Arm A32/T32 Instruction Set

for A-profile architecture

arm

Copyright © 2010-2024 Arm Limited (or its affiliates). All rights reserved.
DDI 0597 (ID070124)

Arm A32/T32 Instruction Set
for A-profile architecture

Copyright © 2010-2024 Arm Limited (or its affiliates). All rights reserved.
Release Information

For information on the change history and known issues for this release, see the Release Notes in the A32/T32 ISA XML for
A-profile architecture (2024-06).

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether the subject matter of this document infringes any third party patents.

The content of this document is informational only. Any solutions presented herein are subject to changing conditions,
information, scope, and data. This document was produced using reasonable efforts based on information available as of the date
of issue of this document. The scope of information in this document may exceed that which Arm is required to provide, and such
additional information is merely intended to further assist the recipient and does not represent Arm’s view of the scope of its
obligations. You acknowledge and agree that you possess the necessary expertise in system security and functional safety and that
you shall be solely responsible for compliance with all legal, regulatory, safety and security related requirements concerning your
products, notwithstanding any information or support that may be provided by Arm herein. In addition, you are responsible for
any applications which are used in conjunction with any Arm technology described in this document, and to minimize risks,
adequate design and operating safeguards should be provided for by you.

This document may include technical inaccuracies or typographical errors. THIS DOCUMENT IS PROVIDED “AS IS”. ARM
PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY,
NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the
avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the
scope and content of, patents, copyrights, trade secrets, or other rights.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

Reference by Arm to any third party’s products or services within this document is not an express or implied approval or
endorsement of the use thereof.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The validity, construction and performance of this License shall be governed by English Law.

The Arm corporate logo and words marked with ™ or © are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Copyright © 2010-2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

PRE-20349

Copyright © 2010-2024 Arm Limited (or its affiliates). All rights reserved. DDI 0597
Non-Confidential ID070124

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information relating to the 2023 Extensions and the rest of the A-profile Architecture is at Beta quality. Beta quality means
that all major features of the specification are described, but some details might be missing.

Web Address
http://www.arm.com
Progressive Terminology Commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives
to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find offensive terms
in this document, please contact terms@arm.com.

Feedback on this document
If you have any comments or queries about this document, create a ticket at https://support.developer.arm.com.

As part of the ticket, include:

. The title, Arm"™ A32/T32 Instruction Set for A-profile architecture.
. The number, DDI 0597.

. The section name to which your comments refer.

. The page number(s) to which your comments refer.

. The rule identifier(s) to which your comments refer if applicable.
. A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

DDI 0597
ID070124

Copyright © 2010-2024 Arm Limited (or its affiliates). All rights reserved. iii
Non-Confidential

Copyright © 2010-2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

DDI 0597
ID070124

AArch32 -- Base Instructions (alphabetic order)

AArch32 -- Base Instructions (alphabetic order)

ADC. ADCS (immediate): Add with Carry (immediate).

ADC. ADCS (register): Add with Carry (register).

ADC., ADCS (register-shifted register): Add with Carry (register-shifted register).

ADD (immediate, to PC): Add to PC: an alias of ADR.

ADD, ADDS (immediate): Add (immediate).

ADD, ADDS (register): Add (register).

ADD, ADDS (register-shifted register): Add (register-shifted register).

ADD, ADDS (SP plus immediate): Add to SP (immediate).

ADD, ADDS (SP plus register): Add to SP (register).

ADR: Form PC-relative address.

AND, ANDS (immediate): Bitwise AND (immediate).

AND, ANDS (register): Bitwise AND (register).

AND, ANDS (register-shifted register): Bitwise AND (register-shifted register).

ASR (immediate): Arithmetic Shift Right (immediate): an alias of MOV, MOVS (register).
ASR (register): Arithmetic Shift Right (register): an alias of MOV, MOVS (register-shifted register).
ASRS (immediate): Arithmetic Shift Right, setting flags (immediate): an alias of MOV, MOVS (register).
ASRS (register): Arithmetic Shift Right, setting flags (register): an alias of MOV, MOVS (register-shifted register).
B: Branch.
BFC: Bit Field Clear.
FI: Bit Field Insert.

BIC, BICS (immediate): Bitwise Bit Clear (immediate).

BIC. BICS (register): Bitwise Bit Clear (register).

BIC. BICS (register-shifted register): Bitwise Bit Clear (register-shifted register).

BKPT: Breakpoint.

BL. BLX (immediate): Branch with Link and optional Exchange (immediate).

BLX (register): Branch with Link and Exchange (register).
BX: Branch and Exchange.

BXJ: Branch and Exchange, previously Branch and Exchange Jazelle.

CBNZ, CBZ: Compare and Branch on Nonzero or Zero.
CLRBHB: Clear Branch History.

CLREX: Clear-Exclusive.

CLZ: Count Leading Zeros.

CMN (immediate): Compare Negative (immediate).

CMN (register): Compare Negative (register).

Page 2

AArch32 -- Base Instructions (alphabetic order)

CMN (register-shifted register): Compare Negative (register-shifted register).

CMP (immediate): Compare (immediate).
CMP (register): Compare (register).

CMP (register-shifted register): Compare (register-shifted register).

CPS, CPSID, CPSIE: Change PE State.

CRC32: CRC32.

CRC32C: CRC32C.

CSDB: Consumption of Speculative Data Barrier.
DBG: Debug hint.

DCPS1: Debug Change PE State to EL1.
DCPS2: Debug Change PE State to EL2.
DCPS3: Debug Change PE State to EL3.

DMB: Data Memory Barrier.

DSB: Data Synchronization Barrier.

EOR, EORS (immediate): Bitwise Exclusive-OR (immediate).

EOR, EORS (register): Bitwise Exclusive-OR (register).

EOR, EORS (register-shifted register): Bitwise Exclusive-OR (register-shifted register).

ERET: Exception Return.

ESB: Error Synchronization Barrier.

HLT: Halting Breakpoint.

HVC: Hypervisor Call.

ISB: Instruction Synchronization Barrier.

IT: If-Then.

LDA: Load-Acquire Word.

LDAB: Load-Acquire Byte.

LDAEX: Load-Acquire Exclusive Word.
LDAEXB: Load-Acquire Exclusive Byte.
LDAEXD: Load-Acquire Exclusive Doubleword.
LDAEXH: Load-Acquire Exclusive Halfword.
LDAH: Load-Acquire Halfword.

LDC (immediate): Load data to System register (immediate).
LDC (literal): Load data to System register (literal).

LDM (exception return): Load Multiple (exception return).

LDM (User registers): Load Multiple (User registers).

LDM, LDMIA, LDMFD: Load Multiple (Increment After, Full Descending).

LDMDA, LDMFA: Load Multiple Decrement After (Full Ascending).

Page 3

AArch32 -- Base Instructions (alphabetic order)

LDMDB, LDMEA: Load Multiple Decrement Before (Empty Ascending).

LDMIB, LDMED: Load Multiple Increment Before (Empty Descending).

LDR (immediate): Load Register (immediate).

LDR (literal): Load Register (literal).

LDR (register): Load Register (register).

LDRB (immediate): Load Register Byte (immediate).
LDRB (literal): Load Register Byte (literal).

LDRB (register): Load Register Byte (register).
LDRBT: Load Register Byte Unprivileged.

LDRD (immediate): Load Register Dual (immediate).
LDRD (literal): Load Register Dual (literal).

LDRD (register): Load Register Dual (register).
LDREX: Load Register Exclusive.

LDREXB: Load Register Exclusive Byte.

LDREXD: Load Register Exclusive Doubleword.
LDREXH: Load Register Exclusive Halfword.
LDRH (immediate): Load Register Halfword (immediate).
LDRH (literal): Load Register Halfword (literal).
LDRH (register): Load Register Halfword (register).
LDRHT: Load Register Halfword Unprivileged.

LDRSB (immediate): Load Register Signed Byte (immediate).

LDRSB (literal): Load Register Signed Byte (literal).
LDRSB (register): Load Register Signed Byte (register).
LDRSBT: Load Register Signed Byte Unprivileged.

LDRSH (immediate): Load Register Signed Halfword (immediate).

LDRSH (literal): Load Register Signed Halfword (literal).

LDRSH (register): Load Register Signed Halfword (register).

LDRSHT: Load Register Signed Halfword Unprivileged.

LDRT: Load Register Unprivileged.

LSL (immediate): Logical Shift Left (immediate): an alias of MOV, MOVS (register).

LSL (register): Logical Shift Left (register): an alias of MOV, MOVS (register-shifted register).

LSLS (immediate): Logical Shift Left, setting flags (immediate): an alias of MOV, MOVS (register).

LSLS (register): Logical Shift Left, setting flags (register): an alias of MOV, MOVS (register-shifted register).

LSR (immediate): Logical Shift Right (immediate): an alias of MOV, MOVS (register).

LSR (register): Logical Shift Right (register): an alias of MOV, MOVS (register-shifted register).

LSRS (immediate): Logical Shift Right, setting flags (immediate): an alias of MOV, MOVS (register).

Page 4

AArch32 -- Base Instructions (alphabetic order)

LSRS (register): Logical Shift Right, setting flags (register): an alias of MOV, MOVS (register-shifted register).
MCR: Move to System register from general-purpose register or execute a System instruction.
MCRR: Move to System register from two general-purpose registers.

MLA, MLAS: Multiply Accumulate.

MLS: Multiply and Subtract.

MOV, MOVS (immediate): Move (immediate).

MOV, MOVS (register): Move (register).

MOV, MOVS (register-shifted register): Move (register-shifted register).

MOVT: Move Top.

MRC: Move to general-purpose register from System register.
MRRC: Move to two general-purpose registers from System register.
MRS: Move Special register to general-purpose register.

MRS (Banked register): Move Banked or Special register to general-purpose register.

MSR (Banked register): Move general-purpose register to Banked or Special register.

MSR (immediate): Move immediate value to Special register.
MSR (register): Move general-purpose register to Special register.

MUL. MULS: Multiply.

MVN, MVNS (immediate): Bitwise NOT (immediate).

MVN, MVNS (register): Bitwise NOT (register).

MVN, MVNS (register-shifted register): Bitwise NOT (register-shifted register).

NOP: No Operation.

ORN, ORNS (immediate): Bitwise OR NOT (immediate).

ORN, ORNS (register): Bitwise OR NOT (register).

ORR. ORRS (immediate): Bitwise OR (immediate).

ORR, ORRS (register): Bitwise OR (register).

ORR. ORRS (register-shifted register): Bitwise OR (register-shifted register).

PKHBT, PKHTB: Pack Halfword.

PLD (literal): Preload Data (literal).

PLD, PLDW (immediate): Preload Data (immediate).

PLD, PLDW (register): Preload Data (register).

PLI (immediate, literal): Preload Instruction (immediate, literal).

PLI (register): Preload Instruction (register).
POP: Pop Multiple Registers from Stack.

POP (multiple registers): Pop Multiple Registers from Stack: an alias of LDM, LDMIA, LDMFD.

POP (single register): Pop Single Register from Stack: an alias of LDR (immediate).

PSSBB: Physical Speculative Store Bypass Barrier.

Page 5

AArch32 -- Base Instructions (alphabetic order)

PUSH: Push Multiple Registers to Stack.

PUSH (multiple registers): Push multiple registers to Stack: an alias of STMDB, STMFD.

PUSH (single register): Push Single Register to Stack: an alias of STR (immediate).

QADD: Saturating Add.

QADDI16: Saturating Add 16.

QADDR&: Saturating Add 8.

QASX: Saturating Add and Subtract with Exchange.
QDADD: Saturating Double and Add.

QDSUB: Saturating Double and Subtract.

QSAX: Saturating Subtract and Add with Exchange.
QSUB: Saturating Subtract.

QSUBI16: Saturating Subtract 16.

QSUBS: Saturating Subtract 8.

RBIT: Reverse Bits.

REV: Byte-Reverse Word.

REV16: Byte-Reverse Packed Halfword.

REVSH: Byte-Reverse Signed Halfword.

RFE. RFEDA, RFEDB, RFEIA, RFEIB: Return From Exception.

ROR (immediate): Rotate Right (immediate): an alias of MOV, MOVS (register).
ROR (register): Rotate Right (register): an alias of MOV, MOVS (register-shifted register).

RORS (immediate): Rotate Right, setting flags (immediate): an alias of MOV, MOVS (register).

RORS (register): Rotate Right, setting flags (register): an alias of MOV, MOVS (register-shifted register).

RRX: Rotate Right with Extend: an alias of MOV, MOVS (register).
RRXS: Rotate Right with Extend, setting flags: an alias of MOV, MOVS (register).

RSB, RSBS (immediate): Reverse Subtract (immediate).

RSB, RSBS (register): Reverse Subtract (register).

RSB, RSBS (register-shifted register): Reverse Subtract (register-shifted register).

RSC, RSCS (immediate): Reverse Subtract with Carry (immediate).

RSC, RSCS (register): Reverse Subtract with Carry (register).

RSC, RSCS (register-shifted register): Reverse Subtract (register-shifted register).

SADDI6: Signed Add 16.

SADDS: Signed Add 8.

SASX: Signed Add and Subtract with Exchange.
SB: Speculation Barrier.

SBC, SBCS (immediate): Subtract with Carry (immediate).

SBC, SBCS (register): Subtract with Carry (register).

Page 6

AArch32 -- Base Instructions (alphabetic order)

SBC, SBCS (register-shifted register): Subtract with Carry (register-shifted register).

SBFX: Signed Bit Field Extract.

SDIV: Signed Divide.

SEL: Select Bytes.

SETEND: Set Endianness.

SETPAN: Set Privileged Access Never.

SEV: Send Event.

SEVL: Send Event Local.

SHADD16: Signed Halving Add 16.

SHADDS: Signed Halving Add 8.

SHASX: Signed Halving Add and Subtract with Exchange.
SHSAX: Signed Halving Subtract and Add with Exchange.
SHSUBI16: Signed Halving Subtract 16.

SHSUBS: Signed Halving Subtract 8.

SMC: Secure Monitor Call.

SMLABB, SMLABT, SMLATB, SMLATT: Signed Multiply Accumulate (halfwords).

SMLAD, SMLADX: Signed Multiply Accumulate Dual.

SMLAL, SMLALS: Signed Multiply Accumulate Long.

SMLALBB, SMLALBT, SMLALTB, SMLALTT: Signed Multiply Accumulate Long (halfwords).

SMLALD, SMLALDX: Signed Multiply Accumulate Long Dual.

SMLAWB, SMLAWT: Signed Multiply Accumulate (word by halfword).

SMLSD, SMLSDX: Signed Multiply Subtract Dual.

SMLSLD, SMLSLDX: Signed Multiply Subtract Long Dual.

SMMLA, SMMLAR: Signed Most Significant Word Multiply Accumulate.

SMMLS, SMMLSR: Signed Most Significant Word Multiply Subtract.

SMMUL, SMMULR: Signed Most Significant Word Multiply.

SMUAD, SMUADX: Signed Dual Multiply Add.

SMULBB. SMULBT, SMULTB. SMULTT: Signed Multiply (halfwords).

SMULL, SMULLS: Signed Multiply Long.

SMULWB, SMULWT: Signed Multiply (word by halfword).

SMUSD, SMUSDX: Signed Multiply Subtract Dual.

SRS, SRSDA., SRSDB, SRSIA, SRSIB: Store Return State.

SSAT: Signed Saturate.
SSATI6: Signed Saturate 16.
SSAX: Signed Subtract and Add with Exchange.

SSBB: Speculative Store Bypass Barrier.

Page 7

AArch32 -- Base Instructions (alphabetic order)

SSUBI16: Signed Subtract 16.

SSUBS: Signed Subtract 8.

STC: Store data to System register.

STL: Store-Release Word.

STLB: Store-Release Byte.

STLEX: Store-Release Exclusive Word.
STLEXB: Store-Release Exclusive Byte.
STLEXD: Store-Release Exclusive Doubleword.
STLEXH: Store-Release Exclusive Halfword.
STLH: Store-Release Halfword.

STM (User registers): Store Multiple (User registers).

STM, STMIA, STMEA: Store Multiple (Increment After, Empty Ascending).

STMDA, STMED: Store Multiple Decrement After (Empty Descending).

STMDB, STMFD: Store Multiple Decrement Before (Full Descending).

STMIB, STMFA: Store Multiple Increment Before (Full Ascending).

STR (immediate): Store Register (immediate).

STR (register): Store Register (register).

STRB (immediate): Store Register Byte (immediate).
STRB (register): Store Register Byte (register).
STRBT: Store Register Byte Unprivileged.

STRD (immediate): Store Register Dual (immediate).
STRD (register): Store Register Dual (register).
STREX: Store Register Exclusive.

STREXB: Store Register Exclusive Byte.

STREXD: Store Register Exclusive Doubleword.
STREXH: Store Register Exclusive Halfword.

STRH (immediate): Store Register Halfword (immediate).
STRH (register): Store Register Halfword (register).
STRHT: Store Register Halfword Unprivileged.
STRT: Store Register Unprivileged.

SUB (immediate, from PC): Subtract from PC: an alias of ADR.

SUB, SUBS (immediate): Subtract (immediate).

SUB, SUBS (register): Subtract (register).

SUB, SUBS (register-shifted register): Subtract (register-shifted register).

SUB, SUBS (SP minus immediate): Subtract from SP (immediate).

SUB. SUBS (SP minus register): Subtract from SP (register).

Page 8

AArch32 -- Base Instructions (alphabetic order)

SVC: Supervisor Call.

SXTAB: Signed Extend and Add Byte.
SXTABI16: Signed Extend and Add Byte 16.
SXTAH: Signed Extend and Add Halfword.
SXTB: Signed Extend Byte.

SXTB16: Signed Extend Byte 16.

SXTH: Signed Extend Halfword.

TBB, TBH: Table Branch Byte or Halfword.

TEQ (immediate): Test Equivalence (immediate).

TEQ (register): Test Equivalence (register).

TEQ (register-shifted register): Test Equivalence (register-shifted register).

TSB: Trace Synchronization Barrier.

TST (immediate): Test (immediate).
TST (register): Test (register).

TST (register-shifted register): Test (register-shifted register).

UADD16: Unsigned Add 16.

UADDS: Unsigned Add 8.

UASX: Unsigned Add and Subtract with Exchange.

UBFX: Unsigned Bit Field Extract.

UDF: Permanently Undefined.

UDIV: Unsigned Divide.

UHADDI6: Unsigned Halving Add 16.

UHADDS: Unsigned Halving Add 8.

UHASX: Unsigned Halving Add and Subtract with Exchange.
UHSAX: Unsigned Halving Subtract and Add with Exchange.
UHSUBI16: Unsigned Halving Subtract 16.

UHSUBS: Unsigned Halving Subtract 8.

UMAAL: Unsigned Multiply Accumulate Accumulate Long.

UMLAL, UMLALS: Unsigned Multiply Accumulate Long.

UMULL, UMULLS: Unsigned Multiply Long.

UQADDI6: Unsigned Saturating Add 16.

UQADDS: Unsigned Saturating Add 8.

UQASX: Unsigned Saturating Add and Subtract with Exchange.
UQSAX: Unsigned Saturating Subtract and Add with Exchange.
UQSUBI16: Unsigned Saturating Subtract 16.

UQSUBS: Unsigned Saturating Subtract 8.

Page 9

AArch32 -- Base Instructions (alphabetic order)

USADS: Unsigned Sum of Absolute Differences.
USADAS: Unsigned Sum of Absolute Differences and Accumulate.
USAT: Unsigned Saturate.

USATI16: Unsigned Saturate 16.

USAX: Unsigned Subtract and Add with Exchange.
USUBI16: Unsigned Subtract 16.

USUBS: Unsigned Subtract 8.

UXTAB: Unsigned Extend and Add Byte.
UXTABI16: Unsigned Extend and Add Byte 16.
UXTAH: Unsigned Extend and Add Halfword.
UXTB: Unsigned Extend Byte.

UXTB16: Unsigned Extend Byte 16.

UXTH: Unsigned Extend Halfword.

WFE: Wait For Event.

WEFI: Wait For Interrupt.

YIELD: Yield hint.

Internal version only: isa vO1 31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

Page 10

ADC, ADCS (immediate)

Add with Carry (immediate) adds an immediate value and the Carry flag value to a register value, and writes the result to the destination register.
If the destination register is not the PC, the ADCS variant of the instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these
encodings. However, when the destination register is the PC:
* The ADC variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.
* The ADCS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current mode>.
o The PE checks SPSR_<current mode> for an illegal return event. See lllegal return events from AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[=111 Jo 0 1 o[1 0 1][S] Rn | Rd | imm12
cond
ADC (S ==0)

ADC{<c>}{<g>} {<Rd>,} <Rn>, #<const>

ADCS (S == 1)

ADCS{<c>}{<g>} {<Rd>,} <Rn>, f#<const>

constant d = UInt (Rd); constant n = UInt (Rn); constant setflags = (S == '1");

constant imm32 = A32ExpandImm (imml2) ;

T

%5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
111 1 0]ilo[1 0 1 0[S] Rn [0] imm3 | Rd | imm8

ADC (S==0)

ADC{<c>}{<g>} {<Rd>,} <Rn>, #<const>
ADCS (S ==1)

ADCS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

constant d = UInt(Rd); constant n = UInt(Rn); constant setflags = (S == '1");
constant imm32 = T32ExpandImm(i:imm3:imm8) ;

// Armv8-A removes UNPREDICTABLE for R13

if d == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<g> See Standard assembler syntax fields.
<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

Arm deprecates using the PC as the destination register, but if the PC is used:

ADC, ADCS (immediate) Page 11

* For the ADC variant, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
* For the ADCS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.
<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.
<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
constant (result, nzcv) = AddWithCarry(R[n], imm32, PSTATE.C);
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn (result) ;
else
ALUWritePC (result) ;

else
R[d] = result;
if setflags then
PSTATE.<N, Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

» The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADC, ADCS (immediate) Page 12

ADC, ADCS (register)

Add with Carry (register) adds a register value, the Carry flag value, and an optionally-shifted register value, and writes the result to the destination

register.

If the destination register is not the PC, the ADCS variant of the instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these

encodings. However, when the destination register is the PC:

* The ADC variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose

registers and the PC.

* The ADCS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current mode>.
o The PE checks SPSR_<current mode> for an illegal return event. See lllegal return events from AArch32 state.

o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.
It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).
A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

[=111 Jo 0 0 0[1 0 1][S] Rn | Rd | imm5

| stype | 0]

cond

ADC, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
ADC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ADC, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
ADC{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADCS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
ADCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ADCS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ADCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

constant d = UInt (Rd); constant n = UInt(Rn); constant m = UInt (Rm);

constant setflags = (S == '1");
constant (shift t, shift n) = DecodeImmShift (stype, imm5);

T1

15 14 13 12 11 10 9
[01 0 00 0]0

8 6 5 4 3 2 1 0
1 1

7
0 1] Rm | Rdn |

T

ADC<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)

ADCS{<g>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

constant d = UInt (Rdn); constant n = UInt(Rdn); constant m = UInt (Rm);

constant setflags = !InITBlock();
constant (shift t, shift n) = (SRType LSL, 0);
T2

ADC, ADCS (register)

Page 13

6 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 5 4
1711010 1[1 0 1 0]S] Rn (0] imm3 | Rd | imm2 | stype | Rm

ADC, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
ADC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX
ADC, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ADC<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

ADC{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADCS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)

ADCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX
ADCS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ADCS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)
ADCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

constant d = UInt(Rd); constant n = UInt(Rn); constant m = UInt (Rm);
constant setflags = (S == '1'");

constant (shift t, shift n) = DecodeImmShift (stype, imm3:imm2);

// Armv8-A removes UNPREDICTABLE for R13

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

Arm deprecates using the PC as the destination register, but if the PC is used:

* For the ADC variant, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

* For the ADCS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

<Rn> For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.
<Rm> For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is
deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:
stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR
<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift>=LSR or ASR)

encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR),
encoded in the "imm3:imm?2" field as <amount> modulo 32.

ADC, ADCS (register) Page 14

In T32 assembly:

Outside an IT block, if ADCS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled using encoding T1 as
though ADCS <Rd>, <Rn> had been written.

Inside an IT block, if ADC<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled using encoding T1 as
though ADC<c> <Rd>, <Rn> had been written.

To prevent either of these happening, use the .W qualifier.

Operation

if ConditionPassed () then
EncodingSpecificOperations () ;
constant shifted = Shift(R[m], shift t, shift n, PSTATE.C);
constant (result, nzcv) = AddWithCarry(R[n], shifted, PSTATE.C);

if d == 15 then // Can only occur for A32 encoding
if setflags then

ALUExceptionReturn (result) ;

else
ALUWritePC (result) ;
else
R[d] = result;
if setflags then
PSTATE.<N, Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa v01_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADC, ADCS (register) Page 15

ADC, ADCS (register-shifted register)

Add with Carry (register-shifted register) adds a register value, the Carry flag value, and a register-shifted register value. It writes the result to the
destination register, and can optionally update the condition flags based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[=111 Jo 0 0 0[1 0 1][S] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)

ADCS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

ADC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

constant d = UInt (Rd); constant n = UInt (Rn); constant m = UInt (Rm); constant s = UInt (Rs);
constant setflags = (S == '1"); constant shift_t = DecodeRegShift (stype) ;
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
constant shift n = UInt (R[s]<7:0>);
constant shifted = Shift(R[m], shift t, shift n, PSTATE.C);
constant (result, nzcv) = AddWithCarry(R[n], shifted, PSTATE.C);
R[d] = result;
if setflags then
PSTATE.<N, ZzZ,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

» The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.

ADC, ADCS (register-shifted

register) Page 16

o The values of the NZCV flags.

» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2024-06 rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADC, ADCS (register-shifted

register) Page 17

ADD (immediate, to PC)

Add to PC adds an immediate value to the Align(PC, 4) value to form a PC-relative address, and writes the result to the destination register. Arm
recommends that, where possible, software avoids using this alias.

This is a pseudo-instruction of ADR. This means:

* The encodings in this description are named to match the encodings of ADR.
» The assembler syntax is used only for assembly, and is not used on disassembly.
» The description of ADR gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any operational information
for this instruction.
It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T3).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| =111 Jo o 1 o[1 0 ofo[1 1 1 1] Rd | imm12

cond

A1

ADD{<c>}{<g>} <Rd>, PC, #<const>

is equivalent to

ADR{<c>}{<g>} <Rd>, <label>

T1
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
|1 0 1 0J]o] Rd | imms8

T

ADD{<c>}{<g>} <Rd>, PC, #<imm8>
is equivalent to

ADR{<c>}{<g>} <Rd>, <label>

T3

15 14 13 12 11 10 9 8 7 6 5 4
111 1 0i[1 olo]o|o]O]

3 2 1 0 15 14 1312 11 10 9 8 7 6 &5 4 3 2 1 0
1 1 1 1]0] imm3 | Rd | imm8

T3

ADDW{<c>}{<g>} <Rd>, PC, #<imml2> // (<Rd>, <imml2> can be represented in T1)
ADD{<c>}{<g>} <Rd>, PC, #<imml2>
is equivalent to

ADR{<c>}{<g>} <Rd>, <label>
Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

ADD (immediate, to PC) Page 18

<Rd>

<label>

<imm8>
<imm12>

<const>

Operation

For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If the PC is used, the instruction is a branch
to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the AArch32
general-purpose registers and the PC.

For encoding T1 and T3: is the general-purpose destination register, encoded in the "Rd" field.

For encoding A1: the label of an instruction or literal data item whose address is to be loaded into <Rd>. The assembler calculates
the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label.

If the offset is zero or positive, encoding Al is used, with imm32 equal to the offset.

If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the use of encoding A2 indicates
that the required offset is minus the value of imm32.

Permitted values of the size of the offset are any of the constants described in Modified immediate constants in A32 instructions.
For encoding T1: the label of an instruction or literal data item whose address is to be loaded into <Rd>. The assembler calculates
the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label. Permitted values of the size of the
offset are multiples of 4 in the range 0 to 1020.

For encoding T3: the label of an instruction or literal data item whose address is to be loaded into <Rd>. The assembler calculates
the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label.

If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.

If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the use of encoding T2 indicates
that the required offset is minus the value of imm32.

Permitted values of the size of the offset are 0-4095.
Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as <imm8>/4.
Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.

An immediate value. See Modified immediate constants in A32 instructions for the range of values.

The description of ADR gives the operational pseudocode for this instruction.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD (immediate, to PC) Page 19

ADD, ADDS (immediate)

Add (immediate) adds an immediate value to a register value, and writes the result to the destination register.
If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the destination register is the PC:
* The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.
* The ADDS variant of the instruction performs an exception return without the use of the stack. Arm deprecates use of this instruction.
However, in this case:
o The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current mode>.
o The PE checks SPSR_<current mode> for an illegal return event. See lllegal return events from AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1,T2,T3and T4).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[=111 Jo 0 1 0[1 0 0]S] Rn | Rd | imm12

cond

ADD (S == 0 && Rn != 11x1)

ADD{<c>}{<g>} {<Rd>,} <Rn>, #<const>

ADDS (S ==1 && Rn !=1101)

ADDS{<c>}{<g>} {<Rd>,} <Rn>, f#<const>

if Rn == '1111' && S == '0' then SEE "ADR";
if Rn == '1101' then SEE "ADD (SP plus immediate)";
constant d = UInt (Rd); constant n = UInt (Rn); constant setflags = (S == '1");
constant imm32 = A32ExpandImm (imml2) ;
T
%5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
|0 0o 0 11 1]/0o] imm3 [Rn | Rd |
T1

ADD<c>{<g>} <Rd>, <Rn>, #<imm3> // (Inside IT block)

ADDS{<g>} <Rd>, <Rn>, #<imm3> // (Outside IT block)

constant d = UInt (Rd); constant n = UInt (Rn); constant setflags = !InITBlock();
constant imm32 = ZeroExtend (imm3, 32);
T2

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
|00 11 0] Rdn | imm8

ADD, ADDS (immediate) Page 20

T2

ADD<c>{<g>} <Rdn>, #<imm8> // (Inside IT block, and <Rdn>, <imm8> can be represented in T1)
ADD<c>{<g>} {<Rdn>,} <Rdn>, #<imm8> // (Inside IT block, and <Rdn>, <imm8> cannot be represented in T1)
ADDS{<g>} <Rdn>, #<imm8> // (Outside IT block, and <Rdn>, <imm8> can be represented in T1)

ADDS{<g>} {<Rdn>,} <Rdn>, #<imm8> // (Outside IT block, and <Rdn>, <imm8> cannot be represented in T1)

constant d = UInt(Rdn); constant n = UInt (Rdn); constant setflags = !InITBlock();
constant imm32 = ZeroExtend (imm8, 32);
T3
%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 11 1 0o][ilo[1 0 0 0[S =101 [O] imm3 | Rd | imm8
Rn

ADD (S == 0)

ADD<c>.W {<Rd>,} <Rn>, #<const> // (Inside IT block, and <Rd>, <Rn>, <const> can be represented in T1 or

ADD{<c>}{<g>} {<Rd>,} <Rn>, #<const>

ADDS (S ==1 && Rd != 1111)

ADDS.W {<Rd>,} <Rn>, #<const> // (Outside IT block, and <Rd>, <Rn>, <const> can be represented in Tl or T

ADDS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

if Rd == '1111' && S == '1l' then SEE "CMN (immediate)";
if Rn == '1101' then SEE "ADD (SP plus immediate)";
constant d = UInt(Rd); constant n = UInt(Rn); constant setflags = (S == '1"');
constant imm32 = T32ExpandImm(i:imm3:imm8) ;
// Armv8-A removes UNPREDICTABLE for R13
if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE;
T4
%5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
11 1 1 0]i[1 ofloJofof[o| !=11x1 [O] imm3 | Rd | imm8
Rn
T4

ADD{<c>}{<g>} {<Rd>,} <Rn>, #<imml2> // (<imml2> cannot be represented in T1l, T2, or T3)
ADDW{<c>}{<g>} {<Rd>,} <Rn>, #<imml2> // (<imml2> can be represented in T1, T2, or T3)
if Rn == '1111' then SEE "ADR";

if Rn == '1101' then SEE "ADD (SP plus immediate)";

constant d = UInt(Rd); constant n = UInt(Rn); constant setflags = FALSE;

constant imm32 = ZeroExtend(i:imm3:imm8, 32);

// Armv8-A removes UNPREDICTABLE for R13

if d == 15 then UNPREDICTARLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.
Assembler Symbols

<c> See Standard assembler syntax fields.

<gq> See Standard assembler syntax fields.

ADD, ADDS (immediate) Page 21

<Rdn> Is the general-purpose source and destination register, encoded in the "Rdn" field.

<immg8&> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.
<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.
If the PC is used:

» For the ADD variant, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

» For the ADDS variant, the instruction performs an exception return, that restores PSTATE from
SPSR_<current mode>. Arm deprecates use of this instruction.

For encoding T1, T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the
same as <Rn>.

<Rn> For encoding A1 and T4: is the general-purpose source register, encoded in the "Rn" field. If the SP is used, see ADD (SP plus
immediate). If the PC is used, see ADR.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the general-purpose source register, encoded in the "Rn" field. If the SP is used, see ADD (SP plus immediate).

<imm3> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "imm3" field.
<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.
<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the range of values.

For encoding T3: an immediate value. See Modified immediate constants in T32 instructions for the range of values.

When multiple encodings of the same length are available for an instruction, encoding T3 is preferred to encoding T4 (if encoding T4 is required, use
the ADDW syntax). Encoding T1 is preferred to encoding T2 if <Rd> is specified and encoding T2 is preferred to encoding T1 if <Rd> is omitted.

Operation

if CurrentInstrSet () == InstrSet A32 then
if ConditionPassed() then
EncodingSpecificOperations () ;
constant (result, nzcv) = AddWithCarry(R[n], imm32, '0');
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn (result) ;
else
ALUWritePC (result) ;

else

R[d] = result;

if setflags then

PSTATE.<N, Z,C,V> = nzcv;
else
if ConditionPassed() then

EncodingSpecificOperations() ;
constant (result, nzcv) = AddWithCarry(R[n], imm32, '0');
R[d] = result;
if setflags then

PSTATE.<N, Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (immediate) Page 22

ADD, ADDS (register)

Add (register) adds a register value and an optionally-shifted register value, and writes the result to the destination register.
If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. If the destination register is the PC:
* The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.
* The ADDS variant of the instruction performs an exception return without the use of the stack. Arm deprecates use of this instruction.
However, in this case:
o The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current mode>.
o The PE checks SPSR_<current mode> for an illegal return event. See lllegal return events from AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1,T2and T3).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[=111 Jo 0 0 0[1 0 0[S] 1=1101 | Rd | imm5 | stype [0 | Rm |
cond Rn

ADD, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
ADD{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ADD, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
ADD{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
ADDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ADDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rn == '1101' then SEE "ADD (SP plus register)";
constant d = UInt (Rd); constant n = UInt(Rn); constant m = UInt (Rm);
constant setflags = (S == '1");

constant (shift t, shift n) = DecodeImmShift (stype, imm5);

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 0 01 1 0[0] Rm | Rn | Rd |
™

ADD<c>{<g>} <Rd>, <Rn>, <Rm> // (Inside IT block)
ADDS{<g>} {<Rd>,} <Rn>, <Rm> // (Outside IT block)
constant d = UInt (Rd); constant n = UInt(Rn); constant m = UInt (Rm);

constant setflags = !InITBlock();
constant (shift t, shift n) = (SRType LSL, 0);

ADD, ADDS (register) Page 23

T2

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[01 0 00 1/0 0[DN] !1=1101 | Rdn |
Rm

T2 (/(DN == 1 && Rdn == 101))

ADD<c>{<g>} <Rdn>, <Rm> // (Preferred syntax, Inside IT block)
ADD{<c>}{<g>} {<Rdn>,} <Rdn>, <Rm>
if (DN:Rdn) == '1101' || Rm == '1101' then SEE "ADD (SP plus register)";
constant d = UInt (DN:Rdn); constant n = d; constant m = UInt(Rm); constant setflags = FALSE;
constant (shift t, shift n) = (SRType LSL, 0);
if n == 15 && m == 15 then UNPREDICTABLE;
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
T3
%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1101 0 1[1 0 0 0[S =101 [0 imm3 | Rd [imm2 | stype | Rm |
Rn

ADD, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

ADD{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ADD, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ADD<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>,
ADD{<c>}.W {<Rd>,} <Rn>, <Rm> // (<Rd> == <Rn>, and <Rd>, <Rn>,
ADD{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

<Rm> can be represented in T1)

<Rm> can be represented in T2)

ADDS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)

ADDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ADDS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111)

ADDS.W {<Rd>,} <Rn>, <Rm> //

ADDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {,

'1l'" then SEE "CMN
"ADD

if Rd ==
if Rn ==
constant

'1111" && S
'1101"'" then SEE
d UInt (Rd); constant n
constant setflags (S '1');

constant (shift t, shift n)

(Outside IT block,

DecodeImmShift (stype,

and <Rd>, <Rn>,

<shift> #<amount>}

(register)";

(SP plus register)";
UInt (Rn);

constant m

imm3:imm?2) ;

// Armv8-A removes UNPREDICTABLE for R13
if (d == 15 && !setflags) || n == 15 ||

<Rm> can be represented in Tl or T2)

UInt (Rm) ;

m == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

ADD, ADDS (register)

Page 24

<Rdn>

<Rd>

<Rn>

<Rm>

<shift>

<amount>

Is the general-purpose source and destination register, encoded in the "DN:Rdn" field. If the PC is used, the instruction is a branch to
the address calculated by the operation. This is a simple branch, see Pseudocode description of operations on the AArch32 general-
purpose registers and the PC.

The assembler language allows <Rdn> to be specified once or twice in the assembler syntax. When used inside an IT block, and
<Rdn> and <Rm> are in the range RO to R7, <Rdn> must be specified once so that encoding T2 is preferred to encoding T1. In all
other cases there is no difference in behavior when <Rdn> is specified once or twice.

For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.
If the PC is used:

» For the ADD variant, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

» For the ADDS variant, the instruction performs an exception return, that restores PSTATE from
SPSR_<current mode>. Arm deprecates use of this instruction.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.
When used inside an IT block, <Rd> must be specified. When used outside an IT block, <Rd> is optional, and:

» If omitted, this register is the same as <Rn>.
o If present, encoding T1 is preferred to encoding T2.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used. If the SP is used, see
ADD (SP plus register).

For encoding T1: is the first general-purpose source register, encoded in the "Rn" field.

For encoding T3: is the first general-purpose source register, encoded in the "Rn" field. If the SP is used, see ADD (SP plus
register).

For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is
deprecated.

For encoding T1 and T3: is the second general-purpose source register, encoded in the "Rm" field.

For encoding T2: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used.

Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

For encoding Al: is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift>= LSR or ASR)
encoded in the "immS5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift>= LSR or ASR),
encoded in the "imm3:imm?2" field as <amount> modulo 32.

Inside an IT block, if ADD<c> <Rd>, <Rn>, <Rd> cannot be assembled using encoding T1, it is assembled using encoding T2 as though ADD<c>
<Rd>, <Rn> had been written. To prevent this happening, use the .W qualifier.

Operation

if ConditionPassed() then

EncodingSpecificOperations() ;
constant shifted = Shift(R[m], shift t, shift n, PSTATE.C);
constant (result, nzcv) = AddWithCarry(R[n], shifted, '0'");

if d

else
R[d] = result;
if setflags then

15 then

if setflags then

ALUExceptionReturn (result) ;

else

ALUWritePC (result) ;

PSTATE.<N,Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

» The execution time of this instruction is independent of:

ADD, ADDS (register) Page 25

o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (register) Page 26

ADD, ADDS (register-shifted register)

Add (register-shifted register) adds a register value and a register-shifted register value. It writes the result to the destination register, and can
optionally update the condition flags based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[=111 Jo 0 0 0[1 0 0]S] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)

ADDS{<c>} {<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

ADD{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

constant d = UInt (Rd); constant n = UInt (Rn); constant m = UInt (Rm); constant s = UInt (Rs);
constant setflags = (S == '1"); constant shift_t = DecodeRegShift (stype) ;
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
constant shift n = UInt (R[s]<7:0>);
constant shifted = Shift(R[m], shift t, shift n, PSTATE.C);
constant (result, nzcv) = AddWithCarry(R[n], shifted, '0'");
R[d] = result;
if setflags then
PSTATE.<N, ZzZ,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

» The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.

ADD, ADDS (register-shifted

register) Page 27

o The values of the NZCV flags.

» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2024-06 rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (register-shifted

register) Page 28

ADD, ADDS (SP plus immediate)

Add to SP (immediate) adds an immediate value to the SP value, and writes the result to the destination register.
If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. However, when the destination register is

the PC:

* The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose

registers and the PC.

* The ADDS variant of the instruction performs an exception return without the use of the stack. Arm deprecates use of this instruction.

However, in this case:

o The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current mode>.
o The PE checks SPSR_<current mode> for an illegal return event. See lllegal return events from AArch32 state.

o The instruction is UNDEFINED in Hyp mode.

o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1,T2,T3and T4).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[=111 Jo 0 1 o[1 0 Oo[S[1 1 0 1] Rd imm12
cond

ADD (S ==0)

ADD{<c>}{<g>} {<Rd>,} SP, #<const>
ADDS (S ==1)

ADDS{<c>}{<g>} {<Rd>,} SP, #<const>

constant d = UInt(Rd); constant setflags = (S == '1"); constant imm32 = A32ExpandImm (imml2) ;

T1
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1. 0 1 0]1] Rd | imm8

T

ADD{<c>}{<g>} <Rd>, SP, #<imm8>

constant d = UInt (Rd); constant setflags = FALSE;

constant imm32

= ZeroExtend (imm8:'00', 32);

T2

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1.1 0 0 0 0]0] imm7

T2

ADD{<c>}{<g>} {SP,} SP, #<imm7>

constant d = 13; constant setflags = FALSE; constant imm32 = ZeroExtend (imm7:'00', 32);

T3

%5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
111 1 0]li[o[1 0 0 0[S{1 1 0 1[0] imm3 | Rd | imm8

ADD, ADDS (SP plus immediate)

Page 29

ADD (S == 0)

ADD{<c>}.W {<Rd>,} SP, #<const> // (<Rd>, <const> can be represented in Tl or T2)

ADD{<c>}{<g>} {<Rd>,} SP, #<const>

ADDS (S ==1 && Rd != 1111)

ADDS{<c>}{<g>} {<Rd>,} SP, #<const>

if Rd == '1111' && S == '1l' then SEE "CMN (immediate)";
constant d = UInt(Rd); constant setflags = (S == '1l'); constant imm32 = T32ExpandImm(i:imm3:imm8) ;
if d == 15 && !setflags then UNPREDICTABLE;

T4

15 14 13 12 11 10 9 8 7 6 5 4
111 1 0]i[1 olo]o|o]oO]

3 2 1 0 15 14 1312 11 10 9 8 7 6 &5 4 3 2 1 0
1 1.0 1]0] imm3 | Rd | imm8

T4

ADD{<c>}{<g>} {<Rd>,} SP, #<imml2> // (<imml2> cannot be represented in T1l, T2, or T3)
ADDW{<c>}{<g>} {<Rd>,} SP, #<imml2> // (<imml2> can be represented in T1, T2, or T3)

constant d = UInt(Rd); constant setflags = FALSE; constant imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTARLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

SP, Is the stack pointer.

<imm?7> Is the unsigned immediate, a multiple of 4, in the range 0 to 508, encoded in the "imm?7" field as <imm7>/4.

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the SP. Arm

deprecates using the PC as the destination register, but if the PC is used:
* For the ADD variant, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
* For the ADDS variant, the instruction performs an exception return, that restores PSTATE from
SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field.

For encoding T3 and T4: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the SP.

<imm8> Is an unsigned immediate, a multiple of 4, in the range 0 to 1020, encoded in the "imm8" field as <imm8>/4.
<imm12> Is a 12-bit unsigned immediate, in the range 0 to 4095, encoded in the "i:imm3:imm8" field.
<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the range of values.

For encoding T3: an immediate value. See Modified immediate constants in T32 instructions for the range of values.

ADD, ADDS (SP plus immediate) Page 30

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;
constant (result, nzcv) = AddWithCarry(R[13], imm32, '0');
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn (result) ;
else
ALUWritePC (result) ;

else
R[d] = result;
if setflags then
PSTATE.<N, Z,C,V> = nzcv;

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (SP plus immediate)

Page 31

ADD, ADDS (SP plus register)

Add to SP (register) adds an optionally-shifted register value to the SP value, and writes the result to the destination register.
If the destination register is not the PC, the ADDS variant of the instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these
encodings. However, when the destination register is the PC:
* The ADD variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.
* The ADDS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current mode>.
o The PE checks SPSR_<current mode> for an illegal return event. See lllegal return events from AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1,T2and T3).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[=111 Jo 0 0 o[1 0 Oo[S[1 1 0 1] Rd | imm5 | stype [0 | Rm |
cond

ADD, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
ADD{<c>}{<g>} {<Rd>,} SP, <Rm> , RRX

ADD, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
ADD{<c>}{<g>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
ADDS{<c>}{<g>} {<Rd>,} SP, <Rm> , RRX

ADDS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ADDS{<c>}{<g>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

constant d = UInt (Rd); constant m = UInt (Rm); constant setflags = (S == '1");
constant (shift t, shift n) = DecodeImmShift (stype, imm5);

T

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[01 0 00 1/0 opM1 1 0 1] Rdm |

T

ADD{<c>}{<g>} {<Rdm>,} SP, <Rdm>

constant d = UInt (DM:Rdm) ; constant m = UInt (DM:Rdm); constant setflags = FALSE;

constant (shift t, shift n) = (SRType LSL, 0);
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
T2

15 14 13 12 11 10 9 8
[01 0 00 1[0 0]

7 6 5 4 3 2 1
1

ADD, ADDS (SP plus register) Page 32

T2

ADD{<c>}{<g>} {SP,} SP, <Rm>

if Rm ==
constant
constant

T3

'1101"'" then SEE "encoding T1";

d = 13; constant m = UInt(Rm); constant setflags = FALSE;

(shift t, shift n) = (SRType LSL, 0);

15 14 13 12 11 10 9
01 0 1

[1 1 1

8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
10 0 0[S|[1 1 0 1]©0)] imm3 | Rd [imm2 | stype | Rm |

ADD, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

ADD{<c>}{<g>} {<Rd>,} SP, <Rm>, RRX

ADD, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

ADD{<c>}.W {<Rd>,} SP, <Rm> // (<Rd>, <Rm> can be represented in Tl or T2)

ADD{<c>}{<g>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

ADDS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)

ADDS {<c>}{<g>} {<Rd>,} SP, <Rm>, RRX

ADDS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd !=1111)

ADDS{<c>}{<g>} {<Rd>,} SP, <Rm> {, <shift> #<amount>}

if Rd == '1111"' && S == '1' then SEE "CMN (register)";
constant d = UInt (Rd); constant m = UInt (Rm); constant setflags = (S == '1");
constant (shift t, shift n) = DecodeImmShift (stype, imm3:imm2);

// Armv8-A removes UNPREDICTABLE for R13
if (d == 15 && !setflags) || m == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c>
<q>
SP,

<Rdm>

<Rd>

<Rm>

<shift>

See Standard assembler syntax fields.
See Standard assembler syntax fields.
Is the stack pointer.

Is the general-purpose destination and second source register, encoded in the "Rdm" field. If omitted, this register is the SP. Arm
deprecates using the PC as the destination register, but if the PC is used, the instruction is a branch to the address calculated by the
operation. This is a simple branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the SP. Arm
deprecates using the PC as the destination register, but if the PC is used:

* For the ADD variant, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

* For the ADDS variant, the instruction performs an exception return, that restores PSTATE from
SPSR_<current_mode>.

For encoding T3: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the SP.

For encoding A1 and T2: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is
deprecated.
For encoding T3: is the second general-purpose source register, encoded in the "Rm" field.

Is the type of shift to be applied to the second source register, encoded in “stype”:

ADD, ADDS (SP plus register) Page 33

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift>=LSL or ROR) or 1 to 32 (when <shift>= LSR or ASR)

encoded in the "imm5" field as <amount> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR),
encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;
constant shifted = Shift(R[m], shift t, shift n, PSTATE.C);
constant (result, nzcv) = AddWithCarry(R[13], shifted, '0');
if d == 15 then
if setflags then
ALUExceptionReturn (result) ;
else
ALUWritePC (result);

else
R[d] = result;
if setflags then
PSTATE.<N, Z,C,V> = nzcv;

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADD, ADDS (SP plus register) Page 34

ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the result to the destination register.
This instruction is used by the alias SUB (immediate. from PC).

This instruction is used by the pseudo-instruction ADD (immediate, to PC).

It has encodings from the following instruction sets: A32 (Al and A2)and T32 (T1,T2and T3).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
| =111 Jo o 1 o[1 0 ofo[1 1 1 1] Rd | imm12

cond

A1

ADR{<c>}{<g>} <Rd>, <label>

constant d = UInt(Rd); constant imm32 = A32ExpandImm (imml2) ; constant add = TRUE;

A2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
| =111 Jo o 1 oo 1 ofo[1 1 1 1] Rd | imm12

cond

A2

ADR{<c>}{<g>} <Rd>, <label>

constant d = UInt(Rd); constant imm32 = A32ExpandImm (imml2) ; constant add = FALSE;

T1
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
|1 0 1 0J]o] Rd | imm8

™

ADR{<c>}{<g>} <Rd>, <label>

constant d = UInt(Rd); constant imm32 = ZeroExtend (imm8:'00', 32); constant add = TRUE;

T2

15 14 13 12 11 10 9 8
111 1 0]i[1 0]

7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O
1]o]1]0o]1 1 1 1]0] imm3 | Rd | imm8

T2

ADR{<c>}{<g>} <Rd>, <label>
constant d = UInt(Rd); constant imm32 = ZeroExtend (i:imm3:imm8, 32); constant add = FALSE;

// Armv8-A removes UNPREDICTABLE for R13
if d == 15 then UNPREDICTARBLE;

T3

15 14 13 12 11 10 9 8 7 6 5 4
111 1 0]i[1 olo]o|o]oO]

3 2 1 0 15 14 1312 11 10 9 8 7 6 &5 4 3 2 1 0
1 1 1 1]0] imm3 | Rd | imm8

ADR Page 35

T3

ADR{<c>}.W <Rd>, <label> // (<Rd>, <label> can be presented in T1)

ADR{<c>}{<g>} <Rd>, <label>

constant d = UInt(Rd); constant imm32 = ZeroExtend(i:imm3:imm8, 32); constant add = TRUE;
// Armv8-A removes UNPREDICTABLE for R13

if d == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rd> For encoding A1 and A2: is the general-purpose destination register, encoded in the "Rd" field. If the PC is used, the instruction is a

branch to the address calculated by the operation. This is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

For encoding T1, T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<label> For encoding A1 and A2: the label of an instruction or literal data item whose address is to be loaded into <Rd>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label.

If the offset is zero or positive, encoding A1 is used, with imm32 equal to the offset.

If the offset is negative, encoding A2 is used, with imm32 equal to the size of the offset. That is, the use of encoding A2 indicates
that the required offset is minus the value of imm32.

Permitted values of the size of the offset are any of the constants described in Modified immediate constants in A32 instructions.
For encoding T1: the label of an instruction or literal data item whose address is to be loaded into <Rd>. The assembler calculates

the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label. Permitted values of the size of the
offset are multiples of 4 in the range 0 to 1020.

For encoding T2 and T3: the label of an instruction or literal data item whose address is to be loaded into <Rd>. The assembler
calculates the required value of the offset from the Align(PC, 4) value of the ADR instruction to this label.
If the offset is zero or positive, encoding T3 is used, with imm32 equal to the offset.

If the offset is negative, encoding T2 is used, with imm32 equal to the size of the offset. That is, the use of encoding T2 indicates
that the required offset is minus the value of imm32.

Permitted values of the size of the offset are 0-4095.

The instruction aliases permit the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a
subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax.

Alias Conditions

Alias Of variant Is preferred when
ADD (immediate, to PC) Never
SUB (immediate, from PC) T2 i:imm3:imm8 == '000000000000"'
SUB (immediate, from PC) A2 imml2 == '000000000000"
Operation

if ConditionPassed() then
EncodingSpecificOperations();

constant result = if add then (Align(PC32,4) + imm32) else (Align(PC32,4) - imm32);
if d == 15 then // Can only occur for A32 encodings

ALUWritePC (result) ;
else

R[d] = result;

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ADR Page 36

AND, ANDS (immediate)

Bitwise AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result to the destination register.
If the destination register is not the PC, the ANDS variant of the instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these
encodings. However, when the destination register is the PC:
* The AND variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.
* The ANDS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current mode>.
o The PE checks SPSR_<current mode> for an illegal return event. See lllegal return events from AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[=111 Jo 0 1 o]0 0 0]S] Rn | Rd | imm12

cond
AND (S ==0)

AND{<c>}{<g>} {<Rd>,} <Rn>, #<const>
ANDS (S == 1)

ANDS{<c>}{<g>} {<Rd>,} <Rn>, f#<const>

constant d = UInt (Rd); constant n = UInt (Rn); constant setflags = (S == '1");
constant a32 = TRUE;
constant bits(12) imm = imml2;

T
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
111 1 0]iloJo 0 0 0[S] Rn [0] imm3 | Rd | imm8
AND (S ==0)
AND{<c>}{<g>} {<Rd>,} <Rn>, #<const>
ANDS (S ==1 && Rd !=1111)
ANDS {<c>}{<g>} {<Rd>,} <Rn>, #<const>
if Rd == '1111"' && S == '1' then SEE "TST (immediate)";
constant d = UInt(Rd); constant n = UInt(Rn); constant setflags = (S == 'l'); constant a32 = FALSE;

constant bits(12) imm = i:imm3:imm8;
// Armv8-A removes UNPREDICTABLE for R13
if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.
Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

AND, ANDS (immediate) Page 37

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.
Arm deprecates using the PC as the destination register, but if the PC is used:
» For the AND variant, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
» For the ANDS variant, the instruction performs an exception return, that restores PSTATE from
SPSR_<current_mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the range of values.

Operation

if ConditionPassed () then
EncodingSpecificOperations() ;
constant (imm32, carry) = (if a32 then A32ExpandImm C(imm, PSTATE.C)
else T32ExpandImm C(imm, PSTATE.C));
constant result = R[n] AND imm32;
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn (result) ;
else
ALUWritePC (result) ;

else
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit (result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
» The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND, ANDS (immediate) Page 38

AND, ANDS (register)

Bitwise AND (register) performs a bitwise AND of a register value and an optionally-shifted register value, and writes the result to the destination

register.

If the destination register is not the PC, the ANDS variant of the instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these

encodings. However, when the destination register is the PC:

* The AND variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose

registers and the PC.

* The ANDS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current mode>.
o The PE checks SPSR_<current mode> for an illegal return event. See lllegal return events from AArch32 state.

o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

[=111 Jo 0 0 0[O0 0 0]S] Rn | Rd | imm5 | stype [0 | |
cond

AND, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
AND{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

AND, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
AND{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ANDS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
ANDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ANDS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

ANDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

constant d = UInt (Rd); constant n = UInt(Rn); constant m = UInt (Rm);

constant setflags = (S == '1");
constant (shift t, shift n) = DecodeImmShift (stype, imm5);

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[001 0 00 0[/0 0 0 0] Rm | Rdn |
™

AND<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)

ANDS{<g>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

constant d = UInt (Rdn); constant n = UInt(Rdn); constant m = UInt (Rm);

constant setflags = !InITBlock();
constant (shift t, shift n) = (SRType LSL, 0);
T2

AND, ANDS (register)

Page 39

3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9
1

8 7 6 5 4
1110 1 0 1/0 0 0 0S| Rn [(0)] imm3 | Rd [imm2 | stype | Rm

AND, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

AND{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

AND, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

AND<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

AND{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

ANDS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)

ANDS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

ANDS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111)

ANDS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

ANDS {<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rd == '1111"' && S == '1' then SEE "TST (register)";
constant d = UInt (Rd); constant n = UInt(Rn); constant m = UInt (Rm);
constant setflags = (S == '1'");

constant (shift t, shift n) = DecodeImmShift (stype, imm3:imm2);
// Armv8-A removes UNPREDICTABLE for R13
if (d == 15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

Arm deprecates using the PC as the destination register, but if the PC is used:

* For the AND variant, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

* For the ANDS variant, the instruction performs an exception return, that restores PSTATE from
SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

<Rn> For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is
deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift>=LSR or ASR)

encoded in the "imm35" field as <amount> modulo 32.

AND, ANDS (register)

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR),
encoded in the "imm3:imm?2" field as <amount> modulo 32.

In T32 assembly:
* Outside an IT block, if ANDS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled using encoding T1 as
though ANDS <Rd>, <Rn> had been written.
+ Inside an IT block, if AND<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0O-R7, it is assembled using encoding T1 as
though AND<c> <Rd>, <Rn> had been written.
To prevent either of these happening, use the .W qualifier.

Operation

if ConditionPassed () then
EncodingSpecificOperations () ;
constant (shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
constant result = R[n] AND shifted;
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn (result) ;
else
ALUWritePC (result) ;

else
R[d] = result;
if setflags then
PSTATE.N result<31>;
PSTATE. Z IsZeroBit (result) ;
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND, ANDS (register) Page 41

AND, ANDS (register-shifted register)

Bitwise AND (register-shifted register) performs a bitwise AND of a register value and a register-shifted register value. It writes the result to the
destination register, and can optionally update the condition flags based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[=111 Jo 0 0 0[O0 0 0]S] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)

ANDS{<c>} {<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

AND{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

constant d = UInt (Rd); constant n = UInt (Rn); constant m = UInt (Rm); constant s = UInt (Rs);
constant setflags = (S == '1"); constant shift_t = DecodeRegShift (stype) ;
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

Operation

if ConditionPassed() then

EncodingSpecificOperations() ;
constant shift n = UInt (R[s]<7:0>);
constant (shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
constant result = R[n] AND shifted;
R[d] = result;
if setflags then

PSTATE.N = result<31>;

PSTATE.Z IsZeroBit (result) ;

PSTATE.C = carry;

// PSTATE.V unchanged

AND, ANDS (register-shifted

register) Page 42

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

» The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

AND, ANDS (register-shifted

register) Page 43

ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies of its sign bit, and writes the result to
the destination register.

This is an alias of MOV, MOVS (register). This means:

» The encodings in this description are named to match the encodings of MOV, MOVS (register).
* The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any
operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al)and T32 (T2 and T3).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

| =111 Jo 0 0 1 1[0 1]0](0)(0)(0) (0) Rd | imm5 |1 0]o0] Rm |
cond S stype

MOV, shift or rotate by value

ASR{<c>}{<g>} {<Rd>,} <Rm>, #<imm>

is equivalent to
MOV{<c>}{<g>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

T2

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

|0 0 0]1 0] imm5 | Rm | Rd |
op

T2

ASR<c>{<g>} {<Rd>,} <Rm>, #<imm> // (Inside IT block)

is equivalent to
MOV<c>{<g>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when InITBlock ().

T3

15 14 13 12 11 10 9
[1 110 1 0 1

e 22

3 2 1 0 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
11 1 1]0)] imm3 | Rd [imm2][1 0] Rm |
stype

(@2 [$)]

8 7
[0 0

mw|o|~

MOV, shift or rotate by value

ASR<c>.W {<Rd>,} <Rm>, #<imm> // (Inside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)
ASR{<c>}{<g>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOV{<c>}{<g>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

ASR (immediate) Page 44

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the

destination register, but if the PC is used, the instruction is a branch to the address calculated by the operation. This is an
interworking branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding Al: is the general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.
For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as <imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm2" field as <imm> modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (immediate) Page 45

ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its sign bit, and writes the result to the
destination register. The variable number of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

» The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted register).
» The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

| =111 Jo 0 0 1 1[0 1]0](0)(0)(0) (0) Rd | Rs [o[1 o]1] Rm |
cond S stype

Not flag setting

ASR{<c>}{<g>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV{<c>} {<g>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

T1

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 00 0[0 10 0] Rs | Rdm |
op

Arithmetic shift right

ASR<c>{<g>} {<Rdm>,} <Rdm>, <Rs> // (Inside IT block)

is equivalent to

MOV<c>{<g>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when InITBlock ().

T2
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[1 1111 010 0[1 0][0] Rm [1 1 1 1] Rd [0 0 0 O] Rs |

stype S
Not flag setting

ASR<c>.W {<Rd>,} <Rm>, <Rs> // (Inside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)
ASR{<c>}{<g>} {<Rd>,} <Rm>, <Rs>

is equivalent to

MOV {<c>} {<g>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

ASR (register) Page 46

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.
Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2024-06 rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASR (register) Page 47

ASRS (immediate)

Arithmetic Shift Right, setting flags (immediate) shifts a register value right by an immediate number of bits, shifting in copies of its sign bit, and

writes the result to the destination register.
If the destination register is not the PC, this instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these
encodings. However, when the destination register is the PC:
* The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current mode>.
* The PE checks SPSR_<current mode> for an illegal return event. See lllegal return events from AArch32 state.
+ The instruction is UNDEFINED in Hyp mode.
* The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

This is an alias of MOV, MOVS (register). This means:

* The encodings in this description are named to match the encodings of MOV, MOVS (register).
* The description of MOV, MOVS (register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior, and any
operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al)and T32 (T2 and T3).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

[=111 Jo 0 0 1 1]0 1]1]0)(0)(0) (0] Rd | imm5 [1 0]o0] Rm |
cond S stype

MOVS, shift or rotate by value

ASRS{<c>}{<g>} {<Rd>,} <Rm>, #<imm>
is equivalent to
MOVS{<c>}{<g>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

T2

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0 0 0[1 O] imm5 | Rm | Rd |
op

T2

ASRS{<g>} {<Rd>,} <Rm>, #<imm> // (Outside IT block)
is equivalent to
MOVS{<g>} <Rd>, <Rm>, ASR #<imm>

and is the preferred disassembly when ! InITBlock ().

T3

5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1

1711010 1]o0 1 o0o[1[1 1 1 1[0 imm3 | Rd [imm2[1 0] Rm |
S

stype

ASRS (immediate)

Page 48

MOVS, shift or rotate by value

ASRS.W {<Rd>,} <Rm>, #<imm> // (Outside IT block, and <Rd>, <Rm>, <imm> can be represented in T2)
ASRS{<c>}{<g>} {<Rd>,} <Rm>, #<imm>

is equivalent to

MOVS{<c>}{<g>} <Rd>, <Rm>, ASR #<imm>

and is always the preferred disassembly.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. Arm deprecates using the PC as the

destination register, but if the PC is used, the instruction performs an exception return, that restores PSTATE from
SPSR_<current mode>.

For encoding T2 and T3: is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding Al: is the general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is deprecated.
For encoding T2 and T3: is the general-purpose source register, encoded in the "Rm" field.

<imm> For encoding A1 and T2: is the shift amount, in the range 1 to 32, encoded in the "imm5" field as <imm> modulo 32.

For encoding T3: is the shift amount, in the range 1 to 32, encoded in the "imm3:imm?2" field as <imm> modulo 32.

Operation

The description of MOV, MOVS (register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASRS (immediate) Page 49

ASRS (register)

Arithmetic Shift Right, setting flags (register) shifts a register value right by a variable number of bits, shifting in copies of its sign bit, writes the result
to the destination register, and updates the condition flags based on the result. The variable number of bits is read from the bottom byte of a register.

This is an alias of MOV, MOVS (register-shifted register). This means:

» The encodings in this description are named to match the encodings of MOV, MOVS (register-shifted register).
» The description of MOV, MOVS (register-shifted register) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE behavior,
and any operational information for this instruction.

It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

| =111 Jo 0 0 1 1[0 1[1](0)(0)(0)(0) Rd | Rs [o[1 o]1] Rm |
cond S stype

Flag setting

ASRS{<c>}{<g>} {<Rd>,} <Rm>, <Rs>
is equivalent to
MOVS{<c>} {<g>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

T1

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 00 0[0 10 0] Rs | Rdm |
op

Arithmetic shift right

ASRS{<g>} {<Rdm>,} <Rdm>, <Rs> // (Outside IT block)
is equivalent to
MOVS{<g>} <Rdm>, <Rdm>, ASR <Rs>

and is the preferred disassembly when ! InITBlock ().

T2

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

[1 1111 010 0[1 0[1] Rm [1 1 1 1] Rd [0 0 0 O] Rs |
stype S

Flag setting

ASRS.W {<Rd>,} <Rm>, <Rs> // (Outside IT block, and <Rd>, <Rm>, <shift>, <Rs> can be represented in T1)
ASRS{<c>}{<g>} {<Rd>,} <Rm>, <Rs>
is equivalent to

MOVS{<c>}{<g>} <Rd>, <Rm>, ASR <Rs>

and is always the preferred disassembly.

ASRS (register) Page 50

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rdm> Is the first general-purpose source register and the destination register, encoded in the "Rdm" field.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> Is the first general-purpose source register, encoded in the "Rm" field.

<Rs> Is the second general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.
Operation

The description of MOV, MOVS (register-shifted register) gives the operational pseudocode for this instruction.

Internal version only: isa vO1 31, pseudocode v2024-06 rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ASRS (register) Page 51

B

Branch causes a branch to a target address.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1,T2,T3and T4).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
| =111 |1 0 1]0] imm24

cond

A1

B{<c>}{<g>} <label>

constant imm32 = SignExtend(imm24:'00', 32);

T1
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1. 1. 0 1] 1=11x | imm8

cond
T

B<c>{<g>} <label> // (Not permitted in IT block)

if cond == '1110' then SEE "UDF";
if cond == '1111' then SEE "SVC";
constant imm32 = SignExtend(imm8:'0', 32);
if InITBlock () then UNPREDICTABLE;

T2
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1111 0 0] imm11

T2

B{<c>}{<g>} <label> // (Outside or last in IT block)

constant imm32 = SignExtend(immll:'0', 32);
if InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

T3
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 1514 13 12 1 10 9 8 7 6 5 4 3 2 1 O
11 1 1 0]S]| !'=11x | imm6 [1 o]J1]0]J2] imm11
cond
T3

B<c>.W <label> // (Not permitted in IT block, and <label> can be represented in T1)
B<c>{<g>} <label> // (Not permitted in IT block)
if cond<3:1> == '111' then SEE "Related encodings";

constant imm32 = SignExtend(S:J2:Jl:imm6:immll1:'0', 32);
if InITBlock () then UNPREDICTARBRLE;

B Page 52

T4

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 1514 13 12 1 10 9 8 7 6 5 4 3 2 1 0

[1 1 1

0[s] imm10 [1 0 [J1]1]J2] imm11

T4

B{<c>}.W <label> // (<label> can be represented in T2)

B{<c>}{<g>} <label>

constant Il

= NOT (J1 EOR 3); constant I2 = NOT (J2 EOR S);

constant imm32 = SignExtend(S:I1:I2:immlO:immll:'0', 32);
if InITBlock () && !'LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Related encodings: Branches and miscellaneous control.

Assembler Symbols

<c>

<q>

<label>

Operation

For encoding A1, T2 and T4: see Standard assembler syntax fields.
For encoding T1: see Standard assembler syntax fields. Must not be AL or omitted.

For encoding T3: see Standard assembler syntax fields. <c> must not be AL or omitted.
See Standard assembler syntax fields.

For encoding Al: the label of the instruction that is to be branched to. The assembler calculates the required value of the offset from
the PC value of the B instruction to this label, then selects an encoding that sets imm32 to that offset.

Permitted offsets are multiples of 4 in the range —33554432 to 33554428.

For encoding T1: the label of the instruction that is to be branched to. The assembler calculates the required value of the offset from
the PC value of the B instruction to this label, then selects an encoding that sets imm32 to that offset. Permitted offsets are even
numbers in the range —256 to 254.

For encoding T2: the label of the instruction that is to be branched to. The assembler calculates the required value of the offset from
the PC value of the B instruction to this label, then selects an encoding that sets imm32 to that offset. Permitted offsets are even
numbers in the range —2048 to 2046.

For encoding T3: the label of the instruction that is to be branched to. The assembler calculates the required value of the offset from
the PC value of the B instruction to this label, then selects an encoding that sets imm32 to that offset.

Permitted offsets are even numbers in the range —1048576 to 1048574.

For encoding T4: the label of the instruction that is to be branched to. The assembler calculates the required value of the offset from
the PC value of the B instruction to this label, then selects an encoding that sets imm32 to that offset.

Permitted offsets are even numbers in the range —16777216 to 16777214,

if ConditionPassed() then

EncodingSpecificOperations() ;
BranchWritePC(PC32 + imm32, BranchType DIR);

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

B Page 53

BFC

Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting the other bits in the register.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

8

| =111 Jo 1.1 1 11 0] msb | Rd | Isb

oo

ol|;
S N

=W

cond

A1

BFC{<c>}{<g>} <Rd>, #<lsb>, #<width>

constant d = UInt (Rd);

constant integer msbit = UInt (msb);
constant integer lsbit = UInt(lsb);
if d == 15 then UNPREDICTABLE;

if msbit < 1lsbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifmsbit < lsbit, then one of the following behaviors must occur:
* The instruction is UNDEFINED.

* The instruction executes as NOP.
» The value in the destination register is UNKNOWN.

T1

8

7

6

5 4

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9
1711 1 0]®]1 1]o 1[1]o[1 1 1 1]0] imm3 | Rd

[imm2 [(0)]

T1

BFC{<c>}{<g>} <Rd>, #<lsb>, #<width>

constant d = UInt (Rd);

constant integer msbit = UInt (msb);
constant integer lsbit = Ulnt (imm3:imm2) ;
// Armv8-A removes UNPREDICTABLE for R13
if d == 15 then UNPREDICTABLE;

if msbit < lsbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifmsbit < lsbit, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
» The instruction executes as NOP.
» The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE

behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

BFC

Page 54

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<lIsb> For encoding Al: is the least significant bit to be cleared, in the range 0 to 31, encoded in the "Isb" field.

For encoding T1: is the least significant bit that is to be cleared, in the range 0 to 31, encoded in the "imm3:imm2" field.

<width> Is the number of bits to be cleared, in the range 1 to 32-<Isb>, encoded in the "msb" field as <Isb>+<width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
R[d]<msbit:1lsbit> = Replicate('0', (msbit-1lsbit)+1l);
// Other bits of R[d] are unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BFC

Page 55

BFI

Bit Field Insert copies any number of low order bits from a register into the same number of adjacent bits at any position in the destination register.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O

| =111 Jo 1.1 1 11 0] msb | Rd | Isb o 0o 1] =111 |
cond Rn

A1

BFI{<c>}{<g>} <Rd>, <Rn>, #<lsb>, #<width>

if Rn == '1111' then SEE "BFC";

constant d = UInt(Rd); constant n = UInt(Rn);
constant integer msbit = UInt (msb);

constant integer 1lsbit = UInt(lsb);

if d == 15 then UNPREDICTABLE;

if msbit < 1lsbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifmsbit < lsbit, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.
» The value in the destination register is UNKNOWN.

T1

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O

1711 1 0]®1 1]o 1[1]o] =111 [o] imm3 | Rd [imm2 [(0)] msb |
Rn

T1

BFI{<c>}{<g>} <Rd>, <Rn>, #<lsb>, #<width>

if Rn == '1111' then SEE "BFC";

constant d = UInt (Rd); constant n = UInt(Rn);
constant integer msbit = UInt (msb);

constant integer lsbit = Ulnt (imm3:imm2) ;

// Armv8-A removes UNPREDICTABLE for R13

if d == 15 then UNPREDICTABLE;

if msbit < lsbit then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifmsbit < 1lsbit, then one of the following behaviors must occur:
» The instruction is UNDEFINED.
* The instruction executes as NOP.
» The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols
<c> See Standard assembler syntax fields.

BFI Page 56

<q>
<Rd>
<Rn>

<lsb>

<width>

Operation

See Standard assembler syntax fields.
Is the general-purpose destination register, encoded in the "Rd" field.
Is the general-purpose source register, encoded in the "Rn" field.

For encoding Al: is the least significant destination bit, in the range 0 to 31, encoded in the "Isb" field.

For encoding T1: is the least significant destination bit, in the range 0 to 31, encoded in the "imm3:imm?2" field.

Is the number of bits to be copied, in the range 1 to 32-<Isb>, encoded in the "msb" field as <lsb>+<width>-1.

if ConditionPassed() then

EncodingSpecificOperations () ;
R[d]<msbit:1lsbit> = R[n]<(msbit-1sbit) :0>;
// Other bits of R[d] are unchanged

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

The execution time of this instruction is independent of:

o

o

The values of the data supplied in any of its registers.
The values of the NZCV flags.

The response of this instruction to asynchronous exceptions does not vary based on:

o

o

The values of the data supplied in any of its registers.
The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BF1

Page 57

BIC, BICS (immediate)

Bitwise Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an immediate value, and writes the result to the

destination register.
If the destination register is not the PC, the BICS variant of the instruction updates the condition flags based on the result.

The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these

encodings. However, when the destination register is the PC:

* The BIC variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose

registers and the PC.
* The BICS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current mode>.
o The PE checks SPSR_<current mode> for an illegal return event. See lllegal return events from AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[=111 Jo 0 1 1 1]1 0]S] Rn | Rd | imm12
cond
BIC (S == 0)

BIC{<c>}{<g>} {<Rd>,} <Rn>, #<const>

BICS (S == 1)

BICS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

constant d = UInt (Rd); constant n = UInt (Rn); constant setflags = (S == '1");
constant a32 = TRUE;
constant bits(12) imm = imml2;

T1

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1
111 1 0]iloJo 0 0 1[S] Rn [0] imm3 | Rd | imm8

BIC (S==0)

BIC{<c>}{<g>} {<Rd>,} <Rn>, #<const>

BICS (S == 1)

BICS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

constant d = UInt(Rd); constant n = UInt(Rn); constant setflags = (S == '1");
constant a32 = FALSE;

constant bits(12) imm = i:imm3:imm8;

// Armv8-A removes UNPREDICTABLE for R13

if d == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

BIC, BICS (immediate)

Page 58

<Rd> For encoding A1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.
Arm deprecates using the PC as the destination register, but if the PC is used:
» For the BIC variant, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
* For the BICS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the range of values.

Operation

if ConditionPassed () then
EncodingSpecificOperations() ;
constant (imm32, carry) = (if a32 then A32ExpandImm C(imm, PSTATE.C)
else T32ExpandImm C(imm, PSTATE.C));
constant result = R[n] AND NOT (imm32) ;
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn (result) ;
else
ALUWritePC (result) ;

else
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit (result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
» The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC, BICS (immediate) Page 59

BIC, BICS (register)

Bitwise Bit Clear (register) performs a bitwise AND of a register value and the complement of an optionally-shifted register value, and writes the result
to the destination register.
If the destination register is not the PC, the BICS variant of the instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these
encodings. However, when the destination register is the PC:
* The BIC variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.
* The BICS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current mode>.
o The PE checks SPSR_<current mode> for an illegal return event. See lllegal return events from AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.
It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[=111 Jo 0 0 1 1]1 0]S] Rn | Rd | imm5 | stype [0 | Rm |
cond

BIC, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
BIC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

BIC, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
BIC{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

BICS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
BICS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

BICS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

BICS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

constant d = UInt (Rd); constant n = UInt(Rn); constant m = UInt (Rm);
constant setflags = (S == '1");
constant (shift t, shift n) = DecodeImmShift (stype, imm5);

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[001 0 00 0[1 11 0] Rm | Rdn |
™

BIC<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)

BICS{<g>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

constant d = UInt (Rdn); constant n = UInt(Rdn); constant m = UInt (Rm);

constant setflags = !InITBlock();
constant (shift t, shift n) = (SRType LSL, 0);
T2

BIC, BICS (register) Page 60

5 4 3 2 1 0 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 O

15 14 13 12 11 10 9
1

8 7 6
1711010 1[0 0 0 1][S] Rn (0] imm3 | Rd | imm2 | stype | Rm

BIC, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)
BIC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX
BIC, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

BIC<c>.W {<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

BIC{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}
BICS, rotate right with extend (S == 1 && imm3 == 000 && imm2 == 00 && stype == 11)

BICS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX
BICS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11))

BICS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)
BICS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

constant d = UInt(Rd); constant n = UInt(Rn); constant m = UInt (Rm);
constant setflags = (S == '1'");

constant (shift t, shift n) = DecodeImmShift (stype, imm3:imm2);

// Armv8-A removes UNPREDICTABLE for R13

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rdn> Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

Arm deprecates using the PC as the destination register, but if the PC is used:

* For the BIC variant, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.

* For the BICS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

<Rn> For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.
<Rm> For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is
deprecated.
For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:
stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR
<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift>= LSR or ASR),

encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR),
encoded in the "imm3:imm?2" field as <amount> modulo 32.

BIC, BICS (register) Page 61

Operation

if ConditionPassed () then
EncodingSpecificOperations () ;
constant (shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
constant result = R[n] AND NOT (shifted);
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn (result) ;
else
ALUWritePC (result) ;

else
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit (result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC, BICS (register) Page 62

BIC, BICS (register-shifted register)

Bitwise Bit Clear (register-shifted register) performs a bitwise AND of a register value and the complement of a register-shifted register value. It writes
the result to the destination register, and can optionally update the condition flags based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[=111 Jo 0 0 1 1]1 0]S] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)

BICS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

BIC{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

constant d = UInt (Rd); constant n = UInt (Rn); constant m = UInt (Rm); constant s = UInt (Rs);
constant setflags = (S == '1"); constant shift_t = DecodeRegShift (stype) ;
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
constant shift n = UInt (R[s]<7:0>);
constant (shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
constant result = R[n] AND NOT (shifted);
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z IsZeroBit (result) ;
PSTATE.C = carry;
// PSTATE.V unchanged

BIC, BICS (register-shifted register) Page 63

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

» The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BIC, BICS (register-shifted register) Page 64

BKPT

Breakpoint causes a Breakpoint Instruction exception.
Breakpoint is always unconditional, even when inside an IT block.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[=111 Jo 0 0 1 o]0 1]0] imm12 [0 1 1 1] imm4 |
cond
A1
BKPT{<qg>} {#}<imm>
constant imml6 = imml2:imm4;
if cond != '1110' then UNPREDICTABLE; // BKPT must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

Ifcond != '1110"', then one of the following behaviors must occur:

* The instruction is UNDEFINED.

+ The instruction executes as NOP.

» The instruction executes unconditionally.
» The instruction executes conditionally.

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 01111 1 0] imm8

™

BKPT{<g>} {#}<imm>
constant imml6 = ZeroExtend (imm8, 16);

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields. A BKPT instruction must be unconditional.

<imm> For encoding Al: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm12:imm4" field. This value:

+ Isrecorded in the Comment field of ESR_ELx.ISS if the Software Breakpoint Instruction exception is taken to an
exception level that is using AArch64.

+ Isignored otherwise.

For encoding T1: is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field. This value:

» Isrecorded in the Comment field of ESR_ELx.ISS if the Software Breakpoint Instruction exception is taken to an
exception level that is using AArch64.

+ Isignored otherwise.

Operation

EncodingSpecificOperations() ;
AArch32.SoftwareBreakpoint (imml6) ;

BKPT Page 65

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BKPT Page 66

BL, BLX (immediate)

Branch with Link calls a subroutine at a PC-relative address, and setting LR to the return address.

Branch with Link and Exchange Instruction Sets (immediate) calls a subroutine at a PC-relative address, setting LR to the return address, and changes

the instruction set from A32 to T32, or from T32 to A32.
It has encodings from the following instruction sets: A32 (Al and A2)and T32 (Tl and T2).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0
[=111 |1 0 1[1] imm24
cond

A1

BL{<c>}{<g>} <label>

constant imm32 = SignExtend(imm24:'00', 32); constant targetInstrSet = InstrSet A32;
A2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 0
[1 1 1 1]1 0 1][H] imm24

cond

A2

BLX{<c>} {<g>} <label>

constant imm32 = SignExtend(imm24:H:'0', 32); constant targetInstrSet = InstrSet T32;
™

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
[1 1 1 1 0]S] imm10 [1 1 [u1]1]J2] imm11
™

BL{<c>}{<g>} <label>

constant I1 = NOT(Jl1 EOR S); constant I2 = NOT (J2 EOR S);

constant imm32 = SignExtend(S:I1:I2:immlO:immll:'0', 32);

constant targetInstrSet = InstrSet T32;

if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 0
[1 1 1 1 0]S] imm10H [1 1 [u1]0]J2] imm10L [H |
T2

BLX{<c>}{<g>} <label>

if H == '1' then UNDEFINED;

constant I1 = NOT(Jl1 EOR S); constant I2 = NOT (J2 EOR S);
constant imm32 = SignExtend(S:I1:I2:immlO0H:imml0L:'00"', 32);
constant targetInstrSet = InstrSet A32;

if InITBlock () && !'LastInITBlock() then UNPREDICTABLE;

BL, BLX (immediate)

Page 67

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c>

<q>

<label>

Operation

For encoding A1, T1 and T2: see Standard assembler syntax fields.

For encoding A2: see Standard assembler syntax fields. <c> must be AL or omitted.
See Standard assembler syntax fields.

For encoding Al: the label of the instruction that is to be branched to. The assembler calculates the required value of the offset from
the PC value of the BL instruction to this label, then selects an encoding that sets imm32 to that offset.

Permitted offsets are multiples of 4 in the range —33554432 to 33554428.

For encoding A2: the label of the instruction that is to be branched to. The assembler calculates the required value of the offset from
the PC value of the BLX instruction to this label, then selects an encoding with imm32 set to that offset.

Permitted offsets are even numbers in the range —33554432 to 33554430.

For encoding T1: the label of the instruction that is to be branched to.

The assembler calculates the required value of the offset from the PC value of the BL instruction to this label, then selects an
encoding with imm32 set to that offset.

Permitted offsets are even numbers in the range —16777216 to 16777214.

For encoding T2: the label of the instruction that is to be branched to.

The assembler calculates the required value of the offset from the Align(PC, 4) value of the BLX instruction to this label, then
selects an encoding with imm32 set to that offset.

Permitted offsets are multiples of 4 in the range —16777216 to 16777212.

if ConditionPassed() then

EncodingSpecificOperations () ;

if CurrentInstrSet () == InstrSet A32 then
LR = PC32 - 4;

else
LR = PC32<31:1> : '1"';

bits (32) targetAddress;
if targetInstrSet == InstrSet A32 then
targetAddress = Align(PC32,4) + imm32;

else

targetAddress = PC32 + imm32;
SelectInstrSet (targetInstrSet) ;

BranchWritePC (targetAddress, BranchType DIRCALL) ;

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BL, BLX (immediate) Page 68

BLX (register)

Branch with Link and Exchange (register) calls a subroutine at an address specified in the register, and if necessary changes to the instruction set
indicated by bit[0] of the register value. If the value in bit[0] is 0, the instruction set after the branch will be A32. If the value in bit[0] is 1, the
instruction set after the branch will be T32.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).
A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

7
L =111 Jo 0 0 1 0 0 1 0[MMOIMOIMIOIMOIMIMIMIMIC 1)I(1 [0
cond

ol|lo

A1

BLX{<c>} {<q>} <Rm>

constant m = UInt (Rm);
if m == 15 then UNPREDICTABLE;

T1

15 14 13 12 11 10 9 8
1

7 6 5 4 3 2 1
01 0 00 1 1 1

0
| Rm_ [(0)[(0)[(0)]

T1

BLX{<c>}{<q>} <Rm>

constant m = UInt (Rm) ;
if m == 15 then UNPREDICTABLE;
if InITBlock () && !'LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field.
Operation

if ConditionPassed () then
EncodingSpecificOperations() ;
constant target = R[m];
bits(32) next instr addr;
if CurrentInstrSet () == InstrSet A32 then
next instr addr = PC32 - 4;
LR = next instr addr;
else
next instr addr = PC32 - 2;
LR = next instr addr<31:1> : '1';
BXertePC(target BranchType INDCALL) ;

Internal version only: isa vO1 31, pseudocode v2024-06 rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BLX (register) Page 69

BX

Branch and Exchange causes a branch to an address and instruction set specified by a register.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5
L =111 [0 0 0 10 0 1 0[MMMOIMOIMIMIMOIMIMIMIC 1)|(1|0 00
cond

4 3 2 1 0
1

A1
BX{<c>} {<g>} <Rm>
constant m = UInt (Rm);
T

7 6 5 4 3 2 1 0
0] Rm _ [(0)[(0)[(0)]

15 14 13 12 11 10 9 8
01 0 00 1 1 1

T1

BX{<c>} {<gq>} <Rm>

constant m = UInt (Rm) ;
if InITBlock () && !'LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rm> For encoding A1: is the general-purpose register holding the address to be branched to, encoded in the "Rm" field. The PC can be
used.

For encoding T1: is the general-purpose register holding the address to be branched to, encoded in the "Rm" field. The PC can be
used.

Note

If <Rm> is the PC at a non word-aligned address, it results in UNPREDICTABLE behavior because the address passed to the
BXWritePC() pseudocode function has bits<1:0>="10".

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
BXWritePC(R[m], BranchType INDIR) ;

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BX Page 70

BXJ

Branch and Exchange, previously Branch and Exchange Jazelle.
BXJ behaves as a BX instruction, see BX. This means it causes a branch to an address and instruction set specified by a register.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

=111 _Jo 0 0 1 0 0 1 ofmM[MIMIMImIMmIMIK) |(1|1>I<1|0 01 0] Rm |
cond

A1

BXJ{<c>}{<g>} <Rm>

constant m = UInt (Rm);

if m == 15 then UNPREDICTABLE;

T

%5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9

[1 11100111100 Rm_[10]0f0[Mm[MN[1)|<1 |(0|0)| 0>|<o|(0)| 0>I<o|(0)|

T1

BXJ{<c>}{<g>} <Rm>

constant m = UInt (Rm);

// Armv8-A removes UNPREDICTABLE for R13

if m == 15 then UNPREDICTABLE;

if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rm> Is the general-purpose register holding the address to be branched to, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
BXWritePC (R[m], BranchType INDIR);

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

BXJ Page 71

CBNZ, CBZ

Compare and Branch on Nonzero and Compare and Branch on Zero compare the value in a register with zero, and conditionally branch forward a
constant value. They do not affect the condition flags.

T1
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[1 0 1 1]op|O]i]1] imm5 | Rn |
CBNZ (op == 1)

CBNZ{<g>} <Rn>, <label>

CBZ (op == 0)

CBZ{<g>} <Rn>, <label>

constant n = UInt(Rn); constant imm32 = ZeroExtend (i:imm5:'0', 32);
constant nonzero = (op == '1');
if InITBlock () then UNPREDICTARBLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.
<Rn> Is the general-purpose register to be tested, encoded in the "Rn" field.
<label> Is the program label to be conditionally branched to. Its offset from the PC, a multiple of 2 and in the range 0 to 126, is encoded as

"i:imm5" times 2.

Operation

EncodingSpecificOperations () ;
if nonzero != IsZero(R[n]) then
CBWritePC(PC32 + imm32);

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CBNZ, CBZ Page 72

CLRBHB

Clear Branch History clears the branch history for the current context to the extent that branch history information created before the CLRBHB
instruction cannot be used by code before the CLRBHB instruction to exploitatively control the execution of any indirect branches in code in the current
context that appear in program order after the instruction.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

(FEAT_CLRBHB)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 0

[=111 Jo 0 1 1 ofJo[1 o[o 0 0 o[MMIMIM]w© @© @© © 0 0 0 1 0 1 1 0]
cond

A1

CLRBHB{<c>} {<qg>}

if !IsFeatureImplemented(FEAT CLRBHB) then ExecuteAsNOP();

T1

(FEAT_CLRBHB)

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

(11110011101 0[MMMMDI1 oJool®o o ofo o o 1J]o 1 1 0]

™

CLRBHB{<c>} {<q>}

if !IsFeatureImplemented(FEAT CLRBHB) then ExecuteAsNOP();

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
Operation

if ConditionPassed () then
EncodingSpecificOperations () ;
Hint CLRBHB(() ;

Internal version only: isa v01_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLRBHB Page 73

CLREX

Clear-Exclusive clears the local monitor of the executing PE.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5
(1110 101 0 1 1 1 MM TOTOTeOT o 0 0

4 3 2 1 0
1[(1) (1) (1) (1)

A1

CLREX{<c>}{<g>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6
1111001110

5 4 3 0 15 14 13 12 11 10 9 7
1 1M 1>I<1 (D] 10 o]0 [1)I<1 [0

ol|lo

T1

CLREX{<c>} {<g>}
// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.
Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.
For encoding T1: see Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations|() ;
ClearExclusivelLocal (ProcessorID()) ;

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-

04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLREX

Page 74

CLZ

Count Leading Zeros returns the number of binary zero bits before the first binary one bit in a value.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[=111 Jo oo 10 11 o[R [OIOIMDIMD[0 0 0 1] Rm |
cond
A1
CLZ{<c>}{<g>} <Rd>, <Rm>
constant d = UInt(Rd); constant m = UInt (Rm);
if d == 15 || m == 15 then UNPREDICTARBLE;
T1
%5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1
11111010 1]/0 1 1] Rn 1 1 1 1] Rd [1 0[0 O] Rm |
T1
CLZ{<c>}{<g>} <Rd>, <Rm>
constant d = UInt (Rd); constant m = UInt (Rm) ; constant n = UInt (Rn);
// Armv8-A removes UNPREDICTABLE for R13
ifm!=n || d ==15 || m == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifm != n,then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

+ The instruction executes as described, with no change to its behavior and no additional side effects.
* The instruction executes with the additional decode: m = Ulnt(Rn);.

» The value in the destination register is UNKNOWN.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE

behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<gq> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rm> For encoding A1: is the general-purpose source register, encoded in the "Rm" field.

For encoding T1: is the general-purpose source register, encoded in the "Rm" field. It must be encoded with an identical value in the

"Rn" field.

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
constant result = CountLeadingZeroBits (R[m]);
R[d] = result<31:0>;

CLz

Page 75

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

» The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CLZ Page 76

CMN (immediate)

Compare Negative (immediate) adds a register value and an immediate value. It updates the condition flags based on the result, and discards the result.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0
| =111 _Jo 0o 1 1 o1 1[1] Rn 1(0)[(0)[(0)[(0)] imm12

cond

A1

CMN{<c>}{<g>} <Rn>, #<const>

constant n = UInt(Rn); constant imm32 = A32ExpandImm (imml2) ;

T1

15 14 13 12 11 10 9 8 7 6 5
[1 1 1 1 0]lilo[1 0 0 O]

4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O
1] Rn o] imm3 |1 1 1 1] imm8

T1

CMN{<c>}{<g>} <Rn>, #<const>

constant n = UInt(Rn); constant imm32 = T32ExpandImm(i:imm3:imm8) ;
if n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<g> See Standard assembler syntax fields.
<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.
<const> For encoding Al: an immediate value. See Modified immediate constants in A32 instructions for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the range of values.

Operation

if ConditionPassed () then
EncodingSpecificOperations() ;
constant (result, nzcv) = AddWithCarry(R[n], imm32, '0');
PSTATE.<N,ZzZ,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:
» The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

CMN (immediate) Page 77

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (immediate) Page 78

CMN (register)

Compare Negative (register) adds a register value and an optionally-shifted register value. It updates the condition flags based on the result, and

discards the result.
It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

| =111 Jo 0 0 1 01 1[1] Rn 1(0)[(0)[(0)](0)] imm5 | stype | 0 | Rm |
cond

Rotate right with extend (imm5 == 00000 && stype == 11)

CMN{<c>}{<g>} <Rn>, <Rm>, RRX

Shift or rotate by value (!(imm5 == 00000 && stype == 11))

CMN{<c>}{<g>} <Rn>, <Rm> {, <shift> #<amount>}

constant n = UInt (Rn); constant m = UInt (Rm);
constant (shift t, shift n) = DecodeImmShift (stype, imm5);

™

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[01 0 00 O0f[1 0 1 1

™

CMN{<c>}{<g>} <Rn>, <Rm>

constant n = UInt (Rn); constant m = UInt (Rm);
constant (shift t, shift n) = (SRType LSL, 0);

T2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
11101 0 1[1 0 0 0[1] Rn (@] imm3 [1 1 1 1 [imm2]stype] Rm

Rotate right with extend (imm3 == 000 && imm2 == 00 && stype == 11)

CMN{<c>}{<g>} <Rn>, <Rm>, RRX

Shift or rotate by value (!(imm3 == 000 && imm2 == 00 && stype == 11))

CMN{<c>}.W <Rn>, <Rm> // (<Rn>, <Rm> can be represented in T1)
CMN{<c>}{<g>} <Rn>, <Rm> {, <shift> #<amount>}

constant n = UInt (Rn); constant m = UInt (Rm);

constant (shift t, shift n) = DecodeImmShift (stype, imm3:imm2);
// Armv8-A removes UNPREDICTABLE for R13

if n == 15 || m == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

CMN (register)

Page 79

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rn> For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T1 and T2: is the first general-purpose source register, encoded in the "Rn" field.

<Rm> For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is

deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:
stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR
<amount> For encoding Al: is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift>=LSR or ASR)

encoded in the "imm5" field as <amount> modulo 32.

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift>=LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR),
encoded in the "imm3:imm2" field as <amount> modulo 32.

Operation

if ConditionPassed()

then

EncodingSpecificOperations() ;
= Shift(R[m], shift t, shift n, PSTATE.C);

constant shifted
constant (result,
PSTATE.<N,ZzZ,C,V> = nzcv;

Operational information

nzcv)

= AddWithCarry(R[n], shifted,

Iol);

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

» The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (register)

Page 80

CMN (register-shifted register)

Compare Negative (register-shifted register) adds a register value and a register-shifted register value. It updates the condition flags based on the result,
and discards the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[=111 Jo 0 0 1 o1 1[1] Rn [(0)[(0)[(0)](0)] Rs [0 [stype| 1] Rm |
cond

A1

CMN{<c>}{<g>} <Rn>, <Rm>, <type> <Rs>

constant n = UInt (Rn); constant m = UInt (Rm); constant s = UInt(Rs);
constant shift t = DecodeRegShift (stype):;
if n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<type> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <type>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

Operation

if ConditionPassed () then
EncodingSpecificOperations() ;
constant shift n = UInt (R[s]<7:0>);
constant shifted = Shift(R[m], shift t, shift n, PSTATE.C);
constant (result, nzcv) = AddWithCarry(R[n], shifted, '0'");
PSTATE.<N, Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMN (register-shifted register) Page 81

CMP (immediate)

Compare (immediate) subtracts an immediate value from a register value. It updates the condition flags based on the result, and discards the result.
It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0
| =111 _Jo 0o 1 1 o1 o[1] Rn 1(0)[(0)[(0)[(0)] imm12

cond

A1

CMP{<c>}{<g>} <Rn>, #<const>

constant n = UInt(Rn); constant imm32 = A32ExpandImm (imml2) ;

T1
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
o0 0o 1]o 1] Rn | imm8

T

CMP{<c>}{<g>} <Rn>, #<imm8>

constant n = UInt(Rn); constant imm32 = ZeroExtend (imm8, 32);
T2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
111 1 o0]ilo[1 1 0 1[1] Rn o] imm3 |1 1 1 1] imm8
T2

CMP{<c>}.W <Rn>, #<const> // (<Rd>, <const> can be represented in T1)
CMP{<c>}{<g>} <Rn>, #<const>

constant n = UInt(Rn); constant imm32 = T32ExpandImm(i:imm3:imm8) ;
if n == 15 then UNPREDICTARBLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<g> See Standard assembler syntax fields.
<Rn> For encoding A1: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T1: is a general-purpose source register, encoded in the "Rn" field.
For encoding T2: is the general-purpose source register, encoded in the "Rn" field.
<imm8> Is a 8-bit unsigned immediate, in the range 0 to 255, encoded in the "imm8" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the range of values.

For encoding T2: an immediate value. See Modified immediate constants in T32 instructions for the range of values.

CMP (immediate) Page 82

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;
constant (result, nzcv) = AddWithCarry(R[n], NOT(imm32), '1');
PSTATE.<N, Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
* The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (immediate) Page 83

CMP (register)

Compare (register) subtracts an optionally-shifted register value from a register value. It updates the condition flags based on the result, and discards
the result.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1,T2and T3).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

| =111 _Jo 0 0 1 o[1 o0[1]

1(9)[(0)[(0)[(0)]

| stype [0]

cond

Rotate right with extend (imm5 == 00000 && stype == 11)

CMP{<c>}{<g>} <Rn>, <Rm>, RRX

Shift or rotate by value (!(imm5 == 00000 && stype == 11))

CMP{<c>}{<g>} <Rn>, <Rm> {, <shift> #<amount>}

constant n = UInt (Rn); constant m
constant (shift t, shift n) = DecodeImmShift (stype,

™

15 14 13 12 11 10 9 8 7

[0 1

6
0 00 0[1 0 1 0]

™

CMP{<c>}{<g>} <Rn>, <Rm> // (<Rn> and <Rm> both from R0O-R7)

constant n = UInt (Rn); constant m
constant (shift t, shift n) = (SRType LSL,

T2

UInt (Rm) ;
0);

15 14 13 12 11 10 9 8 7 6 5 4 0
[001 0 00 1/0 1[N] Rm |
T2

CMP{<c>}{<g>} <Rn>, <Rm> // (<Rn> and <Rm> not both from RO-R7)

constant n = UInt (N:Rn); constant m UInt (Rm) ;
constant (shift t, shift n) = (SRType LSL, 0);
if n < 8 & m < 8 then UNPREDICTABLE;

if n == 15 || m == 15 then UNPREDICTARBLE;

CONSTRAINED UNPREDICTABLE behavior

Ifn < 8 && m < 8, then one of the following behaviors must occur:

T3

The instruction is UNDEFINED.
The instruction executes as NOP.

The instruction executes as described, with no change to its behavior and no additional side effects.

The condition flags become UNKNOWN.

CMP (register)

imm5) ;

Page 84

15 14 13 12 11 10 9
1

(1 1

8 7 6 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1

5 4
1010 1.0 1]1] Rn [0 imm3 [1 1 1 1 [imm2]|stype | Rm |

Rotate right with extend (imm3 == 000 && imm2 == 00 && stype == 11)

CMP

{<c>}{<g>} <Rn>, <Rm>, RRX

Shift or rotate by value (!(imm3 == 000 && imm2 == 00 && stype == 11))

CMP

CMP

{<c>}.W <Rn>, <Rm> // (<Rn>, <Rm> can be represented in Tl or T2)

{<c>}{<g>} <Rn>, <Rm>, <shift> #<amount>

constant n = UInt (Rn); constant m = UInt (Rm);

constant (shift t, shift n) = DecodeImmShift (stype, imm3:imm2);
// Armv8-A removes UNPREDICTABLE for R13

if n == 15 || == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE

beha

VIOYS.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rn> For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
For encoding T1 and T3: is the first general-purpose source register, encoded in the "Rn" field.
For encoding T2: is the first general-purpose source register, encoded in the "N:Rn" field.
<Rm> For encoding A1: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is
deprecated.
For encoding T1, T2 and T3: is the second general-purpose source register, encoded in the "Rm" field.
<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:
stype <shift>
00 LSL
01 LSR
10 ASR
11 ROR
<amount> For encoding A1: is the shift amount, in the range 1 to 31 (when <shift> = LSL or ROR) or 1 to 32 (when <shift>= LSR or ASR)
encoded in the "imm5" field as <amount> modulo 32.
For encoding T3: is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR),
encoded in the "imm3:imm2" field as <amount> modulo 32.
Operation

if ConditionPassed() then

EncodingSpecificOperations() ;

constant shifted = Shift(R[m], shift t, shift n, PSTATE.C);
constant (result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1'");
PSTATE.<N, Zz,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

» The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.

CMP (register) Page 85

o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (register) Page 86

CMP (register-shifted register)

Compare (register-shifted register) subtracts a register-shifted register value from a register value. It updates the condition flags based on the result, and
discards the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

[=111 Jo 0 0 1 01 0[1] Rn [(0)[(0)[(0)](0)] Rs [0 [stype| 1] Rm |
cond

A1

CMP{<c>}{<g>} <Rn>, <Rm>, <type> <Rs>

constant n
constant shift t = DecodeRegShift (stype):;

if n

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

— 5

= UInt (Rn); constant m = UInt (Rm); constant s = UInt(Rs);

|| m == 15 || s == 15 then UNPREDICTABLE;

Assembler Symbols

<c>
<q>
<Rn>

<Rm>

<typ e>

<Rs>

Operation

See Standard assembler syntax fields.
See Standard assembler syntax fields.
Is the first general-purpose source register, encoded in the "Rn" field.

Is the second general-purpose source register, encoded in the "Rm" field.

Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <type>

00 LSL
01 LSR
10 ASR
11 ROR

Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

if ConditionPassed () then

EncodingSpecificOperations() ;

constant shift n = UInt (R[s]<7:0>);

constant shifted = Shift(R[m], shift t, shift n, PSTATE.C);
constant (result, nzcv) = AddWithCarry(R[n], NOT(shifted), '1'");
PSTATE.<N, Z,C,V> = nzcv;

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

The execution time of this instruction is independent of:

o

o

The values of the data supplied in any of its registers.
The values of the NZCV flags.

The response of this instruction to asynchronous exceptions does not vary based on:

o

o

The values of the data supplied in any of its registers.
The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CMP (register-shifted register)

Page 87

CPS, CPSID, CPSIE

Change PE State changes one or more of the PSTATE . {A, 1, F} interrupt mask bits and, optionally, the PSTATE M mode field, without changing any
other PSTATE bits.

CPS is treated as NOP if executed in User mode unless it is defined as being CONSTRAINED UNPREDICTABLE elsewhere in this section.
The PE checks whether the value being written to PSTATE.M is legal. See lllegal changes to PSTATE.M.
It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
1111000 10 00 0||mod|M|O|0)|(0|(O)|0)|(0|(O|0)|A|I|F|0| mode |

Change mode (imod == 00 && M == 1)

CPS{<g>} #<mode> // (Cannot be conditional)

Interrupt disable (imod == 11 && M == 0)

CPSID{<g>} <iflags> // (Cannot be conditional)

Interrupt disable and change mode (imod == 11 && M == 1)

CPSID{<g>} <iflags> , #<mode> // (Cannot be conditional)

Interrupt enable (imod == 10 && M == 0)

CPSIE{<g>} <iflags> // (Cannot be conditional)

Interrupt enable and change mode (imod == 10 && M == 1)

CPSIE{<g>} <iflags> , #<mode> // (Cannot be conditional)

if mode != '00000' && M == 'O' then UNPREDICTABLE;

if (imod<l> == '1' && A:I:F == '000') || (imod<l> == '0' && A:I:F != '000') then UNPREDICTABLE;
constant enable = (imod == '10'); constant disable = (imod == '11");

constant changemode = (M == '1'); constant pemode = mode;

constant affectA = (A == '1'); constant affectI = (I == '1'"); constant affectF = (F == '1");
if (imod == '00' && == '0") || imod == '01' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If imod == '01"', then one of the following behaviors must occur:

* The instruction is UNDEFINED.
» The instruction executes as NOP.

Ifimod == '00' && M == '0', then one of the following behaviors must occur:

* The instruction is UNDEFINED.
» The instruction executes as NOP.

Ifmode != '00000"' && M == 'O0",then one of the following behaviors must occur:
+ The instruction is UNDEFINED.
+ The instruction executes as NOP.
» The instruction executes with the additional decode: changemode = TRUE.

» The instruction executes as described, and the value specified by mode is ignored. There are no additional side-effects.

If imod<1> == '1' && A:I:F == '000"', then one of the following behaviors must occur:

CPS, CPSID, CPSIE Page 88

* The instruction is UNDEFINED.
» The instruction executes as NOP

» The instruction behaves as if imod<1>=="0".
» The instruction behaves as if A:I:F has an UNKNOWN nonzero value.

If imod<1> == '0' && A:I:F != '000"', then one of the following behaviors must occur:

* The instruction is UNDEFINED.
» The instruction executes as NOP

» The instruction behaves as if imod<1>=="1".
» The instruction behaves as if A:I:F =="'000".

T1

15 14 13 12 11 10 9

5

4 3 2 1 0

8 7
1701101100

6
1

[[im]@[A]I]F]

Interrupt disable (im == 1)

CPSID{<g>} <iflags> // (Not permitted in IT block)

Interrupt enable (im == 0)

CPSIE{<g>} <iflags> // (Not permitted in IT Dblock)

if A:I:F == '000' then UNPREDICTABLE;
constant enable = (im == '0'); constant disable = (im == 'l'); constant changemode = FALSE;
constant affectA = (A == '1l'); constant affectI = (I == '1'"); constant affectF = (F == '1");
constant bits(5) pemode = bits(5) UNKNOWN;
if InITBlock() then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior
IfA:I:F == '000"', then one of the following behaviors must occur:
* The instruction is UNDEFINED.
* The instruction executes as NOP.
T2
5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
111100 1 1 10 1 0[MMMMD1 ol©)o][©)]imod [M[A]I]F] mode |

CPS, CPSID, CPSIE

Page 89

Change mode (imod == 00 && M == 1)

CPS{<g>} #<mode> // (Not permitted in IT block)

Interrupt disable (imod == 11 && M == 0)

CPSID.W <iflags> // (Not permitted in IT block)

Interrupt disable and change mode (imod == 11 && M == 1)

CPSID{<g>} <iflags>, #<mode> // (Not permitted in IT block)

Interrupt enable (imod == 10 && M == 0)

CPSIE.W <iflags> // (Not permitted in IT block)

Interrupt enable and change mode (imod == 10 && M ==1)

CPSIE{<g>} <iflags>, #<mode> // (Not permitted in IT block)

if imod == '00' && M == '0' then SEE "Hint instructions";

if mode != '00000' && M == '0O' then UNPREDICTABLE;

if (imod<l> == '1' && A:I:F == '000') || (imod<l> == '0' && A:I:F != '000') then UNPREDICTABLE;
constant enable = (imod == '10'); constant disable = (imod == '11"');

constant changemode = (M == 'l'); constant pemode = mode;

constant affecthA = (A == '1"); constant affectI = (I == '1"); constant affectF = (F == '1");
if imod == '01' || InITBlock() then UNPREDICTARBLE;

CONSTRAINED UNPREDICTABLE behavior

If imod == '01"', then one of the following behaviors must occur:

* The instruction is UNDEFINED.
» The instruction executes as NOP.

Ifmode != '00000' && M == '0', then one of the following behaviors must occur:

* The instruction is UNDEFINED.

» The instruction executes as NOP.

* The instruction executes with the additional decode: changemode = TRUE.

» The instruction executes as described, and the value specified by mode is ignored. There are no additional side-effects.

Ifimod<1> == '1' && A:I:F == '000"', then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction behaves as if imod<1>=="0'".

» The instruction behaves as if A:I:F has an UNKNOWN nonzero value.

If imod<1> == '0' && A:I:F != '000"', then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction behaves as if imod<1>=="1".
* The instruction behaves as if A:I:F =="'000".

Hint instructions: In encoding T2, if the imod field is 00 and the M bit is 0, a hint instruction is encoded. To determine which hint instruction, see
Branches and miscellaneous control.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields.

CPS, CPSID, CPSIE Page 90

<iflags> Is a sequence of one or more of the following, specifying which interrupt mask bits are affected:

a
Sets the A bit in the instruction, causing the specified effect on PSTATE.A, the SError interrupt mask bit.
i
Sets the I bit in the instruction, causing the specified effect on PSTATE.], the IRQ interrupt mask bit.
f
Sets the F bit in the instruction, causing the specified effect on PSTATE.F, the FIQ interrupt mask bit.
<mode> Is the number of the mode to change to, in the range 0 to 31, encoded in the "mode" field.
Operation
if CurrentInstrSet () == InstrSet A32 then
EncodingSpecificOperations() ;
if PSTATE.EL != ELO then
if enable then
if affectA then PSTATE.A = '0';
if affectI then PSTATE.I = '0';
if affectF then PSTATE.F = '0';
if disable then
if affectA then PSTATE.A = '1';
if affectI then PSTATE.I = '1';
if affectF then PSTATE.F = '1';

if changemode then
// BArch32.WriteModeByInstr () sets PSTATE.IL to 1 if this is an illegal mode change.
AArch32.WriteModeByInstr (pemode) ;

else
EncodingSpecificOperations() ;
if PSTATE.EL != ELO then
if enable then
if affectA then PSTATE.A = '0';
if affectI then PSTATE.I = '0';
if affectF then PSTATE.F = '0';
if disable then
if affectA then PSTATE.A = '1';
if affectI then PSTATE.I = '1';
if affectF then PSTATE.F = '1';

if changemode then
// BArch32.WriteModeByInstr () sets PSTATE.IL to 1 if this is an illegal mode change.
AArch32.WriteModeByInstr (pemode) ;

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CPS, CPSID, CPSIE Page 91

CRC32

CRC32 performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an input CRC value in the first
source operand, performs a CRC on the input value in the second source operand, and returns the output CRC value. The second source operand can be

8, 16, or 32 bits. To align with common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x04C11DB7 is used
for the CRC calculation.

In an Armv8.0 implementation, this is an OPTIONAL instruction. From Armv8.1, it is mandatory for all implementations to implement this instruction.

Note

ID ISARS5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
(FEAT_CRC32)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[=111 Jo 0 0 1 0] sz [0] Rn | Rd [O)]][o]0]o 1 0 0] Rm |
cond C

CRC32B (sz == 00)

CRC32B{<g>} <Rd>, <Rn>, <Rm>
CRC32H (sz == 01)

CRC32H{<g>} <Rd>, <Rn>, <Rm>
CRC32W (sz == 10)

CRC32W{<g>} <Rd>, <Rn>, <Rm>

if !IsFeatureImplemented(FEAT CRC32) then UNDEFINED;

constant d = UInt (Rd); constant n = UInt(Rn); constant m = UInt (Rm);
constant integer size = 8 << Ulnt(sz);

constant crc32c = (C == '1");

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;

if size == 64 then UNPREDICTABLE;

if cond != '1110' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.
» The instruction executes with the additional decode: size = 32;.

Ifcond != '1110"', then one of the following behaviors must occur:
* The instruction is UNDEFINED.
+ The instruction executes as NOP.

» The instruction executes unconditionally.
» The instruction executes conditionally.

T
(FEAT_CRC32)

CRC32 Page 92

15 14 13 12 11 10 9

3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1

R
Ao
[} {6}

8
171111010

4
0] Rn 111 1 1] Rd [1 0] sz | Rm
C

CRC32B (sz == 00)

CRC32B{<g>} <Rd>, <Rn>, <Rm>
CRC32H (sz == 01)

CRC32H{<g>} <Rd>, <Rn>, <Rm>
CRC32W (sz == 10)

CRC32W{<g>} <Rd>, <Rn>, <Rm>

if InITBlock () then UNPREDICTARLE;
if !IsFeatureImplemented (FEAT CRC32) then UNDEFINED;
constant d = UInt (Rd); constant n = UInt(Rn); constant m = UInt (Rm);

constant integer size = 8 << Ulnt(sz);

constant crc32c = (C == '1");

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.
» The instruction executes with the additional decode: size = 32;.

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields. A CRC32 instruction must be unconditional.
<Rd> Is the general-purpose accumulator output register, encoded in the "Rd" field.
<Rn> Is the general-purpose accumulator input register, encoded in the "Rn" field.
<Rm> Is the general-purpose data source register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations () ;

constant acc = R[n]; // accumulator
constant val = R[m]<size-1:0>; // input value
constant poly = (if crc32c then 0x1EDC6F41 else 0x04C11DB7)<31:0>;

constant tempacc = BitReverse (acc) :Zeros(size);

constant tempval BitReverse (val) :Zeros (32) ;

// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
R[d] = BitReverse (Poly32Mod2 (tempacc EOR tempval, poly));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.

CRC32

Page 93

o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32 Page 94

CRC32C

CRC32C performs a cyclic redundancy check (CRC) calculation on a value held in a general-purpose register. It takes an input CRC value in the first
source operand, performs a CRC on the input value in the second source operand, and returns the output CRC value. The second source operand can be
8, 16, or 32 bits. To align with common usage, the bit order of the values is reversed as part of the operation, and the polynomial 0x]1EDC6F41 is used

for the CRC calculation.

In an Armv8.0 implementation, this is an OPTIONAL instruction. From Armv8.1, it is mandatory for all implementations to implement this instruction.

Note

ID ISARS5.CRC32 indicates whether this instruction is supported in the T32 and A32 instruction sets.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
(FEAT_CRC32)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

[=111 Jo 0 0 1 0] sz [0] Rn | Rd

(@} N

[(9)[(©)] 1 [©0)]

cond

CRC32CB (sz == 00)

CRC32CB{<g>} <Rd>, <Rn>, <Rm>

CRC32CH (sz == 01)

CRC32CH{<g>} <Rd>, <Rn>, <Rm>

CRC32CW (sz == 10)

CRC32CW{<g>} <Rd>, <Rn>, <Rm>

if !IsFeatureImplemented(FEAT CRC32) then UNDEFINED;

constant d = UInt (Rd); constant n = UInt(Rn); constant m

constant integer size = 8 << Ulnt(sz);

constant crc32c = (C == '1");

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;

if cond != '1110' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.
» The instruction executes with the additional decode: size = 32;.

Ifcond != '1110"', then one of the following behaviors must occur:
* The instruction is UNDEFINED.
+ The instruction executes as NOP.

» The instruction executes unconditionally.
» The instruction executes conditionally.

T
(FEAT_CRC32)

CRC32C

Page 95

15 14 13 12 11 10 9 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4

R
Ao
[} {6}

8
171111010 | Rn 111 1 1] Rd | 1

IENES

CRC32CB (sz == 00)

CRC32CB{<g>} <Rd>, <Rn>, <Rm>

CRC32CH (sz == 01)

CRC32CH{<g>} <Rd>, <Rn>, <Rm>

CRC32CW (sz == 10)

CRC32CW{<g>} <Rd>, <Rn>, <Rm>

if InITBlock () then UNPREDICTARLE;
if !IsFeatureImplemented (FEAT CRC32) then UNDEFINED;
constant d = UInt (Rd); constant n = UInt(Rn); constant m = UInt (Rm);

constant integer size = 8 << Ulnt(sz);

constant crc32c = (C == '1");

if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
if size == 64 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If size == 64, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

The instruction executes with the additional decode: size = 32;.

Assembler Symbols

<q> See Standard assembler syntax fields. A CRC32C instruction must be unconditional.
<Rd> Is the general-purpose accumulator output register, encoded in the "Rd" field.
<Rn> Is the general-purpose accumulator input register, encoded in the "Rn" field.
<Rm> Is the general-purpose data source register, encoded in the "Rm" field.
Operation
if ConditionPassed () then

EncodingSpecificOperations () ;

constant acc = R[n]; // accumulator
constant val = R[m]<size-1:0>; // input value
constant poly = (if crc32c then 0x1EDC6F41 else 0x04C11DB7)<31:0>;

constant tempacc = BitReverse (acc) :Zeros(size);
constant tempval BitReverse (val) :Zeros (32) ;
// Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation

R[d] = BitReverse (Poly32Mod2 (tempacc EOR tempval, poly));

Operational information

If CPSR.DIT is 1 and this instruction passes its condition execution check:

The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.

CRC32C

Page 96

o The values of the NZCV flags.

Internal version only: isa vO1 31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CRC32C Page 97

CSDB

Consumption of Speculative Data Barrier is a memory barrier that controls speculative execution arising from data value prediction. For more
information and details of the semantics, see Consumption of Speculative Data Barrier (CSDB).

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 1 0
| =111 Jo 0 1 1 ofJo[1 o[0o 0 0 O[MMIMIM®© @© @©© 0 0 0 1 0 1 0 0]
cond
A1
CSDB{<c>} {<q>}
if cond != '1110' then UNPREDICTABLE; // CSDB must be encoded with AL condition
CONSTRAINED UNPREDICTABLE behavior
Ifcond !'= '1110"', then one of the following behaviors must occur:
* The instruction is UNDEFINED.
* The instruction executes as NOP.
» The instruction executes unconditionally.
+ The instruction executes conditionally.
™
5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 1 0
11110011101 0[MMMMD1 oloofoo o ofo o o 1]/o 1 0 0]

T1

CSDB{<c>}{<g>}

if InITBlock () then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock (), then one of the following behaviors must occur:

» The instruction is UNDEFINED.

» The instruction executes as NOP.

+ The instruction executes unconditionally.
+ The instruction executes conditionally.

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
Operation

if ConditionPassed() then
EncodingSpecificOperations() ;

ConsumptionOfSpeculativeDataBarrier () ;

CSDB Page 98

Internal version only: isa vO1 31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

CSDB Page 99

DBG

DBG executes as a NOP. Arm deprecates any use of the DBG instruction.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| =111 Jo 0 1 1 ofo[1 o[0o o]0 O[MMIMM®O © © © 1 1 1 1
cond

A1

DBG{<c>}{<g>} #<option>

// DBG executes as a NOP. The 'option' field is ignored

T1

0 15 14 13 12 11 10

15 14 13 12 11 10 9 8 7 4 3 2 1 9 8
0 IMIMIMIM[1 of©@[0]©)|0 0 0]

6
1111001110

5 7
1 1

T1

DBG{<c>}{<g>} #<option>
// DBG executes as a NOP. The 'option' field is ignored

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<option> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "option" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations () ;

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DBG Page 100

DCPS1

Debug Change PE State to EL1 allows the debugger to move the PE into EL1 from ELO or to a specific mode at the current Exception level.
DCPS1 is UNDEFINED if any of:
* The PE is in Non-debug state.
* EL2 is implemented, EL2 is implemented and enabled in the current Security state, and any of:
o EL2 is using AArch32 and HCR.TGE is set to 1.
o EL2 is using AArch64 and HCR_EL2.TGE is set to 1.
When the PE executes DCPS1 at ELO, EL1 or EL3:
« IfEL3 or ELI is using AArch32, the PE enters SVC mode and LR _svc, SPSR_svc, DLR, and DSPSR become UNKNOWN. If DCPS1 is
executed in Monitor mode, SCR.NS is cleared to 0.
» IfELI is using AArch64, the PE enters EL1 using AArch64, selects SP_EL1, and ELR_EL1, ESR_EL1, SPSR_EL1, DLR _ELO and
DSPSR_ELO become UNKNOWN.
When the PE executes DCPS1 at EL2 the PE does not change mode, and ELR _hyp, HSR, SPSR_hyp, DLR and DSPSR become UNKNOWN.

For more information on the operation of the DCPS<n> instructions, see DCPS.

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
[11 11011 11000[1111[1000[0000000UO0GO0TO0[0 1]
™

DCPS1

// No additional decoding required.

DCPS1 Page 101

Operation

if !'Halted() then UNDEFINED;

if EL2Enabled() && PSTATE.EL == ELO then
constant tge = if ELUsingAArch32 (EL2) then HCR.TGE else HCR EL2.TGE;
if tge == '1' then UNDEFINED;
if PSTATE.EL != ELO || ELUsingAArch32(EL1l) then
if PSTATE.M == M32 Monitor then SCR.NS = '0';
if PSTATE.EL != EL2 then
AArch32.WriteMode (M32 Svc);
PSTATE.E = SCTLR.EE;
if IsFeaturelImplemented (FEAT PAN) && SCTLR.SPAN == '0'" then PSTATE.PAN = '1';

LR svc = bits (32) UNKNOWN;

SPSR_svc = bits(32) UNKNOWN;
else

PSTATE.E = HSCTLR.EE;

ELR hyp = bits(32) UNKNOWN;

HSR = bits (32) UNKNOWN;

SPSR_hyp = bits(32) UNKNOWN;

DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
else
AArch64 .MaybeZeroRegisterUppers () ;
MaybeZeroSVEUppers (EL1) ;

// Targeting EL1 using AArché64

PSTATE.nRW = '0';

PSTATE.SP = '1';

PSTATE.EL = ELI1;

if IsFeaturelmplemented (FEAT PAN) && SCTLR EL1.SPAN == '0'" then PSTATE.PAN = '1';
if IsFeatureImplemented (FEAT UAO) then PSTATE.UAO = '0';

ELR EL1 = bits(64) UNKNOWN;
ESR EL1 = bits(64) UNKNOWN;
SPSR_EL1 = bits(64) UNKNOWN;

DLR ELO = bits(64) UNKNOWN;
DSPSR ELO = bits (64) UNKNOWN;

// SCTLR _EL1.IESB might be ignored in Debug state.
if (IsFeatureImplemented(FEAT IESB) && SCTLR EL1.IESB == 'l' &&
!ConstrainUnpredictableBool (Unpredictable IESBinDebug)) then

SynchronizeErrors () ;

UpdateEDSCRFields () ; // Update EDSCR PE state flags

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS1 Page 102

DCPS2

Debug Change PE State to EL2 allows the debugger to move the PE into EL2 from a lower Exception level.
DCPS2 is UNDEFINED if any of:
* The PE is in Non-debug state.
* EL2 is not implemented.
* The PE is in Secure state and any of:
o Secure EL2 is not implemented.
o Secure EL2 is implemented and Secure EL2 is disabled.
When the PE executes DCPS2:

« IfEL2 is using AArch32, the PE enters Hyp mode and ELR hyp, HSR, SPSR_hyp, DLR and DSPSR become UNKNOWN.
» IfEL2 is using AArch64, the PE enters EL2 using AArch64, selects SP_EL2, and ELR _EL2, ESR EL2, SPSR_EL2, DLR ELO and
DSPSR_ELO become UNKNOWN.

For more information on the operation of the DCPS<n> instructions, see DCPS.

T1

15 14 13 12 11 10 9 8 7
1

3 2 1 0 15 14 13 12 11 10
(1111 0 1 1 1 1

9 8 7 6
11 1]/1 0 0 0[]0 0 0 0 0 O

ol|o

o|wn

ol
o|wn
o|s
olw
oln
NN
olo

T

DCPS2

if !'HaveEL (EL2) then UNDEFINED;
Operation

if !'Halted() || !EL2Enabled() then UNDEFINED;

if ELUsingAArch32 (EL2) then
AArch32.WriteMode (M32 Hyp) ;
PSTATE.E = HSCTLR.EE;

ELR hyp = bits(32) UNKNOWN;
HSR = bits (32) UNKNOWN;
SPSR hyp = bits(32) UNKNOWN;

DLR = bits(32) UNKNOWN;
DSPSR = bits(32) UNKNOWN;
else // Targeting EL2 using AArch64
AArch64 .MaybeZeroRegisterUppers () ;
MaybeZeroSVEUppers (EL2) ;
PSTATE.nRW = '0';
PSTATE.SP = '1"';
PSTATE.EL = EL2;
if IsFeatureImplemented (FEAT PAN) && SCTLR EL2.SPAN == '0' && ELIsInHost (ELO) then
PSTATE.PAN = '1';
if IsFeatureImplemented (FEAT UAO) then PSTATE.UAO = '0';

ELR EL2 = bits(64) UNKNOWN;
ESR EL2 = bits(64) UNKNOWN;
SPSR_EL2 = bits(64) UNKNOWN;
DLR ELO = bits(64) UNKNOWN;
DSPSR ELO = bits (64) UNKNOWN;

// SCTLR _EL2.IESB might be ignored in Debug state.
if (IsFeatureImplemented(FEAT IESB) && SCTLR EL2.IESB == 'l' &&
!ConstrainUnpredictableBool (Unpredictable IESBinDebug)) then
SynchronizeErrors () ;

UpdateEDSCRFields () ; // Update EDSCR PE state flags

DCPS2 Page 103

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS2 Page 104

DCPS3

Debug Change PE State to EL3 allows the debugger to move the PE into EL3 from a lower Exception level or to a specific mode at the current
Exception level.

DCPS3 is UNDEFINED if any of:

* The PE is in Non-debug state.
* EL3 is not implemented.
+ EDSCR.SDDissetto 1.

When the PE executes DCPS3:
» IfEL3 is using AArch32, the PE enters Monitor mode and LR_mon, SPSR_mon, DLR and DSPSR become UNKNOWN. If DCPS3 is
executed in Monitor mode, SCR.NS is cleared to 0.
» IfEL3 is using AArch64, the PE enters EL3 using AArch64, selects SP_EL3, and ELR_EL3, ESR_EL3, SPSR_EL3, DLR_ELO and
DSPSR_ELO become UNKNOWN.

For more information on the operation of the DCPS<n> instructions, see DCPS.
T

15 14 13 12 11 10 9 8 7 6 5 4
/11110111100 0]

3 2 1 0 15 14 13 12 11 10 9 8 7 6
11 1 1[1 0 0 0[{0 0 0 0 0 O

ol|o
o~
olw
oln

N
N

T1

DCPS3

if !'HaveEL (EL3) then UNDEFINED;

DCPS3 Page 105

Operation

if

!'Halted() || EDSCR.SDD == 'l' then UNDEFINED;

if ELUsingAArch32 (EL3) then

constant from secure = CurrentSecurityState() == SS Secure;
if PSTATE.M == M32 Monitor then SCR.NS = '0';
AArch32.WriteMode (M32 Monitor);
if IsFeatureImplemented (FEAT PAN) then

if !from secure then

PSTATE.PAN = '0';
elsif SCTLR.SPAN == '0O' then
PSTATE.PAN = '1"';

PSTATE.E = SCTLR.EE;

LR mon = bits(32) UNKNOWN;
SPSR mon = bits (32) UNKNOWN;

DLR = bits (32) UNKNOWN;
DSPSR = bits (32) UNKNOWN;

else // Targeting EL3 using AArch64

AArcho64 .MaybeZeroRegisterUppers () ;
MaybeZeroSVEUppers (EL3) ;

PSTATE.nRW = '0';

PSTATE.SP = '1';

PSTATE.EL = EL3;

if IsFeatureImplemented (FEAT UAO) then PSTATE.UAO = '0';
ELRﬁELB = bits (64) UNKNOWN;

ESR _EL3 bits (64) UNKNOWN;
SPSR_EL3 = bits(64) UNKNOWN;

DLR ELO = bits(64) UNKNOWN;
DSPSR ELO = bits (64) UNKNOWN;

sync_errors = IsFeatureImplemented(FEAT IESB) && SCTLR EL3.IESB == 'l';

if IsFeatureImplemented (FEAT DoubleFault) && EffectiveEA() == 'l' && SCR EL3.NMEA == 'l' then
sync_errors = TRUE;

// SCTLR _EL3.IESB might be ignored in Debug state.

if !ConstrainUnpredictableBool (Unpredictable IESBinDebug) then
sync_errors = FALSE;

if sync_errors then SynchronizeErrors();

UpdateEDSCRFields () ; // Update EDSCR PE state flags

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DCPS3 Page 106

DMB

Data Memory Barrier is a memory barrier that ensures the ordering of observations of memory accesses, see Data Memory Barrier (DMB).
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5
(11110101 0 1 1 1]OOIMOOMNOINIMIM[©]©O)] 0)|(0 [0 1 0

4 3 2 1. 0
1] option |

A1

DMB{<c>} {<g>} {<option>}

// No additional decoding required
T

15 14 13 12 11 10 9 8 7 6
1111001110

5 4 3 0 15 14 13 12 11 10 9 7 6
1 1

5 4 3 2 1 0
[()](1>I<1 (D] 10 o]0 [1>I<1I0 1.0 1

| option |

T1

DMB{<c>}{<g>} {<option>}
// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.
Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.
<option> Specifies an optional limitation on the barrier operation. Values are:
SY

Full system is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Can be omitted. This option is referred to as the full system barrier. Encoded as option = 0b1111.

ST
Full system is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. SYST is a synonym for ST. Encoded as option = 0b1110.

LD
Full system is the required shareability domain, reads are the required access type before the barrier instruction, and reads and
writes are the required access types after the barrier instruction. Encoded as option = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Encoded as option = 0b1011.

ISHST
Inner Shareable is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as option = 0b1010.

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as option = 0b1001.

DMB Page 107

Operation

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both before and after the barrier
instruction. Encoded as option = 0b0111.

NSHST
Non-shareable is the required shareability domain, writes are the required access type both before and after the barrier
instruction. Encoded as option = 0b0110.

NSHLD
Non-shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as option = 0b0101.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Encoded as option = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as option = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as option = 0b0001.

For more information on whether an access is before or after a barrier instruction, see Data Memory Barrier (DMB). All other
encodings of option are reserved. All unsupported and reserved options must execute as a full system DMB operation, but software
must not rely on this behavior.

Note

The instruction supports the following alternative <option> values, but Arm recommends that software does not use these
alternative values:

* SH as an alias for ISH.

e SHST as an alias for ISHST.
* UN as an alias for NSH.

e UNST as an alias for NSHST.

if ConditionPassed() then

EncodingSpecificOperations() ;
MBRegDomain domain;
MBRegTypes types;

case option of

when '0001' domain = MBRegDomain OuterShareable; types = MBReqTypes Reads;
when '0010' domain = MBRegDomain OuterShareable; types = MBReqTypes Writes;
when '0011' domain = MBRegDomain OuterShareable; types = MBReqTypes All;

when '0101' domain = MBRegDomain Nonshareable; types = MBRegTypes Reads;
when '0110' domain = MBRegDomain Nonshareable; types = MBRegTypes Writes;
when '0111' domain = MBRegDomain Nonshareable; types = MBRegTypes All;

when '1001' domain = MBRegDomain InnerShareable; types = MBReqTypes Reads;
when '1010' domain = MBRegDomain InnerShareable; types = MBReqTypes Writes;
when '1011' domain = MBRegDomain InnerShareable; types = MBReqTypes All;

when '1101' domain = MBRegDomain FullSystem; types = MBRegTypes Reads;
when '1110' domain = MBRegDomain FullSystem; types = MBRegTypes Writes;
otherwise domain = MBRegDomain FullSystem; types = MBRegTypes All;

if PSTATE.EL IN {ELO, ELl} && EL2Enabled() then

if HCR.BSU == '11' then

domain = MBRegDomain FullSystem;

if HCR.BSU == '1l0' && domain != MBRegDomain FullSystem then

domain = MBRegDomain OuterShareable;

if HCR.BSU == '0l' && domain == MBRegDomain Nonshareable then

domain = MBRegDomain InnerShareable;

DataMemoryBarrier (domain, types);

DMB Page 108

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DMB Page 109

DSB

Data Synchronization Barrier is a memory barrier that ensures the completion of memory accesses, see Data Synchronization Barrier (DSB).
An AArch32 DSB instruction does not require the completion of any AArch64 TLB maintenance instructions, regardless of the nXS qualifier,
appearing in program order before the AArch32 DSB.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

(111101010 11 1[MOOOOIOIOIOINOIOO]OO[0 1 0 0] !=0x00 |
option

A1

DSB{<c>}{<g>} {<option>}

// No additional decoding required

T

%5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

(1111001110 1 1]MOOMOMI1T oJofo[IMIM[([o 1 0 0] !=0x00 |
option

T

DSB{<c>} {<g>} {<option>}
// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.
Assembler Symbols

<c> For encoding Al: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<g> See Standard assembler syntax fields.
<option> Specifies an optional limitation on the barrier operation. Values are:
SY

Full system is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Can be omitted. This option is referred to as the full system barrier. Encoded as option = 0b1111.

ST
Full system is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. SYST is a synonym for ST. Encoded as option = 0b1110.

LD
Full system is the required shareability domain, reads are the required access type before the barrier instruction, and reads and
writes are the required access types after the barrier instruction. Encoded as option = 0b1101.

ISH
Inner Shareable is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Encoded as option = 0b1011.

ISHST

Inner Shareable is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as option = 0b1010.

DSB Page 110

ISHLD
Inner Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as option = 0b1001.

NSH
Non-shareable is the required shareability domain, reads and writes are the required access, both before and after the barrier
instruction. Encoded as option = 0b0111.

NSHST
Non-shareable is the required shareability domain, writes are the required access type both before and after the barrier
instruction. Encoded as option = 0b0110.

NSHLD
Non-shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as option = 0b0101.

OSH
Outer Shareable is the required shareability domain, reads and writes are the required access types, both before and after the
barrier instruction. Encoded as option = 0b0011.

OSHST
Outer Shareable is the required shareability domain, writes are the required access type, both before and after the barrier
instruction. Encoded as option = 0b0010.

OSHLD
Outer Shareable is the required shareability domain, reads are the required access type before the barrier instruction, and reads
and writes are the required access types after the barrier instruction. Encoded as option = 0b0001.

For more information on whether an access is before or after a barrier instruction, see Data Synchronization Barrier (DSB). All
other encodings of option are reserved, other than the values 0b0000 and 0b0100. All unsupported and reserved options must
execute as a full system DSB operation, but software must not rely on this behavior.

Note

The value 0b0000 is used to encode SSBB and the value 0b0100 is used to encode PSSBB.
The instruction supports the following alternative <option> values, but Arm recommends that software does not use these
alternative values:

* SH as an alias for ISH.

* SHST as an alias for ISHST.

* UN as an alias for NSH.

» UNST as an alias for NSHST.

DSB Page 111

Operation

if ConditionPassed() then

EncodingSpecificOperations () ;
boolean nXS;
if IsFeatureImplemented (FEAT XS) then

nXS = (PSTATE.EL IN {ELO, EL1l} && !ELUsingAArch32(EL2)
IsHCRXEL2Enabled () && HCRX EL2.FnXS == '1'");

else
nXS = FALSE;

MBRegDomain domain;

MBRegTypes types;

case option of
when '0001' domain = MBRegDomain OuterShareable; types
when '0010' domain = MBRegDomain OuterShareable; types
when '0011' domain = MBRegDomain OuterShareable; types
when '0101' domain = MBRegDomain Nonshareable; types
when '0110' domain = MBRegDomain Nonshareable; types
when '0111' domain = MBRegDomain Nonshareable; types
when '1001' domain = MBRegDomain InnerShareable; types
when '1010' domain = MBRegDomain InnerShareable; types
when '1011' domain = MBRegDomain InnerShareable; types
when '1101' domain = MBRegDomain FullSystem; types
when '1110' domain = MBRegDomain FullSystem; types
otherwise

assert ! (option IN {'0x00'});

domain = MBRegDomain FullSystem;

types =

if PSTATE.EL IN {ELO, ELl} && EL2Enabled() then

if HCR.BSU == '1l1l' then

domain = MBRegDomain FullSystem;

&&

MBRegTypes

Reads;

MBRegTypes

Writes;

MBRegTypes

All;

MBRegTypes

Reads;

MBRegTypes

Writes;

MBRegTypes

All;

MBRegTypes

Reads;

MBRegTypes

Writes;

MBRegTypes

All;

MBRegTypes

Reads;

MBRegTypes

Writes;

MBReqgTypes All;

if HCR.BSU == '10' && domain != MBRegDomain FullSystem then
domain = MBRegDomain OuterShareable;
if HCR.BSU == '0l' && domain == MBRegDomain

domain = MBRegDomain InnerShareable;

DataSynchronizationBarrier (domain, types, nXS);

Nonshareable then

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

DSB

Page 112

EOR, EORS (immediate)

Bitwise Exclusive-OR (immediate) performs a bitwise exclusive-OR of a register value and an immediate value, and writes the result to the destination
register.
If the destination register is not the PC, the EORS variant of the instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these
encodings. However, when the destination register is the PC:
* The EOR variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose
registers and the PC.
* The EORS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current mode>.
o The PE checks SPSR_<current mode> for an illegal return event. See lllegal return events from AArch32 state.
o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[=111 Jo 0 1 o]0 0 1][S] Rn | Rd | imm12

cond
EOR (S == 0)

EOR{<c>}{<g>} {<Rd>,} <Rn>, #<const>
EORS (S ==1)

EORS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

constant d = UInt (Rd); constant n = UInt (Rn); constant setflags = (S == '1");
constant a32 = TRUE;
constant bits(12) imm = imml2;

T1

3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 7 4
S | Rn [0] imm3 | Rd | imm8

8 6 5
111 1 0]lilo[0o 1 0 O]

EOR (S == 0)
EOR{<c>}{<g>} {<Rd>,} <Rn>, #<const>
EORS (S ==1 && Rd != 1111)

EORS{<c>}{<g>} {<Rd>,} <Rn>, #<const>

if Rd == '"1111' && S == '1l' then SEE "TEQ (immediate)";

constant d = UInt(Rd); constant n = UInt(Rn); constant setflags = (S == '1");
constant a32 = FALSE;

constant bits(12) imm = i:imm3:imm8;

// Armv8-A removes UNPREDICTABLE for R13

if (d == 15 && !setflags) || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.
Assembler Symbols

<c> See Standard assembler syntax fields.

EOR, EORS (immediate) Page 113

<gq> See Standard assembler syntax fields.

<Rd> For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.
Arm deprecates using the PC as the destination register, but if the PC is used:
« For the EOR variant, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
* For the EORS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_ mode>.

For encoding T1: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.

<Rn> For encoding Al: is the general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.

For encoding T1: is the general-purpose source register, encoded in the "Rn" field.

<const> For encoding A1: an immediate value. See Modified immediate constants in A32 instructions for the range of values.

For encoding T1: an immediate value. See Modified immediate constants in T32 instructions for the range of values.

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;
constant (imm32, carry) = (if a32 then A32ExpandImm C(imm, PSTATE.C)
else T32ExpandImm C(imm, PSTATE.C));
constant result = R[n] EOR imm32;
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn (result) ;
else
ALUWritePC (result) ;

else
R[d] = result;
if setflags then
PSTATE.N = result<31>;
PSTATE.Z = IsZeroBit (result);
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:

* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR, EORS (immediate) Page 114

EOR, EORS (register)

Bitwise Exclusive-OR (register) performs a bitwise exclusive-OR of a register value and an optionally-shifted register value, and writes the result to

the destination register.

If the destination register is not the PC, the EORS variant of the instruction updates the condition flags based on the result.
The field descriptions for <Rd> identify the encodings where the PC is permitted as the destination register. Arm deprecates any use of these

encodings. However, when the destination register is the PC:

* The EOR variant of the instruction is an interworking branch, see Pseudocode description of operations on the AArch32 general-purpose

registers and the PC.

* The EORS variant of the instruction performs an exception return without the use of the stack. In this case:
o The PE branches to the address written to the PC, and restores PSTATE from SPSR_<current mode>.
o The PE checks SPSR_<current mode> for an illegal return event. See lllegal return events from AArch32 state.

o The instruction is UNDEFINED in Hyp mode.
o The instruction is CONSTRAINED UNPREDICTABLE in User mode and System mode.

It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 0

[=111 Jo 0 0 o]0 0 1][S] Rn | Rd | imm5 | stype [0 | |
cond

EOR, rotate right with extend (S == 0 && imm5 == 00000 && stype == 11)
EOR{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value (S == 0 && !(imm5 == 00000 && stype == 11))
EOR{<c>} {<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend (S == 1 && imm5 == 00000 && stype == 11)
EORS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value (S == 1 && !(imm5 == 00000 && stype == 11))

EORS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

constant d = UInt (Rd); constant n = UInt(Rn); constant m = UInt (Rm);

constant setflags = (S == '1");
constant (shift t, shift n) = DecodeImmShift (stype, imm5);

T1

15 14 13 12 11 10 9 8 7
[01 0 00 0[O0 0 O

6 5 4 3 2 1 0
1] Rm | Rdn |

T

EOR<c>{<g>} {<Rdn>,} <Rdn>, <Rm> // (Inside IT block)

EORS{<g>} {<Rdn>,} <Rdn>, <Rm> // (Outside IT block)

constant d = UInt (Rdn); constant n = UInt(Rdn); constant m = UInt (Rm);

constant setflags = !InITBlock();
constant (shift t, shift n) = (SRType LSL, 0);
T2

EOR, EORS (register)

Page 115

7 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9
0 1 0 1

(1 1 1

8 6 5 4
o 1 0 o]s] Rn (0] imm3 | Rd | imm2 | stype | Rm |

EOR, rotate right with extend (S == 0 && imm3 == 000 && imm2 == 00 && stype == 11)

EOR{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

EOR, shift or rotate by value (S == 0 && !(imm3 == 000 && imm2 == 00 && stype == 11))

EOR<c>.W

{<Rd>,} <Rn>, <Rm> // (Inside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

EOR{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

EORS, rotate right with extend (S == 1 && imm3 == 000 && Rd != 1111 && imm2 == 00 && stype == 11)

EORS{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, RRX

EORS, shift or rotate by value (S == 1 && !(imm3 == 000 && imm2 == 00 && stype == 11) && Rd != 1111)

EORS.W {<Rd>,} <Rn>, <Rm> // (Outside IT block, and <Rd>, <Rn>, <Rm> can be represented in T1)

EORS{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, <shift> #<amount>}

if Rd ==
constant
constant
constant

'1111" && S == '1l' then SEE "TEQ (register)";
d = UInt (Rd); constant n = UInt (Rn); constant m = UInt (Rm);
setflags = (S == '1");

(shift t, shift n) = DecodeImmShift (stype, imm3:imm2) ;

// Armv8-A removes UNPREDICTABLE for R13

if (d ==

15 && !setflags) || n == 15 || m == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c>
<q>
<Rdn>
<Rd>

<Rn>

<Rm>

<shift>

<amount>

See Standard assembler syntax fields.
See Standard assembler syntax fields.
Is the first general-purpose source register and the destination register, encoded in the "Rdn" field.

For encoding Al: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.
Arm deprecates using the PC as the destination register, but if the PC is used:
+ For the EOR variant, the instruction is a branch to the address calculated by the operation. This is an interworking
branch, see Pseudocode description of operations on the AArch32 general-purpose registers and the PC.
* For the EORS variant, the instruction performs an exception return, that restores PSTATE from SPSR_<current_mode>.

For encoding T2: is the general-purpose destination register, encoded in the "Rd" field. If omitted, this register is the same as <Rn>.
For encoding Al: is the first general-purpose source register, encoded in the "Rn" field. The PC can be used, but this is deprecated.
For encoding T2: is the first general-purpose source register, encoded in the "Rn" field.

For encoding Al: is the second general-purpose source register, encoded in the "Rm" field. The PC can be used, but this is
deprecated.

For encoding T1 and T2: is the second general-purpose source register, encoded in the "Rm" field.

Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR

For encoding Al: is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift>=LSR or ASR)
encoded in the "immS5" field as <amount> modulo 32.

EOR, EORS (register) Page 116

For encoding T2: is the shift amount, in the range 1 to 31 (when <shift>= LSL or ROR) or 1 to 32 (when <shift> = LSR or ASR),
encoded in the "imm3:imm?2" field as <amount> modulo 32.

In T32 assembly:
* Outside an IT block, if EORS <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled using encoding T1 as
though EORS <Rd>, <Rn> had been written
* Inside an IT block, if EOR<c> <Rd>, <Rn>, <Rd> has <Rd> and <Rn> both in the range R0-R7, it is assembled using encoding T1 as
though EOR<c> <Rd>, <Rn> had been written.
To prevent either of these happening, use the .W qualifier.

Operation

if ConditionPassed () then
EncodingSpecificOperations () ;
constant (shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
constant result = R[n] EOR shifted;
if d == 15 then // Can only occur for A32 encoding
if setflags then
ALUExceptionReturn (result) ;
else
ALUWritePC (result) ;

else
R[d] = result;
if setflags then
PSTATE.N result<31>;
PSTATE. Z IsZeroBit (result) ;
PSTATE.C = carry;
// PSTATE.V unchanged

Operational information

If CPSR.DIT is 1 and this instruction does not use R15 as either its source or destination:
* The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR, EORS (register) Page 117

EOR, EORS (register-shifted register)

Bitwise Exclusive-OR (register-shifted register) performs a bitwise exclusive-OR of a register value and a register-shifted register value. It writes the

result to the destination register, and can optionally update the condition flags based on the result.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

[=111 Jo 0 0 o]0 0 1][S] Rn | Rd | Rs [0 [stype| 1] Rm |
cond

Flag setting (S == 1)

EORS {<c>} {<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

Not flag setting (S == 0)

EOR{<c>}{<g>} {<Rd>,} <Rn>, <Rm>, <shift> <Rs>

constant d = UInt (Rd); constant n = UInt (Rn); constant m = UInt (Rm); constant s = UInt (Rs);

constant setflags = (S == '1"); constant shift_t = DecodeRegShift (stype) ;
if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rd> Is the general-purpose destination register, encoded in the "Rd" field.

<Rn> Is the first general-purpose source register, encoded in the "Rn" field.

<Rm> Is the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the type of shift to be applied to the second source register, encoded in “stype”:

stype <shift>

00 LSL
01 LSR
10 ASR
11 ROR
<Rs> Is the third general-purpose source register holding a shift amount in its bottom 8 bits, encoded in the "Rs" field.

Operation

if ConditionPassed() then

EncodingSpecificOperations() ;
constant shift n = UInt (R[s]<7:0>);
constant (shifted, carry) = Shift C(R[m], shift t, shift n, PSTATE.C);
constant result = R[n] EOR shifted;
R[d] = result;
if setflags then

PSTATE.N = result<31>;

PSTATE.Z IsZeroBit (result) ;

PSTATE.C = carry;

// PSTATE.V unchanged

EOR, EORS (register-shifted register)

Page 118

Operational information

If CPSR.DIT is 1, this instruction has passed its condition execution check, and does not use R15 as either its source or destination:

» The execution time of this instruction is independent of:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.
» The response of this instruction to asynchronous exceptions does not vary based on:
o The values of the data supplied in any of its registers.
o The values of the NZCV flags.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

EOR, EORS (register-shifted register) Page 119

ERET

Exception Return.
The PE branches to the address held in the register holding the preferred return address, and restores PSTATE from SPSR_<current mode>.
The register holding the preferred return address is:

* ELR hyp, when executing in Hyp mode.
* LR, when executing in a mode other than Hyp mode, User mode, or System mode.

The PE checks SPSR_<current_mode> for an illegal return event. See lllegal return events from AArch32 state.
Exception Return is CONSTRAINED UNPREDICTABLE in User mode and System mode.

In Debug state, the T1 encoding of ERET executes the DRPS operation.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0

L =111 [0 0 0 1 0 1 1 0J0©[00)]0)[0)]©)]©)[©0)]0O)] 0)|(0 10 1 1 0 [M[MIMNO)
cond

A1

ERET{<c>}{<g>}
// No additional decoding required
™

15 14 13 12 11 10 9 8 7 6 5
11110011110

3 2 1 0 15 14 13 12 11 10 9 7 6 5
1 1 1 01 0|(0)|0|(1|(1)|1)|(1|o 00

ols~
o|w
QIN
o~
oO|o

T1

ERET{<c>} {<g>}
if InITBlock() && 'LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

ERET Page 120

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;
if !'Halted() then
if PSTATE.M IN {M32 User,M32 System} then

UNPREDICTABLE; // UNDEFINED or NOP
else
constant new pc value = if PSTATE.EL == EL2 then ELR hyp else R[14];
AArch32.ExceptionReturn (new pc value, SPSR currl]);
else // Perform DRPS operation in Debug state
if PSTATE.M == M32 User then
UNDEFINED;
elsif PSTATE.M == M32 System then
UNPREDICTABLE; // UNDEFINED or NOP
else

SynchronizeContext () ;
DebugRestorePSR() ;

CONSTRAINED UNPREDICTABLE behavior

IfPSTATE.M IN {M32 User,M32 System}, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
e The instruction executes as NOP.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERET Page 121

ESB

Error Synchronization Barrier is an error synchronization event that might also update DISR and VDISR. This instruction can be used at all Exception
levels and in Debug state.

In Debug state, this instruction behaves as if SError interrupts are masked at all Exception levels. For more information, see RAS PE architecture and
RAS System architecture.

If FEAT RAS is not implemented, this instruction executes as a NOP.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
(FEAT_RAS)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0
| =111 Jo 0 1 1 ofo[1 0o[0 0 0 O[MMIMMN®©@© @©®©© 0 0 0 1 0 0 0 0]
cond
A1
ESB{<c>} {<qg>}
if !IsFeatureImplemented (FEAT RAS) then ExecuteAsNOP () ;
if cond != '1110' then UNPREDICTABLE; // ESB must be encoded with AL condition
CONSTRAINED UNPREDICTABLE behavior
Ifcond != '"1110"', then one of the following behaviors must occur:
+ The instruction is UNDEFINED.
+ The instruction executes as NOP.
» The instruction executes unconditionally.
» The instruction executes conditionally.
™
(FEAT_RAS)
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O
(1111001 110 1 0[MMMMD1 ololofoo o ofo o o 1/]0 0 0 0]

T1

ESB{<c>} {<qg>}

if !IsFeatureImplemented(FEAT RAS) then ExecuteAsNOP () ;
if InITBlock () then UNPREDICTARLE;

CONSTRAINED UNPREDICTABLE behavior

If InITBlock (), then one of the following behaviors must occur:
* The instruction is UNDEFINED.
» The instruction executes as NOP.

» The instruction executes unconditionally.
» The instruction executes conditionally.

Assembler Symbols

<c> See Standard assembler syntax fields.

<gq> See Standard assembler syntax fields.

ESB Page 122

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;

SynchronizeErrors() ;

AArch32.ESBOperation () ;

if PSTATE.EL IN {ELO, ELl} && EL2Enabled() then
AArch32.vESBOperation () ;

elsif IsFeatureImplemented(FEAT E3DSE) && PSTATE.EL != EL3 && !ELUsingAArch32(EL3) then
AArch64.dESBOperation () ;

TakeUnmaskedSErrorInterrupts() ;

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ESB Page 123

HLT

Halting breakpoint causes a software breakpoint to occur.
Halting breakpoint is always unconditional, even inside an IT block.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[=111 Jo 0 0 1 o]0 0]0] imm12 [0 1 1 1] imm4 |
cond
A1
HLT{<g>} {#}<imm>
if EDSCR.HDE == '0' || 'HaltingAllowed() then UNDEFINED;
if cond != '1110' then UNPREDICTABLE; // HLT must be encoded with AL condition

CONSTRAINED UNPREDICTABLE behavior

Ifcond != '1110"', then one of the following behaviors must occur:

* The instruction is UNDEFINED.

+ The instruction executes as NOP.

» The instruction executes unconditionally.
» The instruction executes conditionally.

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 0111010 1 0] imm6
™
HLT{<g>} {#}<imm>
if EDSCR.HDE == '0O' || !'HaltingAllowed() then UNDEFINED;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields. An HLT instruction must be unconditional.

<imm> For encoding Al: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm12:imm4" field. This value is for
assembly and disassembly only. It is ignored by the PE, but can be used by a debugger to store more information about the halting
breakpoint.

For encoding T1: is a 6-bit unsigned immediate, in the range 0 to 63, encoded in the "imm6" field. This value is for assembly and
disassembly only. It is ignored by the PE, but can be used by a debugger to store more information about the halting breakpoint.

Operation

EncodingSpecificOperations() ;

constant boolean is async = FALSE;

constant FaultRecord fault = NoFault();

Halt (DebugHalt HaltInstruction, is async, fault);

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

HLT Page 124

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HLT Page 125

HVC

Hypervisor Call causes a Hypervisor Call exception. For more information, see Hypervisor Call (HVC) exception. Software executing at EL1 can use

this instruction to call the hypervisor to request a service.
The HVC instruction is UNDEFINED:

* When EL3 is implemented and using AArch64, and SCR_EL3.HCE is set to 0.
* In Non-secure EL1 modes when EL3 is implemented and using AArch32, and SCR.HCE is set to 0.
* When EL3 is not implemented and either HCR_EL2.HCD is setto 1 or HCR.HCD is set to 1.

* When EL2 is not implemented.
* In Secure state, if EL2 is not enabled in the current Security state.
* In User mode.

The HVC instruction is CONSTRAINED UNPREDICTABLE in Hyp mode when EL3 is implemented and using AArch32, and SCR.HCE is set to 0.

On executing an HVC instruction, the HSR, Hyp Syndrome Register reports the exception as a Hypervisor Call exception, using the EC value 0x12, and

captures the value of the immediate argument, see Use of the HSR.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 7 5 4 2 1
| =111 Jo 0 0 1 o[1 o0] imm12 [0 11 imm4 |
cond
A1
HVC{<g>} {#}<immlé6>
if cond != '1110"' then UNPREDICTABLE;
constant imml6 = imml2:imm4;
CONSTRAINED UNPREDICTABLE behavior
Ifcond !'= '1110"', then one of the following behaviors must occur:
* The instruction is UNDEFINED.
* The instruction executes as NOP.
» The instruction executes unconditionally.
» The instruction executes conditionally.
™
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 7 5 4 2 1
1111011111 1[o] imm4 [1 0]0]0] imm12

T1

HVC{<g>} {#}<immlé6>

constant imml6 = imm4:imml2;
if InITBlock () then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE

behaviors.

Assembler Symbols

<q> See Standard assembler syntax fields. An HVC instruction must be unconditional.

<imml16> For encoding Al: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm12:imm4" field. This value is for
assembly and disassembly only. It is reported in the HSR but otherwise is ignored by hardware. An HVC handler might interpret

imm16, for example to determine the required service.

HVC

Page 126

For encoding T1: is a 16-bit unsigned immediate, in the range 0 to 65535, encoded in the "imm4:imm12" field. This value is for
assembly and disassembly only. It is reported in the HSR but otherwise is ignored by hardware. An HVC handler might interpret
imm16, for example to determine the required service.

Operation

EncodingSpecificOperations() ;
if PSTATE.EL IN {ELO, EL3} ||
UNDEFINED;

'EL2Enabled () then

bit hvc enable;
if HaveEL (EL3) then
if ELUsingAArch32 (EL3) && SCR.HCE == '0' && PSTATE.EL == EL2 then
UNPREDICTABLE;
else
hvc enable = SCR curr[].HCE;

else
hvc _enable = if ELUsingAArch32(EL2) then NOT (HCR.HCD) else NOT (HCR EL2.HCD);

if hvc _enable == '0' then
UNDEFINED;

else
AArch32.CallHypervisor (imml6) ;

CONSTRAINED UNPREDICTABLE behavior

IfELUsingAArch32 (EL3) && SCR.HCE == '0' && PSTATE.EL == EL2, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

HVC Page 127

ISB

Instruction Synchronization Barrier flushes the pipeline in the PE and is a context synchronization event. For more information, see /nstruction
Synchronization Barrier (ISB).
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
(111101010 1 1 1]0OOOIOIOINOIMIMIO0) 0)|(0|0 1 1 0 option |
A1

ISB{<c>}{<g>} {<option>}

// No additional decoding required

T1

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
111100 1 1 10 1 1[M 1)|(1 (D1 0] oMM 1)|(1|o 1 1 0] option |

T1

ISB{<c>}{<g>} {<option>}
// No additional decoding required

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.
Assembler Symbols

<c> For encoding A1: see Standard assembler syntax fields. Must be AL or omitted.

For encoding T1: see Standard assembler syntax fields.

<q> See Standard assembler syntax fields.
<option> Specifies an optional limitation on the barrier operation. Values are:
SY

Full system barrier operation, encoded as option = 0b1111. Can be omitted.

All other encodings of option are reserved. The corresponding instructions execute as full system barrier operations, but must not be
relied upon by software.

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
InstructionSynchronizationBarrier();

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ISB Page 128

IT

If-Then makes up to four following instructions (the IT block) conditional. The conditions for the instructions in the IT block are the same as, or the
inverse of, the condition the IT instruction specifies for the first instruction in the block.

The IT instruction itself does not affect the condition flags, but the execution of the instructions in the IT block can change the condition flags.
16-bit instructions in the IT block, other than CMP, CMN and TST, do not set the condition flags. An IT instruction with the AL condition can change
the behavior without conditional execution.

The architecture permits exception return to an instruction in the IT block only if the restoration of the CPSR restores PSTATE.IT to a state consistent
with the conditions specified by the IT instruction. Any other exception return to an instruction in an IT block is UNPREDICTABLE. Any branch to a
target instruction in an IT block is not permitted, and if such a branch is made it is UNPREDICTABLE what condition is used when executing that target
instruction and any subsequent instruction in the IT block.

Many uses of the IT instruction are deprecated for performance reasons, and an implementation might include ITD controls that can disable those uses
of IT, making them UNDEFINED.

For more information see Conditional execution and Conditional instructions. The first of these sections includes more information about the ITD
controls.

T1

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1] firstoond | !=0000 |
mask

T

IT{<x>{<y>{<z>}}}{<g>} <cond>

if mask == '0000' then SEE "Related encodings";
if firstcond == '1111' || (firstcond == '1110' && BitCount (mask) != 1) then UNPREDICTABLE;
if InITBlock () then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Iffirstcond == '1111' || (firstcond == '1110' && BitCount (mask) != 1), then one of the following behaviors must
occur:

» The instruction is UNDEFINED.

+ The instruction executes as NOP.

* The'1111' condition is treated as being the same as the '1110' condition, meaning always, and the ITSTATE state machine is progressed in
the same way as for any other cond_base value.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Related encodings: Miscellaneous 16-bit instructions.

Assembler Symbols

<x> The condition for the second instruction in the IT block. If omitted, the "mask" field is set to 0b1000. If present it is encoded in the
"mask[3]" field:
T
firstcond[0]

NOT firstcond[0]

<y> The condition for the third instruction in the IT block. If omitted and <x> is present, the "mask[2:0]" field is set to 0b100. If <y> is
present it is encoded in the "mask[2]" field:

T
firstcond[0]

NOT firstcond[0]

IT Page 129

<z> The condition for the fourth instruction in the IT block. If omitted and <y> is present, the "mask[1:0]" field is set to 0b10. If <z> is
present, the "mask[0]" field is set to 1, and it is encoded in the "mask[1]" field:

T
firstcond[0]
E
NOT firstcond[0]
<g> See Standard assembler syntax fields.
<cond> The condition for the first instruction in the IT block, encoded in the "firstcond" field. See Condition codes for the range of

conditions available, and the encodings.

The conditions specified in an IT instruction must match those specified in the syntax of the instructions in its IT block. When assembling to A32
code, assemblers check IT instruction syntax for validity but do not generate assembled instructions for them. See Conditional instructions.

Operation

EncodingSpecificOperations() ;
AArch32.CheckITEnabled (mask) ;
PSTATE.IT<7:0> = firstcond:mask;
ShouldAdvanceIT = FALSE;

Internal version only: isa vO1 31, pseudocode v2024-06 rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

IT Page 130

LDA

Load-Acquire Word loads a word from memory and writes it to a register. The instruction also has memory ordering semantics as described in Load-
Acquire, Store-Release

For more information about support for shared memory see Synchronization and semaphores. For information about memory accesses see Memory
accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[=111 Jo 0 0 1 1]0 0[1] Rn | Rt [(IM[o]o]1 0o o 1] @) @) @)
cond

A1

LDA{<c>}{<g>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt(Rn);

if £t == 15 || n == 15 then UNPREDICTARBLE;

T

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 1101 000 1 1 0[1] Rn | Rt (D M[1]o]1 o) @) @) @)]

T

LDA{<c>}{<g>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed () then
EncodingSpecificOperations() ;
constant address = R[n];
R[t] = MemO[address, 4];

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDA Page 131

LDAB

Load-Acquire Byte loads a byte from memory, zero-extends it to form a 32-bit word and writes it to a register. The instruction also has memory
ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about memory accesses see Memory
accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[=111 Jo 0 0 1 1]1 0[1] Rn | Rt [(IM[o]o]1 0o o 1] @) @) @)
cond

A1

LDAB{<c>}{<g>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt(Rn);

if £t == 15 || n == 15 then UNPREDICTARBLE;

T

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 1101 000 1 1 0[1] Rn | Rt (D M[1]o]o o] @) @) @]

T

LDAB{<c>}{<q>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt(Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed () then
EncodingSpecificOperations() ;
constant address = R[n];
R[t] = ZeroExtend(MemO[address, 1], 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAB Page 132

LDAEX

Load-Acquire Exclusive Word loads a word from memory, writes it to a register and:
+ If'the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.
+ Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about memory accesses see Memory
accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
[=111 Jo 0 0 1 1]0 0[1] Rn | Rt (][] 1
cond

7
1

oo
oo

8
[0]

A1

LDAEX{<c>}{<g>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt (Rn);
if £t == 15 || n == 15 then UNPREDICTARBLE;

T1

3 2 1 0

4
0l (1) (1) ()]

15 14 13 12 11 10 9 8 7
[1 1101 00 0 1

e 22

4 3 2 1 0 15 14 13 12 11 10 9 8 7 6
1 1

5
| Rn | Rt (@M1

(@] [é)]

T

LDAEX{<c>}{<g>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt (Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed () then
EncodingSpecificOperations() ;
constant address = R[n];
AArch32.SetExclusiveMonitors (address, 4);
R[t] = MemO[address, 4];

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

LDAEX Page 133

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAEX Page 134

LDAEXB

Load-Acquire Exclusive Byte loads a byte from memory, zero-extends it to form a 32-bit word, writes it to a register and:

+ If'the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.
+ Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about memory accesses see Memory
accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
[=111 Jo 0 0 1 1]1 0[1] Rn | Rt (][] 1
cond

7
1

oo
oo

8
[0]

A1

LDAEXB{<c>}{<g>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt (Rn);
if £t == 15 || n == 15 then UNPREDICTARBLE;

T1

3 2 1 0

15 14 13 12 11 10 7 5 4
[0 o) (1) ()M

9 8
[1 1101 00 0 1

e 22

4 3 2 1 0 15 14 13 12 1 10 9 8 7 6
1] Rn l Rt () () () (][1]1

(@] [é)]

T

LDAEXB{<c>}{<g>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt (Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed () then
EncodingSpecificOperations() ;
constant address = R[n];
AArch32.SetExclusiveMonitors (address, 1);
R[t] = ZeroExtend(MemO[address, 1], 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

LDAEXB Page 135

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAEXB Page 136

LDAEXD

Load-Acquire Exclusive Doubleword loads a doubleword from memory, writes it to two registers and:

+ If'the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor
+ Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also acts as a barrier instruction with the ordering requirements described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about memory accesses see Memory
accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[=111 Jo 0 0 1 1]0 1][1] Rn | Rt (M 1]o]1 0 o 1] @) () @)
cond
A1
LDAEXD{<c>}{<g>} <Rt>, <Rt2>, [<Rn>]
constant t = UInt (Rt); constant t2 =t + 1; constant n = UInt (Rn);
if Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior
IfRt<0> == '1"', then one of the following behaviors must occur:
* The instruction is UNDEFINED.
* The instruction executes as NOP.
* The instruction executes with the additional decode: t<0>="0".
» The instruction executes with the additional decode: t2 ='t.
» The instruction executes as described, with no change to its behavior and no additional side effects.
IfRt == '"1110", then one of the following behaviors must occur:
* The instruction is UNDEFINED.
* The instruction executes as NOP.
* The instruction is handled as described in Using R15.
™
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
171101000 11 0[1] Rn | Rt | Rt2 [111]1 1] @) @) @]

T1

LDAEXD{<c>} {<g>} <Rt>, <Rt2>, [<Rn>]

constant t = UInt(Rt); constant t2 = UInt(Rt2); constant n = UInt (Rn);
if £t == 15 || t2 == 15 || t == t2 || n == 15 then UNPREDICTARBLE;

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.
» The load instruction executes but the destination register takes an UNKNOWN value.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

LDAEXD Page 137

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding Al: is the first general-purpose register to be transferred, encoded in the "Rt" field. <Rt> must be even-numbered and
not R14.
For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding Al: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.
For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed () then

EncodingSpecificOperations() ;

constant address = R[n];

AArch32.SetExclusiveMonitors (address, 8);

constant value = MemO[address, 8];

// Extract words from 64-bit loaded value such that R[t] is

// loaded from address and R[t2] from address+4.

R[t] = if BigEndian (AccessType GPR) then value<63:32> else value<31l:0>;
R[t2] = if BigEndian (AccessType GPR) then value<31:0> else value<63:32>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAEXD Page 138

LDAEXH

Load-Acquire Exclusive Halfword loads a halfword from memory, zero-extends it to form a 32-bit word, writes it to a register and:

+ If'the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.
+ Causes the executing PE to indicate an active exclusive access in the local monitor.

The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about memory accesses see Memory
accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
[=111 Jo 0 o0 1 1]1 1[1] Rn | Rt (][] 1
cond

7
1

oo
oo

8
[0]

A1

LDAEXH{<c>}{<g>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt (Rn);
if £t == 15 || n == 15 then UNPREDICTARBLE;

T1

15 14 13 12 11 10 9 8 7
[1 1101 00 0 1

e 22

4 3 2 1 0 15 14 13 12 1 10 9 8 7 6
1] Rn l Rt () () () (][1]1

(@] [é)]

T

LDAEXH{<c>}{<g>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt (Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed () then
EncodingSpecificOperations() ;
constant address = R[n];
AArch32.SetExclusiveMonitors (address, 2);
R[t] = ZeroExtend(MemO[address, 2], 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

LDAEXH Page 139

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAEXH Page 140

LDAH

Load-Acquire Halfword loads a halfword from memory, zero-extends it to form a 32-bit word and writes it to a register. The instruction also has
memory ordering semantics as described in Load-Acquire, Store-Release.

For more information about support for shared memory see Synchronization and semaphores. For information about memory accesses see Memory
accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[=111 Jo 0 0 1 1]1 1[1] Rn | Rt [(IM[o]o]1 0o o 1] @) @) @)
cond

A1

LDAH{<c>} {<g>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt (Rn);

if £t == 15 || n == 15 then UNPREDICTARBLE;

T

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[1 1101 000 1 1 0[1] Rn | Rt (D M[1]o]o 1] @) @) @)

T

LDAH{<c>}{<q>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt (Rn);
if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior, see Architectural Constraints on UNPREDICTABLE behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed () then
EncodingSpecificOperations() ;
constant address = R[n];
R[t] = ZeroExtend(MemO[address, 2], 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDAH Page 141

LDC (immediate)

Load data to System register (immediate) calculates an address from a base register value and an immediate offset, loads a word from memory, and
writes it to the DBGDTRTXint System register. It can use offset, post-indexed, pre-indexed, or unindexed addressing. For information about memory
accesses, see Memory accesses.

In an implementation that includes EL2, the permitted LDC access to DBGDTRTXint can be trapped to Hyp mode, meaning that an attempt to execute
an LDC instruction in a Non-secure mode other than Hyp mode, that would be permitted in the absence of the Hyp trap controls, generates a Hyp Trap
exception. For more information, see HDCR.TDA.

For simplicity, the LDC pseudocode does not show this possible trap to Hyp mode.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| =111 |1 1 of[PJUfo[w[1] =111 o 1 0 1]1 1 1]0] imm8

cond Rn

Offset (P == 1 && W == 0)

LDC{<c>}{<g>} pl4d, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 1)

LDC{<c>}{<g>} pl4d, c5, [<Rn>], #{+/-}<imm>

Pre-indexed (P ==1 && W == 1)

LDC{<c>}{<g>} pld, c5, [<Rn>, #{+/-}<imm>]!

Unindexed (P ==0 && U == 1 && W == 0)

LDC{<c>}{<g>} pl4, c5, [<Rn>], <option>

if Rn == '1111' then SEE "LDC (literal)";

if P == '0' && U == '0' && W == '0' then UNDEFINED;

constant n = UInt(Rn); constant cp = 14;

constant imm32 = ZeroExtend (imm8:'00', 32); constant index = (P == '1"');

constant add = (U == 'l1'); constant wback = (W == '1");
T

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
171101 1 o[PJufo[w[1] =111 o 1 0 11 1 1]0] imm8

Rn

LDC (immediate) Page 142

Offset (P == 1 && W == 0)

LDC{<c>}{<g>} pl4d, c5, [<Rn>{, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 1)

LDC{<c>}{<g>} pl4, c5, [<Rn>], #{+/-}<imm>

Pre-indexed (P ==1 && W == 1)

LDC{<c>}{<g>} pld, c5, [<Rn>, #{+/-}<imm>]!

Unindexed (P ==0 && U == 1 && W == 0)

LDC{<c>}{<g>} pl4, c5, [<Rn>], <option>

if Rn == '1111' then SEE "LDC (literal)";

if P == '0' && U == '0' && W == '0' then UNDEFINED;

constant n = UInt (Rn); constant cp = 14;

constant imm32 = ZeroExtend (imm8:'00', 32); constant index = (P == '1"');
constant add = (U == '1"); constant wback = (W == "'1");

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. If the PC is used, see LDC (literal).
<option> Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value of this field is ignored when
executing this instruction.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +
<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting to 0 and encoded in the "imm8"
field, as <imm>/4.
Operation

if ConditionPassed() then

EncodingSpecificOperations() ;

constant offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
constant address = if index then offset addr else R[n];

// System register write to DBGDTRTXint.

AArch32.SysRegWriteM(cp, ThisInstr (), address);

if wback then R[n] = offset addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDC (immediate) Page 143

LDC (literal)

Load data to System register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory, and writes it to the

DBGDTRTXint System register. For information about memory accesses, see Memory accesses.

In an implementation that includes EL2, the permitted LDC access to DBGDTRTXint can be trapped to Hyp mode, meaning that an attempt to execute
an LDC instruction in a Non-secure mode other than Hyp mode, that would be permitted in the absence of the Hyp trap controls, generates a Hyp Trap

exception. For more information, see HDCR.TDA.
For simplicity, the LDC pseudocode does not show this possible trap to Hyp mode.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

| =111 |1 1 o|PJUJo[w[1][1 1 1 1]0o 1 0 1[1 1 1]0] imm8
cond

A1 (I(P == 0 && U == 0 && W == 0))

LDC{<c>}{<g>} pl4d, c5, <label>
LDC{<c>}{<g>} pl4, c5, [PC, #{+/-}<imm>]

LDC{<c>}{<g>} pl4, c5, [PC], <option>

if P == '0' && U == '0' && W == '0' then UNDEFINED;

constant index = (P == 'l'); constant add = (U == '1'"); constant cp = 14;
constant imm32 = ZeroExtend (imm8:'00', 32);

if W== "'1" || (P == '0"'" && CurrentInstrSet() != InstrSet A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifw == '1"',then one of the following behaviors must occur:
* The instruction is UNDEFINED.
* The instruction executes as NOP.

» The instruction executes without writeback of the base address.
+ The instruction uses the addressing mode described in the equivalent immediate offset instruction.

T1

15 14 13 12 11 10 9 8 7

6 5
1110 1 1 o]|PJUlo[w] 11 1]/0 1 0 1]1 1 1]0] imm8

3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2
1

T1 (I(P == 0 && U == 0 && W == 0))

LDC{<c>}{<g>} pl4, c5, <label>

LDC{<c>}{<g>} pl4, c5, [PC, #{+/-}<imm>]

if P == '0'" && U == '0' && W == '0' then UNDEFINED;

constant index = (P == '1"); constant add = (U == '1"); constant cp = 14;
constant imm32 = ZeroExtend (imm8:'00', 32);

if W== "'1" || (P == "'"0" && CurrentlInstrSet () != InstrSet A32) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifw == '1' || P == '0', then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.
» The instruction executes without writeback of the base address.

+ The instruction executes as LDC (immediate) with writeback to the PC. The instruction is handled as described in Using R15.

LDC (literal)

Page 144

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<option> Is an 8-bit immediate, in the range 0 to 255 enclosed in { }, encoded in the "imm8" field. The value of this field is ignored when
executing this instruction.
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the offset from the
Align(PC, 4) value of the instruction to this label. Permitted values of the offset are multiples of 4 in the range -1020 to 1020.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE (encoded as U == 1).
If the offset is negative, imm32 is equal to minus the offset and add == FALSE (encoded as U == 0).
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +
<imm> Is the immediate offset used for forming the address, a multiple of 4 in the range 0-1020, defaulting to 0 and encoded in the "imm8"

field, as <imm>/4.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a
subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then

EncodingSpecificOperations () ;

constant offset addr = if add then (Align(PC32,4) + imm32) else (Align(PC32,4) - imm32);
constant address = i1f index then offset addr else Align(PC32,4);

// System register write to DBGDTRTXint.

AArch32.SysRegWriteM(cp, ThisInstr (), address);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDC (literal) Page 145

LDM (exception return)

Load Multiple (exception return) loads multiple registers from consecutive memory locations using an address from a base register. The SPSR of the
current mode is copied to the CPSR. An address adjusted by the size of the data loaded can optionally be written back to the base register.

The registers loaded include the PC. The word loaded for the PC is treated as an address and a branch occurs to that address.
The PE checks the encoding that is copied to the CPSR for an illegal return event. See lllegal return events from AArch32 state.
Load Multiple (exception return) is:

* UNDEFINED in Hyp mode.
* UNPREDICTABLE in debug state, and in User mode and System mode.

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[=111 |1 0 o[PJU[1][w][1] Rn [1] register_list

cond

A1

LDM{<amode>}{<c>}{<g>} <Rn>{!}, <registers with pc>"

constant n = UInt(Rn); constant registers = register list;

constant wback = (W == "'1"); constant increment = (U == '1"'"); constant wordhigher = (P == U);
if n == 15 then UNPREDICTARLE;

if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && registers<n> == '1',then one of the following behaviors must occur:

+ The instruction is UNDEFINED.
» The instruction executes as NOP.
* The instruction performs all the loads using the specified addressing mode and the content of the register being written back is UNKNOWN.
In addition, if an exception occurs during the execution of this instruction, the base address might be corrupted so that the instruction cannot
be repeated.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<amode> is one of:

DA
Decrement After. The consecutive memory addresses end at the address in the base register. Encoded as P =0, U = 0.

FA
Full Ascending. For this instruction, a synonym for DA.

DB
Decrement Before. The consecutive memory addresses end one word below the address in the base register. Encoded as P =1,
U=0.

EA
Empty Ascending. For this instruction, a synonym for DB.

1A
Increment After. The consecutive memory addresses start at the address in the base register. This is the default. Encoded as P
=0,U=1.

FD
Full Descending. For this instruction, a synonym for IA.

1B

Increment Before. The consecutive memory addresses start one word above the address in the base register. Encoded as P =1,
U=1.

LDM (exception return) Page 146

ED
Empty Descending. For this instruction, a synonym for IB.

<c> See Standard assembler syntax fields.
<g> See Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<registers_with_pc>

The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as

1, otherwise this field defaults to 0.

Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies the set of registers to be loaded.

The registers are loaded with the lowest-numbered register from the lowest memory address, through to the highest-numbered
register from the highest memory address. The PC must be specified in the register list, and the instruction causes a branch to

the address (data) loaded into the PC. See also Encoding of lists of general-purpose registers and the PC.

Instructions with similar syntax but without the PC included in the registers list are described in LDM (User registers).

Operation

if ConditionPassed() then

EncodingSpecificOperations () ;

if PSTATE.EL == EL2 then

UNDEFINED;

elsif PSTATE.M IN {M32 User,M32 System} then

UNPREDICTABLE; // UNDEFINED or NOP

constant length = 4*BitCount (registers) + 4;
address = if increment then R[n] else R[n]-length;
if wordhigher then address = address+4;

for i = 0 to 14
if registers<i> == '1' then
R[i] = MemS[address,4]; address = address + 4;
constant new pc value = MemS[address,4];

if wback && registers<n> == '0' then

R[n] = if increment then R[n]+length else R[n]-length;

if wback && registers<n> == '1l' then
R[n] = bits(32) UNKNOWN;

AArch32.ExceptionReturn(new pc value, SPSR curr[]);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32 User,M32 System}, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa v01_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDM (exception return) Page 147

LDM (User registers)

In an EL1 mode other than System mode, Load Multiple (User registers) loads multiple User mode registers from consecutive memory locations using
an address from a base register. The registers loaded cannot include the PC. The PE reads the base register value normally, using the current mode to
determine the correct Banked version of the register. This instruction cannot writeback to the base register.

Load Multiple (User registers) is UNDEFINED in Hyp mode, and UNPREDICTABLE in User and System modes.
Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see FEAT LSMAOC.

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[=111 |1 0 o[PJU[1]©)]1] Rn [0] register_list

cond

A1

LDM{<amode>}{<c>}{<g>} <Rn>, <registers without pc>"

constant n = UInt(Rn); constant registers = register list; constant increment = (U == '1"');
constant wordhigher = (P == U);
if n == 15 || BitCount (registers) < 1 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

I[fBitCount (registers) < 1, then one of the following behaviors must occur:

+ The instruction is UNDEFINED.
+ The instruction executes as NOP.
+ The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers. These registers might
include R15.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<amode> is one of:

DA
Decrement After. The consecutive memory addresses end at the address in the base register. Encoded as P =0, U = 0.

FA
Full Ascending. For this instruction, a synonym for DA.

DB
Decrement Before. The consecutive memory addresses end one word below the address in the base register. Encoded as P =1,
Uu=0.

EA
Empty Ascending. For this instruction, a synonym for DB.

IA
Increment After. The consecutive memory addresses start at the address in the base register. This is the default. Encoded as P
=0,U=1.

FD
Full Descending. For this instruction, a synonym for IA.

IB
Increment Before. The consecutive memory addresses start one word above the address in the base register. Encoded as P =1,
U=1.

ED
Empty Descending. For this instruction, a synonym for IB.

<c> See Standard assembler syntax fields.

LDM (User registers) Page 148

<gq> See Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<registers_without pc> Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies the set of registers to be
loaded by the LDM instruction. The registers are loaded with the lowest-numbered register from the lowest memory address,
through to the highest-numbered register from the highest memory address. The PC must not be in the register list. See also
Encoding of lists of general-purpose registers and the PC.

Instructions with similar syntax but with the PC included in <registers_without_pc> are described in LDM (exception return).
Operation

if ConditionPassed () then
EncodingSpecificOperations() ;

if PSTATE.EL == EL2 then UNDEFINED;
elsif PSTATE.M IN {M32 User,M32 System} then UNPREDICTABLE;
else

constant length = 4*BitCount (registers);
address = if increment then R[n] else R[n]-length;
if wordhigher then address = address+4;
for i = 0 to 14
if registers<i> == 'l' then // Load User mode register
Rmode[i, M32 User] = MemS[address,4]; address = address + 4;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.M IN {M32 User,M32 System}, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

+ The instruction executes as NOP.

* The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers. These registers might
include R15.

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDM (User registers) Page 149

LDM, LDMIA, LDMFD

Load Multiple (Increment After, Full Descending) loads multiple registers from consecutive memory locations using an address from a base register.
The consecutive memory locations start at this address, and the address just above the highest of those locations can optionally be written back to the

base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address.

See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see FEAT LSMAOC. The registers
loaded can include the PC, causing a branch to a loaded address. This is an interworking branch, see Pseudocode description of operations on the

AArch32 general-purpose registers and the PC. Related system instructions are LDM (User registers) and LDM (exception return).
This instruction is used by the alias POP (multiple registers).
It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
[=111 |1 0 ofJo[1]o[w][1] Rn | register_list

cond

A1

LDM{IA}{<c>}{<g>} <Rn>{!}, <registers> // (Preferred syntax)

LDMFD{<c>}{<g>} <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack)

constant n = UInt(Rn); constant registers = register list; constant wback = (W == "'1");
if n == 15 || BitCount (registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

I[fBitCount (registers) < 1, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.

» The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include

R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers

loaded.
Ifwback && registers<n> == '1',then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.

» The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is

UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot

be repeated.

T1
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[1 1 0 0[]1] Rn | register_list

™

LDM{IA}{<c>}{<g>} <Rn>{!}, <registers> // (Preferred syntax)
LDMFD{<c>}{<g>} <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack)
constant n = UInt (Rn); constant registers = '00000000':register list;

constant wback = (registers<n> == '0');
if BitCount (registers) < 1 then UNPREDICTABLE;

LDM, LDMIA, LDMFD

Page 150

CONSTRAINED UNPREDICTABLE behavior

I[fBitCount (registers) < 1, then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

» The instruction executes as NOP.

+ The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include
R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers

loaded.
T2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1110 1 0 0[0 1]o[w|[1] Rn [P [M] register_list
T2
LDM{IA}{<c>}.W <Rn>{!}, <registers> // (Preferred syntax, if <Rn>, '!' and <registers> can be representec
LDMFD{<c>}.W <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack, if <Rn>, '!' and <register

LDM{IA}{<c>}{<g>} <Rn>{!}, <registers> // (Preferred syntax)

LDMFD{<c>}{<g>} <Rn>{!}, <registers> // (Alternate syntax, Full Descending stack)

constant n = UInt(Rn); constant registers = P:M:register list; constant wback = (W == '1");
if n == 15 || BitCount(registers) < 2 || (P == 'l' && M == 'l') then UNPREDICTABLE;

if wback && registers<n> == 'l' then UNPREDICTABLE;

if registers<l13> == 'l' then UNPREDICTABLE;

if registers<l15> == '1l' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If BitCount (registers) < 1, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include
R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers
loaded.

Ifwback && registers<n> == '1',then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot
be repeated.

IfBitCount (registers) == 1, then one of the following behaviors must occur:
» The instruction is UNDEFINED.
+ The instruction executes as NOP.
» The instruction loads a single register using the specified addressing modes.

+ The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include
R1S.

If registers<13> == '1', then one of the following behaviors must occur:
+ The instruction is UNDEFINED.
+ The instruction executes as NOP.
» The instruction performs all of the loads using the specified addressing mode, but R13 is UNKNOWN.

Ifp == '1' s&& == '1"', then one of the following behaviors must occur:

* The instruction is UNDEFINED.
» The instruction executes as NOP.

LDM, LDMIA, LDMFD Page 151

» The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

1A Is an optional suffix for the Increment After form.

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! For encoding A1 and T2: the address adjusted by the size of the data loaded is written back to the base register. If specified, it is
encoded in the "W" field as 1, otherwise this field defaults to 0.

For encoding T1: the address adjusted by the size of the data loaded is written back to the base register. It is omitted if <Rn> is
included in <registers™>, otherwise it must be present.

<registers> For encoding Al: is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.
The PC can be in the list.
Arm deprecates using these instructions with both the LR and the PC in the list.

For encoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded by { and }. The registers in the
list must be in the range R0-R7, encoded in the "register list" field.

For encoding T2: is a list of one or more registers to be loaded, separated by commas and surrounded by { and }. The registers in the
list must be in the range R0-R12, encoded in the "register list" field, and can optionally contain one of the LR or the PC. If the LR is
in the list, the "M" field is set to 1, otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.

If the PC is in the list:

* The LR must not be in the list.
+ The instruction must be either outside any IT block, or the last instruction in an IT block.

Alias Conditions

Alias Of variantIs preferred when

POP (multiple registers) T2 == "1l' && Rn == '1101' && BitCount (P:M:register list) > 1

POP (multiple registers) = Al == 'l' && Rn == '1101"' && BitCount (register list) > 1
Operation

if ConditionPassed() then
EncodingSpecificOperations () ;

address = R[n];
for i = 0 to 14

if registers<i> == '1' then

R[i] = MemS[address,4]; address = address + 4;

if registers<l5> == '1' then

LoadWritePC (MemS[address,4]);
if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount (registers);
if wback && registers<n> == 'l' then R[n] = bits(32) UNKNOWN;

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDM, LDMIA, LDMFD Page 152

LDMDA, LDMFA

Load Multiple Decrement After (Full Ascending) loads multiple registers from consecutive memory locations using an address from a base register.
The consecutive memory locations end at this address, and the address just below the lowest of those locations can optionally be written back to the
base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address.
See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see FEAT LSMAOC. The registers
loaded can include the PC, causing a branch to a loaded address. This is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC. Related system instructions are LDM (User registers) and LDM (exception return).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[=111 |1 0 ofofofo[w][1] Rn | register_list

cond

A1

LDMDA{<c>}{<g>} <Rn>{!}, <registers> // (Preferred syntax)

LDMFA{<c>}{<g>} <Rn>{!}, <registers> // (Alternate syntax, Full Ascending stack)

constant n = UInt(Rn); constant registers = register list; constant wback = (W == "'1");
if n == 15 || BitCount (registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

IfBitCount (registers) < 1, then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

» The instruction executes as NOP.

» The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers. These registers might
include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of
registers loaded.

Ifwback && registers<n> == '1',then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

» The instruction executes as NOP.

» The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot
be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<g> See Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as
1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.
The PC can be in the list.
Arm deprecates using these instructions with both the LR and the PC in the list.

LDMDA, LDMFA Page 153

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;

address = R[n] - 4*BitCount (registers) + 4;
for i = 0 to 14

if registers<i> == '1' then

R[i] = MemS[address,4]; address = address + 4;

if registers<1l5> == '1' then

LoadWritePC (MemS[address,4]);
if wback && registers<n> == '0O' then R[n] = R[n] - 4*BitCount (registers);
if wback && registers<n> == 'l' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDMDA, LDMFA Page 154

LDMDB, LDMEA

Load Multiple Decrement Before (Empty Ascending) loads multiple registers from consecutive memory locations using an address from a base
register. The consecutive memory locations end just below this address, and the address of the lowest of those locations can optionally be written back
to the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address.
See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see FEAT LSMAOC. The registers
loaded can include the PC, causing a branch to a loaded address. This is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC. Related system instructions are LDM (User registers) and LDM (exception return).

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
| =111 |1 0o of[1][ofo[w[1] Rn | register_list

cond

A1

LDMDB{<c>}{<g>} <Rn>{!}, <registers> // (Preferred syntax)

LDMEA{<c>}{<g>} <Rn>{!}, <registers> // (Alternate syntax, Empty Ascending stack)

constant n = UInt(Rn); constant registers = register list; constant wback = (W == '1");
if n == 15 || BitCount (registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == 'l' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && registers<n> == '1',then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot
be repeated.

IfBitCount (registers) < 1,then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

» The instruction executes as NOP.

» The instruction executes as LDM with the same addressing mode but targeting an unspecified set of registers. These registers might include
R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers
loaded.

T1

15 14 13 12 11 10 9
1110 1 0 0]

4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O
1 | Rn |P|M] register_list

T1

LDMDB{<c>}{<g>} <Rn>{!}, <registers> // (Preferred syntax)

LDMEA{<c>}{<g>} <Rn>{!}, <registers> // (Alternate syntax, Empty Ascending stack)

constant n = UInt(Rn); constant registers = P:M:register list; constant wback = (W == '1");
if n == 15 || BitCount(registers) < 2 || (P == '1l' &¢& == '1"'") then UNPREDICTABLE;

if wback && registers<n> == 'l' then UNPREDICTABLE;

if registers<l13> == 'l' then UNPREDICTABLE;

if registers<l15> == '1l' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

LDMDB, LDMEA Page 155

CONSTRAINED UNPREDICTABLE behavior

Ifwback && registers<n> == '1', then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot
be repeated.

IfBitCount (registers) < 1, then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction executes as DM with the same addressing mode but targeting an unspecified set of registers. These registers might include
R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of registers
loaded.

IfBitCount (registers) == 1, then one of the following behaviors must occur:

The instruction is UNDEFINED.

The instruction executes as NOP.

The instruction loads a single register using the specified addressing modes.

The instruction executes as DM with the same addressing mode but targeting an unspecified set of registers. These registers might include
R15.

If registers<13> == '1",then one of the following behaviors must occur:

Ifp =

The instruction is UNDEFINED.
The instruction executes as NOP.
The instruction performs all of the loads using the specified addressing mode, but R13 is UNKNOWN.

= '1' && M == '1',then one of the following behaviors must occur:

The instruction is UNDEFINED.
The instruction executes as NOP.
The instruction loads the register list and either R14 or R15, both R14 and R15, or neither of these registers.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<gq> See Standard assembler syntax fields.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as
1, otherwise this field defaults to 0.

<registers> For encoding A1l: is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.

The PC can be in the list.
Arm deprecates using these instructions with both the LR and the PC in the list.
For encoding T1: is a list of one or more registers to be loaded, separated by commas and surrounded by { and }. The registers in the

list must be in the range R0-R12, encoded in the "register list" field, and can optionally contain one of the LR or the PC. If the LR is
in the list, the "M" field is set to 1, otherwise it defaults to 0. If the PC is in the list, the "P" field is set to 1, otherwise it defaults to 0.

If the PC is in the list:

* The LR must not be in the list.
* The instruction must be either outside any IT block, or the last instruction in an IT block.

LDMDB, LDMEA Page 156

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;

address = R[n] - 4*BitCount (registers);
for i = 0 to 14

if registers<i> == '1' then

R[i] = MemS[address,4]; address = address + 4;

if registers<1l5> == '1' then

LoadWritePC (MemS[address,4]);
if wback && registers<n> == '0O' then R[n] = R[n] - 4*BitCount (registers);
if wback && registers<n> == 'l' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDMDB, LDMEA Page 157

LDMIB, LDMED

Load Multiple Increment Before (Empty Descending) loads multiple registers from consecutive memory locations using an address from a base
register. The consecutive memory locations start just above this address, and the address of the last of those locations can optionally be written back to
the base register.

The lowest-numbered register is loaded from the lowest memory address, through to the highest-numbered register from the highest memory address.
See also Encoding of lists of general-purpose registers and the PC.

Armv8.2 permits the deprecation of some Load Multiple ordering behaviors in AArch32 state, for more information see FEAT LSMAOC. The registers
loaded can include the PC, causing a branch to a loaded address. This is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC. Related system instructions are LDM (User registers) and LDM (exception return).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[=111 |1 0 of[1[1]o[w][1] Rn | register_list

cond

A1

LDMIB{<c>}{<g>} <Rn>{!}, <registers> // (Preferred syntax)

LDMED{<c>}{<g>} <Rn>{!}, <registers> // (Alternate syntax, Empty Descending stack)

constant n = UInt(Rn); constant registers = register list; constant wback = (W == "'1");
if n == 15 || BitCount (registers) < 1 then UNPREDICTABLE;
if wback && registers<n> == '1' then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

IfBitCount (registers) < 1, then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

» The instruction executes as NOP.

» The instruction operates as an LDM with the same addressing mode but targeting an unspecified set of registers. These registers might
include R15. If the instruction specifies writeback, the modification to the base address on writeback might differ from the number of
registers loaded.

Ifwback && registers<n> == '1',then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

» The instruction executes as NOP.

» The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot
be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<g> See Standard assembler syntax fields.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.

! The address adjusted by the size of the data loaded is written back to the base register. If specified, it is encoded in the "W" field as
1, otherwise this field defaults to 0.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded by { and }.
The PC can be in the list.
Arm deprecates using these instructions with both the LR and the PC in the list.

LDMIB, LDMED Page 158

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;
address = R[n] + 4;
for i = 0 to 14

if registers<i> == '1' then
R[i] = MemS[address,4]; address = address + 4;
if registers<1l5> == '1' then
LoadWritePC (MemS[address,4]);
if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount (registers);
if wback && registers<n> == 'l' then R[n] = bits(32) UNKNOWN;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDMIB, LDMED Page 159

LDR (immediate)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads a word from memory, and writes it to a
register. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses.

This instruction is used by the alias POP (single register).
It has encodings from the following instruction sets: A32 (Al)and T32 (T1,T2,T3and T4).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[=111 Jo 1 o[PJuJo[w[1] 1=1111 | Rt | imm12

cond Rn

Offset (P == 1 && W == 0)

LDR{<c>}{<g>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

LDR{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P ==1 && W == 1)

LDR{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '"1111' then SEE "LDR (literal)";

if P == '0' && W == '1' then SEE "LDRT";

constant t = UInt(Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imml2, 32);

constant index = (P == 'l'); constant add = (U == 'l1'); constant wback = (P == '0'") || (W== "1");
if wback && n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && n == t,then one of the following behaviors must occur:

* The instruction is UNDEFINED.

+ The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot
be repeated.

T1
%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1]0]1] imm5 | Rn | Rt |
™

LDR{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

constant t = UInt(Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imm5:'00', 32);
constant index = TRUE; constant add = TRUE; constant wback = FALSE;

T2

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1.0 0 1]1] Rt | imm8

LDR (immediate) Page 160

T2

LDR{<c>}{<g>} <Rt>, [SP{, #{+}<imm>}]

constant t = UInt (Rt); constant n = 13; constant imm32 = ZeroExtend (imm8:'00', 32);
constant index = TRUE; constant add = TRUE; constant wback = FALSE;

T3

15 14 13 12 11 10 9 8
[1 1111000

4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1] =111 | Rt | imm12

T3

LDR{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // (<Rt>, <Rn>, <imm> can be represented in Tl or T2)
LDR{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDR (literal)";

constant t = UInt (Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imml2, 32);

constant index = TRUE; constant add = TRUE;
constant wback = FALSE; if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

T4

15 14 13 12 11 10 9 8 7
[1 111100 0 0]

4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 =111 | Rt [1]P]U[W] imm8

Offset (P==1&& U==0 && W ==0)
LDR{<c>}{<g>} <Rt>, [<Rn> {, #-<imm>}]
Post-indexed (P == 0 && W == 1)
LDR{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>
Pre-indexed (P ==1 && W == 1)

LDR{<c>} {<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDR (literal)";

if P == '1l'" && U == '"1l' && W == '0' then SEE "LDRT";

if P == '0' && W == '0' then UNDEFINED;

constant t = UInt (Rt); constant n = UInt (Rn);

constant imm32 = ZeroExtend (imm8, 32); constant index = (P == '1"); constant add = (U == '1");
constant wback = (W == "'1");

if (wback && n == t) || (t == 15 && InITBlock() && !'LastInITBlock()) then UNPREDICTARBLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && n == t,then one of the following behaviors must occur:

» The instruction is UNDEFINED.

» The instruction executes as NOP.

+ The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot
be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

LDR (immediate) Page 161

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rt> For encoding Al: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used. If the PC is used,

the instruction branches to the address (data) loaded to the PC. This is an interworking branch, see Pseudocode description of
operations on the AArch32 general-purpose registers and the PC.

For encoding T1 and T2: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T3 and T4: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used, provided
the instruction is either outside an IT block or the last instruction of an IT block. If the PC is used, the instruction branches to the
address (data) loaded to the PC. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-
purpose registers and the PC.

<Rn> For encoding A1, T3 and T4: is the general-purpose base register, encoded in the "Rn" field. For PC use see LDR (literal).

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +
+ Specifies the offset is added to the base register.
<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the

"imm12" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 4, in the range 0 to 124, defaulting to 0 and
encoded in the "immS5" field as <imm>/4.

For encoding T2: is the optional positive unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0 and
encoded in the "imm8" field as <imm>/4.

For encoding T3: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the
"imm12" field.

For encoding T4: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the
"imm8" field.

Alias Conditions

Alias Of variantIs preferred when

POP Al P =="0" && == '1" && == '0' && Rn == '1101"' && imml2 == '000000000100"'
single (post-

register) indexed)

POP T4 Rn == '1101' && P == '0' && U == '1' && W == "1"' && imm8 == '00000100"
single (post-

register) indexed)

LDR (immediate) Page 162

Operation

if CurrentInstrSet () == InstrSet A32 then
if ConditionPassed() then
EncodingSpecificOperations () ;
constant offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
constant address = if index then offset addr else RI[n];
constant data = MemU[address,4];
if wback then R[n] = offset addr;

if t == 15 then
if address<1:0> == '00' then
LoadWritePC (data) ;
else
UNPREDICTABLE;
else

R[t] = data;
else
if ConditionPassed() then
EncodingSpecificOperations () ;
constant offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
constant address = if index then offset addr else RI[n];
constant data = MemU[address,4];
if wback then R[n] = offset addr;

if t == 15 then
if address<1:0> == '00' then
LoadWritePC (data) ;
else
UNPREDICTABLE;
else

R[t] = data;
Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (immediate) Page 163

LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory, and writes it to a register. For
information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
| =111 Jo 1 of[PJUJO[W[1][1 1 1 1] Rt | imm12

cond

A1 (I(P == 0 && W == 1))

LDR{<c>} {<g>} <Rt>, <label> // (Normal form)

LDR{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' && W == '1l' then SEE "LDRT";
constant t = UInt(Rt); constant imm32 = ZeroExtend(imml2, 32);
constant add = (U == 'l1'); constant wback = (P == '0') || (W == "1");

if wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction executes with the additional decode: wback = FALSE;.

+ The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing mode as described in LDR
(immediate). The instruction uses post-indexed addressing when P =="'0" and uses pre-indexed addressing otherwise. The instruction is
handled as described in Using R15.

T1
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
0100 1] Rt | imm8

T

LDR{<c>} {<g>} <Rt>, <label> // (Normal form)

constant t = UInt(Rt); constant imm32 = ZeroExtend (imm8:'00', 32); constant add = TRUE;

T2

15 14 13 12 11 10 9 8 7
111110 0 0]U]

6 5§ 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1. 0]1]1 1 1] Rt | imm12

-_—

T2

LDR{<c>}.W <Rt>, <label> // (Preferred syntax, and <Rt>, <label> can be represented in T1)
LDR{<c>}{<g>} <Rt>, <label> // (Preferred syntax)
LDR{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)

constant t = UInt(Rt); constant imm32 = ZeroExtend (imml2, 32); constant add = (U == '1");
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

LDR (literal) Page 164

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<g> See Standard assembler syntax fields.
<Rt> For encoding A1: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used. If the PC is used,

the instruction branches to the address (data) loaded to the PC. This is an interworking branch, see Pseudocode description of
operations on the AArch32 general-purpose registers and the PC.

For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The SP can be used. The PC can be
used, provided the instruction is either outside an IT block or the last instruction of an IT block. If the PC is used, the instruction
branches to the address (data) loaded to the PC. This is an interworking branch, see Pseudocode description of operations on the
AArch32 general-purpose registers and the PC.

<label> For encoding A1 and T2: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value
of the offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the
offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the offset are Multiples of four in the range 0

to 1020.
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U™:
U +/-
O —
1 +
<imm> For encoding Al: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the

"imm12" field.
For encoding T2: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a
subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
constant base = Align(PC32,4);

constant address = if add then (base + imm32) else (base - imm32);
constant data = MemU[address,4];
if t == 15 then
if address<1:0> == '00' then
LoadWritePC (data) ;
else
UNPREDICTABLE;
else

R[t] = data;
Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (literal) Page 165

LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word from memory, and writes it to a
register. The offset register value can optionally be shifted. For information about memory accesses, see Memory accesses.

The T32 form of LDR (register) does not support register writeback.
It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O

[=111 Jo 1 1[P[ujo[w][1] Rn | Rt | imm5 | stype [0 | Rm |
cond

Offset (P == 1 && W == 0)

LDR{<c>}{<g>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed (P == 0 && W == 0)

LDR{<c>}{<g>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed (P ==1 && W == 1)

LDR{<c>}{<g>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

if == '0' & W == '1' then SEE "LDRT";

constant t = UInt (Rt); constant n = UInt (Rn); constant m = UInt (Rm);

constant index = (P == '1"); constant add = (U == '1"); constant wback = (P == '0") || (W == "1");
constant (shift t, shift n) = DecodeImmShift (stype, imm5);

if m == 15 then UNPREDICTABLE;

if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && n == t,then one of the following behaviors must occur:

 The instruction is UNDEFINED.

» The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot

be repeated.
T
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o1 0 1]1]o]o] Rm | Rn | Rt |
T

LDR{<c>}{<g>} <Rt>, [<Rn>, {+}<Rm>]

constant t = UInt (Rt); constant n = UInt (Rn); constant m = UInt (Rm);
constant (shift t, shift n) = (SRType LSL, 0);

T2

15 14 13 12 11 10 9 8 7
1111100 0 0]

6 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6
1 1] =111 | Rt [0 0 0 0 0 0]imm2] Rm |

Rn

5
0]

LDR (register) Page 166

T2

LDR{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)

LDR{<c>} {<g>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rn == '1111' then SEE "LDR (literal)";

constant t = UInt(Rt); constant n = UInt(Rn); constant m = UInt (Rm);
constant (shift t, shift n) = (SRType LSL, UInt (imm2));

// Armv8-A removes UNPREDICTABLE for R13

if m == 15 then UNPREDICTABLE;

if t == 15 && InITBlock () && !LastInITBlock() then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rt> For encoding Al: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used. If the PC is used,

the instruction branches to the address (data) loaded to the PC. This branch is an interworking branch, see Pseudocode description of
operations on the AArch32 general-purpose registers and the PC.

For encoding T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

For encoding T2: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used, provided the
instruction is either outside an IT block or the last instruction of an IT block. If the PC is used, the instruction branches to the
address (data) loaded to the PC. This is an interworking branch, see Pseudocode description of operations on the AArch32 general-
purpose registers and the PC.

<Rn> For encoding Al: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts applied to a register.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded in imm2. If absent, no shift

is specified and imm?2 is encoded as 0b00.

LDR (register) Page 167

Operation

if CurrentInstrSet () == InstrSet A32 then

if ConditionPassed() then

EncodingSpecificOperations () ;

constant offset = Shift (R[m], shift t, shift n, PSTATE.C);
constant offset addr = if add then (R[n] + offset) else (R[n]
constant address = if index then offset addr else RI[n];
constant data = MemU[address,4];

if wback then R[n] = offset addr;

if t == 15 then
if address<1:0> == '00' then
LoadWritePC (data) ;
else
UNPREDICTABLE;
else

R[t] = data;

if ConditionPassed() then

EncodingSpecificOperations () ;

constant offset = Shift (R[m], shift t, shift n, PSTATE.C);
constant offset addr = (R[n] + offset);

constant address = offset addr;

constant data = MemU[address,4];

if t == 15 then
if address<1:0> == '00' then
LoadWritePC (data) ;
else
UNPREDICTABLE;
else

R[t] = data;

- offset);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDR (register) Page 168

LDRB (immediate)

Load Register Byte (immediate) calculates an address from a base register value and an immediate offset, loads a byte from memory, zero-extends it to
form a 32-bit word, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see
Memory accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1,T2and T3).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0
| =111 Jo 1 of[PJU[1[W[1] =111 | Rt | imm12

cond Rn

Offset (P == 1 && W == 0)

LDRB{<c>}{<g>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

LDRB{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P ==1 && W == 1)

LDRB{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRB (literal)";

if P == '0'" & W == '1' then SEE "LDRBT";

constant t = UInt (Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imml2, 32);

constant index = (P == '1"); constant add = (U == '1"); constant wback = (P == '0") || (W == "1");
if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && n == t,then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

+ The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot
be repeated.

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 1[1]1] imm5 | Rn | Rt |
™

LDRB{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

constant t = UInt (Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imm5, 32);
constant index = TRUE; constant add = TRUE; constant wback = FALSE;

T2

15 14 13 12 11 10 9 8
[11 111000

7 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
1 1 =111 | =11 imm12

Rn Rt

6 5
[0 0]

LDRB (immediate) Page 169

T2

LDRB{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // (<Rt>, <Rn>, <imm> can be represented in T1)
LDRB{<c>} {<g>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rt == '1111' then SEE "PLD";

if Rn == '1111' then SEE "LDRB (literal)";

constant t = UInt (Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imml2, 32);
constant index = TRUE; constant add = TRUE; constant wback = FALSE;

// Armv8-A removes UNPREDICTABLE for R13

T3

15 14 13 12 11 10 9 8 7 6 5
[1 1111000 0[]0 0]

4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1] =111 | Rt [1]P]U[W] imm8

Offset (Rt !1=1111 && P ==1&& U ==0 && W == 0)
LDRB{<c>}{<g>} <Rt>, [<Rn> {, #-<imm>}]
Post-indexed (P == 0 && W == 1)
LDRB{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>
Pre-indexed (P ==1 && W == 1)

LDRB{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rt == "1111' && P == '1l' && U == '0' && W == '0' then SEE "PLD, PLDW (immediate)";

if Rn == '1111' then SEE "LDRB (literal)";

if P == "'1l'" && U == '1l' && W == '0' then SEE "LDRBT";

if P == '0' && == '0' then UNDEFINED;

constant t = UInt(Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imm8, 32);
constant index = (P == '1l'); constant add = (U == '1'"); constant wback = (W == "'1");
if (t == 15 && W == "1") || (wback && n == t) then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

Ifwback && n == t,then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot
be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRB (literal).

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:

LDRB (immediate) Page 170

U +/-

= o

+

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the

"imm12" field.

For encoding T1: is an optional 5-bit unsigned immediate byte offset, in the range 0 to 31, defaulting to 0 and encoded in the
"immS5" field.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the
"imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the
"imm8" field.

Operation

if CurrentInstrSet () == InstrSet A32 then
if ConditionPassed() then
EncodingSpecificOperations () ;

constant offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
constant address = if index then offset addr else R[n];
R[t] = ZeroExtend(MemU[address,1l], 32);
if wback then R[n] = offset addr;

else
if ConditionPassed () then

EncodingSpecificOperations() ;
constant offset addr = if add then (R[n] + imm32) else (R[n] - imm32);

constant address = if index then offset addr else R[n];
R[t] = ZeroExtend(MemU[address,1l], 32);
if wback then R[n] = offset addr;

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (immediate) Page 171

LDRB (literal)

Load Register Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte from memory, zero-extends it to form a
32-bit word, and writes it to a register. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
| =111 Jo 1 of[PJU[1T[wW[1][1 1 1 1] Rt | imm12

cond

A1 (I(P == 0 && W == 1))

LDRB{<c>}{<g>} <Rt>, <label> // (Normal form)

LDRB{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' & W == '1l' then SEE "LDRBT";

constant t = UInt(Rt); constant imm32 = ZeroExtend(imml2, 32);
constant add = (U == 'l1'); constant wback = (P == '0') || (W == "1");
if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction executes with the additional decode: wback = FALSE;.

+ The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing mode as described in LDRB
(immediate). The instruction uses post-indexed addressing when P =="'0" and uses pre-indexed addressing otherwise. The instruction is
handled as described in Using R15.

T1

15 14 13 12 11 10 9 8 7 6 5
1111 1 00 0o[Uu[0 O]

3 2 1 0 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0
11 1 1] =111 | imm12
Rt

T1

LDRB{<c>}{<g>} <Rt>, <label> // (Preferred syntax)

LDRB{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)

if Rt == '1111' then SEE "PLD";

constant t = UInt(Rt); constant imm32 = ZeroExtend (imml2, 32); constant add = (U == '1");

// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the offset from the

Align(PC, 4) value of the instruction to this label. Permitted values of the offset are -4095 to 4095.

LDRB (literal) Page 172

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O -
1 +
<imm> For encoding A1: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the

"imm12" field.
For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a
subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;
constant base = Align (PC32,4);
constant address = if add then (base + imm32) else (base - imm32);
R[t] = ZeroExtend (MemU[address,1l], 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (literal) Page 173

LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a byte from memory, zero-extends it to
form a 32-bit word, and writes it to a register. The offset register value can optionally be shifted. For information about memory accesses see Memory
accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

| =111 Jo 1 1[PJU[1[W][1] Rn | Rt | imm5 | stype | 0 | Rm |
cond

Offset (P == 1 && W == 0)

LDRB{<c>}{<g>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]

Post-indexed (P == 0 && W == 0)

LDRB{<c>}{<g>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

Pre-indexed (P ==1 && W == 1)

LDRB{<c>}{<g>} <Rt>, [<Rn>, {+/-}<Rm>{, <shift>}]!

if P == '0'" && W == '1' then SEE "LDRBT";

constant t = UInt (Rt); constant n = UInt (Rn); constant m = UInt (Rm);

constant index = (P == '1"); constant add = (U == '1"); constant wback = (P == '0") || (W == "1");
constant (shift t, shift n) = DecodeImmShift (stype, imm5);

if £t == 15 || m == 15 then UNPREDICTABLE;

if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && n == t,then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

+ The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot
be repeated.

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o1 0 1]1]/1]0] Rm | Rn | Rt |
™

LDRB{<c>} {<g>} <Rt>, [<Rn>, {+}<Rm>]

constant t = UInt (Rt); constant n = UInt (Rn); constant m = UInt (Rm);
constant index = TRUE; constant add = TRUE; constant wback = FALSE;

constant (shift t, shift n) = (SRType LSL, 0);

T2

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

[1 1111000 0[]0 o0f[1] =111 | 1=1111 [0 0 0 0 0 O [imm2] Rm |
Rn Rt

LDRB (register) Page 174

T2

LDRB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)
LDRB{<c>} {<g>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rt == '1111' then SEE "PLD";

if Rn == '1111' then SEE "LDRB (literal)";

constant t = UInt(Rt); constant n = UInt(Rn); constant m = UInt (Rm);
constant index = TRUE; constant add = TRUE; constant wback = FALSE;

constant (shift t, shift n) = (SRType LSL, UInt (imm2));
// Armv8-A removes UNPREDICTABLE for R13
if m == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts applied to a register.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded in imm2. If absent, no shift

is specified and imm?2 is encoded as 0b00.

Operation

if ConditionPassed () then
EncodingSpecificOperations () ;
constant offset = Shift (R[m], shift t, shift n, PSTATE.C);
constant offset addr = if add then (R[n] + offset) else (R[n] - offset);
constant address = if index then offset addr else R[n];
R[t] = ZeroExtend (MemU[address,1],32);
if wback then R[n] = offset addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1 31, pseudocode v2024-06 rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRB (register) Page 175

LDRBT

Load Register Byte Unprivileged loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. For information about
memory accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually running in User mode.
LDRBT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an
immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the memory access, and calculates a new
address from a base register value and an offset and writes it back to the base register. The offset can be an immediate value or an optionally-shifted
register value.

It has encodings from the following instruction sets: A32 (Al and A2)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
| 1=1111 Jo 1 oo U[1[1[1] Rn | Rt | imm12

cond

A1

LDRBT{<c>} {<g>} <Rt>, [<Rn>] {, #{+/-}<imm>}

constant t = UInt (Rt); constant n = UInt (Rn); constant postindex = TRUE;

constant add = (U == '1"); constant register form = FALSE; constant imm32 = ZeroExtend (imml2, 32);
constant m = integer UNKNOWN; constant shift n = integer UNKNOWN;

constant SRType shift t = SRType UNKNOWN;

if t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifn == 15, then one of the following behaviors must occur:

» The instruction is UNDEFINED.

+ The instruction executes as NOP.

* The instruction uses post-indexed addressing with the base register as PC. This is handled as described in Using R15.
* The instruction uses immediate offset addressing with the base register as PC, without writeback.

Ifn == t && n != 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot

be repeated.
A2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| =111 Jo 1 1[oU[1[1[1] Rn | Rt | imm5 | stype | 0 | Rm |
cond

A2

LDRBT{<c>}{<g>} <Rt>, [<Rn>], {+/-}<Rm>{, <shift>}

constant t = UInt (Rt); constant n = UInt (Rn); constant m = UInt (Rm); constant postindex = TRUE;
constant add = (U == '1"); constant register_form = TRUE;

constant (shift t, shift n) = DecodeImmShift (stype, imm5);

constant bits(32) imm32 = bits(32) UNKNOWN;

if t == 15 || n == 15 || n == || m == 15 then UNPREDICTABLE;

LDRBT Page 176

CONSTRAINED UNPREDICTABLE behavior

Ifn == t && n != 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

» The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot
be repeated.

T1

15 14 13 12 11 10

4 3 2 1 0 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
1

9 8 7 6 5 8
[1 1111000 0[]0 0f[1] =111 | Rt [1 1 1 0] imm8

T

LDRBT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDRB (literal)";
constant t = UInt (Rt); constant n = UInt(Rn); constant postindex = FALSE; constant add = TRUE;
constant register form = FALSE; constant imm32 = ZeroExtend (imm8, 32);

constant m = integer UNKNOWN; constant shift n = integer UNKNOWN;
constant SRType shift t = SRType UNKNOWN;

// Armv8-A removes UNPREDICTABLE for R13

if t == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding Al: is the general-purpose register to be transferred, encoded in the "Rt" field. The PC can be used, but this is
deprecated.

For encoding A2 and T1: is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +

For encoding A2: specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded

in “U”:

U +/-

O -

1 +
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<shift> The shift to apply to the value read from <Rm>. If absent, no shift is applied. Otherwise, see Shifts applied to a register.
+ Specifies the offset is added to the base register.
<imm> For encoding Al: is the 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 if omitted, and encoded in the

"imm12" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and encoded in the
"immg8" field.

LDRBT Page 177

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;

if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
constant offset = if register form then Shift(R[m], shift t, shift n, PSTATE.C) else imm32;
constant offset addr = if add then (R[n] + offset) else (R[n] - offset);

address = if postindex then R[n] else offset addr;
R[t] = ZeroExtend(MemU unpriv[address,1],32);
if postindex then R[n] = offset addr;

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
» The instruction executes as NOP.
» The instruction executes as LDRB (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRBT Page 178

LDRD (immediate)

Load Register Dual (immediate) calculates an address from a base register value and an immediate offset, loads two words from memory, and writes
them to two registers. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| =111 _Jo o of[PJU[1[w[o] =111 | Rt | imm4H [1]1 of1] imm4L |
cond Rn
Offset (P ==1 && W == 0)
LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]
Post-indexed (P == 0 && W ==0)
LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>
Pre-indexed (P ==1 && W == 1)
LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!
if Rn == '1111' then SEE "LDRD (literal)";
if Rt<0> == '1l' then UNPREDICTABLE;
constant t = UInt (Rt); constant t2 =t + 1; constant n = UInt (Rn);
constant imm32 = ZeroExtend (imm4H:imm4L, 32); constant index = (P == '1"');
constant add = (U == '1"); constant wback = (P == '0") || (W == "1");
if P == '0'" && W == '1' then UNPREDICTABLE;
if wback && (n == t || n == t2) then UNPREDICTABLE;
if t2 == 15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && (n == t || n == t2), then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot

be repeated.
IfP == '0' && W == '1"',then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.

» The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

IfRt<0> == '1"', then one of the following behaviors must occur:

* The instruction is UNDEFINED.

e The instruction executes as NOP.

» The instruction executes with the additional decode: t<0>="0".
» The instruction executes with the additional decode: t2 =t.

» The instruction executes as described, with no change to its behavior and no additional side-effects. This does not apply when Rt =="1111".

T1
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 7 6 5 4 3 2 1 0
1110 1 0 of[P[U[1T[W[1] =111 | Rt | Rt2 | imm8
Rn
LDRD (immediate) Page 179

Offset (P ==1 && W ==0)

LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn> {, #{+/-}<imm>}]
Post-indexed (P == 0 && W == 1)

LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn>], #{+/-}<imm>
Pre-indexed (P ==1 && W == 1)

LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn>, #{+/-}<imm>]!

if == '0" && == '0' then SEE "Related encodings";

if Rn == '1111' then SEE "LDRD (literal)";

constant t = UInt(Rt); constant t2 = UInt(Rt2); constant n = Ulnt(Rn);
constant imm32 = ZeroExtend(imm8:'00', 32);

constant index = (P == '1'); constant add = (U == '1'); constant wback = (W == "'1");
if wback && (n == t || n == t2) then UNPREDICTARBLE;

// Armv8-A removes UNPREDICTABLE for R13

if t == 15 || t2 == 15 || t == t2 then UNPREDICTARLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && (n == t || n == t2),then one of the following behaviors must occur:

» The instruction is UNDEFINED.

» The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction cannot
be repeated.

Ift == t2, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The load instruction executes but the destination register takes an UNKNOWN value.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.
Related encodings: Load/store dual, load/store exclusive, table branch.

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rt> For encoding Al: is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must be even-

numbered and not R14.
For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.
<Rt2> For encoding Al: is the second general-purpose register to be transferred. This register must be <R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRD (literal).
+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U™:
U +/-
O —
1 +
<imm> For encoding Al: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the

"imm4H:imm4L" field.

For encoding T1: is the unsigned immediate byte offset, a multiple of 4, in the range 0 to 1020, defaulting to 0 if omitted, and
encoded in the "imm8" field as <imm>/4.

LDRD (immediate) Page 180

Operation

if ConditionPassed () then
EncodingSpecificOperations () ;
constant offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
constant address = if index then offset addr else RI[n];
if IsAligned(address, 8) then
constant data = MemA[address,8];
if BigEndian (AccessType GPR) then
R[t] = data<63:32>;
R[t2] = data<31:0>;
else

[t] = data<31:0>;
[t2] = data<63:32>;

|7 |0

else
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];
if wback then R[n] = offset addr;

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRD (immediate) Page 181

LDRD (literal)

Load Register Dual (literal) calculates an address from the PC value and an immediate offset, loads two words from memory, and writes them to two

registers. For information about memory accesses see Memory accesses.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

| =111 Jo o o[M[U[1][@[o][1 1 1 1] Rt |

imm4H

8§ 7 6 5§ 4 3 2 1 0
[1]1 o]1] imm4L |

cond

A1

LDRD{<c>}{<g>} <Rt>, <Rt2>, <label> // (Normal form)

LDRD{<c>}{<g>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // (Alternative form)

if Rt<0> ==
constant t =
constant
constant
if t2 ==

'l' then UNPREDICTABLE;

UInt (Rt); constant t2 =t + 1;
imm32 = ZeroExtend (imm4H:imm4L, 32);
add = (U == '1");

15 then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

IfRt<0> == '1"', then one of the following behaviors must occur:

e The instruction is UNDEFINED.

» The instruction executes as NOP.

» The instruction executes with the additional decode: t<0>="0";.
» The instruction executes with the additional decode: t2 =t;.

» The instruction executes as described, with no change to its behavior and no additional side-effects. This does not apply when Rt =="1111".

IfP == '0' || W == '1",then one of the following behaviors must occur:
* The instruction is UNDEFINED.
+ The instruction executes as NOP.

e The instruction executes as if P==1and W==0."
T

15 14 13 12 11 10 9

8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6
1

(11 1 0 1 1 1 1] Rt | Rw2

| imm8

T1 ((P == 0 && W == 0))

LDRD{<c>}{<g>} <Rt>, <Rt2>, <label> // (Normal form)

LDRD{<c>}{<g>} <Rt>, <Rt2>, [PC, #{+/-}<imm>] // (Alternative form)
if P == '0' && W == '0"'
constant t = UInt (Rt); constant
constant imm32 = ZeroExtend (imm8:
// Armv8-A removes UNPREDICTABLE
if t == 15 || t2 == 15 ||

if W== "1"

then SEE "Related encodings";

t2 = UInt (Rt2);

'00', 32); constant add =
for R13

t == t2 then UNPREDICTARBLE;

then UNPREDICTABLE;

(U ==

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

LDRD (literal)

1)

Page 182

+ The instruction is UNDEFINED.
+ The instruction executes as NOP.
» The load instruction executes but the destination register takes an UNKNOWN value.

Ifw == '1', then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.
» The instruction executes without writeback of the base address.
» The instruction uses post-indexed addressing when P =="0" and uses pre-indexed addressing otherwise. The instruction is handled as
described in Using R15.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Related encodings: Load/Store dual, Load/Store-Exclusive, Load-Acquire/Store-Release, table branch.

Assembler Symbols

<c> See Standard assembler syntax fields.
<gq> See Standard assembler syntax fields.
<Rt> For encoding A1: is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must be even-

numbered and not R14.
For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding Al: is the second general-purpose register to be transferred. This register must be <R(t+1)>.

For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<label> For encoding Al: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the
offset from the Align(PC, 4) value of the instruction to this label. Any value in the range -255 to 255 is permitted.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32
is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the
offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the offset are multiples of 4 in the range -1020
to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +
<imm> For encoding Al: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the

"imm4H:imm4L" field.

For encoding T1: is the optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and encoded in the
"imm8" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a
subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax.

LDRD (literal) Page 183

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;
constant address = if add then (Align(PC32,4) + imm32) else (Align(PC32,4) - imm32);
if IsAligned(address, 8) then
constant data = MemA[address,8];
if BigEndian (AccessType GPR) then
R[t] = data<63:32>;
R[t2] = data<31:0>;
else

[t] = data<31:0>;
[t2] = data<63:32>;

|7 |0

else
[t] = MemA[address,4];
[t2] = MemA[address+4,4];

[|0

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRD (literal) Page 184

LDRD (register)

Load Register Dual (register) calculates an address from a base register value and a register offset, loads two words from memory, and writes them to
two registers. It can use offset, post-indexed, or pre-indexed addressing. For information about memory accesses see Memory accesses.

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[=111 Jo o0 o[PJujo[w]o] Rn | Rt [O)]O)[O)]O]1]1 of1] Rm |
cond

Offset (P ==1 && W ==0)

LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]
Post-indexed (P == 0 && W == 0)

LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn>], {+/-}<Rm>
Pre-indexed (P ==1 && W == 1)

LDRD{<c>}{<g>} <Rt>, <Rt2>, [<Rn>, {+/-}<Rm>]!

if Rt<0> == '1l' then UNPREDICTABLE;
constant t = UInt(Rt); constant t2 =t + 1;
constant n = UInt (Rn); constant m = UInt (Rm);

constant index = (P == "1"); constant add = (U == '1");
constant wback = (P == '0'") || (W == '1");

if P == '0' && W == '"1' then UNPREDICTARBLE;

if t2 == 15 || m == 15 || m == t || m == t2 then UNPREDICTARBLE;
if wback && (n == 15 || n ==t || n == t2) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && (n == t || n == t2), then one of the following behaviors must occur:

* The instruction is UNDEFINED.

+ The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot
be repeated.

IfP == '0' && W == '1',then one of the following behaviors must occur:

» The instruction is UNDEFINED.
» The instruction executes as NOP.
» The instruction executes as an LDRD using one of offset, post-indexed, or pre-indexed addressing.

Ifm == || m == t2,then one of the following behaviors must occur:

+ The instruction is UNDEFINED.
+ The instruction executes as NOP.
* The instruction loads register Rm with an UNKNOWN value.

IfRt<0> == '1"', then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction executes with the additional decode: t<0>="0".

* The instruction executes with the additional decode: t2 =t.

» The instruction executes as described, with no change to its behavior and no additional side-effects. This does not apply when Rt =="1111".

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

LDRD (register) Page 185

Assembler Symbols

<c> See Standard assembler syntax fields.
<q> See Standard assembler syntax fields.
<Rt> Is the first general-purpose register to be transferred, encoded in the "Rt" field. This register must be even-numbered and not R14.
<Rt2> Is the second general-purpose register to be transferred. This register must be <R(t+1)>.
<Rn> Is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant.
+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
Operation

if ConditionPassed() then
EncodingSpecificOperations () ;
constant offset addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
constant address = if index then offset addr else R[n];
if IsAligned(address, 8) then
constant data = MemA[address, 8];
if BigEndian (AccessType GPR) then
R[t] = data<63:32>;
R[t2] = data<31:0>;
else

[t] = data<31:0>;
[t2] = data<63:32>;

[|0

else
[t] = MemA[address,4];
[t2] = MemA[address+4,4];

|7 |

if wback then R[n] = offset addr;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRD (register) Page 186

LDREX

Load Register Exclusive calculates an address from a base register value and an immediate offset, loads a word from memory, writes it to a register
and:

+ If'the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.

+ Causes the executing PE to indicate an active exclusive access in the local monitor.
For more information about support for shared memory see Synchronization and semaphores. For information about memory accesses see Memory
accesses.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0

| =111 _Jo 0 0 1 1[0 0[1] Rn | Rt [DO[D[1]1]1 0 0 1] MMM
cond

A1

LDREX{<c>}{<g>} <Rt>, [<Rn> {, {#}<imm>}]

constant t = UInt (Rt); constant n = UInt(Rn); constant imm32 = Zeros(32); // Zero offset
if t == 15 || n == 15 then UNPREDICTARBLE;

T1

15 14 13 12 11 10 9 8 7 6 5
11101 000 0 1 0]

4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 | Rn | Rt [(1) (1) (1) ()] imm8

T1

LDREX{<c>}{<g>} <Rt>, [<Rn> {, #<imm>}]

constant t = UInt(Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imm8:'00', 32);
// Armv8-A removes UNPREDICTABLE for R13

if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

<imm> For encoding A1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can only be 0 or omitted.

For encoding T1: the immediate offset added to the value of <Rn> to calculate the address. <imm> can be omitted, meaning an
offset of 0. Values are multiples of 4 in the range 0-1020.

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
constant address = R[n] + imm32;
AArch32.SetExclusiveMonitors (address, 4) ;
R[t] = MemA[address,4];

LDREX Page 187

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDREX Page 188

LDREXB

Load Register Exclusive Byte derives an address from a base register value, loads a byte from memory, zero-extends it to form a 32-bit word, writes it
to a register and:

+ If'the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.

+ Causes the executing PE to indicate an active exclusive access in the local monitor.
For more information about support for shared memory see Synchronization and semaphores. For information about memory accesses see Memory
accesses.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

| =111 _Jo 0 0 1 1[1 o[1] Rn | Rt [DO[D[1]1]1 0 0 1] MMM
cond

A1

LDREXB{<c>} {<g>} <Rt>, [<Rn>]

constant t = UInt(Rt); constant n = UInt(Rn);

if t == 15 || n == 15 then UNPREDICTARBLE;

T

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11101 000 1 1 0[1] Rn | Rt (D@ Mlo 1[0 o) @) @) @]

T1

LDREXB{<c>}{<g>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt (Rn);
// Armv8-A removes UNPREDICTABLE for R13

if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed () then
EncodingSpecificOperations () ;
constant address = R[n];
AArch32.SetExclusiveMonitors (address, 1) ;
R[t] = ZeroExtend (MemA[address,1l], 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

LDREXB Page 189

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDREXB Page 190

LDREXD

Load Register Exclusive Doubleword derives an address from a base register value, loads a 64-bit doubleword from memory, writes it to two registers
and:

+ If'the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.

+ Causes the executing PE to indicate an active exclusive access in the local monitor.
For more information about support for shared memory see Synchronization and semaphores. For information about memory accesses see Memory
accesses.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0
| =111 _Jo 0 0 1 1[0 1[1] Rn | Rt [DO[D[1]1]1 0 0 1] MMM
cond
A1
LDREXD{<c>} {<g>} <Rt>, <Rt2>, [<Rn>]
constant t = UInt(Rt); constant t2 =t + 1; constant n = UInt(Rn);
if Rt<0> == '1'" || t2 == 15 || n == 15 then UNPREDICTABLE;
CONSTRAINED UNPREDICTABLE behavior
IfRt<0> == '1"', then one of the following behaviors must occur:
* The instruction is UNDEFINED.
* The instruction executes as NOP.
» The instruction executes with the additional decode: t<0>="'0".
+ The instruction executes with the additional decode: t2 ='t.
+ The instruction executes as described, with no change to its behavior and no additional side effects.
IfRt == '1110", then one of the following behaviors must occur:
* The instruction is UNDEFINED.
+ The instruction executes as NOP.
* The instruction is handled as described in Using R15.
™
5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O
[1 1101 000 1 1 0[1] Rn | Rt | Rt2 [0 1[1 1] @) (1))

™

LDREXD{<c>} {<gq>} <Rt>, <Rt2>, [<Rn>]

constant t = UInt (Rt); constant t2 = UInt(Rt2); constant n = UInt(Rn);
if t == 15 || t2 == 15 || t == t2 || n == 15 then UNPREDICTABLE;
// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

If t == t2, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

» The instruction executes as NOP.

* The load instruction executes but the destination register takes an UNKNOWN value.
For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

LDREXD Page 191

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> For encoding Al: is the first general-purpose register to be transferred, encoded in the "Rt" field. <Rt> must be even-numbered and
not R14.
For encoding T1: is the first general-purpose register to be transferred, encoded in the "Rt" field.

<Rt2> For encoding Al: is the second general-purpose register to be transferred. <Rt2> must be <R(t+1)>.
For encoding T1: is the second general-purpose register to be transferred, encoded in the "Rt2" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

Operation

if ConditionPassed () then

EncodingSpecificOperations() ;

constant address = R[n];
AArch32.SetExclusiveMonitors (address, 8) ;
constant value = MemA[address, 8];

// Extract words from 64-bit loaded value such that R[t] is
// loaded from address and R[t2] from address+4.

R[t2] = if BigEndian (AccessType GPR) then value<31:0> else value<63:32>;

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

R[t] = if BigEndian (AccessType GPR) then value<63:32> else value<31l:0>;

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDREXD

Page 192

LDREXH

Load Register Exclusive Halfword derives an address from a base register value, loads a halfword from memory, zero-extends it to form a 32-bit word,
writes it to a register and:

+ If'the address has the Shared Memory attribute, marks the physical address as exclusive access for the executing PE in a global monitor.

+ Causes the executing PE to indicate an active exclusive access in the local monitor.
For more information about support for shared memory see Synchronization and semaphores. For information about memory accesses see Memory
accesses.
It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

| =111 _Jo 0 0 1 1[1 1[1] Rn | Rt [DO[D[1]1]1 0 0 1] MMM
cond

A1

LDREXH{<c>} {<g>} <Rt>, [<Rn>]

constant t = UInt(Rt); constant n = UInt(Rn);

if t == 15 || n == 15 then UNPREDICTARBLE;

T

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11101 000 1 1 0[1] Rn | Rt (D@ Mlo 1[0 1] @) @) @]

T1

LDREXH{<c>}{<g>} <Rt>, [<Rn>]

constant t = UInt (Rt); constant n = UInt (Rn);
// Armv8-A removes UNPREDICTABLE for R13

if t == 15 || n == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.
<Rn> Is the general-purpose base register, encoded in the "Rn" field.
Operation

if ConditionPassed () then
EncodingSpecificOperations () ;
constant address = R[n];
AArch32.SetExclusiveMonitors (address, 2) ;
R[t] = ZeroExtend (MemA[address,2], 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

LDREXH Page 193

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDREXH Page 194

LDRH (immediate)

Load Register Halfword (immediate) calculates an address from a base register value and an immediate offset, loads a halfword from memory, zero-
extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. For information about memory
accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1,T2and T3).

A1

6 5§ 4 3 2 1 0
o 1]1] imm4L |

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
| =111 Jo o of[PJU[1[w[1] =111 | Rt | imm4H |1
cond Rn

Offset (P == 1 && W == 0)

LDRH{<c>}{<g>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

LDRH{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P ==1 && W == 1)

LDRH{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRH (literal)";

if P == '0'" && W == '1' then SEE "LDRHT";

constant t = UInt (Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imm4H:imm4L, 32);
constant index = (P == '1"); constant add = (U == '1"); constant wback = (P == '0") || (W == "1");
if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && n == t,then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

+ The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction
cannot be repeated.

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1. 0 0 0]1] imm5 | Rn | Rt |
™

LDRH{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

constant t = UInt (Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imm5:'0', 32);
constant index = TRUE; constant add = TRUE; constant wback = FALSE;

T2
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
[1 1111000 1]/0 1[1] =111 [1=1111 | imm12

Rn Rt

LDRH (immediate) Page 195

T2

LDRH{<c>}.W <Rt>, [<Rn> {, #{+}<imm>}] // (<Rt>, <Rn>, <imm> can be represented in T1)

LDRH{<c>} {<g>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rt == '1111' then SEE "PLD (immediate)";
if Rn == '1111' then SEE "LDRH (literal)";
constant t = UInt (Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imml2, 32);

constant index = TRUE; constant add = TRUE; constant wback = FALSE;
// Armv8-A removes UNPREDICTABLE for R13

T3
%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
(1111100 0 0[]0 1[1] =111 | Rt [1]P]U[W] imm8

Rn

Offset (Rt !1=1111 && P ==1&& U ==0 && W == 0)
LDRH{<c>}{<g>} <Rt>, [<Rn> {, #-<imm>}]
Post-indexed (P == 0 && W == 1)
LDRH{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>
Pre-indexed (P ==1 && W == 1)

LDRH{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRH (literal)";

if Rt == "1111' && P == '1l' && U == '0' && W == '0' then SEE "PLDW (immediate)";

if P == "'"1l'" && U == '1l' && W == '0' then SEE "LDRHT";

if P == '0' && == '0' then UNDEFINED;

constant t = UInt(Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imm8, 32);
constant index = (P == '1l'); constant add = (U == '1'"); constant wback = (W == "'1");
if (t == 15 && W == '1") || (wback && n == t) then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

Ifwback && n == t,then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction
cannot be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1, T2 and T3: is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRH (literal).

For encoding T1: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:

LDRH (immediate) Page 196

U +/-

O -
1 +
+ Specifies the offset is added to the base register.
<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the

"imm4H:imm4L" field.

For encoding T1: is the optional positive unsigned immediate byte offset, a multiple of 2, in the range 0 to 62, defaulting to 0 and
encoded in the "immS5" field as <imm>/2.

For encoding T2: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the
"imm12" field.

For encoding T3: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the
"imm8" field.

Operation

if CurrentInstrSet () == InstrSet A32 then
if ConditionPassed () then
EncodingSpecificOperations () ;
constant offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
constant address = if index then offset addr else R[n];
constant data = MemU[address,2];
if wback then R[n] = offset addr;
R[t] = ZeroExtend(data, 32);

else
if ConditionPassed() then
EncodingSpecificOperations() ;
constant offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
constant address = if index then offset addr else R[n];
constant data = MemU[address,2];
if wback then R[n] = offset addr;
R[t] = ZeroExtend(data, 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (immediate) Page 197

LDRH (literal)

Load Register Halfword (literal) calculates an address from the PC value and an immediate offset, loads a halfword from memory, zero-extends it to
form a 32-bit word, and writes it to a register. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

6 5§ 4 3 2 1 0
o 1]1] imm4L |

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
| =111 Jo o of[PJU[1T[w[1][1 1 1 1] Rt | imm4H |1
cond

A1 (I(P == 0 && W == 1))

LDRH{<c>}{<g>} <Rt>, <label> // (Normal form)

LDRH{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' & W == '1l' then SEE "LDRHT";

constant t = UInt(Rt); constant imm32 = ZeroExtend (imm4H:imm4L, 32);
constant add = (U == 'l1'); constant wback = (P == '0') || (W == "1");
if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction executes with the additional decode: wback = FALSE;.

» The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing mode as described in LDRH
(immediate). The instruction uses post-indexed addressing when P =="'0" and uses pre-indexed addressing otherwise. The instruction is
handled as described in Using R15.

T1

15 14 13 12 11 10 9 8 7 6
1111 1 0 0 of[uU]o0

5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O
10101 1 1 1] =111 | imm12

Rt

T1

LDRH{<c>}{<g>} <Rt>, <label> // (Preferred syntax)

LDRH{<c>} {<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)

if Rt == '1111' then SEE "PLD (literal)";

constant t = UInt(Rt); constant imm32 = ZeroExtend (imml2, 32); constant add = (U == '1");

// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> For encoding Al: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the

offset from the Align(PC, 4) value of the instruction to this label. Any value in the range -255 to 255 is permitted.

LDRH (literal) Page 198

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32
is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the
offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +
<imm> For encoding A1l: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the

"imm4H:imm4L" field.
For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a
subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
constant base = Align(PC32,4);
constant address = if add then (base + imm32) else (base - imm32);
constant data = MemU[address,2];
R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (literal) Page 199

LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads a halfword from memory, zero-
extends it to form a 32-bit word, and writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits. For information about
memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| =111 _Jo o o[P[U[0[W][1] Rn | Rt [OO]@]o)]1]0 1]1] Rm |
cond
Offset (P ==1 && W == 0)
LDRH{<c>}{<g>} <Rt>, [<Rn>, {+/-}<Rm>]
Post-indexed (P == 0 && W == 0)
LDRH{<c>}{<g>} <Rt>, [<Rn>], {+/-}<Rm>
Pre-indexed (P ==1 && W == 1)
LDRH{<c>}{<g>} <Rt>, [<Rn>, {+/-}<Rm>]!
if P == '0'" && W == '1' then SEE "LDRHT";
constant t = UInt (Rt); constant n = UInt (Rn); constant m = UInt (Rm);
constant index = (P == '1"); constant add = (U == '1"); constant wback = (P == '0") || (W == "1");
constant (shift t, shift n) = (SRType LSL, 0);
if £t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && n == t,then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

+ The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction
cannot be repeated.

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o1 0 1]/1]/0[1] Rm | Rn | Rt |
™

LDRH{<c>} {<g>} <Rt>, [<Rn>, {+}<Rm>]

constant t = UInt (Rt); constant n = UInt (Rn); constant m = UInt (Rm);
constant index = TRUE; constant add = TRUE; constant wback = FALSE;

constant (shift t, shift n) = (SRType LSL, 0);

T2

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

[1 1111000 0[]0 1[1] =111 | 1=1111 [0 0 0 0 0 O [imm2] Rm |
Rn Rt

LDRH (register) Page 200

T2

LDRH{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)
LDRH{<c>} {<g>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rn == '1111' then SEE "LDRH (literal)";
if Rt == '1111' then SEE "PLDW (register)";
constant t = UInt(Rt); constant n = UInt(Rn); constant m = UInt (Rm);
constant index = TRUE; constant add = TRUE; constant wback = FALSE;

constant (shift t, shift n) = (SRType LSL, UInt (imm2));
// Armv8-A removes UNPREDICTABLE for R13
if m == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE

behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded in imm2. If absent, no shift

is specified and imm?2 is encoded as 0b00.

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
constant offset = Shift (R[m], shift t, shift n, PSTATE.C);
constant offset addr = if add then (R[n] + offset) else (R[n] - offset);
constant address = if index then offset addr else R[n];
constant data = MemU[address,?2];
if wback then R[n] = offset addr;
R[t] = ZeroExtend(data, 32);

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRH (register)

Page 201

LDRHT

Load Register Halfword Unprivileged loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. For information
about memory accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually running in User mode.

LDRHT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an
immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the memory access, and calculates a new
address from a base register value and an offset and writes it back to the base register. The offset can be an immediate value or a register value.

It has encodings from the following instruction sets: A32 (Al and A2)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
| 1=1111 Jo o ofo[U[1[1[1] Rn | Rt | imm4H |1
cond

A1

LDRHT{<c>} {<g>} <Rt>, [<Rn>] {, #{+/-}<imm>}

constant t = UInt (Rt); constant n = UInt (Rn); constant postindex = TRUE;

constant add = (U == 'l'); constant register form = FALSE;
constant imm32 = ZeroExtend (imm4H:imm4L, 32); constant m = integer UNKNOWN;
if £t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifn == 15, then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

+ The instruction executes as NOP.

» The instruction uses post-indexed addressing with the base register as PC. This is handled as described in Using R15.

» The instruction is treated as if bit[24] =="'1" and bit[21] =="0". The instruction uses immediate offset addressing with the base register as PC,
without writeback.

Ifn == t && n != 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot

be repeated.
A2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
| =111 Jo o ofofulo[1[1] Rn | Rt [OO]O]o]1]0 1]1] Rm |

cond

A2

LDRHT{<c>}{<g>} <Rt>, [<Rn>], {+/-}<Rm>

constant t = UInt (Rt); constant n = UInt (Rn); constant m = UInt (Rm); constant postindex = TRUE;
constant add = (U == '1");

constant register form = TRUE;

constant bits(32) imm32 = bits(32) UNKNOWN;

if t == 15 || n == 15 || n == || m == 15 then UNPREDICTABLE;

LDRHT Page 202

CONSTRAINED UNPREDICTABLE behavior

Ifn == t && n != 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

» The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot
be repeated.

T1
%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1 1111000 0[]0 1[1] =111 | Rt [1 1 1 0] imm8

Rn
™

LDRHT{<c>}{<q>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDRH (literal)";
constant t = UInt (Rt); constant n = UInt(Rn); constant postindex = FALSE; constant add = TRUE;
constant register form = FALSE; constant imm32 = ZeroExtend (imm8, 32);

constant m = integer UNKNOWN;
// Armv8-A removes UNPREDICTABLE for R13
if t == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +

For encoding A2: specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded

in “U”:
U +/-
O —
1 +
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
+ Specifies the offset is added to the base register.
<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the

"imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and encoded in the
"imm8" field.

LDRHT Page 203

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;

if PSTATE.EL == EL2 then UNPREDICTABLE; // Hyp mode
constant offset = if register form then R[m] else imm32;
constant offset addr = if add then (R[n] + offset) else (R[n] - offset);

constant address = if postindex then R[n] else offset addr;
constant data = MemU unpriv[address,2];

if postindex then R[n] = offset addr;

R[t] = ZeroExtend(data, 32);

CONSTRAINED UNPREDICTABLE behavior

If PSTATE.EL == EL2, then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.
» The instruction executes as LDRH (immediate).

Operational information

If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRHT

Page 204

LDRSB (immediate)

Load Register Signed Byte (immediate) calculates an address from a base register value and an immediate offset, loads a byte from memory, sign-
extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. For information about memory
accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
| =111 Jo o of[PJU[1[w[1] =111 | Rt | imm4H |1
cond Rn

6 5§ 4 3 2 1 0
1 0]1] imm4L |

Offset (P == 1 && W == 0)

LDRSB{<c>}{<g>} <Rt>, [<Rn> {, #{+/-}<imm>}]

Post-indexed (P == 0 && W == 0)

LDRSB{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P ==1 && W == 1)

LDRSB{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rn == '1111' then SEE "LDRSB (literal)";

if P == '0' & W == '1l' then SEE "LDRSBT";

constant t = UInt (Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imm4H:imm4L, 32);
constant index = (P == '1"); constant add = (U == '1"); constant wback = (P == '0") || (W == "1");
if t == 15 || (wback && n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && n == t,then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

+ The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction
cannot be repeated.

T1

15 14 13 12 11 10 8 7
1

9 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1111 10 0 1 1

[=111 | =111 | imm12
Rn Rt

6
[0

T1

LDRSB{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rt == '1111' then SEE "PLI";

if Rn == '1111' then SEE "LDRSB (literal)";

constant t = UInt (Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imml2, 32);
constant index = TRUE; constant add = TRUE; constant wback = FALSE;

// Armv8-A removes UNPREDICTABLE for R13

T2

LDRSB (immediate) Page 205

15 14 13 12 11 10 8

2 1.0

4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3
1

9 7 6
1111100 10]0 | =111 | Rt [1]P]Ulw] imm8

Rn

Offset (Rt !=1111 && P ==1&& U ==0 && W == 0)

LDRSB{<c>}{<g>} <Rt>, [<Rn> {, #-<imm>}]

Post-indexed (P == 0 && W ==1)

LDRSB{<c>}{<g>} <Rt>, [<Rn>], #{+/-}<imm>

Pre-indexed (P ==1 && W == 1)

LDRSB{<c>}{<g>} <Rt>, [<Rn>, #{+/-}<imm>]!

if Rt == '1111"' && P == '1' && U == '0' && W == '0' then SEE "PLI";

if Rn == '1111' then SEE "LDRSB (literal)";

if P == '1l'" && U == "1' && W == '0' then SEE "LDRSBT";

if == '0' && W == '0' then UNDEFINED;

constant t = UInt (Rt); constant n = UInt(Rn); constant imm32 = ZeroExtend (imm8, 32);
constant index = (P == '1"); constant add = (U == '1"); constant wback = (W == "'1");
if (t == 15 && W == '1'") || (wback && n == t) then UNPREDICTABLE;

// Armv8-A removes UNPREDICTABLE for R13

CONSTRAINED UNPREDICTABLE behavior

Ifwback && n == t,then one of the following behaviors must occur:

* The instruction is UNDEFINED.
* The instruction executes as NOP.

+ The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be corrupted so that the instruction

cannot be repeated.

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE

behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field. For PC use see LDRSB (literal).

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O -
1 +

+ Specifies the offset is added to the base register.

<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and

"imm4H:imm4L" field.

For encoding T1: is an optional 12-bit unsigned immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded in the

"imm12" field.

For encoding T2: is an 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the

"immg8" field.

LDRSB (immediate)

encoded in the

Operation

if ConditionPassed() then
EncodingSpecificOperations () ;
constant offset addr = if add then (R[n] + imm32) else (R[n] - imm32);
constant address = if index then offset addr else RI[n];
R[t] = SignExtend (MemU[address,1l], 32);
if wback then R[n] = offset addr;

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (immediate) Page 207

LDRSB (literal)

Load Register Signed Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte from memory, sign-extends it to
form a 32-bit word, and writes it to a register. For information about memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
| =111 Jo o of[PJU[1T[w[1][1 1 1 1] Rt | imm4H |1
cond

6 5§ 4 3 2 1 0
1 0]1] imm4L |

A1 (I(P == 0 && W == 1))

LDRSB{<c>}{<g>} <Rt>, <label> // (Normal form)

LDRSB{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative form)

if P == '0' && W == '1' then SEE "LDRSBT";

constant t = UInt(Rt); constant imm32 = ZeroExtend (imm4H:imm4L, 32);
constant add = (U == 'l1'); constant wback = (P == '0') || (W == "1");
if t == 15 || wback then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

If wback, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction executes with the additional decode: wback = FALSE;.

+ The instruction treats bit[24] as the P bit, and bit[21] as the writeback (W) bit, and uses the same addressing mode as described in LDRSB
(immediate). The instruction uses post-indexed addressing when P =="'0" and uses pre-indexed addressing otherwise. The instruction is
handled as described in Using R15.

T1

15 14 13 12 11 10 9
1111100

8 4 3 2 1 0 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 O
1 11 1 1 1] =111 | imm12

Rt

7 6 5
[ulo o]

T1

LDRSB{<c>}{<g>} <Rt>, <label> // (Preferred syntax)

LDRSB{<c>}{<g>} <Rt>, [PC, #{+/-}<imm>] // (Alternative syntax)

if Rt == '1111' then SEE "PLI";

constant t = UInt(Rt); constant imm32 = ZeroExtend (imml2, 32); constant add = (U == '1");

// Armv8-A removes UNPREDICTABLE for R13

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<g> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<label> For encoding Al: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the

offset from the Align(PC, 4) value of the instruction to this label. Any value in the range -255 to 255 is permitted.

LDRSB (literal) Page 208

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1. If the offset is negative, imm32
is equal to minus the offset and add == FALSE, encoded as U == 0.

For encoding T1: the label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required value of the
offset from the Align(PC, 4) value of the instruction to this label. Permitted values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE, encoded as U == 1.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE, encoded as U == 0.

+/- Specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +
<imm> For encoding A1l: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the

"imm4H:imm4L" field.
For encoding T1: is a 12-bit unsigned immediate byte offset, in the range 0 to 4095, encoded in the "imm12" field.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified separately, including permitting a
subtraction of 0 that cannot be specified using the normal syntax. For more information, see Use of labels in UAL instruction syntax.

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
constant base = Align(PC32,4);
constant address = if add then (base + imm32) else (base - imm32);
R[t] = SignExtend (MemU[address,1l], 32);

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (literal) Page 209

LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value, loads a byte from memory, sign-
extends it to form a 32-bit word, and writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits. For information about
memory accesses see Memory accesses.

It has encodings from the following instruction sets: A32 (Al)and T32 (Tl and T2).

A1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| =111 _Jo o o[P[U[0[W][1] Rn | Rt [OO]@]0)]1]1 o]1] Rm |
cond
Offset (P ==1 && W == 0)
LDRSB{<c>} {<g>} <Rt>, [<Rn>, {+/-}<Rm>]
Post-indexed (P == 0 && W == 0)
LDRSB{<c>}{<g>} <Rt>, [<Rn>], {+/-}<Rm>
Pre-indexed (P ==1 && W == 1)
LDRSB{<c>}{<g>} <Rt>, [<Rn>, {+/-}<Rm>]!
if P == '0' & W == '1l' then SEE "LDRSBT";
constant t = UInt (Rt); constant n = UInt (Rn); constant m = UInt (Rm);
constant index = (P == '1"); constant add = (U == '1"); constant wback = (P == '0") || (W == "1");
constant (shift t, shift n) = (SRType LSL, 0);
if £t == 15 || m == 15 then UNPREDICTABLE;
if wback && (n == 15 || n == t) then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifwback && n == t,then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

+ The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction
cannot be repeated.

T1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o1 0 1]ol1[1] Rm | Rn | Rt |
™

LDRSB{<c>} {<g>} <Rt>, [<Rn>, {+}<Rm>]
constant t = UInt (Rt); constant n = UInt (Rn); constant m = UInt (Rm);

constant index = TRUE; constant add = TRUE; constant wback = FALSE;
constant (shift t, shift n) = (SRType LSL, 0);

T2

15 14 13 12 11 10 9 8 7 6
[1 111100 10]0

4 3 2 1 0 15 14 13 12 1 10 9 8 7 6
1] =111 | =111 [0 0 0 0 0 O][imm2] Rm |
Rn Rt

5
0]

LDRSB (register) Page 210

T2

LDRSB{<c>}.W <Rt>, [<Rn>, {+}<Rm>] // (<Rt>, <Rn>, <Rm> can be represented in T1)
LDRSB{<c>} {<g>} <Rt>, [<Rn>, {+}<Rm>{, LSL #<imm>}]

if Rt == '1111' then SEE "PLI";

if Rn == '1111' then SEE "LDRSB (literal)";

constant t = UInt(Rt); constant n = UInt(Rn); constant m = UInt (Rm);
constant index = TRUE; constant add = TRUE; constant wback = FALSE;

constant (shift t, shift n) = (SRType LSL, UInt (imm2));
// Armv8-A removes UNPREDICTABLE for R13
if m == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> For encoding A1: is the general-purpose base register, encoded in the "Rn" field. The PC can be used in the offset variant.

For encoding T1 and T2: is the general-purpose base register, encoded in the "Rn" field.

+/- Specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +
+ Specifies the index register is added to the base register.
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
<imm> If present, the size of the left shift to apply to the value from <Rm>, in the range 1-3. <imm> is encoded in imm2. If absent, no shift

is specified and imm?2 is encoded as 0b00.

Operation

if ConditionPassed() then
EncodingSpecificOperations() ;
constant offset = Shift (R[m], shift t, shift n, PSTATE.C);
constant offset addr = if add then (R[n] + offset) else (R[n] - offset);
constant address = if index then offset addr else R[n];
R[t] = SignExtend (MemU[address,1l], 32);
if wback then R[n] = offset addr;

Operational information
If CPSR.DIT is 1, the timing of this instruction is insensitive to the value of the data being loaded or stored.

Internal version only: isa vO1_31, pseudocode v2024-06_rel ; Build timestamp: 2024-07-04T15:14

Copyright © 2010-2024 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

LDRSB (register) Page 211

LDRSBT

Load Register Signed Byte Unprivileged loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. For information
about memory accesses see Memory accesses.

The memory access is restricted as if the PE were running in User mode. This makes no difference if the PE is actually running in User mode.
LDRSBT is UNPREDICTABLE in Hyp mode.

The T32 instruction uses an offset addressing mode, that calculates the address used for the memory access from a base register value and an
immediate offset, and leaves the base register unchanged.

The A32 instruction uses a post-indexed addressing mode, that uses a base register value as the address for the memory access, and calculates a new
address from a base register value and an offset and writes it back to the base register. The offset can be an immediate value or a register value.

It has encodings from the following instruction sets: A32 (Al and A2)and T32 (T1).

A1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
| 1=1111 Jo o ofo[U[1[1[1] Rn | Rt | imm4H |1
cond

6 5 4 3 2 1 0
1 0]1] imm4L |

A1

LDRSBT{<c>} {<g>} <Rt>, [<Rn>] {, #{+/-}<imm>}

constant t = UInt (Rt); constant n = UInt (Rn); constant postindex = TRUE;
constant add = (U == 'l'); constant register form = FALSE;

constant imm32 = ZeroExtend (imm4H:imm4L, 32);

constant m = integer UNKNOWN;

if £t == 15 || n == 15 || n == t then UNPREDICTABLE;

CONSTRAINED UNPREDICTABLE behavior

Ifn == 15, then one of the following behaviors must occur:

+ The instruction is UNDEFINED.

+ The instruction executes as NOP.

* The instruction uses post-indexed addressing with the base register as PC. This is handled as described in Using R15.

+ The instruction is treated as if bit[24] =="'1" and bit[21] =="0'. The instruction uses immediate offset addressing with the base register as PC,
without writeback.

Ifn == t && n != 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

* The instruction executes as NOP.

» The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot
be repeated.

A2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7
[=111 o o ofofufof1[1] Rn | Rt [OO©O)]©)]1
cond

6 5§ 4 3 2 1 0
1. 0]1] Rm |

A2

LDRSBT{<c>} {<gq>} <Rt>, [<Rn>], {+/-}<Rm>

constant t = UInt (Rt); constant n = UInt (Rn); constant m = UInt (Rm); constant postindex = TRUE;
constant add = (U == '1");

constant register form = TRUE;

constant bits(32) imm32 = bits(32) UNKNOWN;

if t == 15 || n == 15 || n == || m == 15 then UNPREDICTABLE;

LDRSBT Page 212

CONSTRAINED UNPREDICTABLE behavior

Ifn == t && n != 15, then one of the following behaviors must occur:

* The instruction is UNDEFINED.

» The instruction executes as NOP.

* The instruction performs all of the loads using the specified addressing mode and the content of the register that is written back is
UNKNOWN. In addition, if an exception occurs during such as instruction, the base address might be corrupted so that the instruction cannot
be repeated.

T1

15 14 13 12 11 10 9
[1 111100

8 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 11 =111 | Rt [1 1 1 0] imm8

T

LDRSBT{<c>}{<g>} <Rt>, [<Rn> {, #{+}<imm>}]

if Rn == '1111' then SEE "LDRSB (literal)";
constant t = UInt (Rt); constant n = UInt(Rn); constant postindex = FALSE; constant add = TRUE;
constant register form = FALSE; constant imm32 = ZeroExtend (imm8, 32);

constant m = integer UNKNOWN;
// Armv8-A removes UNPREDICTABLE for R13
if t == 15 then UNPREDICTABLE;

For more information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Constraints on UNPREDICTABLE
behaviors.

Assembler Symbols

<c> See Standard assembler syntax fields.

<q> See Standard assembler syntax fields.

<Rt> Is the general-purpose register to be transferred, encoded in the "Rt" field.

<Rn> Is the general-purpose base register, encoded in the "Rn" field.

+/- For encoding A1: specifies the offset is added to or subtracted from the base register, defaulting to + if omitted and encoded in “U”:
U +/-
O —
1 +

For encoding A2: specifies the index register is added to or subtracted from the base register, defaulting to + if omitted and encoded

in “U”:
U +/-
O —
1 +
<Rm> Is the general-purpose index register, encoded in the "Rm" field.
+ Specifies the offset is added to the base register.
<imm> For encoding A1: is the 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 if omitted, and encoded in the

"imm4H:imm4L" field.

For encoding T1: is an optional 8-bit unsigned immediate byte offset, in the range 0 to 255, defaulting to 0 and encoded in the
"imm8" field.

LDRSBT