatus, descriptor) = PhysMemRead(walkaddress, N DIV 8, walkaccess);
if IsFault(memstatus) then

boolean iswrite = FALSE;
fault = HandleExternalTTWAbort(memstatus, iswrite, walkaddress,

walkaccess, N DIV 8, fault);
if IsFault(fault.statuscode) then

return (fault, bits(N) UNKNOWN);

if ee == '1' then
descriptor = BigEndianReverse(descriptor);

return (fault, descriptor);

Shared Pseudocode Functions Page 2197

Library pseudocode for shared/translation/vmsa/HasUnprivileged

// HasUnprivileged()
// =================
// Returns whether a translation regime serves EL0 as well as a higher EL

boolean HasUnprivileged(Regime regime)
return (regime IN {

Regime_EL20,
Regime_EL30,
Regime_EL10

});

Library pseudocode for shared/translation/vmsa/Regime

// Regime
// ======
// Translation regimes

enumeration Regime {
Regime_EL3, // EL3
Regime_EL30, // EL3&0 (PL1&0 when EL3 is AArch32)
Regime_EL2, // EL2
Regime_EL20, // EL2&0
Regime_EL10 // EL1&0

};

Library pseudocode for shared/translation/vmsa/RegimeUsingAArch32

// RegimeUsingAArch32()
// ====================
// Determine if the EL controlling the regime executes in AArch32 state

boolean RegimeUsingAArch32(Regime regime)
case regime of

when Regime_EL10 return ELUsingAArch32(EL1);
when Regime_EL30 return TRUE;
when Regime_EL20 return FALSE;
when Regime_EL2 return ELUsingAArch32(EL2);
when Regime_EL3 return FALSE;

Shared Pseudocode Functions Page 2198

Library pseudocode for shared/translation/vmsa/S1TTWParams

// S1TTWParams
// ===========
// Register fields corresponding to stage 1 translation
// For A32-VMSA, if noted, they correspond to A32-LPAE (Long descriptor format)

type S1TTWParams is (
// A64-VMSA exclusive parameters

bit ha, // TCR_ELx.HA
bit hd, // TCR_ELx.HD
bit tbi, // TCR_ELx.TBI{x}
bit tbid, // TCR_ELx.TBID{x}
bit nfd, // TCR_EL1.NFDx or TCR_EL2.NFDx when HCR_EL2.E2H == '1'
bit e0pd, // TCR_EL1.E0PDx or TCR_EL2.E0PDx when HCR_EL2.E2H == '1'
bit d128, // TCR_ELx.D128
bit aie, // (TCR2_ELx/TCR_EL3).AIE
MAIRType mair2, // MAIR2_ELx
bit ds, // TCR_ELx.DS
bits(3) ps, // TCR_ELx.{I}PS
bits(6) txsz, // TCR_ELx.TxSZ
bit epan, // SCTLR_EL1.EPAN or SCTLR_EL2.EPAN when HCR_EL2.E2H == '1'
bit dct, // HCR_EL2.DCT
bit nv1, // HCR_EL2.NV1
bit cmow, // SCTLR_EL1.CMOW or SCTLR_EL2.CMOW when HCR_EL2.E2H == '1'
bit pnch, // TCR{2}_ELx.PnCH
bit disch, // TCR{2}_ELx.DisCH
bit haft, // TCR{2}_ELx.HAFT
bit mtx, // TCR_ELx.MTX{y}
bits(2) skl, // TCR_ELx.SKL
bit pie, // TCR2_ELx.PIE or TCR_EL3.PIE
S1PIRType pir, // PIR_ELx
S1PIRType pire0, // PIRE0_EL1 or PIRE0_EL2 when HCR_EL2.E2H == '1'
bit emec, // SCTLR2_EL2.EMEC or SCTLR2_EL3.EMEC
bit amec, // TCR2_EL2.AMEC0 or TCR2_EL2.AMEC1 when HCR_EL2.E2H == '1'

// A32-VMSA exclusive parameters
bits(3) t0sz, // TTBCR.T0SZ
bits(3) t1sz, // TTBCR.T1SZ
bit uwxn, // SCTLR.UWXN

// Parameters common to both A64-VMSA & A32-VMSA (A64/A32)
TGx tgx, // TCR_ELx.TGx / Always TGx_4KB
bits(2) irgn, // TCR_ELx.IRGNx / TTBCR.IRGNx or HTCR.IRGN0
bits(2) orgn, // TCR_ELx.ORGNx / TTBCR.ORGNx or HTCR.ORGN0
bits(2) sh, // TCR_ELx.SHx / TTBCR.SHx or HTCR.SH0
bit hpd, // TCR_ELx.HPD{x} / TTBCR2.HPDx or HTCR.HPD
bit ee, // SCTLR_ELx.EE / SCTLR.EE or HSCTLR.EE
bit wxn, // SCTLR_ELx.WXN / SCTLR.WXN or HSCTLR.WXN
bit ntlsmd, // SCTLR_ELx.nTLSMD / SCTLR.nTLSMD or HSCTLR.nTLSMD
bit dc, // HCR_EL2.DC / HCR.DC
bit sif, // SCR_EL3.SIF / SCR.SIF
MAIRType mair // MAIR_ELx / MAIR1:MAIR0 or HMAIR1:HMAIR0

)

Shared Pseudocode Functions Page 2199

Library pseudocode for shared/translation/vmsa/S2TTWParams

// S2TTWParams
// ===========
// Register fields corresponding to stage 2 translation.

type S2TTWParams is (
// A64-VMSA exclusive parameters

bit ha, // VTCR_EL2.HA
bit hd, // VTCR_EL2.HD
bit sl2, // V{S}TCR_EL2.SL2
bit ds, // VTCR_EL2.DS
bit d128, // VTCR_ELx.D128
bit sw, // VSTCR_EL2.SW
bit nsw, // VTCR_EL2.NSW
bit sa, // VSTCR_EL2.SA
bit nsa, // VTCR_EL2.NSA
bits(3) ps, // VTCR_EL2.PS
bits(6) txsz, // V{S}TCR_EL2.T0SZ
bit fwb, // HCR_EL2.PTW
bit cmow, // HCRX_EL2.CMOW
bits(2) skl, // VTCR_EL2.SKL
bit s2pie, // VTCR_EL2.S2PIE
S2PIRType s2pir, // S2PIR_EL2
bit tl0, // VTCR_EL2.TL0
bit tl1, // VTCR_EL2.TL1
bit assuredonly,// VTCR_EL2.AssuredOnly
bit haft, // VTCR_EL2.HAFT
bit emec, // SCTLR2_EL2.EMEC

// A32-VMSA exclusive parameters
bit s, // VTCR.S
bits(4) t0sz, // VTCR.T0SZ

// Parameters common to both A64-VMSA & A32-VMSA if implemented (A64/A32)
TGx tgx, // V{S}TCR_EL2.TG0 / Always TGx_4KB
bits(2) sl0, // V{S}TCR_EL2.SL0 / VTCR.SL0
bits(2) irgn, // VTCR_EL2.IRGN0 / VTCR.IRGN0
bits(2) orgn, // VTCR_EL2.ORGN0 / VTCR.ORGN0
bits(2) sh, // VTCR_EL2.SH0 / VTCR.SH0
bit ee, // SCTLR_EL2.EE / HSCTLR.EE
bit ptw, // HCR_EL2.PTW / HCR.PTW
bit vm // HCR_EL2.VM / HCR.VM

)

Library pseudocode for shared/translation/vmsa/SDFType

// SDFType
// =======
// Short-descriptor format type

enumeration SDFType {
SDFType_Table,
SDFType_Invalid,
SDFType_Supersection,
SDFType_Section,
SDFType_LargePage,
SDFType_SmallPage

};

Shared Pseudocode Functions Page 2200

Library pseudocode for shared/translation/vmsa/SecurityStateForRegime

// SecurityStateForRegime()
// ========================
// Return the Security State of the given translation regime

SecurityState SecurityStateForRegime(Regime regime)
case regime of

when Regime_EL3 return SecurityStateAtEL(EL3);
when Regime_EL30 return SS_Secure; // A32 EL3 is always Secure
when Regime_EL2 return SecurityStateAtEL(EL2);
when Regime_EL20 return SecurityStateAtEL(EL2);
when Regime_EL10 return SecurityStateAtEL(EL1);

Library pseudocode for shared/translation/vmsa/StageOA

// StageOA()
// =========
// Given the final walk state (a page or block descriptor), map the untranslated
// input address bits to the output address

FullAddress StageOA(bits(64) ia, bit d128, TGx tgx, TTWState walkstate)
// Output Address
FullAddress oa;
integer csize;

tsize = TranslationSize(d128, tgx, walkstate.level);
if walkstate.contiguous == '1' then

csize = ContiguousSize(d128, tgx, walkstate.level);
else

csize = 0;

ia_msb = tsize + csize;
oa.paspace = walkstate.baseaddress.paspace;
oa.address = walkstate.baseaddress.address<55:ia_msb>:ia<ia_msb-1:0>;

return oa;

Library pseudocode for shared/translation/vmsa/TGx

// TGx
// ===
// Translation granules sizes

enumeration TGx {
TGx_4KB,
TGx_16KB,
TGx_64KB

};

Library pseudocode for shared/translation/vmsa/TGxGranuleBits

// TGxGranuleBits()
// ================
// Retrieve the address size, in bits, of a granule

integer TGxGranuleBits(TGx tgx)
case tgx of

when TGx_4KB return 12;
when TGx_16KB return 14;
when TGx_64KB return 16;

Shared Pseudocode Functions Page 2201

Library pseudocode for shared/translation/vmsa/TLBContext

// TLBContext
// ==========
// Translation context compared on TLB lookups and invalidations, promoting a TLB hit on match

type TLBContext is (
SecurityState ss,
Regime regime,
bits(16) vmid,
bits(16) asid,
bit nG,
PASpace ipaspace, // Used in stage 2 lookups & invalidations only
boolean includes_s1,
boolean includes_s2,
boolean includes_gpt,
bits(64) ia, // Input Address
TGx tg,
bit cnp,
integer level, // Assist TLBI level hints (FEAT_TTL)
boolean isd128,
bit xs // XS attribute (FEAT_XS)

)

Library pseudocode for shared/translation/vmsa/TLBRecord

// TLBRecord
// =========
// Translation output as a TLB payload

type TLBRecord is (
TLBContext context,
TTWState walkstate,
integer blocksize, // Number of bits directly mapped from IA to OA
integer contigsize, // Number of entries log 2 marking a contiguous output range
bits(128) s1descriptor, // Stage 1 leaf descriptor in memory (valid if the TLB caches stage 1)
bits(128) s2descriptor // Stage 2 leaf descriptor in memory (valid if the TLB caches stage 2)

)

Library pseudocode for shared/translation/vmsa/TTWState

// TTWState
// ========
// Translation table walk state

type TTWState is (
boolean istable,
integer level,
FullAddress baseaddress,
bit contiguous,
boolean s1assured, // Stage 1 Assured Translation Property
bit s2assuredonly, // Stage 2 AssuredOnly attribute
bit disch, // Stage 1 Disable Contiguous Hint
bit nG,
bit guardedpage,
SDFType sdftype, // AArch32 Short-descriptor format walk only
bits(4) domain, // AArch32 Short-descriptor format walk only
MemoryAttributes memattrs,
Permissions permissions

)

Shared Pseudocode Functions Page 2202

Library pseudocode for shared/translation/vmsa/TranslationRegime

// TranslationRegime()
// ===================
// Select the translation regime given the target EL and PE state

Regime TranslationRegime(bits(2) el)
if el == EL3 then

return if ELUsingAArch32(EL3) then Regime_EL30 else Regime_EL3;
elsif el == EL2 then

return if ELIsInHost(EL2) then Regime_EL20 else Regime_EL2;
elsif el == EL1 then

return Regime_EL10;
elsif el == EL0 then

if CurrentSecurityState() == SS_Secure && ELUsingAArch32(EL3) then
return Regime_EL30;

elsif ELIsInHost(EL0) then
return Regime_EL20;

else
return Regime_EL10;

else
Unreachable();

Library pseudocode for shared/translation/vmsa/TranslationSize

// TranslationSize()
// =================
// Compute the number of bits directly mapped from the input address
// to the output address

integer TranslationSize(bit d128, TGx tgx, integer level)
granulebits = TGxGranuleBits(tgx);
descsizelog2 = if d128 == '1' then 4 else 3;
blockbits = (FINAL_LEVEL - level) * (granulebits - descsizelog2);

return granulebits + blockbits;

Library pseudocode for shared/translation/vmsa/UseASID

// UseASID()
// =========
// Determine whether the translation context for the access requires ASID or is a global entry

boolean UseASID(TLBContext accesscontext)
return HasUnprivileged(accesscontext.regime);

Library pseudocode for shared/translation/vmsa/UseVMID

// UseVMID()
// =========
// Determine whether the translation context for the access requires VMID to match a TLB entry

boolean UseVMID(TLBContext accesscontext)
return accesscontext.regime == Regime_EL10 && EL2Enabled();

Internal version only: isa v01_31, pseudocode v2023-06_rel, sve v2023-06_rel ; Build timestamp: 2023-07-04T18:06

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Shared Pseudocode Functions Page 2203

	Proprietary Notice
	AArch32 -- Base Instructions (alphabetic order)
	ADC, ADCS (immediate)
	ADC, ADCS (register)
	ADC, ADCS (register-shifted register)
	ADD (immediate, to PC)
	ADD, ADDS (immediate)
	ADD, ADDS (register)
	ADD, ADDS (register-shifted register)
	ADD, ADDS (SP plus immediate)
	ADD, ADDS (SP plus register)
	ADR
	AND, ANDS (immediate)
	AND, ANDS (register)
	AND, ANDS (register-shifted register)
	ASR (immediate)
	ASR (register)
	ASRS (immediate)
	ASRS (register)
	B
	BFC
	BFI
	BIC, BICS (immediate)
	BIC, BICS (register)
	BIC, BICS (register-shifted register)
	BKPT
	BL, BLX (immediate)
	BLX (register)
	BX
	BXJ
	CBNZ, CBZ
	CLRBHB
	CLREX
	CLZ
	CMN (immediate)
	CMN (register)
	CMN (register-shifted register)
	CMP (immediate)
	CMP (register)
	CMP (register-shifted register)
	CPS, CPSID, CPSIE
	CRC32
	CRC32C
	CSDB
	DBG
	DCPS1
	DCPS2
	DCPS3
	DMB
	DSB
	EOR, EORS (immediate)
	EOR, EORS (register)
	EOR, EORS (register-shifted register)
	ERET
	ESB
	HLT
	HVC
	ISB
	IT
	LDA
	LDAB
	LDAEX
	LDAEXB
	LDAEXD
	LDAEXH
	LDAH
	LDC (immediate)
	LDC (literal)
	LDM (exception return)
	LDM (User registers)
	LDM, LDMIA, LDMFD
	LDMDA, LDMFA
	LDMDB, LDMEA
	LDMIB, LDMED
	LDR (immediate)
	LDR (literal)
	LDR (register)
	LDRB (immediate)
	LDRB (literal)
	LDRB (register)
	LDRBT
	LDRD (immediate)
	LDRD (literal)
	LDRD (register)
	LDREX
	LDREXB
	LDREXD
	LDREXH
	LDRH (immediate)
	LDRH (literal)
	LDRH (register)
	LDRHT
	LDRSB (immediate)
	LDRSB (literal)
	LDRSB (register)
	LDRSBT
	LDRSH (immediate)
	LDRSH (literal)
	LDRSH (register)
	LDRSHT
	LDRT
	LSL (immediate)
	LSL (register)
	LSLS (immediate)
	LSLS (register)
	LSR (immediate)
	LSR (register)
	LSRS (immediate)
	LSRS (register)
	MCR
	MCRR
	MLA, MLAS
	MLS
	MOV, MOVS (immediate)
	MOV, MOVS (register)
	MOV, MOVS (register-shifted register)
	MOVT
	MRC
	MRRC
	MRS
	MRS (Banked register)
	MSR (Banked register)
	MSR (immediate)
	MSR (register)
	MUL, MULS
	MVN, MVNS (immediate)
	MVN, MVNS (register)
	MVN, MVNS (register-shifted register)
	NOP
	ORN, ORNS (immediate)
	ORN, ORNS (register)
	ORR, ORRS (immediate)
	ORR, ORRS (register)
	ORR, ORRS (register-shifted register)
	PKHBT, PKHTB
	PLD (literal)
	PLD, PLDW (immediate)
	PLD, PLDW (register)
	PLI (immediate, literal)
	PLI (register)
	POP
	POP (multiple registers)
	POP (single register)
	PSSBB
	PUSH
	PUSH (multiple registers)
	PUSH (single register)
	QADD
	QADD16
	QADD8
	QASX
	QDADD
	QDSUB
	QSAX
	QSUB
	QSUB16
	QSUB8
	RBIT
	REV
	REV16
	REVSH
	RFE, RFEDA, RFEDB, RFEIA, RFEIB
	ROR (immediate)
	ROR (register)
	RORS (immediate)
	RORS (register)
	RRX
	RRXS
	RSB, RSBS (immediate)
	RSB, RSBS (register)
	RSB, RSBS (register-shifted register)
	RSC, RSCS (immediate)
	RSC, RSCS (register)
	RSC, RSCS (register-shifted register)
	SADD16
	SADD8
	SASX
	SB
	SBC, SBCS (immediate)
	SBC, SBCS (register)
	SBC, SBCS (register-shifted register)
	SBFX
	SDIV
	SEL
	SETEND
	SETPAN
	SEV
	SEVL
	SHADD16
	SHADD8
	SHASX
	SHSAX
	SHSUB16
	SHSUB8
	SMC
	SMLABB, SMLABT, SMLATB, SMLATT
	SMLAD, SMLADX
	SMLAL, SMLALS
	SMLALBB, SMLALBT, SMLALTB, SMLALTT
	SMLALD, SMLALDX
	SMLAWB, SMLAWT
	SMLSD, SMLSDX
	SMLSLD, SMLSLDX
	SMMLA, SMMLAR
	SMMLS, SMMLSR
	SMMUL, SMMULR
	SMUAD, SMUADX
	SMULBB, SMULBT, SMULTB, SMULTT
	SMULL, SMULLS
	SMULWB, SMULWT
	SMUSD, SMUSDX
	SRS, SRSDA, SRSDB, SRSIA, SRSIB
	SSAT
	SSAT16
	SSAX
	SSBB
	SSUB16
	SSUB8
	STC
	STL
	STLB
	STLEX
	STLEXB
	STLEXD
	STLEXH
	STLH
	STM (User registers)
	STM, STMIA, STMEA
	STMDA, STMED
	STMDB, STMFD
	STMIB, STMFA
	STR (immediate)
	STR (register)
	STRB (immediate)
	STRB (register)
	STRBT
	STRD (immediate)
	STRD (register)
	STREX
	STREXB
	STREXD
	STREXH
	STRH (immediate)
	STRH (register)
	STRHT
	STRT
	SUB (immediate, from PC)
	SUB, SUBS (immediate)
	SUB, SUBS (register)
	SUB, SUBS (register-shifted register)
	SUB, SUBS (SP minus immediate)
	SUB, SUBS (SP minus register)
	SVC
	SXTAB
	SXTAB16
	SXTAH
	SXTB
	SXTB16
	SXTH
	TBB, TBH
	TEQ (immediate)
	TEQ (register)
	TEQ (register-shifted register)
	TSB CSYNC
	TST (immediate)
	TST (register)
	TST (register-shifted register)
	UADD16
	UADD8
	UASX
	UBFX
	UDF
	UDIV
	UHADD16
	UHADD8
	UHASX
	UHSAX
	UHSUB16
	UHSUB8
	UMAAL
	UMLAL, UMLALS
	UMULL, UMULLS
	UQADD16
	UQADD8
	UQASX
	UQSAX
	UQSUB16
	UQSUB8
	USAD8
	USADA8
	USAT
	USAT16
	USAX
	USUB16
	USUB8
	UXTAB
	UXTAB16
	UXTAH
	UXTB
	UXTB16
	UXTH
	WFE
	WFI
	YIELD

	AArch32 -- SIMD&FP Instructions (alphabetic order)
	AESD
	AESE
	AESIMC
	AESMC
	FLDM*X (FLDMDBX, FLDMIAX)
	FSTMDBX, FSTMIAX
	SHA1C
	SHA1H
	SHA1M
	SHA1P
	SHA1SU0
	SHA1SU1
	SHA256H
	SHA256H2
	SHA256SU0
	SHA256SU1
	VABA
	VABAL
	VABD (floating-point)
	VABD (integer)
	VABDL (integer)
	VABS
	VACGE
	VACGT
	VACLE
	VACLT
	VADD (floating-point)
	VADD (integer)
	VADDHN
	VADDL
	VADDW
	VAND (immediate)
	VAND (register)
	VBIC (immediate)
	VBIC (register)
	VBIF
	VBIT
	VBSL
	VCADD
	VCEQ (immediate #0)
	VCEQ (register)
	VCGE (immediate #0)
	VCGE (register)
	VCGT (immediate #0)
	VCGT (register)
	VCLE (immediate #0)
	VCLE (register)
	VCLS
	VCLT (immediate #0)
	VCLT (register)
	VCLZ
	VCMLA
	VCMLA (by element)
	VCMP
	VCMPE
	VCNT
	VCVT (between double-precision and single-precision)
	VCVT (between floating-point and fixed-point, Advanced SIMD)
	VCVT (between floating-point and fixed-point, floating-point)
	VCVT (between floating-point and integer, Advanced SIMD)
	VCVT (between half-precision and single-precision, Advanced SIMD)
	VCVT (floating-point to integer, floating-point)
	VCVT (from single-precision to BFloat16, Advanced SIMD)
	VCVT (integer to floating-point, floating-point)
	VCVTA (Advanced SIMD)
	VCVTA (floating-point)
	VCVTB
	VCVTB (BFloat16)
	VCVTM (Advanced SIMD)
	VCVTM (floating-point)
	VCVTN (Advanced SIMD)
	VCVTN (floating-point)
	VCVTP (Advanced SIMD)
	VCVTP (floating-point)
	VCVTR
	VCVTT
	VCVTT (BFloat16)
	VDIV
	VDOT (by element)
	VDOT (vector)
	VDUP (general-purpose register)
	VDUP (scalar)
	VEOR
	VEXT (byte elements)
	VEXT (multibyte elements)
	VFMA
	VFMAB, VFMAT (BFloat16, by scalar)
	VFMAB, VFMAT (BFloat16, vector)
	VFMAL (by scalar)
	VFMAL (vector)
	VFMS
	VFMSL (by scalar)
	VFMSL (vector)
	VFNMA
	VFNMS
	VHADD
	VHSUB
	VINS
	VJCVT
	VLD1 (multiple single elements)
	VLD1 (single element to all lanes)
	VLD1 (single element to one lane)
	VLD2 (multiple 2-element structures)
	VLD2 (single 2-element structure to all lanes)
	VLD2 (single 2-element structure to one lane)
	VLD3 (multiple 3-element structures)
	VLD3 (single 3-element structure to all lanes)
	VLD3 (single 3-element structure to one lane)
	VLD4 (multiple 4-element structures)
	VLD4 (single 4-element structure to all lanes)
	VLD4 (single 4-element structure to one lane)
	VLDM, VLDMDB, VLDMIA
	VLDR (immediate)
	VLDR (literal)
	VMAX (floating-point)
	VMAX (integer)
	VMAXNM
	VMIN (floating-point)
	VMIN (integer)
	VMINNM
	VMLA (by scalar)
	VMLA (floating-point)
	VMLA (integer)
	VMLAL (by scalar)
	VMLAL (integer)
	VMLS (by scalar)
	VMLS (floating-point)
	VMLS (integer)
	VMLSL (by scalar)
	VMLSL (integer)
	VMMLA
	VMOV (between general-purpose register and half-precision)
	VMOV (between general-purpose register and single-precision)
	VMOV (between two general-purpose registers and a doubleword floating-point register)
	VMOV (between two general-purpose registers and two single-precision registers)
	VMOV (general-purpose register to scalar)
	VMOV (immediate)
	VMOV (register)
	VMOV (register, SIMD)
	VMOV (scalar to general-purpose register)
	VMOVL
	VMOVN
	VMOVX
	VMRS
	VMSR
	VMUL (by scalar)
	VMUL (floating-point)
	VMUL (integer and polynomial)
	VMULL (by scalar)
	VMULL (integer and polynomial)
	VMVN (immediate)
	VMVN (register)
	VNEG
	VNMLA
	VNMLS
	VNMUL
	VORN (immediate)
	VORN (register)
	VORR (immediate)
	VORR (register)
	VPADAL
	VPADD (floating-point)
	VPADD (integer)
	VPADDL
	VPMAX (floating-point)
	VPMAX (integer)
	VPMIN (floating-point)
	VPMIN (integer)
	VPOP
	VPUSH
	VQABS
	VQADD
	VQDMLAL
	VQDMLSL
	VQDMULH
	VQDMULL
	VQMOVN, VQMOVUN
	VQNEG
	VQRDMLAH
	VQRDMLSH
	VQRDMULH
	VQRSHL
	VQRSHRN (zero)
	VQRSHRN, VQRSHRUN
	VQRSHRUN (zero)
	VQSHL (register)
	VQSHL, VQSHLU (immediate)
	VQSHRN (zero)
	VQSHRN, VQSHRUN
	VQSHRUN (zero)
	VQSUB
	VRADDHN
	VRECPE
	VRECPS
	VREV16
	VREV32
	VREV64
	VRHADD
	VRINTA (Advanced SIMD)
	VRINTA (floating-point)
	VRINTM (Advanced SIMD)
	VRINTM (floating-point)
	VRINTN (Advanced SIMD)
	VRINTN (floating-point)
	VRINTP (Advanced SIMD)
	VRINTP (floating-point)
	VRINTR
	VRINTX (Advanced SIMD)
	VRINTX (floating-point)
	VRINTZ (Advanced SIMD)
	VRINTZ (floating-point)
	VRSHL
	VRSHR
	VRSHR (zero)
	VRSHRN
	VRSHRN (zero)
	VRSQRTE
	VRSQRTS
	VRSRA
	VRSUBHN
	VSDOT (by element)
	VSDOT (vector)
	VSELEQ, VSELGE, VSELGT, VSELVS
	VSHL (immediate)
	VSHL (register)
	VSHLL
	VSHR
	VSHR (zero)
	VSHRN
	VSHRN (zero)
	VSLI
	VSMMLA
	VSQRT
	VSRA
	VSRI
	VST1 (multiple single elements)
	VST1 (single element from one lane)
	VST2 (multiple 2-element structures)
	VST2 (single 2-element structure from one lane)
	VST3 (multiple 3-element structures)
	VST3 (single 3-element structure from one lane)
	VST4 (multiple 4-element structures)
	VST4 (single 4-element structure from one lane)
	VSTM, VSTMDB, VSTMIA
	VSTR
	VSUB (floating-point)
	VSUB (integer)
	VSUBHN
	VSUBL
	VSUBW
	VSUDOT (by element)
	VSWP
	VTBL, VTBX
	VTRN
	VTST
	VUDOT (by element)
	VUDOT (vector)
	VUMMLA
	VUSDOT (by element)
	VUSDOT (vector)
	VUSMMLA
	VUZP
	VUZP (alias)
	VZIP
	VZIP (alias)

	Top-level encodings for A32
	Top-level encodings for T32
	Shared Pseudocode Functions

