
Morello Extensions to DWARF for the Arm®
64-bit Architecture (AArch64)

2024Q3

Date of Issue: 5th September 2024

1 Preamble

1.1 Morello alpha
This document is an alpha proposal for Morello extensions to DWARF for AArch64.

1.2 Abstract
This document describes the use of the Morello extensions to the DWARF debug table format in the
Application Binary Interface (ABI) for the Arm 64-bit architecture.

1.3 Keywords
DWARF, DWARF 3.0, DWARF 5.0, use of DWARF format

1.4 Latest release, feedback and defects report
Please check Application Binary Interface for the Arm® Architecture for the latest release of this
document.

Please give feedback and report defects in this specification to the issue tracker page on GitHub.

1.5 Licence
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Grant of Patent License. Subject to the terms and conditions of this license (both the Public License and
this Patent License), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Licensed Material, where such license applies
only to those patent claims licensable by such Licensor that are necessarily infringed by their
contribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such
contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim
or counterclaim in a lawsuit) alleging that the Licensed Material or a contribution incorporated within the
Licensed Material constitutes direct or contributory patent infringement, then any licenses granted to You
under this license for that Licensed Material shall terminate as of the date such litigation is filed.

1.6 About the license
As identified more fully in the Licence section, this project is licensed under CC-BY-SA-4.0 along with an
additional patent license. The language in the additional patent license is largely identical to that in
Apache-2.0 (specifically, Section 3 of Apache-2.0 as reflected at
https://www.apache.org/licenses/LICENSE-2.0) with two exceptions.

First, several changes were made related to the defined terms so as to reflect the fact that such defined
terms need to align with the terminology in CC-BY-SA-4.0 rather than Apache-2.0 (e.g., changing “Work”
to “Licensed Material”).

Second, the defensive termination clause was changed such that the scope of defensive termination
applies to “any licenses granted to You” (rather than “any patent licenses granted to You”). This change is
intended to help maintain a healthy ecosystem by providing additional protection to the community
against patent litigation claims.

2

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa
https://github.com/ARM-software/abi-aa/issues
http://creativecommons.org/licenses/by-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0

1.7 Contributions
Contributions to this project are licensed under an inbound=outbound model such that any such
contributions are licensed by the contributor under the same terms as those in the Licence section.

1.8 Trademark notice
The text of and illustrations in this document are licensed by Arm under a Creative Commons
Attribution–Share Alike 4.0 International license ("CC-BY-SA-4.0”), with an additional clause on patents.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Please visit
https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

1.9 Copyright
Copyright (c) 2020-2024, Arm Limited and its affiliates. All rights reserved.

3

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

https://www.arm.com/company/policies/trademarks

Contents
1 Preamble 2

1.1 Morello alpha 2

1.2 Abstract 2

1.3 Keywords 2

1.4 Latest release, feedback and defects report 2

1.5 Licence 2

1.6 About the license 2

1.7 Contributions 3

1.8 Trademark notice 3

1.9 Copyright 3

2 About this document 5

2.1 Change control 5

2.1.1 Current status and anticipated changes 5

2.1.2 Change history 5

2.2 References 5

2.3 Terms and abbreviations 6

3 Overview 7

4 Arm-specific DWARF definitions 8

4.1 DWARF register names 8

4.2 Canonical frame address 9

4.3 Common information entries 9

4.3.1 Augmentation characters 9

4.3.2 Return address register 9

4.4 DWARF attributes 10

4.4.1 Address classes 10

4.4.2 Base type encodings 10

4.4.3 Size attributes for capabilities 10

5 APPENDIX Supplementary material 12

5.1 Capability type examples 12

5.1.1 Capability pointers and references 12

5.1.2 Types __intcap_t and __uintcap_t 12

5.1.3 Optimized description in DWARF Version 5 13

5.2 CFI assembler syntax for pure capability functions 14

4

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

2 About this document

2.1 Change control

2.1.1 Current status and anticipated changes
The following support level definitions are used by the Arm ABI specifications:

Release

Arm considers this specification to have enough implementations, which have received sufficient
testing, to verify that it is correct. The details of these criteria are dependent on the scale and
complexity of the change over previous versions: small, simple changes might only require one
implementation, but more complex changes require multiple independent implementations, which
have been rigorously tested for cross-compatibility. Arm anticipates that future changes to this
specification will be limited to typographical corrections, clarifications and compatible extensions.

Beta

Arm considers this specification to be complete, but existing implementations do not meet the
requirements for confidence in its release quality. Arm may need to make incompatible changes if
issues emerge from its implementation.

Alpha

The content of this specification is a draft, and Arm considers the likelihood of future incompatible
changes to be significant.

This document is a draft and all content is at the Alpha quality level.

2.1.2 Change history
If there is no entry in the change history table for a release, there are no changes to the content of the
document for that release.

Issue Date Change

00alpha September 2020 Alpha release.

2020Q4 21st December 2020 Document released on Github.

2.2 References
This document refers to, or is referred to by, the following documents:

Ref External reference or URL Title

MDWARF64 This document DWARF supplement for Morello

AADWARF64 DWARF for the Arm 64-bit Architecture
(AArch64)

AAPCS64 Procedure Call Standard for the Arm 64-bit
Architecture (AArch64)

GDWARF http://dwarfstd.org/Dwarf3St
d.php

DWARF 3.0, the generic debug table format.

GDWARF5 http://dwarfstd.org/Dwarf5St
d.php

DWARF Debugging Information Format,
Version 5

5

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
http://dwarfstd.org/Dwarf3Std.php
http://dwarfstd.org/Dwarf3Std.php
http://dwarfstd.org/Dwarf3Std.php
http://dwarfstd.org/Dwarf5Std.php
http://dwarfstd.org/Dwarf5Std.php
http://dwarfstd.org/Dwarf5Std.php

2.3 Terms and abbreviations
This ABI document uses the following terms and abbreviations:

A64

The instruction set that is available in AArch64 state.

AAPCS64

Procedure Call Standard for the Arm 64-bit Architecture (AArch64).

AArch64

The 64-bit general-purpose register width state of the Armv8 architecture.

ABI

Application Binary Interface:

1. The specifications to which an executable must conform in order to execute in a specific
execution environment. For example, the Linux ABI for the Arm Architecture.

2. A particular aspect of the specifications to which independently produced relocatable files must
conform in order to be statically linkable and executable. For example, the C++ ABI for the Arm
Architecture, ELF for the Arm Architecture, ...

C64

The instruction set available when the Morello extensions are used.

6

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

3 Overview
This specification only provides the Morello-specific extensions to the base DWARF specification for the
Arm 64-bit Architecture (AArch64), and is expected to be used together with AADWARF64.

7

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases

4 Arm-specific DWARF definitions

4.1 DWARF register names
This specification adds DWARF register numbers and names for the capability registers.

Mapping from DWARF register numbers to Morello capability registers

DWARF register
number

AArch64 register
name Description

198-228 C0-C30 Tagged 128+1-bit capability registers (Note 1, Note 2)

229 CSP Tagged 128+1-bit capability stack pointer register (Note 1,
Note 2)

230 PCC Tagged 128+1-bit program counter capability register (Note
1, Note 2)

231 DDC Tagged 128+1-bit default data capability register (Note 1,
Note 2)

232 Reserved

233 Reserved

Notes

1. The architecture defines the following register overlaps:

• General registers (X registers) overlap with the capability registers (C registers). A given X
register is mapped to the low 64 bits of the corresponding C register.

• Stack pointer (register SP) overlaps with the capability stack pointer (register CSP). Register SP
is mapped to the low 64 bits of the CSP register.

• Program counter (register PC) overlaps with the program counter capability (register PCC).
Register PC is mapped to the low 64 bits of the PCC register.

The DWARF call frame instructions do not explicitly specify the size of a register. This is implicit in
the definition of the register. As a consequence, the overlapping registers have been allocated
separate DWARF register number ranges which have their own definition for the size of these
registers.

When searching the call frame information table for one of these registers a consumer must take
into account the aliasing between them and their overlapping registers.

2. Capability registers are stored in memory including their tag bit. When debug information describes
that a capability register is saved at some address, a consumer must use a proper load of a
capability from memory to restore its value.

Capabilities are always stored in the little-endian byte order. This implies that if a given capability
register C is stored in memory on a big-endian system, its corresponding X part is not stored in the
natural byte order but as little-endian too.

8

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

4.2 Canonical frame address
The term Canonical Frame Address (CFA) is defined in GDWARF, §6.4, Call Frame Information. This ABI
adopts the typical definition of CFA given there.

• The CFA is the value of the stack pointer at the call site in the previous frame.

A subroutine can define the CFA as either a 64-bit address or a 129-bit capability depending on whether
the subroutine uses register SP as the stack pointer or register CSP, respectively.

The AAPCS64 document (AAPCS64, §5.2.2 Stack) describes what stack pointer is used by subroutines
conforming to AAPCS64 and AAPCS64-cap:

• A subroutine conforming to AAPCS64 uses register SP as the stack pointer. The CFA in the
subroutine is then defined as a 64-bit address, typically as SP+<offset> or X29+<offset>.

• A subroutine conforming to AAPCS64-cap uses register CSP as the stack pointer. The CFA in the
subroutine is defined as a 129-bit capability, typically as CSP+<offset> or C29+<offset>.

If a subroutine defines the CFA as a 64-bit address, then only the lowest 64 bits from the value stored in
register CSP in the previous frame can be restored. The consumer should treat the remaining bits as
undefined.

4.3 Common information entries

4.3.1 Augmentation characters
This specification adds one CIE augmentation character that might appear as part of a CIE augmentation
string:

• The 'C' character indicates that the default unwind rules for this CIE should be initialized in
accordance with the pure capability procedure call standard.

4.3.2 Return address register
A subroutine can return to either a 64-bit address or a 129-bit capability depending on whether the
subroutine expects the return address to be stored in register LR or CLR, respectively.

The AAPCS64 document (AAPCS64, §5.6 Function returns and the link register) describes where the
return address for subroutines conforming to AAPCS64 and AAPCS64-cap is stored:

• A subroutine conforming to AAPCS64 expects the return address to be stored in register LR. The
return_address_register field in the CIE is then set to a column for a 64-bit register, typically to
the LR column directly.

• A subroutine conforming to AAPCS64-cap expects the return address to be stored in register CLR.
The return_address_register field in the CIE is set to a column for a 129-bit capability register,
typically to the CLR column.

If a subroutine uses a 64-bit return address register then it must also guarantee that it does not modify
the upper 65 bits of register PCC. The value of PCC in the previous frame can then be restored by a
consumer by using the PCC from the current frame and replacing the lowest 64 bits by the calculated
value of the return address register in the previous frame.

9

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

http://dwarfstd.org/Dwarf3Std.php
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

4.4 DWARF attributes

4.4.1 Address classes
GDWARF, §5.3, Type Modifier Entries, describes attribute DW_AT_address_class that denotes how
objects having the given pointer or reference type ought to be dereferenced. Section §2.12, Segmented
Addresses then describes that the set of permissible values is specific to each target architecture.

This ABI uses the common address class value DW_ADDR_none and defines one Morello-specific value
DW_ADDR_capability.

Morello DWARF address class codes

Address class name Value

DW_ADDR_none 0x0

DW_ADDR_capability 0x1

1. DW_ADDR_none

The DW_ADDR_none value is defined in GDWARF, §2.12, Segmented Addresses and means that no
address class has been specified.

2. DW_ADDR_capability

The DW_ADDR_capability value indicates that the type is an address capability and can be
dereferenced as such.

4.4.2 Base type encodings
GDWARF, §5.1, Base Type Entries, describes attribute DW_AT_encoding that denotes how a base type is
encoded and is to be interpreted.

This ABI uses two vendor-defined base-type encodings DW_ATE_CHERI_signed_intcap and
DW_ATE_CHERI_unsigned_intcap.

Morello DWARF base type encoding values

Base type encoding name Value

DW_ATE_CHERI_signed_intcap 0xa0

DW_ATE_CHERI_unsigned_intcap 0xa1

1. DW_ATE_CHERI_signed_intcap

The DW_ATE_CHERI_signed_intcap encoding describes a signed integer/capability type __intcap_t.

2. DW_ATE_CHERI_unsigned_intcap

The DW_ATE_CHERI_unsigned_intcap encoding describes an unsigned integer/capability type
__uintcap_t.

4.4.3 Size attributes for capabilities
A size attribute of an entry that describes a capability type should record the untagged memory size of
the data object. This typically means that such an entry should have the DW_AT_byte_size attribute with
value set to 16.

10

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

http://dwarfstd.org/Dwarf3Std.php
http://dwarfstd.org/Dwarf3Std.php
http://dwarfstd.org/Dwarf3Std.php

Given that the formal size of a capability is 16 bytes, consumers of DWARF will have to implement ways
to read the additional tag bit when required. This is implementation specific.

When inspecting capabilities, a debugger might choose to display only the untagged, 16-byte value, and
provide the possibility for the user to further query the tag only if interested. In such a case, the value
and the tag can be read independently of each other. Alternatively, it is perfectly valid for an
implementation to always read and display the full 129 bits of the capability.

11

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

5 APPENDIX Supplementary material
The status of this appendix is informative.

5.1 Capability type examples

5.1.1 Capability pointers and references
The capability pointer type in example fragment Capability pointer: C++ source can be described in
DWARF as shown in Capability pointer: DWARF description.

Capability pointer: C++ source

char * __capability cap;

Capability pointer: DWARF description

1$: DW_TAG_base_type
 DW_AT_name("char")
 ...
2$: DW_TAG_pointer_type
 DW_AT_type(reference to 1$)
 DW_AT_address_class(DW_ADDR_capability)
 DW_AT_byte_size(16)

Capability reference and rvalue reference types can be represented in the same way using
DW_TAG_reference_type and DW_TAG_rvalue_reference_type, respectively.

5.1.2 Types __intcap_t and __uintcap_t
The __intcap_t and __uintcap_t types in example fragment Intcap types: C++ source can be described
in DWARF as illustrated in Intcap types: DWARF description.

Intcap types: C++ source

__intcap_t intcap;
__uintcap_t uintcap;

Intcap types: DWARF description

1$: DW_TAG_base_type
 DW_AT_name("__intcap_t")
 DW_AT_encoding(DW_ATE_CHERI_signed_intcap)
 DW_AT_byte_size(16)
2$: DW_TAG_base_type
 DW_AT_name("__uintcap_t")
 DW_AT_encoding(DW_ATE_CHERI_unsigned_intcap)
 DW_AT_byte_size(16)

12

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

5.1.3 Optimized description in DWARF Version 5
Additional attributes needed to describe capability types can have recognizable impact on the size of
debugging information in programs that extensively use capability pointers and references.

DWARF Version 5 introduced the new operand form DW_FORM_implicit_const (GDWARF5, §7.5.3,
Abbreviations Tables) which allows to extract common attributes of capability types in section
.debug_abbrev instead of repeating them in .debug_info.

Two capability pointer types in example fragment Capability pointers: C++ source can be described in
DWARF Version 5 as illustrated in Capability pointers: DWARF Version 5 description.

Capability pointers: C++ source

char * __capability ccap;
int * __capability icap;

Capability pointers: DWARF Version 5 description

! *** Section .debug_abbrev content
a$h: 1
 DW_TAG_compile_unit
 ...
 0
 2
 DW_TAG_base_type
 DW_CHILDREN_no
 DW_AT_name DW_FORM_string
 DW_AT_encoding DW_FORM_data1
 DW_AT_byte_size DW_FORM_data1
 0
 3
 DW_TAG_pointer_type
 DW_CHILDREN_no
 DW_AT_type DW_FORM_ref4
 DW_AT_address_class DW_FORM_implicit_const
 DW_ADDR_capability
 DW_AT_byte_size DW_FORM_implicit_const
 16
 0

! *** Section .debug_info content
! Compilation unit header
 <length> ; unit_length
 5 ; version
 DW_UT_compile ; unit_type
 8 ; address_size
 offset of a$h ; debug_abbrev_offset
! Entry for the compile unit
 1
 ...
! Entry for "char"
i$1: 2
 "char"
 DW_ATE_unsigned_char
 1
! Entry for "int"
i$2: 2
 "int"

13

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

http://dwarfstd.org/Dwarf5Std.php

 DW_ATE_signed
 4
! Entry for "char * __capability"
 3
 offset of i$1
! Entry for "int * __capability"
 3
 offset of i$2

5.2 CFI assembler syntax for pure capability functions
It is recommended for a toolchain vendor to introduce assembler syntax that allows the description of call
frame information for subroutines that conform to AAPCS64-cap as easily as for the ones conforming to
AAPCS64.

For instance, listing GNU assembler syntax for pure capability functions shows the extension that was
introduced to the GNU assembler syntax:

GNU assembler syntax for pure capability functions

.cfi_startproc purecap

Using the purecap parameter causes .cfi_startproc to do the following:

• Initial CFI instructions consist of one instruction DW_CFA_def_cfa CSP, 0.

• Return address register is set to CLR.

• The 'C' character is included in the CIE augmentation string.

14

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

	1 Preamble
	1.1 Morello alpha
	1.2 Abstract
	1.3 Keywords
	1.4 Latest release, feedback and defects report
	1.5 Licence
	1.6 About the license
	1.7 Contributions
	1.8 Trademark notice
	1.9 Copyright

	2 About this document
	2.1 Change control
	2.1.1 Current status and anticipated changes
	2.1.2 Change history

	2.2 References
	2.3 Terms and abbreviations

	3 Overview
	4 Arm-specific DWARF definitions
	4.1 DWARF register names
	4.2 Canonical frame address
	4.3 Common information entries
	4.3.1 Augmentation characters
	4.3.2 Return address register

	4.4 DWARF attributes
	4.4.1 Address classes
	4.4.2 Base type encodings
	4.4.3 Size attributes for capabilities

	5 APPENDIX Supplementary material
	5.1 Capability type examples
	5.1.1 Capability pointers and references
	5.1.2 Types __intcap_t and __uintcap_t
	5.1.3 Optimized description in DWARF Version 5

	5.2 CFI assembler syntax for pure capability functions

