
DWARF for the Arm® 64-bit Architecture
(AArch64)

2024Q3

Date of Issue: 5th September 2024

1 Preamble

1.1 Abstract
This document describes the use of the DWARF debug table format in the Application Binary Interface
(ABI) for the Arm 64-bit architecture.

1.2 Keywords
DWARF, DWARF 3.0, use of DWARF format

1.3 Latest release and defects report
Please check Application Binary Interface for the Arm® Architecture for the latest release of this
document.

Please report defects in this specification to the issue tracker page on GitHub.

2

Copyright © 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa
https://github.com/ARM-software/abi-aa/issues

1.4 Licence
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Grant of Patent License. Subject to the terms and conditions of this license (both the Public License and
this Patent License), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Licensed Material, where such license applies
only to those patent claims licensable by such Licensor that are necessarily infringed by their
contribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such
contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim
or counterclaim in a lawsuit) alleging that the Licensed Material or a contribution incorporated within the
Licensed Material constitutes direct or contributory patent infringement, then any licenses granted to You
under this license for that Licensed Material shall terminate as of the date such litigation is filed.

1.5 About the license
As identified more fully in the Licence section, this project is licensed under CC-BY-SA-4.0 along with an
additional patent license. The language in the additional patent license is largely identical to that in
Apache-2.0 (specifically, Section 3 of Apache-2.0 as reflected at
https://www.apache.org/licenses/LICENSE-2.0) with two exceptions.

First, several changes were made related to the defined terms so as to reflect the fact that such defined
terms need to align with the terminology in CC-BY-SA-4.0 rather than Apache-2.0 (e.g., changing “Work”
to “Licensed Material”).

Second, the defensive termination clause was changed such that the scope of defensive termination
applies to “any licenses granted to You” (rather than “any patent licenses granted to You”). This change is
intended to help maintain a healthy ecosystem by providing additional protection to the community
against patent litigation claims.

1.6 Contributions
Contributions to this project are licensed under an inbound=outbound model such that any such
contributions are licensed by the contributor under the same terms as those in the Licence section.

1.7 Trademark notice
The text of and illustrations in this document are licensed by Arm under a Creative Commons
Attribution–Share Alike 4.0 International license ("CC-BY-SA-4.0”), with an additional clause on patents.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Please visit
https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

1.8 Copyright
Copyright (c) 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

3

Copyright © 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

http://creativecommons.org/licenses/by-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://www.arm.com/company/policies/trademarks

Contents
1 Preamble 2

1.1 Abstract 2

1.2 Keywords 2

1.3 Latest release and defects report 2

1.4 Licence 3

1.5 About the license 3

1.6 Contributions 3

1.7 Trademark notice 3

1.8 Copyright 3

2 About this document 5

2.1 Change control 5

2.1.1 Current status and anticipated changes 5

2.1.2 Change history 5

2.2 References 6

2.3 Terms and abbreviations 6

3 Overview 8

4 Arm-specific DWARF definitions 9

4.1 DWARF register names 9

4.2 Canonical frame address 11

4.3 Common information entries 11

4.4 Call frame instructions 12

4.5 DWARF expression operations 12

4.6 Changes in vector length (Alpha) 13

4.7 Vector types (Beta) 13

4

Copyright © 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

2 About this document

2.1 Change control

2.1.1 Current status and anticipated changes
The following support level definitions are used by the Arm ABI specifications:

Release

Arm considers this specification to have enough implementations, which have received sufficient
testing, to verify that it is correct. The details of these criteria are dependent on the scale and
complexity of the change over previous versions: small, simple changes might only require one
implementation, but more complex changes require multiple independent implementations, which
have been rigorously tested for cross-compatibility. Arm anticipates that future changes to this
specification will be limited to typographical corrections, clarifications and compatible extensions.

Beta

Arm considers this specification to be complete, but existing implementations do not meet the
requirements for confidence in its release quality. Arm may need to make incompatible changes if
issues emerge from its implementation.

Alpha

The content of this specification is a draft, and Arm considers the likelihood of future incompatible
changes to be significant.

Content relating to SVE should be considered as having Beta support level. This includes:

• DWARF register names marked as Beta in DWARF register names

• Recommended expression of the vector types (Vector types)

All other content in this document is at the Release quality level.

2.1.2 Change history
If there is no entry in the change history table for a release, there are no changes to the content of the
document for that release.

Issue Date Change

00bet3 16th December 2010 Beta release.

1.0 22nd May 2013 First public release.

2018Q4 31st December 2018 Add SVE and pointer authentication support.

2019Q4 30th January 2020 Minor layout changes.

2020Q2 1st June 2020 Add requirements for unwinding MTE tagged stack.
Describe DWARF representation of SVE vector types.

5

Copyright © 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

Issue Date Change

2020Q4 21st December 2020
• document released on Github

• new Licence: CC-BY-SA-4.0

• new sections on Contributions, Trademark notice,
and Copyright

• AArch64 DWARF pointer signing operations table
columns switched

• Add Thread ID register numbers.

2022Q1 1st April 2022
• Release of Pointer authentication.

• In Call frame instructions, document a limitation of
DW_CFA_AARCH64_negate_ra_state.

2022Q3 20th October 2022
• Added Changes in vector length at Alpha quality.

2024Q3 5th September 2024 In DWARF register names_ and Call frame instructions, add
Dwarf support for unwinding with FEAT_PAuth_LR
enabled.

2.2 References
This document refers to, or is referred to by, the following documents.

Ref
URL or other external
reference Title

AADWARF64 Source for this document DWARF for the Arm 64-bit Architecture (AArch64).
(This document)

GDWARF http://dwarfstd.org/Dwar
f3Std.php

DWARF 3.0, the generic debug table format.

2.3 Terms and abbreviations
The ABI for the Arm 64-bit Architecture uses the following terms and abbreviations.

A32

The instruction set named Arm in the Armv7 architecture; A32 uses 32-bit fixed-length instructions.

A64

The instruction set available when in AArch64 state.

AAPCS64

Procedure Call Standard for the Arm 64-bit Architecture (AArch64).

AArch32

The 32-bit general-purpose register width state of the Armv8 architecture, broadly compatible with
the Armv7-A architecture.

AArch64

The 64-bit general-purpose register width state of the Armv8 architecture.

ABI

6

Copyright © 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

http://dwarfstd.org/Dwarf3Std.php
http://dwarfstd.org/Dwarf3Std.php
http://dwarfstd.org/Dwarf3Std.php

Application Binary Interface:

1. The specifications to which an executable must conform in order to execute in a specific
execution environment. For example, the Linux ABI for the Arm Architecture.

2. A particular aspect of the specifications to which independently produced relocatable files must
conform in order to be statically linkable and executable. For example, the Addenda32,
AAPCS64, ...

Arm-based

... based on the Arm architecture ...

Floating point

Depending on context floating point means or qualifies: (a) floating-point arithmetic conforming to
IEEE 754 2008; (b) the Armv8 floating point instruction set; (c) the register set shared by (b) and
the Armv8 SIMD instruction set.

Q-o-I

Quality of Implementation – a quality, behavior, functionality, or mechanism not required by this
standard, but which might be provided by systems conforming to it. Q-o-I is often used to describe
the toolchain-specific means by which a standard requirement is met.

MTE

Memory Tagging Extension.

PAC

Pointer Authentication Code.

PAUTH

Pointer Authentication Extension.

SIMD

Single Instruction Multiple Data – A term denoting or qualifying: (a) processing several data items in
parallel under the control of one instruction; (b) the Arm v8 SIMD instruction set: (c) the register set
shared by (b) and the Armv8 floating point instruction set.

SIMD and floating point

The Arm architecture’s SIMD and Floating Point architecture comprising the floating point instruction
set, the SIMD instruction set and the register set shared by them.

SVE

Scalable Vector Extension.

T32

The instruction set named Thumb in the Armv7 architecture; T32 uses 16-bit and 32-bit instructions.

7

Copyright © 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

3 Overview
The ABI for the Arm 64-bit architecture specifies the use of DWARF 3.0 format debugging data. For details
of the base standard see GDWARF.

The ABI for the Arm 64-bit architecture gives additional rules for how DWARF 3.0 should be used, and
how it is extended in ways specific to the Arm 64-bit architecture. The following topics are covered in
detail:

• The enumeration of DWARF register numbers for using in .debug_frame and .debug_info sections
(DWARF register names).

• The definition of Canonical Frame Address (CFA) used by this ABI (Canonical frame address).

• The definition of Common Information Entries (CIE) used by this ABI (Common information entries).

• The definition of Call Frame Instructions (CFI) used by this ABI (Call frame instructions).

• The definition of DWARF Expression Operations used by this ABI (dwarf expression operations).

8

Copyright © 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

http://dwarfstd.org/Dwarf3Std.php

4 Arm-specific DWARF definitions

4.1 DWARF register names
GDWARF, §2.6.1, Register Name Operators, suggests that the mapping from a DWARF register name to a
target register number should be defined by the ABI for the target architecture. DWARF register names
are encoded as unsigned LEB128 integers.

Mapping from DWARF register numbers to Arm 64-bit architecture registers

DWARF
register
number AArch64 register name Description

0–30 X0–X30 64-bit general registers (Note 1)

31 SP 64-bit stack pointer

32 PC 64-bit program counter (Note 9)

33 ELR_mode The current mode exception link register

34 RA_SIGN_STATE Return address signed state pseudo-register (Note 8)

35 TPIDRRO_ELO EL0 Read-Only Software Thread ID register

36 TPIDR_ELO EL0 Read/Write Software Thread ID register

37 TPIDR_EL1 EL1 Software Thread ID register

38 TPIDR_EL2 EL2 Software Thread ID register

39 TPIDR_EL3 EL3 Software Thread ID register

40-45 Reserved -

46 VG (Beta) 64-bit SVE vector granule pseudo-register (Note 2, Note 3)

47 FFR (Beta) VG × 8-bit SVE first fault register (Note 4)

48-63 P0-P15 (Beta) VG × 8-bit SVE predicate registers (Note 4)

64-95 V0-V31 128-bit FP/Advanced SIMD registers (Note 5, Note 7)

96-127 Z0-Z31 (Beta) VG × 64-bit SVE vector registers (Note 6, Note 7)

Note

1. The size of a general register is to be taken from context. For instance in a .debug_info section if
the DW_AT_location attribute of a variable is DW_OP_reg0 then the number of significant bits in
the register is determined by the variable’s DW_AT_type attribute. If no context is available (for
example in .debug_frame or .eh_frame sections) then the register number refers to a 64-bit
register.

2. The value of the SVE vector granule pseudo-register is an even integer in the range 2 to 32. The
value of the register is the available size in bits of the SVE vector registers in the current call
frame divided by 64.

9

Copyright © 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

http://dwarfstd.org/Dwarf3Std.php

3. The SVE vector granule pseudo-register enables the construction of DWARF expressions that
require the use of the current vector length, such as the location of saved SVE predicate and
vector registers on the stack using the DWARF stack frame operator DW_CFA_expression.

4. The available size of a SVE predicate register and the first fault register is VG × 8-bits.

5. In a similar manner to the general register file the size of an FP/Advanced SIMD register is taken
from some external context to the register number. If no context is available then only the least
significant 64 bits of the register are referenced. In particular this means that the most significant
part of a SIMD register is unrecoverable by frame unwinding.

6. The available size of the SVE vector registers is VG × 64-bits.

7. The architecture defines that the FP/Advanced SIMD registers (V registers) overlap with the SVE
vector registers (Z registers). A given V register is mapped to the low 128-bits of the
corresponding Z register.

The DWARF call frame instructions do not explicitly specify the size of a register; this is implicit in
the definition of the register. As a consequence the V registers and Z registers have been allocated
separate DWARF register number ranges which have their own definition for the size of these
registers.

When searching the call frame information table for either a V register or a Z register a consumer
must take into account the aliasing between the V and Z registers.

8. The RA_SIGN_STATE pseudo-register records whether the return address has been signed with a
PAC, and whether the value of PC has been used as a diversifier for the return address signing.
This information can be used when unwinding. It is an unsigned integer with the same size as a
general register. Only bit[0] and bit[1] are meaningful and are initialized to zero.

Bit[0] indicates whether the return address has been signed. A value of 0 indicates the return
address has not been signed. A value of 1 indicates the return address has been signed.

Bit[1] indicates whether the value of PC has been used as a diversifier for signing the return
address. A value of 0 indicates the value of PC has not been used for return address signing. A
value of 1 indicates the value of PC has been used for return address signing.

Bit[1] Bit[0] State

0 0 Return address not signed

0 1 Return address signed with SP

1 1 Return address signed with SP+PC

1 0 Invalid state

9. Normally, the program counter is restored from the return address, however having both LR and
PC columns is useful for describing asynchronously created stack frames. A DWARF expression
may use this register to restore the context in case of a signal context.

10

Copyright © 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

4.2 Canonical frame address
The term Canonical Frame Address (CFA) is defined in GDWARF, §6.4, Call Frame Information.

This ABI adopts the typical definition of CFA given there:

The CFA is the value of the stack pointer (sp) at the call site in the previous frame.

4.3 Common information entries
The DWARF virtual unwinding model is based, conceptually, on a tabular structure with one column for
each target register (GDWARF, §6.4.1, Structure of Call Frame Information). A .debug_frame Common
Information Entry (CIE) specifies the initial values (on entry to an associated function) of each register.

The variability of execution environments conforming to the Arm architecture creates a problem for this
model. A producer cannot reliably enumerate all the registers in the target. For example, an integer-only
function might be included in one executable file for use in execution environments with floating-point
and another for use in environments without. In effect, it must be acceptable for a producer not to
initialize, in a CIE, registers it does not know about. In turn this generates an obligation on consuming
debuggers to default missing initial values.

This generates the following obligations on producers and consumers of CIEs:

1. Consumers must default the CIE initial value of any target register not mentioned explicitly in the
CIE.

• Callee-saved registers (and registers intentionally unused by the program, for example as a
consequence of the procedure call standard) should be initialized as if by DW_CFA_same_value,
other registers as if by DW_CFA_undefined.

A debugger can use built-in knowledge of the procedure call standard or can deduce which
registers are callee-saved by scanning all CIEs.

• The VG pseudo-register should be initialized as if by DW_CFA_same_value.

• The RA_SIGN_STATE pseudo-register should be initialized as described in DWARF register names
Note 8.

2. To allow consumers to reliably default the initial values of missing entries by scanning a program’s
CIEs, without recourse to built-in knowledge, producers must identify registers not preserved by
callees, as follows:

• If a function uses any register from a particular hardware register class (e.g. Arm core
registers), its associated CIE must initialize all the registers of that class that are not
callee-saved to DW_CFA_undefined.

• If a function uses a callee-saved register R, its associated CIE must initialize R using one of the
defined value methods (not DW_CFA_undefined).

(As an optimization, a producer need not initialize registers it can prove cannot be used by any
associated functions and their descendants. Although these are not callee-saved, they are not
callee-used either.)

This ABI defines two CIE augmentation characters that may appear as part of a CIE augmentation string.

1. The character 'B' indicates that associated frames are using the B key for return address signing.

2. The character 'G' indicates that associated frames may modify MTE tags on the stack space they use.

Note

1. The mark on a frame recording that it may have set MTE tags other than the stack background is
information which can be used when unwinding.

11

Copyright © 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

http://dwarfstd.org/Dwarf3Std.php
http://dwarfstd.org/Dwarf3Std.php

4.4 Call frame instructions
This ABI defines the following vendor call frame instructions: DW_CFA_AARCH64_negate_ra_state and
DW_CFA_AARCH64_negate_ra_state_with_pc.

AArch64 vendor CFA operations

Instruction High 2 bits Low 6 bits Operand 1 Operand 2

DW_CFA_AARCH64_negate_ra_state 0 0x2D - -

DW_CFA_AARCH64_negate_ra_state_wi
th_pc

0 0x2C - -

The DW_CFA_AARCH64_negate_ra_state operation negates bit[0] of the RA_SIGN_STATE pseudo-register.
It does not take any operands.

The DW_CFA_AARCH64_negate_ra_state_with_pc operation negates bit[0] and bit[1] of the
RA_SIGN_STATE pseudo-register, and instructs the unwinder to capture the current code location. The
code location information can be used for authenticating the return address.

The DW_CFA_AARCH64_negate_ra_state_with_pc instruction must be placed within the debug frame in a
position that refers to the exact code location of the signing/authenticating PAC instructions.

The DW_CFA_AARCH64_negate_ra_state and DW_CFA_AARCH64_negate_ra_state_with_pc instructions
must not be mixed with other DWARF Register Rule Instructions (GDWARF, §6.4.2.3) on the
RA_SIGN_STATE pseudo-register in one Common Information Entry (CIE) and Frame Descriptor Entry
(FDE) program sequence.

4.5 DWARF expression operations
This ABI defines one vendor DWARF expression operation DW_OP_AARCH64_operation.

AArch64 vendor DWARF expression operations

Operation Code

DW_OP_AARCH64_operation 0xea

The DW_OP_AARCH64_operation takes one mandatory operand encoded as an unsigned LEB128. Bits[6:0]
of this value specify an AArch64 DWARF Expression sub-operation. The remaining operands and the
action performed are as specified by the sub-operation. The DW_OP_AARCH64_operation allows this ABI to
define operations specific to the Arm 64-bit architecture outside the encoding space of DWARF expression
operations.

AArch64 DWARF expression sub-operations

Sub-operation Code

DW_SUB_OP_AARCH64_sign 0x00

The DW_SUB_OP_AARCH64_sign sub-operation takes a single operand encoded as an unsigned LEB128
operand. This value specifies a pointer key signing operation given in the AArch64 DWARF pointer signing
operations table. The top two stack stack entries are popped, the first is treated as an 8-byte address
value to be signed and the second is treated as an 8-byte salt. The key signing operation is performed on
the address value using the salt, and the result is pushed to the stack.

AArch64 DWARF pointer signing operations

12

Copyright © 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

http://dwarfstd.org/Dwarf3Std.php

Operation Code

Sign Instruction address with Key A 0x0

Sign Instruction address with Key B 0x1

Sign data address with Key A 0x2

Sign data address with Key B 0x3

Sign address with Generic key 0x4

4.6 Changes in vector length (Alpha)
In principle, the value of VG could change during the execution of a program. There are two main
mechanisms by which this could happen:

• The program might explicitly change the SVE vector length. It could do this:

• directly, by modifying the appropriate system registers (if it has sufficient permission)

• indirectly, such as by using an operating system call

• The program might enter or leave SME streaming mode, such as by using the SMSTART and SMSTOP
instructions. This would have the effect of changing VG on systems whose streaming vector length is
different from their non-streaming vector length.

The following requirements apply to functions that might change VG in this way:

• The function's executable code must save the old value of VG to some location L before the
operation that might change VG.

• The contents of L must be recoverable by an unwinder. One simple way of meeting this requirement
is to make L be a location in the function's stack frame.

• The function's Frame Description Entry must describe the save of VG to L.

• The function's Frame Description Entry must describe whichever operation restores the old vector
length as restoring VG from L.

4.7 Vector types (Beta)
The recommended way of describing an Advanced SIMD or SVE vector type is to use an array type
(DW_TAG_array_type) that has the GNU vector type attribute (DW_AT_GNU_vector, code 0x2107). The
array index for these vectors has a lower bound of zero. For variable-length SVE vectors, the upper bound
(DW_AT_upper_bound) or element count (DW_AT_count) is an expression based on the VG
pseudo-register. For Advanced SIMD vectors and fixed-length SVE vectors, the upper bound or element
count is constant.

For example, the recommended representation of the SVE type svfloat32_t is:

DW_TAG_array_type
 DW_AT_name("...")
 DW_AT_GNU_vector
 DW_AT_type(reference to float)
 DW_TAG_subrange_type
 DW_AT_upper_bound(expression=
 DW_OP_bregx(46, 0)
 DW_OP_lit2
 DW_OP_mul

13

Copyright © 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

 DW_OP_lit1
 DW_OP_minus)

if using DW_AT_upper_bound and:

DW_TAG_array_type
 DW_AT_name("...")
 DW_AT_GNU_vector
 DW_AT_type(reference to float)
 DW_TAG_subrange_type
 DW_AT_count(expression=
 DW_OP_bregx(46, 0)
 DW_OP_lit2
 DW_OP_mul)

if using DW_AT_count. Note that the zero lower bound is implicit for C and C++.

14

Copyright © 2010, 2013, 2018, 2020-2024, Arm Limited and its affiliates. All rights reserved.

	1 Preamble
	1.1 Abstract
	1.2 Keywords
	1.3 Latest release and defects report
	1.4 Licence
	1.5 About the license
	1.6 Contributions
	1.7 Trademark notice
	1.8 Copyright

	2 About this document
	2.1 Change control
	2.1.1 Current status and anticipated changes
	2.1.2 Change history

	2.2 References
	2.3 Terms and abbreviations

	3 Overview
	4 Arm-specific DWARF definitions
	4.1 DWARF register names
	4.2 Canonical frame address
	4.3 Common information entries
	4.4 Call frame instructions
	4.5 DWARF expression operations
	4.6 Changes in vector length (Alpha)
	4.7 Vector types (Beta)

