
ELF for the Arm® 64-bit Architecture
(AArch64)

2024Q3

Date of Issue: 5th September 2024

1 Preamble

1.1 ILP32 Beta
This document includes a beta proposal for ILP32 extensions to ELF for AArch64.

Feedback welcome through your normal channels.

1.2 Abstract
This document describes the use of the ELF binary file format in the Application Binary Interface (ABI) for
the Arm 64-bit architecture.

1.3 Keywords
ELF, AArch64 ELF, ...

1.4 Latest release and defects report
Please check Application Binary Interface for the Arm® Architecture for the latest release of this
document.

Please report defects in this specification to the issue tracker page on GitHub.

2

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa
https://github.com/ARM-software/abi-aa/issues

1.5 Licence
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Grant of Patent License. Subject to the terms and conditions of this license (both the Public License and
this Patent License), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Licensed Material, where such license applies
only to those patent claims licensable by such Licensor that are necessarily infringed by their
contribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such
contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim
or counterclaim in a lawsuit) alleging that the Licensed Material or a contribution incorporated within the
Licensed Material constitutes direct or contributory patent infringement, then any licenses granted to You
under this license for that Licensed Material shall terminate as of the date such litigation is filed.

1.6 About the license
As identified more fully in the Licence section, this project is licensed under CC-BY-SA-4.0 along with an
additional patent license. The language in the additional patent license is largely identical to that in
Apache-2.0 (specifically, Section 3 of Apache-2.0 as reflected at
https://www.apache.org/licenses/LICENSE-2.0) with two exceptions.

First, several changes were made related to the defined terms so as to reflect the fact that such defined
terms need to align with the terminology in CC-BY-SA-4.0 rather than Apache-2.0 (e.g., changing “Work”
to “Licensed Material”).

Second, the defensive termination clause was changed such that the scope of defensive termination
applies to “any licenses granted to You” (rather than “any patent licenses granted to You”). This change is
intended to help maintain a healthy ecosystem by providing additional protection to the community
against patent litigation claims.

1.7 Contributions
Contributions to this project are licensed under an inbound=outbound model such that any such
contributions are licensed by the contributor under the same terms as those in the Licence section.

1.8 Trademark notice
The text of and illustrations in this document are licensed by Arm under a Creative Commons
Attribution–Share Alike 4.0 International license ("CC-BY-SA-4.0”), with an additional clause on patents.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Please visit
https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

1.9 Copyright
Copyright (c) 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

3

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

http://creativecommons.org/licenses/by-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://www.arm.com/company/policies/trademarks

Contents
1 Preamble 2

1.1 ILP32 Beta 2

1.2 Abstract 2

1.3 Keywords 2

1.4 Latest release and defects report 2

1.5 Licence 3

1.6 About the license 3

1.7 Contributions 3

1.8 Trademark notice 3

1.9 Copyright 3

2 About this document 6

2.1 Change control 6

2.1.1 Current status and anticipated changes 6

2.1.2 Change history 6

2.2 References 7

2.3 Terms and abbreviations 8

3 About This Specification 10

3.1 ELF Class variants 10

3.1.1 64-bit Pointers, ELF64 10

3.1.2 32-bit Pointers, ELF32 (Beta) 10

4 Platform standards (Example Only) 11

4.1 Linux Platform ABI (example only) 11

4.1.1 Symbol Versioning 11

4.1.2 Program Linkage Table (PLT) Sequences and Usage Models 11

5 Object Files 12

5.1 Introduction 12

5.1.1 Registered Vendor Names 12

5.2 ELF Header 13

5.2.1 ELF Identification 13

5.3 Sections 13

5.3.1 Special Section Indexes 13

5.3.2 Section Types 13

5.3.3 Section Attribute Flags 14

5.3.4 Special Sections 14

5.3.5 Section Alignment 14

5.3.6 Build Attributes 14

5.4 String Table 14

5.5 Symbol Table 14

5.5.1 st_other Values 15

5.6 Weak Symbols 16

5.6.1 Weak References 16

5.6.2 Weak Definitions 16

4

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

5.6.3 Symbol Types 16

5.6.4 Symbol names 16

5.6.5 Mapping symbols 17

5.7 Relocation 18

5.7.1 Relocation codes 18

5.7.2 Addends and PC-bias 19

5.7.3 Relocation types 19

5.7.4 Static miscellaneous relocations 21

5.7.5 Static Data relocations 21

5.7.6 Static AArch64 relocations 22

5.7.7 Call and Jump relocations 27

5.7.8 Group relocations 28

5.7.9 Relocation optimization 28

5.7.10 Proxy-generating relocations 29

5.7.11 Relocations for thread-local storage 30

5.7.12 Relocations for PAuth ABI Extension 37

5.7.13 Dynamic relocations 37

5.7.14 Private and platform-specific relocations 39

5.7.15 Unallocated relocations 39

5.7.16 PAuthABI relocations 39

5.7.17 Idempotency 39

6 Program Loading and Dynamic Linking 40

6.1 Program Header 40

6.1.1 Platform architecture compatibility data 40

6.2 Program Property 40

6.3 Program Loading 40

6.4 Dynamic Linking 40

6.5 Dynamic Section 41

6.5.1 Custom PLTs 41

7 Footnotes 42

5

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

2 About this document

2.1 Change control

2.1.1 Current status and anticipated changes
The following support level definitions are used by the Arm ABI specifications:

Release

Arm considers this specification to have enough implementations, which have received sufficient
testing, to verify that it is correct. The details of these criteria are dependent on the scale and
complexity of the change over previous versions: small, simple changes might only require one
implementation, but more complex changes require multiple independent implementations, which
have been rigorously tested for cross-compatibility. Arm anticipates that future changes to this
specification will be limited to typographical corrections, clarifications and compatible extensions.

Beta

Arm considers this specification to be complete, but existing implementations do not meet the
requirements for confidence in its release quality. Arm may need to make incompatible changes if
issues emerge from its implementation.

Alpha

The content of this specification is a draft, and Arm considers the likelihood of future incompatible
changes to be significant.

The ELF32 variant is at "Beta" release quality.

All other content in this document is at the Release quality level.

2.1.2 Change history
If there is no entry in the change history table for a release, there are no changes to the content of the
document for that release.

Issue Date Change

00bet3 20th December 2011 Beta release

1.0 22nd May 2013 First public release

1.1-beta 6th November 2013 ILP32 Beta

2018Q4 31st December 2018 Typographical changes

2019Q1 29th March 2019 Add Program Property for BTI and PAC. Update MOV[ZK]
related relocations.

2019Q2 30th June 2019 Specify STO_AARCH64_VARIANT_PCS. Update
R_<CLS>_TLS_DTPREL and R_<CLS>_TLS_DTPMOD. Clarify
GNU_PROPERTY_AARCH64_FEATURE_1_AND.

2019Q4 30th January 2020 Minor layout changes.

2020Q2 1st July 2020 Specifiy R_<CLS>_PLT32. Correct minus sign not
rendering in section Group relocations. Adjust table
widths for readability.

6

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

Issue Date Change

2020Q3 1st October 2020
• document released on Github

• new Licence: CC-BY-SA-4.0

• new sections on Contributions, Trademark notice,
and Copyright

2021Q1 12th April 2021
• Typo fix in definition of GTPREL expression in section

Relocations for thread-local storage

• Typo fix of EI_OSABI in ELF Identification

• Typo fixes -220 -> -2^20 in section Thread-local
storage descriptors

2021Q3 1st November 2021
• Reserved relocation codes for PAuthABIELF64

2022Q1 1st April 2022
• In Program Property, Soft-deprecate

GNU_PROPERTY_AARCH64_FEATURE_1_PAC

2022Q3 20th October 2022
• In Dynamic relocations, include the ABS64 and

ABS32 relocations in Dynamic relocations.

• In Relocation optimization, ADRP + LDR GOT
relaxation symbol should not be absolute.

• In Program Loading and Dynamic Linking, document
new PT_AARCH64_MEMTAG_MTE segment.

2023Q3 6th October 2023
• In Symbol Table, Expand

STO_AARCH64_VARIANT_PCS documentation

• In Program Loading, Relax BTI PLT requirement

2024Q3 5th September 2024
• In Program Property, Program Loading, and

Dynamic Linking, move description to SYSVABI64.

• Move relocation codes from PAUTHABIELF64 into
reserved space.

• Clarify use of addends in MOVZ, MOVK,

and ADRP

2.2 References
This document refers to, or is referred to by, the following documents.

Ref External reference or URL Title

AAELF64 Source for this document ELF for the Arm 64-bit Architecture
(AArch64).

7

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

Ref External reference or URL Title

AAPCS64 IHI 0055 Procedure Call Standard for the Arm
64-bit Architecture

Addenda32 IHI 0045 Addenda to, and Errata in, the ABI for
the Arm Architecture

PAuthABIELF
64

pauthabielf64 PAuth Extension to ELF for the Arm
64-bit Architecture

LSB http://www.linuxbase.org/ Linux Standards Base

SCO-ELF http://www.sco.com/developers/gabi/ System V Application Binary Interface
– DRAFT

LINUX_ABI https://github.com/hjl-tools/linux-abi/wiki Linux Extensions to gABI

SYM-VER http://people.redhat.com/drepper/symbol-ver
sioning

GNU Symbol Versioning

TLSDESC http://www.fsfla.org/~lxoliva/writeups/TLS/pa
per-lk2006.pdf

TLS Descriptors for Arm. Original
proposal document

MTEEXTENSI
ONS

https://www.kernel.org/doc/html/latest/arm6
4/memory-tagging-extension.html#core-dum
p-support

Linux Kernel MTE core dump format

SYSVABI64 sysvabi64 System V Application Binary Interface
(ABI) for the Arm 64-bit Architecture

2.3 Terms and abbreviations
The ABI for the Arm 64-bit Architecture uses the following terms and abbreviations:

A32

The instruction set named Arm in the Armv7 architecture; A32 uses 32-bit fixed-length instructions.

A64

The instruction set available when in AArch64 state.

AAPCS64

Procedure Call Standard for the Arm 64-bit Architecture (AArch64)

AArch32

The 32-bit general-purpose register width state of the Armv8 architecture, broadly compatible with
the Armv7-A architecture.

AArch64

The 64-bit general-purpose register width state of the Armv8 architecture.

ABI

Application Binary Interface:

1. The specifications to which an executable must conform in order to execute in a specific
execution environment. For example, the Linux ABI for the Arm Architecture.

2. A particular aspect of the specifications to which independently produced relocatable files must
conform in order to be statically linkable and executable. For example, the Addenda32,
AAPCS64, ...

Arm-based

... based on the Arm architecture ...

8

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
http://www.linuxbase.org/
http://www.linuxbase.org/
http://www.sco.com/developers/gabi/
http://www.sco.com/developers/gabi/
https://github.com/hjl-tools/linux-abi/wiki
https://github.com/hjl-tools/linux-abi/wiki
http://www.akkadia.org/drepper/symbol-versioning
http://people.redhat.com/drepper/symbol-versioning
http://people.redhat.com/drepper/symbol-versioning
http://www.fsfla.org/~lxoliva/writeups/TLS/paper-lk2006.pdf
http://www.fsfla.org/~lxoliva/writeups/TLS/paper-lk2006.pdf
http://www.fsfla.org/~lxoliva/writeups/TLS/paper-lk2006.pdf
https://www.kernel.org/doc/html/latest/arm64/memory-tagging-extension.html#core-dump-support
https://www.kernel.org/doc/html/latest/arm64/memory-tagging-extension.html#core-dump-support
https://www.kernel.org/doc/html/latest/arm64/memory-tagging-extension.html#core-dump-support
https://www.kernel.org/doc/html/latest/arm64/memory-tagging-extension.html#core-dump-support
https://www.kernel.org/doc/html/latest/arm64/memory-tagging-extension.html#core-dump-support
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

ELF32

An ELF object file with a class of ELFCLASS32

ELF64

An ELF object file with a class of ELFCLASS64

ILP32

SysV-like data model where int, long int and pointer are 32-bit

LP64

SysV-like data model where int is 32-bit, but long int and pointer are 64-bit.

Q-o-I

Quality of Implementation – a quality, behavior, functionality, or mechanism not required by this
standard, but which might be provided by systems conforming to it. Q-o-I is often used to describe
the toolchain-specific means by which a standard requirement is met.

T32

The instruction set named Thumb in the Armv7 architecture; T32 uses 16-bit and 32-bit instructions.

Other terms may be defined when first used.

9

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

3 About This Specification
This specification provides the processor-specific definitions required by ELF [SCO-ELF] for AArch64-based
systems.

The ELF specification is part of the larger Unix System V (SysV) ABI specification where it forms Object
Files and Program Loading and Dynamic Linking. However, the ELF specification can be used in isolation
as a generic object and executable format. Platform standards (Example Only) covers ELF related matters
that are platform specific.

Object Files and Program Loading and Dynamic Linking are structured to correspond to chapters 4 and 5
of the ELF specification. Specifically:

• Object Files covers object files and relocations

• Program Loading and Dynamic Linking covers program loading and dynamic linking.

3.1 ELF Class variants
Two different pointer sizes are supported by this specification, which result in two very similar but
different ELF definitions.

3.1.1 64-bit Pointers, ELF64

• Code and data using 64-bit pointers are contained in an ELF object file with a class of ELFCLASS64.

• Referred to as ELF64 in this specification.

• Pointer-size is 64 bits.

• Suitable for use by the LP64 variant of [AAPCS64]

3.1.2 32-bit Pointers, ELF32 (Beta)

• Code and data using 32-bit pointers is contained in an ELF object file with a class of ELFCLASS32.

• Referred to as ELF32 in this specification.

• Pointer-size is 32 bits.

• Suitable for use by the ILP32 variant of [AAPCS64]

Note

Interlinking is not supported between the ELF32 and ELF64 variants.

10

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

http://www.sco.com/developers/gabi/
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

4 Platform standards (Example Only)
We expect that each operating system that adopts components of this ABI specification will specify
additional requirements and constraints that must be met by application code in binary form and the
code-generation tools that generate such code.

As an example of the kind of issue that must be addressed, Linux Platform ABI (example only) lists some
of the issues addressed by the Linux Standard Base [LSB] specifications.

4.1 Linux Platform ABI (example only)

4.1.1 Symbol Versioning
The Linux ABI uses the GNU-extended Solaris symbol versioning mechanism [SYM-VER].

Concrete data structure descriptions can be found in /usr/include/sys/link.h (Solaris),
/usr/include/elf.h (Linux), in the Linux Standard Base specifications [LSB], and in Drepper’s paper
[SYM-VER].

A binary file intended to be specific to Linux shall set the EI_OSABI field to the value required by Linux
[LSB].

4.1.2 Program Linkage Table (PLT) Sequences and Usage Models

4.1.2.1 Symbols for which a PLT entry must be generated

A PLT entry implements a long-branch to a destination outside of this executable file. In general, the
static linker knows only the name of the destination. It does not know its address. Such a location is
called an imported location or imported symbol.

SysV-based Dynamic Shared Objects (DSOs) (e.g. for Linux) also require functions exported from an
executable file to have PLT entries. In effect, exported functions are treated as if they were imported, so
that their definitions can be overridden (pre-empted) at dynamic link time.

A linker must generate a PLT entry for each candidate symbol cited by a relocation directive that relocates
an AArch64 B/BL-class instruction (Call and Jump relocations). For a Linux/SysV DSO, each STB_GLOBAL
symbol with STV_DEFAULT visibility is a candidate.

4.1.2.2 Overview of PLT entry code generation

A PLT entry must be able to branch any distance. This is typically achieved by loading the destination
address from the corresponding Global Object Table (GOT) entry.

On-demand dynamic linking constrains the code sequences that can be generated for a PLT entry.
Specifically, there is a requirement from the dynamic linker for certain registers to contain certain values.
Typically these are:

• The address or index of the not-yet-linked PLT entry.

• The return address of the call to the PLT entry.

The register interface to the dynamic linker is specified by the host operating system.

11

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

http://www.linuxbase.org/
http://www.akkadia.org/drepper/symbol-versioning
http://www.linuxbase.org/
http://www.akkadia.org/drepper/symbol-versioning
http://www.linuxbase.org/

5 Object Files

5.1 Introduction

5.1.1 Registered Vendor Names
Various symbols and names may require a vendor-specific name to avoid the potential for name-space
conflicts. The list of currently registered vendors and their preferred short-hand name is given in the
below table. Tools developers not listed are requested to co-ordinate with Arm to avoid the potential for
conflicts.

Registered Vendors

Name Vendor

aeabi Reserved to the ABI for the Arm Architecture (EABI pseudo-vendor)

AnonXyz
anonXyz

Reserved to private experiments by the Xyz vendor. Guaranteed not to clash with any
registered vendor name.

ARM Arm Ltd (Note: the company, not the processor).

cxa C++ ABI pseudo-vendor

dig Dignus, LLC.

FSL Freescale Semiconductor Inc.

GHS Green Hills Systems

gnu GNU compilers and tools (Free Software Foundation)

iar IAR Systems

intel Intel Corporation

ixs Intel Xscale

llvm The LLVM/Clang projects

mchp Microchip Technology Inc.

PSI PalmSource Inc.

RAL Rowley Associates Ltd

somn SOMNIUM Technologies Limited.

TASKING Altium Ltd.

TI TI Inc.

tls Reserved for use in thread-local storage routines.

WRS Wind River Systems.

To register a vendor prefix with Arm, please E-mail your request to arm.eabi at arm.com.

12

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

5.2 ELF Header
The ELF header provides a number of fields that assist in interpretation of the file. Most of these are
specified in the base standard. The following fields have Arm-specific meanings.

e_machine

An object file conforming to this specification must have the value EM_AARCH64 (183, 0xB7).

e_entry

The base ELF specification requires this field to be zero if an application does not have an entry point.
Nonetheless, some applications may require an entry point of zero (for example, via a reset vector).

A platform standard may specify that an executable file always has an entry point, in which case
e_entry specifies that entry point, even if zero.

e_flags

There are no processor-specific flags so this field shall contain zero.

5.2.1 ELF Identification
The 16-byte ELF identification (e_ident) provides information on how to interpret the file itself. The
following values shall be used on Arm systems

EI_CLASS

For object files (executable, shared and relocatable) the EI_CLASS shall be:

• ELFCLASS64 for an ELF64 object file.

• ELFCLASS32 for an ELF32 object file (Beta).

EI_DATA

This field may be either ELFDATA2LSB or ELFDATA2MSB. The choice will be governed by the default
data order in the execution environment.

EI_OSABI

This field shall be zero unless the file uses objects that have flags which have OS-specific meanings
(for example, it makes use of a section index in the range SHN_LOOS through SHN_HIOS).

5.3 Sections

5.3.1 Special Section Indexes
No processor-specific special section indexes are defined. All processor-specific values are reserved to
future revisions of this specification.

5.3.2 Section Types
The defined processor-specific section types are listed in the below table. All other processor-specific
values are reserved to future revisions of this specification.

Processor specific section types

Name Value Comment

SHT_AARCH64_ATTRIBUTES 0x70000003 Reserved for Object file compatibility attributes

13

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

5.3.3 Section Attribute Flags
There are no processor-specific section attribute flags defined. All processor-specific values are reserved
to future revisions of this specification.

5.3.3.1 Merging of objects in sections with SHF_MERGE

In a section with the SHF_MERGE flag set, duplicate used objects may be merged and unused objects may
be removed. An object is used if:

• A relocation directive addresses the object via the section symbol with a suitable addend to point to
the object.

• A relocation directive addresses a symbol within the section. The used object is the one addressed
by the symbol irrespective of the addend used.

5.3.4 Special Sections
The below table lists the special sections defined by this ABI.

AArch64 special sections

Name Type Attributes

.ARM.attributes SHT_AARCH64_ATTRIBUTES none

.note.gnu.property SHT_NOTE SHF_ALLOC

.ARM.attributes names a section that contains build attributes. See Build Attributes.

.note.gnu.property names a section that holds a program property note. See [LINUX_ABI] for more
information.

Additional special sections may be required by some platforms standards.

5.3.5 Section Alignment
There is no minimum alignment required for a section. Sections containing code must be at least 4-byte
aligned. Platform standards may set a limit on the maximum alignment that they can guarantee (normally
the minimum page size supported by the platform).

5.3.6 Build Attributes
Build attributes are encoded in a section of type SHT_AARCH64_ATTRIBUTES, and name .ARM.attributes.

Build attributes are unnecessary when a platform ABI operating system is fully specified. At this time no
public build attributes have been defined for AArch64, however, software development tools are free to
use attributes privately. For an introduction to AArch32 build attributes see [Addenda32].

5.4 String Table
There are no processor-specific extensions to the string table.

5.5 Symbol Table
There are no processor-specific symbol types or symbol bindings. All processor-specific values are
reserved to future revisions of this specification.

14

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/hjl-tools/linux-abi/wiki
https://github.com/ARM-software/abi-aa/releases

5.5.1 st_other Values
The st_other member of a symbol table entry specifies the symbol's visibility in the lowest 2 bits. The
top 6 bits are unused in the generic ELF ABI [SCO-ELF], and while there are no values reserved for
processor-specific semantics, many other architectures have used these bits.

The defined processor-specific st_other flag values are listed below:

Processor specific st_other flags

Name Mask Comment

STO_AARCH64_VARIANT_PCS 0x80 The function associated with the symbol may follow a variant
procedure call standard with different register usage
convention.

A symbol table entry that is marked with the STO_AARCH64_VARIANT_PCS flag set in its st_other field may
be associated with a function that follows a variant procedure call standard under which:

• the caller and callee exchange information in registers that are not set aside for that purpose in the
base procedure call standard [AAPCS64]; or

• the processor is guaranteed or allowed to be in a certain state on entry or return from the function,
beyond or in conflict with the state guaranteed or allowed by the base procedure call standard.

For example:

• The function might take arguments in registers that are not normally argument registers.

• The function might return values in registers that are not normally return value registers.

• The function might guarantee that extra register state is preserved by the call.

• PSTATE on entry to the function might be different from normal.

• PSTATE on return from the function might be different from normal.

The following types of function must be marked with STO_AARCH64_VARIANT_PCS, although the list is not
intended to be exhaustive:

• vector PCS functions [VFABI64]

• functions that take arguments in SVE registers or return values in SVE registers

• streaming and streaming-compatible functions [AAPCS64]

• shared-ZA functions [AAPCS64]

The rules in the Call and Jump relocations section still apply to variant PCS functions.

If a subroutine is called via a symbol reference that is marked with STO_AARCH64_VARIANT_PCS, then code
that runs between the calling routine and the called subroutine must preserve the contents of all registers
except for IP0, IP1, and the condition code flags [AAPCS64]. It must also preserve the processor
execution mode, such as PSTATE.SM and PSTATE.ZA. It is not possible to provide a definitive list of which
state must be preserved, since the intention is to allow it to grow as the architecture evolves.

Static linkers must preserve the marking and propagate it to the dynamic symbol table if any reference or
definition of the symbol is marked with STO_AARCH64_VARIANT_PCS, and add a DT_AARCH64_VARIANT_PCS
dynamic tag if required by the Dynamic Section section.

Note

In particular, when a call is made via the PLT entry of a symbol marked with
STO_AARCH64_VARIANT_PCS, a dynamic linker cannot assume that the call follows the register usage
convention of the base procedure call standard.

15

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

http://www.sco.com/developers/gabi/
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

5.6 Weak Symbols
There are two forms of weak symbol:

• A weak reference — This is denoted by:

• st_shndx=SHN_UNDEF, ELF64_ST_BIND()=STB_WEAK.

• st_shndx=SHN_UNDEF, ELF32_ST_BIND()=STB_WEAK (Beta).

• A weak definition — This is denoted by:

• st_shndx!=SHN_UNDEF, ELF64_ST_BIND()=STB_WEAK.

• st_shndx!=SHN_UNDEF, ELF32_ST_BIND()=STB_WEAK (Beta).

5.6.1 Weak References
Libraries are not searched to resolve weak references. It is not an error for a weak reference to remain
unsatisfied.

During linking, the symbol value of an undefined weak reference is:

• Zero if the relocation type is absolute

• The address of the place if the relocation type is pc-relative.

See Relocation for further details.

5.6.2 Weak Definitions
A weak definition does not change the rules by which object files are selected from libraries. However, if a
link set contains both a weak definition and a non-weak definition, the non-weak definition will always be
used.

5.6.3 Symbol Types
All code symbols exported from an object file (symbols with binding STB_GLOBAL) shall have type
STT_FUNC. All extern data objects shall have type STT_OBJECT. No STB_GLOBAL data symbol shall have
type STT_FUNC. The type of an undefined symbol shall be STT_NOTYPE or the type of its expected
definition.

The type of any other symbol defined in an executable section can be STT_NOTYPE. A linker is only
required to provide long-branch and PLT support for symbols of type STT_FUNC.

5.6.4 Symbol names
A symbol that names a C or assembly language entity should have the name of that entity. For example,
a C function called calculate generates a symbol called calculate (not _calculate).

Symbol names are case sensitive and are matched exactly by linkers.

Any symbol with binding STB_LOCAL may be removed from an object and replaced with an offset from
another symbol in the same section under the following conditions:

• The original symbol and replacement symbol are not of type STT_FUNC, or both symbols are of type
STT_FUNC.

• All relocations referring to the symbol can accommodate the adjustment in the addend field (it is
permitted to convert a REL type relocation to a RELA type relocation).

• The symbol is not described by the debug information.

16

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

• The symbol is not a mapping symbol (Mapping symbols).

• The resulting object, or image, is not required to preserve accurate symbol information to permit
de-compilation or other post-linking optimization techniques.

• If the symbol labels an object in a section with the SHF_MERGE flag set, the relocation using symbol
may be changed to use the section symbol only if the initial addend of the relocation is zero.

No tool is required to perform the above transformations; an object consumer must be prepared to do
this itself if it might find the additional symbols confusing.

Note

Multiple conventions exist for the names of compiler temporary symbols (for example, ARMCC uses
Lxxx.yyy, while GNU tools use .Lxxx).

5.6.4.1 Reserved symbol names

The following symbols are reserved to this and future revisions of this specification:

• Local symbols (STB_LOCAL) beginning with ‘$’

• Symbols matching the pattern {non-empty-prefix}$${non-empty-suffix}.

• Global symbols (STB_GLOBAL, STB_WEAK) beginning with ‘__aeabi_’ (double ‘_’ at start).

Note

Global symbols beginning with ‘__vendor_’ (double ‘_’ at start), where vendor is listed in Registered
Vendor Names are reserved to the named vendor for the purpose of providing vendor-specific toolchain
support functions.

5.6.5 Mapping symbols
A section of an ELF file can contain a mixture of A64 code and data. There are inline transitions between
code and data at literal pool boundaries.

Linkers, file decoders and other tools need to map binaries correctly. To support this, a number of
symbols, termed mapping symbols appear in the symbol table to label the start of each sequence of bytes
of the appropriate class. All mapping symbols have type STT_NOTYPE and binding STB_LOCAL. The
st_size field is unused and must be zero.

The mapping symbols are defined in the Mapping symbols table. It is an error for a relocation to reference
a mapping symbol. Two forms of mapping symbol are supported:

• A short form that uses a dollar character and a single letter denoting the class. This form can be
used when an object producer creates mapping symbols automatically. Its use minimizes string table
size.

• A longer form in which the short form is extended with a period and then any sequence of characters
that are legal for a symbol. This form can be used when assembler files have to be annotated
manually and the assembler does not support multiple definitions of symbols.

Mapping symbols defined in a section (relocatable view) or segment (executable view) define a sequence
of half- open intervals that cover the address range of the section or segment. Each interval starts at the
address defined by the mapping symbol, and continues up to, but not including, the address defined by
the next (in address order) mapping symbol or the end of the section or segment. A section that contains
instructions must have a mapping symbol defined at the beginning of the section. If a section contains

17

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

only data no mapping symbol is required. A platform ABI should specify whether or not mapping symbols
are present in the executable view; they will never be present in a stripped executable file.

Mapping symbols

Name Meaning

$x
$x.<any...>

Start of a sequence of A64 instructions

$d
$d.<any...>

Start of a sequence of data items (for example, a literal pool)

5.7 Relocation
Relocation information is used by linkers to bind symbols to addresses that could not be determined when
the binary file was generated. Relocations are classified as Static or Dynamic.

• A static relocation relocates a place in an ELF relocatable file (e_type = ET_REL); a static linker
processes it.

• A dynamic relocation is designed to relocate a place in an ELF executable file or dynamic shared
object (e_type = ET_EXEC, ET_DYN) and to be handled by a dynamic linker, program loader, or
other post-linking tool (dynamic linker henceforth).

• A dynamic linker need only process dynamic relocations; a static linker must handle any defined
relocation.

• Dynamic relocations are designed to be processed quickly.

• There are a small number of dynamic relocations whose codes are contiguous.

• Dynamic relocations relocate simple places and do not need complex field extraction or
insertion.

• A static linker either:

• Fully resolves a relocation directive.

• Or, generates a dynamic relocation from it for processing by a dynamic linker.

• A well-formed executable file or dynamic shared object has no static relocations after static linking.

5.7.1 Relocation codes
The relocation codes for AArch64 are divided into four categories:

• Mandatory relocations that must be supported by all static linkers.

• Platform-specific relocations required by specific platform ABIs.

• Private relocations that are guaranteed never to be allocated in future revisions of this specification,
but which must never be used in portable object files.

• Unallocated relocations that are reserved for use in future revisions of this specification.

18

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

5.7.2 Addends and PC-bias
A binary file may use REL or RELA relocations or a mixture of the two (but multiple relocations of the same
place must use only one type).

The initial addend for a REL-type relocation is formed according to the following rules.

• If the relocation relocates data (Static Data relocations) the initial value in the place is sign-extended
to 64 bits.

• If the relocation relocates an instruction the immediate field of the instruction is extracted, scaled as
required by the instruction field encoding, and sign-extended to 64 bits.

A RELA format relocation must be used if the initial addend cannot be encoded in the place.

There is no PC bias to accommodate in the relocation of a place containing an instruction that formulates
a PC- relative address. The program counter reflects the address of the currently executing instruction.

There are two special cases for forming the initial addend of REL-type relocations where the immediate
field cannot normally hold small signed integers:

• For relocations processing MOVZ and MOVK instructions (including the "MOV (wide immediate)"
alias), the initial addend is formed by interpreting the 16-bit literal field of the instruction as a 16-bit
signed value in the range -32768 <= A < 32768. The interpretation is the same whether or not the
instruction applies a left shift to its immediate: the addend is never treated as shifted.

• For relocations processing the ADRP instruction, the initial addend is similarly formed by interpreting
the literal field of the instruction as a 21-bit signed integer, in the range -1048576 <= A < 1048576.
The ADRP instruction's implicit left shift of 12 bits is not applied.

These special cases permit a sequence of instructions to each add the same small constant to a symbol's
value, and extract separate ranges of bits from the sum, so that the instruction sequence as a whole
consistently loads the full result of the addition.

In the case of a sequence using ADRP followed by a 12-bit ADD to set up the low bits of the offset, you
can express an offset up to 1048576 in either direction, by writing the full offset in the ADRP's immediate
field, and repeating its low 12 bits in the ADD's immediate field. A linker resolving the
R_AARCH64_ADD_ABS_LO12_NC relocation on the ADD will not compute the correct overall 64-bit value,
but the error will only be in the higher bits, which are discarded by that relocation.

5.7.3 Relocation types
Tables in the following sections list the relocation codes for AArch64 and record the following.

• The relocation code which is stored in the ELF64_R_TYPE or ELF32_R_TYPE component of the r_info
field.

• The preferred mnemonic name for the relocation. This has no significance in a binary file.

• The relocation operation required. This field describes how a symbol and addend are processed by a
linker. It does not describe how an initial addend value is extracted from a place (Addends and
PC-bias) or how the resulting relocated value is inserted or encoded into a place.

• A comment describing the kind of place that can be relocated, the part of the result value inserted
into the place, and whether or not field overflow should be checked.

5.7.3.1 Relocation names and class

A mnemonic name class is used to distinguish between ELF64 and ELF32 relocation names.

• ELF64 relocations have <CLS> = AARCH64, e.g. R_AARCH64_ABS32

• ELF32 relocations have <CLS> = AARCH64_P32, where P32 denotes the pointer size, e.g.
R_AARCH64_P32_ABS32 (Beta)

19

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

Note

Within this document <CLS> is not expanded in instances where only a single relocation name exists.

5.7.3.2 Relocation codes disambiguation

References to relocation codes are disambiguated in the following way:

• ELF64 relocation codes are bounded by parentheses: ().

• ELF32 relocation codes are bounded by brackets: [].

Static relocation codes for ELF64 object files begin at (257); dynamic ones at (1024). Both (0) and (256)
should be accepted as values of R_AARCH64_NONE, the null relocation.

Static relocation codes for ELF32 object files begin at [1]; dynamic ones at [180].

All unallocated type codes are reserved for future allocation.

5.7.3.3 Relocation operations

The following nomenclature is used in the descriptions of relocation operations:

• S (when used on its own) is the address of the symbol.

• A is the addend for the relocation.

• P is the address of the place being relocated (derived from r_offset).

• X is the result of a relocation operation, before any masking or bit-selection operation is applied

• Page(expr) is the page address of the expression expr, defined as (expr & ~0xFFF). (This applies
even if the machine page size supported by the platform has a different value.)

• GOT is the address of the Global Offset Table, the table of code and data addresses to be resolved at
dynamic link time. The GOT and each entry in it must be, 64-bit aligned for ELF64 or 32-bit aligned
for ELF32.

• GDAT(S+A) represents a pointer-sized entry in the GOT for address S+A. The entry will be relocated at
run time with relocation R_<CLS>_GLOB_DAT(S+A).

• G(expr) is the address of the GOT entry for the expression expr.

• Delta(S) if S is a normal symbol, resolves to the difference between the static link address of S and
the execution address of S. If S is the null symbol (ELF symbol index 0), resolves to the difference
between the static link address of P and the execution address of P.

• Indirect(expr) represents the result of calling expr as a function. The result is the return value
from the function that is returned in r0. The arguments passed to the function are defined by the
platform ABI.

• [msb:lsb] is a bit-mask operation representing the selection of bits in a value. The bits selected
range from lsb up to msb inclusive. For example, ‘bits [3:0]’ represents the bits under the mask
0x0000000F. When range checking is applied to a value, it is applied before the masking operation is
performed.

The value written into a target field is always reduced to fit the field. It is Q-o-I whether a linker
generates a diagnostic when a relocated value overflows its target field.

Relocation types whose names end with "_NC" are non-checking relocation types. These must not
generate diagnostics in case of field overflow. Usually, a non-checking type relocates an instruction that
computes one of the less significant parts of a single value computed by a group of instructions (Group
relocations). Only the instruction computing the most significant part of the value can be checked for field
overflow because, in general, a relocated value will overflow the fields of instructions computing the less
significant parts. Some non-checking relocations may, however, be expected to check for correct

20

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

alignment of the result; the notes explain when this is permitted. In ELF32 relocations an overflow check
of -231 <= X < 231 or 0 <= X < 231 is equivalent to no check (i.e. ‘None’).

In ELF32 (Beta) relocations additional care must be taken when relocating an ADRP instruction which
effectively uses a signed 33-bit PC-relative offset to generate a 32-bit address. The following relocations
apply to ADRP:

R_<CLS>_ADR_PREL_PG_HI21,
R_<CLS>_ADR_GOT_PAGE,
R_<CLS>_TLSGD_ADR_PAGE21,
R_<CLS>_TLSLD_ADR_PAGE21,
R_<CLS>_TLSIE_ADR_GOTTPREL_PAGE21,
R_<CLS>_TLSDESC_ADR_PAGE21

Relocations using the GDAT(S) operation must have a zero addend. Previous versions of this document
included the addend A in GDAT(S + A) resulting in a GOT entry for S + A. With a zero addend
GDAT(S + 0) is equivalent to GDAT(S) and GDAT(S) + 0.

5.7.4 Static miscellaneous relocations
R_<CLS>_NONE (null relocation code) records that the section containing the place to be relocated depends
on the section defining the symbol mentioned in the relocation directive in a way otherwise invisible to a
static linker. The effect is to prevent removal of sections that might otherwise appear to be unused.

Null relocation codes

ELF64 Code ELF32 Code Name Operation Comment

0 0 R_<CLS>_NONE None

256 - withdrawn None Treat as R_<CLS>_NONE.

5.7.5 Static Data relocations
See also table GOT-relative data relocations.

Data relocations

ELF64 Code ELF32 Code Name Operation Comment

257 - R_<CLS>_ABS64 S + A Write bits [63:0] of X at
byte-aligned place P. No overflow
check.

258 1 R_<CLS>_ABS32 S + A Write bits [31:0] of X at
byte-aligned place P. Check that
-231 <= X < 232.

259 2 R_<CLS>_ABS16 S + A Write bits [15:0] of X at
byte-aligned place P. Check that
-215 <= X < 216.

260 - R_<CLS>_PREL64 S + A - P Write bits [63:0] of X at
byte-aligned place P. No overflow
check.

21

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

ELF64 Code ELF32 Code Name Operation Comment

261 3 R_<CLS>_PREL32 S + A - P Write bits [31:0] of X at
byte-aligned place P. Check that
-231 <= X < 232.

262 4 R_<CLS>_PREL16 S + A - P Write bits [15:0] of X at
byte-aligned place P. Check that
-215 <= X < 216.

314 29 R_<CLS>_PLT32 S + A - P Write bits [31:0] of X at
byte-aligned place P. Check that
-231 <= X < 231 see call and
jump relocations.

These overflow ranges permit either signed or unsigned narrow values to be created from the
intermediate result viewed as a 64-bit signed integer. If the place is intended to hold a narrow signed
value and INTn_MAX < X <= UINTn_MAX, no overflow will be detected but the positive result will be
interpreted as a negative value.

5.7.6 Static AArch64 relocations
The following tables record single instruction relocations and relocations that allow a group or sequence of
instructions to compute a single relocated value.

Group relocations to create a 16-, 32-, 48-, or 64-bit unsigned data value or address inline

ELF64
Code

ELF32
Code Name Operation Comment

263 5 R_<CLS>_MOVW_UABS_G0 S + A Set a MOV[KZ] immediate field to
bits [15:0] of X; check that 0 <=
X < 216

264 6 R_<CLS>_MOVW_UABS_G0_NC S + A Set a MOV[KZ] immediate field to
bits [15:0] of X. No overflow
check

265 7 R_<CLS>_MOVW_UABS_G1 S + A Set a MOV[KZ] immediate field to
bits [31:16] of X; check that 0 <=
X < 232

266 - R_<CLS>_MOVW_UABS_G1_NC S + A Set a MOV[KZ] immediate field to
bits [31:16] of X. No overflow
check

267 - R_<CLS>_MOVW_UABS_G2 S + A Set a MOV[KZ] immediate field to
bits [47:32] of X; check that 0 <=
X < 248

268 - R_<CLS>_MOVW_UABS_G2_NC S + A Set a MOV[KZ] immediate field to
bits [47:32] of X. No overflow
check

269 - R_<CLS>_MOVW_UABS_G3 S + A Set a MOV[KZ] immediate field to
bits [63:48] of X (no overflow
check needed)

Group relocations to create a 16, 32, 48, or 64 bit signed data or offset value inline

22

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

ELF64
Code

ELF32
Code Name Operation Comment

270 8 R_<CLS>_MOVW_SABS_G0 S + A Set a MOV[NZ] immediate field
using bits [15:0] of X (see notes
below); check -216 <= X < 216

271 - R_<CLS>_MOVW_SABS_G1 S + A Set a MOV[NZ] immediate field
using bits [31:16] of X (see notes
below); check -232 <= X < 232

272 - R_<CLS>_MOVW_SABS_G2 S + A Set a MOV[NZ] immediate field
using bits [47:32] of X (see notes
below); check -248 <= X < 248

Note

These checking forms relocate MOVN or MOVZ.

X >= 0: Set the instruction to MOVZ and its immediate field to the selected bits of X.

X < 0: Set the instruction to MOVN and its immediate field to NOT (selected bits of X).

Relocations to generate 19, 21 and 33 bit PC-relative addresses

ELF64
Code

ELF32
Code Name Operation Comment

273 9 R_<CLS>_ LD_PREL_LO19 S + A - P Set a load-literal immediate
value to bits [20:2] of X; check
that -220 <= X < 220

274 10 R_<CLS>_ ADR_PREL_LO21 S + A - P Set an ADR immediate value to
bits [20:0] of X; check that -220

<= X < 220

275 11 R_<CLS>_ ADR_PREL_PG_HI21 Page(S+A)
-Page(P)

Set an ADRP immediate value
to bits [32:12] of the X; check
that -232 <= X < 232

276 - R_<CLS>_
ADR_PREL_PG_HI21_NC

Page(S+A)
-Page(P)

Set an ADRP immediate value
to bits [32:12] of the X. No
overflow check

277 12 R_<CLS>_ ADD_ABS_LO12_NC S + A Set an ADD immediate value to
bits [11:0] of X. No overflow
check. Used with relocations
ADR_PREL_PG_HI21 and
ADR_PREL_PG_HI21_NC

278 13 R_<CLS>_ LDST8_ABS_LO12_NC S + A Set an LD/ST immediate value
to bits [11:0] of X. No overflow
check. Used with relocations
ADR_PREL_PG_HI21 and
ADR_PREL_PG_HI21_NC

284 14 R_<CLS>_ LDST16_ABS_LO12_NC S + A Set an LD/ST immediate value
to bits [11:1] of X. No overflow
check

23

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

ELF64
Code

ELF32
Code Name Operation Comment

285 15 R_<CLS>_ LDST32_ABS_LO12_NC S + A Set the LD/ST immediate value
to bits [11:2] of X. No overflow
check

286 16 R_<CLS>_ LDST64_ABS_LO12_NC S + A Set the LD/ST immediate value
to bits [11:3] of X. No overflow
check

299 17 R_<CLS>_
LDST128_ABS_LO12_NC

S + A Set the LD/ST immediate value
to bits [11:4] of X. No overflow
check

Note

Relocations (284, 285, 286 and 299) or [14, 15, 16, 17] are intended to be used with
R_<CLS>_ADR_PREL_PG_HI21 (275) or [11] so they pick out the low 12 bits of the address and, in effect,
scale that by the access size. The increased address range provided by scaled addressing is not
supported by these relocations because the extra range is unusable in conjunction with
R_<CLS>_ADR_PREL_PG_HI21.

Although overflow must not be checked, a linker should check that the value of X is aligned to a
multiple of the datum size.

Relocations for control-flow instructions - all offsets are a multiple of 4

ELF64
Code

ELF32
Code Name Operation Comment

279 18 R_<CLS>_TSTBR14 S+A-P Set the immediate field of a TBZ/TBNZ
instruction to bits [15:2] of X; check -215

<= X < 215

280 19 R_<CLS>_CONDBR19 S+A-P Set the immediate field of a conditional
branch instruction to bits [20:2] of X; check
-220 <= X< 220

282 20 R_<CLS>_JUMP26 S+A-P Set a B immediate field to bits [27:2] of X;
check that -227 <= X < 227

283 21 R_<CLS>_CALL26 S+A-P Set a CALL immediate field to bits [27:2] of
X; check that -227 <= X < 227

Group relocations to create a 16, 32, 48, or 64 bit PC-relative offset inline

ELF64
Code

ELF32
Code Name Operation Comment

287 22 R_<CLS>_MOVW_PREL_G0 S+A-P Set a MOV[NZ]immediate field
to bits [15:0] of X (see notes
below)

288 23 R_<CLS>_MOVW_PREL_G0_NC S+A-P Set a MOVK immediate field to
bits [15:0] of X. No overflow
check

24

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

ELF64
Code

ELF32
Code Name Operation Comment

289 24 R_<CLS>_MOVW_PREL_G1 S+A-P Set a MOV[NZ]immediate field
to bits [31:16] of X (see notes
below)

290 - R_<CLS>_MOVW_PREL_G1_NC S+A-P Set a MOVK immediate field to
bits [31:16] of X. No overflow
check

291 - R_<CLS>_MOVW_PREL_G2 S+A-P Set a MOV[NZ]immediate value
to bits [47:32] of X (see notes
below)

292 - R_<CLS>_MOVW_PREL_G2_NC S+A-P Set a MOVK immediate field to
bits [47:32] of X. No overflow
check

293 - R_<CLS>_MOVW_PREL_G3 S+A-P Set a MOV[NZ]immediate value
to bits [63:48] of X (see notes
below)

Note

Non-checking (_NC) forms relocate MOVK; checking forms relocate MOVN or MOVZ.

X >= 0: Set the instruction to MOVZ and its immediate value to the selected bits of X; for relocation
R_..._Gn, check in ELF64 that X < {G0: 216, G1: 232, G2: 248} (no check for R_..._G3); in ELF32 only
check X < 216 for R_..._G0.

X < 0: Set the instruction to MOVN and its immediate value to NOT (selected bits of X); for relocation
R_..._Gn, check in ELF64 that -{G0: 216, G1: 232, G2: 248} <= X (no check for R_..._G3); in ELF32
only check that –216 <= X for R_..._G0.

Group relocations to create a 16, 32, 48, or 64 bit GOT-relative offsets inline

ELF64
Code

ELF32
Code Name Operation Comment

300 - R_<CLS>_MOVW_GOTOFF_G0 G(GDAT(S))
-GOT

Set a MOV[NZ] immediate
field to bits [15:0] of X (see
notes below)

301 - R_<CLS>_MOVW_GOTOFF_G0_NC G(GDAT(S))
-GOT

Set a MOVK immediate field
to bits [15:0] of X. No
overflow check

302 - R_<CLS>_MOVW_GOTOFF_G1 G(GDAT(S))
-GOT

Set a MOV[NZ] immediate
value to bits [31:16] of X
(see notes below)

303 - R_<CLS>_MOVW_GOTOFF_G1_NC G(GDAT(S))
-GOT

Set a MOVK immediate value
to bits [31:16] of X. No
overflow check

304 - R_<CLS>_MOVW_GOTOFF_G2 G(GDAT(S))
-GOT

Set a MOV[NZ] immediate
value to bits [47:32] of X
(see notes below)

25

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

ELF64
Code

ELF32
Code Name Operation Comment

305 - R_<CLS>_MOVW_GOTOFF_G2_NC G(GDAT(S))
-GOT

Set a MOVK immediate value
to bits [47:32] of X. No
overflow check

306 - R_<CLS>_MOVW_GOTOFF_G3 G(GDAT(S))
-GOT

Set a MOV[NZ] immediate
value to bits [63:48] of X
(see notes below)

Note

Non-checking (_NC) forms relocate MOVK; checking forms relocate MOVN or MOVZ.

GOT-relative data relocations

ELF64
Code

ELF32
Code Name Operation Comment

307 - R_<CLS>_GOTREL64 S+A-GOT Write bits [63:0] of X at
byte-aligned place P.
This represents a 64-bit
offset relative to the
GOT.

308 - R_<CLS>_GOTREL32 S+A-GOT Write bits [31:0] of X at
byte-aligned place P.
This represents a 32-bit
offset relative to GOT,
treated as signed; Check
that -231 <= X < 231.

315 - R_<CLS>_GOTPCREL32 G(GDAT(S))- P Write bits [31:0] of X at
byte-aligned place P.
This represents a 32-bit
offset relative to GOT
entry for an address,
treated as signed; Check
that -231 <= X < 231.

GOT-relative instruction relocations

ELF64
Code

ELF32
Code Name Operation Comment

309 25 R_<CLS>_GOT_LD_PREL19 G(GDAT(S))- P Set a load-literal
immediate field to bits
[20:2] of X; check –220

<= X < 220

310 - R_<CLS>_LD64_GOTOFF_LO15 G(GDAT(S))- GOT Set a LD/ST immediate
field to bits [14:3] of X;
check that 0 <= X <
215, X&7 = 0

26

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

ELF64
Code

ELF32
Code Name Operation Comment

311 26 R_<CLS>_ADR_GOT_PAGE Page(G(GDAT(S)))-
Page(P)

Set the immediate value
of an ADRP to bits
[32:12] of X; check that
–232 <= X < 232

312 - R_<CLS>_LD64_GOT_LO12_NC G(GDAT(S)) Set the LD/ST
immediate field to bits
[11:3] of X. No overflow
check; check that X&7 =
0

- 27 R_<CLS>_LD32_GOT_LO12_NC G(GDAT(S)) Set the LD/ST
immediate field to bits
[11:2] of X. No overflow
check; check that X&3 =
0

313 - R_<CLS>_LD64_GOTPAGE_LO1
5

G(GDAT(S))-Page(G
OT)

Set the LD/ST
immediate field to bits
[14:3] of X; check that 0
<= X < 215, X&7 = 0

- 28 R_<CLS>_LD32_GOTPAGE_LO1
4

G(GDAT(S))-Page(G
OT)

Set the LD/ST
immediate field to bits
[13:2] of X; check that 0
<= X < 214, X&3 = 0

5.7.7 Call and Jump relocations
There is one relocation code (R_<CLS>_CALL26) for function call (BL) instructions and one
(R_<CLS>_JUMP26) for jump (B) instructions. The (R_<CLS>_PLT32) relocation is a data relocation for
calculating the offset to a function. This can be used as the target of an indirect jump.

A linker may use a veneer (a sequence of instructions) to implement a relocated branch if the relocation is
either

R_<CLS>_CALL26, R_<CLS>_JUMP26 or R_<CLS>_PLT32 and:

• The target symbol has type STT_FUNC.

• Or, the target symbol and relocated place are in separate sections input to the linker.

• Or, the target symbol is undefined (external to the link unit).

In all other cases a linker shall diagnose an error if relocation cannot be effected without a veneer. A
linker generated veneer may corrupt registers IP0 and IP1 [AAPCS64] and the condition flags, but must
preserve all other registers. Linker veneers may be needed for a number of reasons, including, but not
limited to:

• Target is outside the addressable span of the branch instruction (+/- 128MB).

• Target address will not be known until run time, or the target address might be pre-empted.

In some systems indirect calls may also use veneers in order to support dynamic linkage that preserves
pointer comparability (all reference to the function resolve to the same address).

On platforms that do not support dynamic pre-emption of symbols, an unresolved weak reference to a
symbol relocated by R_<CLS>_CALL26 shall be treated as a jump to the next instruction (the call becomes
a no-op). The behaviour of R_<CLS>_JUMP26 and R_<CLS>_PLT32 in these conditions is not specified by
this standard.

27

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases

5.7.8 Group relocations
A relocation code whose name ends in _Gn or _Gn_NC (n = 0, 1, 2, 3) relocates an instruction in a group of
instructions that generate a single value or address (see tables unsigned inline group relocations, signed
inline group relocations, PC-relative inline relocations, GOT-relative inline relocations). Each such
relocation relocates one instruction in isolation, with no need to determine all members of the group at
link time.

These relocations operate by performing the relocation calculation then extracting a field from the result
X. Generating the field for a Gn relocation directive starts by examining the residual value Yn after the bits
of abs(X) corresponding to less significant fields have been masked off from X. If M is the mask specified
in the table recording the relocation directive, Yn = abs(X) & ~((M & -M) - 1).

Overflow checking is performed on Yn unless the name of the relocation ends in "_NC".

Finally the bit-field of X specified in the table (those bits of X picked out by 1-bits in M) is encoded into the
instruction’s literal field as specified in the table. In some cases other instruction bits may need to be
changed according to the sign of X.

For "MOVW" type relocations it is the assembler’s responsibility to encode the hw bits (bits 21 and 22) to
indicate the bits in the target value that the immediate field represents.

5.7.9 Relocation optimization
Linkers may optionally optimize instructions affected by relocation. Relocation optimizations improve the
efficiency of relocated instructions without changing their visible behaviour. There are several classes of
relocation optimizations:

• A single relocation optimization may change an instruction after relocation into an equivalent, more
efficient form.

• Several relocations may result in an addition with zero, which may be optimized as follows:

ADD x0, x1, 0 // eg. R_<CLS>_TLSLE_ADD_TPREL_HI12
ADD x2, x2, 0 // or R_<CLS>_ADD_ABS_LO12_NC

// after optimization:

MOV x0, x1
NOP

• The relocation R_<CLS>_ADR_PREL_PG_HI21 may emit a MOV with zero immediate for undefined
weak symbols.

• The following TLS relocations may be optimized if the symbol is not a pre-emptable definition
and the TLS offset fits in 16 bits:

ADRP x0, :gottprel: symbol // R_<CLS>_TLSIE_ADR_GOTTPREL_PAGE21
LDR x1, [x0, :gottprel_lo12: symbol] // R_<CLS>_TLSIE_LD64_GOTTPREL_LO12_NC
LDR x2, :gottprel: symbol // R_<CLS>_TLSIE_LD_GOTTPREL_PREL19

// after optimization:

NOP
MOV x1, :tprel_g0: symbol // R_<CLS>_TLSLE_MOVW_TPREL_G0
MOV x2, :tprel_g0: symbol // R_<CLS>_TLSLE_MOVW_TPREL_G0

If a linker supports optimizing R_<CLS>_TLSIE_ADR_GOTTPREL_PAGE21, it must also support
optimizing R_<CLS>_TLSIE_LD64_GOTTPREL_LO12_NC.

• A sequence of relocated instructions may be optimized if all of the following conditions are true:

28

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

• The relocations apply to consecutive instructions in the order specified.

• The relocations use the same symbol.

• The relocated instructions have the same source and destination register.

• The relocations do not appear separately or in a different order.

In this case each set of relocations is independent and may be optimized. The following sequences
are defined:

• Large GOT indirection

A GOT indirection may be optimized into PC-relative addressing:

ADRP x0, :got: symbol // R_<CLS>_ADR_GOT_PAGE
LDR x0, [x0 :got_lo12: symbol] // R_<CLS>_LD64_GOT_LO12_NC

// after optimization:

ADRP x0, symbol // R_<CLS>_ADR_PREL_PG_HI21
ADD x0, x0, :lo12: symbol // R_<CLS>_ADD_ABS_LO12_NC

This sequence may be optimized if it meets all of the following conditions:

• symbol is not a pre-emptable definition.

• symbol is not of type STT_GNU_IFUNC.

• symbol does not have a st_shndx of SHN_ABS or the output is not required to be position
independent.

• symbol is within range of the R_<CLS>_ADR_PREL_PG_HI21 relocation.

• The addend of both relocations is zero.

The optimized sequence does not require a GOT entry. A linker may avoid creating a GOT entry
if no other GOT relocations exist for the symbol.

• PC-relative addressing

ADR may replace ADRP/ADD if symbol is within +-1MiB range:

ADRP x0, symbol // R_<CLS>_ADR_PREL_PG_HI21
ADD x0, x0, :lo12: symbol // R_<CLS>_ADD_ABS_LO12_NC

// after optimization:

NOP
ADR x0, symbol // R_<CLS>_ADR_PREL_LO21

5.7.10 Proxy-generating relocations
A number of relocations generate proxy locations that are then subject to dynamic relocation. The proxies
are normally gathered together in a single table, called the Global Offset Table or GOT. Table GOT-relative
inline relocations and table GOT-relative instruction relocations list the relocations that generate proxy
entries.

All of the GOT entries generated by these relocations are subject to dynamic relocations (Dynamic
relocations).

29

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

5.7.11 Relocations for thread-local storage
The static relocations needed to support thread-local storage in a SysV-type environment are listed in
tables in the following subsections

In addition to the terms defined in Relocation types, the tables listing the static relocations relating to
thread-local storage use the following terms in the column named Operation.

• GLDM(S) represents a consecutive pair of pointer-sized entries in the GOT for the load module index
of the symbol S. The first pointer-sized entry will be relocated with R_<CLS>_TLS_DTPMOD(S); the
second pointer-sized entry will contain the constant 0.

• GTLSIDX(S,A) represents a consecutive pair of pointer-sized entries in the GOT. The entry contains a
tls_index structure describing the thread-local variable located at offset A from thread-local symbol
S. The first pointer-sized entry will be relocated with R_<CLS>_TLS_DTPMOD(S), the second
pointer-sized entry will be relocated with R_<CLS>_TLS_DTPREL(S+A).

• GTPREL(S+A) represents a pointer-sized entry in the GOT for the offset from the current thread
pointer (TP) of the thread-local variable located at offset A from the symbol S. The entry will be
relocated with R_<CLS>_TLS_TPREL(S+A).

• GTLSDESC(S+A) represents a consecutive pair of pointer-sized entries in the GOT which contain a
tlsdesc structure describing the thread-local variable located at offset A from thread-local symbol S.
The first entry holds a pointer to the variable's TLS descriptor resolver function and the second entry
holds a platform-specific offset or pointer. The pair of pointer-sized entries will be relocated with
R_<CLS>_TLSDESC(S+A).

• LDM(S) resolves to the load module index of the symbol S.

• DTPREL(S+A) resolves to the offset from its module's TLS block of the thread local variable located at
offset A from thread-local symbol S.

• TPREL(S+A) resolves to the offset from the current thread pointer (TP) of the thread local variable
located at offset A from thread-local symbol S.

• TLSDESC(S+A) resolves to a contiguous pair of pointer-sized values, as created by GTLSDESC(S+A).

5.7.11.1 General Dynamic thread-local storage model

General Dynamic TLS relocations

ELF64
Code

ELF32
Code Name Operation Comment

512 80 R_<CLS>_TLSGD_
ADR_PREL21

G(GTLSIDX(S,A)) - P Set an ADR immediate field
to bits [20:0] of X; check
–220 <= X < 220

513 81 R_<CLS>_TLSGD_
ADR_PAGE21

Page(G(GTLSIDX(S,A)) -
Page(P)

Set an ADRP immediate field
to bits [32:12] of X; check
–232 <= X < 232

514 82 R_<CLS>_TLSGD_
ADD_LO12_NC

G(GTLSIDX(S,A)) Set an ADD immediate field
to bits [11:0] of X. No
overflow check

515 - R_<CLS>_TLSGD_
MOVW_G1

G(GTLSIDX(S,A)) - GOT Set a MOV[NZ] immediate
field to bits [31:16] of X (see
notes below)

30

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

ELF64
Code

ELF32
Code Name Operation Comment

516 - R_<CLS>_TLSGD_
MOVW_G0_NC

G(GTLSIDX(S,A)) - GOT Set a MOVK immediate field
to bits [15:0] of X. No
overflow check

Note

Non-checking (_NC) MOVW forms relocate MOVK; checking forms relocate MOVN or MOVZ.

X >= 0: Set the instruction to MOVZ and its immediate value to the selected bits of X; check that X <
232.

X < 0: Set the instruction to MOVN and its immediate value to NOT (selected bits of X); check that -232

<= X.

5.7.11.2 Local Dynamic thread-local storage model

Local Dynamic TLS relocations

ELF64
Code

ELF32
Code Name Operation Comment

517 83 R_<CLS>_TLSLD_
ADR_PREL21

G(GLDM(S))) - P Set an ADR immediate field
to bits [20:0] of X; check
–220 <= X < 220

518 84 R_<CLS>_TLSLD_
ADR_PAGE21

Page(G(GLDM(S)))-Page(P
)

Set an ADRP immediate field
to bits [32:12] of X; check
–232 <= X < 232

519 85 R_<CLS>_TLSLD_
ADD_LO12_NC

G(GLDM(S)) Set an ADD immediate field
to bits [11:0] of X. No
overflow check

520 - R_<CLS>_TLSLD_
MOVW_G1

G(GLDM(S)) - GOT Set a MOV[NZ] immediate
field to bits [31:16] of X (see
notes below)

521 - R_<CLS>_TLSLD_
MOVW_G0_NC

G(GLDM(S)) - GOT Set a MOVK immediate field
to bits [15:0] of X. No
overflow check

522 86 R_<CLS>_TLSLD_
LD_PREL19

G(GLDM(S)) - P Set a load-literal immediate
field to bits [20:2] of X;
check –220 <= X < 220

523 - R_<CLS>_TLSLD_
MOVW_DTPREL_G2

DTPREL(S+A) Set a MOV[NZ] immediate
field to bits [47:32] of X (see
notes below)

524 87 R_<CLS>_TLSLD_
MOVW_DTPREL_G1

DTPREL(S+A) Set a MOV[NZ] immediate
field to bits [31:16] of X (see
notes below)

31

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

ELF64
Code

ELF32
Code Name Operation Comment

525 - R_<CLS>_TLSLD_ MO
VW_DTPREL_G1_NC

DTPREL(S+A) Set a MOVK immediate field
to bits [31:16] of X. No
overflow check

526 88 R_<CLS>_TLSLD_
MOVW_DTPREL_G0

DTPREL(S+A) Set a MOV[NZ] immediate
field to bits [15:0] of X (see
notes below)

527 89 R_<CLS>_TLSLD_ MO
VW_DTPREL_G0_NC

DTPREL(S+A) Set a MOVK immediate field
to bits [15:0] of X. No
overflow check

528 90 R_<CLS>_TLSLD_
ADD_DTPREL_HI12

DTPREL(S+A) Set an ADD immediate field
to bits [23:12] of X; check 0
<= X < 224

529 91 R_<CLS>_TLSLD_
ADD_DTPREL_LO12

DTPREL(S+A) Set an ADD immediate field
to bits [11:0] of X; check 0
<= X < 212

530 92 R_<CLS>_TLSLD_ AD
D_DTPREL_LO12_NC

DTPREL(S+A) Set an ADD immediate field
to bits [11:0] of X. No
overflow check

531 93 R_<CLS>_TLSLD_
LDST8_DTPREL_LO12

DTPREL(S+A) Set a LD/ST offset field to
bits [11:0] of X; check 0 <=
X < 212

532 94 R_<CLS>_TLSLD_ LD
ST8_DTPREL_LO12_N
C

DTPREL(S+A) Set a LD/ST offset field to
bits [11:0] of X. No overflow
check

533 95 R_<CLS>_TLSLD_ LD
ST16_DTPREL_LO12

DTPREL(S+A) Set a LD/ST offset field to
bits [11:1] of X; check 0 <=
X < 212

534 96 R_<CLS>_TLSLD_ LD
ST16_DTPREL_LO12_
NC

DTPREL(S+A) Set a LD/ST offset field to
bits [11:1] of X. No overflow
check

535 97 R_<CLS>_TLSLD_ LD
ST32_DTPREL_LO12

DTPREL(S+A) Set a LD/ST offset field to
bits [11:2] of X; check 0 <=
X < 212

536 98 R_<CLS>_TLSLD_ LD
ST32_DTPREL_LO12_
NC

DTPREL(S+A) Set a LD/ST offset field to
bits [11:2] of X. No overflow
check

537 99 R_<CLS>_TLSLD_ LD
ST64_DTPREL_LO12

DTPREL(S+A) Set a LD/ST offset field to
bits [11:3] of X; check 0 <=
X < 212

538 100 R_<CLS>_TLSLD_ LD
ST64_DTPREL_LO12_
NC

DTPREL(S+A) Set a LD/ST offset field to
bits [11:3] of X. No overflow
check

572 101 R_<CLS>_TLSLD_ LD
ST128_DTPREL_LO12

DTPREL(S+A) Set a LD/ST offset field to
bits [11:4] of X; check 0 <=
X < 212

32

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

ELF64
Code

ELF32
Code Name Operation Comment

573 102 R_<CLS>_TLSLD_ LD
ST128_DTPREL_LO12
_ NC

DTPREL(S+A) Set a LD/ST offset field to
bits [11:4] of X. No overflow
check

Note

Non-checking (_NC) MOVW forms relocate MOVK; checking forms relocate MOVN or MOVZ.

X >= 0: Set the instruction to MOVZ and its immediate value to the selected bits S; for relocation
R_..._Gn, check in ELF64 that X < {G0: 216, G1: 232, G2: 248} (no check for R_..._G3); in ELF32 only
check that X < 216 for R_..._G0.

X < 0: Set the instruction to MOVN and its immediate value to NOT (selected bits of); for relocation
R_..._Gn, check in ELF64 that -{G0: 216, G1: 232, G2: 248} <= X (no check for R_..._G3); in ELF32
only check that -216 <= X for R_..._G0.

For scaled-addressing relocations (533-538, 572 and 573) or [95-102] a linker should check that X is a
multiple of the datum size.

5.7.11.3 Initial Exec thread-local storage model

Initial Exec TLS relocations

ELF64
Code

ELF32
Code Name Operation Comment

539 - R_<CLS>_TLSIE_
MOVW_GOTTPREL_G1

G(GTPREL(S+A)) - GOT Set a MOV[NZ]
immediate field to bits
[31:16] of X (see notes
below)

540 - R_<CLS>_TLSIE_
MOVW_GOTTPREL_G0_NC

G(GTPREL(S+A)) - GOT Set MOVK immediate to
bits [15:0] of X. No
overflow check

541 103 R_<CLS>_TLSIE_
ADR_GOTTPREL_PAGE21

Page(G(GTPREL(S+A))) -
Page(P)

Set an ADRP immediate
field to bits [32:12] of X;
check –232 <= X < 232

542 - R_<CLS>_TLSIE_ LD64_G
OTTPREL_LO12_NC

G(GTPREL(S+A)) Set an LD offset field to
bits [11:3] of X. No
overflow check; check
that X&7=0

- 104 R_<CLS>_TLSIE_ LD32_G
OTTPREL_LO12_NC

G(GTPREL(S+A)) Set an LD offset field to
bits [11:2] of X. No
overflow check; check
that X&3=0

543 105 R_<CLS>_TLSIE_
LD_GOTTPREL_PREL19

G(GTPREL(S+A)) – P Set a load-literal
immediate to bits [20:2]
of X; check –220 <= X <
220

33

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

Note

Non-checking (_NC) MOVW forms relocate MOVK; checking forms relocate MOVN or MOVZ.

5.7.11.4 Local Exec thread-local storage model

Local Exec TLS relocations

ELF64
Code

ELF32
Code Name Operation Comment

544 - R_<CLS>_TLSLE_ MOVW_TPREL_G2 TPREL(S+A) Set a MOV[NZ]
immediate field to
bits [47:32] of X
(see notes below)

545 106 R_<CLS>_TLSLE_ MOVW_TPREL_G1 TPREL(S+A) Set a MOV[NZ]
immediate field to
bits [31:16] of X
(see notes below)

546 - R_<CLS>_TLSLE_ MOVW_TPREL_G1_NC TPREL(S+A) Set a MOVK
immediate field to
bits [31:16] of X. No
overflow check

547 107 R_<CLS>_TLSLE_ MOVW_TPREL_G0 TPREL(S+A) Set a MOV[NZ]
immediate field to
bits [15:0] of X (see
notes below)

548 108 R_<CLS>_TLSLE_ MOVW_TPREL_G0_NC TPREL(S+A) Set a MOVK
immediate field to
bits [15:0] of X. No
overflow check

549 109 R_<CLS>_TLSLE_ ADD_TPREL_HI12 TPREL(S+A) Set an ADD
immediate field to
bits [23:12] of X;
check 0 <= X < 224.

550 110 R_<CLS>_TLSLE_ ADD_TPREL_LO12 TPREL(S+A) Set an ADD
immediate field to
bits [11:0] of X;
check 0 <= X < 212.

551 111 R_<CLS>_TLSLE_ ADD_TPREL_LO12_NC TPREL(S+A) Set an ADD
immediate field to
bits [11:0] of X. No
overflow check

552 112 R_<CLS>_TLSLE_ LDST8_TPREL_LO12 TPREL(S+A) Set a LD/ST offset
field to bits [11:0]
of X; check 0 <= X
< 212.

34

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

ELF64
Code

ELF32
Code Name Operation Comment

553 113 R_<CLS>_TLSLE_ LDST8_TPREL_LO12_NC TPREL(S+A) Set a LD/ST offset
field to bits [11:0]
of X. No overflow
check

554 114 R_<CLS>_TLSLE_ LDST16_TPREL_LO12 TPREL(S+A) Set a LD/ST offset
field to bits [11:1]
of X; check 0 <= X
< 212

555 115 R_<CLS>_TLSLE_ LDST16_TPREL_LO12_NC TPREL(S+A) Set a LD/ST offset
field to bits [11:1]
of X. No overflow
check

556 116 R_<CLS>_TLSLE_ LDST32_TPREL_LO12 TPREL(S+A) Set a LD/ST offset
field to bits [11:2]
of X; check 0 <= X
< 212

557 117 R_<CLS>_TLSLE_ LDST32_TPREL_LO12_NC TPREL(S+A) Set a LD/ST offset
field to bits [11:2]
of X. No overflow
check

558 118 R_<CLS>_TLSLE_ LDST64_TPREL_LO12 TPREL(S+A) Set a LD/ST offset
field to bits [11:3]
of X; check 0 <= X
< 212

559 119 R_<CLS>_TLSLE_ LDST64_TPREL_LO12_NC TPREL(S+A) Set a LD/ST offset
field to bits [11:3]
of X. No overflow
check

570 120 R_<CLS>_TLSLE_ LDST128_TPREL_LO12 TPREL(S+A) Set a LD/ST offset
field to bits [11:4]
of X; check 0 <= X
< 212

571 121 R_<CLS>_TLSLE_
LDST128_TPREL_LO12_NC

TPREL(S+A) Set a LD/ST offset
field to bits [11:4]
of X. No overflow
check

Note

Non-checking (_NC) MOVW forms relocate MOVK; checking forms relocate MOVN or MOVZ.

For scaled-addressing relocations (554-559, 570 and 571) or [112-121] a linker should check that X is
a multiple of the datum size.

5.7.11.5 Thread-local storage descriptors

TLS descriptor relocations

35

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

ELF64
Code

ELF32
Code Name Operation Comment

560 122 R_<CLS>_TLSDESC
_ LD_PREL19

G(GTLSDESC(S+A)) - P Set a load-literal immediate to
bits [20:2]; check -220 <= X <
220; check X & 3 = 0.

561 123 R_<CLS>_TLSDESC
_ ADR_PREL21

G(GTLSDESC(S+A)) - P Set an ADR immediate field to
bits [20:0]; check -220 <= X <
220.

562 124 R_<CLS>_TLSDESC
_ ADR_PAGE21

Page(G(GTLSDESC(S+A)))
- Page(P)

Set an ADRP immediate field to
bits [32:12] of X; check -232

<= X < 232.

563 - R_<CLS>_TLSDESC
_ LD64_LO12

G(GTLSDESC(S+A)) Set an LD offset field to bits
[11:3] of X. No overflow
check; check X & 7 = 0.

- 125 R_<CLS>_TLSDESC
_ LD32_LO12

G(GTLSDESC(S+A)) Set an LD offset field to bits
[11:2] of X. No overflow
check; check X & 3 = 0.

564 126 R_<CLS>_TLSDESC
_ ADD_LO12

G(GTLSDESC(S+A)) Set an ADD immediate field to
bits [11:0] of X. No overflow
check.

565 - R_<CLS>_TLSDESC
_ OFF_G1

G(GTLSDESC(S+A)) - GOT Set a MOV[NZ] immediate field
to bits [31:16] of X; check
-232 <= X < 232. See notes
below.

566 - R_<CLS>_TLSDESC
_ OFF_G0_NC

G(GTLSDESC(S+A)) - GOT Set a MOVK immediate field to
bits [15:0] of X. No overflow
check.

567 - R_<CLS>_TLSDESC
_ LDR

None For relaxation only. Must be
used to identify an LDR
instruction which loads the TLS
descriptor function pointer for
S + A if it has no other
relocation.

568 - R_<CLS>_TLSDESC
_ ADD

None For relaxation only. Must be
used to identify an ADD
instruction which computes the
address of the TLS Descriptor
for S + A if it has no other
relocation.

569 127 R_<CLS>_TLSDESC
_ CALL

None For relaxation only. Must be
used to identify a BLR
instruction which performs an
indirect call to the TLS
descriptor function for S + A.

Note

X >= 0: Set the instruction to MOVZ and its immediate value to the selected bits of X.

X < 0: Set the instruction to MOVN and its immediate value to NOT (selected bits of X).

36

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

Relocation codes R_<CLS>_TLSDESC_LDR, R_<CLS>_TLSDESC_ADD and R_<CLS>_TLSDESC_CALL are needed
to permit linker optimization of TLS descriptor code sequences to use Initial-exec or Local-exec TLS
sequences; this can only be done if all relevant uses of TLS descriptors are marked to permit accurate
relaxation. Object producers that are unable to satisfy this requirement must generate traditional
General-dynamic TLS sequences using the relocations described in General Dynamic thread-local storage
model. The details of TLS descriptors are beyond the scope of this specification; a general introduction
can be found in [TLSDESC].

5.7.12 Relocations for PAuth ABI Extension
The PAuth ABI Extension defines a number of static and dynamic relocations. The information in this
document is sufficient to reserve the relocation types. For details on the relocations and operations see
PAUTHABIELF64.

PAuthABI static relocations

ELF64
Code

ELF32
Code Name Operation Comment

580 - R_<CLS>_AUTH_AB
S64

PAUTH(S+A) See PAUTHABIELF64

5.7.13 Dynamic relocations
The dynamic relocations for those execution environments that support only a limited number of run-time
relocation types are listed in the below table. The enumeration of dynamic relocations commences at
(1024) or [180] and the range is compact.

Dynamic relocations

ELF64
Code

ELF32
Code Name Operation Comment

257 - R_<CLS>_ABS64 S + A See note below.

- 1 R_<CLS>_ABS32 S + A See note below.

580 - R_<CLS>_AUTH_ABS64 SIGN(S + A,
SCHEMA(*P))

See note below.

1024 180 R_<CLS>_COPY See note below.

1025 181 R_<CLS>_GLOB_DAT S + A See note below

1026 182 R_<CLS>_JUMP_SLOT S + A See note below

1027 183 R_<CLS>_RELATIVE Delta(S) + A See note below

1028 184 R_<CLS>_TLS_IMPDEF1 See note below

1029 185 R_<CLS>_TLS_IMPDEF2 See note below

R_<CLS>_TLS_DTPREL DTPREL(S+A) See note below

R_<CLS>_TLS_DTPMOD LDM(S) See note below

1030 186 R_<CLS>_TLS_TPREL TPREL(S+A)

37

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

http://www.fsfla.org/~lxoliva/writeups/TLS/paper-lk2006.pdf
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

ELF64
Code

ELF32
Code Name Operation Comment

1031 187 R_<CLS>_TLSDESC TLSDESC(S+A) Identifies a TLS descriptor to
be filled

1032 188 R_<CLS>_IRELATIVE Indirect(Delta(S) +
A)

See note below.

1041 - R_<CLS>_AUTH_RELATI
VE

SIGN(DELTA(S) + A,
SCHEMA(*P))

See note below.

With the exception of R_<CLS>_COPY all dynamic relocations require that the place being relocated is an
8-byte aligned 64-bit data location in ELF64 or a 4-byte aligned 32-bit data location in ELF32.

R_<CLS>_ABS64 and R_<CLS>_ABS32 may only appear in a well-formed executable or dynamic shared
object in ELF64 or ELF32 respectively. Note that for their respective file format these relocations are both
static and dynamic relocations.

R_<CLS>_COPY may only appear in executable ELF files where e_type is set to ET_EXEC. The effect is to
cause the dynamic linker to locate the target symbol in a shared library object and then to copy the
number of bytes specified by its st_size field to the place. The address of the place is then used to
pre-empt all other references to the specified symbol. It is an error if the storage space allocated in the
executable is insufficient to hold the full copy of the symbol. If the object being copied contains dynamic
relocations then the effect must be as if those relocations were performed before the copy was made.

R_<CLS>_COPY is normally only used in SysV type environments where the executable is not position-
independent and references by the code and read-only data sections cannot be relocated dynamically to
refer to an object that is defined in a shared library.

The need for copy relocations can be avoided if a compiler generates all code references to such objects
indirectly through a dynamically relocatable location and if all static data references are placed in
relocatable regions of the image. In practice, this is difficult to achieve without source-code annotation. A
better approach is to avoid defining static global data in shared libraries.

R_<CLS>_GLOB_DAT relocates a GOT entry used to hold the address of a (data) symbol which must be
resolved at load time.

R_<CLS>_JUMP_SLOT is used to mark code targets that will be executed.

• On platforms that support dynamic binding the relocations may be performed lazily on demand.

• The initial value stored in the place is the offset to the entry sequence stub for the dynamic linker. It
must be adjusted during initial loading by the offset of the load address of the segment from its link
address.

• Addresses stored in the place of these relocations may not be used for pointer comparison until after
the relocation has been resolved.

• Because the initial value of the place is not related to the ultimate target of a R_<CLS>_JUMP_SLOT
relocation the addend A of such a REL-type relocation shall be zero rather than the initial content of
the place. A platform ABI shall prescribe whether or not the r_addend field of such a RELA-type
relocation is honored. (There may be security-related reasons not to do so).

R_<CLS>_RELATIVE represents a relative adjustment to the place based on the load address of the object
relative to its original link address. All symbols defined in the same segment will have the same relative
adjustment. If S is the null symbol (ELF symbol index 0) then the adjustment is based on the segment
defining the place. On systems where all segments are mapped contiguously the adjustment will be the
same for each relocation, thus adjustment never needs to resolve the symbol. This relocation represents
an optimization; a static linker can use it to replace R_<CLS>_GLOB_DAT when the symbol is known at
static link time to always resolve to the current link unit.

R_<CLS>_IRELATIVE represents a dynamic selection of the place’s resolved value. The means by which
this relocation is generated is platform specific, as are the conditions that must hold when resolving takes
place.

38

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

Relocations R_AARCH64_TLS_DTPREL, R_AARCH64_TLS_DTPMOD and R_AARCH64_TLS_TPREL were previously
documented as R_AARCH64_TLS_DTPREL64, R_AARCH64_TLS_DTPMOD64 and R_AARCH64_TLS_TPREL64
respectively. The old names can be supported if needed for backwards compatibility.

It is implementation defined whether R_<CLS>_TLS_IMPDEF1 implements R_<CLS>_TLS_DTPREL and
R_<CLS>_TLS_IMPDEF2 implements R_<CLS>_TLS_DTPMOD or whether R_<CLS>_TLS_IMPDEF1 implements
R_<CLS>_TLS_DTPMOD and R_<CLS>_TLS_IMPDEF2 implements R_<CLS>_TLS_DTPREL; a platform must
document its choice1.

R_<CLS>_AUTH_ABS64 and R_<CLS>_AUTH_RELATIVE are part of the PAuth ABI Extension. For
details on the relocations and operations see PAUTHABIELF64. Note that R_<CLS>_AUTH_ABS64 is both
a static and a dynamic relocation.

5.7.14 Private and platform-specific relocations
Private relocations for vendor experiments:

• 0xE000 to 0xEFFF for ELF64

• 0xE0 to 0xEF for ELF32

Platform ABI defined relocations:

• 0xF000 to 0xFFFF for ELF64

• 0xF0 to 0xFF for ELF32

Platform ABI relocations can only be interpreted when the EI_OSABI field is set to indicate the Platform
ABI governing the definition.

All of the above codes will not be assigned by any future version of this standard.

5.7.15 Unallocated relocations
All unallocated relocation types are reserved for use by future revisions of this specification.

5.7.16 PAuthABI relocations
The PAuthABIELF64 ELF extension, currently in Alpha state, defines several relocations in the vendor
experiment space. Arm reserves codes 580 to 600 for static PAuthABIELF64 relocations and 1040 - 1060
for dynamic PAuthABIELF64 relocations. When the extension moves to Release state the relocations
defined in PAuthABIELF64 will be added to this document and all unused codes in the reserved ranges will
be released.

5.7.17 Idempotency
All RELA type relocations are idempotent. They may be reapplied to the place and the result will be the
same. This allows a static linker to preserve full relocation information for an image by converting all REL
type relocations into RELA type relocations.

Note

A REL type relocation can only be idempotent if the original addend was zero and if subsequent
re-linking assumes that REL relocations have zero for all addends.

39

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

6 Program Loading and Dynamic
Linking
This section provides details of AArch64-specific definitions and changes relating to executable images.

6.1 Program Header
The Program Header provides a number of fields that assist in interpretation of the file. Most of these are
specified in the base standard [SCO-ELF]. The following fields have AArch64-specific meanings.

p_type

The below table lists the processor-specific segment types.

Processor-specific segment types

Name p_type Meaning

PT_AARCH64_ARCHEXT 0x7000000
0

Reserved for architecture compatibility information

PT_AARCH64_UNWIND 0x7000000
1

Reserved for exception unwinding tables

PT_AARCH64_MEMTAG_M
TE

0x7000000
2

Reserved for MTE memory tag data dumps in core files

A segment of type PT_AARCH64_ARCHEXT (if present) contains information describing the architecture
capabilities required by the executable file. Not all platform ABIs require this segment; the Linux ABI does
not. If the segment is present it must appear before segment of type PT_LOAD.

PT_AARCH64_UNWIND (if present) describes the location of a program’s exception unwind tables.

PT_AARCH64_MEMTAG_MTE segments (if present) hold MTE memory tags for a particular memory range. At
present they are defined for core dump files of type ET_CORE. A description of the program header and
contents can be found in [MTEEXTENSIONS].

p_flags

There are no AArch64-specific flags.

6.1.1 Platform architecture compatibility data
At this time this ABI specifies no generic platform architecture compatibility data.

6.2 Program Property
The information on Program Property has moved to [SYSVABI64].

6.3 Program Loading
The information on program loading has moved to [SYSVABI64].

6.4 Dynamic Linking
The information on Dynamic Linking has moved to [SYSVABI64].

40

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

http://www.sco.com/developers/gabi/
https://www.kernel.org/doc/html/latest/arm64/memory-tagging-extension.html#core-dump-support
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

6.5 Dynamic Section
The information on the Dynamic Section has moved to [SYSVABI64].

6.5.1 Custom PLTs
The information on custom PLTs has moved to [SYSVABI64].

41

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/abi-aa/releases
https://github.com/ARM-software/abi-aa/releases

7 Footnotes

1 Earlier versions of this specification required that R_<CLS>_TLS_IMPDEF1 implement
R_<CLS>_TLS_DTPREL and R_<CLS>_TLS_IMPDEF2 implement R_<CLS>_TLS_DTPMOD;
however the Linux platform ABI has always implemented the alternative specification.
It is recommended that new platforms follow the Linux platform specification as this
is the most widely adopted.

42

Copyright © 2011, 2013, 2018-2024, Arm Limited and its affiliates. All rights reserved.

	1 Preamble
	1.1 ILP32 Beta
	1.2 Abstract
	1.3 Keywords
	1.4 Latest release and defects report
	1.5 Licence
	1.6 About the license
	1.7 Contributions
	1.8 Trademark notice
	1.9 Copyright

	2 About this document
	2.1 Change control
	2.1.1 Current status and anticipated changes
	2.1.2 Change history

	2.2 References
	2.3 Terms and abbreviations

	3 About This Specification
	3.1 ELF Class variants
	3.1.1 64-bit Pointers, ELF64
	3.1.2 32-bit Pointers, ELF32 (Beta)

	4 Platform standards (Example Only)
	4.1 Linux Platform ABI (example only)
	4.1.1 Symbol Versioning
	4.1.2 Program Linkage Table (PLT) Sequences and Usage Models
	4.1.2.1 Symbols for which a PLT entry must be generated
	4.1.2.2 Overview of PLT entry code generation

	5 Object Files
	5.1 Introduction
	5.1.1 Registered Vendor Names

	5.2 ELF Header
	5.2.1 ELF Identification

	5.3 Sections
	5.3.1 Special Section Indexes
	5.3.2 Section Types
	5.3.3 Section Attribute Flags
	5.3.3.1 Merging of objects in sections with SHF_MERGE

	5.3.4 Special Sections
	5.3.5 Section Alignment
	5.3.6 Build Attributes

	5.4 String Table
	5.5 Symbol Table
	5.5.1 st_other Values

	5.6 Weak Symbols
	5.6.1 Weak References
	5.6.2 Weak Definitions
	5.6.3 Symbol Types
	5.6.4 Symbol names
	5.6.4.1 Reserved symbol names

	5.6.5 Mapping symbols

	5.7 Relocation
	5.7.1 Relocation codes
	5.7.2 Addends and PC-bias
	5.7.3 Relocation types
	5.7.3.1 Relocation names and class
	5.7.3.2 Relocation codes disambiguation
	5.7.3.3 Relocation operations

	5.7.4 Static miscellaneous relocations
	5.7.5 Static Data relocations
	5.7.6 Static AArch64 relocations
	5.7.7 Call and Jump relocations
	5.7.8 Group relocations
	5.7.9 Relocation optimization
	5.7.10 Proxy-generating relocations
	5.7.11 Relocations for thread-local storage
	5.7.11.1 General Dynamic thread-local storage model
	5.7.11.2 Local Dynamic thread-local storage model
	5.7.11.3 Initial Exec thread-local storage model
	5.7.11.4 Local Exec thread-local storage model
	5.7.11.5 Thread-local storage descriptors

	5.7.12 Relocations for PAuth ABI Extension
	5.7.13 Dynamic relocations
	5.7.14 Private and platform-specific relocations
	5.7.15 Unallocated relocations
	5.7.16 PAuthABI relocations
	5.7.17 Idempotency

	6 Program Loading and Dynamic Linking
	6.1 Program Header
	6.1.1 Platform architecture compatibility data

	6.2 Program Property
	6.3 Program Loading
	6.4 Dynamic Linking
	6.5 Dynamic Section
	6.5.1 Custom PLTs

	7 Footnotes

