
Morello extensions to ELF for the Arm® 64-bit
Architecture (AArch64)

2024Q3

Date of Issue: 5th September 2024

1 Preamble

1.1 Morello alpha
This document is an alpha proposal for Morello extensions to ELF for AArch64.

1.2 Abstract
This document describes the use of the Morello extensions to the ELF binary file format in the Application
Binary Interface (ABI) for the Arm 64-bit architecture.

1.3 Keywords
ELF, AArch64 ELF, Morello, C64, ...

1.4 Latest release and defects report
Please check Application Binary Interface for the Arm® Architecture for the latest release of this
document.

Please report defects in this specification to the issue tracker page on GitHub.

1.5 Licence
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Grant of Patent License. Subject to the terms and conditions of this license (both the Public License and
this Patent License), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Licensed Material, where such license applies
only to those patent claims licensable by such Licensor that are necessarily infringed by their
contribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such
contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim
or counterclaim in a lawsuit) alleging that the Licensed Material or a contribution incorporated within the
Licensed Material constitutes direct or contributory patent infringement, then any licenses granted to You
under this license for that Licensed Material shall terminate as of the date such litigation is filed.

1.6 About the license
As identified more fully in the Licence section, this project is licensed under CC-BY-SA-4.0 along with an
additional patent license. The language in the additional patent license is largely identical to that in
Apache-2.0 (specifically, Section 3 of Apache-2.0 as reflected at
https://www.apache.org/licenses/LICENSE-2.0) with two exceptions.

First, several changes were made related to the defined terms so as to reflect the fact that such defined
terms need to align with the terminology in CC-BY-SA-4.0 rather than Apache-2.0 (e.g., changing “Work”
to “Licensed Material”).

Second, the defensive termination clause was changed such that the scope of defensive termination
applies to “any licenses granted to You” (rather than “any patent licenses granted to You”). This change is
intended to help maintain a healthy ecosystem by providing additional protection to the community
against patent litigation claims.

2

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa
https://github.com/ARM-software/abi-aa/issues
http://creativecommons.org/licenses/by-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0

1.7 Contributions
Contributions to this project are licensed under an inbound=outbound model such that any such
contributions are licensed by the contributor under the same terms as those in the Licence section.

1.8 Trademark notice
The text of and illustrations in this document are licensed by Arm under a Creative Commons
Attribution–Share Alike 4.0 International license ("CC-BY-SA-4.0”), with an additional clause on patents.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Please visit
https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

1.9 Copyright
Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

3

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

https://www.arm.com/company/policies/trademarks

Contents
1 Preamble 2

1.1 Morello alpha 2

1.2 Abstract 2

1.3 Keywords 2

1.4 Latest release and defects report 2

1.5 Licence 2

1.6 About the license 2

1.7 Contributions 3

1.8 Trademark notice 3

1.9 Copyright 3

2 About this document 5

2.1 Change control 5

2.1.1 Current status and anticipated changes 5

2.1.2 Change history 5

2.2 References 5

2.3 Terms and abbreviations 6

3 About This Specification 7

4 Object Files 7

4.1 ELF Header 7

4.2 Sections 7

4.2.1 Special Sections 7

4.3 Symbol Table 7

4.3.1 Symbol Types 7

4.3.2 Symbol names 7

4.3.3 Mapping symbols 8

4.3.4 Symbol Values 9

4.4 Relocation 9

4.4.1 Relocation types 9

4.4.2 Static Morello relocations 11

4.4.3 Dynamic Morello relocations 13

4.4.4 Static linking with Morello 14

4.4.5 Dynamic linking with Morello 15

5 APPENDIX 16

5.1 Sample initialization of capabilities at runtime 16

5.2 Sample linker generated veneers 17

5.3 TLS for the pure capability ABI 17

5.3.1 TLS static block 17

5.3.2 Thread pointer 17

5.3.3 Resolver functions 17

5.3.4 Local Exec 18

5.3.5 Initial Exec 18

5.3.6 General Dynamic 19

4

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

2 About this document

2.1 Change control

2.1.1 Current status and anticipated changes
Release

Arm considers this specification to have enough implementations, which have received sufficient
testing, to verify that it is correct. The details of these criteria are dependent on the scale and
complexity of the change over previous versions: small, simple changes might only require one
implementation, but more complex changes require multiple independent implementations, which
have been rigorously tested for cross-compatibility. Arm anticipates that future changes to this
specification will be limited to typographical corrections, clarifications and compatible extensions.

Beta

Arm considers this specification to be complete, but existing implementations do not meet the
requirements for confidence in its release quality. Arm may need to make incompatible changes if
issues emerge from its implementation.

Alpha

The content of this specification is a draft, and Arm considers the likelihood of future incompatible
changes to be significant.

This document is a draft and all content is at the Alpha quality level. The relocation codes in Relocation in
particular are expected to change.

2.1.2 Change history
If there is no entry in the change history table for a release, there are no changes to the content of the
document for that release.

Issue Date Change

00alpha 1st October 2020 Alpha release.

2020Q4 21st December 2020 Document released on Github.

2021Q3 1st November 2021 ELF markers to identify Morello purecap binaries.

2022Q3 20th October 2022 Describe the purecap TLS implementation.

2.2 References
This document refers to, or is referred to by, the following documents.

Ref External reference or URL Title

MORELLO_AAELF64 This document Morello extensions to ELF for the Arm 64-bit
Architecture (AArch64).

AAELF64 IHI 0056 ELF for the Arm 64-bit Architecture
(AArch64).

MORELLO_ARM DDI0606 Arm® Architecture Reference Manual
Supplement Morello for A-profile
Architecture.

5

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
https://developer.arm.com/documentation/ddi0606/latest

Ref External reference or URL Title

TLSDESC http://www.fsfla.org/~lxoliv
a/writeups/TLS/paper-lk200
6.pdf

TLS Descriptors for Arm. Original proposal
document.

CHERI_ELF https://github.com/CTSRD-C
HERI/cheri-elf-gabi/blob/mai
n/gabi.md

CHERI ELF gABI Extensions

TLS https://akkadia.org/drepper/
tls.pdf

ELF Handling For Thread-Local Storage

2.3 Terms and abbreviations
The ABI for the Morello extensions to the Arm 64-bit Architecture uses the following terms and
abbreviations.

C64

The instruction set available when the Morello extensions are used.

A64

The instruction set available when in AArch64 state.

Other terms may be defined when first used.

6

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

http://www.fsfla.org/~lxoliva/writeups/TLS/paper-lk2006.pdf
http://www.fsfla.org/~lxoliva/writeups/TLS/paper-lk2006.pdf
http://www.fsfla.org/~lxoliva/writeups/TLS/paper-lk2006.pdf
http://www.fsfla.org/~lxoliva/writeups/TLS/paper-lk2006.pdf
https://github.com/CTSRD-CHERI/cheri-elf-gabi/blob/main/gabi.md
https://github.com/CTSRD-CHERI/cheri-elf-gabi/blob/main/gabi.md
https://github.com/CTSRD-CHERI/cheri-elf-gabi/blob/main/gabi.md
https://github.com/CTSRD-CHERI/cheri-elf-gabi/blob/main/gabi.md
https://akkadia.org/drepper/tls.pdf
https://akkadia.org/drepper/tls.pdf
https://akkadia.org/drepper/tls.pdf

3 About This Specification
This specification only provides the Morello-specific extensions to the base ELF specification for the Arm
64-bit Architecture (AArch64), and is expected to be used along with AAELF64.

Object Files is structured to correspond to the chapter with the same name in AAELF64:

4 Object Files

4.1 ELF Header
The ELF header provides a number of fields that assist in interpretation of the file. Most of these are
specified in the base standard. The following fields have Morello-specific meanings.

e_flags

The processor-specific flags are shown in the following table.

Morello-specific e_flags

Value Description

EF_AARCH64_CHERI_PURECAP
(0x00010000)

The ELF file uses an ABI where all pointers are implemented using
capabilities (Pure-capability ABI).

4.2 Sections

4.2.1 Special Sections
A Morello toolchain can emit ELF Note sections in accordance to [CHERI_ELF].

4.3 Symbol Table

4.3.1 Symbol Types
All code symbols exported from an object file (symbols with binding STB_GLOBAL) shall have type
STT_FUNC. All extern data objects shall have type STT_OBJECT. No STB_GLOBAL data symbol shall have
type STT_FUNC. The type of an undefined symbol shall be STT_NOTYPE or the type of its expected
definition.

The type of any other symbol defined in an executable section can be STT_NOTYPE. A linker is only
required to provide long-branch and PLT support for symbols of type STT_FUNC. A linker is also only
required to provide interworking support for A64 and C64 symbols of type STT_FUNC (interworking for
untyped symbols must be encoded directly in the object file)

4.3.2 Symbol names
A symbol that names a C or assembly language entity should have the name of that entity. For example,
a C function called calculate generates a symbol called calculate (not _calculate).

Symbol names are case sensitive and are matched exactly by linkers.

7

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/CTSRD-CHERI/cheri-elf-gabi/blob/main/gabi.md

Any symbol with binding STB_LOCAL may be removed from an object and replaced with an offset from
another symbol in the same section under the following conditions:

• The original symbol and replacement symbol are not of type STT_FUNC, or both symbols are of type
STT_FUNC and describe code of the same instruction set state (either both A64 or both C64).

• The symbol is not described by the debug information.

• The symbol is not a mapping symbol (Mapping symbols).

• The resulting object, or image, is not required to preserve accurate symbol information to permit
de-compilation or other post-linking optimization techniques.

• If the symbol labels an object in a section with the SHF_MERGE flag set, the relocation using symbol
may be changed to use the section symbol only if the initial addend of the relocation is zero.

No tool is required to perform the above transformations; an object consumer must be prepared to do
this itself if it might find the additional symbols confusing.

4.3.3 Mapping symbols
A section of an ELF file can contain a mixture of A64 code, C64 code and data. There are inline transitions
between code and data at literal pool boundaries.

Linkers, file decoders and other tools need to map binaries correctly. To support this, a number of
symbols, termed mapping symbols, appear in the symbol table to label the start of each sequence of
bytes of the appropriate class. All mapping symbols have type STT_NOTYPE and binding STB_LOCAL. The
st_size field is unused and must be zero.

The mapping symbols are defined in Mapping symbols table. It is an error for a relocation to reference a
mapping symbol. Two forms of mapping symbol are supported:

• A short form that uses a dollar character and a single letter denoting the class. This form can be
used when an object producer creates mapping symbols automatically. Its use minimizes string table
size.

• A longer form in which the short form is extended with a period, followed by any sequence of
characters that are legal for a symbol. This form can be used when assembler files have to be
annotated manually and the assembler does not support multiple definitions of symbols.

Mapping symbols defined in a section (relocatable view) or segment (executable view) define a sequence
of half-open intervals that cover the address range of the section or segment. Each interval starts at the
address defined by the mapping symbol, and continues up to, but not including, the address defined by
the next (in address order) mapping symbol or the end of the section or segment. A section that contains
instructions must have a mapping symbol defined at the beginning of the section. If a section contains
only data, no mapping symbol is required. A platform ABI should specify whether or not mapping symbols
are present in the executable view; they will never be present in a stripped executable file.

Mapping symbols

Name Description

$x
$x.<any...>

Start of a sequence of A64 instructions.

$c
$c.<any...>

Start of a sequence of C64 instructions.

$d
$d.<any...>

Start of a sequence of data items (for example, a literal pool).

8

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

4.3.4 Symbol Values
In addition to the normal rules for symbol values, the following rules shall also apply to symbols of type
STT_FUNC and STT_GNU_IFUNC:

• If the symbol addresses an A64 instruction, its value is the address of the instruction (in a
relocatable object, the offset of the instruction from the start of the section containing it).

• If the symbol addresses a C64 instruction, its value is the address of the instruction with bit 0 set (in
a relocatable object, the section offset with bit 0 set).

Note

This allows a linker to distinguish A64 and C64 code symbols without having to refer to the map. An
A64 symbol will always have an even value, while a C64 symbol will always have an odd value.
However, a linker should strip the discriminating bit from the value before using it for relocation.

4.4 Relocation

4.4.1 Relocation types

4.4.1.1 Relocation codes

Morello uses the private relocation code space for vendor experiments [0xE000, 0xF000) specified in
AAELF64.

Static Morello relocation codes begin at 0xE000(57344); dynamic ones at 0xE800(59392). Relocation
codes starting at 0xEA00(59904) are reserved for private Morello experiments.

4.4.1.2 Relocation operations

The following nomenclature is used in the descriptions of relocation operations:

• S (when used on its own) is the address of the symbol.

• A is the addend for the relocation.

• P is the address of the place being relocated (derived from r_offset).

• C is 1 if the target symbol S has type STT_FUNC and the symbol addresses a C64 instruction; it is 0
otherwise.

• X is the result of a relocation operation, before any masking or bit-selection operation is applied

• Page(expr) is the page address of the expression expr, defined as (expr & ~0xFFF). This applies
even if the machine page size supported by the platform has a different value.

• GOT is the address of the Global Offset Table, the table of code and data addresses to be resolved at
dynamic link time. The GOT and each entry in it must be aligned to the pointer-size.

• GDAT(S+A) represents a pointer-sized entry in the GOT for address S+A. The entry will be relocated at
run time with relocation R_MORELLO_GLOB_DAT(S+A).

• G(expr) is the address of the GOT entry for the expression expr.

• GTLSDESC(S+A) represents a consecutive pair of pointer-sized entries in the GOT which contain a
tlsdesc structure describing the thread-local variable located at offset A from thread-local symbol S.
The first entry holds a pointer to the variable's TLS descriptor resolver function and the second entry
holds a platform-specific offset or pointer. The pair of pointer-sized entries will be relocated with
R_MORELLO_TLSDESC(S+A).

9

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases

• TPREL(S) resolves to a pair of two 64-bit values. The first value contains the offset in the static TLS
block of the thread-local symbol S. The second value contains the size of the symbol S

• GTPREL(S) represents an entry in the GOT containing a pair of two 64-bit values. The first value
contains the offset in the static TLS block of the symbol S. The second value contains the size of the
symbol S.

• TLSDESC(S+A) resolves to a contiguous pair of pointer-sized values, as created by GTLSDESC(S+A).

• CAP_INIT generates a capability with all required information. When used on its own represents the
operations needs to be done for handling R_MORELLO_CAPINIT.

• CAP_SIZE is the size of the underlying memory region that the capability can reference. This may not
directly map to the symbol size.

• SIZE(S) is the symbol size of the symbol S.

• CAP_PERM is the permission of the capability. This may not directly map to the type of the symbol.

• [msb:lsb] is a bit-mask operation representing the selection of bits in a value. The bits selected
range from lsb up to msb inclusive. For example, ‘bits [3:0]’ represents the bits under the mask
0x0000000F. When range checking is applied to a value, it is applied before the masking operation is
performed.

pointer-size
The pointer-size is 64 bits for the A64 ABI and 128 bits for the pure capability (C64) ABI.

10

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

4.4.2 Static Morello relocations

Warning

The ELF64 Code of the relocations are subject to change.

Relocations to generate 19, 21, and 33 bit PC-relative addresses

ELF64
Code Name Operation Comment

57348 R_MORELLO_LD_PREL_LO17 S+A -
(P&~0xF)

Set a load-literal immediate value to
bits [20:4] of X. Check that -220 <= X
< 220. Check that X & 15 = 0.

57349 R_MORELLO_ADR_PREL_PG_HI20 Page(S+A)
- Page(P)

Set an ADRP immediate value to bits
[31:12] of the X. Check that -231 <= X
< 231.

57350 R_MORELLO_ADR_PREL_PG_HI20_NC Page(S+A)
- Page(P)

Set an ADRP immediate value to bits
[31:12] of the X. No overflow check.
Although overflow must not be
checked, a linker should check that the
value of X is aligned to a multiple of the
datum size.

Relocations for control-flow instructions - all offsets are a multiple of 4

ELF64
Code Name Operation Comment

57344 R_MORELLO_TSTBR14 ((S+A)|C)-P Set the immediate field of a TBZ/TBNZ
instruction to bits [15:2] of X. Check that -215

<= X < 215. See Call and Jump relocations.

57345 R_MORELLO_CONDBR19 ((S+A)|C)-P Set the immediate field of a conditional branch
instruction to bits [20:2] of X. Check that -227

<= X < 227. See Call and Jump relocations.

57346 R_MORELLO_JUMP26 ((S+A)|C)-P Set a B immediate field to bits [27:2] of X.
Check that -227 <= X < 227. See Call and Jump
relocations.

57347 R_MORELLO_CALL26 ((S+A)|C)-P Set a BL immediate field to bits [27:2] of X.
Check that -227 <= X < 227. See Call and Jump
relocations.

Group relocations to create a 16-, 32-, 48-, or 64-bit symbol size inline

ELF64
Code Name

Opera
tion Comment

57353 R_MORELLO_MOVW_
SIZE_G0

SIZE Set a MOV[KZ] immediate field to bits [15:0] of X; check
that 0 <= X < 216

11

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

ELF64
Code Name

Opera
tion Comment

57354 R_MORELLO_MOVW_
SIZE_G0_NC

SIZE Set a MOV[KZ] immediate field to bits [15:0] of X. No
overflow check

57355 R_MORELLO_MOVW_
SIZE_G1

SIZE Set a MOV[KZ] immediate field to bits [31:16] of X; check
that 0 <= X < 232

57356 R_MORELLO_MOVW_
SIZE_G1_NC

SIZE Set a MOV[KZ] immediate field to bits [31:16] of X. No
overflow check

57357 R_MORELLO_MOVW_
SIZE_G2

SIZE Set a MOV[KZ] immediate field to bits [47:32] of X; check
that 0 <= X < 248

57358 R_MORELLO_MOVW_
SIZE_G2_NC

SIZE Set a MOV[KZ] immediate field to bits [47:32] of X. No
overflow check

57359 R_MORELLO_MOVW_
SIZE_G3

SIZE Set a MOV[KZ] immediate field to bits [63:48] of X (no
overflow check needed)

Note

The group relocations to create a 16-, 32-, 48-, or 64-bit symbol size inline do not accept an addend.

4.4.2.1 Call and Jump relocations

There is one relocation code (R_MORELLO_CALL26) for function call (BL) instructions and one
(R_MORELLO_JUMP26) for jump (B) instructions.

A linker may use a veneer (a sequence of instructions) to implement a relocated branch if the relocation is
either

R_MORELLO_CALL26 or R_MORELLO_JUMP26 and:

• The target symbol has type STT_FUNC.

• Or, the target symbol and relocated place are in separate sections input to the linker.

• Or, the target symbol is undefined (external to the link unit).

In all other cases a linker shall diagnose an error if a relocation cannot be effected without a veneer. A
linker generated veneer may corrupt register c16 and the condition flags, but must preserve all other
registers. Linker veneers may be needed for a number of reasons, including, but not limited to:

• Interworking: The branch source and target symbol are in different execution states(A64/C64).

• Range Extension: The branch source and target symbol are in C64 execution state and the target is
outside the addressable span of the branch instruction (+/- 128MB).

• The target address will not be known until run time, or the target address might be pre-empted.

Long branches with 64-bit range are not supported yet for range extensions or for interworking.
Interworking between ABIs are not supported yet.

GOT-relative instruction relocations

12

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

ELF64
Code Name Operation Comment

57351 R_MORELLO_ADR_GOT_PAGE Page(G(GDAT(S+A)))
- Page(P)

Set the immediate value of
an ADRP to bits [31:12] of
X. Check that -231 <= X <
231.

57352 R_MORELLO_LD128_GOT_LO12_NC G(GDAT(S+A)) Set the LD/ST immediate
field to bits [11:4] of X. No
overflow check. Check that
X&15 = 0. Also see Static
linking with Morello.

4.4.2.2 Relocations for thread-local storage

Morello only defines the relocations needed to implement the descriptor based thread-local storage (TLS)
models in a SysV-type environment. The details of TLS descriptors are beyond the scope of this
specification; a general introduction can be found in [TLSDESC]. Also, only the relocations needed to
implement the General Dynamic (GD) access model and the Local Executable (LE) access models are
defined.

Relocations needed to define the traditional TLS models are undefined.

TLS descriptor relocations

ELF64
Code Name Operation Comment

57600 R_MORELLO_TLSDESC_ADR_PAGE20 Page(G(GTLSDESC(S+A)))
- Page(P)

Set the immediate value
of an ADRP to bits
[31:12] of X. Check that
-231 <= X < 231.

57601 R_MORELLO_TLSDESC_LD128_LO12 G(GTLSDESC(S+A)) Set the LD/ST immediate
field to bits [11:4] of X.
No overflow check. Check
that X&15 = 0.

57602 R_MORELLO_TLSDESC_CALL None For relaxation only. Must
be used to identify a BLR
instruction which
performs an indirect call
to the TLS descriptor
function for S + A.

57603 R_MORELLO_TLSIE_ADR_GOTTPREL
_PAGE20

Page(G(GTPREL(S)))
- Page(P)

Set the immediate value
of an ADRP to bits
[31:12] of X. Check that
-231 <= X < 231.

57604 R_MORELLO_TLSIE_ADD_LO12 G(GTPREL(S)) Set the ADD immediate
field to bits [11:0] of X.
No overflow check.

4.4.3 Dynamic Morello relocations

13

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

http://www.fsfla.org/~lxoliva/writeups/TLS/paper-lk2006.pdf

Dynamic relocations

ELF64
Code Name Operation Comment

59392 R_MORELLO_CAPINIT CAP_INIT(S, A, CAP_SIZE, CAP_PERM) See note below.

59393 R_MORELLO_GLOB_DAT CAP_INIT(S, A, CAP_SIZE, CAP_PERM) See note below.

59394 R_MORELLO_JUMP_SLOT CAP_INIT(S, A, CAP_SIZE, CAP_PERM) See note below.

59395 R_MORELLO_RELATIVE CAP_INIT(S, A, CAP_SIZE, CAP_PERM) See note below.

59396 R_MORELLO_IRELATIVE CAP_INIT(S, A, CAP_SIZE, CAP_PERM) See note below.

59397 R_MORELLO_TLSDESC TLSDESC(S+A) Identifies a TLS
descriptor to be
filled.

59398 R_MORELLO_TPREL128 TPREL(S) See note below.

Note

R_MORELLO_CAPINIT instructs the runtime or dynamic loader to create a 16-byte capability at
r_offset. r_offset must be 16-byte aligned. An object producer may communicate a hint about the
size of the capability to the static linker in the 16-byte fragment identified by r_offset. The fragment
has the following format:

| 64-bits empty | 64-bits size |

R_MORELLO_GLOB_DAT instructs the runtime or dynamic loader to create a 16-byte capability in the GOT
entry identified by r_offset. The capability holds the address of a data symbol which must be resolved
at load time when dynamic linking.

R_MORELLO_JUMP_SLOT instructs the dynamic loader to create a 16-byte capability in the GOT entry
identified by r_offset. The capability holds the address of a function symbol which must be resolved at
load time.

R_MORELLO_RELATIVE represents an optimization of R_MORELLO_GLOB_DAT. It can be used when the
symbol resolves to the current shared object or executable. S must be the Null symbol (Index 0). The
address and permissions must be written to the fragment. See Dynamic linking with Morello for details.

R_MORELLO_IRELATIVE is used by the linker when transforming IFUNC s. The rest are the same as
R_MORELLO_RELATIVE

R_MORELLO_TLSDESC : identifies a TLS descriptor to be filled by the dynamic loader. If the size of S is
known by the static linker the 256-bit fragment will contain the size of the symbol in the last 64 bits of
the fragment. Otherwise the fragment will contain all zeroes. The fragment has the following format:

| 192-bits empty | 64-bits size |

R_MORELLO_TPREL128 : instructs the dynamic loader to create a pair of two 64-bit integers, the first
integer containing the offset of S in the TLS block and the second integer containing the size of the
symbol S. The first 64-bit integer (the offset) has the same fragment encoding as
R_AARCH64_TLS_TPREL. If the size of S is known by the static linker the second 64-bit integer in the
fragment will contain the size of the symbol. The fragment has the following format:

| 64-bits offset | 64-bits size |

4.4.4 Static linking with Morello
A capability has more associated information than a conventional pointer. It has extra information. For
example: base, offset, size and permissions.

14

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

Capabilities cannot be statically initialised. Global capability initialization when static linking is performed
by the runtime at program startup. The communication between the static linker and runtime is
implementation defined. This document describes an implementation based on a table of capability
descriptions created at static link time, where each capability-generating relocation results in one entry in
the table. When static linking, all capability descriptions will be explicitly grouped into a single table of
capability descriptions where each table entry is a struct capdesc (listed below).

In the current LLVM based Morello toolchain, the runtime iterates through each capdesc entry creating a
capability in the location pointed to by cap_location, with the specified base, offset, size and permissions
given by the entry. To aid in the finding of the capability descriptions table, the linker emits two symbols
to denote the start and end of the table: __cap_relocs_start and __cap_relocs_end respectively. The
capability descriptions table is placed inside the __cap_relocs section.

struct capdesc
{
 void*__capability cap_location;
 void* base;
 uint64_t offset;
 uint64_t size;
 uint64_t permissions;
};

The permission bits of a capability constructed for a capdesc entry is the inverse of the
permissions[17:0] field in the capdesc entry. Additionally, the MSB (bit 64) of the capdesc
permissions field is set for Executable symbols to indicate that the PCC is to be used to construct the
Capability.

Permission Encoding

Executable 0x8000000000013DBCULL

Read-Write Data 0x8FBEULL

Read-Only Data 0x1BFBEULL

When a Morello-capable assembler sees a .capinit instruction, it reserves a 16-byte (128 bits) location
(fragment) and generates a R_MORELLO_CAPINIT relocation for the linker to create a capability in the
fragment. The assembler may use the fragment with the following format to give out size hints for the
linker to use before processing the relocation:

64-bit: empty 64-bit: size

This size hint will be incorporated into the capdesc size field, if not superseded by more accurate
information.

In case of position independent code (PIC), the assembler will generate a R_MORELLO_LD128_GOT_LO12_NC
relocation, which causes the linker to generate a 16-byte aligned, 16-byte sized entry in the .got that will
be initialised by a capdesc entry in a capability descriptions table with the address of the .got entry as its
location field. All information required to initialize the capability is self-contained in the capdesc entry,
so the linker is not required to provide any size hints in the .got entry.

4.4.5 Dynamic linking with Morello
When dynamic linking, capability initialization is done by the dynamic linker as a result of processing one
of the dynamic relocations listed in Dynamic relocations table. For R_MORELLO_RELATIVE and
R_MORELLO_IRELATIVE relocations, the static linker must write the following information to the fragment
identified by r_offset.

64-bit: address 56-bits: length 8-bits: permissions

The 8-bit permission field of the fragment encodes the symbol permissions as below.

15

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

Permission Encoding

Executable 0x4ULL

Read-Write Data 0x2ULL

Read-Only Data 0x1ULL

As in Static linking with Morello, the linker creates a 16-byte aligned, 16-byte sized entry in the .got for
the R_MORELLO_LD128_GOT_LO12_NC relocation generated by the assembler. However, a capability
descriptions table is not generated to initialize the .got entry. Instead it is expected that the dynamic
linker generates the table itself based on the R_MORELLO_GLOB_DAT and R_MORELLO_JUMP_SLOT relocations
created by the static linker. The dynamic linker writes the generated capabilities back into the .got entry.

5 APPENDIX
The status of this appendix is informative.

5.1 Sample initialization of capabilities at runtime
The following code is sample runtime initialization code that initializes global capabilities created by an
LLVM-based Morello toolchain.

__init_global_caps:
 mrs c2, DDC /* Default data capability */
 adrp c0, __cap_relocs_start
 add c0, c0, #:lo12:__cap_relocs_start
 adrp c1, __cap_relocs_end
 add c1, c1, #:lo12:__cap_relocs_end
 gcvalue x1, c1
 gcvalue x0, c0
 cmp x0, x1
 b.eq .CapInitEnd
 sub x5, x1, x0 /* __cap_relocs_size */
 scvalue c0, c2, x0
 scvalue c1, c2, x1
 /* Clear permissions that we're not going to want on global capabilities. */
 ldr x5, =(BIT_07 | \ /* Compartment ID */
 BIT_08 | \ /* Branch Unseal */
 BIT_10 | \ /* Unseal */
 BIT_11) /* Seal */
 clrperm c2, c2, x5
.CapInit:
 ldr x5, [c0], #8 /* Capability location */
 ldr x24, [c0], #8 /* Object refered by the capability */
 cbnz c24, .CapNonNull
 add c0, c0, #24
 mov x4, #0 /* c4 <- nullptr */
 b .CapCont
.CapNonNull:
 ldr x25, [c0], #8 /* Offset in the object */
 ldr x26, [c0], #8 /* Size */
 ldr x9, [c0], #8 /* Permissions */
 /* Set the executive permission for executable capabilities */
 scvalue c4, c2, x24 /* Set capability base */
 scbndse c4, c4, x26 /* Set size */
 scoff c4, c4, x25 /* Add offset */
 clrperm c4, c4, x9 /* Clear permission bits set in __cap_desc_ */

16

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

.CapCont:
 scvalue c5, c2, x5
 str c4, [c5]
 cmp c0, c1
 b.ne .CapInit
.CapInitEnd:
 ret

5.2 Sample linker generated veneers
For C64 to A64 interworking, the following veneer is used:

adrp c16, sym
add c16, c16, :lo12:sym
br c16

For A64 to C64 interworking, and for C64 to C64 Range Extension, the following veneer is used. The BX
changes the execution state from A64 to C64:

bx #4
adrp c16, sym
add c16, c16, :lo12:sym
br c16

5.3 TLS for the pure capability ABI
The design is based on TLSDESC, with the purpose of minimizing the performance differences between
A64 and C64, while providing strict bounds when resolving TLS globals.

5.3.1 TLS static block
The static block layout is the same used in AArch64 (Variant 1, see [TLS]), with the only exception that
TCB and the DTV pointer are capabilities.

5.3.2 Thread pointer
The thread pointer is a capability, held in CTPIDR_EL0. The thread pointer needs to have the read, write,
read capability and write capability permissions and bounds such that the entire TLS static block is
accessible.

5.3.3 Resolver functions
A resolver function takes arguments in c0 (address of the TLS GOT slot), and c2 (a copy of the thread
pointer) and returns a pointer to the TLS global in c0. The resolver function has a custom calling
convention that must preserve all registers except c0 and c1.

Considerations:

• Any dynamically loaded modules will be placed outside of the bounds of the thread pointer, so a
resolver function cannot return an offset from the thread pointer, but rather needs to return a
pointer (capability).

• To minimize reading of CTPIDR_EL0, the resolver functions take a copy of CTPIDR_EL0 as an
argument and preserve it.

17

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

https://akkadia.org/drepper/tls.pdf

5.3.3.1 Static TLS block resolver

If the TLS variable is in the static block, while resolving the R_MORELLO_TLSDESC relocation, the dynamic
linker will place in the two GOT slots associated with this variable:

• A capability to the static TLS block resolver function at offset 0.

• The offset of the variable in the static TLS block at offset 16 (8 bytes).

• The size of the variable at offset 24 (8 bytes).

An implementation of the static block resolver could be the following:

ldp x0, x1, [c0, #16]
add c0, c2, x0
scbnds c0, c0, x1
ret c30

5.3.4 Local Exec
The capability to the TLS variable is derived from CTPIDR_EL0. There are no requirements on how this is
performed or the registers used, except that the sequence doesn't produce a dynamic relocation. A
possible instruction sequence could be:

mrs c0, CTPIDR_EL0
movz x8, #:tprel_g1:local_exec_var
movk x8, #:tprel_g0_nc:local_exec_var
movz x9, #:size_g1:local_exec_var
movk x9, #:size_g0_nc:local_exec_var
add c0, c0, x8, uxtx
scbnds c0, c0, x9

5.3.5 Initial Exec
The capability to the TLS variable is derived from CTPIDR_EL0. The size and offset of the TLS variable is
stored in a GOT slot (first 8 bytes contains the offset and the second 8 bytes the size). This GOT slot is
initialized by a R_MORELLO_TPREL128 dynamic relocation. The access must use the
R_MORELLO_TLSIE_ADR_GOTTPREL_PAGE20 and R_MORELLO_TLSIE_ADD_LO12 relocations in order to allow
relaxation to Local Exec. There are no other requirements on how this is performed or the registers used.
A possible instruction sequence could be:

adrp c0, :gottprel:initial_exec_var
add c0, c0, :gottprel_lo12:initial_exec_var
ldp x0, x8, [c0]
mrs c1, CTPIDR_EL0
add c0, c1, x0, uxtx
scbnds c0, c0, x8

5.3.5.1 Initial Exec to Local Exec relaxation

The linker will generate 16 bytes in a read-only section, containing the offset in the static TLS block in the
first 8 bytes and the size of the symbol in the next 8 bytes:

.section .rodata
_sym_data:
 .xword tlsoffset(sym)
 .xword sizeof(sym)

18

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

Note

tlsoffset(sym) denotes the offset in the static TLS block of the symbol sym, while sizeof(sym) denotes
the size of the symbol sym. These are not valid assembler directives.

The relaxation is performed by:

• changing the R_MORELLO_TLSIE_ADR_GOTTPREL_PAGE20 relocation on the symbol sym to a
R_MORELLO_ADR_PREL_PG_HI20 with the symbol _sym_data

• changing the R_MORELLO_TLSIE_ADD_LO12 relocation on symbol the sym to a
R_AARCH64_ADD_ABS_LO12_NC relocation with the symbol _sym_data.

Note

The symbol and section names in the example above are only used for explanation purposes. An
implementation does not need to create an additional symbol when performing this relaxation. There is
no constraint on the name of the read-only section where the data is placed.

5.3.6 General Dynamic
The instruction sequence used for the General Dynamic access model is similar to that of other TLSDESC
implementations, with the exception that the result doesn't need to be added to the thread pointer.
However c2 needs to contain the thread pointer. The instruction sequence contains an additional NOP
instruction in order to permit the static linker to perform a relaxation to Local Exec or Initial Exec.

The General Dynamic access sequence must be output in the following form to allow correct linker
relaxation:

adrp c0, :tlsdesc:sym
ldr c1, [c0, :tlsdesc_lo12:sym]
add c0, c0, :tlsdesc_lo12:sym
nop
.tlsdesccall sym
blr c1

5.3.6.1 General Dynamic to Initial Exec relaxation

The relaxed sequence is:

adrp c0, :gottprel:sym
add c0, c0, :gottprel_lo12:sym
ldp x0, x1, [c0]
add c0, c2, x0
scbnds c0, c0, x1

5.3.6.2 General Dynamic to Local Exec relaxation

The linker will generate 16 bytes in a read-only section, containing the offset in the static TLS block in the
first 8 bytes and the size of the symbol in the next 8 bytes:

.section .rodata
_sym_data:

19

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

 .xword tlsoffset(sym)
 .xword sizeof(sym)

Note

tlsoffset(sym) denotes the offset in the static TLS block of the symbol sym, while sizeof(sym) denotes
the size of the symbol sym. These are not valid assembler directives.

The relaxed sequence is:

adrp c0, _sym_data
add c0, c0, :lo12:_sym_data
ldp x0, x1, [c0]
add c0, c2, x0
scbnds c0, c0, x1

20

Copyright © 2020-2024, Arm Limited and its affiliates. All rights reserved.

	1 Preamble
	1.1 Morello alpha
	1.2 Abstract
	1.3 Keywords
	1.4 Latest release and defects report
	1.5 Licence
	1.6 About the license
	1.7 Contributions
	1.8 Trademark notice
	1.9 Copyright

	2 About this document
	2.1 Change control
	2.1.1 Current status and anticipated changes
	2.1.2 Change history

	2.2 References
	2.3 Terms and abbreviations

	3 About This Specification
	4 Object Files
	4.1 ELF Header
	4.2 Sections
	4.2.1 Special Sections

	4.3 Symbol Table
	4.3.1 Symbol Types
	4.3.2 Symbol names
	4.3.3 Mapping symbols
	4.3.4 Symbol Values

	4.4 Relocation
	4.4.1 Relocation types
	4.4.1.1 Relocation codes
	4.4.1.2 Relocation operations

	4.4.2 Static Morello relocations
	4.4.2.1 Call and Jump relocations
	4.4.2.2 Relocations for thread-local storage

	4.4.3 Dynamic Morello relocations
	4.4.4 Static linking with Morello
	4.4.5 Dynamic linking with Morello

	5 APPENDIX
	5.1 Sample initialization of capabilities at runtime
	5.2 Sample linker generated veneers
	5.3 TLS for the pure capability ABI
	5.3.1 TLS static block
	5.3.2 Thread pointer
	5.3.3 Resolver functions
	5.3.3.1 Static TLS block resolver

	5.3.4 Local Exec
	5.3.5 Initial Exec
	5.3.5.1 Initial Exec to Local Exec relaxation

	5.3.6 General Dynamic
	5.3.6.1 General Dynamic to Initial Exec relaxation
	5.3.6.2 General Dynamic to Local Exec relaxation

